[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011161757A1 - Control device of automatic transmission for vehicle - Google Patents

Control device of automatic transmission for vehicle Download PDF

Info

Publication number
WO2011161757A1
WO2011161757A1 PCT/JP2010/060496 JP2010060496W WO2011161757A1 WO 2011161757 A1 WO2011161757 A1 WO 2011161757A1 JP 2010060496 W JP2010060496 W JP 2010060496W WO 2011161757 A1 WO2011161757 A1 WO 2011161757A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
clutch
automatic transmission
transmission
predetermined
Prior art date
Application number
PCT/JP2010/060496
Other languages
French (fr)
Japanese (ja)
Inventor
友宏 珍部
典弘 塚本
綾部 篤志
友弘 浅見
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012521194A priority Critical patent/JP5338982B2/en
Priority to CN201080067600.XA priority patent/CN102947623B/en
Priority to PCT/JP2010/060496 priority patent/WO2011161757A1/en
Publication of WO2011161757A1 publication Critical patent/WO2011161757A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0227Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices
    • F16D2048/0233Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices by rotary pump actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50293Reduction of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70424Outputting a clutch engaged-disengaged signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0481Smoothing ratio shift during range shift from drive (D) or reverse (R) to neutral (N)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0488Smoothing ratio shift during range shift from neutral (N) to drive (D)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0496Smoothing ratio shift for low engine torque, e.g. during coasting, sailing or engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/20Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control
    • F16H2061/207Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control by neutral control

