[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011161837A1 - 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター - Google Patents

複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター Download PDF

Info

Publication number
WO2011161837A1
WO2011161837A1 PCT/JP2010/064507 JP2010064507W WO2011161837A1 WO 2011161837 A1 WO2011161837 A1 WO 2011161837A1 JP 2010064507 W JP2010064507 W JP 2010064507W WO 2011161837 A1 WO2011161837 A1 WO 2011161837A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
film
composite porous
heat
composite
Prior art date
Application number
PCT/JP2010/064507
Other languages
English (en)
French (fr)
Inventor
水野 直樹
達彦 入江
鮎澤 佳孝
匡徳 中村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to PL10853697T priority Critical patent/PL2586611T3/pl
Priority to JP2010537061A priority patent/JP5648481B2/ja
Priority to MYPI2012701253A priority patent/MY183586A/en
Priority to KR1020127032356A priority patent/KR101895628B1/ko
Priority to CN201080067710.6A priority patent/CN102958694B/zh
Priority to US13/805,056 priority patent/US20130101889A1/en
Priority to EP10853697.0A priority patent/EP2586611B1/en
Publication of WO2011161837A1 publication Critical patent/WO2011161837A1/ja
Priority to US14/596,490 priority patent/US9614212B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite porous film in which a porous film containing a heat-resistant resin is laminated on a porous film made of a polyolefin-based resin, and in particular, has excellent ion permeability, and the polyolefin-based porous film and the heat-resistant resin.
  • the present invention relates to a composite porous membrane that is excellent in adhesion to the membrane and useful as a separator for a lithium ion battery.
  • the porous membrane made of thermoplastic resin is widely used as a material for separation of substances, selective permeation and isolation.
  • various filters such as battery separators for lithium secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, reverse osmosis filtration membranes, ultrafiltration membranes, microfiltration membranes, etc. It is used in breathable and waterproof clothing, medical materials, and the like.
  • polyethylene porous membranes are preferably used as separators for lithium ion secondary batteries because of their excellent electrical insulation properties and ion permeability due to electrolyte impregnation, and are resistant to electrolytes and acids.
  • lithium-ion battery separators are deeply involved in battery characteristics, battery productivity, and battery safety.
  • Excellent mechanical characteristics, heat resistance, permeability, dimensional stability, pore clogging characteristics (shutdown characteristics), melting damage Film prevention characteristics (meltdown prevention characteristics) are required. Therefore, various heat resistance improvement studies have been made so far.
  • further thinning will progress in order to increase not only the electrodes but also the area that can be filled in the container not only in the separator. As the porous film becomes thinner, it tends to be deformed in the plane direction, so the heat-resistant resin layer may peel off during processing of the composite porous film, in the slit process, or in the battery assembly process, ensuring safety. It becomes difficult.
  • Patent Document 1 a polyamide-imide resin is directly applied to a polyolefin porous film having a thickness of 25 ⁇ m so as to have a film thickness of 1 ⁇ m, immersed in water at 25 ° C., and dried to obtain a lithium ion secondary battery.
  • a separator is disclosed.
  • the polyolefin-based porous Infiltration of the resin component into the membrane is unavoidable, and a significant increase in the air resistance and a decrease in the pore closing function are unavoidable.
  • the resin component easily fills the inside of the porous material, causing an extreme increase in air resistance.
  • such a method also has a problem that the film thickness unevenness of the polyolefin-based porous film is likely to be related to the film thickness unevenness of the heat-resistant resin layer, and the air resistance resistance is likely to vary.
  • Patent Document 2 exemplifies an electrolyte-supported polymer film obtained by immersing and drying a nonwoven fabric made of aramid fibers having an average thickness of 36 ⁇ m in a dope containing a vinylidene fluoride copolymer that is a heat-resistant resin.
  • Patent Document 3 a composite porous membrane obtained by immersing a polypropylene porous membrane having a film thickness of 25.6 ⁇ m in a dope mainly composed of polyvinylidene fluoride, which is a heat-resistant resin, and undergoing solidification, washing, and drying processes. Is illustrated.
  • Patent Document 3 the heat resistant porous layer is still formed on the inside and both surfaces of the polypropylene porous membrane, and a significant increase in the air permeability resistance cannot be avoided as in Patent Document 2, It is difficult to obtain an occlusion function.
  • Patent Document 4 when a para-aramid resin solution, which is a heat-resistant resin, is directly applied to a 25 ⁇ m-thick polyethylene porous film, it is used in advance in the heat-resistant resin solution in order to avoid a significant increase in air resistance.
  • the porous organic film is impregnated with a polar organic solvent, and after applying a heat resistant resin solution, it is formed into a cloudy film in a thermostatic chamber set at a temperature of 30 ° C. and a relative humidity of 65%, and then washed.
  • a separator having a heat-resistant porous layer made of para-aramid obtained by drying is disclosed.
  • Patent Document 4 there is no significant increase in the air resistance, but the adhesion between the polyethylene porous film and the heat resistant resin is extremely small, and particularly when the thickness of the polyethylene porous film is less than 10 ⁇ m. Since it is easily deformed in the planar direction, the heat-resistant resin layer may be peeled off in the battery assembly process, making it difficult to ensure safety.
  • Patent Document 5 a polyamideimide resin solution is applied to a propylene film and passed through an atmosphere of 80% RH at 25 ° C. for 30 seconds to obtain a semi-gel porous film, and then a polyethylene having a thickness of 20 ⁇ m or 10 ⁇ m.
  • a composite porous membrane obtained by laminating a porous film on the semi-gel porous membrane, immersing it in an aqueous solution containing N-methyl-2-pyrrolidone (NMP), washing with water and drying. .
  • NMP N-methyl-2-pyrrolidone
  • Patent Document 5 there is no significant increase in the air resistance, but the adhesion between the polyethylene porous film and the heat-resistant resin is extremely small. When the thickness is less than 10 ⁇ m, the heat resistant resin layer may be peeled off, making it difficult to ensure safety.
  • the present invention provides a composite porous membrane that achieves both excellent adhesion of a heat resistant resin layer and a small increase in air resistance even when the composite porous membrane including a battery separator is made thinner in the future. Aiming to provide a composite porous membrane suitable for battery separators, particularly suitable for high battery capacity, excellent ion permeability, and high-speed processability in battery assembly processing It is.
  • the present invention has the following configurations (1) to (9).
  • the composite porous membrane satisfying the following formula (D) the composite porous membrane further satisfies the following formulas (E) and (F).
  • Thickness of porous membrane A ⁇ 10 ⁇ m Formula (A) 0.01 ⁇ m ⁇ average pore diameter of porous membrane A ⁇ 1.0 ⁇ m Formula (B) 30% ⁇ Porosity of porous membrane A ⁇ 70% Formula (C) Total thickness of composite porous membrane ⁇ 13 ⁇ m Formula (D) Peel strength at the interface between porous membrane A and porous membrane B ⁇ 1.0 N / 25 mm ...
  • (6) The method for producing a composite porous membrane according to (5), wherein the base film is peeled after obtaining the composite porous membrane in step (ii).
  • (7) The method for producing a composite porous membrane according to (5) or (6), wherein the base film is a polyester film or a polyolefin film having a thickness of 25 to 100 ⁇ m.
  • the passage time in the low humidity zone is 3 seconds or more and 20 seconds or less in the step (i), and the passage time in the high humidity zone is 3 seconds or more and 10 seconds or less (5) to (7
  • a battery separator comprising the composite porous membrane according to any one of (1) to (4).
  • the composite porous membrane of the present invention has both excellent adhesion of the heat-resistant resin layer and small increase in air permeability resistance, the battery has a high capacity, excellent ion permeability, and battery assembly processing. It is suitable for high-speed processability in the process, and can be particularly suitably used for a battery separator.
  • the composite porous membrane of the present invention is obtained by laminating a porous membrane B containing a heat-resistant resin on a porous membrane A made of a polyolefin-based resin. It achieves excellent adhesion of the heat-resistant resin layer without causing an increase.
  • the significant increase in the air resistance is that the difference between the air resistance (X) of the porous membrane as the base material and the air resistance (Y) of the composite porous membrane exceeds 100 seconds / 100 cc Air.
  • the adhesiveness of the excellent heat resistant resin layer means that the peel strength is 1.0 N / 25 mm or more, preferably 1.5 N / 25 mm or more, and more preferably 2.0 N / 25 mm or more. If it is less than 1.0 N / 25 mm, the heat-resistant resin layer may be peeled off during high-speed processing in the battery assembly process. There is no particular upper limit to the peel strength, but 30 N / 25 mm is sufficient for adhesion.
  • the porous membrane A used in the present invention will be described.
  • the resin constituting the porous membrane A polyolefin is preferable, and polyethylene is particularly preferable. This is because, in addition to basic characteristics such as electrical insulation and ion permeability, it has a hole closing effect that cuts off the current and suppresses excessive temperature rise at abnormal battery temperature rise.
  • the resin constituting the porous membrane A is preferably from the viewpoint of process workability and mechanical strength that can withstand various external pressures generated when wound with the electrode, for example, tensile strength, elastic modulus, elongation, and piercing strength.
  • the mass average molecular weight is 300,000 or more, more preferably 400,000 or more, and most preferably 500,000 or more.
  • the polyolefin component which has the mass mean molecular weight of the said range contains 50 weight% or more, More preferably, it is preferable to contain 60 weight% or more. When the content is lower than the above range, the melt viscosity is low, so the mechanical properties are significantly reduced when the temperature is raised above the pore closing temperature. Melt film breakage may occur.
  • phase structure of the porous membrane A varies depending on the production method. As long as the above various characteristics are satisfied, the phase structure according to the purpose can be freely given by the production method. There are foaming methods, phase separation methods, dissolution recrystallization methods, stretched pore opening methods, powder sintering methods, etc., among these porous membrane production methods. Among these, phase separation is performed in terms of uniform micropores and cost. The method is preferred.
  • the porous membrane A needs to have a function of closing the pores when the charge / discharge reaction is abnormal (pore closing function).
  • the melting point (softening point) of the constituent resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., and most preferably 100 to 130 ° C. If the temperature is lower than 70 ° C, the pore blocking function may be exhibited during normal use and the battery may become unusable. Therefore, if the temperature exceeds 150 ° C, the abnormal reaction proceeds sufficiently and the hole blocking function appears. Therefore, safety may not be ensured.
  • the film thickness of the porous film A needs to be less than 10 ⁇ m.
  • the upper limit is preferably 9.5 ⁇ m, more preferably 9 ⁇ m.
  • the lower limit is preferably 5 ⁇ m, more preferably 6 ⁇ m. If it is thinner than 5 ⁇ m, it may not be possible to have a practical membrane strength and pore blocking function. If it is 10 ⁇ m or more, the area per unit volume of the battery case will be greatly restricted, and the battery will progress in the future. It is not suitable for high capacity.
  • the upper limit of the air permeability resistance (JIS-P8117) of the porous membrane A is preferably 500 seconds / 100 cc Air, more preferably 400 seconds / 100 cc Air, most preferably 300 seconds / 100 cc Air, and the lower limit is preferably 50 seconds / 100 cc Air. More preferably, it is 70 seconds / 100 cc Air, and most preferably 100 seconds / 100 cc Air.
  • the upper limit of the porosity of the porous membrane A is 70%, preferably 60%, more preferably 55%.
  • the lower limit is 30%, preferably 35%, more preferably 40%.
  • the air resistance is higher than 500 seconds / 100 cc Air or the porosity is lower than 30%, sufficient charge / discharge characteristics of the battery, particularly ion permeability (charge / discharge operating voltage), battery life (electrolysis) (It is closely related to the amount of liquid retained), and if these ranges are exceeded, the battery function may not be fully exhibited.
  • the air permeability resistance is lower than 50 seconds / 100 cc Air or the porosity is higher than 70%, sufficient mechanical strength and insulation cannot be obtained, and a short circuit may occur during charging and discharging. Increases nature.
  • the average pore diameter of the porous membrane A is 0.01 to 1.0 ⁇ m, preferably 0.05 to 0.5 ⁇ m, more preferably 0.1 to 0.3 ⁇ m, because it greatly affects the pore closing rate. If it is smaller than 0.01 ⁇ m, the anchoring effect of the heat resistant resin is difficult to obtain, and sufficient heat resistant resin adhesion may not be obtained. The possibility increases. When it is larger than 1.0 ⁇ m, there is a possibility that a phenomenon such as a slow response to the temperature of the hole closing phenomenon or a phenomenon that the hole closing temperature due to the heating rate shifts to a higher temperature side.
  • the surface state of the porous membrane A when the surface roughness (arithmetic average roughness) is in the range of 0.01 to 0.5 ⁇ m, the adhesion to the porous membrane B tends to be stronger. . When the surface roughness is lower than 0.01 ⁇ m, the effect of improving the adhesion is not observed. When the surface roughness is higher than 0.5 ⁇ m, the mechanical strength of the porous film A is reduced or the unevenness is transferred to the surface of the porous film B. Sometimes.
  • the porous membrane B used in the present invention contains a heat resistant resin, and plays a role of supporting and reinforcing the porous membrane A by its heat resistance.
  • the glass transition temperature of the heat resistant resin constituting the porous membrane B is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, most preferably 210 ° C. or higher, and the upper limit is not particularly limited.
  • the decomposition temperature may be in the above range.
  • the glass transition temperature is lower than 150 ° C., a sufficient heat-resistant film breaking temperature cannot be obtained, and high safety may not be ensured.
  • the heat-resistant resin constituting the porous film B is not particularly limited as long as it has heat resistance, and examples thereof include polyamideimide, polyimide or polyamide-based resin, and polyamideimide as the main component. Resin is preferred. These resins may be used alone or in combination with other materials.