Definitions

  • the present invention relates to a control device for an automatic transmission for a vehicle that performs neutral control, and more particularly to control when executing neutral control while the vehicle is running.
  • a predetermined start condition for example, a start condition that the shift position is the forward travel “D” position, the accelerator is off, the brake is on, and the vehicle is stopped
  • a predetermined start condition for example, a start condition that the shift position is the forward travel “D” position, the accelerator is off, the brake is on, and the vehicle is stopped
  • the transmission torque capacity equivalent to engagement torque, engagement force, clutch pressure, etc.
  • the vehicle start engagement device for example, input clutch, start clutch
  • N control for example, it is proposed that the start clutch is in a half-released state (slip state) in consideration of responsiveness of clutch engagement at the time of restart.
  • N control it has also been proposed to completely release the starting clutch in order to further improve fuel efficiency.
  • Patent Document 1 describes that N control for completely releasing the starting clutch is executed in accordance with traffic conditions around the vehicle such as a lighting state of a traffic light received from the outside.
  • JP 2008-286281 A Japanese Patent Laid-Open No. 5-79562
  • the N control is started not only when the vehicle is stopped but also when the vehicle is running, aiming at further improvement of fuel consumption, that is, N during the vehicle running from the accelerator-off decelerated running to the vehicle stopping. It is conceivable to execute control (N control during traveling). However, when executing the N control during traveling, there is a possibility that an uncomfortable feeling or the like may occur due to a change in deceleration due to, for example, a decrease in engine braking force during deceleration traveling. Further, considering the acceleration response at the time of reacceleration due to the accelerator re-depression, it is desired to return (cancel) from the N control as soon as possible while suppressing the shock accompanying the engagement of the starting clutch.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is an automatic transmission for a vehicle that can execute neutral control while the vehicle is running while suppressing a decrease in drivability. It is to provide a control device.
  • the gist of the present invention is that: (a) the transmission torque capacity of the starting clutch that transmits the engine power to the drive wheel side is reduced to reduce the power between the engine and the drive wheel; A control device for an automatic transmission for a vehicle capable of executing a neutral control in which a transmission path is in a power transmission suppression state, wherein (b) the state in which the automatic transmission is set to the current gear ratio during deceleration traveling with the accelerator off.
  • the transmission torque capacity is gradually reduced, and when the vehicle speed-related value during the deceleration traveling is equal to or less than a predetermined vehicle speed-related value, the starting clutch is released with the automatic transmission set to the gear ratio at the time of starting.
  • the transmission torque capacity is reduced.
  • the transmission torque capacity is gradually reduced in the state where the automatic transmission is at the current gear ratio during deceleration travel with the accelerator off, and the vehicle speed related value during the deceleration travel is a predetermined vehicle speed related value.
  • the transmission torque capacity is reduced so that the starting clutch is released with the automatic transmission set to the gear ratio at the time of starting.
  • the output torque for example, engine brake torque
  • the starting clutch when the vehicle speed is high to some extent, the starting clutch is in a slip state, and when releasing the N control during traveling by accelerator-on, it is possible to suppress the feeling of rattling during re-acceleration while suppressing the engagement shock. . Further, for example, since the output torque goes to substantially zero due to a decrease in the transmission torque capacity, even when the starting clutch is completely released during vehicle deceleration traveling, the uncomfortable feeling due to the change in deceleration is suppressed. Further, for example, when the vehicle speed is less than a predetermined vehicle speed-related value, the automatic transmission is set to the gear ratio at the time of starting and the starting clutch is released. By doing so, it is possible to suppress the feeling of slack during re-acceleration while suppressing the engagement shock. Therefore, it is possible to further improve fuel efficiency by executing neutral control while the vehicle is traveling while suppressing a decrease in drivability.
  • the rotational speed on the input side of the automatic transmission calculated based on the vehicle speed related value during the decelerating traveling and the gear ratio at the start of the automatic transmission is the idle rotational speed of the engine.
  • the transmission torque capacity is reduced so as to release the starting clutch when the rotational speed is lower than a predetermined rotational speed higher than the idle rotational speed.
  • the starting clutch Since the starting clutch is disengaged (at the time of switching to the turning state), the negative torque, which is reduced toward substantially zero due to the decrease in the transmission torque capacity, is suppressed from switching to the positive torque, and the uncomfortable feeling due to the change in output torque is suppressed.
  • the transmission clutch capacity is engaged with the starting clutch prior to gradually decreasing the transmission torque capacity with the automatic transmission at the current gear ratio.
  • the maximum transmission torque capacity is reduced to a predetermined transmission torque capacity that does not cause differential rotation in the starting clutch even when the accelerator is turned on, and the vehicle speed related value during the deceleration traveling is higher than the predetermined vehicle speed related value.
  • the transmission torque capacity is maintained at the predetermined transmission torque capacity until the vehicle speed is less than or equal to the predetermined vehicle speed related value. In this way, for example, it is possible to promptly shift to gradually reducing the transmission torque capacity in a state where the automatic transmission is set to the current gear ratio.
  • the transmission torque capacity is maintained at the predetermined transmission torque capacity until the vehicle speed related value becomes equal to or less than the second predetermined vehicle speed related value, that is, the starting clutch is kept in a regulated state at the predetermined transmission torque capacity.
  • the transmission torque capacity can be quickly increased to the maximum transmission torque capacity without the start clutch being in a slipping state, and the feeling of rattling during re-acceleration can be suppressed. .
  • a gear stage at the time of starting corresponding to a gear ratio at the time of starting is established by engagement of the starting clutch and the one-way clutch, and the power of the engine is transmitted by fluid transmission.
  • the transmission torque capacity is gradually reduced in a state where the automatic transmission is at the current gear ratio, the fluid transmission device during the decelerating traveling is transmitted to the automatic transmission through a device.
  • the output rotational speed of the engine becomes equal to or lower than a second predetermined rotational speed near the idle rotational speed that is higher than the idle rotational speed of the engine, the transmission torque capacity is reduced so as to release the starting clutch.
  • the transmission torque capacity is kept at a second predetermined transmission torque capacity as low as possible so that the transmission torque capacity can be quickly increased when the accelerator is on,
  • Certain automatic transmission from a current gear to shift to any gear during the starting is switched from negative torque to positive torque due to a decrease in the vehicle speed, and it is possible to feel a shock in the gear of the driving system or to cause a sense of incongruity due to switching in the direction in which the driving force is output.
  • the transmission torque in the starting clutch is reduced to suppress such uncomfortable feeling.
  • the one-way clutch is idling in the gear stage at the time of starting, so that no driving force is generated and the above-mentioned uncomfortable feeling is avoided.
  • the automatic transmission is set to the gear ratio at the time of starting and the transmission torque capacity is held at the second predetermined transmission torque capacity. The feeling of slacking during acceleration can be suppressed.
  • the one-way clutch is in the idling state, so that the engagement shock does not occur even if the start clutch is suddenly engaged, and the start clutch has the second predetermined transmission torque capacity. In other words, the transmission torque capacity can be quickly increased because the motor is kept waiting in a regulated state.
  • the second predetermined transmission torque capacity is a transmission torque capacity as low as possible capable of transmitting the idle torque of the engine.
  • the shock of the gear of the drive train due to the output torque being switched from negative torque to positive torque, the sense of incongruity due to switching in the direction in which the drive force is output, etc. are appropriately suppressed.
  • the transmission torque capacity can be quickly increased.
  • FIG. 1 is a skeleton diagram illustrating a configuration of an automatic transmission provided in a vehicle to which the present invention is applied.
  • 2 is an operation chart for explaining a combination of operations of the friction engagement device when a plurality of gear stages of the automatic transmission of FIG. 1 are established.
  • FIG. 4 is a circuit diagram relating to a linear solenoid valve that controls the operation of each hydraulic actuator for clutches and brakes in the hydraulic control circuit of FIG. 3. It is a functional block diagram explaining the principal part of the control function of the electronic control apparatus of FIG.
  • FIG. 4 is a flowchart for explaining a control operation for executing a running N control while suppressing a main part of the control operation of the electronic control device of FIG. It is a time chart corresponding to the control action of FIG.
  • FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 1 control;
  • FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG.
  • FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 3 control
  • FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 4 control;
  • a plurality of gear stages are alternatively achieved by selectively connecting rotating elements of a plurality of sets of planetary gear units by an engagement device.
  • Various planetary gear type automatic transmissions having four forward speeds, five forward speeds, six forward speeds, and more, and a pair of variable whose transmission diameters function as power transmission members are variable.
  • a so-called belt-type continuously variable transmission that is wound around a pulley and continuously changes its transmission ratio steplessly, a pair of cones that rotate around a common axis, and a plurality of rotation centers that can rotate around the axis
  • output Constituted by an automatic transmission capable of transmitting power to an electric motor is mounted on a hybrid vehicle of a so-called parallel type provided in such.
  • the mounting posture of the automatic transmission with respect to the vehicle may be a horizontal installation type such as an FF (front engine / front drive) vehicle in which the axis of the automatic transmission is in the width direction of the vehicle. It may be a vertical installation type such as an FR (front engine / rear drive) vehicle in the longitudinal direction.
  • FF front engine / front drive
  • FR front engine / rear drive
  • the engagement devices are all set in a slipping state or a releasing state in a known “R” or “D” position, or in an automatic transmission.
  • This is executed by forming a neutral state of the automatic transmission in which the power transmission path in the automatic transmission is interrupted, for example, by setting any one of the engagement devices for forming the gear stage to the slip state or the release state.
  • neutral control of a vehicle equipped with a belt type continuously variable transmission or a traction type continuously variable transmission includes well-known engagement devices and gear devices provided in a power transmission path from the engine to driving wheels.
  • a friction engagement device such as a multi-plate type or single plate type clutch or brake that is engaged by a hydraulic actuator is widely used.
  • the oil pump for supplying the hydraulic oil for engaging the hydraulic friction engagement device may be driven by a driving power source for traveling to discharge the hydraulic oil, but is disposed separately from the driving power source, for example. It may be driven by a dedicated electric motor provided.
  • the hydraulic control circuit including this hydraulic friction engagement device responds by supplying the output hydraulic pressure of a linear solenoid valve as an electromagnetic valve device directly to the hydraulic actuator (hydraulic cylinder) of the hydraulic friction engagement device, for example.
  • the shift control valve (shift control valve) is controlled by using the output hydraulic pressure of the linear solenoid valve as the pilot hydraulic pressure, and the hydraulic oil is supplied from the control valve to the hydraulic actuator. You can also.
  • the linear solenoid valve is provided, for example, corresponding to each of a plurality of hydraulic friction engagement devices, but a plurality of hydraulic solenoid valves that are not simultaneously engaged, engaged, or controlled to be released. When a friction engagement device exists, various modes are possible, such as providing a common linear solenoid valve for them.
  • the clutch or brake may be an electromagnetic engagement device such as an electromagnetic clutch or a magnetic powder clutch in addition to the hydraulic friction engagement device.
  • an internal combustion engine such as a gasoline engine or a diesel engine is widely used as the engine.
  • an electric motor or the like may be used in addition to this engine as a driving power source for auxiliary traveling.
  • supplying hydraulic pressure means “applying hydraulic pressure” or “supplying hydraulic oil controlled to the hydraulic pressure”.
  • FIG. 1 is a skeleton diagram illustrating the configuration of a vehicular automatic transmission 12 (hereinafter, automatic transmission 12) provided in a vehicle 10 to which the present invention is applied.
  • FIG. 2 is an operation table for explaining an operation state of the friction engagement device when a plurality of gear stages GS (shift stages GS) of the automatic transmission 12 is established.
  • This automatic transmission 12 is suitably used for an FF vehicle mounted in the left-right direction (horizontal) of the vehicle 10, and is a transaxle case 14 (hereinafter, case 14) as a non-rotating member attached to the vehicle body.
  • a first transmission unit 18 mainly composed of a single pinion type first planetary gear device 16, a double pinion type second planetary gear device 20, and a single pinion type third planetary gear device 22 are mainly used.
  • a Ravigneaux-type second transmission unit 24 on a common axis C, and the input shaft 26 is rotated and output from the output gear 28.
  • the input shaft 26 corresponds to an input rotating member of the automatic transmission 12.
  • the input shaft 26 is a turbine shaft of a torque converter 32 as a fluid transmission device that is rotationally driven by an engine 30 that is a driving force source for traveling. It is configured integrally with.
  • the output gear 28 corresponds to the output rotating member of the automatic transmission 12, and in this embodiment, for example, meshes with the diff ring gear 35 to transmit power to the differential gear device 34 shown in FIG.
  • the counter drive gears constituting the counter gear pair are engaged with the counter driven gear arranged coaxially with the differential drive pinion constituting the final gear pair.
  • the output of the engine 30 is output from the vehicle power transmission device 11 including the torque converter 32, the automatic transmission 12, the differential gear device 34, the pair of axles 36, and the like. Are sequentially transmitted to the left and right drive wheels 38 (see FIG. 3).
  • the automatic transmission 12 and the torque converter 32 are substantially symmetrical with respect to the center line (axial center) C, and the lower half of the axial center C is omitted in the skeleton diagram of FIG.
  • the torque converter 32 includes a pump impeller 32p connected to the crankshaft 31 of the engine 30, a turbine impeller 32t connected to the automatic transmission 12 via a turbine shaft (corresponding to the input shaft 26) of the torque converter 32, and
  • the stator impeller 32s is prevented from rotating in one direction by a one-way clutch, and power is transmitted between the pump impeller 32p and the turbine impeller 32t via a fluid. That is, in the torque converter 32 of the present embodiment, the pump impeller 32p corresponds to the input rotating member, and the turbine impeller 32t corresponds to the output rotating member, and the power of the engine 30 is transferred to the automatic transmission 12 side via the fluid. Communicated.
  • a lockup clutch 33 is provided between the pump impeller 32p and the turbine impeller 32t, that is, between the input and output rotating members of the torque converter 32. Further, the pump impeller 32p is supplied with an operating hydraulic pressure as a source pressure for controlling the shift of the automatic transmission 12, controlling the operation of the lockup clutch 33, or supplying lubricating oil to each part. A mechanical oil pump 40 generated by being driven to rotate by 30 is connected.
  • the automatic transmission 12 corresponds to the combination of any of the connected states of the rotating elements (sun gears S1 to S3, carriers CA1 to CA3, ring gears R1 to R3) of the first transmission unit 18 and the second transmission unit 24.
  • Six forward gear stages (forward shift stages) from the first speed gear stage “1st” to the sixth speed gear stage “6th” are established, and one reverse gear stage (reverse gear stage) of the reverse gear stage “R” is established. ) Is established.
  • the first speed gear stage is engaged by the engagement of the clutch C1 and the brake B2
  • the second speed gear stage is engaged by the engagement of the clutch C1 and the brake B1, and the clutch C1 is engaged.
  • the third gear is set by engagement with the brake B3, the fourth gear is set by engagement of the clutch C1 and the clutch C2, and the fifth gear is set by engagement of the clutch C2 and the brake B3.
  • the sixth gear is established by engaging the brake B1. Further, the reverse gear stage is established by the engagement of the brake B2 and the brake B3, and the neutral state is established by releasing any of the clutches C1, C2 and the brakes B1 to B3.
  • the operation table of FIG. 2 summarizes the relationship between each gear stage GS and the operation states of the clutches C1, C2 and the brakes B1 to B3, where “ ⁇ ” indicates engagement and “ ⁇ ” indicates engine braking. Only represents engagement. Since the one-way clutch F1 is provided in parallel to the brake B2 that establishes the first gear stage “1st”, it is not always necessary to engage the brake B2 when starting (acceleration). That is, it is sufficient to engage only the clutch C1 when starting, and for example, only the clutch C1 is engaged when returning from the neutral control described later. Thus, the clutch C1 functions as a starting clutch.
  • the clutches C1 and C2 and the brakes B1 to B3 are controlled by a hydraulic actuator such as a multi-plate clutch or a brake.
  • a hydraulic actuator such as a multi-plate clutch or a brake.
  • This is a hydraulic friction engagement device that transmits the motive power to the drive wheel 38 side.
  • the clutch C and brake B are engaged and disengaged by the excitation, de-excitation, and current control of the linear solenoid valves SL1 to SL5 (see FIGS. 3 and 4) in the hydraulic control circuit 110 and the engagement.
  • the transient engagement hydraulic pressure at the time of release is controlled.
  • FIG. 3 is a block diagram for explaining a main part of an electrical control system provided in the vehicle 10 for controlling the engine 30, the automatic transmission 12, and the like.
  • the vehicle 10 for example power transmission suppressing power transmission path from the engine 30 to lower the C1 clutch pressure P C1 is engaging pressure corresponding to the transmission torque capacity of the clutch C1 to the drive wheels 38
  • An electronic control device 50 including a control device capable of executing neutral control to be in a state is provided.
  • the electronic control unit 50 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, for example, and the CPU stores a program stored in the ROM in advance using a temporary storage function of the RAM.
  • Various control of the vehicle 10 is executed by performing signal processing according to the above.
  • the electronic control unit 50 performs output control of the engine 30, shift control of the automatic transmission 12, torque capacity control of the lockup clutch 33, and the like, and engine control for engine control is performed as necessary.
  • the apparatus is divided into a hydraulic control apparatus for shifting control of the automatic transmission 12, a hydraulic control apparatus for controlling hydraulic pressure of the lockup clutch 33, and the like.
  • a signal representing the hydraulic oil temperature TH OIL which is the temperature of the hydraulic oil (for example, a known ATF) in the hydraulic control circuit 110 detected by the hydraulic oil temperature sensor 52 is detected by the accelerator opening sensor 54.
  • a signal representative of the output speed N OUT is the rotational speed of the output gear 28 corresponding to the vehicle speed V detected by the vehicle speed sensor 66, in a foot brake operation is a service brake, which is detected by a brake switch 68 (depressing in ) Indicating the operation (brake on) B ON of the foot brake pedal 70, indicating the lever position (operation position, shift position) P SH of the shift lever 74 detected by the lever position sensor 72, turbine rotation speed sensor A signal representing an output rotational speed of the torque converter 32 detected by 76, that is, a turbine rotational speed N T that is a rotational speed of the turbine shaft (that is, an
  • the electronic control unit 50 for example, as an engine output control command signal S E for the output control of the engine 30, driving signals to a throttle actuator for controlling the opening and closing of the electronic throttle valve in accordance with the accelerator opening Acc
  • an injection signal for controlling the fuel injection amount injected from the fuel injection device, an ignition timing signal for controlling the ignition timing of the engine 30 by the igniter, and the like are output.
  • a hydraulic command signal to the linear solenoid valve SLT for Gosuru the regulation control such as the first line pressure P L1 is output .
  • the shift lever 74 is disposed in the vicinity of the driver's seat, for example, and is manually operated to five lever positions “P”, “R”, “N”, “D”, or “S” as shown in FIG. It has become so.
  • the “P” position (range) releases a power transmission path in the automatic transmission 12, that is, a neutral state (neutral state) in which the power transmission in the automatic transmission 12 is interrupted, and is mechanically output by the mechanical parking mechanism.
  • This is a parking position (position) for preventing (locking) the rotation of 28.
  • the “R” position is a reverse travel position (position) for making the rotation direction of the output gear 28 of the automatic transmission 12 reverse.
  • the “N” position is a neutral position (position) for achieving a neutral state in which power transmission in the automatic transmission 12 is interrupted.
  • the “D” position is a shift range (D range) that allows the automatic transmission 12 to shift, and uses all the forward gears from the first speed gear stage “1st” to the sixth speed gear stage “6th”. This is a forward travel position (position) at which automatic shift control is executed.
  • the “S” position is a forward travel position (position) in which manual shift can be performed by switching among a plurality of types of shift ranges that limit the change range of the gear steps, that is, a plurality of types of shift ranges with different gear ranges on the high vehicle speed side. is there.
  • the “D” position is an automatic transmission mode, which is a control mode in which automatic transmission control is performed in the range from the first gear to the sixth gear as shown in FIG.
  • the “S” position is a lever position to be selected, and the automatic transmission control is executed within a range not exceeding the highest speed gear of each shift range of the automatic transmission 12 and the shift changed by manual operation of the shift lever 74
  • It is also a lever position for selecting a manual shift mode that is a control mode in which the manual shift control is executed based on the range (that is, the highest speed gear stage).
  • the shift range on the highest speed side is set (shift range fixed) by operating the shift lever 74 to the “S” position, but based on the operation of the shift lever 74.
  • the gear position (gear stage) may be designated (gear stage fixed). In this case, every time a manual shift operation is performed in the automatic transmission 12, the shift control is executed so that a desired gear stage corresponding to the operation is obtained.
  • FIG. 4 shows a main part of the hydraulic control circuit related to the linear solenoid valves SL1 to SL5 for controlling the operations of the hydraulic actuators (hydraulic cylinders) ACT1 to ACT5 of the clutches C1 and C2 and the brakes B1 to B3 in the hydraulic control circuit 110.
  • the hydraulic pressure supply device 112 adjusts the first line hydraulic pressure P L1 using the hydraulic pressure generated from the mechanical oil pump 40 (see FIG. 1) that is rotationally driven by the engine 30 as a source pressure.
  • a linear solenoid valve SLT for supplying P SLT, first line pressure P L
  • a modulator valve 118 for pressurizing is regulated to a constant value a modulator pressure P M as source pressure.
  • the hydraulic pressure supply device 112 includes a manual valve 120 that can switch an oil path mechanically or electrically based on an operation of the shift lever 74.
  • the manual valve 120 for example, when the shift lever 74 is operated to the "D" position or “S” position, outputs the first line pressure P L1 inputted as a drive oil pressure P D, the shift lever 74 is "R when operated to "position, and outputs the first line pressure P L1 inputted as a reverse pressure P R, when the shift lever 74 is operated to the" P "position or the” N “position, shuts off the hydraulic pressure of the output to (leads to drive hydraulic P D and the reverse hydraulic P R to the discharge side).
  • the hydraulic pressure supply device 112 the first line pressure P L1, second line pressure P L2, modulator pressure P M, and outputs a drive oil pressure P D, and reverse hydraulic P R.
  • the hydraulic control circuit 110 is provided with linear solenoid valves SL1 to SL5 (hereinafter referred to as linear solenoid valves SL unless otherwise specified) corresponding to the hydraulic actuators ACT1 to ACT5.
  • Hydraulic actuators ACT1, ACT2, ACT3, the ACT5, the corresponding linear solenoid valve SL1, SL2, SL3, SL5, the drive oil pressure P D supplied from each of the hydraulic pressure supply device 112 is the command signal from the electronic control unit 50
  • the pressures are adjusted to C1 clutch pressure P C1 , C2 clutch pressure P C2 , B1 brake pressure P B1 , and B3 brake pressure P B3 , which are the engagement hydraulic pressures (clutch pressure, brake pressure) according to (hydraulic command value), respectively.
  • each hydraulic actuator ACT4 adjusts the first line hydraulic pressure P L1 supplied from the hydraulic pressure supply device 112 to the B2 brake pressure P B2 corresponding to the command signal from the electronic control device 50 by the corresponding linear solenoid valve SL4. Pressurized and supplied directly.
  • the hydraulic actuator ACT5 brake B3, either the B3 brake pressure P B3 or the reverse hydraulic pressure P R pressure regulated by the linear solenoid valve SL5 is adapted to be supplied via the shuttle valve 122.
  • the linear solenoid valves SL1 to SL5 basically have the same configuration, and the hydraulic pressure supplied to the hydraulic actuators ACT1 to ACT5 is independently controlled by the electronic control unit 50, independently excited, de-energized, and current controlled.
  • the clutch C1 as an example, C1 clutch pressure P C1 corresponding to the drive current I SL1 corresponding to the hydraulic pressure command value output from the electronic control unit 50 is output from the linear solenoid valve SL1.
  • each gear stage GS is established by engaging a predetermined engagement device as shown in the engagement operation table of FIG.
  • a so-called clutch-to-clutch shift is performed by, for example, re-engaging the disengagement side frictional engagement device and the engagement side frictional engagement device of the clutch C and brake B involved in the shift.
  • the engagement transient engagement hydraulic pressure of the release side frictional engagement device and the engagement side frictional engagement device of the engagement side frictional engagement device are set so that the shift is executed as quickly as possible while suppressing the shift shock.
  • the engagement transient engagement hydraulic pressure is appropriately controlled. For example, as shown in the engagement operation table of FIG.
  • FIG. 5 is a functional block diagram for explaining the main part of the control function by the electronic control unit 50.
  • the engine output control unit that is, the engine output control means 80 controls the fuel injection amount by the fuel injection device for the fuel injection amount control, in addition to controlling the opening and closing of the electronic throttle valve by the throttle actuator for the throttle control, for example. and outputs an engine output control command signal S E for controlling the ignition device such as an igniter for ignition timing control.
  • the engine output control means 80 the estimated value of the engine rotational speed N E and engine torque T E and the throttle valve opening theta TH as shown in FIG.
  • T E as a parameter (hereinafter estimated engine torque) in advance experiments with T E ' manner sought controls the opening and closing of the electronic throttle valve so that the throttle valve opening theta TH which target engine torque T E * obtained based on the actual engine rotational speed N E from the stored relationship (engine torque map)
  • the fuel injection amount by the fuel injection device is controlled, and an ignition device such as an igniter is controlled.
  • the target engine torque T E * is determined by the electronic control unit 50 so as to increase as the accelerator opening Acc increases, for example, based on the accelerator opening Acc corresponding to the requested acceleration amount.
  • parameters corresponding to other engine loads such as the intake air amount Q may be used instead of the throttle valve opening ⁇ TH .
  • the shift control unit that is, the shift control means 82, for example, from the relationship (shift map, shift map) stored in advance with the vehicle speed V and the accelerator opening Acc as variables as shown in FIG.
  • the shift determination is performed based on the vehicle state indicated by, and it is determined whether or not the shift of the automatic transmission 12 should be executed.
  • the shift control means 82 determines a gear stage to be shifted in the automatic transmission 12, and outputs a shift command for executing the automatic shift control of the automatic transmission 12 so that the determined gear stage is obtained.
  • the shift control means 82 engages and / or releases the hydraulic friction engagement device involved in the shift of the automatic transmission 12 so that the gear stage is achieved according to the engagement table shown in FIG. command signal and outputs the (shift output command value) S P to the hydraulic control circuit 110.
  • the solid line is a shift line (upshift line) for determining an upshift
  • the broken line is a shift line (downshift line) for determining a downshift.
  • the shift line in the shift map of FIG. 7 is, for example, whether or not the actual vehicle speed V crosses the line on the horizontal line indicating the actual accelerator opening Acc (%), that is, the value (shift point to be changed) on the shift line. This is for determining whether or not the vehicle speed (V S ) has been exceeded, and is also stored in advance as a series of this value V S, that is, the shift point vehicle speed.
  • the hydraulic control command signal SP is a torque command value for controlling the engagement hydraulic pressure (clutch pressure, brake pressure) corresponding to the transmission torque capacity (clutch torque, brake torque, engagement torque) of the clutch C or the brake B. That is, a hydraulic pressure command value for generating an engagement hydraulic pressure that obtains a necessary transmission torque capacity, for example, a necessary value for releasing the release side frictional engagement device as a torque command value of the release side frictional engagement device.
  • a hydraulic pressure command value for discharging hydraulic oil is output so that a transmission torque capacity can be obtained, and a necessary value for engaging the engagement side frictional engagement device as a torque command value of the engagement side frictional engagement device.
  • a hydraulic pressure command value to which hydraulic oil is supplied so as to obtain a transmission torque capacity is output.
  • an engagement hydraulic pressure that can maintain a frictional force that can withstand the transmission input torque TIN (that is, can secure a transmission torque capacity) is generated.
  • the hydraulic pressure command value is output.
  • the hydraulic control circuit 110 in accordance with the hydraulic pressure control command signal S P by the shift control unit 82, so as the shift of the automatic transmission 12 is executed, or the current gear position GS of the automatic transmission 12 is maintained,
  • the linear solenoid valves SL1 to SL5 in the hydraulic control circuit 110 are operated to operate the hydraulic actuators ACT1 to ACT5 of the hydraulic friction engagement device involved in the establishment (formation) of the gear stage GS.
  • the transmission input torque TIN is, for example, torque input to the automatic transmission 12 via the torque converter 32, that is, transmission torque transmitted to the input side of the clutch C1.
  • neutral control is executed to reduce the idling load of the engine 30 while the vehicle is stopped.
  • this neutral control for example, when a predetermined neutral control condition set in advance is satisfied, the power transmission path in the automatic transmission 12 is suppressed by setting the clutch C1, which is a starting clutch, to a predetermined slip state or released state.
  • This is control for setting the state (that is, the state substantially equivalent to the power transmission cutoff state or the power transmission cutoff state).
  • the predetermined slip state of the clutch C1 is a state equivalent to a disengaged state in which there is a slight slip but little engagement load is generated, that is, there is almost no transmission torque capacity.
  • the neutral control condition determination unit determines whether or not a predetermined neutral control condition is satisfied at the travel position of the shift lever 74, for example. That is, the neutral control condition determination means 84 is a neutral control execution determination means that sequentially determines whether or not to start execution of neutral control by determining whether or not a predetermined neutral control condition is satisfied.
  • the predetermined neutral control condition is, for example, that the vehicle 10 is stopped, the accelerator pedal 56 is not depressed, and the foot brake pedal 70 is depressed.
  • the neutral control condition determination means 84 is a predetermined vehicle speed zero determination value for determining whether the vehicle is stopped, and the accelerator opening Acc is accelerator-off.
  • a predetermined opening degree zero determination value for determination and a signal indicating operation (ON) B ON is output from the brake switch 68, it is determined that the neutral control condition is satisfied.
  • the neutral control condition determining means 84 determines whether or not to release (end) the neutral control by determining whether or not the predetermined neutral control condition is satisfied during the neutral control by the neutral control means 86 described later. This is also a neutral control release determination means for sequentially determining whether or not to return from neutral control.
  • the neutral control condition determining unit 84 is a predetermined unit that determines that, for example, the lever position P SH is operated from the “D” position or the accelerator pedal 56 is depressed during the neutral control by the neutral control unit 86. In the case of brake-off in which the signal indicating the operation (ON) B ON is no longer output from the brake switch 68 or the brake opening is not made, the neutral control release start is determined.
  • the neutral control unit changes the first speed gear stage.
  • a neutral control execution command for setting the clutch C1, which is an engagement device to achieve, to a predetermined slip state or release state is output to the shift control means 82, and the power transmission path including the automatic transmission 12 is set to the power transmission suppression state or Neutral control (N control) is executed to cut off the power transmission.
  • the shift control means 82 sets a predetermined release pattern as a set pressure during normal N control that is set in advance to bring the clutch C1 into a predetermined slip state or release state, that is, a hydraulic command for the clutch C1. outputting a clutch release command to lower the C1 clutch pressure P C1 to the hydraulic control circuit 110 according to the value S PC1.
  • a predetermined release pattern as a set pressure during normal N control that is set in advance to bring the clutch C1 into a predetermined slip state or release state, that is, a hydraulic command for the clutch C1.
  • the clutch C1 is brought into a released state (or a state just before engaging so as to be slightly slip-engaged), so that the power transmission path in the automatic transmission 12 is substantially released.
  • a start standby state in which the vehicle can start immediately by switching from half-engagement to engagement of the clutch C1 is set.
  • the neutral control unit 86 sets the power transmission path including the automatic transmission 12 in a power transmission enabled state.
  • the shift control means 82 is a predetermined engagement pattern as a set pressure at the time of releasing the normal N control that is set in advance to bring the clutch C1 into the engaged state in accordance with the neutral control release command, that is, the hydraulic pressure command value S of the clutch C1. It outputs a clutch engagement command to raise the C1 clutch pressure P C1 to the hydraulic control circuit 110 according to PC1.
  • the N control is executed while the vehicle is stopped.
  • the N control is performed not only when the vehicle is stopped, but also when the vehicle is running, for example, when the vehicle is decelerated with the accelerator off. Is desired to perform.
  • N control N running control
  • the N control normal N control
  • the engine braking force decreases during decelerating running. There may be a sense of incongruity due to a change in the deceleration at.
  • the same return control as when re-starting from the stop of the vehicle is performed.
  • the drive torque rises due to the response delay of clutch engagement at the time of re-acceleration.
  • the engagement shock will increase if the feeling of stickiness becomes larger than that at the time of restart, and if clutch engagement is made earlier in order to suppress the feeling of stickiness.
  • N control is started while the vehicle is running, fuel efficiency can be improved. there is a possibility.
  • the following control method (control idea) is introduced in order to solve the above problems.
  • the N control during traveling is set to As shown in FIG. 4, it is divided into four states (four phases). Then, hydraulic control is performed in consideration of accelerator depressing according to each state.
  • the term “clutch” includes the clutch C and the brake B
  • the term “clutch pressure” corresponding to the transmission torque capacity of the clutch includes the clutch pressure and the brake pressure.
  • phase 1 control for example, the current gear stage GS is formed while the accelerator stage is decelerated while the gear stage GS of the automatic transmission 12 is established.
  • the starting clutch that is the clutch, that is, the clutch C1, and the other clutch that forms the current gear stage GS are both brought into a pressure-controlled state. This is performed as a preparation for executing the control of the state [2] to be described later, that is, a preparation for starting the gradual decrease of the clutch pressure in the control of the state [2]. Therefore, here, the clutch pressure is set so as not to slip even if the accelerator is depressed again.
  • the clutch pressure of the clutch that forms the current gear stage GS is different from each clutch even if the accelerator is turned on from each maximum clutch pressure corresponding to each maximum transmission torque capacity for complete engagement of each clutch.
  • the clutch pressure is reduced to each predetermined clutch pressure ⁇ corresponding to each predetermined transmission torque capacity that has been experimentally obtained and set in advance as a clutch pressure that does not cause rotation.
  • the clutch pressure of each clutch forming the current gear stage GS is maintained at the predetermined clutch pressure ⁇ .
  • slip differential rotation
  • the current gear stage GS is formed as it is without clutch slipping, and the uncomfortable feeling due to the change in deceleration, the feeling of jerking at the time of reacceleration, the engagement shock at the time of releasing the N control, etc. are suppressed.
  • the current gear stage GS is preferably formed by at least the engagement of the starting clutch, that is, the clutch C1, the vehicle speed V at which the first to fourth gear stages are formed during deceleration. The following may be used as a condition for starting the state [1].
  • predetermined reset engine speed N E and the predetermined recovery turbine rotating the fuel cut control may be a condition for starting the state [1] which is equal to or less than the engine speed N E and the turbine rotational speed N T as below the speed N T.
  • the vehicle speed V will be considered.
  • the vehicle speed V is represented by the output rotational speed N OUT , but the rotational speed that uniquely corresponds to the vehicle speed V (N OUT ) on a one-to-one basis is treated as an agreement with the vehicle speed V as a vehicle speed related value.
  • the turbine rotation speed N T (input rotation speed N IN ) uniquely restricted by the rotation on the drive wheel 38 side, the axle 36
  • phase 2 control for example, when the current gear ratio input rotational speed N INN becomes equal to or lower than the predetermined rotational speed 2 as the second predetermined vehicle speed related value during reduced speed traveling.
  • the C1 clutch pressure is gradually decreased from the predetermined clutch pressure ⁇ according to the decrease in the vehicle speed V, that is, gradually decreased, and the clutch C1 is brought into a sliding state.
  • This gradual decrease of the C1 clutch pressure is, for example, control for weakening the engine braking force. Therefore, considering at what time point the gradual decrease is started and the gradient is gradually decreased, the uncomfortable feeling due to the change in deceleration is suppressed.
  • a decrease gradient corresponding to a decrease in the vehicle speed V of the C1 clutch pressure at the time of the predetermined rotation 2 or gradual decrease is experimentally obtained and set in advance.
  • the phase 2 control is, for example, a process of gradually bringing the output torque T OUT (eg, deceleration torque including engine brake torque (negative torque)) closer to zero.
  • the clutch C1 is in a weak slip state (weak slip state), so that blow (rotation increase) of the turbine rotational speed NT may occur. There is sex.
  • the C1 clutch pressure is increased more than in the case of the state [1], and the torque fluctuation is smoothed by the fluctuation of the output torque TOUT .
  • the C1 clutch pressure is increased to the maximum clutch pressure with a predetermined rising gradient that is experimentally obtained in advance and set so as to suppress the engagement shock while suppressing the blow of the turbine rotational speed NT .
  • the clutch pressure is quickly increased to the maximum clutch pressure. Therefore, in this phase 2 control, the clutch C1 is brought into the slip state, so that the turbine rotational speed NT is changed to the idle rotational speed N EIDL of the engine 30 at a changing speed faster than the decreasing speed of the current gear ratio input rotational speed N INN.
  • phase 3 control for example, when the C1 clutch pressure is gradually decreased with the automatic transmission 12 in the current gear stage GSN, the vehicle is decelerating.
  • the actual turbine rotational speed NT becomes equal to or lower than the second predetermined rotational speed (N EIDL + ⁇ ) in the vicinity of the idle rotational speed N EIDL higher than the idle rotational speed N EIDL of the engine 30, the clutch C1 is released.
  • the C1 clutch pressure is reduced.
  • the C1 clutch pressure is kept at the lowest hydraulic pressure that can be adjusted.
  • the C1 clutch pressure is held at the second predetermined clutch pressure ⁇ corresponding to the second predetermined transmission torque capacity as low as possible so that the C1 clutch pressure can be quickly increased to the maximum clutch pressure when the accelerator is on.
  • the second predetermined rotation speed (N EIDL + ⁇ ) is, for example, when the turbine rotation speed N T is lower than the engine rotation speed N E maintained at the idle rotation speed N EDL during deceleration traveling, the output torque T OUT becomes a negative torque.
  • the torque of the drive system is changed to a positive torque, and there is a possibility of causing a sense of incongruity due to the shock of the gears of the drive train or switching in the direction in which the drive force is generated.
  • a predetermined value is set to define the point in time when the transmission of the driving force is shut down, and a predetermined margin ⁇ is added to the idle rotational speed NEIDL .
  • the second predetermined clutch pressure ⁇ is previously tested as a clutch pressure as low as possible within a range in which the idle torque T EIDL output when the engine 30 is maintained at the idle rotation speed N EIDL can be transmitted. This is the clutch pressure that is determined and set automatically.
  • the automatic transmission 12 is moved from the current gear stage GSN to the gear stage GSS ( That is, the gear is shifted to the first gear.
  • the shift output is set to the first gear, and the clutch C1 is kept in a pressure-controlled state.
  • the clutch C1 is kept in a pressure-controlled state.
  • the starting gear ratio input rotational speed N INS is higher than the actual turbine rotational speed NT and the one-way clutch F1 is idling, for example, even if some transmission torque is generated in the clutch C1, the driving is performed.
  • a sense of incongruity caused by the fact that the driving force is not transmitted to the driving wheel and the driving force is switched in the direction in which the driving force is generated is avoided.
  • the accelerator when the accelerator is stepped on again in this state [3], for example, the one-way clutch F1 is in an idling state, and the sudden engagement shock is generated even if the clutch C1 is roughly grasped, that is, suddenly engaged. Therefore, the C1 clutch pressure is quickly increased from the second predetermined clutch pressure ⁇ to the maximum clutch pressure.
  • the automatic transmission 12 may be in the first speed gear stage and the clutch C1 may be kept in a regulated state at the second predetermined clutch pressure ⁇ , so that the C1 clutch pressure can be increased more quickly.
  • phase 3 control a sense of incongruity due to a change in deceleration, a feeling of rattling at the time of reacceleration, an engagement shock at the time of releasing N control, and the like are suppressed.
  • phase 4 control for example, when the C1 clutch pressure is held at the second predetermined clutch pressure ⁇ , the starting gear ratio input rotational speed during deceleration traveling When N INS is equal to or lower than a predetermined rotational speed (N EIDL + ⁇ ) as a predetermined vehicle speed-related value in the vicinity of the idle rotational speed N EIDL higher than the idle rotational speed N EIDL of the engine 30, the automatic transmission 12 is The C1 clutch pressure is reduced so that the clutch C1 is completely released in the state of the high gear.
  • the C1 clutch pressure is reduced.
  • the predetermined rotational speed (N EIDL + beta) for example when starting the gear ratio input speed N INS falls below the engine rotational speed N E to be maintained during deceleration to idle rotation speed N EIDL, input side (engine 30 side ) Is switched to the direction of rotationally driving the output side (drive wheel 38 side), and the positive torque of the output torque T OUT is transmitted to the drive wheel 38 side, whereas the clutch C1 is completely released to transmit the driving force.
  • I is a predetermined value that is set to define the time point when the engine is completely shut down, and a predetermined margin ⁇ is added to the idle rotation speed NEIDL .
  • the C1 clutch pressure is increased from zero (for example, near the piston end pressure) to the maximum clutch pressure while controlling the blowing amount of the turbine rotational speed NT , as in the case of the normal N control cancellation. Therefore, in this phase 4 control, a sense of incongruity due to a change in deceleration, a feeling of rattling during reacceleration, an engagement shock when releasing N control, and the like are suppressed.
  • the predetermined rotational speed (N EIDL + ⁇ ) as the predetermined vehicle speed-related value and the predetermined rotational speed 2 as the second predetermined vehicle speed-related value have different rotational speeds to be determined (starting gear ratio input rotational speed N INS). differs between the current gear ratio input speed N INN), if able to re terms of the vehicle speed V (N OUT), towards the predetermined rotation 2 is high it is needless to say than the predetermined rotational speed (N EIDL + ⁇ ).
  • the neutral control condition determining means 84 determines whether or not a predetermined traveling N control condition is satisfied at the traveling position of the shift lever 74, for example.
  • the neutral control condition determination means 84 sequentially determines whether or not the execution of the running N control is started by determining whether or not a predetermined running N control condition is satisfied. It is a determination means.
  • the predetermined traveling N control condition is, for example, that the vehicle is traveling and the accelerator pedal 56 is not depressed.
  • the neutral control condition determining unit 84 is running N when the accelerator opening Acc is a predetermined opening zero determination value for determining accelerator off. It is determined that the control condition is satisfied.
  • the neutral control condition determination means 84 cancels the running N control by determining whether or not the predetermined running N control condition is satisfied during the running N control by the neutral control means 86 described later. It is also a traveling N control release determination means that sequentially determines whether or not (end) is performed, that is, sequentially determines whether or not to return from the traveling N control. For example, the neutral control condition determination unit 84 determines that, for example, the lever position P SH is operated from the “D” position or the accelerator pedal 56 is depressed during the N control during traveling by the neutral control unit 86. When it becomes equal to or greater than a predetermined accelerator opening determination value, it is determined whether or not to cancel the N control during traveling.
  • the traveling N control progress determination unit that is, the traveling N control progress determination means 88, for example, when the neutral control condition determination means 84 determines that the predetermined traveling N control condition is satisfied, the actual turbine It is determined whether or not the rotation speed NT is equal to or less than a predetermined rotation 1.
  • the predetermined rotation 1 is one of the conditions for substantially starting the N control during traveling (control in the above state [1]) by the neutral control means 86, and is, for example, the first gear stage GS during deceleration traveling.
  • This is a predetermined turbine rotational speed NT ′ that is experimentally determined and set in advance as the turbine rotational speed NT corresponding to the vehicle speed V at which the first to fourth gear stages are formed.
  • the predetermined rotation 1 for example, when a known fuel cut control during deceleration running is performed is below a predetermined reset engine speed N E for the fuel cut control is released is a predetermined turbine speed N T ', which is set preliminarily obtained experimentally as a turbine rotational speed N T corresponding to the engine rotational speed N E as.
  • the running N control progress determination means 88 determines whether or not the current gear ratio input rotational speed N INN is equal to or less than a predetermined rotation 2 during execution of the phase 1 control by the neutral control means 86 described later, for example. To do. In addition, the running N control progress determination means 88 determines that the actual turbine rotational speed NT is equal to or lower than the second predetermined rotational speed (N EIDL + ⁇ ), for example, during execution of the phase 2 control by the neutral control means 86 described later. It is determined whether or not.
  • the running N control progress determination means 88 for example, during execution of the phase 3 control by the neutral control means 86 described later, the starting gear ratio input rotation speed N INS becomes equal to or less than a predetermined rotation speed (N EIDL + ⁇ ). It is determined whether or not.
  • the neutral control means 86 determines that the actual turbine rotational speed NT is equal to or lower than the predetermined rotation 1 by the running N control progress determination means 88, the clutch of the clutch that forms the current gear stage GS.
  • a phase 1 control execution command for rapidly decreasing the clutch pressure from the maximum clutch pressure to each predetermined clutch pressure ⁇ is output to the shift control means 82, and the phase 1 control is executed, that is, the running N control is substantially started. To do.
  • the neutral control means 86 determines that the current gear ratio input rotation speed N INN has become equal to or less than the predetermined rotation 2 during execution of the phase 1 control, for example, by the running N control progress determination means 88.
  • a phase 2 control execution command for gradually decreasing the C1 clutch pressure from the predetermined clutch pressure ⁇ according to the decrease in the vehicle speed V is output to the shift control means 82, and the phase 2 Execute control.
  • the neutral control means 86 determines that the actual turbine rotational speed NT has become equal to or lower than the second predetermined rotational speed (N EIDL + ⁇ ) during the execution of the phase 2 control, for example, by the running N control progress determination means 88.
  • phase 3 control execution command for shifting the automatic transmission 12 from the current gear stage GSN to the first gear stage is issued while the C1 clutch pressure is quickly reduced to be kept at the second predetermined clutch pressure ⁇ .
  • the neutral control means 86 determines that the starting gear ratio input rotational speed N INS is equal to or lower than a predetermined rotational speed (N EIDL + ⁇ ) during the execution of the phase 3 control, for example, by the traveling N control progress determination means 88.
  • the C1 clutch pressure is quickly turned from the second predetermined clutch pressure ⁇ to zero (for example, the piston end pressure) so as to completely release the clutch C1 with the automatic transmission 12 in the first speed gear stage.
  • a phase 4 control execution command to reduce is output to the shift control means 82, and the phase 4 control is executed.
  • the neutral control means 86 for example, when the neutral control condition determination means 84 determines that the running N control is released during the execution of the phase 1 control, the clutch of the clutch that forms the current gear stage GS is determined. A phase 1 control release command for quickly increasing the clutch pressure from each predetermined clutch pressure ⁇ in the regulated state to the maximum clutch pressure is output to the shift control means 82, and the N control during traveling is released. Further, for example, when the neutral control condition determination unit 84 determines that the running N control is cancelled during execution of the phase 2 control, the neutral control unit 86 is engaged while suppressing the blowing of the turbine rotational speed NT.
  • the clutch pressure of the other clutch forming the current gear stage GS is increased while the C1 clutch pressure is increased to the maximum clutch pressure at a predetermined rising gradient that is experimentally obtained in advance so as to suppress the combined shock. Is output to the shift control means 82, and the running N control is released. Further, for example, when the neutral control condition determination unit 84 determines that the running N control is started to be released during the execution of the phase 3 control, the neutral control unit 86 quickly adjusts the C1 clutch pressure in the pressure adjustment state. (2) A phase 3 control release command for increasing the clutch pressure ⁇ from the predetermined clutch pressure ⁇ to the maximum clutch pressure is output to the shift control means 82 to release the N control during traveling.
  • the neutral control unit 86 when the neutral control condition determining unit 84 determines that the running N control release is started during the execution of the phase 4 control, the neutral control unit 86 outputs a neutral control release command when the normal N control is released. Similarly, a phase 4 control release command for increasing the C1 clutch pressure from zero (for example, near the piston end pressure) to the maximum clutch pressure while controlling the blow rate of the turbine rotational speed NT is output to the shift control means 82 to drive the vehicle. Release medium N control.
  • FIG. 8 is a flowchart illustrating a control operation of the electronic control device 50, that is, a control operation for executing the N control during traveling while suppressing a decrease in drivability.
  • the control operation is about several msec to several tens msec. It is executed repeatedly with a very short cycle time.
  • FIG. 9 is a time chart corresponding to the control operation of FIG.
  • FIGS. 10 to 13 are time charts when the N control during traveling is canceled during the control operation of FIG. 8.
  • FIG. 10 shows a case of returning from the phase 1 control
  • FIG. When returning FIG. 12 is a diagram showing an example of returning from phase 3 control
  • FIG. 13 is a view showing an example of returning from phase 4 control. Note that the thin solid line in FIGS. 10 to 13 shows the change of each value in FIG. 9 as it is for comparison.
  • S10 corresponding to the neutral control condition determining means 84, it is determined whether or not a predetermined traveling N control condition is satisfied at the traveling position of the shift lever 74, for example. If the determination in S10 is negative, this routine is terminated. If the determination is affirmative, in S20 corresponding to the running N control progress determination means 88, for example, the actual turbine rotational speed NT is equal to or less than a predetermined rotation 1. It is determined whether or not. If the determination in S20 is negative, the routine is terminated. If the determination is positive, in S30 corresponding to the neutral control means 86, for example, the clutch pressure of the clutch forming the current gear stage GS is set to the maximum clutch pressure.
  • phase 1 control is executed, that is, the running N control is substantially started (time t1 in FIG. 9).
  • S40 corresponding to the traveling N control progress determination means 88, it is determined whether or not the current gear ratio input rotational speed NINN is equal to or lower than a predetermined rotation 2, for example. If the determination in S40 is negative, this routine is terminated. If the determination is positive, in S50 corresponding to the neutral control means 86, for example, the C1 clutch is maintained while maintaining the current gear stage GSN of the automatic transmission 12.
  • Phase 2 control for gradually decreasing the pressure from the predetermined clutch pressure ⁇ according to the decrease in the vehicle speed V is executed (at time t2 in FIG. 9).
  • phase 3 control for shifting the automatic transmission 12 from the current gear stage GSN to the first gear stage is executed (at time t3 in FIG. 9). Note that if it is determined that the N-control during travel is started when the determination in S60 is negative (from time t2 to time t3 in FIG. 11), for example, the C1 clutch pressure is increased to the maximum clutch with a predetermined upward gradient.
  • the N control during traveling is released by releasing the phase 2 control that increases the pressure to the maximum pressure and at the same time quickly increases the clutch pressure of the other clutch forming the current gear stage GS to the maximum clutch pressure.
  • S80 corresponding to the traveling N control progress determination means 88 it is determined whether, for example, the starting gear ratio input rotational speed N INS is equal to or lower than a predetermined rotational speed (N EIDL + ⁇ ). If the determination in S80 is negative, this routine is terminated. If the determination is positive, in S90 corresponding to the neutral control means 86, for example, the clutch C1 is engaged with the automatic transmission 12 in the first gear.
  • Phase 4 control is executed to quickly decrease the C1 clutch pressure from the second predetermined clutch pressure ⁇ toward zero (for example, piston end pressure) so as to be completely released (at time t4 in FIG. 9).
  • zero for example, piston end pressure
  • the C1 clutch pressure is quickly adjusted in the first pressure adjustment state. 2.
  • the N control during traveling is canceled by releasing the phase 3 control for increasing the clutch pressure ⁇ from the predetermined clutch pressure ⁇ to the maximum clutch pressure.
  • the running N control is released during the execution of S90 (time t4 to time t5 in FIG.
  • the C1 clutch pressure is gradually reduced (phase 2 control) while the automatic transmission 12 is in the current gear stage GSN while the accelerator is off, and the vehicle is decelerated.
  • C1 clutch so that the clutch C1 is completely released in the state where the automatic transmission 12 is in the first gear when the starting gear ratio input rotational speed N INS is less than a predetermined rotational speed (N EIDL + ⁇ ). Since the pressure is reduced (phase 4 control), for example, when the vehicle speed V is at a certain level, the output torque T OUT (for example, engine brake torque) is gradually decreased as the C1 clutch pressure gradually decreases, and the driver feels uncomfortable due to the change in deceleration. It is suppressed.
  • the clutch C1 when the vehicle speed V is at a certain level, the clutch C1 is in a slipping state, and when releasing the N control during traveling by turning on the accelerator, it is possible to suppress the engagement shock and suppress the feeling of rattling during reacceleration. it can. Further, for example, since the output torque T OUT tends to be substantially zero due to a decrease in the C1 clutch pressure, even if the clutch C1 is completely released during deceleration traveling, the uncomfortable feeling due to the change in deceleration is suppressed.
  • the automatic transmission 12 is set to the first speed gear stage and the clutch C1 is released.
  • the N control is released in the same manner as when the vehicle starts after the vehicle stops, so that it is possible to suppress the feeling of rattling during re-acceleration while suppressing the engagement shock. Therefore, it is possible to further improve fuel efficiency by executing neutral control while the vehicle is traveling while suppressing a decrease in drivability.
  • the output torque T OUT is switched from negative torque to positive torque during decelerating travel (for example, from the state where the drive wheel 38 side rotates along with the input side of the automatic transmission 12, the input side of the automatic transmission 12 moves from the drive wheel 38. since the place in) the clutch C1 is switched to a state to turn the side is released, are prevented from negative torque is reduced towards substantially zero switched to positive torque by lower C1 clutch pressure, discomfort due to the output torque T OUT changes Is suppressed.
  • the C1 clutch pressure is reduced to the clutch C1 prior to gradually decreasing the C1 clutch pressure (phase 2 control) with the automatic transmission 12 at the current gear stage GSN.
  • the C1 clutch pressure is maintained at the predetermined clutch pressure ⁇ (phase 1 control) until the following is reached, it is possible to quickly shift to the phase 2 control, for example.
  • the C1 clutch pressure is maintained at the predetermined clutch pressure ⁇ , that is, the clutch C1 is kept in a regulated state at the predetermined clutch pressure ⁇ . Therefore, when the N control is canceled while the accelerator is on, the C1 clutch pressure can be quickly increased to the maximum clutch pressure without the clutch C1 being in a slip state, thereby suppressing the feeling of rattling during re-acceleration. it can.
  • the clutch C1 when the actual turbine rotational speed NT during deceleration traveling is equal to or lower than the second predetermined rotational speed (N EIDL + ⁇ ) during the execution of the phase 2 control, the clutch C1 is used. Prior to lowering the C1 clutch pressure so as to release (phase 4 control), the C1 clutch pressure is as low as possible so that the C1 clutch pressure can be quickly increased to the maximum clutch pressure when the accelerator is on. While maintaining the predetermined clutch pressure ⁇ , the automatic transmission 12 is shifted from the current gear stage GSN to the gear stage GSS at the time of starting (that is, the first gear stage) (phase 3 control).
  • the output torque T oUT is switched from the negative torque to positive torque, it switched to the direction to which the driving force or feel shock of backlash of the driving system gears exits
  • the transmission torque in the clutch C1 is their discomfort, etc.
  • the one-way clutch F1 is idling in the first speed gear stage, so that no driving force is generated and the above-mentioned uncomfortable feeling is avoided.
  • the automatic transmission 12 is set to the first speed gear stage, and the C1 clutch pressure is held at the second predetermined clutch pressure ⁇ . It is possible to suppress the feeling of stickiness during re-acceleration.
  • the one-way clutch F1 is idling, so that even if the clutch C1 is suddenly engaged, no engagement shock is generated, and the clutch C1 has the second predetermined clutch pressure ⁇ .
  • the C1 clutch pressure can be quickly increased because the engine is on standby in the pressure regulation state.
  • the second predetermined clutch pressure ⁇ is a clutch pressure as low as possible capable of transmitting the idle torque T EIDL of the engine 30, and therefore, for example, the output torque T OUT is positive from the negative torque.
  • the shock of the gear of the driving system due to switching to torque, the uncomfortable feeling due to switching in the direction in which the driving force is generated, and the like are appropriately suppressed.
  • the C1 clutch pressure can be quickly increased.
  • the automatic transmission 12 is an automatic transmission capable of shifting six forward speeds and one reverse speed.
  • the number of shift stages and the internal structure of the automatic transmission are particularly described above. It is not limited to. That is, the present invention can be applied as long as neutral control can be performed and a predetermined engagement device is engaged when neutral control is canceled.
  • the automatic transmission 12 described above is provided with the one-way clutch F1 for establishing the first gear by merely engaging the clutch C1, but such a one-way clutch F1 is provided. The present invention can be applied even to such an automatic transmission.
  • the present invention can also be applied to a continuously variable transmission such as a belt type continuously variable transmission as an automatic transmission.
  • a continuously variable transmission such as a belt type continuously variable transmission as an automatic transmission.
  • an engagement device capable of connecting / disconnecting a power transmission path between the engine and the belt type continuously variable transmission or a well-known forward / reverse switching device may be used.
  • the present invention is applied to the provided engagement device or the like.
  • the gear ratio at the time of starting is the maximum gear ratio (minimum speed side gear ratio) ⁇ max or the gear ratio used at the start of the vehicle corresponding to the maximum gear ratio ⁇ max. It becomes.
  • various vehicle speed related values are used for the transition determination of each phase in the running N control.
  • these are only examples until the tiredness, and if the vehicle speed related values correspond one-to-one, replacement is not possible. Is possible.
  • the output rotational speed N OUT vehicle speed V
  • the determination threshold is also changed accordingly.
  • the clutch C1 functioning as the starting clutch is a hydraulic friction engagement device.
  • the clutch C1 is not limited thereto, and is not limited to a magnetic clutch such as a powder (magnetic) clutch, an electromagnetic clutch, and a meshing dog clutch. You may be comprised from a powder type, an electromagnetic type, and a mechanical engagement apparatus.
  • the hydraulic control circuit 110 is configured by a switching device, an electromagnetic switching device, or the like that switches an electrical command signal circuit to the electromagnetic clutch, not a valve device that switches an oil passage.
  • the clutch C1 functioning as the starting clutch is a clutch disposed in series with the power transmission path.
  • the clutch C1 is not limited thereto, and for example, a planetary gear device disposed in the power transmission path.
  • the present invention can also be applied to a brake that prevents the rotation of one rotating element that constitutes the differential gear device in a power transmission device in which power is transmitted through the differential gear device.
  • the starting clutch is an engaging device that is engaged when the vehicle starts, and this starting clutch includes not only the clutch but also the brake.
  • the transmission torque capacity of the starting clutch (clutch C1) is increased as the hydraulic pressure command value increases.
  • the present invention is not limited thereto.
  • the transmission torque capacity of the starting clutch via the actuator for example, the transmission torque capacity of the starting clutch (clutch C1) may be controlled to increase as the action of the actuator increases. Even if the transmission torque capacity is controlled to be smaller as the action by the actuator is larger, the present invention can be applied.
  • the torque converter 32 provided with the lock-up clutch 33 is used as the fluid transmission device.
  • a fluid coupling having no torque amplification function may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Neutral control is carried out during vehicle driving while decline in drivability is suppressed. During deceleration driving when the accelerator is not pushed, a C1 clutch pressure is gradually reduced in a state where an automatic transmission (12) is left in a current gear stage (GSN) (phase 2 control), and if a starting gear ratio input rotational speed (NINS) during deceleration driving becomes equal to or less than a predetermined rotational speed (NEIDL+β), the C1 clutch pressure is reduced such that a clutch (C1) is completely released in a state where the automatic transmission (12) is placed in a first gear stage (phase 4 control). For example, if a certain speed (V) is reached, output torque (TOUT) is gradually reduced according to the gradual reduction of the C1 clutch pressure so as to suppress the uncomfortable sensation caused by variation in deceleration speed. In addition, for example if the certain speed (V) is reached, the clutch (C1) is in a slipping state, and when the accelerator is pushed and N control during driving is thereby cancelled, a sensation of slowness upon re-acceleration can be suppressed while engagement shock is also suppressed.