  • polyamideimide resin is used as the heat resistant resin.
  • the synthesis of polyamide-imide resin is carried out by an ordinary method such as an acid chloride method using trimellitic acid chloride and diamine or a diisocyanate method using trimellitic anhydride and diisocyanate. preferable.
  • Examples of the acid component used for the synthesis of the polyamide-imide resin include trimellitic anhydride (chloride), and a part thereof can be replaced with other polybasic acid or anhydride thereof.
  • trimellitic anhydride chloride
  • tetracarboxylic acids such as pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, ethylene glycol bistrimellitate, propylene glycol bistrimellitate and their anhydrides
  • Aliphatic dicarboxylic acids such as oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), dicarboxypoly (styrene
  • 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid are preferable from the viewpoint of the resistance to electrolytic solution, and dimer acid, dicarboxypolybutadiene having a molecular weight of 1000 or more, dicarboxylate from the shutdown characteristics.
  • Dimer acid, dicarboxypolybutadiene having a molecular weight of 1000 or more, dicarboxylate from the shutdown characteristics are preferred.
  • Poly (acrylonitrile butadiene) and dicarboxy poly (styrene-butadiene) are preferred.
  • a urethane group can be introduced into the molecule by replacing part of the trimellitic acid compound with glycol.
  • glycols include alkylene glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, and hexanediol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and one or two of the above dicarboxylic acids.
  • examples thereof include polyesters having terminal hydroxyl groups synthesized from the above and one or more of the above-mentioned glycols.
  • polyethylene glycol and polyesters having terminal hydroxyl groups are preferred because of shutdown effect.
  • these number average molecular weights are preferably 500 or more, and more preferably 1000 or more.
  • the upper limit is not particularly limited, but is preferably less than 8000.
  • diamine (diisocyanate) component used in the synthesis of the polyamideimide resin examples include aliphatic diamines such as o-tolidine, tolylenediamine, ethylenediamine, propylenediamine, and hexamethylenediamine, and their diisocyanates, 1,4-cyclohexanediamine, 1 Alicyclic diamines such as 1,3-cyclohexanediamine and dicyclohexylmethanediamine and their diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4 ' -Aromatic diamines such as diaminodiphenylsulfone, benzidine, xylylenediamine, naphthalenediamine, and their diisocyanates, among which the reactivity, cost, resistance Most preferably dicyclo
  • o-tolidine diisocyanate (TODI), 2,4-tolylene diisocyanate (TDI) and blends thereof are preferred.
  • o-tolidine diisocyanate (TODI) having high rigidity is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably, based on the total isocyanate. It is 70 mol% or more.
  • Polyamideimide resin is agitated while heating at 60 to 200 ° C in polar solvents such as N, N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone. By doing so, it can be easily manufactured.
  • polar solvents such as N, N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone.
  • amines such as triethylamine and diethylenetriamine
  • alkali metal salts such as sodium fluoride, potassium fluoride, cesium fluoride, sodium methoxide, and the like can be used as a catalyst as necessary.
  • the logarithmic viscosity is preferably 0.5 dl / g or more.
  • the logarithmic viscosity is less than 0.5 dl / g, sufficient meltdown characteristics may not be obtained due to a decrease in melting temperature, and the porous film becomes brittle due to low molecular weight, and the anchor effect is reduced, resulting in reduced adhesion. It is to do.
  • the upper limit of the logarithmic viscosity is preferably less than 2.0 dl / g in consideration of processability and solvent solubility.
  • Porous membrane B is a heat-resistant resin solution (varnish) that is soluble in a heat-resistant resin and dissolved in a solvent miscible with water. It is obtained by phase-separating a solvent miscible with water and adding it to a water bath (coagulation bath) to coagulate the heat resistant resin. If necessary, a phase separation aid may be added to the varnish.
  • Solvents that can be used to dissolve the heat resistant resin include N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), hexamethyltriamide phosphate (HMPA), and N, N-dimethyl.
  • DMAc N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • HMPA hexamethyltriamide phosphate
  • N, N-dimethyl examples include formamide (DMF), dimethyl sulfoxide (DMSO), ⁇ -butyrolactone, chloroform, tetrachloroethane, dichloroethane, 3-chloronaphthalene, parachlorophenol, tetralin, acetone, acetonitrile, etc., depending on the solubility of the resin. You can choose.
  • the solid content concentration of the varnish is not particularly limited as long as it can be uniformly applied, but is preferably 2% by weight or more and 50% by weight or less, more preferably 4% by weight or more and 40% by weight or less.
  • the obtained porous membrane B may become brittle.
  • it exceeds 50% by weight it may be difficult to control the thickness of the porous membrane B.
  • phase separation aid used in the present invention water, ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, alkylene glycol such as hexanediol, polyalkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, It is selected from water-soluble polyester, water-soluble polyurethane, polyvinyl alcohol, carboxymethyl cellulose and the like, and the addition amount is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, most preferably 30 to 30% by weight based on the weight of the varnish solution. It is in the range of 70% by weight.
  • phase separation aids By mixing these phase separation aids into the varnish, it is possible to mainly control the air permeability resistance, the surface porosity, and the layer structure formation rate.
  • the addition amount is less than the above range, the phase separation rate may not be significantly increased.
  • the addition amount is more than the above range, the coating liquid becomes cloudy at the mixing stage and the resin component is precipitated. There is a fear.
  • inorganic particles or heat-resistant polymer particles may be added to the varnish in order to reduce the thermal contraction rate of the porous layer B and to impart slipperiness.
  • the upper limit of the amount added is preferably 95% by mass.
  • the addition amount exceeds 95% by mass, the ratio of the heat resistant resin to the total volume of the porous membrane B becomes small, and sufficient adhesion of the heat resistant resin to the porous membrane A may not be obtained.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica and the like.
  • Examples of the heat resistant polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, and polytetrafluoroethylene particles. .
  • the film thickness of the porous membrane B is preferably 1 to 5 ⁇ m, more preferably 1 to 4 ⁇ m, and most preferably 1 to 3 ⁇ m. If the film thickness is less than 1 ⁇ m, there is a possibility that the membrane breaking strength and insulation properties cannot be secured when the porous film A is melted or shrunk at a melting point or higher, and if it is thicker than 5 ⁇ m, the porosity in the composite porous film The ratio occupied by the membrane A is small, a sufficient pore blocking function cannot be obtained, and abnormal reactions may not be suppressed. Moreover, there is a possibility that the volume of winding becomes large and it is not suitable for increasing the capacity of a battery that will be advanced in the future.
  • the porosity of the porous membrane B is preferably 30 to 90%, more preferably 40 to 70%. If the porosity is less than 30%, the electrical resistance of the film increases and it becomes difficult to pass a large current. On the other hand, if it exceeds 90%, the film strength tends to be weak.
  • the air resistance of the porous membrane B is preferably 1 to 2000 seconds / 100 cc Air measured by a method based on JIS-P8117. More preferably, it is 50 to 1500 seconds / 100 cc Air, and further preferably 100 to 1000 seconds / 100 cc Air. When the air resistance is less than 1 second / 100 cc Air, the film strength is weak, and when it exceeds 2000 seconds / 100 cc Air, the cycle characteristics may be deteriorated.
  • the upper limit of the total thickness of the composite porous membrane obtained by laminating the porous membrane A and the porous membrane B is 13 ⁇ m, and more preferably 12 ⁇ m.
  • the lower limit is preferably 6 ⁇ m or more, more preferably 7 ⁇ m or more. If it is thicker than 13 ⁇ m, the increase in air resistance may increase, and it may be difficult to avoid a decrease in capacity due to a decrease in the electrode area that can be filled in the container. If the thickness is less than 6 ⁇ m, it may be difficult to ensure sufficient mechanical strength and insulation.
  • the difference (Y ⁇ X) between the air permeability resistance (X seconds / 100 cc Air) of the porous membrane A and the air permeability resistance (Y seconds / 100 cc Air) of the entire composite porous membrane is 20 Seconds / 100 cc Air ⁇ Y ⁇ X ⁇ 100 seconds / 100 cc Air If YX is less than 20 seconds / 100 cc Air, sufficient adhesion of the heat resistant resin layer cannot be obtained. On the other hand, if it exceeds 100 seconds / 100 cc Air, the air permeability resistance is significantly increased. As a result, the ion permeability is lowered when the battery is incorporated in the battery, so that the separator is not suitable for a high-performance battery.
  • the air resistance of the composite porous membrane is preferably 50 to 600 seconds / 100 cc Air, more preferably 100 to 500 seconds / 100 cc Air, and most preferably 100 to 400 seconds / 100 cc Air. If the value of air resistance is lower than 50 seconds / 100 cc Air, sufficient insulation cannot be obtained, which may lead to clogging of foreign matter, short circuit, and film breakage. If the value is higher than 600 seconds / 100 cc Air, In some cases, the membrane resistance is high, and charge / discharge characteristics and life characteristics in a practically usable range cannot be obtained.
  • a varnish heat resistant resin solution
  • a base film such as a polyester film or a polyolefin film
  • Examples of the method for applying the varnish include reverse roll coating, gravure coating, kiss coating, roll brushing, spray coating, air knife coating, wire barber coating, pipe doctor method, blade coating method, and die coating method. These methods can be carried out alone or in combination.
  • the low humidity zone in the present invention is a zone whose absolute humidity is adjusted to less than 6 g / m 3 .
  • the upper limit of absolute humidity is preferably 4 g / m 3 , more preferably 3 g / m 3
  • the lower limit is preferably 0.5 g / m 3 , more preferably 0.8 g / m 3 . If the absolute humidity is less than 0.5 g / m 3 , phase separation is not sufficiently performed, so that it is difficult to finally become a porous membrane, and the increase in air resistance may be increased.
  • the heat-resistant resin starts to solidify in parallel with the phase separation, and when the porous film A is laminated, the heat-resistant resin is not sufficiently permeated into the porous film A. Sufficient heat-resistant resin adhesion cannot be obtained.
  • the passage time in the low humidity zone is preferably 3 seconds or more and 20 seconds or less. If it is less than 3 seconds, the phase separation may not be sufficiently performed. On the other hand, if it exceeds 20 seconds, the heat-resistant resin may be excessively solidified.
  • the high humidity zone referred to in the present invention has a lower limit of absolute humidity of 6 g / m 3 , preferably 7 g / m 3 , more preferably 8 g / m 3 , an upper limit of 25 g / m 3 , preferably 17 g / m 3 , The zone is preferably adjusted to 15 g / m 3 .
  • the absolute humidity is less than 6 g / m 3 , gelation (non-fluidization) is not sufficiently performed.
  • the penetration of the heat-resistant resin into the porous film A proceeds too much, Increase in air resistance increases.
  • the absolute humidity exceeds 25 g / m 3 , the solidification of the heat resistant resin proceeds too much, the penetration of the heat resistant resin into the porous membrane A becomes too small, and sufficient adhesion may not be obtained.
  • the passage time in the high humidity zone is preferably 3 seconds or more and 10 seconds or less. In less than 3 seconds, gelation (non-fluidization) is not sufficiently performed. Therefore, when the porous membrane A is laminated, the penetration of the heat-resistant resin into the porous membrane A proceeds too much, and the air permeability resistance increases.
  • the width exceeds 10 seconds, solidification of the heat-resistant resin proceeds too much, penetration of the heat-resistant resin into the porous membrane A becomes too small, and sufficient adhesion may not be obtained. is there.
  • the temperature conditions for both the low-humidity zone and the high-humidity zone are not particularly limited as long as the absolute humidity is within the above range, but 20 ° C. or more and 50 ° C. or less are preferable from the viewpoint of energy saving.
  • the thickness of the film substrate is not particularly limited as long as it can maintain the flatness, but a thickness of 25 ⁇ m to 100 ⁇ m is preferable. If it is less than 25 ⁇ m, sufficient planarity may not be obtained. Moreover, even if it exceeds 100 micrometers, planarity does not improve.
  • the porous film A is bonded onto the semi-gel heat-resistant resin film formed in this way so as not to include bubbles.
  • a method of laminating a method of laminating a film coming from two directions on the surface of one metal roll is preferable because it causes less damage to the film.
  • the semi-gel form means a state in which a region gelled in the process of gelation of the polyamideimide resin solution due to absorption of moisture in the atmosphere and a region holding the solution state are mixed. .
  • the porous film A is laminated on the semi-gel heat-resistant resin film within at least 10 seconds immediately after passing through the high humidity zone. If it exceeds 10 seconds, solidification of the heat resistant resin film proceeds and sufficient adhesion of the porous film B may not be obtained.
  • the base film may be peeled off.
  • the porous film A is preferably bonded to the heat resistant resin film without peeling off the base film.
  • a composite porous membrane can be produced even when a soft porous membrane A that has a low elastic modulus and is necked by the tension during processing is used. Specifically, it can be expected that the composite porous membrane does not wrinkle or bend when passing through the guide roll, and curling during drying can be reduced.
  • the base material and the composite porous membrane may be wound up at the same time, or after passing through the drying step, the base material and the composite porous membrane may be wound up on separate winding rolls. Is preferable because there is little risk of winding deviation.
  • the bonded porous film A and heat resistant resin film are immersed in a coagulation bath, and the heat resistant resin film is phase-converted to be converted into a porous film B.
  • the composition of the coagulation bath is not particularly limited.
  • the coagulation bath may be an aqueous solution containing 1 to 20% by weight, more preferably 5 to 15% by weight, of a good solvent for the heat-resistant resin constituting the porous membrane B.
  • the final composite porous membrane can be obtained by subjecting the unwashed porous membrane to a washing step using pure water and a drying step using hot air at 100 ° C. or lower.
  • the thickness of the porous membrane A is less than 10 ⁇ m, a composite porous membrane having an excellent balance between adhesion and air resistance can be obtained.
  • the composite porous membrane of the present invention can be prepared by using a polyolefin-based porous membrane slit to a target width as the porous membrane A, but it can also be processed subsequently on-line when the polyolefin porous membrane is produced. It is.
  • online refers to the purpose of laminating the porous membrane B continuously after the polyolefin porous membrane manufacturing process (specifically, the drying step after washing), and through the solidification, washing and slitting steps. Means for obtaining a composite porous membrane.
  • the composite porous membrane of the present invention is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
  • the composite porous membrane of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a secondary battery such as a lithium secondary battery, a lithium polymer secondary battery, and a plastic film capacitor, although it can be used as a separator for ceramic capacitors, electric double layer capacitors, etc., it is particularly preferred to be used as a separator for lithium secondary batteries.
  • a lithium secondary battery will be described as an example.
  • a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the electrode is not particularly limited, and may be a known structure.
  • the positive electrode has a current collector and a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions formed on the current collector.
  • the positive electrode active material include transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), and inorganic compounds such as transition metal sulfides. Transition metals include V, Mn, and Fe. , Co, Ni and the like.
  • Preferred examples of the lithium composite oxide among the positive electrode active materials include lithium nickelate, lithium cobaltate, lithium manganate, and a layered lithium composite oxide based on an ⁇ -NaFeO 2 type structure.
  • the negative electrode has a current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the current collector.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black.
  • the electrolytic solution can be obtained by dissolving a lithium salt in an organic solvent.
  • Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , Examples include LiN (C 2 F 5 SO 2 ) 2 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. These may be used alone or in admixture of two or more.
  • organic solvent examples include organic solvents having a high boiling point and a high dielectric constant such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and ⁇ -butyrolactone, and tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like.
  • organic solvents having a low boiling point and a low viscosity These may be used alone or in admixture of two or more.
  • a high dielectric constant organic solvent has a high viscosity
  • a low viscosity organic solvent has a low dielectric constant. Therefore, it is preferable to use a mixture of both.
  • the separator (composite porous membrane) is impregnated with the electrolytic solution. Thereby, ion permeability can be imparted to the separator.
  • the impregnation treatment is performed by immersing the porous membrane in an electrolytic solution at room temperature.
  • a positive electrode sheet, a separator (composite porous membrane), and a negative electrode sheet are laminated in this order, and this laminate is wound from one end to form a wound electrode element.
  • a battery can be obtained by inserting this electrode element into a battery can, impregnating with the above electrolyte, and caulking a battery lid also serving as a positive electrode terminal provided with a safety valve via a gasket.
  • the film thickness was measured using a contact-type film thickness meter (Digital Micrometer M-30 manufactured by Sony Manufacturing Co., Ltd.).
  • Porous film A by a peeling method peeling speed 500 mm / min, T-type peeling
  • a tensile tester ““Tensilon RTM-100” manufactured by A & D Co., Ltd.”
  • the peel strength at the interface of the porous membrane B were measured. The measurement was performed over time during 100 mm from the start of measurement to the end of measurement, the average value of the measured values was calculated, and converted to a value per 25 mm width to obtain the peel strength.
  • the porous film B surface may remain on the porous film A side at the peeling interface, the peeling strength at the interface between the porous film A and the porous film B is also calculated in this case.
  • the average pore diameter of the porous membrane A was measured by the following method.
  • the test piece was fixed to the measuring cell using double-sided tape, platinum or gold was vacuum-deposited for several minutes, and the measurement was performed at an appropriate magnification.
  • Arbitrary 10 places observed most foremost on the image obtained by SEM measurement were selected, and the average value of the pore diameters at these 10 places was defined as the average pore diameter of the test piece.
  • the hole diameter was not substantially circular, the value obtained by adding the major axis and the minor axis and dividing by 2 was defined as the hole diameter.
  • a test piece having a width of 4 mm and a length of 21 mm was cut from the obtained dry film, and the measurement length was 15 mm, using a dynamic viscoelasticity measuring apparatus (DVA-220 manufactured by IT Measurement Control), 110 Hz, temperature increase rate of 4 ° C. / Baseline extension below the glass transition temperature and tangent line showing the maximum slope above the refraction point at the refraction point of the storage modulus (E ') measured from room temperature to 450 ° C under conditions of minutes The temperature at the point of intersection was taken as the glass transition temperature.
  • DVA-220 dynamic viscoelasticity measuring apparatus manufactured by IT Measurement Control
  • Porosity (1 ⁇ mass / (resin density ⁇ sample volume)) ⁇ 100
  • Example 1 In a four-necked flask equipped with a thermometer, cooling tube, and nitrogen gas inlet tube, 1 mol of trimellitic anhydride (TMA), 0.8 mol of o-tolidine diisocyanate (TODI), 2,4-tolylene diisocyanate (TDI) ) 0.2 mol and 0.01 mol of potassium fluoride were added together with N-methyl-2-pyrrolidone so that the solid concentration was 20%, and stirred at 100 ° C. for 5 hours.
  • the polyamideimide resin solution (a) was synthesized by diluting with N-methyl-2-pyrrolidone.
  • the obtained polyamideimide resin had a logarithmic viscosity of 1.35 dl / g and a glass transition temperature of 320 ° C.
  • Example 2 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low humidity zone was 4.0 g / m 3 .
  • Example 3 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low humidity zone was 5.5 g / m 3 .
  • Example 4 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the high humidity zone was 7.0 g / m 3 .
  • Example 5 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity in the high humidity zone was 16.0 g / m 3 .
  • Example 6 Example except that the passage time of the low-humidity zone and the high-humidity zone was 5.3 seconds and 3.0 seconds, respectively, and the time from the exit of the high-humidity zone to the bonding of the polyethylene porous membrane was 1.1 seconds. 1 was used to obtain a composite porous membrane.
  • Example 7 Example except that the passage time of the low humidity zone and the high humidity zone was 16.0 seconds and 10.0 seconds, respectively, and the time from the exit of the high humidity zone to the bonding of the polyethylene porous membrane was 3.4 seconds. 1 was used to obtain a composite porous membrane.
  • Example 8 A composite porous membrane A was prepared in the same manner as in Example 1 except that a polyethylene porous membrane having a thickness of 9.5 ⁇ m, a porosity of 40%, an average pore diameter of 0.15 ⁇ m, and a gas permeability of 320 seconds / 100 cc Air was used as the porous membrane A. A membrane was obtained.
  • Example 9 A composite porous membrane A was prepared in the same manner as in Example 1 except that a polyethylene porous membrane having a thickness of 7.0 ⁇ m, a porosity of 40%, an average pore diameter of 0.15 ⁇ m, and an air resistance of 220 seconds / 100 cc Air was used as the porous membrane A. A membrane was obtained.
  • Example 10 In a four-necked flask equipped with a thermometer, a condenser tube, and a nitrogen gas inlet tube, 1 mole of trimellitic anhydride (TMA), 0.80 mole of o-tolidine diisocyanate (TODI), diphenylmethane-4,4'-diisocyanate ( MDI) 0.20 mol, potassium fluoride 0.01 mol together with N-methyl-2-pyrrolidone so that the solid content concentration is 20%, and after stirring at 100 ° C. for 5 hours, the solid content concentration is 14%. The resulting solution was diluted with N-methyl-2-pyrrolidone to synthesize a polyamideimide resin solution (b).
  • TMA trimellitic anhydride
  • TODI o-tolidine diisocyanate
  • MDI diphenylmethane-4,4'-diisocyanate
  • MDI diphenylmethane-4,4'-diisocyanate
  • the obtained polyamideimide resin had a logarithmic viscosity of 1.05 dl / g and a glass transition temperature of 313 ° C.
  • a composite porous membrane was obtained in the same manner as in Example 1 except that the varnish (b) (solid content concentration 5.5% by weight) in which the polyamideimide resin solution (a) was replaced with the polyamideimide resin solution (b) was used. It was.
  • Example 11 In a four-necked flask equipped with a thermometer, a condenser tube, and a nitrogen gas inlet tube, 1 mole of trimellitic anhydride (TMA), 0.60 mole of o-tolidine diisocyanate (TODI), diphenylmethane-4,4'-diisocyanate ( MDI) 0.40 mol and potassium fluoride 0.01 mol together with N-methyl-2-pyrrolidone so that the solid concentration is 20%, and after stirring at 100 ° C. for 5 hours, the solid concentration is 14%. The resulting solution was diluted with N-methyl-2-pyrrolidone to synthesize a polyamideimide resin solution (c).
  • TMA trimellitic anhydride
  • TODI o-tolidine diisocyanate
  • MDI diphenylmethane-4,4'-diisocyanate
  • potassium fluoride 0.01 mol
  • the obtained polyamideimide resin had a logarithmic viscosity of 0.85 dl / g and a glass transition temperature of 308 ° C.
  • a composite porous membrane was obtained in the same manner as in Example 1 except that varnish (c) (solid content concentration 5.5% by weight) in which the polyamideimide resin solution (a) was replaced with the polyamideimide resin solution (c) was used. It was.
  • Example 12 Polyamideimide resin solution (a) 32.6 parts by mass and 10.5 parts by mass of alumina particles having an average particle size of 0.5 ⁇ m were diluted with 48.4 parts by mass of N-methyl-2-pyrrolidone, and further ethylene glycol 8. 5 parts by mass was added, together with zirconium oxide beads (trade name “Traceram beads”, diameter 0.5 mm) manufactured by Toray Industries, Inc., placed in a polypropylene container, and dispersed for 6 hours with a paint shaker (manufactured by Toyo Seiki Seisakusho). . Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and prepared varnish (d) (solid content concentration 30.0 weight%). A composite porous membrane was obtained in the same manner as in Example 1 except that the varnish (a) was replaced with the varnish (d).
  • Example 13 Implemented except that the varnish (e) (solid content concentration 30.0% by weight) in which the alumina particles were replaced with titanium oxide particles (made by Titanium Industry Co., Ltd., trade name “KR-380”, average particle size 0.38 ⁇ m) A composite porous membrane was obtained in the same manner as in Example 12.
  • Example 14 A composite porous membrane was obtained in the same manner as in Example 1 except that the coating amount of the porous membrane B was adjusted to a final thickness of 10.5 ⁇ m.
  • Example 15 The composite porous membrane A was composite porous as in Example 1 except that a polyethylene porous membrane having a thickness of 6.5 ⁇ m, a porosity of 38%, an average pore diameter of 0.15 ⁇ m, and a gas permeability resistance of 210 seconds / 100 cc Air was used. A membrane was obtained.
  • Example 16 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low-humidity zone was 1.2 g / m 3 .
  • Comparative Example 1 A composite porous membrane was obtained in the same manner as in Example 1 except that the temperature of the low humidity zone was 25 ° C. and the absolute humidity was 7.0 g / m 3 .
  • Comparative Example 2 A composite porous membrane was obtained in the same manner as in Example 1 except that the high humidity zone was set to a temperature of 25 ° C. and an absolute humidity of 5.0 g / m 3 .
  • Comparative Example 3 A four-necked flask equipped with a thermometer, a cooling tube, and a nitrogen gas inlet tube is 1 mol of trimellitic anhydride (TMA), 0.76 mol of o-tolidine diisocyanate (TODI), 2,4-tolylene diisocyanate (TDI) ) 0.19 mol and 0.01 mol of potassium fluoride were charged together with N-methyl-2-pyrrolidone so that the solid concentration was 20%, and stirred at 100 ° C. for 5 hours. Thus, a polyamide-imide resin solution (f) was synthesized by diluting with N-methyl-2-pyrrolidone.
  • TMA trimellitic anhydride
  • TODI o-tolidine diisocyanate
  • TDI 2,4-tolylene diisocyanate
  • the obtained polyamidoimide resin had a logarithmic viscosity of 0.45 dl / g and a glass transition temperature of 315 ° C.
  • a composite porous membrane was obtained in the same manner as in Example 1 except that the varnish (f) in which the polyamideimide resin solution (a) was replaced with the polyamideimide resin solution (f) was used.
  • Comparative Example 4 A varnish (a) was applied to the porous membrane A (made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air permeability 240 sec / 100 cc Air) by a blade coating method, and the temperature was 25 ° C. Pass through a low humidity zone with an absolute humidity of 1.8 g / m 3 for 8 seconds, followed by a high humidity zone with a temperature of 25 ° C. and an absolute humidity of 12 g / m 3 in 5 seconds, then after 2 seconds, N-methyl-2-pyrrolidone Was then introduced into an aqueous solution containing 5% by weight, washed with pure water, and then passed through a hot air drying oven at 70 ° C. to obtain a composite porous membrane having a final thickness of 11.8 ⁇ m.
  • the porous membrane A made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air permeability 240 sec / 100
  • Comparative Example 5 Porous membrane A (made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air resistance 240 sec / 100 cc Air) was previously immersed in N-methyl-2-pyrrolidone to saturate the pores. A composite porous membrane was obtained in the same manner as in Comparative Example 4 except that it was used by being filled with N-methyl-2-pyrrolidone.
  • Comparative Example 7 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity in the high-humidity zone was 25.5 g / m 3 .
  • Comparative Example 8 A composite porous membrane was obtained in the same manner as in Example 1 except that the coating amount of the porous membrane B was adjusted to a final thickness of 14.0 ⁇ m.
  • Table 1 shows the production conditions of the composite porous membranes of Examples 1 to 16 and Comparative Examples 1 to 8, and the characteristics of the porous membrane A and the composite porous membrane.
  • the composite porous membrane of the present invention has both excellent heat-resistant resin layer adhesion and a small increase in air resistance, even when the thickness is further reduced in the future. It is suitable for high ion permeability and high-speed workability in the battery assembly process, and particularly suitable for battery separators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