Description

車両用自動変速機の制御装置Control device for automatic transmission for vehicle
 本発明は、ニュートラル制御を実行する車両用自動変速機の制御装置に係り、特に、車両走行中にニュートラル制御を実行する際の制御に関するものである。 The present invention relates to a control device for an automatic transmission for a vehicle that performs neutral control, and more particularly to control when executing neutral control while the vehicle is running.
 例えば、エンジンのアイドル運転時に、所定の開始条件(例えばシフトポジションが前進走行「D」ポジション、アクセルがオフ、ブレーキがオン、及び車両が停止状態であるという開始条件)が成立したときには、「D」ポジションのまま、車両発進時に係合される車両発進用の係合装置(例えば入力クラッチ、発進クラッチ)の伝達トルク容量(係合トルク、係合力、クラッチ圧等に相当)を低下させて、エンジンから駆動輪までの動力伝達経路をニュートラルに近い状態(動力伝達抑制状態)にすることで、エンジンのアイドリング負荷を抑制して燃費向上を図るニュートラル制御(N制御)を実行する車両が良く知られている。例えば、特許文献1、2に示された車両がそれである。このようなN制御では、例えば再発進時のクラッチ係合の応答性を考慮して、発進クラッチを半解放状態(スリップ状態)とすることが提案されている。また、N制御において、燃費をより向上させる為に発進クラッチを完全解放することも提案されている。具体的には、上記特許文献1には、外部から受信した信号機の点灯態様などの車両周囲の交通状況に応じて、発進クラッチを完全に解放するN制御を実行することが記載されている。 For example, when a predetermined start condition (for example, a start condition that the shift position is the forward travel “D” position, the accelerator is off, the brake is on, and the vehicle is stopped) is satisfied during idling of the engine, “D In the position, the transmission torque capacity (equivalent to engagement torque, engagement force, clutch pressure, etc.) of the vehicle start engagement device (for example, input clutch, start clutch) that is engaged when the vehicle starts is reduced. Vehicles that perform neutral control (N control) to reduce engine idling load and improve fuel efficiency by making the power transmission path from the engine to the drive wheels close to neutral (power transmission suppressed state) are well known. It has been. For example, this is the vehicle disclosed in Patent Documents 1 and 2. In such N control, for example, it is proposed that the start clutch is in a half-released state (slip state) in consideration of responsiveness of clutch engagement at the time of restart. In N control, it has also been proposed to completely release the starting clutch in order to further improve fuel efficiency. Specifically, Patent Document 1 describes that N control for completely releasing the starting clutch is executed in accordance with traffic conditions around the vehicle such as a lighting state of a traffic light received from the outside.
特開2008-286281号公報JP 2008-286281 A 特開平5-79562号公報Japanese Patent Laid-Open No. 5-79562
 ところで、上記N制御を車両停止時のみでなく、更なる燃費向上を狙って、車両走行中からそのN制御を開始すること、すなわちアクセルオフの減速走行中から車両停止までの車両走行中にN制御(走行中N制御)を実行することが考えられる。しかしながら、上記走行中N制御を実行する場合、例えば減速走行中にエンジンブレーキ力が低下することでの減速度変化による違和感等が生じる可能性がある。また、アクセル再踏込みによる再加速時の加速応答性等を考えると、発進クラッチの係合に伴うショックを抑制しつつできるだけ早くN制御から復帰(解除)させたい。しかしながら、車両停止からの車両発進時とは異なり、減速走行中に車速が変化していく中での再加速であるので、車両発進時と同様の一律の制御ではうまくいかない可能性がある。例えば、車両走行中であるので、再加速時のクラッチ係合の応答遅れによる駆動トルクの立ち上がりのもたつき感が車両発進時よりも大きくなる可能性がある。また、そのもたつき感を抑制する為にクラッチ係合を早くすると、係合ショックが増大する可能性がある。このように、走行中からN制御を開始すると、燃費向上が図れるものの、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが増大してドライバビリティが低下する可能性がある。尚、このような課題は未公知であり、ドライバビリティの低下を可及的に抑制しつつ車両走行中からN制御を開始することについて、未だ提案されていない。 By the way, the N control is started not only when the vehicle is stopped but also when the vehicle is running, aiming at further improvement of fuel consumption, that is, N during the vehicle running from the accelerator-off decelerated running to the vehicle stopping. It is conceivable to execute control (N control during traveling). However, when executing the N control during traveling, there is a possibility that an uncomfortable feeling or the like may occur due to a change in deceleration due to, for example, a decrease in engine braking force during deceleration traveling. Further, considering the acceleration response at the time of reacceleration due to the accelerator re-depression, it is desired to return (cancel) from the N control as soon as possible while suppressing the shock accompanying the engagement of the starting clutch. However, unlike the case of starting the vehicle after the vehicle is stopped, the re-acceleration is performed while the vehicle speed is changing while the vehicle is decelerating. Therefore, the same control as that when starting the vehicle may not work. For example, since the vehicle is running, there is a possibility that the feeling of rising of the drive torque due to a delay in response of clutch engagement at the time of reacceleration is greater than when the vehicle starts. Further, if the clutch engagement is accelerated in order to suppress the feeling of stickiness, the engagement shock may increase. As described above, when N control is started while the vehicle is running, fuel efficiency can be improved. there is a possibility. Such a problem is not known, and no proposal has been made yet to start N control while the vehicle is running while suppressing a decrease in drivability as much as possible.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、ドライバビリティの低下を抑制しつつ車両走行中にニュートラル制御を実行することができる車両用自動変速機の制御装置を提供することにある。 The present invention has been made against the background of the above circumstances, and an object of the present invention is an automatic transmission for a vehicle that can execute neutral control while the vehicle is running while suppressing a decrease in drivability. It is to provide a control device.
 前記目的を達成するための本発明の要旨とするところは、(a) エンジンの動力を駆動輪側へ伝達する発進クラッチの伝達トルク容量を低下させてそのエンジンからその駆動輪までの間の動力伝達経路を動力伝達抑制状態とするニュートラル制御を実行可能な車両用自動変速機の制御装置であって、(b) アクセルオフの減速走行中に、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させると共に、その減速走行中の車速関連値が所定車速関連値以下となった場合には前記自動変速機を発進時のギヤ比とした状態で前記発進クラッチを解放するようにその伝達トルク容量を低下させることにある。 In order to achieve the above object, the gist of the present invention is that: (a) the transmission torque capacity of the starting clutch that transmits the engine power to the drive wheel side is reduced to reduce the power between the engine and the drive wheel; A control device for an automatic transmission for a vehicle capable of executing a neutral control in which a transmission path is in a power transmission suppression state, wherein (b) the state in which the automatic transmission is set to the current gear ratio during deceleration traveling with the accelerator off. The transmission torque capacity is gradually reduced, and when the vehicle speed-related value during the deceleration traveling is equal to or less than a predetermined vehicle speed-related value, the starting clutch is released with the automatic transmission set to the gear ratio at the time of starting. Thus, the transmission torque capacity is reduced.
 このようにすれば、アクセルオフの減速走行中に、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量が漸減させられると共に、その減速走行中の車速関連値が所定車速関連値以下となった場合には前記自動変速機を発進時のギヤ比とした状態で前記発進クラッチを解放するようにその伝達トルク容量が低下させられるので、例えばある程度車速が出ているときには伝達トルク容量の漸減に伴って出力トルク(例えばエンジンブレーキトルク)が漸減させられて減速度変化による違和感が抑制される。また、例えばある程度車速が出ているときには発進クラッチがスリップ状態とされており、アクセルオンによる走行中N制御の解除に際して、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。また、例えば伝達トルク容量の低下により出力トルクが略零に向かうことから、車両減速走行時に発進クラッチを完全に解放しても減速度変化による違和感が抑制される。更に、例えば所定車速関連値以下では自動変速機が発進時のギヤ比とされ且つ発進クラッチが解放されており、アクセルオンによる走行中N制御の解除に際して、車両発進時と同様にN制御を解除することで、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。よって、ドライバビリティの低下を抑制しつつ車両走行中にニュートラル制御を実行して燃費を一層向上させることができる。 In this way, the transmission torque capacity is gradually reduced in the state where the automatic transmission is at the current gear ratio during deceleration travel with the accelerator off, and the vehicle speed related value during the deceleration travel is a predetermined vehicle speed related value. In the case of the following, the transmission torque capacity is reduced so that the starting clutch is released with the automatic transmission set to the gear ratio at the time of starting. With the gradual decrease, the output torque (for example, engine brake torque) is gradually decreased, and the uncomfortable feeling due to the change in deceleration is suppressed. In addition, for example, when the vehicle speed is high to some extent, the starting clutch is in a slip state, and when releasing the N control during traveling by accelerator-on, it is possible to suppress the feeling of rattling during re-acceleration while suppressing the engagement shock. . Further, for example, since the output torque goes to substantially zero due to a decrease in the transmission torque capacity, even when the starting clutch is completely released during vehicle deceleration traveling, the uncomfortable feeling due to the change in deceleration is suppressed. Further, for example, when the vehicle speed is less than a predetermined vehicle speed-related value, the automatic transmission is set to the gear ratio at the time of starting and the starting clutch is released. By doing so, it is possible to suppress the feeling of slack during re-acceleration while suppressing the engagement shock. Therefore, it is possible to further improve fuel efficiency by executing neutral control while the vehicle is traveling while suppressing a decrease in drivability.
 ここで、好適には、前記減速走行中の車速関連値と前記自動変速機の発進時のギヤ比とに基づいて算出されるその自動変速機の入力側の回転速度が前記エンジンのアイドル回転速度よりも高いそのアイドル回転速度近傍の所定回転速度以下となった場合に、前記発進クラッチを解放するように前記伝達トルク容量を低下させることにある。このようにすれば、例えば減速走行中に出力トルクが負トルクから正トルクへ切り替わるところで(例えば駆動輪側が自動変速機の入力側を連れ回していた状態から自動変速機の入力側が駆動輪側を回す状態へ切り替わるところで)前記発進クラッチが解放されるので、伝達トルク容量の低下により略零に向かって減少させられる負トルクが正トルクに切り替わることが抑制されて、出力トルク変化による違和感が抑制される。 Here, preferably, the rotational speed on the input side of the automatic transmission calculated based on the vehicle speed related value during the decelerating traveling and the gear ratio at the start of the automatic transmission is the idle rotational speed of the engine. The transmission torque capacity is reduced so as to release the starting clutch when the rotational speed is lower than a predetermined rotational speed higher than the idle rotational speed. In this way, for example, when the output torque switches from negative torque to positive torque during decelerating travel (for example, from the state where the drive wheel side rotates the input side of the automatic transmission, the input side of the automatic transmission changes the drive wheel side). Since the starting clutch is disengaged (at the time of switching to the turning state), the negative torque, which is reduced toward substantially zero due to the decrease in the transmission torque capacity, is suppressed from switching to the positive torque, and the uncomfortable feeling due to the change in output torque is suppressed. The
 また、好適には、前記減速走行中に、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させることに先立って、その伝達トルク容量を前記発進クラッチが係合される為の最大伝達トルク容量からアクセルオンされてもその発進クラッチに差回転が生じないような所定伝達トルク容量へ低下させ、その減速走行中の車速関連値が前記所定車速関連値よりも高い第2所定車速関連値以下となるまではその伝達トルク容量をその所定伝達トルク容量に維持することにある。このようにすれば、例えば前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させることへ速やかに移行することができる。また、例えば車速関連値が第2所定車速関連値以下となるまでは伝達トルク容量が所定伝達トルク容量に維持されておりすなわち発進クラッチが所定伝達トルク容量にて調圧状態で待機させられており、アクセルオンによる走行中N制御の解除に際して、発進クラッチがスリップ状態とされることなく伝達トルク容量を速やかに最大伝達トルク容量へ上昇させられて、再加速時のもたつき感を抑制することができる。 Preferably, during the deceleration traveling, the transmission clutch capacity is engaged with the starting clutch prior to gradually decreasing the transmission torque capacity with the automatic transmission at the current gear ratio. The maximum transmission torque capacity is reduced to a predetermined transmission torque capacity that does not cause differential rotation in the starting clutch even when the accelerator is turned on, and the vehicle speed related value during the deceleration traveling is higher than the predetermined vehicle speed related value. The transmission torque capacity is maintained at the predetermined transmission torque capacity until the vehicle speed is less than or equal to the predetermined vehicle speed related value. In this way, for example, it is possible to promptly shift to gradually reducing the transmission torque capacity in a state where the automatic transmission is set to the current gear ratio. Further, for example, the transmission torque capacity is maintained at the predetermined transmission torque capacity until the vehicle speed related value becomes equal to or less than the second predetermined vehicle speed related value, that is, the starting clutch is kept in a regulated state at the predetermined transmission torque capacity. When the N control is canceled during traveling by accelerator-on, the transmission torque capacity can be quickly increased to the maximum transmission torque capacity without the start clutch being in a slipping state, and the feeling of rattling during re-acceleration can be suppressed. .
 また、好適には、前記自動変速機は、前記発進クラッチと一方向クラッチとの係合により前記発進時のギヤ比となる発進時のギヤ段が成立させられ、前記エンジンの動力は、流体伝動装置を介して前記自動変速機へ伝達されるものであり、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させているときに、前記減速走行中の前記流体伝動装置の出力回転速度が前記エンジンのアイドル回転速度よりも高いそのアイドル回転速度近傍の第2所定回転速度以下となった場合には、前記発進クラッチを解放するように前記伝達トルク容量を低下させることに先立って、その伝達トルク容量をアクセルオン時にその伝達トルク容量が速やかに上昇させられるような可及的に低い第2所定伝達トルク容量に保持すると共に、前記自動変速機を現在のギヤ段から前記発進時のギヤ段へ変速することにある。このようにすれば、例えば車速の低下によって出力トルクが負トルクから正トルクへ切り替わり、駆動系のギヤのがたうちのショックを感じさせたり駆動力が出る方向に切り替わることによる違和感を生じさせる可能性があることに対して、発進クラッチにおける伝達トルクが低下させられることでそれら違和感等が抑制される。また、例えば発進クラッチにおける伝達トルクが多少発生する場合でも、発進時のギヤ段において一方向クラッチが空転状態とされているので、駆動力が発生せず上記違和感が回避される。また、例えば自動変速機が発進時のギヤ比とされ且つ伝達トルク容量が第2所定伝達トルク容量に保持されており、アクセルオンによる走行中N制御の解除に際して、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。また、この走行中N制御の解除時には、一方向クラッチが空転状態とされているので、発進クラッチを急係合させても係合ショックは発生せず、発進クラッチが第2所定伝達トルク容量にて調圧状態で待機させられていることもあって、伝達トルク容量を速やかに上昇させることができる。 Preferably, in the automatic transmission, a gear stage at the time of starting corresponding to a gear ratio at the time of starting is established by engagement of the starting clutch and the one-way clutch, and the power of the engine is transmitted by fluid transmission. When the transmission torque capacity is gradually reduced in a state where the automatic transmission is at the current gear ratio, the fluid transmission device during the decelerating traveling is transmitted to the automatic transmission through a device. When the output rotational speed of the engine becomes equal to or lower than a second predetermined rotational speed near the idle rotational speed that is higher than the idle rotational speed of the engine, the transmission torque capacity is reduced so as to release the starting clutch. Prior to this, the transmission torque capacity is kept at a second predetermined transmission torque capacity as low as possible so that the transmission torque capacity can be quickly increased when the accelerator is on, Certain automatic transmission from a current gear to shift to any gear during the starting. In this way, for example, the output torque is switched from negative torque to positive torque due to a decrease in the vehicle speed, and it is possible to feel a shock in the gear of the driving system or to cause a sense of incongruity due to switching in the direction in which the driving force is output. In contrast to this, the transmission torque in the starting clutch is reduced to suppress such uncomfortable feeling. Further, for example, even when some transmission torque is generated in the starting clutch, the one-way clutch is idling in the gear stage at the time of starting, so that no driving force is generated and the above-mentioned uncomfortable feeling is avoided. Further, for example, the automatic transmission is set to the gear ratio at the time of starting and the transmission torque capacity is held at the second predetermined transmission torque capacity. The feeling of slacking during acceleration can be suppressed. Further, when the N control is canceled during traveling, the one-way clutch is in the idling state, so that the engagement shock does not occur even if the start clutch is suddenly engaged, and the start clutch has the second predetermined transmission torque capacity. In other words, the transmission torque capacity can be quickly increased because the motor is kept waiting in a regulated state.
 また、好適には、前記第2所定伝達トルク容量は、前記エンジンのアイドルトルクが伝達可能な可及的に低い伝達トルク容量である。このようにすれば、例えば出力トルクが負トルクから正トルクへ切り替わりことによる駆動系のギヤのがたうちのショックや駆動力が出る方向に切り替わることによる違和感等が適切に抑制される。アクセルオンによる走行中N制御の解除に際して、伝達トルク容量を速やかに上昇させることができる。 Also preferably, the second predetermined transmission torque capacity is a transmission torque capacity as low as possible capable of transmitting the idle torque of the engine. In this way, for example, the shock of the gear of the drive train due to the output torque being switched from negative torque to positive torque, the sense of incongruity due to switching in the direction in which the drive force is output, etc. are appropriately suppressed. When canceling the N control during traveling by accelerator-on, the transmission torque capacity can be quickly increased.
本発明が適用された車両に備えられた自動変速機の構成を説明する骨子図である。1 is a skeleton diagram illustrating a configuration of an automatic transmission provided in a vehicle to which the present invention is applied. 図1の自動変速機の複数のギヤ段を成立させる際の摩擦係合装置の作動の組み合わせを説明する作動図表である。2 is an operation chart for explaining a combination of operations of the friction engagement device when a plurality of gear stages of the automatic transmission of FIG. 1 are established. 図1の自動変速機などを制御する為に車両に設けられた電気的な制御系統の要部を説明するブロック線図である。It is a block diagram explaining the principal part of the electrical control system provided in the vehicle in order to control the automatic transmission etc. of FIG. 図3の油圧制御回路のうちクラッチ及びブレーキの各油圧アクチュエータの作動を制御するリニアソレノイドバルブに関する回路図である。FIG. 4 is a circuit diagram relating to a linear solenoid valve that controls the operation of each hydraulic actuator for clutches and brakes in the hydraulic control circuit of FIG. 3. 図3の電子制御装置の制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function of the electronic control apparatus of FIG. スロットル弁開度をパラメータとしてエンジン回転速度と推定エンジントルクとの予め実験的に求められて記憶された関係(エンジントルクマップ)の一例を示す図である。It is a figure which shows an example of the relationship (engine torque map) calculated | required experimentally beforehand and memorize | stored by using the throttle valve opening as a parameter. 図1の自動変速機のギヤ段の決定に用いられる変速線図の一例を示す図である。It is a figure which shows an example of the shift map used for determination of the gear stage of the automatic transmission of FIG. 図3の電子制御装置の制御作動の要部すなわちドライバビリティの低下を抑制しつつ走行中N制御を実行する為の制御作動を説明するフローチャートである。FIG. 4 is a flowchart for explaining a control operation for executing a running N control while suppressing a main part of the control operation of the electronic control device of FIG. 図8の制御作動に対応するタイムチャートである。It is a time chart corresponding to the control action of FIG. 図8の制御作動中に走行中N制御が解除された場合のタイムチャートであって、フェーズ1制御から復帰する場合の一例を示す図である。FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 1 control; 図8の制御作動中に走行中N制御が解除された場合のタイムチャートであって、フェーズ2制御から復帰する場合の一例を示す図である。FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 2 control; 図8の制御作動中に走行中N制御が解除された場合のタイムチャートであって、フェーズ3制御から復帰する場合の一例を示す図である。FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 3 control; 図8の制御作動中に走行中N制御が解除された場合のタイムチャートであって、フェーズ4制御から復帰する場合の一例を示す図である。FIG. 9 is a time chart when the traveling N control is canceled during the control operation of FIG. 8, and is a diagram illustrating an example when returning from phase 4 control;
 好適には、前記自動変速機は、例えば複数組の遊星歯車装置の回転要素が係合装置によって選択的に連結されることにより複数のギヤ段(変速段)が択一的に達成される例えば前進4段、前進5段、前進6段、更にはそれ以上の変速段を有する等の種々の遊星歯車式自動変速機、動力伝達部材として機能する伝動ベルトが有効径が可変である一対の可変プーリに巻き掛けられ変速比が無段階に連続的に変化させられる所謂ベルト式無段変速機、共通の軸心まわりに回転させられる一対のコーンとその軸心と交差する回転中心回転可能な複数個のローラがそれら一対のコーンの間で挟圧されそのローラの回転中心と軸心との交差角が変化させられることによって変速比が可変とされた所謂トラクション型無段変速機、或いはエンジン軸や出力軸などに動力伝達可能に電動機が備えられる所謂パラレル式のハイブリッド車両に搭載される自動変速機などにより構成される。また、前記自動変速機の車両に対する搭載姿勢は、その自動変速機の軸線が車両の幅方向となるFF(フロントエンジン・フロントドライブ)車両などの横置き型でも、その自動変速機の軸線が車両の前後方向となるFR(フロントエンジン・リヤドライブ)車両などの縦置き型でも良い。 Preferably, in the automatic transmission, for example, a plurality of gear stages (shift stages) are alternatively achieved by selectively connecting rotating elements of a plurality of sets of planetary gear units by an engagement device. Various planetary gear type automatic transmissions having four forward speeds, five forward speeds, six forward speeds, and more, and a pair of variable whose transmission diameters function as power transmission members are variable. A so-called belt-type continuously variable transmission that is wound around a pulley and continuously changes its transmission ratio steplessly, a pair of cones that rotate around a common axis, and a plurality of rotation centers that can rotate around the axis A so-called traction-type continuously variable transmission or engine shaft in which a plurality of rollers are clamped between the pair of cones and the transmission angle is made variable by changing the intersection angle between the rotation center of the rollers and the shaft center. And output Constituted by an automatic transmission capable of transmitting power to an electric motor is mounted on a hybrid vehicle of a so-called parallel type provided in such. Further, the mounting posture of the automatic transmission with respect to the vehicle may be a horizontal installation type such as an FF (front engine / front drive) vehicle in which the axis of the automatic transmission is in the width direction of the vehicle. It may be a vertical installation type such as an FR (front engine / rear drive) vehicle in the longitudinal direction.
 また、好適には、例えば遊星歯車式自動変速機を備える車両のニュートラル制御は、公知の「R」or「D」ポジションにおいて、係合装置を全てスリップ状態乃至解放状態とするか或いは自動変速機の変速段を形成する為の何れかの係合装置をスリップ状態乃至解放状態とするなどして、自動変速機内の動力伝達経路が遮断される自動変速機のニュートラル状態を形成することで実行される。また、例えばベルト式無段変速機やトラクション型無段変速機を備える車両のニュートラル制御は、エンジンから駆動輪までの間の動力伝達経路に備えられた係合装置と歯車装置とを含む良く知られた前後進切換装置におけるその係合装置をスリップ状態乃至解放状態として、動力伝達経路のニュートラル状態を形成することで実行される。また、例えば遊星歯車式自動変速機が有する係合装置や前後進切換装置が有する係合装置とは別に動力伝達経路に備えられた係合装置をスリップ状態乃至解放状態として、自動変速機のニュートラル状態を形成することでもニュートラル制御が実行される。 Preferably, for example, in the neutral control of a vehicle equipped with a planetary gear type automatic transmission, the engagement devices are all set in a slipping state or a releasing state in a known “R” or “D” position, or in an automatic transmission. This is executed by forming a neutral state of the automatic transmission in which the power transmission path in the automatic transmission is interrupted, for example, by setting any one of the engagement devices for forming the gear stage to the slip state or the release state. The Further, for example, neutral control of a vehicle equipped with a belt type continuously variable transmission or a traction type continuously variable transmission includes well-known engagement devices and gear devices provided in a power transmission path from the engine to driving wheels. This is executed by forming the neutral state of the power transmission path by setting the engaging device in the forward / reverse switching device to the slip state or the release state. Further, for example, the engagement device provided in the power transmission path is set to the slip state or the release state separately from the engagement device included in the planetary gear type automatic transmission and the engagement device included in the forward / reverse switching device. Neutral control is also performed by forming a state.
 また、好適には、上記係合装置としては、油圧アクチュエータによって係合させられる多板式、単板式のクラッチやブレーキ等の摩擦係合装置が広く用いられる。この油圧式摩擦係合装置を係合させるための作動油を供給するオイルポンプは、走行用の駆動力源により駆動されて作動油を吐出するものでも良いが、例えば駆動力源とは別に配設された専用の電動モータなどで駆動されるものでも良い。この油圧式摩擦係合装置を含む油圧制御回路は、例えば電磁弁装置としてのリニアソレノイドバルブの出力油圧を直接的に油圧式摩擦係合装置の油圧アクチュエータ(油圧シリンダ)にそれぞれ供給することが応答性の点で望ましいが、そのリニアソレノイドバルブの出力油圧をパイロット油圧として用いることによりシフトコントロールバルブ(変速制御弁)を制御して、そのコントロールバルブから油圧アクチュエータに作動油を供給するように構成することもできる。また、上記リニアソレノイドバルブは、例えば複数の油圧式摩擦係合装置の各々に対応して1つずつ設けられるが、同時に係合したり係合、解放制御したりすることがない複数の油圧式摩擦係合装置が存在する場合には、それ等に共通のリニアソレノイドバルブを設けることもできるなど、種々の態様が可能である。また、必ずしも全ての油圧式摩擦係合装置の油圧制御をリニアソレノイドバルブで行う必要はなく、一部乃至全ての油圧制御をON-OFFソレノイドバルブのデューティ制御など、リニアソレノイドバルブ以外の調圧手段で行っても良い。また、クラッチ或いはブレーキは、油圧式摩擦係合装置以外に電磁式係合装置例えば電磁クラッチや磁粉式クラッチ等であってもよい。 Further, preferably, as the engagement device, a friction engagement device such as a multi-plate type or single plate type clutch or brake that is engaged by a hydraulic actuator is widely used. The oil pump for supplying the hydraulic oil for engaging the hydraulic friction engagement device may be driven by a driving power source for traveling to discharge the hydraulic oil, but is disposed separately from the driving power source, for example. It may be driven by a dedicated electric motor provided. The hydraulic control circuit including this hydraulic friction engagement device responds by supplying the output hydraulic pressure of a linear solenoid valve as an electromagnetic valve device directly to the hydraulic actuator (hydraulic cylinder) of the hydraulic friction engagement device, for example. Although it is desirable from the standpoint of performance, the shift control valve (shift control valve) is controlled by using the output hydraulic pressure of the linear solenoid valve as the pilot hydraulic pressure, and the hydraulic oil is supplied from the control valve to the hydraulic actuator. You can also. The linear solenoid valve is provided, for example, corresponding to each of a plurality of hydraulic friction engagement devices, but a plurality of hydraulic solenoid valves that are not simultaneously engaged, engaged, or controlled to be released. When a friction engagement device exists, various modes are possible, such as providing a common linear solenoid valve for them. In addition, it is not always necessary to perform the hydraulic control of all the hydraulic friction engagement devices with the linear solenoid valve, and some or all of the hydraulic control, such as duty control of the ON-OFF solenoid valve, is used for pressure regulation other than the linear solenoid valve. You can go there. Further, the clutch or brake may be an electromagnetic engagement device such as an electromagnetic clutch or a magnetic powder clutch in addition to the hydraulic friction engagement device.
 また、好適には、前記エンジンとしては、ガソリンエンジンやディーゼルエンジン等の内燃機関が広く用いられる。更に、補助的な走行用の駆動力源として、電動機等がこのエンジンに加えて用いられても良い。 Preferably, an internal combustion engine such as a gasoline engine or a diesel engine is widely used as the engine. Further, an electric motor or the like may be used in addition to this engine as a driving power source for auxiliary traveling.
 尚、この明細書で「油圧を供給する」という場合は、「油圧を作用させ」或いは「その油圧に制御された作動油を供給する」ことを意味する。 In this specification, “supplying hydraulic pressure” means “applying hydraulic pressure” or “supplying hydraulic oil controlled to the hydraulic pressure”.
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が適用された車両10に備えられた車両用自動変速機12(以下、自動変速機12)の構成を説明する骨子図である。図2は自動変速機12の複数のギヤ段GS(変速段GS)を成立させる際の摩擦係合装置の作動状態を説明する作動表である。この自動変速機12は、車両10の左右方向(横置き)に搭載するFF車両に好適に用いられるものであって、車体に取り付けられる非回転部材としてのトランスアクスルケース14(以下、ケース14)内において、シングルピニオン型の第1遊星歯車装置16を主体として構成されている第1変速部18と、ダブルピニオン型の第2遊星歯車装置20及びシングルピニオン型の第3遊星歯車装置22を主体としてラビニヨ型に構成されている第2変速部24とを共通の軸心C上に有し、入力軸26の回転を変速して出力歯車28から出力する。入力軸26は、自動変速機12の入力回転部材に相当するものであり、本実施例では走行用の駆動力源であるエンジン30によって回転駆動される流体伝動装置としてのトルクコンバータ32のタービン軸と一体的に構成されている。また、出力歯車28は、自動変速機12の出力回転部材に相当するものであり、本実施例では例えば図3に示す差動歯車装置34に動力を伝達する為に、デフリングギヤ35と噛み合うことでファイナルギヤ対を構成するデフドライブピニオンと同軸上に配置されたカウンタドリブンギヤと噛み合ってカウンタギヤ対を構成するカウンタドライブギヤとして機能している。そして、このように構成された自動変速機12等において、エンジン30の出力は、トルクコンバータ32、自動変速機12、差動歯車装置34、及び一対の車軸36等を含む車両用動力伝達装置11を順次介して左右の駆動輪38へ伝達されるようになっている(図3参照)。尚、自動変速機12やトルクコンバータ32は中心線(軸心)Cに対して略対称的に構成されており、図1の骨子図においてはその軸心Cの下半分が省略されている。 FIG. 1 is a skeleton diagram illustrating the configuration of a vehicular automatic transmission 12 (hereinafter, automatic transmission 12) provided in a vehicle 10 to which the present invention is applied. FIG. 2 is an operation table for explaining an operation state of the friction engagement device when a plurality of gear stages GS (shift stages GS) of the automatic transmission 12 is established. This automatic transmission 12 is suitably used for an FF vehicle mounted in the left-right direction (horizontal) of the vehicle 10, and is a transaxle case 14 (hereinafter, case 14) as a non-rotating member attached to the vehicle body. Inside, a first transmission unit 18 mainly composed of a single pinion type first planetary gear device 16, a double pinion type second planetary gear device 20, and a single pinion type third planetary gear device 22 are mainly used. As a Ravigneaux-type second transmission unit 24 on a common axis C, and the input shaft 26 is rotated and output from the output gear 28. The input shaft 26 corresponds to an input rotating member of the automatic transmission 12. In this embodiment, the input shaft 26 is a turbine shaft of a torque converter 32 as a fluid transmission device that is rotationally driven by an engine 30 that is a driving force source for traveling. It is configured integrally with. The output gear 28 corresponds to the output rotating member of the automatic transmission 12, and in this embodiment, for example, meshes with the diff ring gear 35 to transmit power to the differential gear device 34 shown in FIG. The counter drive gears constituting the counter gear pair are engaged with the counter driven gear arranged coaxially with the differential drive pinion constituting the final gear pair. In the automatic transmission 12 and the like configured as described above, the output of the engine 30 is output from the vehicle power transmission device 11 including the torque converter 32, the automatic transmission 12, the differential gear device 34, the pair of axles 36, and the like. Are sequentially transmitted to the left and right drive wheels 38 (see FIG. 3). The automatic transmission 12 and the torque converter 32 are substantially symmetrical with respect to the center line (axial center) C, and the lower half of the axial center C is omitted in the skeleton diagram of FIG.
 トルクコンバータ32は、エンジン30のクランク軸31に連結されたポンプ翼車32p、トルクコンバータ32のタービン軸(入力軸26に相当)を介して自動変速機12に連結されたタービン翼車32t、及び一方向クラッチによって一方向の回転が阻止されているステータ翼車32sとを備えており、ポンプ翼車32pとタービン翼車32tとの間で流体を介して動力伝達を行うようになっている。すなわち、本実施例のトルクコンバータ32においては、ポンプ翼車32pが入力回転部材に、タービン翼車32tが出力回転部材にそれぞれ対応し、流体を介してエンジン30の動力が自動変速機12側へ伝達される。また、ポンプ翼車32p及びタービン翼車32tの間には、それらの間すなわちトルクコンバータ32の入出力回転部材間を直結可能なロックアップクラッチ33が設けられている。また、ポンプ翼車32pには、自動変速機12を変速制御したり、ロックアップクラッチ33の作動を制御したり、或いは各部に潤滑油を供給したりする為の元圧となる作動油圧をエンジン30によって回転駆動されることにより発生する機械式のオイルポンプ40が連結されている。 The torque converter 32 includes a pump impeller 32p connected to the crankshaft 31 of the engine 30, a turbine impeller 32t connected to the automatic transmission 12 via a turbine shaft (corresponding to the input shaft 26) of the torque converter 32, and The stator impeller 32s is prevented from rotating in one direction by a one-way clutch, and power is transmitted between the pump impeller 32p and the turbine impeller 32t via a fluid. That is, in the torque converter 32 of the present embodiment, the pump impeller 32p corresponds to the input rotating member, and the turbine impeller 32t corresponds to the output rotating member, and the power of the engine 30 is transferred to the automatic transmission 12 side via the fluid. Communicated. Further, a lockup clutch 33 is provided between the pump impeller 32p and the turbine impeller 32t, that is, between the input and output rotating members of the torque converter 32. Further, the pump impeller 32p is supplied with an operating hydraulic pressure as a source pressure for controlling the shift of the automatic transmission 12, controlling the operation of the lockup clutch 33, or supplying lubricating oil to each part. A mechanical oil pump 40 generated by being driven to rotate by 30 is connected.