 電池用セパレーターを始めとする複合多孔質膜が今後ますます薄膜化された場合でも、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅が両立したものを提供する。本発明は、ポリオレフィン系樹脂からなる多孔質膜Aに耐熱性樹脂を含む多孔質膜Bが積層された複合多孔質膜であって、多孔質膜Aが特定の範囲の厚さ、平均孔径、空孔率を満足し、複合多孔質膜全体が特定の範囲の厚さを満足するものにおいて、複合多孔質膜が、特定の多孔質膜Aと多孔質膜Bの界面での剥離強度、複合多孔質膜全体の透気抵抗度と多孔質膜Aの透気抵抗度との差をさらに満足することを特徴とする。

Description

複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
 本発明は、ポリオレフィン系樹脂からなる多孔質膜に対して耐熱性樹脂を含む多孔質膜を積層した複合多孔質膜に関し、特にイオン透過性に優れ、かつ、ポリオレフィン系多孔質膜と耐熱性樹脂膜との密着性に優れる、リチウムイオン電池用セパレーターとして有用な複合多孔質膜に関するものである。
 熱可塑性樹脂製多孔質膜は、物質の分離や選択透過及び隔離のための材料等として広く用いられている。例えば、リチウム二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池に用いる電池用セパレーターや、電気二重層コンデンサ用セパレーター、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等などで用いられている。特にポリエチレン製多孔質膜は、リチウムイオン二次電池用セパレーターとして好適に使用されているが、その理由は、電気絶縁性に優れる、電解液含浸によりイオン透過性を有する、耐電解液性・耐酸化性に優れるという特徴だけでなく、電池異常昇温時の120~150℃程度の温度において電流を遮断し過度の昇温を抑制する孔閉塞効果をも備えているためである。しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、膜を構成する融解したポリエチレンの粘度低下及び膜の収縮により、ある温度で破膜を生じることがある。また、一定高温下に放置すると、融解したポリエチレンの粘度低下及び膜の収縮により、ある時間経過後に破膜を生じる可能性がある。この現象は、ポリエチレンに限定された現象ではなく、他の熱可塑性樹脂を用いた場合においても、その多孔質膜を構成する樹脂の融点以上では避けることができない。
 特にリチウムイオン電池用セパレーターは、電池特性、電池生産性及び電池安全性に深く関わっており、優れた機械的特性、耐熱性、透過性、寸法安定性、孔閉塞特性(シャットダウン特性)、溶融破膜防止特性(メルトダウン防止特性)等が要求される。そのため、これまでに様々な耐熱性向上の検討がなされている。さらに、電池容量の向上のため、電極のみならず、セパレーターにおいても容器内に充填できる面積を増加させるため、より一層の薄膜化が進むことが予測されている。多孔質フィルムの薄膜化が進むと平面方向に変形しやすくなるため、複合多孔質膜の加工中やスリット工程、あるいは電池組み立て工程において耐熱性樹脂層が剥離することがあり、安全性の確保が困難となる。
 また、低コスト化に対応するため、電池組み立て工程においては高速化が進むことが予想され、本発明者等はこのような高速加工においても耐熱性樹脂層の剥離等のトラブルが少ないことが求められ、そのためには、より一層の高い密着性が必要であると推測している。特許文献1では、厚さ25μmのポリオレフィン多孔質膜に直接、膜厚が1μmとなるようにポリアミドイミド樹脂を塗布し、25℃の水中に浸漬した後、乾燥して得たリチウムイオン二次電池用セパレーターを開示している。
 特許文献1の場合のように、塗布液をポリオレフィン多孔質膜に塗布するために一般に用いられるロールコート法、ダイコート法、バーコート法、ブレードコート法等では、その剪断力によって、ポリオレフィン系多孔質膜への樹脂成分の浸透が避けられず、透気抵抗度の大幅な上昇と孔閉塞機能の低下が避けられない。このような方法では、特にポリオレフィン系多孔質膜の膜厚が10μm未満のような薄い場合、簡単に樹脂成分が多孔質内部を埋めてしまい、透気抵抗度の極端な上昇を招く。また、このような方法では、ポリオレフィン系多孔質膜の膜厚斑が耐熱性樹脂層の膜厚斑に結びつきやすく、透気抵抗度のバラツキに繋がりやすい問題も抱えている。
 特許文献2では、耐熱性樹脂であるフッ化ビニリデン系共重合体を含むドープに平均厚み36μmのアラミド繊維からなる不織布を浸漬し、乾燥して得た電解液担持ポリマー膜が例示されている。
 特許文献3では、耐熱性樹脂であるポリフッ化ビニリデンを主成分とするドープに膜厚25.6μmのポリプロピレン多孔質膜を浸漬し、凝固、水洗、乾燥工程を経由して得た複合多孔質膜が例示されている。
 特許文献2のように耐熱性樹脂溶液中にアラミド繊維からなる不織布を浸漬させると、不織布の内部および両面に耐熱多孔質層が形成されるため、不織布内部の連通孔を大部分に渡って塞ぐことになり、透気抵抗度の大幅な上昇が避けられないだけでなく、セパレーターの安全性を決定付ける孔閉塞機能が得られない。また、不織布は、ポリオレフィン系多孔質膜に比べて薄膜化が困難であるため、今後、進むであろう電池の高容量化には適さない。
 特許文献3においてもポリプロピレン多孔質膜の内部および両面に耐熱多孔質層が形成されることに変わりはなく、特許文献2と同様に透気抵抗度の大幅な上昇が避けられず、また、孔閉塞機能が得られ難い。
 特許文献4では、厚さ25μmのポリエチレン製多孔質フィルムに直接、耐熱性樹脂であるパラアラミド樹脂溶液を塗布するに際し、透気抵抗度の大幅な上昇を避けるために事前に耐熱性樹脂溶液に使用される極性有機溶媒をポリエチレン製多孔質フィルムに含浸させておき、耐熱性樹脂溶液を塗布後、温度30℃、相対湿度65%に設定した恒温恒湿機内で白濁した膜状にし、次いで、洗浄、乾燥して得られたパラアラミドからなる耐熱多孔質層を有するセパレーターが開示されている。
 特許文献4では、透気抵抗度の大幅な上昇はないが、ポリエチレン製多孔質フィルムと耐熱性樹脂との密着性が極めて小さく、特にポリエチレン製多孔質フィルムの厚さが10μm未満である場合は平面方向に変形しやすいため、電池組み立て工程において耐熱性樹脂層が剥離することがあり、安全性の確保が困難となる。
 特許文献5では、プロピレンフィルムにポリアミドイミド樹脂溶液を塗布し、25℃ 80%RH雰囲気中を30秒かけて通過させて、半ゲル状の多孔質膜を得、次いで厚さ20μmまたは10μmのポリエチレン多孔質フィルムを前記半ゲル状多孔質膜の上に重ね、N-メチル-2-ピロリドン(NMP)を含む水溶液に浸漬後、水洗、乾燥させて得られた複合多孔質膜を開示している。
 特許文献5では、透気抵抗度の大幅な上昇はないが、ポリエチレン製多孔質フィルムと耐熱性樹脂との密着性が極めて小さいものであり、特許文献4と同様に特にポリエチレン製多孔質フィルムの厚さが10μm未満である場合は耐熱性樹脂層が剥離することがあり、安全性の確保が困難となる。
 このように、基材となるポリオレフィン系等の多孔質膜に耐熱性樹脂層を積層した複合多孔質膜において、耐熱性樹脂を基材となる多孔質膜に浸透させて耐熱性樹脂層の密着性の向上を図れば、透気抵抗度上昇幅が大きくなり、耐熱性樹脂の浸透を小さくすれば、透気抵抗度上昇幅は小さく抑えることができるが、耐熱性樹脂層の密着性が小さくなり、特に、セパレーターの薄膜化が進む中で、電池組み立て工程での高速化を踏まえた場合、ますます要求が厳しくなる安全性の確保が難しくなる。このように、耐熱性樹脂層の密着性と透気抵抗度上昇幅が両立した複合多孔質膜は従来存在しなかった。さらに、基材となるポリオレフィン系等の多孔質膜の膜厚が薄くなれば、ますます耐熱性樹脂層の密着性と透気抵抗度上昇幅の両立は困難となる。
特開2005-281668号公報 特開2001-266942号公報 特開2003-171495号公報 特開2001-23602号公報 特開2007-125821号公報
 本発明は、電池用セパレーターを始めとする複合多孔質膜が今後ますます薄膜化された場合でも、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅が両立した複合多孔質膜を提供するものであり、電池の高容量化、優れたイオン透過性、および、電池組み立て加工工程における高速加工性に適した、特に電池用セパレーターに好適な複合多孔質膜の提供を目指したものである。
 本発明は、以下の(1)~(9)の構成を有するものである。
(1)ポリオレフィン系樹脂からなる多孔質膜Aに耐熱性樹脂を含む多孔質膜Bが積層された複合多孔質膜であって、多孔質膜Aが下記式(A)~(C)を満足し、複合多孔質膜が下記式(D)を満足するものにおいて、複合多孔質膜が下記式(E)及び(F)をさらに満足することを特徴とする複合多孔質膜。
 多孔質膜Aの厚さ<10μm          ・・・・・式(A)
 0.01μm≦多孔質膜Aの平均孔径≦1.0μm・・・・・式(B)
 30%≦多孔質膜Aの空孔率≦70%      ・・・・・式(C)
 複合多孔質膜全体の厚さ≦13μm       ・・・・・式(D)
 多孔質膜Aと多孔質膜Bの界面での剥離強度≧1.0N/25mm
                        ・・・・・式(E)
 20≦Y-X≦100             ・・・・・式(F)
(Xは多孔質膜Aの透気抵抗度(秒/100ccAir)、Yは複合多孔質膜全体の透気抵抗度(秒/100ccAir)である)
(2)複合多孔質膜の透気抵抗度が50~600秒/100ccAirであることを特徴とする(1)に記載の複合多孔質膜。
(3)耐熱性樹脂がポリアミドイミド樹脂、ポリイミド樹脂又はポリアミド樹脂であることを特徴とする(1)又は(2)に記載の複合多孔質膜。
(4)耐熱性樹脂が、0.5dl/g以上の対数粘度を有するポリアミドイミド樹脂であることを特徴とする(3)に記載の複合多孔質膜。
(5)以下の工程(i)及び(ii)を含むことを特徴とする(1)~(4)のいずれかに記載の複合多孔質膜の製造方法。
 工程(i):基材フィルム上に耐熱性樹脂溶液を塗布した後、絶対湿度6g/m未満の低湿度ゾーンを通過させ、次いで、絶対湿度6g/m以上25g/m以下の高湿度ゾーンを通過させて基材フィルム上に耐熱性樹脂膜を形成する工程、および
 工程(ii):工程(i)で形成された耐熱性樹脂膜とポリオレフィン系樹脂からなる多孔質膜Aとを貼り合わせた後、凝固浴に浸漬させて耐熱性樹脂膜を多孔質膜Bに変換させ、洗浄、乾燥し、複合多孔質膜を得る工程。
(6)基材フィルムが、工程(ii)で複合多孔質膜を得た後に剥離されることを特徴とする(5)に記載の複合多孔質膜の製造方法。
(7)基材フィルムが厚さ25~100μmのポリエステル系フィルム又はポリオレフィン系フィルムであることを特徴とする(5)又は(6)に記載の複合多孔質膜の製造方法。
(8)工程(i)において低湿度ゾーンの通過時間が3秒以上20秒以下であり、高湿度ゾーンの通過時間が3秒以上10秒以下であることを特徴とする(5)~(7)のいずれかに記載の複合多孔質膜の製造方法。
(9)(1)~(4)のいずれかに記載の複合多孔質膜を含むことを特徴とする電池用セパレーター。
 本発明の複合多孔質膜は、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅を両立しているので、電池の高容量化、優れたイオン透過性、および、電池組み立て加工工程における高速加工性に適し、特に電池用セパレーターに好適に使用することができる。
 本発明の複合多孔質膜は、ポリオレフィン系樹脂からなる多孔質膜Aに耐熱性樹脂を含む多孔質膜Bを積層したものであり、高度な加工技術によって、積層による透気抵抗度の大幅な上昇を招くことなく、優れた耐熱性樹脂層の密着性を達成したものである。
 ここで透気抵抗度の大幅な上昇とは、基材となる多孔質膜の透気抵抗度(X)と複合多孔質膜の透気抵抗度(Y)の差が100秒/100ccAirを超えることを意味する。また、優れた耐熱性樹脂層の密着性とは剥離強度が1.0N/25mm以上であることを意味し、好ましくは1.5N/25mm以上、さらに好ましくは2.0N/25mm以上である。1.0N/25mm未満では電池組み立て工程での高速加工時に耐熱性樹脂層が剥離してしまう可能性がある。剥離強度の上限は特にないが、30N/25mmもあれば密着性として十分である。
 まず、本発明で用いる多孔質膜Aについて説明する。
 多孔質膜Aを構成する樹脂としては、ポリオレフィンが好ましく、特にポリエチレンが好ましい。電気絶縁性、イオン透過性などの基本特性に加え、電池異常昇温時温度において電流を遮断し過度の昇温を抑制する孔閉塞効果を具備しているからである。
 さらに、多孔質膜Aを構成する樹脂は、工程作業性および電極との倦回時に生じる様々な外圧に耐える機械強度、例えば、引っ張り強度、弾性率、伸度、突き刺し強度の点から、好ましくは質量平均分子量が30万以上、さらに好ましくは40万以上、最も好ましくは50万以上である。なお、これらの樹脂を用いる際は、上記範囲の質量平均分子量を有するポリオレフィン成分が50重量%以上含有されていることが好ましく、さらに好ましくは60重量%以上含有されていることが好ましい。上記範囲よりも含有量が少ない場合、溶融粘度が低いため、孔閉塞温度を越えて昇温した際の機械物性の低下が著しく、孔閉塞温度付近でも倦回圧力や電極端部のバリなどによって溶融破膜が起こる恐れがある。
 多孔質膜Aの相構造は、製法によって異なる。上記の各種特徴を満足する範囲内ならば、製法により目的に応じた相構造を自由に持たせることができる。多孔質膜の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。
 多孔質膜Aは、充放電反応の異常時に孔が閉塞する機能(孔閉塞機能)を有することが必要である。従って、構成する樹脂の融点(軟化点)は、好ましくは70~150℃、さらに好ましくは80~140℃、最も好ましくは100~130℃である。70℃未満では、正常使用時に孔閉塞機能が発現して電池が使用不可になる可能性があるため実用性に乏しく、150℃を超えると異常反応が十分に進行してから孔閉塞機能が発現してしまうため、安全性を確保できないおそれがある。
 多孔質膜Aの膜厚は10μm未満であることが必要である。上限は9.5μmが好ましく、より好ましくは9μmである。下限は5μmが好ましく、より好ましくは6μmである。5μmよりも薄い場合は実用的な膜強度と孔閉塞機能を保有させることができないことがあり、10μm以上の場合、電池ケースの単位容積当たりの面積が大きく制約され、今後、進むであろう電池の高容量化には適さない。
 多孔質膜Aの透気抵抗度(JIS-P8117)の上限は好ましくは500秒/100ccAir、さらに好ましくは400秒/100ccAir、最も好ましくは300秒/100ccAirであり、下限は好ましくは50秒/100ccAir、さらに好ましくは70秒/100ccAir、最も好ましくは100秒/100ccAirである。
 多孔質膜Aの空孔率の上限は70%、好ましくは60%、さらに好ましくは55%である。下限は30%、好ましくは35%、さらに好ましくは40%である。透気抵抗度が500秒/100ccAirより高くても、空孔率が30%よりも低くても、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)、電池の寿命(電解液の保持量と密接に関係する)において十分ではなく、これらの範囲を超えた場合、電池としての機能を十分に発揮することができなくなる可能性がある。一方で、50秒/100ccAirよりも透気抵抗度が低くても、空孔率が70%よりも高くても、十分な機械的強度と絶縁性が得られず、充放電時に短絡が起こる可能性が高くなる。
 多孔質膜Aの平均孔径は、孔閉塞速度に大きく影響を与えるため、0.01~1.0μm、好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。0.01μmよりも小さい場合、耐熱性樹脂のアンカー効果が得られにくいため十分な耐熱性樹脂の密着性が得られない場合がある他、複合化の際に透気抵抗度が大幅に悪化する可能性が高くなる。1.0μmよりも大きい場合、孔閉塞現象の温度に対する応答が緩慢になる、昇温速度による孔閉塞温度がより高温側にシフトするなどの現象が生じる可能性がある。さらに、多孔質膜Aの表面状態に関しては、表面粗さ(算術的平均粗さ)が0.01~0.5μmの範囲にあると多孔質膜Bとの密着性がより強くなる傾向にある。表面粗さが0.01μmより低い場合、密着性改善の効果は見られず、0.5μmより高い場合、多孔質膜Aの機械強度低下または多孔質膜Bの表面への凸凹の転写が起こることがある。
 次に、本発明で用いる多孔質膜Bについて説明する。
 多孔質膜Bは、耐熱性樹脂を含むものであり、その耐熱性により多孔質膜Aを支持・補強する役割を担う。従って、多孔質膜Bを構成する耐熱性樹脂のガラス転移温度は、好ましくは150℃以上、さらに好ましくは180℃以上、最も好ましくは210℃以上であり、上限は特に限定されない。ガラス転移温度が分解温度よりも高い場合、分解温度が上記範囲内であれば良い。ガラス転移温度が150℃よりも低い場合、十分な耐熱破膜温度が得られず、高い安全性を確保できないおそれがある。
 多孔質膜Bを構成する耐熱性樹脂としては、耐熱性を有すれば特に限定されないが、例えば、ポリアミドイミド、ポリイミド又はポリアミドを主成分とする樹脂を挙げることができ、ポリアミドイミドを主成分とする樹脂が好ましい。これらの樹脂を単独で用いても良く、又は他の材料と組み合わせて用いても良い。
 以下、耐熱性樹脂としてポリアミドイミド樹脂を用いる場合について説明する。
 一般に、ポリアミドイミド樹脂の合成は、トリメリット酸クロリドとジアミンを用いる酸クロリド法やトリメリット酸無水物とジイソシアネートを用いるジイソシアネート法等の通常の方法で行われるが、製造コストの点からジイソシアネート法が好ましい。
 ポリアミドイミド樹脂の合成に用いられる酸成分としては、トリメリット酸無水物(クロリド)が挙げられるが、その一部を他の多塩基酸またはその無水物に置き換えることができる。例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート等のテトラカルボン酸及びこれらの無水物、シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル-ブタジエン)、ジカルボキシポリ(スチレン-ブタジエン)等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、4,4′-ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらの中で耐電解液性の点からは、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸が好ましく、シャットダウン特性からは、ダイマー酸、分子量が1000以上のジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリルブタジエン)、ジカルボキシポリ(スチレン-ブタジエン)が好ましい。
 また、トリメリット酸化合物の一部をグリコールに置き換えてウレタン基を分子内に導入することもできる。グリコールとしては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールや上記ジカルボン酸の1種又は2種以上と上記グリコールの1種又は2種以上とから合成される末端水酸基のポリエステル等が挙げられ、これらの中ではシャットダウン効果からポリエチレングリコール、末端水酸基のポリエステルが好ましい。また、これらの数平均分子量は500以上が好ましく、1000以上がより好ましい。上限は特に限定されないが8000未満が好ましい。
 酸成分の一部をダイマー酸、ポリアルキレンエーテル、ポリエステル並びに末端にカルボキシル基、水酸基及びアミノ基のいずれかを含有するブタジエン系ゴムからなる群のうちの少なくとも1種で置き換える場合は、酸成分のうち、1~60モル%を置き換えることが好ましい。
 ポリアミドイミド樹脂の合成に用いられるジアミン(ジイソシアネート)成分としては、o-トリジン、トリレンジアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m-フェニレンジアミン、p-フェニレンジアミン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、ベンジジン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミン及びこれらのジイソシアネート等が挙げられ、これらの中では反応性、コスト、耐電解液性の点からジシクロヘキシルメタンジアミン及びこれのジイソシアネートが最も好ましく、4,4′-ジアミノジフェニルメタン、ナフタレンジアミン及びこれらのジイソシアネートが好ましい。特には、o-トリジンジイソシアネート(TODI)、2,4-トリレンジイソシアネート(TDI)及びこれらをブレンドしたものが好ましい。特に多孔質膜Bの密着性を向上させるためには、剛直性の高いo-トリジンジイソシアネート(TODI)が全イソシアネートに対して好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上である。
 ポリアミドイミド樹脂は、原料成分をN,N′-ジメチルホルムアミド、N,N′-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン等の極性溶剤中、60~200℃に加熱しながら攪拌することで容易に製造することができる。この場合、必要に応じてトリエチルアミン、ジエチレントリアミン等のアミン類、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド等のアルカリ金属塩等を触媒として用いることもできる。
 ポリアミドイミド樹脂を用いる場合、その対数粘度は0.5dl/g以上が好ましい。対数粘度が0.5dl/g未満では溶融温度の低下により十分なメルトダウン特性が得られない場合があることと分子量が低いため多孔質膜が脆くなり、アンカー効果が低下するため密着性が低下するためである。一方、対数粘度の上限は加工性や溶剤溶解性を考慮すると、2.0dl/g未満が好ましい。
 多孔質膜Bは、耐熱性樹脂に対して可溶で且つ水と混和する溶剤で溶解した耐熱性樹脂溶液(ワニス)を所定の基材フィルムに塗布し、加湿条件下で耐熱性樹脂と、水と混和する溶剤を相分離させ、さらに水浴(凝固浴)に投入して耐熱性樹脂を凝固させることによって得られる。必要に応じてワニスに相分離助剤を添加しても良い。
 耐熱性樹脂を溶解するために使用できる溶剤としては、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、リン酸ヘキサメチルトリアミド(HMPA)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン、クロロホルム、テトラクロロエタン、ジクロロエタン、3-クロロナフタレン、パラクロロフェノール、テトラリン、アセトン、アセトニトリルなどが挙げられ、樹脂の溶解性に応じて自由に選択できる。
 ワニスの固形分濃度は、均一に塗布できれば特に制限されないが、2重量%以上、50重量%以下が好ましく、4重量%以上、40重量%以下がさらに好ましい。固形分濃度が2重量%未満では得られた多孔質膜Bが脆くなる場合がある。また、50重量%を超えると多孔質膜Bの厚み制御が困難となる場合がある。
 本発明で用いる相分離助剤としては、水、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール、水溶性ポリエステル、水溶性ポリウレタン、ポリビニルアルコール、カルボキシメチルセルロースなどから選ばれ、添加量はワニスの溶液重量に対して好ましくは10~90重量%、さらに好ましくは20~80重量%、最も好ましくは30~70重量%の範囲である。
 これらの相分離助剤をワニスに混合することによって、主に透気抵抗度、表面開孔率、層構造の形成速度をコントロールすることができる。上記範囲よりも添加量が少ない場合、相分離速度の顕著な上昇は見られないことがあり、また、上記範囲よりも多い場合、塗布液が混合段階で白濁して樹脂成分が析出してしまうおそれがある。
 また、多孔質層Bの熱収縮率を低減し、滑り性を付与するために、ワニスに無機粒子あるいは耐熱性高分子粒子を添加しても良い。粒子を添加する場合、その添加量の上限としては95質量%が好ましい。添加量が95質量%を超えると多孔質膜Bの総体積に対して耐熱性樹脂の割合が小さくなり、多孔質膜Aに対する耐熱性樹脂の十分な密着性が得られない場合がある。
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカなどが挙げられる。また、耐熱性高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン・ホルムアルデヒド縮合物粒子、メラミン・ホルムアルデヒド縮合物粒子、ポリテトラフルオロエチレン粒子などが挙げられる。