 自動変速機12は、第1変速部18及び第2変速部24の各回転要素(サンギヤS1~S3、キャリアCA1~CA3、リングギヤR1~R3)のうちの何れかの連結状態の組み合わせに応じて第1速ギヤ段「1st」~第6速ギヤ段「6th」の6つの前進ギヤ段(前進変速段)が成立させられると共に、後進ギヤ段「R」の1つの後進ギヤ段(後進変速段)が成立させられる。図2に示すように、例えば前進ギヤ段では、クラッチC1とブレーキB2との係合により第1速ギヤ段が、クラッチC1とブレーキB1との係合により第2速ギヤ段が、クラッチC1とブレーキB3との係合により第3速ギヤ段が、クラッチC1とクラッチC2との係合により第4速ギヤ段が、クラッチC2とブレーキB3との係合により第5速ギヤ段が、クラッチC2とブレーキB1との係合により第6速ギヤ段が、それぞれ成立させられるようになっている。また、ブレーキB2とブレーキB3との係合により後進ギヤ段が成立させられ、クラッチC1、C2、及びブレーキB1~B3の何れもが解放されることによりニュートラル状態となるように構成されている。 The automatic transmission 12 corresponds to the combination of any of the connected states of the rotating elements (sun gears S1 to S3, carriers CA1 to CA3, ring gears R1 to R3) of the first transmission unit 18 and the second transmission unit 24. Six forward gear stages (forward shift stages) from the first speed gear stage “1st” to the sixth speed gear stage “6th” are established, and one reverse gear stage (reverse gear stage) of the reverse gear stage “R” is established. ) Is established. As shown in FIG. 2, for example, in the forward gear stage, the first speed gear stage is engaged by the engagement of the clutch C1 and the brake B2, and the second speed gear stage is engaged by the engagement of the clutch C1 and the brake B1, and the clutch C1 is engaged. The third gear is set by engagement with the brake B3, the fourth gear is set by engagement of the clutch C1 and the clutch C2, and the fifth gear is set by engagement of the clutch C2 and the brake B3. The sixth gear is established by engaging the brake B1. Further, the reverse gear stage is established by the engagement of the brake B2 and the brake B3, and the neutral state is established by releasing any of the clutches C1, C2 and the brakes B1 to B3.
 図2の作動表は、上記各ギヤ段GSとクラッチC1、C2、及びブレーキB1~B3の作動状態との関係をまとめたものであり、「○」は係合、「◎」はエンジンブレーキ時のみ係合を表している。尚、第1ギヤ段「1st」を成立させるブレーキB2には並列に一方向クラッチF1が設けられている為、発進時(加速時)には必ずしもブレーキB2を係合させる必要は無い。つまり、発進時にはクラッチC1のみを係合させれば良く、例えば後述するニュートラル制御からの復帰時にはこのクラッチC1のみが係合させられる。このように、このクラッチC1は発進クラッチとして機能する。また、各ギヤ段GSの変速比γGS(=入力軸26の回転速度NIN/出力歯車28の回転速度NOUT)は、第1遊星歯車装置16、第2遊星歯車装置20、及び第3遊星歯車装置22の各ギヤ比(=サンギヤの歯数/リングギヤの歯数)ρ1、ρ2、ρ3によって適宜定められる。 The operation table of FIG. 2 summarizes the relationship between each gear stage GS and the operation states of the clutches C1, C2 and the brakes B1 to B3, where “◯” indicates engagement and “◎” indicates engine braking. Only represents engagement. Since the one-way clutch F1 is provided in parallel to the brake B2 that establishes the first gear stage “1st”, it is not always necessary to engage the brake B2 when starting (acceleration). That is, it is sufficient to engage only the clutch C1 when starting, and for example, only the clutch C1 is engaged when returning from the neutral control described later. Thus, the clutch C1 functions as a starting clutch. The gear ratio γGS (= the rotational speed N IN of the input shaft 26 / the rotational speed N OUT of the output gear 28) of each gear stage GS is determined by the first planetary gear device 16, the second planetary gear device 20, and the third planetary gear device. Each gear ratio of the gear unit 22 (= the number of teeth of the sun gear / the number of teeth of the ring gear) is appropriately determined by ρ1, ρ2, and ρ3.
 上記クラッチC1、C2、及びブレーキB1~B3(以下、特に区別しない場合は単にクラッチC、ブレーキBという)は、例えば多板式のクラッチやブレーキなど油圧アクチュエータによって係合制御され、係合によりエンジン30の動力を駆動輪38側へ伝達する油圧式摩擦係合装置である。そして、油圧制御回路110内のリニアソレノイドバルブSL1~SL5(図3,4参照)の励磁、非励磁や電流制御により、各クラッチC及びブレーキBの係合、解放状態が切り換えられると共に、係合、解放時の過渡係合油圧などが制御される。 The clutches C1 and C2 and the brakes B1 to B3 (hereinafter simply referred to as the clutch C and the brake B unless otherwise distinguished) are controlled by a hydraulic actuator such as a multi-plate clutch or a brake. This is a hydraulic friction engagement device that transmits the motive power to the drive wheel 38 side. The clutch C and brake B are engaged and disengaged by the excitation, de-excitation, and current control of the linear solenoid valves SL1 to SL5 (see FIGS. 3 and 4) in the hydraulic control circuit 110 and the engagement. The transient engagement hydraulic pressure at the time of release is controlled.
 図3は、エンジン30や自動変速機12などを制御する為に車両10に設けられた電気的な制御系統の要部を説明するブロック線図である。図3において、車両10には、例えばクラッチC1の伝達トルク容量に対応する係合油圧であるC1クラッチ圧PC1を低下させてエンジン30から駆動輪38までの間の動力伝達経路を動力伝達抑制状態とするニュートラル制御を実行可能な制御装置を含む電子制御装置50が備えられている。この電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置50は、エンジン30の出力制御や自動変速機12の変速制御やロックアップクラッチ33のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用のエンジン制御装置や自動変速機12の変速制御用の油圧制御装置やロックアップクラッチ33の油圧制御用の油圧制御装置等に分けて構成される。 FIG. 3 is a block diagram for explaining a main part of an electrical control system provided in the vehicle 10 for controlling the engine 30, the automatic transmission 12, and the like. In Figure 3, the vehicle 10, for example power transmission suppressing power transmission path from the engine 30 to lower the C1 clutch pressure P C1 is engaging pressure corresponding to the transmission torque capacity of the clutch C1 to the drive wheels 38 An electronic control device 50 including a control device capable of executing neutral control to be in a state is provided. The electronic control unit 50 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, for example, and the CPU stores a program stored in the ROM in advance using a temporary storage function of the RAM. Various control of the vehicle 10 is executed by performing signal processing according to the above. For example, the electronic control unit 50 performs output control of the engine 30, shift control of the automatic transmission 12, torque capacity control of the lockup clutch 33, and the like, and engine control for engine control is performed as necessary. The apparatus is divided into a hydraulic control apparatus for shifting control of the automatic transmission 12, a hydraulic control apparatus for controlling hydraulic pressure of the lockup clutch 33, and the like.
 電子制御装置50には、例えば作動油温センサ52により検出された油圧制御回路110内の作動油(例えば公知のATF)の温度である作動油温THOIL表す信号、アクセル開度センサ54により検出された運転者による車両10に対する加速要求量(ドライバ要求量)としてのアクセルペダル56の操作量であるアクセル開度Accを表す信号、エンジン回転速度センサ58により検出されたエンジン30の回転速度であるエンジン回転速度Nを表す信号、冷却水温センサ60により検出されたエンジン30の冷却水温THを表す信号、吸入空気量センサ62により検出されたエンジン30の吸入空気量Qを表す信号、スロットル弁開度センサ64により検出された電子スロットル弁の開度であるスロットル弁開度θTHを表す信号、車速センサ66により検出された車速Vに対応する出力歯車28の回転速度である出力回転速度NOUTを表す信号、ブレーキスイッチ68により検出された常用ブレーキであるフットブレーキの作動中(踏込操作中)を示すフットブレーキペダル70の操作(ブレーキオン)BONを表す信号、レバーポジションセンサ72により検出されたシフトレバー74のレバーポジション(操作位置、シフトポジション)PSHを表す信号、タービン回転速度センサ76により検出されたトルクコンバータ32の出力回転速度すなわちタービン軸の回転速度であるタービン回転速度N(すなわち入力軸26の回転速度である入力回転速度NIN)を表す信号などがそれぞれ供給される。 In the electronic control unit 50, for example, a signal representing the hydraulic oil temperature TH OIL which is the temperature of the hydraulic oil (for example, a known ATF) in the hydraulic control circuit 110 detected by the hydraulic oil temperature sensor 52 is detected by the accelerator opening sensor 54. A signal indicating the accelerator opening degree Acc, which is an operation amount of the accelerator pedal 56 as an acceleration request amount (driver request amount) for the vehicle 10 by the driver, and a rotation speed of the engine 30 detected by the engine rotation speed sensor 58. a signal indicative of the engine rotation speed N E, a signal representing the cooling water temperature TH W of the engine 30 detected by a coolant temperature sensor 60, a signal representing the intake air quantity Q of the engine 30 detected by an intake air amount sensor 62, a throttle valve Shin representing the throttle valve opening theta TH is a degree of opening of the electronic throttle valve detected by the opening sensor 64 , A signal representative of the output speed N OUT is the rotational speed of the output gear 28 corresponding to the vehicle speed V detected by the vehicle speed sensor 66, in a foot brake operation is a service brake, which is detected by a brake switch 68 (depressing in ) Indicating the operation (brake on) B ON of the foot brake pedal 70, indicating the lever position (operation position, shift position) P SH of the shift lever 74 detected by the lever position sensor 72, turbine rotation speed sensor A signal representing an output rotational speed of the torque converter 32 detected by 76, that is, a turbine rotational speed N T that is a rotational speed of the turbine shaft (that is, an input rotational speed N IN that is a rotational speed of the input shaft 26) is supplied. .
 また、電子制御装置50からは、例えばエンジン30の出力制御の為のエンジン出力制御指令信号Sとして、アクセル開度Accに応じて電子スロットル弁の開閉を制御する為のスロットルアクチュエータへの駆動信号や燃料噴射装置から噴射される燃料噴射量を制御する為の噴射信号やイグナイタによるエンジン30の点火時期を制御する為の点火時期信号などが出力される。また、例えば自動変速機12の変速制御の為の油圧制御指令信号Sとして、自動変速機12のギヤ段GSを切り換える為に油圧制御回路110内のリニアソレノイドバルブSL1~SL5の励磁、非励磁などを制御する為のバルブ指令信号(油圧指令信号、油圧指令値、駆動信号)や第1ライン油圧PL1などを調圧制御する為のリニアソレノイドバルブSLTへの油圧指令信号などが出力される。また、例えばロックアップクラッチ33の係合、解放、スリップ量N(=N-N)を制御する為のロックアップ制御指令信号Sとして、油圧制御回路110内に備えられたソレノイド弁SL及びリニアソレノイド弁SLUを駆動する為の油圧指令信号などが油圧制御回路110へ出力される。 Further, the electronic control unit 50, for example, as an engine output control command signal S E for the output control of the engine 30, driving signals to a throttle actuator for controlling the opening and closing of the electronic throttle valve in accordance with the accelerator opening Acc In addition, an injection signal for controlling the fuel injection amount injected from the fuel injection device, an ignition timing signal for controlling the ignition timing of the engine 30 by the igniter, and the like are output. Further, for example, as a hydraulic control command signal S P output for shift control of the automatic transmission 12, the excitation of the linear solenoid valves SL1 ~ SL5 in the hydraulic control circuit 110 to switch the gear position GS of the automatic transmission 12, the non-excitation valve command signals for controlling the (hydraulic pressure command signal, oil pressure command value, the drive signal), etc. or a hydraulic command signal to the linear solenoid valve SLT for Gosuru the regulation control such as the first line pressure P L1 is output . Further, for example, engagement of the lock-up clutch 33, release, slip N S as a lock-up control command signal S L for controlling the (= N E -N T), a solenoid valve provided in the hydraulic control circuit 110 A hydraulic pressure command signal for driving the SL and the linear solenoid valve SLU is output to the hydraulic pressure control circuit 110.
 シフトレバー74は、例えば運転席の近傍に配設され、図3に示すように、5つのレバーポジション「P」、「R」、「N」、「D」、または「S」へ手動操作されるようになっている。「P」ポジション(レンジ)は自動変速機12内の動力伝達経路を解放しすなわち自動変速機12内の動力伝達が遮断されるニュートラル状態(中立状態)とし且つメカニカルパーキング機構によって機械的に出力歯車28の回転を阻止(ロック)する為の駐車ポジション(位置)である。また、「R」ポジションは自動変速機12の出力歯車28の回転方向を逆回転とする為の後進走行ポジション(位置)である。また、「N」ポジションは自動変速機12内の動力伝達が遮断されるニュートラル状態とする為の中立ポジション(位置)である。また、「D」ポジションは自動変速機12の変速を許容する変速範囲(Dレンジ)で第1速ギヤ段「1st」~第6速ギヤ段「6th」の総ての前進ギヤ段を用いて自動変速制御を実行させる前進走行ポジション(位置)である。また、「S」ポジションはギヤ段の変化範囲を制限する複数種類の変速レンジすなわち高車速側のギヤ段が異なる複数種類の変速レンジを切り換えることにより手動変速が可能な前進走行ポジション(位置)である。 The shift lever 74 is disposed in the vicinity of the driver's seat, for example, and is manually operated to five lever positions “P”, “R”, “N”, “D”, or “S” as shown in FIG. It has become so. The “P” position (range) releases a power transmission path in the automatic transmission 12, that is, a neutral state (neutral state) in which the power transmission in the automatic transmission 12 is interrupted, and is mechanically output by the mechanical parking mechanism. This is a parking position (position) for preventing (locking) the rotation of 28. The “R” position is a reverse travel position (position) for making the rotation direction of the output gear 28 of the automatic transmission 12 reverse. The “N” position is a neutral position (position) for achieving a neutral state in which power transmission in the automatic transmission 12 is interrupted. Further, the “D” position is a shift range (D range) that allows the automatic transmission 12 to shift, and uses all the forward gears from the first speed gear stage “1st” to the sixth speed gear stage “6th”. This is a forward travel position (position) at which automatic shift control is executed. The “S” position is a forward travel position (position) in which manual shift can be performed by switching among a plurality of types of shift ranges that limit the change range of the gear steps, that is, a plurality of types of shift ranges with different gear ranges on the high vehicle speed side. is there.
 上記「D」ポジションは自動変速機12の変速可能な例えば図2に示すような第1速ギヤ段乃至第6速ギヤ段の範囲で自動変速制御が実行される制御様式である自動変速モードを選択するレバーポジションでもあり、「S」ポジションは自動変速機12の各変速レンジの最高速側ギヤ段を超えない範囲で自動変速制御が実行されると共にシフトレバー74の手動操作により変更された変速レンジ(すなわち最高速側ギヤ段)に基づいて手動変速制御が実行される制御様式である手動変速モードを選択するレバーポジションでもある。尚、この実施例では、シフトレバー74が「S」ポジションに操作されることにより、最高速側の変速レンジが設定される(シフトレンジ固定)ものであったが、シフトレバー74の操作に基づいて変速段(ギヤ段)が指定される(ギヤ段固定)ものであっても構わない。この場合、自動変速機12ではマニュアルシフト操作される度にその操作に対応する所望のギヤ段となるように変速制御が実行される。 The “D” position is an automatic transmission mode, which is a control mode in which automatic transmission control is performed in the range from the first gear to the sixth gear as shown in FIG. The “S” position is a lever position to be selected, and the automatic transmission control is executed within a range not exceeding the highest speed gear of each shift range of the automatic transmission 12 and the shift changed by manual operation of the shift lever 74 It is also a lever position for selecting a manual shift mode that is a control mode in which the manual shift control is executed based on the range (that is, the highest speed gear stage). In this embodiment, the shift range on the highest speed side is set (shift range fixed) by operating the shift lever 74 to the “S” position, but based on the operation of the shift lever 74. The gear position (gear stage) may be designated (gear stage fixed). In this case, every time a manual shift operation is performed in the automatic transmission 12, the shift control is executed so that a desired gear stage corresponding to the operation is obtained.
 図4は、油圧制御回路110のうちクラッチC1、C2、及びブレーキB1~B3の各油圧アクチュエータ(油圧シリンダ)ACT1~ACT5の作動を制御するリニアソレノイドバルブSL1~SL5に関する油圧制御回路の要部を示す図である。図4において、油圧供給装置112は、エンジン30によって回転駆動される機械式のオイルポンプ40(図1参照)から発生する油圧を元圧として第1ライン油圧PL1を調圧する例えばリリーフ型のプライマリレギュレータバルブ(第1調圧弁)114と、そのプライマリレギュレータバルブ114から排出される油圧を元圧として第2ライン油圧PL2を調圧するセカンダリレギュレータバルブ(第2調圧弁)116と、スロットル弁開度θTHや吸入空気量Q等で表されるエンジン負荷等に応じた第1ライン油圧PL1及び第2ライン油圧PL2が調圧される為にプライマリレギュレータバルブ114及びセカンダリレギュレータバルブ116へ信号圧PSLTを供給するリニアソレノイドバルブSLTと、第1ライン油圧PL1を元圧としてモジュレータ油圧Pを一定値に調圧するモジュレータバルブ118とを備えている。また、油圧供給装置112は、シフトレバー74の操作に基づいて機械的或いは電気的に油路が切り換えられるマニュアルバルブ120を備えている。このマニュアルバルブ120は、例えばシフトレバー74が「D」ポジション或いは「S」ポジションへ操作されたときには、入力された第1ライン油圧PL1をドライブ油圧Pとして出力し、シフトレバー74が「R」ポジションへ操作されたときには、入力された第1ライン油圧PL1をリバース油圧Pとして出力し、シフトレバー74が「P」ポジション或いは「N」ポジションへ操作されたときには、油圧の出力を遮断する(ドライブ油圧P及びリバース油圧Pを排出側へ導く)。このように、油圧供給装置112は、第1ライン油圧PL1、第2ライン油圧PL2、モジュレータ油圧P、ドライブ油圧P、及びリバース油圧Pを出力するようになっている。 FIG. 4 shows a main part of the hydraulic control circuit related to the linear solenoid valves SL1 to SL5 for controlling the operations of the hydraulic actuators (hydraulic cylinders) ACT1 to ACT5 of the clutches C1 and C2 and the brakes B1 to B3 in the hydraulic control circuit 110. FIG. In FIG. 4, the hydraulic pressure supply device 112 adjusts the first line hydraulic pressure P L1 using the hydraulic pressure generated from the mechanical oil pump 40 (see FIG. 1) that is rotationally driven by the engine 30 as a source pressure. a regulator valve (first pressure regulating valve) 114, a secondary regulator valve (second pressure regulating valve) 116 for pressurizing the second line pressure P L2 tone as source pressure the hydraulic pressure discharged from the primary regulator valve 114, a throttle valve opening Since the first line hydraulic pressure P L1 and the second line hydraulic pressure P L2 are regulated according to the engine load or the like represented by θ TH or the intake air amount Q, the signal pressure is applied to the primary regulator valve 114 and the secondary regulator valve 116. a linear solenoid valve SLT for supplying P SLT, first line pressure P L And a modulator valve 118 for pressurizing is regulated to a constant value a modulator pressure P M as source pressure. Further, the hydraulic pressure supply device 112 includes a manual valve 120 that can switch an oil path mechanically or electrically based on an operation of the shift lever 74. The manual valve 120, for example, when the shift lever 74 is operated to the "D" position or "S" position, outputs the first line pressure P L1 inputted as a drive oil pressure P D, the shift lever 74 is "R when operated to "position, and outputs the first line pressure P L1 inputted as a reverse pressure P R, when the shift lever 74 is operated to the" P "position or the" N "position, shuts off the hydraulic pressure of the output to (leads to drive hydraulic P D and the reverse hydraulic P R to the discharge side). Thus, the hydraulic pressure supply device 112, the first line pressure P L1, second line pressure P L2, modulator pressure P M, and outputs a drive oil pressure P D, and reverse hydraulic P R.
 また、油圧制御回路110には、各油圧アクチュエータACT1~ACT5に対応して、リニアソレノイドバルブSL1~SL5(以下特に区別しない場合はリニアソレノイドバルブSLと記載する)がそれぞれ設けられている。油圧アクチュエータACT1、ACT2、ACT3、ACT5には、それぞれ対応するリニアソレノイドバルブSL1、SL2、SL3、SL5により、油圧供給装置112からそれぞれ供給されたドライブ油圧Pが電子制御装置50からの各指令信号(油圧指令値)に応じた各係合油圧(クラッチ圧、ブレーキ圧)であるC1クラッチ圧PC1、C2クラッチ圧PC2、B1ブレーキ圧PB1、B3ブレーキ圧PB3に調圧されてそれぞれ直接的に供給される。また、各油圧アクチュエータACT4には、対応するリニアソレノイドバルブSL4により、油圧供給装置112から供給された第1ライン油圧PL1が電子制御装置50からの指令信号に応じたB2ブレーキ圧PB2に調圧されて直接的に供給される。尚、ブレーキB3の油圧アクチュエータACT5には、リニアソレノイドバルブSL5により調圧されたB3ブレーキ圧PB3又はリバース油圧Pのどちらかがシャトル弁122を介して供給されるようになっている。 The hydraulic control circuit 110 is provided with linear solenoid valves SL1 to SL5 (hereinafter referred to as linear solenoid valves SL unless otherwise specified) corresponding to the hydraulic actuators ACT1 to ACT5. Hydraulic actuators ACT1, ACT2, ACT3, the ACT5, the corresponding linear solenoid valve SL1, SL2, SL3, SL5, the drive oil pressure P D supplied from each of the hydraulic pressure supply device 112 is the command signal from the electronic control unit 50 The pressures are adjusted to C1 clutch pressure P C1 , C2 clutch pressure P C2 , B1 brake pressure P B1 , and B3 brake pressure P B3 , which are the engagement hydraulic pressures (clutch pressure, brake pressure) according to (hydraulic command value), respectively. Supplied directly. Further, each hydraulic actuator ACT4 adjusts the first line hydraulic pressure P L1 supplied from the hydraulic pressure supply device 112 to the B2 brake pressure P B2 corresponding to the command signal from the electronic control device 50 by the corresponding linear solenoid valve SL4. Pressurized and supplied directly. Incidentally, the hydraulic actuator ACT5 brake B3, either the B3 brake pressure P B3 or the reverse hydraulic pressure P R pressure regulated by the linear solenoid valve SL5 is adapted to be supplied via the shuttle valve 122.
 リニアソレノイドバルブSL1~SL5は、基本的には何れも同じ構成であり、電子制御装置50によりそれぞれ独立に励磁、非励磁や電流制御がなされて各油圧アクチュエータACT1~ACT5へ供給される油圧を独立に調圧制御し、クラッチC1,C2のクラッチ圧PC1,PC2、及びブレーキB1,B2,B3のブレーキ圧PB1,PB2,PB3をそれぞれ制御するものである。例えば、クラッチC1を例にすれば、電子制御装置50から出力される油圧指令値に対応する駆動電流ISL1に応じたC1クラッチ圧PC1がリニアソレノイドバルブSL1から出力される。そして、自動変速機12は、例えば図2の係合作動表に示すように予め定められた係合装置が係合されることによって各ギヤ段GSが成立させられる。また、自動変速機12の変速制御においては、例えば変速に関与するクラッチCやブレーキBの解放側摩擦係合装置と係合側摩擦係合装置との掴み替えによる所謂クラッチツゥクラッチ変速が実行される。このクラッチツゥクラッチ変速の際には、変速ショックを抑制しつつ可及的に速やかに変速が実行されるように解放側摩擦係合装置の解放過渡係合油圧と係合側摩擦係合装置の係合過渡係合油圧とが適切に制御される。例えば、図2の係合作動表に示すように3速→4速のアップシフトでは、ブレーキB3が解放されると共にクラッチC2が係合され、変速ショックを抑制するようにブレーキB3の解放過渡油圧とクラッチC2の係合過渡油圧とが適切に制御される。 The linear solenoid valves SL1 to SL5 basically have the same configuration, and the hydraulic pressure supplied to the hydraulic actuators ACT1 to ACT5 is independently controlled by the electronic control unit 50, independently excited, de-energized, and current controlled. To control the clutch pressures P C1 and P C2 of the clutches C1 and C2 and the brake pressures P B1 , P B2 and P B3 of the brakes B1 , B2 and B3 , respectively. For example, if the clutch C1 as an example, C1 clutch pressure P C1 corresponding to the drive current I SL1 corresponding to the hydraulic pressure command value output from the electronic control unit 50 is output from the linear solenoid valve SL1. In the automatic transmission 12, for example, each gear stage GS is established by engaging a predetermined engagement device as shown in the engagement operation table of FIG. In the shift control of the automatic transmission 12, a so-called clutch-to-clutch shift is performed by, for example, re-engaging the disengagement side frictional engagement device and the engagement side frictional engagement device of the clutch C and brake B involved in the shift. The At the time of this clutch-to-clutch shift, the release transient engagement hydraulic pressure of the release side frictional engagement device and the engagement side frictional engagement device of the engagement side frictional engagement device are set so that the shift is executed as quickly as possible while suppressing the shift shock. The engagement transient engagement hydraulic pressure is appropriately controlled. For example, as shown in the engagement operation table of FIG. 2, in the upshift from the 3rd speed to the 4th speed, the brake B3 is released and the clutch C2 is engaged, so that the release transient hydraulic pressure of the brake B3 is suppressed so as to suppress the shift shock. And the engagement hydraulic pressure of the clutch C2 are appropriately controlled.
 図5は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。図5において、エンジン出力制御部すなわちエンジン出力制御手段80は、例えばスロットル制御の為にスロットルアクチュエータにより電子スロットル弁を開閉制御する他、燃料噴射量制御の為に燃料噴射装置による燃料噴射量を制御し、点火時期制御の為にイグナイタ等の点火装置を制御するエンジン出力制御指令信号Sを出力する。例えば、エンジン出力制御手段80は、図6に示すようなスロットル弁開度θTHをパラメータとしてエンジン回転速度NとエンジントルクTの推定値(以下推定エンジントルク)T’との予め実験的に求められて記憶された関係(エンジントルクマップ)から実際のエンジン回転速度Nに基づいて目標エンジントルクT が得られるスロットル弁開度θTHとなるように電子スロットル弁を開閉制御する他、燃料噴射装置による燃料噴射量を制御し、イグナイタ等の点火装置を制御する。上記目標エンジントルクT は、例えば加速要求量に対応するアクセル開度Accに基づいてそのアクセル開度Accが大きい程大きくされるように電子制御装置50により求められるものであり、ドライバー要求エンジントルクに相当する。尚、図6に示すようなエンジントルクマップでは、スロットル弁開度θTHに替えて、吸入空気量Q等の他のエンジン負荷に相当するパラメータが用いられても良い。 FIG. 5 is a functional block diagram for explaining the main part of the control function by the electronic control unit 50. In FIG. 5, the engine output control unit, that is, the engine output control means 80 controls the fuel injection amount by the fuel injection device for the fuel injection amount control, in addition to controlling the opening and closing of the electronic throttle valve by the throttle actuator for the throttle control, for example. and outputs an engine output control command signal S E for controlling the ignition device such as an igniter for ignition timing control. For example, the engine output control means 80, the estimated value of the engine rotational speed N E and engine torque T E and the throttle valve opening theta TH as shown in FIG. 6 as a parameter (hereinafter estimated engine torque) in advance experiments with T E ' manner sought controls the opening and closing of the electronic throttle valve so that the throttle valve opening theta TH which target engine torque T E * obtained based on the actual engine rotational speed N E from the stored relationship (engine torque map) In addition, the fuel injection amount by the fuel injection device is controlled, and an ignition device such as an igniter is controlled. The target engine torque T E * is determined by the electronic control unit 50 so as to increase as the accelerator opening Acc increases, for example, based on the accelerator opening Acc corresponding to the requested acceleration amount. Corresponds to torque. In the engine torque map as shown in FIG. 6, parameters corresponding to other engine loads such as the intake air amount Q may be used instead of the throttle valve opening θ TH .
 変速制御部すなわち変速制御手段82は、例えば図7に示すような車速V及びアクセル開度Accを変数として予め記憶された関係(変速マップ、変速線図)から実際の車速V及びアクセル開度Accで示される車両状態に基づいて変速判断を行い、自動変速機12の変速を実行すべきか否かを判断する。そして、変速制御手段82は、自動変速機12の変速すべきギヤ段を判断し、その判断したギヤ段が得られるように自動変速機12の自動変速制御を実行する変速指令を出力する。例えば、変速制御手段82は、図2に示す係合表に従ってギヤ段が達成されるように、自動変速機12の変速に関与する油圧式摩擦係合装置を係合及び/又は解放させる油圧制御指令信号(変速出力指令値)Sを油圧制御回路110へ出力する。 The shift control unit, that is, the shift control means 82, for example, from the relationship (shift map, shift map) stored in advance with the vehicle speed V and the accelerator opening Acc as variables as shown in FIG. The shift determination is performed based on the vehicle state indicated by, and it is determined whether or not the shift of the automatic transmission 12 should be executed. Then, the shift control means 82 determines a gear stage to be shifted in the automatic transmission 12, and outputs a shift command for executing the automatic shift control of the automatic transmission 12 so that the determined gear stage is obtained. For example, the shift control means 82 engages and / or releases the hydraulic friction engagement device involved in the shift of the automatic transmission 12 so that the gear stage is achieved according to the engagement table shown in FIG. command signal and outputs the (shift output command value) S P to the hydraulic control circuit 110.
 図7の変速マップにおいて、実線はアップシフトが判断されるための変速線(アップシフト線)であり、破線はダウンシフトが判断されるための変速線(ダウンシフト線)である。この図7の変速マップにおける変速線は、例えば実際のアクセル開度Acc(%)を示す横線上において実際の車速Vが線を横切ったか否かすなわち変速線上の変速を実行すべき値(変速点車速)Vを越えたか否かを判断するためのものであり、この値Vすなわち変速点車速の連なりとして予め記憶されていることにもなる。 In the shift map of FIG. 7, the solid line is a shift line (upshift line) for determining an upshift, and the broken line is a shift line (downshift line) for determining a downshift. The shift line in the shift map of FIG. 7 is, for example, whether or not the actual vehicle speed V crosses the line on the horizontal line indicating the actual accelerator opening Acc (%), that is, the value (shift point to be changed) on the shift line. This is for determining whether or not the vehicle speed (V S ) has been exceeded, and is also stored in advance as a series of this value V S, that is, the shift point vehicle speed.
 前記油圧制御指令信号Sは、クラッチCやブレーキBの伝達トルク容量(クラッチトルク、ブレーキトルク、係合トルク)に対応する係合油圧(クラッチ圧、ブレーキ圧)を制御する為のトルク指令値、すなわち必要な伝達トルク容量が得られる係合油圧を発生する為の油圧指令値であって、例えば解放側摩擦係合装置のトルク指令値として解放側摩擦係合装置を解放する為の必要な伝達トルク容量が得られるように作動油が排出される油圧指令値が出力されると共に、係合側摩擦係合装置のトルク指令値として係合側摩擦係合装置を係合する為の必要な伝達トルク容量が得られるように作動油が供給される油圧指令値が出力される。また、自動変速機12の何れかのギヤ段GSを維持する非変速時には、変速機入力トルクTINに耐えうる摩擦力を保持できる(すなわち伝達トルク容量を確保できる)係合油圧を発生するための油圧指令値が出力される。油圧制御回路110は、変速制御手段82による油圧制御指令信号Sに従って、自動変速機12の変速が実行されるように、或いは自動変速機12の現在のギヤ段GSが維持されるように、油圧制御回路110内のリニアソレノイドバルブSL1~SL5を作動させて、そのギヤ段GS成立(形成)に関与する油圧式摩擦係合装置の各油圧アクチュエータACT1~ACT5を作動させる。 The hydraulic control command signal SP is a torque command value for controlling the engagement hydraulic pressure (clutch pressure, brake pressure) corresponding to the transmission torque capacity (clutch torque, brake torque, engagement torque) of the clutch C or the brake B. That is, a hydraulic pressure command value for generating an engagement hydraulic pressure that obtains a necessary transmission torque capacity, for example, a necessary value for releasing the release side frictional engagement device as a torque command value of the release side frictional engagement device. A hydraulic pressure command value for discharging hydraulic oil is output so that a transmission torque capacity can be obtained, and a necessary value for engaging the engagement side frictional engagement device as a torque command value of the engagement side frictional engagement device. A hydraulic pressure command value to which hydraulic oil is supplied so as to obtain a transmission torque capacity is output. Further, at the time of non-shifting in which any gear stage GS of the automatic transmission 12 is maintained, an engagement hydraulic pressure that can maintain a frictional force that can withstand the transmission input torque TIN (that is, can secure a transmission torque capacity) is generated. The hydraulic pressure command value is output. The hydraulic control circuit 110, in accordance with the hydraulic pressure control command signal S P by the shift control unit 82, so as the shift of the automatic transmission 12 is executed, or the current gear position GS of the automatic transmission 12 is maintained, The linear solenoid valves SL1 to SL5 in the hydraulic control circuit 110 are operated to operate the hydraulic actuators ACT1 to ACT5 of the hydraulic friction engagement device involved in the establishment (formation) of the gear stage GS.
 尚、上記変速機入力トルクTINは、例えばトルクコンバータ32を介して自動変速機12へ入力されるトルクすなわちクラッチC1の入力側へ伝達される伝達トルクである。この変速機入力トルクTINは、例えば図6に示すようなエンジントルクマップから実際のエンジン回転速度N及びスロットル弁開度θTHに基づいて算出される推定エンジントルクTE’にトルクコンバータ32のトルク比t(=タービントルクT/ポンプトルクT)を乗じたトルク(=T’×t)として算出される。また、上記トルクコンバータ32のトルク比tは、例えば速度比e(=タービン回転速度N/ポンプ回転速度N(エンジン回転速度N))とトルク比t、効率η、及び容量係数Cとのそれぞれの予め実験的に求められて記憶された不図示の公知の関係(マップ、トルクコンバータ32の所定の作動特性図)から実際の速度比eに基づいて算出される。 The transmission input torque TIN is, for example, torque input to the automatic transmission 12 via the torque converter 32, that is, transmission torque transmitted to the input side of the clutch C1. The transmission input torque T IN is converted into an estimated engine torque TE ′ calculated based on the actual engine speed NE and the throttle valve opening θ TH from an engine torque map as shown in FIG. It is calculated as a torque (= T E ′ × t) multiplied by a torque ratio t (= turbine torque T T / pump torque T P ). Further, the torque ratio t of the torque converter 32 is, for example, a speed ratio e (= turbine rotational speed N T / pump rotational speed N P (engine rotational speed N E )), torque ratio t, efficiency η, and capacity coefficient C. Is calculated based on the actual speed ratio e from a known relationship (not shown) (a map, a predetermined operation characteristic diagram of the torque converter 32) that is experimentally obtained and stored in advance.
 ここで、本実施例の車両10では、例えば車両停車中におけるエンジン30のアイドリング負荷を低減する為にニュートラル制御を実行する。このニュートラル制御は、例えば予め設定された所定のニュートラル制御条件が満たされた場合に、発進クラッチであるクラッチC1を所定のスリップ状態乃至解放状態として自動変速機12内の動力伝達経路を動力伝達抑制状態(すなわち動力伝達遮断状態と略同等の状態乃至動力伝達遮断状態)とする制御である。尚、クラッチC1の所定のスリップ状態とは、若干の滑りを有するが係合荷重の殆ど生じていないすなわち伝達トルク容量を殆ど持たない解放状態と同等の状態である。 Here, in the vehicle 10 of the present embodiment, for example, neutral control is executed to reduce the idling load of the engine 30 while the vehicle is stopped. In this neutral control, for example, when a predetermined neutral control condition set in advance is satisfied, the power transmission path in the automatic transmission 12 is suppressed by setting the clutch C1, which is a starting clutch, to a predetermined slip state or released state. This is control for setting the state (that is, the state substantially equivalent to the power transmission cutoff state or the power transmission cutoff state). The predetermined slip state of the clutch C1 is a state equivalent to a disengaged state in which there is a slight slip but little engagement load is generated, that is, there is almost no transmission torque capacity.
 具体的には、ニュートラル制御条件判定部すなわちニュートラル制御条件判定手段84は、例えばシフトレバー74の走行ポジションにおいて所定のニュートラル制御条件が成立するか否かを判定する。すなわち、ニュートラル制御条件判定手段84は、所定のニュートラル制御条件が成立するか否かを判定することにより、ニュートラル制御の実行を開始するか否かを逐次判定するニュートラル制御実行判定手段である。この所定のニュートラル制御条件は、例えば車両10が停止中であってアクセルペダル56が踏み込まれておらず、フットブレーキペダル70が踏まれていることなどである。ニュートラル制御条件判定手段84は、例えばレバーポジションPSHが「D」ポジションであるときに、車速Vが車両停止を判定する為の所定の車速零判定値であり、アクセル開度Accがアクセルオフを判定する為の所定の開度零判定値であり、且つブレーキスイッチ68から操作(オン)BONを表す信号が出力されている場合に、ニュートラル制御条件が成立したと判定する。 Specifically, the neutral control condition determination unit, that is, the neutral control condition determination unit 84 determines whether or not a predetermined neutral control condition is satisfied at the travel position of the shift lever 74, for example. That is, the neutral control condition determination means 84 is a neutral control execution determination means that sequentially determines whether or not to start execution of neutral control by determining whether or not a predetermined neutral control condition is satisfied. The predetermined neutral control condition is, for example, that the vehicle 10 is stopped, the accelerator pedal 56 is not depressed, and the foot brake pedal 70 is depressed. For example, when the lever position P SH is the “D” position, the neutral control condition determination means 84 is a predetermined vehicle speed zero determination value for determining whether the vehicle is stopped, and the accelerator opening Acc is accelerator-off. When a predetermined opening degree zero determination value for determination and a signal indicating operation (ON) B ON is output from the brake switch 68, it is determined that the neutral control condition is satisfied.