 また、多孔質膜Bの膜厚は好ましくは1~5μm、さらに好ましくは1~4μm、最も好ましくは1~3μmである。膜厚が1μmよりも薄い場合、多孔質膜Aが融点以上で溶融・収縮した際の破膜強度と絶縁性を確保できないおそれがあり、5μmよりも厚い場合、複合多孔質膜中の多孔質膜Aの占める割合が少なく、十分な孔閉塞機能が得られず、異常反応を抑制できないことがある。また、巻き嵩が大きくなり、今後、進むであろう電池の高容量化には適さないおそれがある。
 多孔質膜Bの空孔率は30~90%が好ましく、更に好ましくは40~70%である。空孔率が30%未満では、膜の電気抵抗が高くなり、大電流を流しにくくなる。一方、90%を超えると、膜強度が弱くなる傾向にある。また、多孔質膜Bの透気抵抗度は、JIS-P8117に準拠した方法により測定した値が1~2000秒/100ccAirであることが好ましい。より好ましくは50~1500秒/100ccAir、さらに好ましくは100~1000秒/100ccAirである。透気抵抗度が1秒/100ccAir未満では膜強度が弱くなり、2000秒/100ccAirを越えるとサイクル特性が悪くなることがある。
 多孔質膜Aと多孔質膜Bを積層して得られた複合多孔質膜の全体の厚さの上限は13μmであり、さらに好ましくは12μmである。下限は6μm以上が好ましく、さらに好ましくは7μm以上である。13μmよりも厚い場合には透気抵抗度上昇幅が大きくなる場合がある他、容器内に充填できる電極面積が減少することにより容量の低下を回避することが困難になる恐れがある。また、6μmよりも薄い場合には、十分な機械強度と絶縁性を確保することが困難になることがある。
 本発明の複合多孔質膜は、多孔質膜Aの透気抵抗度(X秒/100ccAir)と複合多孔質膜全体の透気抵抗度(Y秒/100ccAir)の差(Y-X)が20秒/100ccAir≦Y-X≦100秒/100ccAirの関係を有する。Y-Xが20秒/100ccAir未満では、十分な耐熱性樹脂層の密着性が得られない。また、100秒/100ccAirを超えると、透気抵抗度の大幅な上昇を招き、その結果、電池に組み込んだ際に、イオン透過性が低下するため、高性能電池には適さないセパレーターとなる。
 さらに複合多孔質膜の透気抵抗度は、好ましくは50~600秒/100ccAir、さらに好ましくは100~500秒/100ccAir、最も好ましくは100~400秒/100ccAirである。50秒/100ccAirよりも透気抵抗度の値が低い場合、十分な絶縁性が得られず異物詰まりや短絡、破膜を招く可能性があり、600秒/100ccAirよりも値が高い場合には膜抵抗が高く実使用可能な範囲の充放電特性、寿命特性が得られない場合がある。
 次に本発明の複合多孔質膜の製造方法について説明する。
 本発明の複合多孔質膜の製造方法では、まず、ポリエステル系フィルム又はポリオレフィン系フィルム等の基材フィルム上にワニス(耐熱性樹脂溶液)を塗布した後、低湿度ゾーンに通過させる。この間にワニス中の耐熱性樹脂と該樹脂を溶解させている溶剤とを相分離させる。
 前記ワニスを塗布する方法としては例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。
 本発明でいう低湿度ゾーンとは、絶対湿度が6g/m未満に調整されたゾーンである。絶対湿度の好ましい上限は4g/m、さらに好ましくは3g/mであり、下限は好ましくは0.5g/m、より好ましくは0.8g/mである。絶対湿度が0.5g/m未満では相分離が十分に行われないため最終的に多孔質膜になりにくく、透気抵抗度上昇幅が大きくなってしまう場合がある。また、絶対湿度が6g/m以上では相分離と平行して耐熱性樹脂の凝固が始まり、多孔質膜Aを張り合わせる際、多孔質膜Aへの耐熱性樹脂の浸透が十分行われず、十分な耐熱性樹脂の密着性が得られない。低湿度ゾーンの通過時間は、3秒以上20秒以下であることが好ましい。3秒未満では前記相分離が十分行われないおそれがあり、一方、20秒を超えると耐熱性樹脂の凝固が進行しすぎるおそれがある。
 次いで、該塗布フィルムを高湿度ゾーンに通過させて基材フィルム上に半ゲル状の耐熱性樹脂膜を形成させる。本発明で言う高湿度ゾーンとは、絶対湿度の下限が6g/m、好ましくは7g/m、さらに好ましくは8g/m、上限が25g/m、好ましくは17g/m、さらに好ましくは15g/mに調整されたゾーンである。絶対湿度が6g/m未満ではゲル状化(非流動状化)が十分に行われないため、多孔質膜Aを張り合わせる際、多孔質膜Aへの耐熱性樹脂の浸透が進み過ぎ、透気抵抗度上昇幅が大きくなる。絶対湿度が25g/mを超えると耐熱性樹脂の凝固が進み過ぎ、多孔質膜Aへの耐熱性樹脂の浸透が小さくなりすぎ、十分な密着性が得られない場合がある。高湿度ゾーンの通過時間は、3秒以上10秒以下であることが好ましい。3秒未満ではゲル状化(非流動状化)が十分に行われないため、多孔質膜Aを張り合わせる際、多孔質膜Aへの耐熱性樹脂の浸透が進みすぎ、透気抵抗度上昇幅が大きくなるおそれがあり、一方、10秒を超えると耐熱性樹脂の凝固が進みすぎ、多孔質膜Aへの耐熱性樹脂の浸透が小さくなりすぎ、十分な密着性が得られないおそれがある。
 なお、低湿度ゾーン、高湿度ゾーンともに温度条件は、絶対湿度が上記範囲内であれば特に限定されないが、省エネルギーの観点から20℃以上、50℃以下が好ましい。また、前記フィルム基材の厚さは平面性を維持できる厚さであれば特に限定されないが、25μmから100μmの厚さが好適である。25μm未満では十分な平面性が得られない場合がある。また、100μmを超えても平面性は向上しない。
 次に、このようにして形成された半ゲル状の耐熱性樹脂膜の上に、多孔質膜Aを、気泡を含まないように貼り合わせる。貼り合わせる方法としては、二方向から来たフィルムを一つの金属ロールの面上で合わせる方法がフィルムに与えるダメージが少なく好ましい。ここで半ゲル状とは、雰囲気中の水分の吸収による、ポリアミドイミド樹脂溶液のゲル化が進行する過程でゲル化した領域と、溶液状態を保持している領域が混在している状態を言う。
 半ゲル状の耐熱性樹脂膜上に、多孔質膜Aを張り合わせる時期は高湿度ゾーンを通過した直後、少なくとも10秒以内に張り合わせるのが好ましい。10秒を超えると耐熱性樹脂膜の凝固が進み十分な多孔質膜Bの密着性が得られない場合がある。
 耐熱性樹脂膜の形成後、基材フィルムを剥離してもよいが、本発明の方法では、基材フィルムを剥離することなく多孔質膜Aを耐熱性樹脂膜に貼り合わせることが好ましい。この方法を用いる場合、弾性率が低く、加工時の張力によってネッキングするような柔らかい多孔質膜Aを用いる場合でも複合多孔質膜の製造が可能になる。具体的には、ガイドロール通過時に複合多孔質膜にシワ、折れが入らない、乾燥時のカールを低減できるなど工程作業性に優れる特徴が期待できる。この時、基材と複合多孔質膜を同時に巻き取っても、乾燥工程を通過してから基材と複合多孔質膜を別々の巻き取りロールに巻き取っても良いが、後者の巻き取り方法の方が巻きズレの恐れが少なく好ましい。
 次に、貼り合わされた多孔質膜Aと耐熱性樹脂膜を凝固浴に浸漬させて、耐熱性樹脂膜を相転換させて多孔質膜Bに変換させる。凝固浴の組成は、特に限定されないが、例えば、多孔質膜Bを構成する耐熱性樹脂に対する良溶媒を1~20重量%、さらに好ましくは5~15重量%含有する水溶液であることができる。凝固浴への浸漬により、多孔質膜Bは、全面に渡って多孔質膜Aに転写され、未洗浄の複合多孔質膜が得られる。これは多孔質膜Bの一部が多孔質膜Aの細孔に適度に食い込みアンカー効果が発現しているためである。
 さらに、上記の未洗浄多孔質膜を、純水などを用いた洗浄工程、及び100℃以下の熱風などを用いた乾燥工程に供し、最終的な複合多孔質膜を得ることができる。
 洗浄については、加温、超音波照射やバブリングといった一般的な手法を用いることができる。さらに、各浴槽内の濃度を一定に保ち、洗浄効率を上げるためには、浴間で多孔膜内部の溶液を取り除く手法が有効である。具体的には、空気または不活性ガスで多孔層内部の溶液を押し出す手法、ガイドロールによって物理的に膜内部の溶液を絞り出す手法などが挙げられる。
 本発明の方法によれば、多孔質膜Aの厚みが10μm未満の場合においても、密着性と透気抵抗度のバランスに優れた複合多孔質膜が得られる。
 本発明の複合多孔質膜は、目的幅にスリットされたポリオレフィン系多孔質膜を多孔質膜Aとして用いて作成することもできるが、ポリオレフィン多孔質膜作成時にオンラインで続いて加工することも可能である。ここでオンラインとは、ポリオレフィン多孔質膜の製造工程(具体的には、洗浄後の乾燥工程)後に、連続して多孔質膜Bを積層し、凝固、洗浄、スリットの各工程を経て目的とする複合多孔質膜を得る手段を言う。上記オンライン塗工を行うことで、大量生産が可能となり、コスト面で非常にメリットがある。
 本発明の複合多孔質膜は、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
 本発明の複合多孔質膜は、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池、およびプラスチックフィルムコンデンサ、セラミックコンデンサ、電気二重層コンデンサなどのセパレーターとして用いることができるが、特にリチウム二次電池のセパレーターとして用いるのが好ましい。以下にリチウム二次電池を例にとって説明する。
 リチウム二次電池は、正極と負極がセパレーターを介して積層されており、セパレーターは電解液(電解質)を含有している。電極の構造は特に限定されず、公知の構造であることができる。例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。
 正極は、集電体とその表面に形成されたリチウムイオンを吸蔵放出可能な正極活物質を含む正極活物質層とを有する。正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム複合酸化物)、遷移金属硫化物等の無機化合物等が挙げられ、遷移金属としては、V、Mn、Fe、Co、Ni等が挙げられる。正極活物質の中でリチウム複合酸化物の好ましい例としては、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、α-NaFeO型構造を母体とする層状リチウム複合酸化物等が挙げられる。
 負極は、集電体とその表面に形成された負極活物質を含む負極活物質層とを有する。負極活物質としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素質材料が挙げられる。電解液はリチウム塩を有機溶媒に溶解することにより得られる。リチウム塩としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、LiN(CSO、LiPF(CF、LiPF(C、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、γ-ブチロラクトン等の高沸点及び高誘電率の有機溶媒や、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、ジメチルカーボネート、ジエチルカーボネート等の低沸点及び低粘度の有機溶媒が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。特に高誘電率の有機溶媒は粘度が高く、低粘度の有機溶媒は誘電率が低いため、両者を混合して用いるのが好ましい。
 電池を組み立てる際に、セパレーター(複合多孔質膜)に電解液を含浸させる。これによりセパレーターにイオン透過性を付与することができる。通常、含浸処理は多孔質膜を常温で電解液に浸漬して行う。例えば、円筒型電池を組み立てる場合、まず正極シート、セパレーター(複合多孔質膜)、及び負極シートをこの順に積層し、この積層体を一端より巻き取って巻回型電極素子とする。次にこの電極素子を電池缶に挿入し、上記電解液を含浸させ、さらに安全弁を備えた正極端子を兼ねる電池蓋を、ガスケットを介してかしめることにより電池を得ることができる。
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した。
(1)膜厚
 接触式膜厚計(ソニーマニュファクチュアリング社製 デジタルマイクロメーター M-30)を使用して測定した。
(2)多孔質膜Aと多孔質膜Bの界面での剥離強度
 実施例及び比較例で得られたセパレーターの多孔質膜B面に粘着テープ(ニチバン社製、405番;24mm幅)を貼り、幅24mm、長さ150mmに裁断し、試験用サンプルを作製した。