 また、ニュートラル制御条件判定手段84は、後述するニュートラル制御手段86によるニュートラル制御中に前記所定のニュートラル制御条件が成立するか否かを判定することにより、そのニュートラル制御を解除(終了)するか否かを逐次判定する、すなわちニュートラル制御からの復帰を開始するか否かを逐次判定するニュートラル制御解除判定手段でもある。例えば、ニュートラル制御条件判定手段84は、ニュートラル制御手段86によるニュートラル制御中に、例えばレバーポジションPSHが「D」ポジションから操作されたか、アクセルペダル56が踏込み操作されたと判定されるような所定のアクセル開度判定値以上となったか、或いはブレーキスイッチ68から操作(オン)BONを表す信号が出力されなくなったブレーキオフの場合に、ニュートラル制御の解除開始を判定する。 Further, the neutral control condition determining means 84 determines whether or not to release (end) the neutral control by determining whether or not the predetermined neutral control condition is satisfied during the neutral control by the neutral control means 86 described later. This is also a neutral control release determination means for sequentially determining whether or not to return from neutral control. For example, the neutral control condition determining unit 84 is a predetermined unit that determines that, for example, the lever position P SH is operated from the “D” position or the accelerator pedal 56 is depressed during the neutral control by the neutral control unit 86. In the case of brake-off in which the signal indicating the operation (ON) B ON is no longer output from the brake switch 68 or the brake opening is not made, the neutral control release start is determined.
 ニュートラル制御部すなわちニュートラル制御手段86は、例えばニュートラル制御条件判定手段84によりシフトレバー74の「D」ポジションにおいて前記所定のニュートラル制御条件が成立したと判定された場合には、第1速ギヤ段を達成する為の係合装置であるクラッチC1を所定のスリップ状態乃至解放状態とするニュートラル制御実行指令を変速制御手段82に出力して、自動変速機12を含む動力伝達経路を動力伝達抑制状態乃至動力伝達遮断状態とするニュートラル制御(N制御)を実行する。変速制御手段82は、そのニュートラル制御実行指令に従って、クラッチC1を所定のスリップ状態乃至解放状態とするように予め設定された通常N制御時の設定圧としての所定の解放パターンすなわちクラッチC1の油圧指令値SPC1に従ってC1クラッチ圧PC1を低下させるクラッチ解放指令を油圧制御回路110に出力する。自動変速機12内の動力伝達が抑制乃至遮断(解放)されることにより、トルクコンバータ32の後段側(下流側)の負荷が抑制され、トルクコンバータ32が略一体回転するようになってエンジン30のアイドリング負荷が抑制され、燃費やNVH(騒音・振動・乗り心地)性能が向上する。このように、ニュートラル制御では、クラッチC1が例えば解放状態(或いはわずかにスリップ係合するような係合直前状態)とさせられることにより、自動変速機12内の動力伝達経路が実質的に解放状態とされつつ、クラッチC1の半係合から係合への切換によって直ちに発進可能な発進待機状態とされる。 For example, when the neutral control condition determining unit 84 determines that the predetermined neutral control condition is satisfied at the “D” position of the shift lever 74, the neutral control unit, that is, the neutral control unit 86 changes the first speed gear stage. A neutral control execution command for setting the clutch C1, which is an engagement device to achieve, to a predetermined slip state or release state is output to the shift control means 82, and the power transmission path including the automatic transmission 12 is set to the power transmission suppression state or Neutral control (N control) is executed to cut off the power transmission. The shift control means 82, according to the neutral control execution command, sets a predetermined release pattern as a set pressure during normal N control that is set in advance to bring the clutch C1 into a predetermined slip state or release state, that is, a hydraulic command for the clutch C1. outputting a clutch release command to lower the C1 clutch pressure P C1 to the hydraulic control circuit 110 according to the value S PC1. When the power transmission in the automatic transmission 12 is suppressed or interrupted (released), the load on the rear stage (downstream side) of the torque converter 32 is suppressed, and the torque converter 32 rotates substantially integrally so that the engine 30 rotates. The idling load of the vehicle is suppressed, and fuel efficiency and NVH (noise / vibration / riding comfort) performance are improved. As described above, in the neutral control, the clutch C1 is brought into a released state (or a state just before engaging so as to be slightly slip-engaged), so that the power transmission path in the automatic transmission 12 is substantially released. At the same time, a start standby state in which the vehicle can start immediately by switching from half-engagement to engagement of the clutch C1 is set.
 また、ニュートラル制御手段86は、例えばニュートラル制御中にニュートラル制御条件判定手段84によりニュートラル制御の解除開始が判定された場合には、自動変速機12を含む動力伝達経路を動力伝達可能状態とするように、第1速ギヤ段の係合側係合装置であるクラッチC1のクラッチトルク容量を増加させて係合させるニュートラル制御解除指令を変速制御手段82に出力して、ニュートラル制御を解除(終了)するすなわちニュートラル制御から復帰させる。変速制御手段82は、そのニュートラル制御解除指令に従って、クラッチC1を係合状態とするように予め設定された通常N制御解除時の設定圧としての所定の係合パターンすなわちクラッチC1の油圧指令値SPC1に従ってC1クラッチ圧PC1を上昇させるクラッチ係合指令を油圧制御回路110に出力する。 Further, for example, when the neutral control condition determination unit 84 determines that the neutral control release is started during the neutral control, the neutral control unit 86 sets the power transmission path including the automatic transmission 12 in a power transmission enabled state. In addition, a neutral control release command for increasing the clutch torque capacity of the clutch C1, which is the engagement side engagement device for the first gear, is output to the shift control means 82, and the neutral control is released (end). That is, return from neutral control. The shift control means 82 is a predetermined engagement pattern as a set pressure at the time of releasing the normal N control that is set in advance to bring the clutch C1 into the engaged state in accordance with the neutral control release command, that is, the hydraulic pressure command value S of the clutch C1. It outputs a clutch engagement command to raise the C1 clutch pressure P C1 to the hydraulic control circuit 110 according to PC1.
 ところで、上記N制御は車両停止中に実行されるものであるが、更なる燃費向上を図る為に、車両停止中だけでなく、車両走行中例えばアクセルオフの車両減速走行中にも上記N制御を実行することが望まれる。しかしながら、車両減速走行中に実行されるN制御(走行中N制御)においては、車両停止中に実行されるN制御(通常N制御)と異なり、例えば減速走行中にエンジンブレーキ力が低下することでの減速度変化による違和感等が生じる可能性がある。また、走行中N制御を解除する場合の再加速の際に、車両停止からの再発進時と同様の一律の復帰制御では、例えば再加速時のクラッチ係合の応答遅れによる駆動トルクの立ち上がりのもたつき感が再発進時よりも大きくなったり、またそのもたつき感を抑制する為にクラッチ係合を早くすると係合ショックが増大する可能性がある。このように、走行中からN制御を開始すると、燃費向上が図れるものの、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが増大してドライバビリティが低下する可能性がある。 By the way, the N control is executed while the vehicle is stopped. In order to further improve the fuel efficiency, the N control is performed not only when the vehicle is stopped, but also when the vehicle is running, for example, when the vehicle is decelerated with the accelerator off. Is desired to perform. However, in N control (N running control) executed while the vehicle is decelerating, unlike the N control (normal N control) executed while the vehicle is stopped, for example, the engine braking force decreases during decelerating running. There may be a sense of incongruity due to a change in the deceleration at. In the case of re-acceleration when canceling the N control during traveling, the same return control as when re-starting from the stop of the vehicle is performed. For example, the drive torque rises due to the response delay of clutch engagement at the time of re-acceleration. There is a possibility that the engagement shock will increase if the feeling of stickiness becomes larger than that at the time of restart, and if clutch engagement is made earlier in order to suppress the feeling of stickiness. As described above, when N control is started while the vehicle is running, fuel efficiency can be improved. there is a possibility.
 そこで、本実施例では、上記課題を解決する為に、以下の制御方法(制御思想)が導入されている。すなわち、走行中N制御に関して、走行中N制御の実行に伴う違和感の抑制、及びアクセル再踏込み時のもたつき感改善と係合ショックの抑制等、ドライバビリティ向上の為に、走行中N制御を下記に示すように4つの状態(4つのフェーズ)に分ける。そして、各々の状態に応じてアクセル再踏込みを考慮した油圧制御を行う。尚、以下の説明において、便宜上、クラッチという文言にはクラッチC及びブレーキBを含み、クラッチの伝達トルク容量に対応するクラッチ圧という文言にはクラッチ圧及びブレーキ圧を含むものとする。 Therefore, in this embodiment, the following control method (control idea) is introduced in order to solve the above problems. In other words, for the N control during traveling, the N control during traveling is set to As shown in FIG. 4, it is divided into four states (four phases). Then, hydraulic control is performed in consideration of accelerator depressing according to each state. In the following description, for the sake of convenience, the term “clutch” includes the clutch C and the brake B, and the term “clutch pressure” corresponding to the transmission torque capacity of the clutch includes the clutch pressure and the brake pressure.
 先ず、状態[1]の制御(フェーズ1制御)として、例えば自動変速機12のギヤ段GSが成立している状態におけるアクセルオフの減速走行中に、現ギヤ段GSを形成している一方のクラッチである発進クラッチすなわちクラッチC1と、現ギヤ段GSを形成している他方のクラッチとを、何れも調圧状態にする。これは、後述する状態[2]の制御を実行する為の前準備すなわち状態[2]の制御におけるクラッチ圧の漸減が速やかに開始される為の前準備として行う。その為、ここでは、アクセル再踏込みが行われても滑らないクラッチ圧にする。つまり、現ギヤ段GSを形成しているクラッチのクラッチ圧を、各クラッチが完全係合される為の各最大伝達トルク容量に対応する各最大クラッチ圧から、アクセルオンされても各クラッチに差回転が生じないようなクラッチ圧として予め実験的に求められて設定された各所定伝達トルク容量に対応する各所定クラッチ圧βへそれぞれ低下させる。そして、状態[2]の制御が開始されるまでは現ギヤ段GSを形成している各クラッチのクラッチ圧を上記所定クラッチ圧βに維持する。また、この状態[1]においてアクセル再踏込みが為された場合には、例えば現ギヤ段GSを形成している各クラッチに滑り(差回転)が発生しない為、調圧状態にしているクラッチ圧を最大クラッチ圧まで速やかに上昇させる。従って、このフェーズ1制御では、クラッチ滑りがない状態で現ギヤ段GSがそのまま形成されており、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが抑制される。また、現ギヤ段GSとしては、少なくとも発進クラッチすなわちクラッチC1の係合により形成されていることが好ましいので、減速中に第1速ギヤ段乃至第4速ギヤ段が形成されるような車速V以下となっていることを状態[1]を開始する条件としても良い。また、減速中にエンジン30への燃料供給を停止するような公知のフューエルカット制御が実行される場合には、フューエルカット制御が解除される所定の復帰エンジン回転速度Nや所定の復帰タービン回転速度Nを下回るようなエンジン回転速度Nやタービン回転速度N以下となっていることを状態[1]を開始する条件としても良い。 First, as the control of the state [1] (phase 1 control), for example, the current gear stage GS is formed while the accelerator stage is decelerated while the gear stage GS of the automatic transmission 12 is established. The starting clutch that is the clutch, that is, the clutch C1, and the other clutch that forms the current gear stage GS are both brought into a pressure-controlled state. This is performed as a preparation for executing the control of the state [2] to be described later, that is, a preparation for starting the gradual decrease of the clutch pressure in the control of the state [2]. Therefore, here, the clutch pressure is set so as not to slip even if the accelerator is depressed again. In other words, the clutch pressure of the clutch that forms the current gear stage GS is different from each clutch even if the accelerator is turned on from each maximum clutch pressure corresponding to each maximum transmission torque capacity for complete engagement of each clutch. The clutch pressure is reduced to each predetermined clutch pressure β corresponding to each predetermined transmission torque capacity that has been experimentally obtained and set in advance as a clutch pressure that does not cause rotation. Until the control of the state [2] is started, the clutch pressure of each clutch forming the current gear stage GS is maintained at the predetermined clutch pressure β. Further, when the accelerator is depressed again in this state [1], for example, slip (differential rotation) does not occur in each clutch forming the current gear stage GS. Is quickly increased to the maximum clutch pressure. Therefore, in this phase 1 control, the current gear stage GS is formed as it is without clutch slipping, and the uncomfortable feeling due to the change in deceleration, the feeling of jerking at the time of reacceleration, the engagement shock at the time of releasing the N control, etc. are suppressed. The Further, since the current gear stage GS is preferably formed by at least the engagement of the starting clutch, that is, the clutch C1, the vehicle speed V at which the first to fourth gear stages are formed during deceleration. The following may be used as a condition for starting the state [1]. Further, when the known fuel cut control to stop the fuel supply to the engine 30 during deceleration is executed, predetermined reset engine speed N E and the predetermined recovery turbine rotating the fuel cut control is released it may be a condition for starting the state [1] which is equal to or less than the engine speed N E and the turbine rotational speed N T as below the speed N T.
 ここで、上記車速Vについて考察する。本実施例では、出力回転速度NOUTをもって車速Vを表すが、車速V(NOUT)に1対1で一意的に対応する回転速度に関しては、車速関連値として車速Vと同意に取り扱う。例えば、車速関連値としては、車速V(出力回転速度NOUT)はもちろんのこと、駆動輪38側の回転に一意的に拘束されるタービン回転速度N(入力回転速度NIN)、車軸36の回転速度などである。尚、クラッチC1が係合されていないなどによりギヤ段GSが完全に形成されていない場合には、タービン回転速度N(入力回転速度NIN)は車速V(NOUT)とは1対1で対応しない。その為、センサにより検出された実際のタービン回転速度Nとは別に、出力回転速度NOUTとギヤ段GSにおける変速比γGSとから換算したタービン回転速度N(入力回転速度NIN)(=γGS×NOUT)を車速関連値として車速Vと同意に取り扱う。例えば、出力回転速度NOUTと自動変速機12の現在のギヤ段GSNにおける現在の変速比γGSNに基づいて算出される現ギヤ比入力回転速度NINN(=γGSN×NOUT)や出力回転速度NOUTと発進時の自動変速機12のギヤ段GSS(すなわち第1速ギヤ段)における発進時の変速比γGSSに基づいて算出される発進ギヤ比入力回転速度NINS(=γGSS×NOUT)を車速関連値として取り扱う。 Here, the vehicle speed V will be considered. In the present embodiment, the vehicle speed V is represented by the output rotational speed N OUT , but the rotational speed that uniquely corresponds to the vehicle speed V (N OUT ) on a one-to-one basis is treated as an agreement with the vehicle speed V as a vehicle speed related value. For example, as a vehicle speed related value, not only the vehicle speed V (output rotation speed N OUT ), but also the turbine rotation speed N T (input rotation speed N IN ) uniquely restricted by the rotation on the drive wheel 38 side, the axle 36 The rotation speed of When the gear stage GS is not completely formed because the clutch C1 is not engaged or the like, the turbine rotation speed N T (input rotation speed N IN ) is 1: 1 with the vehicle speed V (N OUT ). Does not correspond. Therefore, separately from the actual turbine rotation speed NT detected by the sensor, the turbine rotation speed N T (input rotation speed N IN ) converted from the output rotation speed N OUT and the gear ratio γGS at the gear stage GS (= (γGS × N OUT ) is treated as a vehicle speed related value and is handled in agreement with the vehicle speed V. For example, the current gear ratio input rotation speed N INN (= γGSN × N OUT ) calculated based on the output rotation speed N OUT and the current gear ratio γGSN at the current gear stage GSN of the automatic transmission 12 or the output rotation speed N The starting gear ratio input rotational speed N INS (= γGSS × N OUT ) calculated based on OUT and the speed ratio γGSS at the time of starting in the gear stage GSS (that is, the first speed gear stage) of the automatic transmission 12 at the time of starting. Treated as a vehicle speed related value.
 前記状態[1]に次いで、状態[2]の制御(フェーズ2制御)として、例えば減速走行中に現ギヤ比入力回転速度NINNが第2所定車速関連値としての所定回転2以下となったら、自動変速機12の現在のギヤ段GSNを維持した状態で、C1クラッチ圧を所定クラッチ圧βから車速V低下に応じて漸減させるすなわち徐々に低下させ、クラッチC1を滑り状態にする。このC1クラッチ圧の漸減は、例えばエンジンブレーキ力を弱める制御であるので、どの時点から漸減を開始してどのような勾配で漸減させたら減速度変化による違和感が抑制されるかを考慮して、上記所定回転2や漸減時のC1クラッチ圧の車速V低下に応じた低下勾配が予め実験的に求められて設定されている。このように、フェーズ2制御は、例えば徐々に出力トルクTOUT(例えばエンジンブレーキトルクを含む減速トルク(負トルク))を零へ近づける処理である。また、この状態[2]においてアクセル再踏込みが為された場合には、例えばクラッチC1は弱滑り状態(弱スリップ状態)である為にタービン回転速度Nの吹き(回転上昇)が発生する可能性がある。これに対して、タービン回転速度Nの吹きを抑える為にクラッチC1を早く係合すると係合ショックが懸念される。そこで、状態[1]の場合よりもC1クラッチ圧の上昇をなまし、トルク変動を出力トルクTOUTの変動を滑らかにする。例えば、タービン回転速度Nの吹きを抑えつつ係合ショックが抑制されるように予め実験的に求められて設定された所定の上昇勾配でC1クラッチ圧を最大クラッチ圧まで上昇させる。尚、現ギヤ段GSを形成しているクラッチC1とは別の他方のクラッチについては、そのクラッチ圧を最大クラッチ圧まで速やかに上昇させる。従って、このフェーズ2制御では、クラッチC1がスリップ状態とされるので、現ギヤ比入力回転速度NINNの低下速度よりも早い変化速度でタービン回転速度Nがエンジン30のアイドル回転速度NEIDLに向かって低下させられる。また、調圧状態からC1クラッチ圧を低下する制御であるので、最大クラッチ圧から制御を開始することに比較して、速やかに開始される。また、出力トルクTOUTの急変が防止される。よって、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが抑制される。 Following the state [1], as the control of the state [2] (phase 2 control), for example, when the current gear ratio input rotational speed N INN becomes equal to or lower than the predetermined rotational speed 2 as the second predetermined vehicle speed related value during reduced speed traveling. In the state where the current gear stage GSN of the automatic transmission 12 is maintained, the C1 clutch pressure is gradually decreased from the predetermined clutch pressure β according to the decrease in the vehicle speed V, that is, gradually decreased, and the clutch C1 is brought into a sliding state. This gradual decrease of the C1 clutch pressure is, for example, control for weakening the engine braking force. Therefore, considering at what time point the gradual decrease is started and the gradient is gradually decreased, the uncomfortable feeling due to the change in deceleration is suppressed. A decrease gradient corresponding to a decrease in the vehicle speed V of the C1 clutch pressure at the time of the predetermined rotation 2 or gradual decrease is experimentally obtained and set in advance. Thus, the phase 2 control is, for example, a process of gradually bringing the output torque T OUT (eg, deceleration torque including engine brake torque (negative torque)) closer to zero. Further, when the accelerator is stepped on again in this state [2], for example, the clutch C1 is in a weak slip state (weak slip state), so that blow (rotation increase) of the turbine rotational speed NT may occur. There is sex. On the other hand, there is a concern about engagement shock if the clutch C1 is engaged early in order to suppress blowing of the turbine rotational speed NT . Therefore, the C1 clutch pressure is increased more than in the case of the state [1], and the torque fluctuation is smoothed by the fluctuation of the output torque TOUT . For example, the C1 clutch pressure is increased to the maximum clutch pressure with a predetermined rising gradient that is experimentally obtained in advance and set so as to suppress the engagement shock while suppressing the blow of the turbine rotational speed NT . For the other clutch other than the clutch C1 forming the current gear stage GS, the clutch pressure is quickly increased to the maximum clutch pressure. Therefore, in this phase 2 control, the clutch C1 is brought into the slip state, so that the turbine rotational speed NT is changed to the idle rotational speed N EIDL of the engine 30 at a changing speed faster than the decreasing speed of the current gear ratio input rotational speed N INN. It is lowered. In addition, since the control is performed to decrease the C1 clutch pressure from the regulated state, the control is started more quickly than when the control is started from the maximum clutch pressure. In addition, a sudden change in the output torque T OUT is prevented. Therefore, a sense of incongruity due to a change in deceleration, a feeling of rattling during re-acceleration, an engagement shock when releasing N control, and the like are suppressed.
 前記状態[2]に次いで、状態[3]の制御(フェーズ3制御)として、例えば自動変速機12を現在のギヤ段GSNとした状態でC1クラッチ圧を漸減させているときに、減速走行中の実際のタービン回転速度Nがエンジン30のアイドル回転速度NEIDLよりも高いアイドル回転速度NEIDL近傍の第2所定回転速度(NEIDL+α)以下となった場合には、クラッチC1を解放するようにC1クラッチ圧を低下させる。但し、ここでは、再加速性能を確保する為、C1クラッチ圧を調圧できる最低油圧に保持する。つまり、C1クラッチ圧をアクセルオン時にC1クラッチ圧が速やかに最大クラッチ圧へ上昇させられるような可及的に低い第2所定伝達トルク容量に対応する第2所定クラッチ圧αに保持する。上記第2所定回転速度(NEIDL+α)は、例えば減速走行中にアイドル回転速度NEIDLに維持されるエンジン回転速度Nよりもタービン回転速度Nが下回ると、出力トルクTOUTが負トルクから正トルクへ切り替わり、駆動系のギヤのがたうちのショックを感じさせたり駆動力が出る方向に切り替わることによる違和感を生じさせる可能性があることに対して、クラッチC1における伝達トルクを低下させて駆動力の伝達をシャットダウンする時点を規定する為に設定された所定値であり、アイドル回転速度NEIDLに所定のマージンαが加えられている。また、第2所定クラッチ圧αは、例えばエンジン30がアイドル回転速度NEIDLに維持されているときに出力しているアイドルトルクTEIDLが伝達可能な範囲で可及的に低いクラッチ圧として予め実験的に求められて設定されたクラッチ圧である。このフェーズ3制御では、C1クラッチ圧を第2所定クラッチ圧αに保持することに加え、再加速性能を一層確保する為、自動変速機12を現在のギヤ段GSNから発進時のギヤ段GSS(すなわち第1速ギヤ段)へ変速する。このように、ここでは、再加速性能を高める為、変速出力を第1速ギヤ段にし、クラッチC1は調圧状態で待機させる。このとき、発進ギヤ比入力回転速度NINSは実際のタービン回転速度Nよりも高く、一方向クラッチF1が空転状態である為、例えばクラッチC1における伝達トルクが多少発生するような場合でも、駆動力が駆動輪に伝達されず、上記駆動力が出る方向に切り替わることによる違和感が回避される。 Following the state [2], as the control of the state [3] (phase 3 control), for example, when the C1 clutch pressure is gradually decreased with the automatic transmission 12 in the current gear stage GSN, the vehicle is decelerating. When the actual turbine rotational speed NT becomes equal to or lower than the second predetermined rotational speed (N EIDL + α) in the vicinity of the idle rotational speed N EIDL higher than the idle rotational speed N EIDL of the engine 30, the clutch C1 is released. Thus, the C1 clutch pressure is reduced. However, here, in order to ensure re-acceleration performance, the C1 clutch pressure is kept at the lowest hydraulic pressure that can be adjusted. That is, the C1 clutch pressure is held at the second predetermined clutch pressure α corresponding to the second predetermined transmission torque capacity as low as possible so that the C1 clutch pressure can be quickly increased to the maximum clutch pressure when the accelerator is on. The second predetermined rotation speed (N EIDL + α) is, for example, when the turbine rotation speed N T is lower than the engine rotation speed N E maintained at the idle rotation speed N EDL during deceleration traveling, the output torque T OUT becomes a negative torque. The torque of the drive system is changed to a positive torque, and there is a possibility of causing a sense of incongruity due to the shock of the gears of the drive train or switching in the direction in which the drive force is generated. Thus, a predetermined value is set to define the point in time when the transmission of the driving force is shut down, and a predetermined margin α is added to the idle rotational speed NEIDL . For example, the second predetermined clutch pressure α is previously tested as a clutch pressure as low as possible within a range in which the idle torque T EIDL output when the engine 30 is maintained at the idle rotation speed N EIDL can be transmitted. This is the clutch pressure that is determined and set automatically. In this phase 3 control, in addition to maintaining the C1 clutch pressure at the second predetermined clutch pressure α, the automatic transmission 12 is moved from the current gear stage GSN to the gear stage GSS ( That is, the gear is shifted to the first gear. Thus, here, in order to improve the re-acceleration performance, the shift output is set to the first gear, and the clutch C1 is kept in a pressure-controlled state. At this time, since the starting gear ratio input rotational speed N INS is higher than the actual turbine rotational speed NT and the one-way clutch F1 is idling, for example, even if some transmission torque is generated in the clutch C1, the driving is performed. A sense of incongruity caused by the fact that the driving force is not transmitted to the driving wheel and the driving force is switched in the direction in which the driving force is generated is avoided.
 また、この状態[3]においてアクセル再踏込みが為された場合には、例えば一方向クラッチF1が空転状態とされており、クラッチC1をラフに掴んでもすなわち急係合させても急係合ショックは発生しないので、C1クラッチ圧を速やかに第2所定クラッチ圧αから最大クラッチ圧まで上昇させる。このとき、自動変速機12が第1速ギヤ段とされており且つクラッチC1が第2所定クラッチ圧αにて調圧状態で待機させられていることもあり、C1クラッチ圧を一層速やかに第2所定クラッチ圧αから最大クラッチ圧まで上昇させて、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。従って、このフェーズ3制御では、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが抑制される。 Further, when the accelerator is stepped on again in this state [3], for example, the one-way clutch F1 is in an idling state, and the sudden engagement shock is generated even if the clutch C1 is roughly grasped, that is, suddenly engaged. Therefore, the C1 clutch pressure is quickly increased from the second predetermined clutch pressure α to the maximum clutch pressure. At this time, the automatic transmission 12 may be in the first speed gear stage and the clutch C1 may be kept in a regulated state at the second predetermined clutch pressure α, so that the C1 clutch pressure can be increased more quickly. (2) It is possible to increase the feeling from the predetermined clutch pressure α to the maximum clutch pressure, and to suppress the feeling of stickiness during reacceleration while suppressing the engagement shock. Therefore, in the phase 3 control, a sense of incongruity due to a change in deceleration, a feeling of rattling at the time of reacceleration, an engagement shock at the time of releasing N control, and the like are suppressed.
 前記状態[3]に次いで、状態[4]の制御(フェーズ4制御)として、例えばC1クラッチ圧が第2所定クラッチ圧αに保持されているときに、減速走行中の発進ギヤ比入力回転速度NINSがエンジン30のアイドル回転速度NEIDLよりも高いアイドル回転速度NEIDL近傍の所定車速関連値としての所定回転速度(NEIDL+β)以下となった場合には、自動変速機12を第1速ギヤ段とした状態でクラッチC1を完全解放するようにC1クラッチ圧を低下させる。ここでは、再加速時のクラッチC1の油圧制御性を向上させる為に、つまり再加速時に前記通常N制御解除時と同等の制御にて走行中N制御を解除する為に、ピストンエンド圧付近までC1クラッチ圧を低下させるのである。上記所定回転速度(NEIDL+β)は、例えば減速走行中にアイドル回転速度NEIDLに維持されるエンジン回転速度Nよりも発進ギヤ比入力回転速度NINSが下回ると、入力側(エンジン30側)が出力側(駆動輪38側)を回転駆動する方向に切り替わり、出力トルクTOUTの正トルクが駆動輪38側へ伝達されることに対して、クラッチC1を完全解放して駆動力の伝達を完全にシャットダウンする時点を規定する為に設定された所定値であり、アイドル回転速度NEIDLに所定のマージンβが加えられている。また、この状態[4]においてアクセル再踏込みが為された場合には、例えばクラッチC1は完全解放状態である為にタービン回転速度Nの吹き(回転上昇)が発生する可能性がある。これに対して、タービン回転速度Nの吹きを抑える為にクラッチC1を速やかに係合すると出力トルクTOUTの急なトルク変動が問題となる。その為、例えば通常N制御解除時と同様に、タービン回転速度Nの吹き量を制御しながらC1クラッチ圧を零(例えばピストンエンド圧付近)から最大クラッチ圧まで上昇させる。従って、このフェーズ4制御では、減速度変化による違和感、再加速時のもたつき感、N制御解除時の係合ショックなどが抑制される。尚、所定車速関連値としての所定回転速度(NEIDL+β)と第2所定車速関連値としての所定回転2とは、判定対象となる回転速度がそれぞれ異なるが(発進ギヤ比入力回転速度NINSと現ギヤ比入力回転速度NINNとで異なる)、車速V(NOUT)に換算し直せば、所定回転2の方が所定回転速度(NEIDL+β)よりも高いことは言うまでもない。 Subsequent to the state [3], as the control of the state [4] (phase 4 control), for example, when the C1 clutch pressure is held at the second predetermined clutch pressure α, the starting gear ratio input rotational speed during deceleration traveling When N INS is equal to or lower than a predetermined rotational speed (N EIDL + β) as a predetermined vehicle speed-related value in the vicinity of the idle rotational speed N EIDL higher than the idle rotational speed N EIDL of the engine 30, the automatic transmission 12 is The C1 clutch pressure is reduced so that the clutch C1 is completely released in the state of the high gear. Here, in order to improve the hydraulic controllability of the clutch C1 at the time of reacceleration, that is, to release the N control during traveling by the same control as at the time of the normal N control release at the time of reacceleration, to near the piston end pressure The C1 clutch pressure is reduced. The predetermined rotational speed (N EIDL + beta), for example when starting the gear ratio input speed N INS falls below the engine rotational speed N E to be maintained during deceleration to idle rotation speed N EIDL, input side (engine 30 side ) Is switched to the direction of rotationally driving the output side (drive wheel 38 side), and the positive torque of the output torque T OUT is transmitted to the drive wheel 38 side, whereas the clutch C1 is completely released to transmit the driving force. Is a predetermined value that is set to define the time point when the engine is completely shut down, and a predetermined margin β is added to the idle rotation speed NEIDL . Further, when the accelerator is depressed again in this state [4], for example, since the clutch C1 is in a completely released state, there is a possibility that the turbine rotational speed NT is blown (rotational increase). On the other hand, when the clutch C1 is quickly engaged in order to suppress the blowing of the turbine rotational speed NT , a sudden torque fluctuation of the output torque TOUT becomes a problem. Therefore, for example, the C1 clutch pressure is increased from zero (for example, near the piston end pressure) to the maximum clutch pressure while controlling the blowing amount of the turbine rotational speed NT , as in the case of the normal N control cancellation. Therefore, in this phase 4 control, a sense of incongruity due to a change in deceleration, a feeling of rattling during reacceleration, an engagement shock when releasing N control, and the like are suppressed. The predetermined rotational speed (N EIDL + β) as the predetermined vehicle speed-related value and the predetermined rotational speed 2 as the second predetermined vehicle speed-related value have different rotational speeds to be determined (starting gear ratio input rotational speed N INS). differs between the current gear ratio input speed N INN), if able to re terms of the vehicle speed V (N OUT), towards the predetermined rotation 2 is high it is needless to say than the predetermined rotational speed (N EIDL + β).
 具体的には、図5に戻り、ニュートラル制御条件判定手段84は、例えばシフトレバー74の走行ポジションにおいて所定の走行中N制御条件が成立するか否かを判定する。すなわち、ニュートラル制御条件判定手段84は、所定の走行中N制御条件が成立するか否かを判定することにより、走行中N制御の実行を開始するか否かを逐次判定する走行中N制御実行判定手段である。この所定の走行中N制御条件は、例えば車両走行中であってアクセルペダル56が踏み込まれていないことなどである。ニュートラル制御条件判定手段84は、例えばレバーポジションPSHが「D」ポジションであるときに、アクセル開度Accがアクセルオフを判定する為の所定の開度零判定値である場合に、走行中N制御条件が成立したと判定する。 Specifically, referring back to FIG. 5, the neutral control condition determining means 84 determines whether or not a predetermined traveling N control condition is satisfied at the traveling position of the shift lever 74, for example. In other words, the neutral control condition determination means 84 sequentially determines whether or not the execution of the running N control is started by determining whether or not a predetermined running N control condition is satisfied. It is a determination means. The predetermined traveling N control condition is, for example, that the vehicle is traveling and the accelerator pedal 56 is not depressed. For example, when the lever position P SH is the “D” position, the neutral control condition determining unit 84 is running N when the accelerator opening Acc is a predetermined opening zero determination value for determining accelerator off. It is determined that the control condition is satisfied.
 また、ニュートラル制御条件判定手段84は、後述するニュートラル制御手段86による走行中N制御中に前記所定の走行中N制御条件が成立するか否かを判定することにより、その走行中N制御を解除(終了)するか否かを逐次判定する、すなわち走行中N制御からの復帰を開始するか否かを逐次判定する走行中N制御解除判定手段でもある。例えば、ニュートラル制御条件判定手段84は、ニュートラル制御手段86による走行中N制御中に、例えばレバーポジションPSHが「D」ポジションから操作されたか、或いはアクセルペダル56が踏込み操作されたと判定されるような所定のアクセル開度判定値以上となった場合に、走行中N制御の解除開始を判定する。 Further, the neutral control condition determination means 84 cancels the running N control by determining whether or not the predetermined running N control condition is satisfied during the running N control by the neutral control means 86 described later. It is also a traveling N control release determination means that sequentially determines whether or not (end) is performed, that is, sequentially determines whether or not to return from the traveling N control. For example, the neutral control condition determination unit 84 determines that, for example, the lever position P SH is operated from the “D” position or the accelerator pedal 56 is depressed during the N control during traveling by the neutral control unit 86. When it becomes equal to or greater than a predetermined accelerator opening determination value, it is determined whether or not to cancel the N control during traveling.
 走行中N制御進行度判定部すなわち走行中N制御進行度判定手段88は、例えばニュートラル制御条件判定手段84により前記所定の走行中N制御条件が成立したと判定された場合には、実際のタービン回転速度Nが所定回転1以下となったか否かを判定する。この所定回転1は、ニュートラル制御手段86により走行中N制御(上記状態[1]における制御)を実質的に開始する為の条件の1つであり、例えば減速走行中に現ギヤ段GSとして第1速ギヤ段乃至第4速ギヤ段が形成されるような車速Vに対応するタービン回転速度Nとして予め実験的に求められて設定された所定タービン回転速度N’である。或いは、別の観点では、上記所定回転1は、例えば減速走行中に公知のフューエルカット制御が実行される場合には、フューエルカット制御が解除される為の所定の復帰エンジン回転速度Nを下回るようなエンジン回転速度Nに対応するタービン回転速度Nとして予め実験的に求められて設定された所定タービン回転速度N’である。 The traveling N control progress determination unit, that is, the traveling N control progress determination means 88, for example, when the neutral control condition determination means 84 determines that the predetermined traveling N control condition is satisfied, the actual turbine It is determined whether or not the rotation speed NT is equal to or less than a predetermined rotation 1. The predetermined rotation 1 is one of the conditions for substantially starting the N control during traveling (control in the above state [1]) by the neutral control means 86, and is, for example, the first gear stage GS during deceleration traveling. This is a predetermined turbine rotational speed NT ′ that is experimentally determined and set in advance as the turbine rotational speed NT corresponding to the vehicle speed V at which the first to fourth gear stages are formed. Alternatively, in another aspect, the predetermined rotation 1, for example, when a known fuel cut control during deceleration running is performed is below a predetermined reset engine speed N E for the fuel cut control is released is a predetermined turbine speed N T ', which is set preliminarily obtained experimentally as a turbine rotational speed N T corresponding to the engine rotational speed N E as.