 23℃、50%RH条件下で引張り試験機[エー・アンド・デイ社製「テンシロンRTM-100」]を用いて、ピール法(剥離速度500mm/分、T型剥離)にて多孔質膜Aと多孔質膜Bの界面での剥離強度を測定した。測定開始から測定終了までの100mmの間において、経時的に測定し、測定値の平均値を算出し、幅25mm当たりの値に換算して剥離強度とした。なお、前記剥離界面において、多孔質膜A側に多孔質膜B面が残存する場合があるが、この場合も多孔質膜Aと多孔質膜Bの界面での剥離強度として算出した。
(3)平均孔径
 多孔質膜Aの平均孔径は以下の方法で測定した。試験片を測定用セルに上に両面テープを用いて固定し、プラチナまたは金を数分間真空蒸着させ、適度な倍率で測定を行った。SEM測定で得られた画像上で最も手前に観察される任意の10箇所を選択し、それら10箇所の孔径の平均値を試験片の平均孔径とした。なお、孔が略円形でない場合には、長径と短径を足して2で割った値を孔径とした。
(4)透気抵抗度
 テスター産業(株)社製のガーレー式デンソメーターB型を使用して、複合多孔質膜をクランピングプレートとアダプタープレートの間にシワが入らないように固定し、JIS P-8117に従って測定した。試料としては10cm角のものを2枚用意し、それぞれの試料について、試料の中央部と4隅を測定点として合計10点の測定を行い、10点の平均値を透気抵抗度[秒/100ccAir]として用いた。なお、試料の1辺の長さが10cmに満たない場合は5cm間隔で10点測定した値を用いてもよい。
(5)対数粘度
 耐熱性樹脂0.5gを100mlのNMPに溶解した溶液を25℃でウベローデ粘度管を用いて測定した。
(6)ガラス転移温度
 耐熱性樹脂溶液、または複合多孔質膜を良溶媒に漬けて耐熱性樹脂膜のみを溶解させた樹脂溶液を、アプリケーターによってPETフィルム(東洋紡績製E5001)あるいはポリプロピレンフィルム(東洋紡績製パイレン-OT)に適当なギャップで塗布し、120℃10分間予備乾燥した後に剥離して、適当な大きさの金枠に耐熱粘着テープで固定した状態で、さらに真空下で200℃12時間乾燥し、乾式フィルムを得た。得られた乾式フィルムから幅4mm×長さ21mmの試験片を切り取り、測定長15mmで動的粘弾性測定装置(アイティー計測制御製DVA―220)を用いて、110Hz、昇温速度4℃/分の条件下で室温から450℃までの範囲で測定した時の貯蔵弾性率(E′)の屈折点において、ガラス転移温度以下のベースラインの延長線と、屈折点以上における最大傾斜を示す接線との交点の温度をガラス転移温度とした。
(7)空孔率
 10cm角の試料を用意し、その試料体積(cm)と質量(g)を測定し、得られた結果から次式を用いて空孔率(%)を計算した。なお、10cm角試料の試料体積(cm)は、10(cm)×10(cm)×多孔質膜Aの厚み(cm)で求めることができる。
 空孔率=(1-質量/(樹脂密度×試料体積))×100
実施例1
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、o-トリジンジイソシアネート(TODI)0.8モル、2,4-トリレンジイソシアネート(TDI)0.2モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN-メチル-2-ピロリドンと共に仕込み、100℃で5時間攪拌した後、固形分濃度が14%となるようにN-メチル-2-ピロリドンで希釈してポリアミドイミド樹脂溶液(a)を合成した。得られたポリアミドイミド樹脂の対数粘度は1.35dl/g、ガラス転移温度は320℃であった。
 このポリアミドイミド樹脂溶液(a)48質量部をN-メチル-2-ピロリドン39質量部で希釈して、さらにエチレングリコール13質量部を加え、ワニス(a)(固形分濃度5.5重量%)を調合した。厚み50μmのポリエチレンテレフタレート樹脂フィルム(東洋紡績製E5101)のコロナ処理面にワニス(a)をブレードコート法にて塗布し、温度25℃、絶対湿度1.8g/mの低湿度ゾーンを8秒間、引き続き温度25℃、絶対湿度12g/mの高湿度ゾーンを5秒間で通過させて半ゲル状の耐熱性樹脂膜を形成させ、1.7秒後に多孔質膜A(ポリエチレン製、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)を、上記の半ゲル状耐熱性樹脂膜に重ね、N-メチル-2-ピロリドンを5重量%含有する水溶液中に進入させ、その後、純水で洗浄した後、70℃の熱風乾燥炉を通過させることで乾燥し、最終厚み11.8μmの複合多孔質膜を得た。
実施例2
 低湿度ゾーンの絶対湿度を4.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例3
 低湿度ゾーンの絶対湿度を5.5g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例4
 高湿度ゾーンの絶対湿度を7.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例5
 高湿度ゾーンの絶対湿度を16.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例6
 低湿度ゾーン及び高湿度ゾーンの通過時間をそれぞれ5.3秒、3.0秒とし、高湿度ゾーン出口からポリエチレン製多孔質膜を貼り合わせるまでの時間を1.1秒とした以外は実施例1と同様にして複合多孔質膜を得た。
実施例7
 低湿度ゾーン及び高湿度ゾーンの通過時間をそれぞれ16.0秒、10.0秒とし、高湿度ゾーン出口からポリエチレン製多孔質膜を貼り合わせるまでの時間を3.4秒とした以外は実施例1と同様にして複合多孔質膜を得た。
実施例8
 多孔質膜Aとして厚み9.5μm、空孔率40%、平均孔径0.15μm、透気抵抗度320秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例9
 多孔質膜Aとして厚み7.0μm、空孔率40%、平均孔径0.15μm、透気抵抗度220秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例10
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、o-トリジンジイソシアネート(TODI)0.80モル、ジフェニルメタン-4,4′-ジイソシアネート(MDI)0.20モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN-メチル-2-ピロリドンと共に仕込み、100℃で5時間攪拌した後、固形分濃度が14%となるようにN-メチル-2-ピロリドンで希釈してポリアミドイミド樹脂溶液(b)を合成した。得られたポリアミドイミド樹脂の対数粘度は1.05dl/g、ガラス転移温度は313℃であった。ポリアミドイミド樹脂溶液(a)をポリアミドイミド樹脂溶液(b)に代えたワニス(b)(固形分濃度5.5重量%)を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例11
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、o-トリジンジイソシアネート(TODI)0.60モル、ジフェニルメタン-4,4′-ジイソシアネート(MDI)0.40モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN-メチル-2-ピロリドンと共に仕込み、100℃で5時間攪拌した後、固形分濃度が14%となるようにN-メチル-2-ピロリドンで希釈してポリアミドイミド樹脂溶液(c)を合成した。得られたポリアミドイミド樹脂の対数粘度は0.85dl/g、ガラス転移温度は308℃であった。ポリアミドイミド樹脂溶液(a)をポリアミドイミド樹脂溶液(c)に代えたワニス(c)(固形分濃度5.5重量%)を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例12
 ポリアミドイミド樹脂溶液(a)32.6質量部及び平均粒径0.5μmのアルミナ粒子10.5質量部をN-メチル-2-ピロリドン48.4質量部で希釈して、さらにエチレングリコール8.5質量部を加え、酸化ジルコニウムビーズ(東レ社製、商品名「トレセラムビーズ」、直径0.5mm)と共に、ポリプロピレン製の容器に入れ、ペイントシェーカー(東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、ワニス(d)(固形分濃度30.0重量%)を調合した。ワニス(a)をワニス(d)に代えた以外は実施例1と同様にして複合多孔質膜を得た。
実施例13
 アルミナ粒子を酸化チタン粒子(チタン工業社製、商品名「KR-380」、平均粒子径0.38μm)に替えたワニス(e)(固形分濃度30.0重量%)を用いた以外は実施例12と同様にして複合多孔質膜を得た。
実施例14
 多孔質膜Bの塗布量を調整し、最終厚み10.5μmとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例15
 多孔質膜Aとして厚み6.5μm、空孔率38%、平均孔径0.15μm、透気抵抗度210秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例16
 低湿度ゾーンの絶対湿度を1.2g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例1
 低湿度ゾーンを温度25℃、絶対湿度7.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例2
 高湿度ゾーンを温度25℃、絶対湿度5.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例3
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、o-トリジンジイソシアネート(TODI)0.76モル、2,4-トリレンジイソシアネート(TDI)0.19モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN-メチル-2-ピロリドンと共に仕込み、100℃で5時間攪拌した後、固形分濃度が14%となるようにN-メチル-2-ピロリドンで希釈してポリアミドイミド樹脂溶液(f)を合成した。得られたポリアミドイミド樹脂の対数粘度は0.45dl/g、ガラス転移温度は315℃であった。ポリアミドイミド樹脂溶液(a)をポリアミドイミド樹脂溶液(f)に代えたワニス(f)を用いた以外は実施例1と同様にして複合多孔質膜を得た。
比較例4
 多孔質膜A(ポリエチレン製、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)にワニス(a)をブレードコート法にて塗布し、温度25℃、絶対湿度1.8g/mの低湿度ゾーンを8秒間、引き続き温度25℃、絶対湿度12g/mの高湿度ゾーンを5秒間で通過させ、次いで2秒後に、N-メチル-2-ピロリドンを5重量%含有する水溶液中に進入させ、その後、純水で洗浄した後、70℃の熱風乾燥炉を通過させることで乾燥し、最終厚み11.8μmの複合多孔質膜を得た。
比較例5
 多孔質膜A(ポリエチレン製、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)を事前にN-メチル-2-ピロリドンに浸漬して細孔内をN-メチル-2-ピロリドンで満たして用いた以外は比較例4と同様にして複合多孔質膜を得た。
比較例6
 ポリエチレンテレフタレート樹脂フィルム(東洋紡績製E5101、厚さ50μm)のコロナ処理面にワニス(a)をブレードコート法にて塗布し、引き続き温度25℃、絶対湿度18.4g/mの高湿度ゾーンを30.0秒間で通過させ、1.7秒後に多孔質膜Aとして厚み10μm、空孔率47%、平均孔径0.20μm、透気抵抗度80秒/100ccAirのポリエチレン製多孔膜を重ねた以外は実施例1と同様にして複合多孔質膜を得た。
比較例7
 高湿度ゾーンの絶対湿度25.5g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例8
 多孔質膜Bの塗布量を調整し、最終厚み14.0μmとした以外は実施例1と同様にして複合多孔質膜を得た。
 実施例1~16、比較例1~8の複合多孔質膜の製造条件、並びに多孔質膜A及び複合多孔質膜の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の複合多孔質膜は、今後ますます薄膜化が進んだ場合においても、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅が両立しており、電池の高容量化、高イオン透過性、および、電池組み立て加工工程における高速加工性に適し、特に電池用セパレーターに好適である。