 また、走行中N制御進行度判定手段88は、例えば後述するニュートラル制御手段86による前記フェーズ1制御の実行中に、現ギヤ比入力回転速度NINNが所定回転2以下となったか否かを判定する。また、走行中N制御進行度判定手段88は、例えば後述するニュートラル制御手段86による前記フェーズ2制御の実行中に、実際のタービン回転速度Nが第2所定回転速度(NEIDL+α)以下となったか否かを判定する。また、走行中N制御進行度判定手段88は、例えば後述するニュートラル制御手段86による前記フェーズ3制御の実行中に、発進ギヤ比入力回転速度NINSが所定回転速度(NEIDL+β)以下となったか否かを判定する。 Further, the running N control progress determination means 88 determines whether or not the current gear ratio input rotational speed N INN is equal to or less than a predetermined rotation 2 during execution of the phase 1 control by the neutral control means 86 described later, for example. To do. In addition, the running N control progress determination means 88 determines that the actual turbine rotational speed NT is equal to or lower than the second predetermined rotational speed (N EIDL + α), for example, during execution of the phase 2 control by the neutral control means 86 described later. It is determined whether or not. Further, the running N control progress determination means 88, for example, during execution of the phase 3 control by the neutral control means 86 described later, the starting gear ratio input rotation speed N INS becomes equal to or less than a predetermined rotation speed (N EIDL + β). It is determined whether or not.
 ニュートラル制御手段86は、例えば走行中N制御進行度判定手段88により実際のタービン回転速度Nが所定回転1以下となったと判定された場合には、現ギヤ段GSを形成しているクラッチのクラッチ圧を最大クラッチ圧から各所定クラッチ圧βまでそれぞれ速やかに低下させるフェーズ1制御実行指令を変速制御手段82に出力して、前記フェーズ1制御を実行するすなわち走行中N制御を実質的に開始する。また、ニュートラル制御手段86は、例えば走行中N制御進行度判定手段88により前記フェーズ1制御の実行中に現ギヤ比入力回転速度NINNが所定回転2以下となったと判定された場合には、自動変速機12の現在のギヤ段GSNを維持した状態でC1クラッチ圧を所定クラッチ圧βから車速V低下に応じて漸減させるフェーズ2制御実行指令を変速制御手段82に出力して、前記フェーズ2制御を実行する。また、ニュートラル制御手段86は、例えば走行中N制御進行度判定手段88により前記フェーズ2制御の実行中に実際のタービン回転速度Nが第2所定回転速度(NEIDL+α)以下となったと判定された場合には、C1クラッチ圧を速やかに低下させて第2所定クラッチ圧αに保持すると共に自動変速機12を現在のギヤ段GSNから第1速ギヤ段へ変速するフェーズ3制御実行指令を変速制御手段82に出力して、前記フェーズ3制御を実行する。また、ニュートラル制御手段86は、例えば走行中N制御進行度判定手段88により前記フェーズ3制御の実行中に発進ギヤ比入力回転速度NINSが所定回転速度(NEIDL+β)以下となったと判定された場合には、自動変速機12を第1速ギヤ段とした状態でクラッチC1を完全解放するようにC1クラッチ圧を第2所定クラッチ圧αから速やかに零(例えばピストンエンド圧)に向けて低下させる(C1クラッチ圧を速やかにドレンする)フェーズ4制御実行指令を変速制御手段82に出力して、前記フェーズ4制御を実行する。 The neutral control means 86, for example, determines that the actual turbine rotational speed NT is equal to or lower than the predetermined rotation 1 by the running N control progress determination means 88, the clutch of the clutch that forms the current gear stage GS. A phase 1 control execution command for rapidly decreasing the clutch pressure from the maximum clutch pressure to each predetermined clutch pressure β is output to the shift control means 82, and the phase 1 control is executed, that is, the running N control is substantially started. To do. Further, when the neutral control means 86 determines that the current gear ratio input rotation speed N INN has become equal to or less than the predetermined rotation 2 during execution of the phase 1 control, for example, by the running N control progress determination means 88, In a state where the current gear stage GSN of the automatic transmission 12 is maintained, a phase 2 control execution command for gradually decreasing the C1 clutch pressure from the predetermined clutch pressure β according to the decrease in the vehicle speed V is output to the shift control means 82, and the phase 2 Execute control. Further, the neutral control means 86 determines that the actual turbine rotational speed NT has become equal to or lower than the second predetermined rotational speed (N EIDL + α) during the execution of the phase 2 control, for example, by the running N control progress determination means 88. If so, a phase 3 control execution command for shifting the automatic transmission 12 from the current gear stage GSN to the first gear stage is issued while the C1 clutch pressure is quickly reduced to be kept at the second predetermined clutch pressure α. Output to the shift control means 82 to execute the phase 3 control. Further, the neutral control means 86 determines that the starting gear ratio input rotational speed N INS is equal to or lower than a predetermined rotational speed (N EIDL + β) during the execution of the phase 3 control, for example, by the traveling N control progress determination means 88. In this case, the C1 clutch pressure is quickly turned from the second predetermined clutch pressure α to zero (for example, the piston end pressure) so as to completely release the clutch C1 with the automatic transmission 12 in the first speed gear stage. A phase 4 control execution command to reduce (to quickly drain the C1 clutch pressure) is output to the shift control means 82, and the phase 4 control is executed.
 また、ニュートラル制御手段86は、例えば前記フェーズ1制御の実行中にニュートラル制御条件判定手段84により走行中N制御の解除開始が判定された場合には、現ギヤ段GSを形成しているクラッチのクラッチ圧を調圧状態の各所定クラッチ圧βから最大クラッチ圧までそれぞれ速やかに上昇させるフェーズ1制御解除指令を変速制御手段82に出力して、走行中N制御を解除する。また、ニュートラル制御手段86は、例えば前記フェーズ2制御の実行中にニュートラル制御条件判定手段84により走行中N制御の解除開始が判定された場合には、タービン回転速度Nの吹きを抑えつつ係合ショックが抑制されるように予め実験的に求められて設定された所定の上昇勾配でC1クラッチ圧を最大クラッチ圧まで上昇させると共に、現ギヤ段GSを形成している他方のクラッチのクラッチ圧を最大クラッチ圧まで速やかに上昇させるフェーズ2制御解除指令を変速制御手段82に出力して、走行中N制御を解除する。また、ニュートラル制御手段86は、例えば前記フェーズ3制御の実行中にニュートラル制御条件判定手段84により走行中N制御の解除開始が判定された場合には、C1クラッチ圧を速やかに調圧状態の第2所定クラッチ圧αから最大クラッチ圧まで上昇させるフェーズ3制御解除指令を変速制御手段82に出力して、走行中N制御を解除する。また、ニュートラル制御手段86は、例えば前記フェーズ4制御の実行中にニュートラル制御条件判定手段84により走行中N制御の解除開始が判定された場合には、通常N制御解除時のニュートラル制御解除指令と同様に、タービン回転速度Nの吹き量を制御しながらC1クラッチ圧を零(例えばピストンエンド圧付近)から最大クラッチ圧まで上昇させるフェーズ4制御解除指令を変速制御手段82に出力して、走行中N制御を解除する。 Further, the neutral control means 86, for example, when the neutral control condition determination means 84 determines that the running N control is released during the execution of the phase 1 control, the clutch of the clutch that forms the current gear stage GS is determined. A phase 1 control release command for quickly increasing the clutch pressure from each predetermined clutch pressure β in the regulated state to the maximum clutch pressure is output to the shift control means 82, and the N control during traveling is released. Further, for example, when the neutral control condition determination unit 84 determines that the running N control is cancelled during execution of the phase 2 control, the neutral control unit 86 is engaged while suppressing the blowing of the turbine rotational speed NT. The clutch pressure of the other clutch forming the current gear stage GS is increased while the C1 clutch pressure is increased to the maximum clutch pressure at a predetermined rising gradient that is experimentally obtained in advance so as to suppress the combined shock. Is output to the shift control means 82, and the running N control is released. Further, for example, when the neutral control condition determination unit 84 determines that the running N control is started to be released during the execution of the phase 3 control, the neutral control unit 86 quickly adjusts the C1 clutch pressure in the pressure adjustment state. (2) A phase 3 control release command for increasing the clutch pressure α from the predetermined clutch pressure α to the maximum clutch pressure is output to the shift control means 82 to release the N control during traveling. Further, for example, when the neutral control condition determining unit 84 determines that the running N control release is started during the execution of the phase 4 control, the neutral control unit 86 outputs a neutral control release command when the normal N control is released. Similarly, a phase 4 control release command for increasing the C1 clutch pressure from zero (for example, near the piston end pressure) to the maximum clutch pressure while controlling the blow rate of the turbine rotational speed NT is output to the shift control means 82 to drive the vehicle. Release medium N control.
 図8は、電子制御装置50の制御作動の要部すなわちドライバビリティの低下を抑制しつつ走行中N制御を実行する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。また、図9は、図8の制御作動に対応するタイムチャートである。また、図10-図13は、図8の制御作動中に走行中N制御が解除された場合のタイムチャートであって、図10はフェーズ1制御から復帰する場合、図11はフェーズ2制御から復帰する場合、図12はフェーズ3制御から復帰する場合、図13はフェーズ4制御から復帰する場合の各々一例を示す図である。尚、図10-図13中の細実線は、図9における各値の変化を比較の為にそのまま示したものである。 FIG. 8 is a flowchart illustrating a control operation of the electronic control device 50, that is, a control operation for executing the N control during traveling while suppressing a decrease in drivability. For example, the control operation is about several msec to several tens msec. It is executed repeatedly with a very short cycle time. FIG. 9 is a time chart corresponding to the control operation of FIG. FIGS. 10 to 13 are time charts when the N control during traveling is canceled during the control operation of FIG. 8. FIG. 10 shows a case of returning from the phase 1 control, and FIG. When returning, FIG. 12 is a diagram showing an example of returning from phase 3 control, and FIG. 13 is a view showing an example of returning from phase 4 control. Note that the thin solid line in FIGS. 10 to 13 shows the change of each value in FIG. 9 as it is for comparison.
 図8において、先ず、ニュートラル制御条件判定手段84に対応するS10において、例えばシフトレバー74の走行ポジションにおいて所定の走行中N制御条件が成立するか否かが判定される。このS10の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は走行中N制御進行度判定手段88に対応するS20において、例えば実際のタービン回転速度Nが所定回転1以下となったか否かが判定される。このS20の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はニュートラル制御手段86に対応するS30において、例えば現ギヤ段GSを形成しているクラッチのクラッチ圧を最大クラッチ圧から各所定クラッチ圧βまでそれぞれ速やかに低下させるフェーズ1制御が実行されるすなわち走行中N制御が実質的に開始される(図9のt1時点)。次いで、走行中N制御進行度判定手段88に対応するS40において、例えば現ギヤ比入力回転速度NINNが所定回転2以下となったか否かが判定される。このS40の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はニュートラル制御手段86に対応するS50において、例えば自動変速機12の現在のギヤ段GSNを維持した状態でC1クラッチ圧を所定クラッチ圧βから車速V低下に応じて漸減させるフェーズ2制御が実行される(図9のt2時点)。尚、上記S40の判断が否定されているときに走行中N制御の解除開始が判定された場合には(図10のt1時点乃至t2時点)、例えば現ギヤ段GSを形成しているクラッチのクラッチ圧を調圧状態の各所定クラッチ圧βから最大クラッチ圧までそれぞれ速やかに上昇させるフェーズ1制御解除により走行中N制御が解除される。次いで、走行中N制御進行度判定手段88に対応するS60において、例えば実際のタービン回転速度Nが第2所定回転速度(NEIDL+α)以下となったか否かが判定される。このS60の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はニュートラル制御手段86に対応するS70において、例えばC1クラッチ圧を速やかに低下させて第2所定クラッチ圧αに保持すると共に自動変速機12を現在のギヤ段GSNから第1速ギヤ段へ変速するフェーズ3制御が実行される(図9のt3時点)。尚、上記S60の判断が否定されているときに走行中N制御の解除開始が判定された場合には(図11のt2時点乃至t3時点)、例えば所定の上昇勾配でC1クラッチ圧を最大クラッチ圧まで上昇させると共に、現ギヤ段GSを形成している他方のクラッチのクラッチ圧を最大クラッチ圧まで速やかに上昇させるフェーズ2制御解除により走行中N制御が解除される。次いで、走行中N制御進行度判定手段88に対応するS80において、例えば発進ギヤ比入力回転速度NINSが所定回転速度(NEIDL+β)以下となったか否かが判定される。このS80の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はニュートラル制御手段86に対応するS90において、例えば自動変速機12を第1速ギヤ段とした状態でクラッチC1を完全解放するようにC1クラッチ圧を第2所定クラッチ圧αから速やかに零(例えばピストンエンド圧)に向けて低下させるフェーズ4制御が実行される(図9のt4時点)。尚、上記S80の判断が否定されているときに走行中N制御の解除開始が判定された場合には(図12のt3時点乃至t4時点)、例えばC1クラッチ圧を速やかに調圧状態の第2所定クラッチ圧αから最大クラッチ圧まで上昇させるフェーズ3制御解除により走行中N制御が解除される。また、車両停止となるまでの上記S90の実行中(図9のt4時点乃至t5時点)に走行中N制御の解除開始が判定された場合には(図13のt4時点乃至t5時点)、例えば通常N制御解除時のニュートラル制御解除指令と同様に、タービン回転速度Nの吹き量を制御しながらC1クラッチ圧を零(例えばピストンエンド圧付近)から最大クラッチ圧まで上昇させるフェーズ4制御解除により走行中N制御が解除される。 In FIG. 8, first, in S10 corresponding to the neutral control condition determining means 84, it is determined whether or not a predetermined traveling N control condition is satisfied at the traveling position of the shift lever 74, for example. If the determination in S10 is negative, this routine is terminated. If the determination is affirmative, in S20 corresponding to the running N control progress determination means 88, for example, the actual turbine rotational speed NT is equal to or less than a predetermined rotation 1. It is determined whether or not. If the determination in S20 is negative, the routine is terminated. If the determination is positive, in S30 corresponding to the neutral control means 86, for example, the clutch pressure of the clutch forming the current gear stage GS is set to the maximum clutch pressure. From the first to the predetermined clutch pressure β, phase 1 control is executed, that is, the running N control is substantially started (time t1 in FIG. 9). Next, in S40 corresponding to the traveling N control progress determination means 88, it is determined whether or not the current gear ratio input rotational speed NINN is equal to or lower than a predetermined rotation 2, for example. If the determination in S40 is negative, this routine is terminated. If the determination is positive, in S50 corresponding to the neutral control means 86, for example, the C1 clutch is maintained while maintaining the current gear stage GSN of the automatic transmission 12. Phase 2 control for gradually decreasing the pressure from the predetermined clutch pressure β according to the decrease in the vehicle speed V is executed (at time t2 in FIG. 9). If it is determined that the N control during driving is determined to be canceled when the determination in S40 is negative (from time t1 to time t2 in FIG. 10), for example, the clutch that forms the current gear stage GS The N control during traveling is canceled by releasing the phase 1 control that quickly increases the clutch pressure from each predetermined clutch pressure β in the regulated state to the maximum clutch pressure. Next, in S60 corresponding to the traveling N control progress determination means 88, it is determined, for example, whether or not the actual turbine rotational speed NT is equal to or lower than a second predetermined rotational speed (N EIDL + α). If the determination in S60 is negative, the routine is terminated. If the determination is positive, in S70 corresponding to the neutral control means 86, for example, the C1 clutch pressure is quickly reduced and held at the second predetermined clutch pressure α. At the same time, phase 3 control for shifting the automatic transmission 12 from the current gear stage GSN to the first gear stage is executed (at time t3 in FIG. 9). Note that if it is determined that the N-control during travel is started when the determination in S60 is negative (from time t2 to time t3 in FIG. 11), for example, the C1 clutch pressure is increased to the maximum clutch with a predetermined upward gradient. The N control during traveling is released by releasing the phase 2 control that increases the pressure to the maximum pressure and at the same time quickly increases the clutch pressure of the other clutch forming the current gear stage GS to the maximum clutch pressure. Next, in S80 corresponding to the traveling N control progress determination means 88, it is determined whether, for example, the starting gear ratio input rotational speed N INS is equal to or lower than a predetermined rotational speed (N EIDL + β). If the determination in S80 is negative, this routine is terminated. If the determination is positive, in S90 corresponding to the neutral control means 86, for example, the clutch C1 is engaged with the automatic transmission 12 in the first gear. Phase 4 control is executed to quickly decrease the C1 clutch pressure from the second predetermined clutch pressure α toward zero (for example, piston end pressure) so as to be completely released (at time t4 in FIG. 9). Note that, when the determination of S80 is negative and the start of cancellation of the N control during traveling is determined (from time t3 to time t4 in FIG. 12), for example, the C1 clutch pressure is quickly adjusted in the first pressure adjustment state. 2. The N control during traveling is canceled by releasing the phase 3 control for increasing the clutch pressure α from the predetermined clutch pressure α to the maximum clutch pressure. Further, when it is determined that the running N control is released during the execution of S90 (time t4 to time t5 in FIG. 9) until the vehicle is stopped (time t4 to time t5 in FIG. 13), for example, In the same way as the neutral control release command when the normal N control is released, the C4 clutch pressure is increased from zero (for example, near the piston end pressure) to the maximum clutch pressure while controlling the blow rate of the turbine rotational speed NT. N control during traveling is released.
 上述のように、本実施例によれば、アクセルオフの減速走行中に、自動変速機12を現在のギヤ段GSNとした状態でC1クラッチ圧が漸減させられる(フェーズ2制御)と共に、減速走行中の発進ギヤ比入力回転速度NINSが所定回転速度(NEIDL+β)以下となった場合には自動変速機12を第1速ギヤ段とした状態でクラッチC1を完全解放するようにC1クラッチ圧が低下させられる(フェーズ4制御)ので、例えばある程度車速Vが出ているときにはC1クラッチ圧の漸減に伴って出力トルクTOUT(例えばエンジンブレーキトルク)が漸減させられて減速度変化による違和感が抑制される。また、例えばある程度車速Vが出ているときにはクラッチC1がスリップ状態とされており、アクセルオンによる走行中N制御の解除に際して、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。また、例えばC1クラッチ圧の低下により出力トルクTOUTが略零に向かうことから、減速走行時にクラッチC1を完全に解放しても減速度変化による違和感が抑制される。更に、例えば発進ギヤ比入力回転速度NINSが所定回転速度(NEIDL+β)以下では自動変速機12が第1速ギヤ段とされ且つクラッチC1が解放されており、アクセルオンによる走行中N制御の解除に際して、車両停止からの車両発進時と同様にN制御を解除することで、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。よって、ドライバビリティの低下を抑制しつつ車両走行中にニュートラル制御を実行して燃費を一層向上させることができる。また、例えば減速走行中に出力トルクTOUTが負トルクから正トルクへ切り替わるところで(例えば駆動輪38側が自動変速機12の入力側を連れ回していた状態から自動変速機12の入力側が駆動輪38側を回す状態へ切り替わるところで)クラッチC1が解放されるので、C1クラッチ圧の低下により略零に向かって減少させられる負トルクが正トルクに切り替わることが抑制されて、出力トルクTOUT変化による違和感が抑制される。 As described above, according to this embodiment, the C1 clutch pressure is gradually reduced (phase 2 control) while the automatic transmission 12 is in the current gear stage GSN while the accelerator is off, and the vehicle is decelerated. C1 clutch so that the clutch C1 is completely released in the state where the automatic transmission 12 is in the first gear when the starting gear ratio input rotational speed N INS is less than a predetermined rotational speed (N EIDL + β). Since the pressure is reduced (phase 4 control), for example, when the vehicle speed V is at a certain level, the output torque T OUT (for example, engine brake torque) is gradually decreased as the C1 clutch pressure gradually decreases, and the driver feels uncomfortable due to the change in deceleration. It is suppressed. In addition, for example, when the vehicle speed V is at a certain level, the clutch C1 is in a slipping state, and when releasing the N control during traveling by turning on the accelerator, it is possible to suppress the engagement shock and suppress the feeling of rattling during reacceleration. it can. Further, for example, since the output torque T OUT tends to be substantially zero due to a decrease in the C1 clutch pressure, even if the clutch C1 is completely released during deceleration traveling, the uncomfortable feeling due to the change in deceleration is suppressed. Further, for example, when the starting gear ratio input rotational speed N INS is equal to or lower than a predetermined rotational speed (N EIDL + β), the automatic transmission 12 is set to the first speed gear stage and the clutch C1 is released. When the vehicle is released, the N control is released in the same manner as when the vehicle starts after the vehicle stops, so that it is possible to suppress the feeling of rattling during re-acceleration while suppressing the engagement shock. Therefore, it is possible to further improve fuel efficiency by executing neutral control while the vehicle is traveling while suppressing a decrease in drivability. Further, for example, when the output torque T OUT is switched from negative torque to positive torque during decelerating travel (for example, from the state where the drive wheel 38 side rotates along with the input side of the automatic transmission 12, the input side of the automatic transmission 12 moves from the drive wheel 38. since the place in) the clutch C1 is switched to a state to turn the side is released, are prevented from negative torque is reduced towards substantially zero switched to positive torque by lower C1 clutch pressure, discomfort due to the output torque T OUT changes Is suppressed.
 また、本実施例によれば、減速走行中に、自動変速機12を現在のギヤ段GSNとした状態でC1クラッチ圧を漸減させること(フェーズ2制御)に先立って、C1クラッチ圧をクラッチC1が係合される為の最大クラッチ圧からアクセルオンされてもクラッチC1に差回転が生じないような所定クラッチ圧βへ低下させ、減速走行中の現ギヤ比入力回転速度NINNが所定回転2以下となるまではC1クラッチ圧を所定クラッチ圧βに維持する(フェーズ1制御)ので、例えば上記フェーズ2制御へ速やかに移行することができる。また、例えば現ギヤ比入力回転速度NINNが所定回転2以下となるまではC1クラッチ圧が所定クラッチ圧βに維持されておりすなわちクラッチC1が所定クラッチ圧βにて調圧状態で待機させられており、アクセルオンによる走行中N制御の解除に際して、クラッチC1がスリップ状態とされることなくC1クラッチ圧を速やかに最大クラッチ圧へ上昇させられて、再加速時のもたつき感を抑制することができる。 Further, according to the present embodiment, during the deceleration traveling, the C1 clutch pressure is reduced to the clutch C1 prior to gradually decreasing the C1 clutch pressure (phase 2 control) with the automatic transmission 12 at the current gear stage GSN. Is reduced to a predetermined clutch pressure β that does not cause differential rotation in the clutch C1 even when the accelerator is turned on, so that the current gear ratio input rotational speed N INN during deceleration traveling is reduced to the predetermined rotation 2 Since the C1 clutch pressure is maintained at the predetermined clutch pressure β (phase 1 control) until the following is reached, it is possible to quickly shift to the phase 2 control, for example. Further, for example, until the current gear ratio input rotational speed N INN becomes equal to or less than the predetermined rotation 2, the C1 clutch pressure is maintained at the predetermined clutch pressure β, that is, the clutch C1 is kept in a regulated state at the predetermined clutch pressure β. Therefore, when the N control is canceled while the accelerator is on, the C1 clutch pressure can be quickly increased to the maximum clutch pressure without the clutch C1 being in a slip state, thereby suppressing the feeling of rattling during re-acceleration. it can.
 また、本実施例によれば、上記フェーズ2制御の実行中に、減速走行中の実際のタービン回転速度Nが第2所定回転速度(NEIDL+α)以下となった場合には、クラッチC1を解放するようにC1クラッチ圧を低下させること(フェーズ4制御)に先立って、C1クラッチ圧をアクセルオン時にC1クラッチ圧が速やかに最大クラッチ圧へ上昇させられるような可及的に低い第2所定クラッチ圧αに保持すると共に、自動変速機12を現在のギヤ段GSNから発進時のギヤ段GSS(すなわち第1速ギヤ段)へ変速する(フェーズ3制御)ので、例えば車速Vの低下によって出力トルクTOUTが負トルクから正トルクへ切り替わり、駆動系のギヤのがたうちのショックを感じさせたり駆動力が出る方向に切り替わることによる違和感を生じさせる可能性があることに対して、クラッチC1における伝達トルクが低下させられることでそれら違和感等が抑制される。また、例えばクラッチC1における伝達トルクが多少発生する場合でも、第1速ギヤ段において一方向クラッチF1が空転状態とされているので、駆動力が発生せず上記違和感が回避される。また、例えば自動変速機12が第1速ギヤ段とされ且つC1クラッチ圧が第2所定クラッチ圧αに保持されており、アクセルオンによる走行中N制御の解除に際して、係合ショックを抑制しつつ再加速時のもたつき感を抑制することができる。また、この走行中N制御の解除時には、一方向クラッチF1が空転状態とされているので、クラッチC1を急係合させても係合ショックは発生せず、クラッチC1が第2所定クラッチ圧αにて調圧状態で待機させられていることもあって、C1クラッチ圧を速やかに上昇させることができる。 Further, according to the present embodiment, when the actual turbine rotational speed NT during deceleration traveling is equal to or lower than the second predetermined rotational speed (N EIDL + α) during the execution of the phase 2 control, the clutch C1 is used. Prior to lowering the C1 clutch pressure so as to release (phase 4 control), the C1 clutch pressure is as low as possible so that the C1 clutch pressure can be quickly increased to the maximum clutch pressure when the accelerator is on. While maintaining the predetermined clutch pressure α, the automatic transmission 12 is shifted from the current gear stage GSN to the gear stage GSS at the time of starting (that is, the first gear stage) (phase 3 control). physical disorder by the output torque T oUT is switched from the negative torque to positive torque, it switched to the direction to which the driving force or feel shock of backlash of the driving system gears exits For what can cause the transmission torque in the clutch C1 is their discomfort, etc. is suppressed by being lowered. For example, even when some transmission torque is generated in the clutch C1, the one-way clutch F1 is idling in the first speed gear stage, so that no driving force is generated and the above-mentioned uncomfortable feeling is avoided. Further, for example, the automatic transmission 12 is set to the first speed gear stage, and the C1 clutch pressure is held at the second predetermined clutch pressure α. It is possible to suppress the feeling of stickiness during re-acceleration. Further, when the N control is released during traveling, the one-way clutch F1 is idling, so that even if the clutch C1 is suddenly engaged, no engagement shock is generated, and the clutch C1 has the second predetermined clutch pressure α. The C1 clutch pressure can be quickly increased because the engine is on standby in the pressure regulation state.
 また、本実施例によれば、前記第2所定クラッチ圧αは、エンジン30のアイドルトルクTEIDLが伝達可能な可及的に低いクラッチ圧であるので、例えば出力トルクTOUTが負トルクから正トルクへ切り替わりことによる駆動系のギヤのがたうちのショックや駆動力が出る方向に切り替わることによる違和感等が適切に抑制される。アクセルオンによる走行中N制御の解除に際して、C1クラッチ圧を速やかに上昇させることができる。 Further, according to the present embodiment, the second predetermined clutch pressure α is a clutch pressure as low as possible capable of transmitting the idle torque T EIDL of the engine 30, and therefore, for example, the output torque T OUT is positive from the negative torque. The shock of the gear of the driving system due to switching to torque, the uncomfortable feeling due to switching in the direction in which the driving force is generated, and the like are appropriately suppressed. When the N control during traveling due to the accelerator being on is released, the C1 clutch pressure can be quickly increased.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.
 例えば、前述の実施例では、自動変速機12が前進6速、後進1速の変速が可能な自動変速機であったが、自動変速機の変速段数や内部構造は特に前述した自動変速機12に限定されるものではない。すなわち、ニュートラル制御が実施可能であり、且つ、ニュートラル制御が解除される際に、所定の係合装置を係合させる構成であれば、本発明を適用することができる。例えば、前述の自動変速機12では、クラッチC1を係合するだけで第1速ギヤ段を成立させる為の一方向クラッチF1が設けられていたが、このような一方向クラッチF1が設けられていないような自動変速機であっても本発明を適用することができる。尚、このような一方向クラッチF1が設けられていない自動変速機の場合には、例えば走行中N制御におけるフェーズ1乃至フェーズ4のうちで、フェーズ3が存在しないだけで、あとは同様の制御となる。また、自動変速機として、ベルト式無段変速機などの無段変速機であっても本発明を適用することができる。尚、ベルト式無段変速機などの場合には、例えばエンジンとベルト式無段変速機との間の動力伝達経路を断接することが可能な係合装置や良く知られた前後進切換装置に設けられたを係合装置などにおいて、本発明が適用される。また、ベルト式無段変速機などの場合には、例えば発進時のギヤ比は最大変速比(最低速側変速比)γmax或いはその最大変速比γmaxに相当するような車両発進時に用いられる変速比となる。 For example, in the above-described embodiment, the automatic transmission 12 is an automatic transmission capable of shifting six forward speeds and one reverse speed. However, the number of shift stages and the internal structure of the automatic transmission are particularly described above. It is not limited to. That is, the present invention can be applied as long as neutral control can be performed and a predetermined engagement device is engaged when neutral control is canceled. For example, the automatic transmission 12 described above is provided with the one-way clutch F1 for establishing the first gear by merely engaging the clutch C1, but such a one-way clutch F1 is provided. The present invention can be applied even to such an automatic transmission. In the case of an automatic transmission that is not provided with such a one-way clutch F1, for example, among the phases 1 to 4 in the N control during traveling, only the phase 3 does not exist, and the same control is performed thereafter. It becomes. Further, the present invention can also be applied to a continuously variable transmission such as a belt type continuously variable transmission as an automatic transmission. In the case of a belt type continuously variable transmission or the like, for example, an engagement device capable of connecting / disconnecting a power transmission path between the engine and the belt type continuously variable transmission or a well-known forward / reverse switching device may be used. The present invention is applied to the provided engagement device or the like. In the case of a belt-type continuously variable transmission, for example, the gear ratio at the time of starting is the maximum gear ratio (minimum speed side gear ratio) γmax or the gear ratio used at the start of the vehicle corresponding to the maximum gear ratio γmax. It becomes.
 また、前述の実施例では、走行中N制御における各フェーズの移行判定に種々の車速関連値を用いたが、これらは飽くまで一例であり、1対1で対応する車速関連値であれば置き換えは可能である。例えば、自動変速機12のギヤ段GSが成立している場合には、タービン回転速度Nに替えて出力回転速度NOUT(車速V)などを用いても良い。尚、判定対象を変更する場合には、それに合わせて判定閾値も変更することは言うまでもないことである。 Further, in the above-described embodiment, various vehicle speed related values are used for the transition determination of each phase in the running N control. However, these are only examples until the tiredness, and if the vehicle speed related values correspond one-to-one, replacement is not possible. Is possible. For example, when the gear stage GS of the automatic transmission 12 is established, the output rotational speed N OUT (vehicle speed V) or the like may be used instead of the turbine rotational speed NT . Needless to say, when the determination target is changed, the determination threshold is also changed accordingly.
 また、前述の実施例では、発進クラッチとして機能するクラッチC1は、油圧式摩擦係合装置であったが、それに限らず、例えばパウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。例えば電磁クラッチであるような場合には、油圧制御回路110は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。 In the above-described embodiment, the clutch C1 functioning as the starting clutch is a hydraulic friction engagement device. However, the clutch C1 is not limited thereto, and is not limited to a magnetic clutch such as a powder (magnetic) clutch, an electromagnetic clutch, and a meshing dog clutch. You may be comprised from a powder type, an electromagnetic type, and a mechanical engagement apparatus. For example, in the case of an electromagnetic clutch, the hydraulic control circuit 110 is configured by a switching device, an electromagnetic switching device, or the like that switches an electrical command signal circuit to the electromagnetic clutch, not a valve device that switches an oil passage.
 また、前述の実施例では、発進クラッチとして機能するクラッチC1は、動力伝達経路に直列に配設されるクラッチであったが、それに限らず、例えば動力伝達経路に配設された遊星歯車装置等の差動歯車装置を介して動力が伝達される動力伝達装置においてその差動歯車装置を構成する1つの回転要素の回転を阻止するブレーキであっても本発明を適用することができる。つまり、発進クラッチは車両発進時に係合される係合装置のことであって、この発進クラッチにはクラッチはもちろんのことブレーキも含まれる。 In the above-described embodiment, the clutch C1 functioning as the starting clutch is a clutch disposed in series with the power transmission path. However, the clutch C1 is not limited thereto, and for example, a planetary gear device disposed in the power transmission path. The present invention can also be applied to a brake that prevents the rotation of one rotating element that constitutes the differential gear device in a power transmission device in which power is transmitted through the differential gear device. In other words, the starting clutch is an engaging device that is engaged when the vehicle starts, and this starting clutch includes not only the clutch but also the brake.
 また、前述の実施例では、油圧指令値が大きくなる程、発進クラッチ(クラッチC1)の伝達トルク容量が大きくなるように制御されたが、それに限らず、例えば油圧指令値が大きくなる程、その伝達トルク容量が小さくなるように制御されるものであっても、本発明を適用することができる。また、アクチュエータを介して発進クラッチの伝達トルク容量を制御するものにおいて、例えばアクチュエータによる作用が大きくなる程、発進クラッチ(クラッチC1)の伝達トルク容量が大きくなるように制御されるものでも良いし、アクチュエータによる作用が大きくなる程、その伝達トルク容量が小さくなるように制御されるものであっても、本発明を適用することができる。 Further, in the above-described embodiment, the transmission torque capacity of the starting clutch (clutch C1) is increased as the hydraulic pressure command value increases. However, the present invention is not limited thereto. For example, as the hydraulic pressure command value increases, the Even if the transmission torque capacity is controlled to be small, the present invention can be applied. Further, in the case of controlling the transmission torque capacity of the starting clutch via the actuator, for example, the transmission torque capacity of the starting clutch (clutch C1) may be controlled to increase as the action of the actuator increases. Even if the transmission torque capacity is controlled to be smaller as the action by the actuator is larger, the present invention can be applied.
 また、前述の実施例では、流体伝動装置としてロックアップクラッチ33が備えられているトルクコンバータ32が用いられていたが、トルク増幅作用のないフルードカップリングが用いられても良い。 In the above-described embodiment, the torque converter 32 provided with the lock-up clutch 33 is used as the fluid transmission device. However, a fluid coupling having no torque amplification function may be used.
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 It should be noted that what has been described above is only one embodiment, and the present invention can be carried out in various modifications and improvements based on the knowledge of those skilled in the art.
12:車両用自動変速機
30:エンジン
32:トルクコンバータ(流体伝動装置)
38:駆動輪
50:電子制御装置(制御装置)
C1:クラッチ(発進クラッチ)
F1:一方向クラッチ
12: Automatic transmission 30 for vehicle 30: Engine 32: Torque converter (fluid transmission)
38: Drive wheel 50: Electronic control device (control device)
C1: Clutch (starting clutch)
F1: One-way clutch

Claims (5)

  1.  エンジンの動力を駆動輪側へ伝達する発進クラッチの伝達トルク容量を低下させて該エンジンから該駆動輪までの間の動力伝達経路を動力伝達抑制状態とするニュートラル制御を実行可能な車両用自動変速機の制御装置であって、
     アクセルオフの減速走行中に、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させると共に、該減速走行中の車速関連値が所定車速関連値以下となった場合には前記自動変速機を発進時のギヤ比とした状態で前記発進クラッチを解放するように該伝達トルク容量を低下させることを特徴とする車両用自動変速機の制御装置。
    Automatic transmission for a vehicle capable of executing neutral control in which the transmission torque capacity of a starting clutch that transmits engine power to the drive wheel side is reduced so that the power transmission path between the engine and the drive wheel is in a power transmission suppression state. A control device for the machine,
    If the transmission torque capacity is gradually reduced with the automatic transmission set to the current gear ratio during acceleration-decelerated traveling, and the vehicle speed-related value during deceleration traveling is less than or equal to a predetermined vehicle speed-related value, A control apparatus for an automatic transmission for a vehicle, wherein the transmission torque capacity is reduced so as to release the starting clutch in a state where the automatic transmission is in a gear ratio at the time of starting.
  2.  前記減速走行中の車速関連値と前記自動変速機の発進時のギヤ比とに基づいて算出される該自動変速機の入力側の回転速度が前記エンジンのアイドル回転速度よりも高い該アイドル回転速度近傍の所定回転速度以下となった場合に、前記発進クラッチを解放するように前記伝達トルク容量を低下させることを特徴とする請求項1に記載の車両用自動変速機の制御装置。 The idle rotational speed in which the rotational speed on the input side of the automatic transmission calculated based on the vehicle speed related value during the deceleration traveling and the gear ratio at the start of the automatic transmission is higher than the idle rotational speed of the engine 2. The control device for an automatic transmission for a vehicle according to claim 1, wherein the transmission torque capacity is reduced so as to release the starting clutch when the rotation speed becomes equal to or lower than a predetermined rotational speed in the vicinity.
  3.  前記減速走行中に、前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させることに先立って、該伝達トルク容量を前記発進クラッチが係合される為の最大伝達トルク容量からアクセルオンされても該発進クラッチに差回転が生じないような所定伝達トルク容量へ低下させ、該減速走行中の車速関連値が前記所定車速関連値よりも高い第2所定車速関連値以下となるまでは該伝達トルク容量を該所定伝達トルク容量に維持することを特徴とする請求項1又は2に記載の車両用自動変速機の制御装置。 Prior to gradually reducing the transmission torque capacity while the automatic transmission is at the current gear ratio during the deceleration travel, the transmission torque capacity is the maximum transmission torque capacity for engaging the start clutch. To a predetermined transmission torque capacity that does not cause differential rotation in the starting clutch even when the accelerator is turned on, and a vehicle speed related value during the deceleration traveling is equal to or lower than a second predetermined vehicle speed related value that is higher than the predetermined vehicle speed related value. The control apparatus for an automatic transmission for a vehicle according to claim 1 or 2, wherein the transmission torque capacity is maintained at the predetermined transmission torque capacity until it becomes.
  4.  前記自動変速機は、前記発進クラッチと一方向クラッチとの係合により前記発進時のギヤ比となる発進時のギヤ段が成立させられ、
     前記エンジンの動力は、流体伝動装置を介して前記自動変速機へ伝達されるものであり、
     前記自動変速機を現在のギヤ比とした状態で前記伝達トルク容量を漸減させているときに、前記減速走行中の前記流体伝動装置の出力回転速度が前記エンジンのアイドル回転速度よりも高い該アイドル回転速度近傍の第2所定回転速度以下となった場合には、前記発進クラッチを解放するように前記伝達トルク容量を低下させることに先立って、該伝達トルク容量をアクセルオン時に該伝達トルク容量が速やかに上昇させられるような可及的に低い第2所定伝達トルク容量に保持すると共に、前記自動変速機を現在のギヤ段から前記発進時のギヤ段へ変速することを特徴とする請求項1乃至3の何れか1項に記載の車両用自動変速機の制御装置。
    In the automatic transmission, a gear stage at the time of starting which is a gear ratio at the time of starting is established by engagement of the starting clutch and the one-way clutch,
    The power of the engine is transmitted to the automatic transmission via a fluid transmission device,
    When the transmission torque capacity is gradually reduced with the automatic transmission at the current gear ratio, the output rotational speed of the fluid transmission device during the deceleration traveling is higher than the idle rotational speed of the engine. When the transmission torque capacity is reduced below the second predetermined rotation speed in the vicinity of the rotation speed, the transmission torque capacity is reduced when the accelerator is turned on before the transmission torque capacity is reduced so as to release the starting clutch. 2. The second predetermined transmission torque capacity as low as possible that can be quickly raised is maintained, and the automatic transmission is shifted from the current gear to the gear at the start. 4. The control device for an automatic transmission for a vehicle according to any one of items 1 to 3.
  5.  前記第2所定伝達トルク容量は、前記エンジンのアイドルトルクが伝達可能な可及的に低い伝達トルク容量であることを特徴とする請求項4に記載の車両用自動変速機の制御装置。 5. The control device for an automatic transmission for a vehicle according to claim 4, wherein the second predetermined transmission torque capacity is a transmission torque capacity as low as possible capable of transmitting an idle torque of the engine.
PCT/JP2010/060496 2010-06-21 2010-06-21 Control device of automatic transmission for vehicle WO2011161757A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012521194A JP5338982B2 (en) 2010-06-21 2010-06-21 Control device for automatic transmission for vehicle
CN201080067600.XA CN102947623B (en) 2010-06-21 2010-06-21 Control device of automatic transmission for vehicle
PCT/JP2010/060496 WO2011161757A1 (en) 2010-06-21 2010-06-21 Control device of automatic transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060496 WO2011161757A1 (en) 2010-06-21 2010-06-21 Control device of automatic transmission for vehicle

Publications (1)

Publication Number Publication Date
WO2011161757A1 true WO2011161757A1 (en) 2011-12-29

Family

ID=45370971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060496 WO2011161757A1 (en) 2010-06-21 2010-06-21 Control device of automatic transmission for vehicle

Country Status (3)

Country Link
JP (1) JP5338982B2 (en)
CN (1) CN102947623B (en)
WO (1) WO2011161757A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410959A (en) * 2013-08-26 2013-11-27 安徽江淮汽车股份有限公司 Method for controlling automatic double-clutch gearbox from gliding at neutral gear to drive on gears
JP2014092190A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Travel control device for vehicle
EP2811194A1 (en) * 2012-02-03 2014-12-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
EP2840276A3 (en) * 2013-07-29 2016-07-06 Aisin Seiki Kabushiki Kaisha Clutch learning apparatus
JP2016130548A (en) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 Control device of power transmission mechanism
JPWO2014024270A1 (en) * 2012-08-08 2016-07-21 トヨタ自動車株式会社 Vehicle travel control device
CN106907482A (en) * 2012-09-13 2017-06-30 福特全球技术公司 The method for controlling speed changer
CN115095652A (en) * 2022-05-16 2022-09-23 中国第一汽车股份有限公司 EMS control method for optimizing DCT model low transmission oil temperature starting comfort

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563924B (en) * 2016-08-03 2020-11-06 加特可株式会社 Shift control device for automatic transmission
JP6863252B2 (en) * 2017-12-05 2021-04-21 トヨタ自動車株式会社 Vehicle shift control device
JP2019120293A (en) 2017-12-28 2019-07-22 本田技研工業株式会社 Clutch control device
JP6608974B2 (en) * 2018-01-15 2019-11-20 本田技研工業株式会社 Vehicle and control device
TWI762976B (en) * 2020-07-17 2022-05-01 光陽工業股份有限公司 Automatic shifting system of electric locomotive and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110930A (en) * 1998-10-02 2000-04-18 Toyota Motor Corp Control device for transmission of vehicle
JP2001336629A (en) * 2000-05-25 2001-12-07 Honda Motor Co Ltd Control device for automatic transmission of vehicle
JP2002227885A (en) * 2001-02-06 2002-08-14 Hino Motors Ltd Clutch control device
JP2007528474A (en) * 2004-03-09 2007-10-11 ボルボ ラストバグナー アーベー Method and system for automatic freewheeling of automobiles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325654B2 (en) * 2006-09-15 2009-09-02 トヨタ自動車株式会社 Control device for automatic transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110930A (en) * 1998-10-02 2000-04-18 Toyota Motor Corp Control device for transmission of vehicle
JP2001336629A (en) * 2000-05-25 2001-12-07 Honda Motor Co Ltd Control device for automatic transmission of vehicle
JP2002227885A (en) * 2001-02-06 2002-08-14 Hino Motors Ltd Clutch control device
JP2007528474A (en) * 2004-03-09 2007-10-11 ボルボ ラストバグナー アーベー Method and system for automatic freewheeling of automobiles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811194A1 (en) * 2012-02-03 2014-12-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
EP2811194A4 (en) * 2012-02-03 2016-08-31 Toyota Motor Co Ltd Vehicle control device
JPWO2014024270A1 (en) * 2012-08-08 2016-07-21 トヨタ自動車株式会社 Vehicle travel control device
CN106907482A (en) * 2012-09-13 2017-06-30 福特全球技术公司 The method for controlling speed changer
US10180186B2 (en) 2012-09-13 2019-01-15 Ford Global Technologies, Llc Transmission and method of controlling clutch during ratio change
JP2014092190A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Travel control device for vehicle
EP2840276A3 (en) * 2013-07-29 2016-07-06 Aisin Seiki Kabushiki Kaisha Clutch learning apparatus
CN103410959A (en) * 2013-08-26 2013-11-27 安徽江淮汽车股份有限公司 Method for controlling automatic double-clutch gearbox from gliding at neutral gear to drive on gears
CN103410959B (en) * 2013-08-26 2015-08-12 安徽江淮汽车股份有限公司 Dual-clutch transmission is from neutral position sliding to the controlling method travelled at gear
JP2016130548A (en) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 Control device of power transmission mechanism
CN115095652A (en) * 2022-05-16 2022-09-23 中国第一汽车股份有限公司 EMS control method for optimizing DCT model low transmission oil temperature starting comfort
CN115095652B (en) * 2022-05-16 2023-09-22 中国第一汽车股份有限公司 EMS control method for optimizing DCT vehicle type low-speed transmission oil temperature starting comfort

Also Published As

Publication number Publication date
JP5338982B2 (en) 2013-11-13
CN102947623B (en) 2015-04-08
JPWO2011161757A1 (en) 2013-08-19
CN102947623A (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5338982B2 (en) Control device for automatic transmission for vehicle
JP4412346B2 (en) Drive control apparatus for hybrid vehicle
US8771141B2 (en) Coast stop vehicle and coast stop method
JP5377352B2 (en) Start control device for vehicle power transmission device
JP2007309486A (en) Starting control device of vehicle
JP5983857B2 (en) Transmission control apparatus and control method
WO2014136280A1 (en) Vehicle hydraulic control device
JP5035376B2 (en) Control device for vehicle lock-up clutch
JP4396631B2 (en) Shift control device for automatic transmission for vehicle
JP5333324B2 (en) Hydraulic control device for vehicle
JP5862803B2 (en) Transmission control apparatus and control method
JP6225884B2 (en) Vehicle control device
JP2011241963A (en) Device for control of power transmission gear for vehicle
JP4899441B2 (en) Vehicle control device
JP2010203590A (en) Control device of driving device for vehicle
JP2013119875A (en) Control device of vehicle
JP4222309B2 (en) Vehicle control device
JP6237438B2 (en) Vehicle neutral control device
JP4923547B2 (en) Shift control device for automatic transmission for vehicle
JP2011144878A (en) Hydraulic control device for vehicular power transmission device
JP5494827B2 (en) Control device for automatic transmission for vehicle
JP5035221B2 (en) Shift control device for automatic transmission
WO2014021118A1 (en) Automatic transmission for vehicle
JP5673324B2 (en) Shift control device for continuously variable transmission for vehicle
JP4983230B2 (en) Hydraulic control device for automatic transmission for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067600.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853617

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012521194

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853617

Country of ref document: EP

Kind code of ref document: A1