Claims (9)

  1.  ポリオレフィン系樹脂からなる多孔質膜Aに耐熱性樹脂を含む多孔質膜Bが積層された複合多孔質膜であって、多孔質膜Aが下記式(A)~(C)を満足し、複合多孔質膜が下記式(D)を満足するものにおいて、複合多孔質膜が下記式(E)及び(F)をさらに満足することを特徴とする複合多孔質膜。
     多孔質膜Aの厚さ<10μm       ・・・・・式(A)
     0.01μm≦多孔質膜Aの平均孔径≦1.0μm
                         ・・・・・式(B)
     30%≦多孔質膜Aの空孔率≦70%   ・・・・・式(C)
     複合多孔質膜全体の厚さ≦13μm    ・・・・・式(D)
     多孔質膜Aと多孔質膜Bの界面での剥離強度≧1.0N/25mm
                         ・・・・・式(E)
     20≦Y-X≦100          ・・・・・式(F)
    (Xは多孔質膜Aの透気抵抗度(秒/100ccAir)、Yは複合多孔質膜全体の透気抵抗度(秒/100ccAir)である)
  2.  複合多孔質膜の透気抵抗度が50~600秒/100ccAirであることを特徴とする請求項1に記載の複合多孔質膜。
  3.  耐熱性樹脂がポリアミドイミド樹脂、ポリイミド樹脂又はポリアミド樹脂であることを特徴とする請求項1又は2に記載の複合多孔質膜。
  4.  耐熱性樹脂が、0.5dl/g以上の対数粘度を有するポリアミドイミド樹脂であることを特徴とする請求項3に記載の複合多孔質膜。
  5.  以下の工程(i)及び(ii)を含むことを特徴とする請求項1~4のいずれかに記載の複合多孔質膜の製造方法。
     工程(i):基材フィルム上に耐熱性樹脂溶液を塗布した後、絶対湿度6g/m未満の低湿度ゾーンを通過させ、次いで、絶対湿度6g/m以上25g/m以下の高湿度ゾーンを通過させて基材フィルム上に耐熱性樹脂膜を形成する工程、および
     工程(ii):工程(i)で形成された耐熱性樹脂膜とポリオレフィン系樹脂からなる多孔質膜Aとを貼り合わせた後、凝固浴に浸漬させて耐熱性樹脂膜を多孔質膜Bに変換させ、洗浄、乾燥し、複合多孔質膜を得る工程。
  6.  基材フィルムが、工程(ii)で複合多孔質膜を得た後に剥離されることを特徴とする請求項5に記載の複合多孔質膜の製造方法。
  7.  基材フィルムが厚さ25~100μmのポリエステル系フィルム又はポリオレフィン系フィルムであることを特徴とする請求項5又は6に記載の複合多孔質膜の製造方法。
  8.  工程(i)において低湿度ゾーンの通過時間が3秒以上20秒以下であり、高湿度ゾーンの通過時間が3秒以上10秒以下であることを特徴とする請求項5~7のいずれかに記載の複合多孔質膜の製造方法。
  9.  請求項1~4のいずれかに記載の複合多孔質膜を含むことを特徴とする電池用セパレーター。
PCT/JP2010/064507 2010-06-25 2010-08-26 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター WO2011161837A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL10853697T PL2586611T3 (pl) 2010-06-25 2010-08-26 Porowata membrana kompozytowa, sposób wytwarzania porowatej membrany kompozytowej i separator akumulatora je wykorzystujący
JP2010537061A JP5648481B2 (ja) 2010-06-25 2010-08-26 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
MYPI2012701253A MY183586A (en) 2010-06-25 2010-08-26 Composite porous membrane, method for producing composite porous membrane and battery separator using same
KR1020127032356A KR101895628B1 (ko) 2010-06-25 2010-08-26 복합 다공질막, 복합 다공질막의 제조 방법 및 그것을 이용한 전지용 세퍼레이터
CN201080067710.6A CN102958694B (zh) 2010-06-25 2010-08-26 复合多孔质膜、复合多孔质膜的制造方法及使用了该复合多孔质膜的电池用隔板
US13/805,056 US20130101889A1 (en) 2010-06-25 2010-08-26 Composite porous membrane, method for producing composite porous membrane and battery separator using same
EP10853697.0A EP2586611B1 (en) 2010-06-25 2010-08-26 Composite porous membrane, method for producing composite porous membrane and battery separator using same
US14/596,490 US9614212B2 (en) 2010-06-25 2015-01-14 Method of producing composite porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-145109 2010-06-25
JP2010145109 2010-06-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/805,056 A-371-Of-International US20130101889A1 (en) 2010-06-25 2010-08-26 Composite porous membrane, method for producing composite porous membrane and battery separator using same
US14/596,490 Division US9614212B2 (en) 2010-06-25 2015-01-14 Method of producing composite porous membrane

Publications (1)

Publication Number Publication Date
WO2011161837A1 true WO2011161837A1 (ja) 2011-12-29

Family

ID=45371048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064507 WO2011161837A1 (ja) 2010-06-25 2010-08-26 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター

Country Status (9)

Country Link
US (2) US20130101889A1 (ja)
EP (1) EP2586611B1 (ja)
JP (1) JP5648481B2 (ja)
KR (1) KR101895628B1 (ja)
CN (1) CN102958694B (ja)
HU (1) HUE042737T2 (ja)
MY (1) MY183586A (ja)
PL (1) PL2586611T3 (ja)
WO (1) WO2011161837A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043762A (ja) * 2010-07-21 2012-03-01 Toray Ind Inc 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP2013046998A (ja) * 2011-07-28 2013-03-07 Sumitomo Chemical Co Ltd 積層多孔質フィルム及び非水電解液二次電池
WO2013122010A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
WO2013121971A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
JP2013186958A (ja) * 2012-03-06 2013-09-19 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
WO2014126079A1 (ja) * 2013-02-13 2014-08-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP2018056121A (ja) * 2016-09-23 2018-04-05 ユニチカ株式会社 蓄電素子セパレータ用積層体および蓄電素子用セパレータの製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343382B2 (en) * 2014-05-09 2019-07-09 Toray Industries, Inc. Multi-layer polyolefin porous membrane, battery separator obtained using the same, and method for producing the same
CN105655524B (zh) * 2014-11-28 2018-08-10 松下电器产业株式会社 非水电解质二次电池用隔板和非水电解质二次电池
CN105655525B (zh) 2014-11-28 2018-07-31 松下电器产业株式会社 非水电解质二次电池用隔板和非水电解质二次电池
US9514929B2 (en) 2015-04-02 2016-12-06 International Business Machines Corporation Dielectric filling materials with ionic compounds
EP3275531B1 (en) * 2015-05-07 2020-07-08 Nitto Denko Corporation Filter material and filter unit
JP6725311B2 (ja) 2015-05-07 2020-07-15 日東電工株式会社 フィルタ濾材及びフィルタユニット
US20170062784A1 (en) * 2015-08-28 2017-03-02 GM Global Technology Operations LLC Bi-layer separator and method of making the same
CN108368263B (zh) * 2015-12-09 2021-03-12 东丽株式会社 树脂、浆料、以及使用其得到的层叠体和其制造方法
US10727463B2 (en) 2016-04-15 2020-07-28 Sumitomo Chemical Company, Limited Long porous separator sheet, method for producing the same, roll, and lithium-ion battery
CN106785026A (zh) * 2016-11-29 2017-05-31 德阳九鼎智远知识产权运营有限公司 一种锂电池电解液及其制备方法及其锂离子电池
WO2019130994A1 (ja) * 2017-12-27 2019-07-04 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2022516331A (ja) * 2019-01-04 2022-02-25 セルガード エルエルシー リチウム電池又はキャパシター用のポリイミド被覆セパレータ
JP7281086B2 (ja) * 2019-10-09 2023-05-25 トヨタ自動車株式会社 多孔質体の製造方法
US20240222708A1 (en) * 2021-04-25 2024-07-04 Microvast, Inc. Method of preparing electrochemical device and electrochemical device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023602A (ja) 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータの製造方法および非水電解液二次電池
JP2001266942A (ja) 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
JP2003171495A (ja) 2001-09-28 2003-06-20 Teijin Ltd 複合多孔膜の製造法
JP2004139867A (ja) * 2002-10-18 2004-05-13 Nitto Denko Corp 複合多孔質フィルム
JP2005281668A (ja) 2004-02-19 2005-10-13 Toyobo Co Ltd 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
JP2006289657A (ja) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp 多層多孔膜
JP2007125821A (ja) 2005-11-04 2007-05-24 Toyobo Co Ltd 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池セパレーター、電池及びコンデンサ
WO2008062727A1 (fr) * 2006-11-20 2008-05-29 Teijin Limited Séparateur pour batterie auxiliaire non aqueuse, procédé de production associé, et batterie auxiliaire non aqueuse
JP2009070609A (ja) * 2007-09-11 2009-04-02 Sony Corp セパレータおよびこれを用いた電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031943A1 (en) * 2003-08-07 2005-02-10 Call Ronald W. Battery separator and method of making same
US20070134484A1 (en) * 2004-02-23 2007-06-14 Jun Yamada Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP2006032246A (ja) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP4843935B2 (ja) * 2004-11-25 2011-12-21 東レ株式会社 複合多孔質膜、これの製造法及びこれを用いた二次電池
JP4931911B2 (ja) * 2006-03-30 2012-05-16 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜
KR100927570B1 (ko) * 2007-05-07 2009-11-23 미쓰비시 쥬시 가부시끼가이샤 적층 다공성 필름 및 전지용 세퍼레이터
JP5635970B2 (ja) * 2008-04-08 2014-12-03 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
US20090286147A1 (en) * 2008-05-16 2009-11-19 Atsushi Nakajima Composite porous membrane, method of producing composite porous membrane, and battery separator, battery and capacitor using the same
JP5937776B2 (ja) * 2008-05-22 2016-06-22 日立マクセル株式会社 電池用セパレータおよび電池
CN102105302B (zh) * 2008-07-31 2013-11-06 旭化成电子材料株式会社 层叠微多孔性薄膜及其制造方法和电池用分隔件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023602A (ja) 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータの製造方法および非水電解液二次電池
JP2001266942A (ja) 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
JP2003171495A (ja) 2001-09-28 2003-06-20 Teijin Ltd 複合多孔膜の製造法
JP2004139867A (ja) * 2002-10-18 2004-05-13 Nitto Denko Corp 複合多孔質フィルム
JP2005281668A (ja) 2004-02-19 2005-10-13 Toyobo Co Ltd 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
JP2006289657A (ja) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp 多層多孔膜
JP2007125821A (ja) 2005-11-04 2007-05-24 Toyobo Co Ltd 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池セパレーター、電池及びコンデンサ
WO2008062727A1 (fr) * 2006-11-20 2008-05-29 Teijin Limited Séparateur pour batterie auxiliaire non aqueuse, procédé de production associé, et batterie auxiliaire non aqueuse
JP2009070609A (ja) * 2007-09-11 2009-04-02 Sony Corp セパレータおよびこれを用いた電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2586611A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043762A (ja) * 2010-07-21 2012-03-01 Toray Ind Inc 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP2013046998A (ja) * 2011-07-28 2013-03-07 Sumitomo Chemical Co Ltd 積層多孔質フィルム及び非水電解液二次電池
US10418608B2 (en) 2011-07-28 2019-09-17 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
US9882191B2 (en) 2011-07-28 2018-01-30 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
JP2018006354A (ja) * 2011-07-28 2018-01-11 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
US9705120B2 (en) 2011-07-28 2017-07-11 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary battery
JP2016130027A (ja) * 2011-07-28 2016-07-21 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
US9293754B2 (en) 2012-02-15 2016-03-22 Toray Battery Separator Film Co., Ltd. Battery separator, and battery separator manufacturing method
KR101423104B1 (ko) 2012-02-15 2014-07-25 도레이 배터리 세퍼레이터 필름 주식회사 전지용 세퍼레이터, 및 전지용 세퍼레이터의 제조 방법
CN104106155A (zh) * 2012-02-15 2014-10-15 东丽电池隔膜株式会社 电池用隔膜及电池用隔膜的制备方法
US9023506B2 (en) 2012-02-15 2015-05-05 Toray Battery Separator Film Co., Ltd. Battery separator, and battery separator manufacturing method
CN103797614A (zh) * 2012-02-15 2014-05-14 东丽电池隔膜株式会社 电池用隔膜及电池用隔膜的制备方法
JP2014003038A (ja) * 2012-02-15 2014-01-09 Toray Battery Separator Film Co Ltd 電池用セパレータ、および、電池用セパレータの製造方法
JP2013239458A (ja) * 2012-02-15 2013-11-28 Toray Battery Separator Film Co Ltd 電池用セパレータ、および、電池用セパレータの製造方法
WO2013121971A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
WO2013122010A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
JP2013186958A (ja) * 2012-03-06 2013-09-19 Mitsubishi Paper Mills Ltd 金属イオン二次電池用セパレータの製造方法及び金属イオン二次電池用セパレータ
WO2014126079A1 (ja) * 2013-02-13 2014-08-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP2018056121A (ja) * 2016-09-23 2018-04-05 ユニチカ株式会社 蓄電素子セパレータ用積層体および蓄電素子用セパレータの製造方法

Also Published As

Publication number Publication date
EP2586611A4 (en) 2015-08-05
CN102958694B (zh) 2015-09-30
US9614212B2 (en) 2017-04-04
EP2586611B1 (en) 2018-10-03
KR101895628B1 (ko) 2018-09-05
CN102958694A (zh) 2013-03-06
HUE042737T2 (hu) 2019-07-29
EP2586611A1 (en) 2013-05-01
JPWO2011161837A1 (ja) 2013-08-19
PL2586611T3 (pl) 2019-03-29
MY183586A (en) 2021-02-27
JP5648481B2 (ja) 2015-01-07
US20150122400A1 (en) 2015-05-07
US20130101889A1 (en) 2013-04-25
KR20130113939A (ko) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5648481B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP6160013B2 (ja) 電池用セパレータ、および、電池用セパレータの製造方法
JP5870925B2 (ja) 複合多孔質膜及びその製造方法
JP5495210B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP4946006B2 (ja) 複合多孔質膜及びその製造方法
KR102190068B1 (ko) 폴리올레핀 다공질 막, 이를 이용한 전지용 세퍼레이터 및 이들의 제조 방법
JP5636619B2 (ja) 複合多孔質膜及びその製造方法
JP5532430B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP6048753B2 (ja) 電池用セパレータ、および、電池用セパレータの製造方法
WO2013146402A1 (ja) 電池セパレータ及びその製造方法
JP5636618B2 (ja) 複合多孔質膜及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067710.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010537061

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010853697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127032356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13805056

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE