WO2011161544A2 - Biomarker for fatigue, and use thereof - Google Patents
Biomarker for fatigue, and use thereof Download PDFInfo
- Publication number
- WO2011161544A2 WO2011161544A2 PCT/IB2011/001917 IB2011001917W WO2011161544A2 WO 2011161544 A2 WO2011161544 A2 WO 2011161544A2 IB 2011001917 W IB2011001917 W IB 2011001917W WO 2011161544 A2 WO2011161544 A2 WO 2011161544A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ratio
- acid concentration
- value
- concentration
- fatigue
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/10—Musculoskeletal or connective tissue disorders
Definitions
- the present invention relates to a biomarker for evaluating fatigue and evaluation and diagnosis of fatigue using the biomarker.
- Patent Document 1 discloses a technique for evaluating viral infection as an indicator of fatigue level, focusing on viral infections listed as one of the causes of immunity decline.
- Non-Patent Document 1 discloses an attempt to objectively measure / evaluate fatigue using an acceleration pulse wave.
- JP 2007-330263 released on December 27, 2007
- a mechanism for maintaining homeostasis that is, a mechanism for restoring disordered homeostasis is inherently provided in the living body.
- Development of a technique for objectively evaluating fatigue in accordance with the mechanism inherent to the living body is desired. Specifically, it is expected to identify a biological index (biomarker) that can quantify or quantify biological information based on the concentration of a chemical substance contained in a biological sample.
- biomarker a biological index
- the technique described in Patent Document 1 collects the body fluid of a subject, measures the amount of human herpesvirus in the body fluid, and evaluates the relationship with the degree of fatigue.
- this technique observes the behavior of a virus that infects a human (host), and does not measure a biomarker that reflects the mechanism of fatigue in humans.
- Non-Patent Document 1 cannot evaluate the fatigue state of an individual subject or provide a treatment or prevention method.
- the technique described in Non-Patent Document 1 has an advantage that it can be implemented non-invasively, but requires measurement of fingertip volume pulse waves by a special device and data processing based on a special principle. Poor sex.
- Non-Patent Document 2 lists fatigue biochemical marker candidates that can be evaluated in blood, saliva, and urine, and describes that these factors are closely related to fatigue and fatigue. Yes.
- Non-Patent Document 3 describes that several factors in various biological samples change their amounts in relation to mental fatigue and physical fatigue.
- Non-Patent Documents 2 and 3 reflect fatigue due to temporary load, and in particular, diagnosis and evaluation of fatigue that has been sustained for a long time in daily life has not yet been realized.
- the present invention has been made in view of the above problems, and an object thereof is to provide a biomarker that enables objective and simple diagnosis and evaluation of fatigue.
- the first fatigue evaluation method includes (1) a step of obtaining a first ratio of a measured value (first measured value) of a glucose concentration in a biological sample obtained from a subject to a first reference value. (2) A step of obtaining a second ratio of the measured value (second measured value) of the citric acid concentration in the biological sample obtained from the subject to the second reference value, (3) the biological sample obtained from the subject A step of obtaining a third ratio of a measured value (third measured value) of the cis-aconitic acid concentration in the sample to a third reference value, (4) a measured value of the isocitrate concentration in the biological sample obtained from the subject A step of obtaining a fourth ratio of the (fourth measurement value) to the fourth reference value; (5) a measurement value (fifth measurement value) of the succinic acid concentration in the biological sample obtained from the subject; Obtaining a fifth ratio to a reference value of 5, (6) raw obtained from the subject Obtaining a sixth ratio of the measured value of the malic acid concentration in
- the method according to the present invention can provide data for making an objective diagnosis only by measuring a specific metabolite in a biological sample. Enables costly and objective diagnosis. That is, the method according to the present invention may be a method for providing a diagnostic criterion or determination criterion for fatigue.
- the method according to the present invention is also used for diagnosis of general fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome).
- general fatigue including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome.
- the term “biological sample” is intended to be any tissue (including body fluids such as blood) or cells taken from a subject, and tissue sections or cells prepared therefrom. Cell lysates can also be included in the biological sample.
- Preferred biological samples for use in the present invention include, but are not limited to, blood, saliva, urine, interstitial fluid, sweat, and preparations thereof (eg, serum, plasma, etc.).
- the step of directly removing the tissue or cells from the human subject as the first stage of sample acquisition is performed by a doctor and is outside the scope of the present invention.
- the step in which the doctor determines whether or not the patient is fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome) using the result obtained by the method of the present invention is also outside the scope of the present invention.
- the first to seventh reference values are the average glucose concentration, average citric acid concentration, average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively.
- the average isocitrate concentration, the average succinic acid concentration, the average malic acid concentration, and the average lactic acid concentration are preferable, but are not limited to the average value, and may be a mode value obtained from a binomial distribution or the like.
- the healthy person is sampled at the same time as the sampling from the subject, and based on the concentration of each metabolite in the obtained biological sample. It may be a calculated value.
- the first to seventh reference values are preferably obtained by the same measurement method as that used when obtaining the first to seventh measurement values.
- the first fatigue evaluation method according to the present invention may further include a step of comparing at least a pair in at least two ratios obtained by the at least two steps, preferably, the first fatigue evaluation method according to the present invention.
- the fatigue evaluation method includes at least two steps selected from the group consisting of the steps (1) to (5).
- the comparison in the step of comparing at least a pair may obtain a difference between two values or a ratio.
- the first fatigue evaluation method according to the present invention includes (a) a step of comparing the first ratio and the second ratio, and (b) comparing the second ratio and the third ratio.
- the method further includes the step of determining whether or not at least one of the second ratio is greater than the third ratio and (III) the first ratio is greater than the third ratio is satisfied. Also good.
- (IV) the first ratio is greater than the fourth ratio, and (V) the second ratio is greater than the fourth ratio.
- the first fatigue evaluation method according to the present invention preferably further includes the step (5).
- the fatigue evaluation method according to the present invention includes ( g) comparing the first ratio and the fifth ratio, (h) comparing the second ratio and the fifth ratio, (i) comparing the third ratio and the fifth ratio. And (j) at least one of comparing the fourth ratio and the fifth ratio, (VII) the first ratio is greater than the second ratio, (VIII)
- the method may further include a step of determining whether or not at least one condition of (IX) the fifth ratio is greater than the fourth ratio is satisfied.
- Succinic acid is also as closely related to energy production as glucose, citric acid and cis-aconitic acid, and can be used to diagnose fatigue overall.
- the first fatigue evaluation method according to the present invention uses discriminant analysis, Partial Last Square, Support using at least one of the obtained ratios. You may further include the process of performing analysis, such as Vector Machine. Further, the sixth ratio and the seventh ratio obtained by (6) and (7) can be used in the same manner as the above-described first to fifth ratios.
- Malic acid and lactic acid are also as closely related to energy production as glucose, citric acid, cis-aconitic acid and succinic acid, and can be used for diagnosis of general fatigue.
- the method concerning this invention can provide the objective diagnosis about chronic fatigue rapidly and at low cost.
- the diagnosis result according to the present invention represents the disease state itself, it is possible to make a treatment policy by using the present invention. That is, according to the present invention, it is determined not only whether or not the subject is in a fatigue state but also whether or not the subject is suffering from chronic fatigue, and further whether or not the patient belongs to chronic fatigue syndrome (or Provide data for determination).
- the second fatigue evaluation method according to the present invention includes at least one step selected from the group consisting of the steps (2) to (7).
- the second fatigue evaluation method may further include, for the second ratio to the seventh ratio, a step of comparing the obtained ratio with a reference value corresponding to the ratio.
- a step of comparing the obtained ratio with a reference value corresponding to the ratio Corresponding to the above steps (2) to (7), (k) comparing the second ratio with a reference value corresponding to the ratio, and (l) a reference corresponding to the third ratio corresponding to the ratio.
- M comparing the fourth ratio with a reference value corresponding to the ratio;
- the reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) ⁇ 100 ( %).
- (X) the second ratio is smaller than the reference value corresponding to the second ratio
- (XI) the third ratio is the third
- (XII) the fourth ratio is smaller than the reference value corresponding to the fourth ratio
- (XIII) the fifth ratio corresponds to the fifth ratio, which is smaller than the reference value corresponding to the ratio of (XIV) the sixth ratio is smaller than the reference value corresponding to the sixth ratio
- (XV) the seventh ratio is smaller than the reference value corresponding to the seventh ratio
- the doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the conditions (X) to (XV) is satisfied. Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination.
- the second fatigue evaluation method according to the present invention there is no substantial difference between the first measured value and the first reference value (that is, the first obtained in the step (1)). It is preferably used when the ratio is substantially equal to 1. In this specification, it is also possible to objectively determine that there is no substantial difference between the first measured value and the first reference value without using the step (1). ) To determine that the first ratio is substantially equal to 1.
- the second fatigue evaluation method according to the present invention includes at least one of a step of obtaining a third ratio, a step of obtaining a fourth ratio, and a step of obtaining a fifth ratio.
- the third to fifth ratios are clearly different between healthy individuals and patients with chronic fatigue syndrome.
- succinic acid is most preferred as a marker, followed by isocitrate and cis-aconitic acid in this order.
- the step of obtaining the fifth ratio is preferable, the step of obtaining the fourth ratio is more preferably performed following the step of obtaining the fifth ratio, Most preferably, the step of obtaining a ratio of 3 is performed subsequent to the step of obtaining a fourth ratio.
- the fatigue evaluation method according to the present invention includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold, and (2 ′) in a biological sample obtained from the subject. (3 ′) comparing the measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject with the third threshold value (3 ′).
- the fatigue evaluation method according to the present embodiment may further include a step of determining whether or not the condition that the measurement value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′), Whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (3 ′) to (5 ′) from the viewpoint of determining whether or not the subject has chronic fatigue syndrome with a probability of 95% or more. It is preferable to further include a step of determining whether or not. In this case, you may further include the process of determining whether the conditions that at least 1 is smaller than the threshold value corresponding to each are satisfied.
- the doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the above conditions is satisfied. Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination.
- the third fatigue evaluation method according to the present invention in at least two selected from the group consisting of the first measurement value to the fifth measurement value in the biological sample obtained from the subject without using the reference value. And at least a step of obtaining a pair of ratios. It is preferable that the method further includes a step of subjecting the obtained at least one pair of ratios to analysis of discriminant analysis, Partial Last Square, or Support Vector Machine.
- the fatigue evaluation method includes, for example, a ratio of a second measurement value to a first measurement value, a ratio of a third measurement value to a first measurement value, and a third measurement value in a biological sample obtained from a subject.
- the ratio of the measured value to the second measured value, the ratio of the fourth measured value to the first measured value, the ratio of the fourth measured value to the second measured value, and the third of the fourth measured value The analysis is preferably performed using at least one of the ratios to the measured values.
- the ratio of the second measurement value to the first measurement value, the ratio of the fourth measurement value to the first measurement value, the second of the fourth measurement value At least one of a ratio to the measurement value, a ratio of the fifth measurement value to the first measurement value, a ratio of the fifth measurement value to the second measurement value, and a ratio of the fifth measurement value to the fourth measurement value; It is more preferable that the analysis method is used, and by having the above configuration, the method according to the present invention can discriminate chronic fatigue syndrome patients with 90% accuracy and 95% sensitivity / specificity. it can.
- the step of measuring the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid in the biological sample (steps for obtaining the first to seventh measurement values)
- the “measurement value” to be obtained is not essential, the value obtained and / or calculated by a third party is provided to the practitioner of the present invention, even if the practitioner of the present invention obtains and / or calculates the “measurement value”. May be.
- the first kit according to the present invention is characterized by including a fifth reagent for measuring a succinic acid concentration in order to evaluate fatigue.
- the first kit according to the present invention may further include a fourth reagent for measuring isocitrate concentration, and further measures the first reagent for measuring glucose concentration, citric acid concentration.
- a second reagent for measuring, a third reagent for measuring cis-aconitic acid concentration, a sixth reagent for measuring malic acid concentration, and a seventh reagent for measuring lactic acid concentration At least one reagent selected from the group may be provided. It is preferable that the kit according to the present invention further includes an instruction sheet displaying the respective reference values of the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid.
- the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio.
- the 2nd kit concerning the present invention may further be provided with the 4th presentation part which shows the 4th ratio, and also the 1st presentation part which shows the 1st ratio, and the 2nd presentation which shows the 2nd ratio At least one of a presentation unit selected from the group consisting of: a third presentation unit showing a third ratio; a sixth presentation unit showing a sixth ratio; and a seventh presentation unit showing a seventh ratio. You may have.
- the kit according to the present invention can be easily used in an actual medical field, so that a faster, cheaper, objective fatigue evaluation method and chronic fatigue syndrome diagnosis method can be provided. Can be provided.
- a first fatigue evaluation system includes a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to seventh measurement values, and first to seventh reference values.
- a reference value storage unit storing at least two reference values selected from the group, an operation for receiving the measurement value from the measurement value receiving unit and the reference value from the reference value storage unit, and generating information for evaluating fatigue
- an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue, and the calculation unit is selected from the group consisting of the first ratio to the seventh ratio. It is characterized by calculating a ratio.
- the calculation unit may execute at least a pair of comparisons in the at least two ratios.
- the measurement value receiving unit receives at least two measurement values selected from the group consisting of the first to fifth measurement values
- the reference value storage unit Stores at least two reference values selected from the group consisting of the first to fifth reference values
- the arithmetic unit is at least two selected from the group consisting of the first ratio to the fifth ratio
- a ratio is further calculated and at least a pair of comparisons are performed on the at least two ratios. The at least one pair of comparisons may obtain a difference between two values or may obtain a ratio.
- the evaluation unit (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, (III) the first ratio is greater than the third ratio, (IV) the first ratio is greater than the fourth ratio, (V) the second ratio is greater than the fourth ratio, (VI ) The fourth ratio is greater than the third ratio, (VII) the first ratio is greater than the second ratio, (VIII) the second ratio is greater than the fourth ratio, (IX) th It is preferable to determine whether or not at least one condition that the ratio of 5 is larger than the fourth ratio is satisfied.
- the calculation unit may perform a discriminant analysis, a Partial Last Square, or an analysis of a support vector machine based on the obtained ratio. Further, the obtained sixth ratio and seventh ratio can be processed by the first fatigue evaluation system according to the present invention in the same manner as the first to fifth ratios described above.
- the calculation unit calculates the first ratio and calculates at least one ratio selected from the group consisting of the second to seventh ratios. It is said.
- the reference value storage unit stores at least one reference value selected from the group consisting of reference values corresponding to the second ratio to the seventh ratio.
- the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio.
- the reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) ⁇ 100 ( %).
- the evaluation unit has a fourth ratio in which the second ratio is smaller than the reference value corresponding to the second ratio, the third ratio is smaller than the reference value corresponding to the third ratio. Is smaller than the reference value corresponding to the fourth ratio, the fifth ratio is smaller than the reference value corresponding to the fifth ratio, and the sixth ratio is more than the reference value corresponding to the sixth ratio.
- the calculation unit calculates at least one of a third ratio to a fifth ratio.
- the calculation unit calculates the fourth ratio subsequent to the fifth ratio, and more preferably calculates the third ratio subsequent to the fourth ratio.
- the determination unit determines whether or not the first ratio is substantially 1.
- the fatigue evaluation system is characterized in that the calculation unit compares the first to seventh measured values with thresholds corresponding to the first to seventh measured values.
- the reference value storage unit may store at least one threshold value selected from the group consisting of threshold values corresponding to each of the first to seventh measurement values.
- the arithmetic unit receives the threshold value from the reference value storage unit and compares the measured value with the threshold value corresponding to the measured value.
- a third fatigue evaluation system receives a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to fifth measurement values, and a measurement value from the measurement value receiving unit.
- the method is characterized in that at least a pair of comparisons is performed to obtain at least a pair of ratios.
- the calculation unit performs a discriminant analysis, a Partial Last Square, or a Support Vector Machine analysis based on the obtained at least one pair of ratios.
- the third fatigue evaluation system evaluates fatigue using at least one of the third, fourth, and fifth measurement values in a biological sample obtained from a subject.
- the fatigue evaluation system according to the present invention corresponds to each of a measurement value receiving unit that receives at least one of the third, fourth, and fifth measurement values, a cis-aconitic acid concentration, an isocitrate concentration, and a succinic acid concentration.
- a reference value storage unit storing at least one of the third, fourth and fifth reference values, a measurement value from the measurement value receiving unit and a reference value from the reference value storage unit for receiving and evaluating fatigue
- the reference value storage unit may store at least one of reference values corresponding to each of cis-aconitic acid concentration, isocitrate concentration, and succinic acid concentration.
- the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio.
- the calculation unit may perform analysis using at least one of the third ratio, the fourth ratio, and the fifth ratio, for example.
- the fatigue evaluation system according to the present invention includes first to seventh measuring units for measuring glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, respectively.
- the system according to the present invention processes measurement values that can be obtained by a conventionally known simple technique according to a unique procedure, and therefore, objective and highly reliable determination that could not be obtained conventionally. Results can be presented quickly and at low cost.
- the compound preferably used in the present invention is glucose, and at least one selected from the group consisting of citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid is used in combination with glucose. Is preferred.
- the concentration of citric acid, succinic acid, malic acid or lactic acid is relatively easy to measure rather than the concentration of cis-aconitic acid or isocitric acid, it is from the group consisting of citric acid, succinic acid, malic acid and lactic acid. More preferably, at least one selected is used in combination with glucose, and at least two selected from the group consisting of citric acid, succinic acid, malic acid and lactic acid are also preferably used in combination with glucose.
- the target compound combination is selected from the group consisting of glucose and citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid.
- the compound combination of interest is glucose, citric acid and succinic acid, glucose, citric acid and malic acid, glucose, citric acid And lactic acid, glucose, succinic acid and malic acid, glucose, succinic acid and lactic acid, or glucose, malic acid and lactic acid, and when four or more biomarkers are used, the combination of compounds of interest is: Glucose, citric acid, succinic acid and malic acid, glucose, Phosphate, succinic acid and lactic acid, glucose, citric acid, malic acid and lactic acid, glucose, succinic acid, malic acid and lactic acid or, glucose, citric acid, succinic acid is preferably malic acid and lactic acid.
- the present invention enables objective and simple evaluation of fatigue and diagnosis of chronic fatigue syndrome.
- the present invention may further provide techniques useful for treating fatigue.
- FIG. 1 is a diagram showing the concentrations of various metabolites contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS).
- FIG. 2 is a diagram showing the results of examining the correlation between a metabolite and a metabolite and the correlation between the metabolite and performance status (PS) for a metabolite forming a glycolytic system and a citric acid cycle.
- FIG. 3 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
- FIG. 1 is a diagram showing the concentrations of various metabolites contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS).
- FIG. 2 is a diagram showing the results of examining the correlation between a metabolite and a metabolite and the correlation between the metabolite and performance status (PS) for a metabolite
- FIG. 4 is a graph showing the ratios of glucose, citric acid, cis-aconitic acid and isocitric acid contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS) on three axes. It is.
- FIG. 5 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
- FIG. 6 is a graph showing the ratios of glucose, citric acid, isocitrate and succinic acid on the three axes included in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). .
- FIG. 7 is a diagram illustrating a result of executing a random forest program using all parameters including measured values of metabolites in a plasma sample.
- Biomarker of the present invention The present inventors further analyzed changes in metabolites in the plasma of healthy subjects and patients with chronic fatigue syndrome, and found a biomarker of fatigue by combining the original measurement with the obtained measurement values, The present invention has been completed.
- the biomarker according to the present invention can be used for the concentration of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, cis-aconitic acid, malic acid, and lactic acid in a biological sample. Is based. In recent years, techniques for exhaustively analyzing various samples for various items have been developed. Metabolome analysis adopted by the present inventors is one of them. However, as shown in FIG.
- the difference between the ratio of the metabolite and one of the other metabolites is used as a biomarker.
- the glucose concentration in the biological sample obtained from the subject (measured value M 1 ) And a reference value for glucose (first reference value B) 1 ) Ratio (first ratio R) 1 ) And citric acid concentration (measured value M) in the biological sample obtained from the subject.
- second reference value B) 2 a reference value for citric acid
- the biomarker of the present invention is R 1 And R 2 Difference Q from 1 , R 2 And R 3 Difference Q from 2 It can be.
- the ratio of the measured value of the subject to the measured value of the healthy person for isocitrate in the biological sample may be calculated, and the difference between the ratio of isocitrate and the ratio of cis-aconitic acid may be used as a biomarker.
- Biomarker Q 3 R 4 -R 3 Biomarker Q obtained as 3
- biomarker Q 1 And Q 2 the biomarker Q 1 ⁇ Q 3 Is positive (Q 1 > 0, Q 2 > 0 or Q 3 > 0) is evaluated as “fatigue” and biomarker Q 1 ⁇ Q 3 Are both negative (Q 1 ⁇ 0 and Q 2 ⁇ 0 and Q 3 If ⁇ 0), it is evaluated as “no fatigue”.
- Succinic acid is also deeply involved in energy production, as is glucose, citric acid and cis-aconitic acid. If the concentration of succinic acid in the sample is used, the present invention can be carried out more easily. That is, in the first embodiment, the glucose concentration in the biological sample obtained from the subject (measured value M 1 ) And a reference value for glucose (first reference value B) 1 ) Ratio (first ratio R) 1 ) And citric acid concentration (measured value M) in the biological sample obtained from the subject. 2 ) And a reference value for citric acid (second B 2 ) Ratio (second ratio R) 2 ) And isocitrate concentration (measured value M) in the biological sample obtained from the subject.
- the biomarker of the present invention is R 1 And R 2 Difference Q from 1a , R 2 And R 4 Difference Q from 2a , R 4 And R 5 Difference Q from 3a It can be.
- Biomarker Q 7 Second ratio
- R 2 Biomarker Q 8 Third ratio
- R 3 Biomarker Q 9 4th ratio
- R 4 Biomarker Q 10 5th ratio
- R 5 Biomarker Q 11 6th ratio
- R 6 Biomarker Q 12 Seventh ratio R 7 Offered as.
- Biomarker (Q 7 ⁇ Q 12 ) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model. As shown in the examples described later, when analyzed using the items listed in FIG.
- At least one of the conditions (R 2 ⁇ 79.1%, R 3 ⁇ 69.3%, R 4 ⁇ 66.0%, R 5 ⁇ 66.6%, R 6 ⁇ 83.7% and R 7 ⁇ 74.3%) is evaluated as “fatigue” and biomarker Q 7 ⁇ Q 12 If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
- cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
- the measured values of glucose, citric acid, cis-aconitic acid, isocitrate and succinic acid in biological samples themselves can also be used as a diagnostic / criterion for fatigue (eg, Data for diagnosing or determining fatigue) and a measure M of the concentration of a metabolite in a biological sample obtained from a subject 2 ⁇ M 7 Can also be a biomarker.
- Biomarker (Q 7a ⁇ Q 12a ) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model.
- biomarker Q 8a ⁇ Q 10a Is preferred, biomarker Q 8a ⁇ Q 10a If at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q 8a ⁇ Q 10a If all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”.
- Biomarker Q 8a ⁇ Q 10a Q 9a Is preferably used in preference, then Q 8a And Q 10a Is preferably used. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
- cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
- the glucose concentration in the biological sample obtained from the subject (measured value M 1 ) And citric acid concentration (measured value M 2 ) And cis-aconitic acid concentration (measured value M 3 ) And isocitrate concentration (measured value M 4 ) And succinic acid concentration (measured value M 5 )
- Such an embodiment is demonstrated in an example described later (for example, FIG. 4).
- FIG. 4 When each is shown on three axes as shown in FIG. 4, the normal group and the chronic fatigue syndrome can be differentiated.
- the normal group and the chronic fatigue syndrome can be differentiated.
- the biomarker of the present invention enables objective and simple fatigue evaluation and diagnosis. Furthermore, by using the biomarker of the present invention, diagnostic methods and treatment methods for chronic fatigue syndrome can be developed. [3] Use of the biomarker of the present invention
- the present invention provides a method, kit and system for assessing fatigue based on the biomarkers described above.
- Biomarker Q in the first embodiment described above 1 ⁇ Q 6
- At least two (or biomarkers Q) 1a ⁇ Q 6a Can be used to evaluate the fatigue state of the subject.
- biomarker Q 1 And Q 2 Is
- Q 1 First ratio
- R 2 Second ratio
- the evaluation of “with fatigue” is provided as Q 1 > 0 or Q 2 > 0
- the evaluation of “no fatigue” is provided as Q 1 ⁇ 0 and Q 2 ⁇ 0
- R 1 M 1 / B 1
- R 2 M 2 / B 2
- R 3 M 3 / B 3
- the first to third ratios (R 1 ⁇ R 3 ) Based on Q 1 And Q 2 By calculating the fatigue state of the subject can be evaluated.
- the fatigue evaluation method (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value; and (3) cis-aconite in the biological sample obtained from the subject.
- the method further includes at least one of the steps of comparing.
- (I) the first ratio is larger than the second ratio
- (II) the second ratio is larger than the third ratio
- (III) the first ratio may be further included.
- a criterion for determination of fatigue including chronic fatigue and chronic fatigue syndrome
- the fatigue evaluation method according to the present invention diagnoses fatigue (including chronic fatigue and chronic fatigue syndrome). Or a method of acquiring data for determination).
- biomarker Q 3 Is also useful for assessing a subject's fatigue status.
- the evaluation of “no fatigue” in combination with Q 1 ⁇ 0 and Q 2 ⁇ 0 and Q 3 ⁇ 0 As provided R 4 M 4 / B 4
- the fatigue evaluation method may further include (4) a step of obtaining a fourth ratio of the measured value of isocitrate concentration in the biological sample obtained from the subject to the fourth reference value.
- the step of comparing the first ratio and the fourth ratio, the step of comparing the second ratio and the fourth ratio, and the step of comparing the third ratio and the fourth ratio For example, a ratio of the second ratio to the first ratio, a third ratio to the second ratio, and a fourth ratio of the third ratio.
- the method further includes a step of performing discriminant analysis, analysis of Partial Last Square, Support Vector Machine, or the like using at least one of the ratios to the above ratio.
- the first, second, fourth and fifth ratios (R 1 , R 2 , R 4 And R 5 It
- the fatigue evaluation method (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value.
- a step of obtaining a fourth ratio of the measured value to the fourth reference value and (4) a step of obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value.
- the first ratio is larger than the second ratio
- the second ratio is larger than the third ratio
- the fourth ratio is The method may further include a step of determining whether or not at least one condition of greater than the third ratio is satisfied
- the first ratio is greater than the second ratio
- the method may further include a step of determining whether or not at least one of the second ratio is larger than the fourth ratio and (VI) the fourth ratio is smaller than the fifth ratio is satisfied.
- the biomarker Q in the second embodiment described above 7 ⁇ Q 12 Can be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome.
- biomarker Q 7 ⁇ Q 12 As a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more.
- the measured value of the glucose concentration in the biological sample obtained from the subject is substantially equal to the reference value, as shown in the examples described later, when the analysis is performed using the items listed in FIG. 7 ⁇ Q 12
- At least one of the conditions (R 2 ⁇ 79.1%, R 3 ⁇ 69.3%, R 4 ⁇ 66.0%, R 5 ⁇ 66.6%, R 6 ⁇ 83.7% and R 7 ⁇ 74.3%) is evaluated as “fatigue” and biomarker Q 21 ⁇ Q 26 If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
- the fatigue evaluation method includes (1) a step of comparing a measured value of a glucose concentration in a biological sample obtained from a subject with a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value, and (3) cis-aconitic acid in the biological sample obtained from the subject.
- the measured value of the sixth At least one of obtaining a sixth ratio with respect to the reference value, and (7) obtaining a seventh ratio with respect to the seventh reference value of the measured value of the lactic acid concentration in the biological sample obtained from the subject. It is characterized by inclusion.
- step (1) when there is no substantial difference between the measured value of glucose concentration and the first reference value, the fatigue evaluation method according to the present embodiment is obtained in (2) to (7).
- a step of determining whether or not the condition that the ratio is smaller than the predetermined ratio is satisfied may be further included.
- the said predetermined ratio is 79.1%, 69.3% about (2)-(7), respectively. 66.0%, 66.6%, 83.7% and 74.3%. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
- biomarker Q 7a ⁇ Q 12a Can be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome.
- biomarker Q 7a ⁇ Q 12a As a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more.
- Q 8a ⁇ Q 10a It is preferable to use biomarker Q 8a ⁇ Q 10a If at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q 8a ⁇ Q 10a If all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”.
- the fatigue evaluation method includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold value. And (2 ′) a step of comparing the measured value of the citric acid concentration in the biological sample obtained from the subject with the second threshold, and (3 ′) the cis-aconitic acid concentration in the biological sample obtained from the subject. A step of comparing the measured value with a third threshold, (4 ′) a step of comparing the measured value of the isocitrate concentration in the biological sample obtained from the subject with the fourth threshold, and (5 ′) from the subject.
- the method further comprises at least one of a step of comparing the measured value of the lactic acid concentration in the obtained biological sample with a seventh threshold value, preferably (3 ′) to (5 ′) above. More preferably, the method includes at least one of the steps (5 ′), and more preferably includes the step (4 ′) after the step (5 ′). More preferably, step 3 ′) is performed.
- the fatigue evaluation method may further include a step of determining whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′). Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
- the biomarker Q in the third embodiment described above 13 ⁇ Q 18 At least one of (or biomarker Q 13a ⁇ Q 18a By using discriminant analysis, Partial Last Square, or Support Vector Machine analysis, etc., it is evaluated (diagnosis or determination) without using a reference value. )can do.
- biomarker Q 13 ⁇ Q 18 Any three (for example, Q 13 ⁇ Q 15 )
- analysis of Partial Last Square, or Support Vector Machine, etc. it is possible to perform more advanced discrimination.
- a representative discriminant analysis is performed, and as described above, the formula (B) (A * M 2 / M 1 + B * M 3 / M 2 + C * M 4 / M 3 ) + D (B) M 1 ⁇ M 4 It is preferable to determine whether or not the patient has chronic fatigue syndrome based on the result obtained by inputting all of the above.
- Biomarker Q 13a ⁇ Q 18a Any three (for example, Q 13a ⁇ Q 15a ) For discriminant analysis, analysis of Partial Last Square, or Support Vector Machine, etc., it is possible to perform more advanced discrimination. In particular, a representative discriminant analysis is performed and, as described above, the formula (B ′) (A * M 2a / M 1a + B * M 4a / M 2a + C * M 5a / M 4a ) + D ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- the fatigue evaluation method includes (1) a step of obtaining a measured value of glucose concentration in a biological sample obtained from a subject, and (2) in a biological sample obtained from the subject. (3) a step of obtaining a measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject, (4) a measurement of the isocitrate concentration in the biological sample obtained from the subject.
- a step of obtaining a value, and (5) a step of obtaining a measurement value of succinic acid concentration in a biological sample obtained from a subject, and further comprising the step of analyzing the obtained measurement value It is preferable to include.
- the fatigue evaluation method according to the present invention has been described according to the first and second embodiments of the biomarker of the present invention, the fatigue evaluation method according to the present invention is not limited to these, for example, without using a reference value.
- the measured value of glucose concentration, the measured value of citric acid concentration, and the measured value of cis-aconitic acid concentration (if necessary, the measured value of isocitrate concentration, malic acid concentration).
- the method of evaluating fatigue using the measured value of lactic acid and the measured value of lactic acid concentration), and the method of evaluating fatigue by comparing the measured value in the biological sample obtained from the subject with each reference value Those skilled in the art who have read this specification will easily understand that it is within the scope of the fatigue evaluation method according to the present invention.
- the fatigue evaluation method according to the present invention may further include a step of measuring a glucose concentration, a citric acid concentration, and a cis-aconitic acid concentration in a biological sample obtained from a subject. You may further include the process of measuring malic acid concentration and lactic acid concentration. That is, the fatigue evaluation method according to the present invention is executed based on the glucose concentration, citric acid concentration, and cis-aconitic acid concentration (and isocitrate concentration, malic acid concentration, and lactic acid concentration as necessary) measured in advance. Alternatively, the glucose concentration, citric acid concentration and cis-aconitic acid concentration (and optionally the isocitrate concentration, malic acid concentration and lactic acid concentration) may be measured from a biological sample obtained from the subject.
- the first to third reference values are an average glucose concentration, an average citric acid concentration, and an average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively.
- it is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like.
- the fourth to seventh reference values are also preferably the average isocitrate concentration, average succinic acid concentration, average malic acid concentration, and average lactic acid concentration in biological samples obtained from a plurality of healthy subjects, It is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like.
- the healthy subjects are sampled simultaneously with the sampling from the subject, and the values calculated based on the concentration of each metabolite in the obtained biological sample. There may be.
- concentrations of metabolites glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration
- enzymatic reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as substrates are well known.
- kits using such a technique are commercially available. In other words, those skilled in the art can successfully measure the concentration of a metabolite in a biological sample by arbitrarily using such various techniques.
- Fatigue evaluation kit A kit having a reagent used for carrying out the fatigue evaluation method as described above is also within the scope of the present invention. That is, the first kit according to the present invention is characterized by including a fifth reagent for measuring the succinic acid concentration in order to evaluate fatigue. A fourth reagent for measuring may further be provided. Further, the first reagent for measuring glucose concentration, the second reagent for measuring citric acid concentration, and cis-aconitic acid concentration are measured.
- the first kit further comprises instructions displaying a reference value for the concentration of succinic acid, optionally including isocitrate, further cis-aconitic acid, and even more. May be displayed with reference values for the concentrations of glucose, citric acid, malic acid and lactic acid.
- enzyme reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as a substrate are well known in the field.
- the first reagent may be an enzyme Glucose oxidase or peroxidase using glucose as a substrate, and in this case, a color developing agent by a redox reaction (for example, o-Dianiside) as a suitable color developing reagent.
- the second reagent may be an enzyme Citrate Lyase or Malic dehydrogenase using citric acid as a substrate.
- ⁇ -NADH is provided in the kit of the present invention as a suitable coloring reagent.
- the third reagent may be an enzyme Aconitase or Citrate Lyase using cis-aconitic acid as a substrate.
- ⁇ -NADH phenylhydrazine is a suitable coloring reagent.
- the fourth reagent may be an enzyme Isocitrate lyase using isocitrate as a substrate, and in that case, phenylhydrazine is preferably provided in the kit of the present invention as a suitable coloring reagent.
- the fifth reagent may be an enzyme Succinyl CoA Synthetase, Pyruvate Kinase, or Lactate Dehydrogenase using succinic acid as a substrate.
- ⁇ -NADH is provided in the kit of the present invention as a suitable coloring reagent.
- the sixth reagent may be the enzyme Malate Dehydrogenase using malic acid as a substrate.
- NAD + is provided in the kit of the present invention as a suitable coloring reagent.
- the reagent of No. 7 may be an enzyme Lactate Dehydrogenase or Glutamic Pyrovic Transaminese using lactic acid as a substrate.
- NAD + is provided in the kit of the present invention as a suitable coloring reagent. It is preferred that the.
- biomarker Q obtained by the fatigue evaluation method as described above 1 ⁇ Q 7 A kit having a configuration for visually detecting is also within the scope of the present invention.
- the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio in order to evaluate fatigue, and a fourth presenting portion showing the fourth ratio is provided.
- the second kit according to the present invention may include a separate member provided with each of the first to seventh presentation parts, or a single member provided with all of the first to seventh presentation parts. May be.
- Each of the first to seventh presenting parts in the second kit preferably has a configuration that presents a visible color tone according to the measured value, and a reference to be compared with the presented color tone is described. It is preferable to further include instructions.
- R in the first presentation part 1 Based on the first color C 1 Is presented, and in the second presentation part, R 2 Based on the second color C 2 Is presented and C 1 And C 2 As well as biomarker Q by comparing references 1 (Ie C 1 And C 2 Value based on the difference between the In the third presentation part, R 3 Based on the third color C 3 Is presented and C 2 And C 3 As well as biomarker Q by comparing references 2 (Ie C 2 And C 3 Value based on the difference between the Thus, the biomarker (Q obtained using the second kit according to the present invention) 1 And Q 2 ) Can be used to evaluate the fatigue state of the subject. Moreover, in the 4th presentation part, it is R as needed.
- kit is intended as a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material, but as a composition. Forms containing the material in the substance are also encompassed by the term “kit”.
- the kit preferably includes instructions for using each material.
- “comprising” is intended to mean being contained in any of the individual containers that make up the kit.
- the kit which concerns on this invention may be the packaging which packed several different compositions in one, and in the case of a solution form, you may enclose in the container.
- the kit according to the present invention may be provided with a plurality of components mixed in the same container or in separate containers.
- the “instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. .
- the kit according to the present invention may also include a container containing a diluent, a solvent, a washing solution or other reagent.
- the kit according to the present invention may include instruments and reagents necessary for collecting a biological sample.
- the kit according to the present invention may be provided with instruments and reagents necessary for preparing a target preparation from a biological sample.
- the kit according to the present invention not only can evaluate fatigue and propose a treatment method, but can also provide a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome). It becomes easy to diagnose whether or not That is, the kit according to the present invention diagnoses a kit (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnostic standard or a criterion for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a kit for acquiring data for determination).
- a kit for example, fatigue (including chronic fatigue and chronic fatigue syndrome)
- each member constituting the fatigue evaluation system according to the present invention is a functional block realized by executing a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU.
- a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU.
- a case of “some” will be described as an example, but it may be realized by hardware that performs the same processing.
- the hardware for performing a part of the processing and the arithmetic means for executing the program code for performing the control of the hardware and the remaining processing It can also be realized in combination.
- the arithmetic means may be a single unit, or a plurality of arithmetic means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
- the fatigue evaluation system according to the present invention includes a measurement unit 11, a storage unit 12, a CPU 13, and a display unit 14 as functional blocks.
- the measuring unit 11 has functions as measuring units 11a to 11g for measuring glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration.
- Part 12 is a measured value M of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration and lactic acid concentration.
- the CPU 13 functions as a reference value storage unit 12b, and the CPU 13 receives the evaluation information from the calculation unit 13a that generates information for evaluating fatigue and the calculation unit 13a, and evaluates fatigue.
- the display part 14 has a function as the evaluation result display part 14 which displays the evaluation result by the evaluation part 13b. This functional block is realized by the CPU 13 executing a program stored in the storage unit 12 and controlling peripheral circuits such as an input / output circuit (not shown).
- the measurement unit 11a measures the glucose concentration in the sample, and the glucose concentration measurement value M 1 Is acquired (S11).
- the measurement unit 11a acquires the measured glucose concentration value M. 1 Is output to the measured value receiving unit 12a (S12).
- the calculation unit 13a receives the glucose concentration measurement value M stored in the measurement value reception unit 12a. 1 Is read (S13).
- the calculation unit 13a has a glucose concentration reference value (first reference value) B stored in the reference value storage unit 12b. 1 Is read (S14).
- the calculation unit 13a is M 1 B 1 Ratio to (first ratio) R 1 Is calculated (S15).
- the calculation unit 13a uses the first ratio R 1 Is output to the evaluation unit 13b (S16).
- steps 21 to 26 corresponding to the above steps 11 to 16 are executed for citric acid
- the calculation unit 13a performs the second ratio R. 2 Is output to the evaluation unit 13b
- steps 31 to 36 corresponding to the above steps 11 to 16 are executed for the cis-aconitic acid
- the calculation unit 13a performs the third ratio R. 3 Is output to the evaluation unit 13b
- steps 41 to 46 corresponding to the above steps 11 to 16 are executed for isocitrate
- the calculation unit 13a performs the fourth ratio R. 4 Is output to the evaluation unit 13b.
- the evaluation unit 13b outputs the first to fourth ratios R output by the calculation unit 13a. 1 ⁇ R 4
- the first ratio R 1 To the second ratio R 2 Are compared (S51).
- the evaluation unit 13b uses the first ratio R 1 Is the second ratio R 2 Greater than (R 1 > R 2 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S52).
- the evaluation unit 13b uses the first ratio R 1 Is the second ratio R 2 Less than (R 1 ⁇ R 2 ), The second ratio R 2 To the third ratio R 3 Are compared (S53).
- the evaluation unit 13b uses the second ratio R 2 Is the third ratio R 3 Greater than (R 2 > R 3 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S54).
- the evaluation unit 13b uses the second ratio R 2 Is the third ratio R 3 Less than (R 2 ⁇ R 3 ), The third ratio R 3 To the fourth ratio R 4 Are compared (S55).
- the evaluation unit 13b uses the fourth ratio R 4 Is the third ratio R 3 Greater than (R 4 > R 3 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S56).
- the evaluation unit 13b uses the fourth ratio R 4 Is the third ratio R 3 Less than (R 4 ⁇ R 3 ), It is evaluated as “no fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S57).
- steps 41 to 46 may or may not be executed, and R 4 May not be used for fatigue evaluation.
- the evaluation unit 13b determines that the second ratio R 2 Is the third ratio R 3 Less than (R 2 ⁇ R 3 ), It is sufficient to evaluate “no fatigue” and output the evaluation result to the evaluation result display unit 14 (S58).
- R 1 And R 2 As an example, a mode of preferentially comparing with the above has been described.
- the storage unit 12 includes the measurement value receiving unit 12a, the reference value storage unit 12b, and the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid.
- Reference value t of concentration 1 ⁇ t 7 As a reference value storage unit 12c.
- the calculation unit 13a uses the first ratio R 1 Is output to the evaluation unit 13b (S16), and the reference value (first reference value) t of the glucose concentration stored in the measurement value receiving unit 12c.
- the evaluation unit 13b uses the first ratio R 1 And the first reference value t 1 And compare the two (S150).
- the evaluation unit 13b uses the first ratio R 1 Is the first reference value t 1 Is almost equal to (R 1 ⁇ t 1 ), The evaluation unit 13b subsequently determines that the fifth ratio R 5 And the fifth reference value t 5 And compare the two (S151).
- the evaluation unit 13b uses the fifth ratio R 5 Is the fifth reference value t 5 Less than (R 5 ⁇ T 5 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S152).
- the evaluation unit 13b uses the fifth ratio R 5 Is the fifth reference value t 5 Greater than (R 5 ⁇ t 5 ), The evaluation unit 13b subsequently determines that the fourth ratio R 4 And the fourth reference value t 4 And compare the two (S153).
- the evaluation unit 13b uses the fourth ratio R 4 Is the fourth reference value t 4 Less than (R 4 ⁇ T 4 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S154).
- the evaluation unit 13b uses the fourth ratio R 4 Is the fourth reference value t 4 Greater than (R 4 ⁇ t 4 ), The evaluation unit 13b subsequently determines that the third ratio R 3 And the third reference value t 3 And compare the two (S155).
- the evaluation unit 13b uses the third ratio R 3 Is the third reference value t 3 Less than (R 3 ⁇ T 3 ), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S156).
- the evaluation unit 13b uses the third ratio R 3 Is the third reference value t 3 Greater than (R 3 ⁇ t 3 ), It is evaluated as “no fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S157).
- the present embodiment has been described by taking the succinic acid concentration, isocitric acid concentration, and cis-aconitic acid concentration as examples, but the same processing is performed when the glucose concentration, citric acid concentration, malic acid concentration, and lactic acid concentration are further used. .
- the storage unit 12 includes the measurement value receiving unit 12a, the reference value storage unit 12b, and the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration.
- Threshold T 1 ⁇ T 7 As a threshold storage unit 12d.
- the calculation unit 13a calculates the fifth measurement value M 4 Is output to the evaluation unit 13b, and the succinic acid concentration threshold (fifth threshold) T stored in the measurement value receiving unit 12d 5 Is output to the evaluation unit 13b.
- the evaluation unit 13b receives the fifth measurement value M 5 And the fifth threshold T 5 And compare the two.
- the evaluation unit 13b receives the fifth measurement value M 5 Is the fifth threshold T 5 Smaller than (M 5 ⁇ T 5 ) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14.
- the evaluation unit 13b receives the fifth measurement value M 5 Is the fifth threshold T 5 Larger than (M 5 ⁇ T 5 ), The evaluation unit 13b subsequently determines that the fourth measurement value M 4 And the fourth threshold T 4 And compare the two.
- the evaluation unit 13b receives the fourth measurement value M 4 Is the fourth threshold T 4 Smaller than (M 4 ⁇ T 4 ) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14.
- the evaluation unit 13b receives the fourth measurement value M 4 Is the fourth threshold T 4 Larger than (M 4 ⁇ T 4 ), The evaluation unit 13b continues to determine the third measurement value M. 3 And the third threshold T 3 And compare the two.
- the evaluation unit 13b receives the third measurement value M 3 Is the third threshold T 3 Smaller than (M 3 ⁇ T 3 ) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14.
- the evaluation unit 13b receives the third measurement value M 3 Is the third threshold T 3 Larger than (M 3 ⁇ T 3 ) Is evaluated, “no fatigue” is evaluated, and the evaluation result is output to the evaluation result display unit 14.
- the fatigue evaluation system can also evaluate the presence or absence of fatigue (third embodiment).
- the calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a. 1 ⁇ M 7 Is output to the evaluation unit 13b.
- the calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a. 1 ⁇ M 7 Is output to the evaluation unit 13b. Subsequently, the evaluation unit 13b first to seventh measurement values M output from the calculation unit 13a. 1 ⁇ M 7 Receive M 1 ⁇ M7 4 Are compared (S61).
- the evaluation unit 13b receives the received M 1 ⁇ M 4 M obtained from 2 / M 1 , M 3 / M 2 , M 4 / M 3 , M 3 / M 1 , M 4 / M 1 , M 4 / M 2 Is again output to the calculation unit 13a (S62).
- the calculation unit 13a for example, the input M 2 / M 1 , M 3 / M 2 , M 4 / M 3 (For example, discriminant analysis, Partial Last Square, Support Vector Machine, etc.) is executed (S63).
- the evaluation unit 13b that has received the analysis result output from the calculation unit 13a outputs a determination result as to whether or not the patient is a chronic fatigue syndrome patient to the evaluation result display unit 14 based on the cutoff value (S64).
- the present embodiment has been described by taking the glucose concentration, citric acid concentration, cis-aconitic acid concentration and isocitrate concentration as examples, the same processing is performed when the succinic acid concentration, malic acid concentration and lactic acid concentration are further used.
- the measurement unit 11 measures the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, and the value obtained by the measurement unit 11 is the measured value receiving unit 12a.
- the present invention has been described using the embodiment inputted in the above, the previously obtained glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration are directly
- the aspect inputted to the measured value reception part 12a may be sufficient, and the fatigue evaluation system concerning this invention does not need to be provided with the measurement part 11 in this case.
- the system according to the present invention is used, not only can fatigue be evaluated and a treatment method can be proposed, but also a judgment criterion for fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided.
- the system according to the present invention diagnoses a system (for example, fatigue (including chronic fatigue, chronic fatigue syndrome)) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue, chronic fatigue syndrome). Or a system for obtaining data for determination).
- a system for example, fatigue (including chronic fatigue, chronic fatigue syndrome)
- fatigue including chronic fatigue, chronic fatigue syndrome
- a diagnosis standard or determination standard for fatigue including chronic fatigue, chronic fatigue syndrome
- a system for obtaining data for determination a system for example, fatigue (including chronic fatigue, chronic fatigue syndrome) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue, chronic fatigue syndrome).
- a system for obtaining data for determination for determination.
- FIG. 3 shows a metabolite comparison between healthy and CFS patients. In the figure, the average value for healthy individuals is 100.
- the normal group and the chronic fatigue syndrome patient can be almost completely separated by simultaneously evaluating the citric acid / glucose ratio, isocitrate / citric acid ratio, and succinic acid / isocitrate ratio on three axes. (Fig. 6).
- this analysis can discriminate CFS patients with 90% or more accuracy even when using the Partial Last Square, Support Vector Machine, etc. as well as the discriminant analysis (data shown) )
- the measured value of the metabolite in the plasma sample was input to analysis software R (free software, version 2.11.1), and a random forest (Random Forest) program was executed. Random Forest is an algorithm used for identification, regression, and clustering. As shown in FIG.
- isocitrate, succinic acid and Cis-aconitic acid are very important among a plurality of measurement items when classifying healthy subjects and chronic fatigue patients, and isocitrate It has been found that measuring one of succinic acid and Cis-aconitic acid can determine whether a subject has chronic fatigue syndrome.
- the measured value of the metabolite (the compound listed in FIG. 7) in the plasma sample was input to the analysis software R to execute a tree-based model program. This program is used in the field of decision theory to plan and reach goals.
- succinic acid is the most important factor among the plurality of measurement items, and the succinic acid measurement value is a threshold T2 (14 When it is lower than .56 ⁇ M), it has been found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome.
- the remaining measurement values excluding the succinic acid measurement values were input to the analysis software R to execute the tree model program.
- isocitrate is the most important factor among a plurality of measurement items excluding succinic acid when classifying healthy subjects and chronic fatigue patients, and isocitrate When the measured value was lower than the threshold value T1 (7.46 ⁇ M), it was found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome. Further, the remaining measurement values excluding the succinic acid measurement value and the isocitrate measurement value were input to the analysis software R to execute the tree model program. As a result, as shown in Table 1, cis-aconitic acid is the most important factor among a plurality of measurement items excluding succinic acid and isocitrate when classifying healthy subjects and chronic fatigue patients.
- the test subject can be determined with a probability of 95% as having chronic fatigue syndrome.
- Probability of determining that a subject has chronic fatigue syndrome when the remaining measurement values excluding succinic acid measurement value, isocitric acid measurement value and cis-aconitic acid measurement value are input to analysis software R and the tree model program is executed was less than 80%.
- the probability that the subject can be determined to have chronic fatigue syndrome is greater than 95%, and by measuring lactic acid with citric acid and creatine, the subject has chronic fatigue syndrome Is 95% or more.
- the calculated threshold value may differ depending on the method of obtaining the measurement value. In consideration of this possibility, it is preferable to determine that the patient has chronic fatigue syndrome when the condition that any one of t1, t2, and t3 is smaller than the minimum value is satisfied.
- t1 to t3 are ratios between the measured values of isocitric acid, succinic acid and cis-aconitic acid from subjects and the average values of healthy individuals of isocitric acid, succinic acid and cis-aconitic acid ( %).
- isocitrate and succinic acid were used.
- the reference values for cis-aconitic acid are 66.0%, 66.6% and 69.3%, respectively. If the present invention is used, fatigue diagnosis with a simple kit becomes possible.
- the present invention there is a possibility of finding an effective treatment based on the result of diagnosis using the present invention. For example, by applying the present invention to a patient who complains of a strong feeling of fatigue or a long-term feeling of fatigue, an objective evaluation of the degree of fatigue can be performed, and further, it can be determined whether or not the patient has chronic fatigue syndrome.
- the evaluation of the degree of fatigue according to the present invention does not require a high level of knowledge about fatigue, and therefore can be performed in general medical facilities.
- the present invention it is possible to infer which part of the in vivo energy (ATP) -producing metabolic system is abnormal, so that not only can it be used for the patient's life guidance, but also the possible metabolism It becomes possible to provide a food that promotes the system or a food that can promote energy production even under abnormal metabolism.
- ATP in vivo energy
- the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
- the use of the present invention makes it possible to objectively and easily perform fatigue evaluation and diagnosis.
- the present invention may further provide techniques useful for treating fatigue. Because fatigue is a very significant health problem, the realization of fatigue assessment, diagnosis and treatment contributes greatly across all industries.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Diabetes (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
The ratio of measurement values of glucose, citric acid, and cis-aconitic acid in a biological sample of a subject to the measurement values of healthy subjects is calculated, and the glucose ratio, citric acid ratio, and cis-aconitic acid ratio are used to assess and/or determine fatigue. In the same way, the isocitric acid ratio, succinic acid ratio, malic acid ratio, and lactic acid ratio are calculated, combined with the three abovementioned ratios, and used to assess and/or determine fatigue. Thus enabled is the objective and simple diagnosis and assessment of fatigue.
Description
本発明は、疲労を評価するバイオマーカーおよび該バイオマーカーを用いた疲労の評価および診断に関する。
The present invention relates to a biomarker for evaluating fatigue and evaluation and diagnosis of fatigue using the biomarker.
日本国における疫学調査によれば、一般大衆の約60%が疲労を自覚しており、その半数以上が6ヶ月以上続く疲労(すなわち慢性疲労)に悩まされている。また、慢性疲労を感じている人の約半数が、仕事または学業の能率低下を訴えている。このような慢性疲労による経済的損失は1兆2千億円にも上るとされている。さらに、慢性疲労を感じている人の中には、強い疲労感を主症状とする、未だ原因が十分解明されていない慢性疲労症候群(chronic fatigue syndrome)の患者も含まれている。
これまでの疲労診断の多くは、患者の主観に基づくものであるため、疲労を客観的に診断するための指標の確立が望まれている。特許文献1には、免疫力低下の原因の1つとして挙げられているウイルス感染に着目し、ウイルス感染を疲労度の指標として評価する技術が開示されている。非特許文献1には、疲労を加速度脈波によって客観的に測定/評価する試みが開示されている。 According to an epidemiological survey in Japan, about 60% of the general public is aware of fatigue, and more than half of them are suffering from fatigue that lasts more than 6 months (ie, chronic fatigue). Also, about half of those who feel chronic fatigue complain of reduced work or school efficiency. The economic loss due to chronic fatigue is estimated to be 1.2 trillion yen. Further, among those who feel chronic fatigue, there are patients with chronic fatigue syndrome whose cause is strong fatigue and whose cause has not been fully elucidated.
Since many of the conventional fatigue diagnoses are based on the subjectivity of patients, establishment of an index for objectively diagnosing fatigue is desired.Patent Document 1 discloses a technique for evaluating viral infection as an indicator of fatigue level, focusing on viral infections listed as one of the causes of immunity decline. Non-Patent Document 1 discloses an attempt to objectively measure / evaluate fatigue using an acceleration pulse wave.
これまでの疲労診断の多くは、患者の主観に基づくものであるため、疲労を客観的に診断するための指標の確立が望まれている。特許文献1には、免疫力低下の原因の1つとして挙げられているウイルス感染に着目し、ウイルス感染を疲労度の指標として評価する技術が開示されている。非特許文献1には、疲労を加速度脈波によって客観的に測定/評価する試みが開示されている。 According to an epidemiological survey in Japan, about 60% of the general public is aware of fatigue, and more than half of them are suffering from fatigue that lasts more than 6 months (ie, chronic fatigue). Also, about half of those who feel chronic fatigue complain of reduced work or school efficiency. The economic loss due to chronic fatigue is estimated to be 1.2 trillion yen. Further, among those who feel chronic fatigue, there are patients with chronic fatigue syndrome whose cause is strong fatigue and whose cause has not been fully elucidated.
Since many of the conventional fatigue diagnoses are based on the subjectivity of patients, establishment of an index for objectively diagnosing fatigue is desired.
生体内には、恒常性(ホメオスタシス)を維持させるメカニズム、すなわち乱れたホメオスタシスを回復させようとするメカニズムが、本来備わっている。生体が本来有しているメカニズムに則して疲労を客観的に評価する技術の開発が望まれている。具体的には、生体サンプルに含まれる化学物質の濃度に基づいて、生体情報を数値化または定量化し得る生体指標(バイオマーカー)の同定が期待されている。
特許文献1記載の技術は、被験者の体液を採取し、体液中のヒトヘルペスウイルスの量を測定し、疲労度との関係を評価している。しかし、この技術は、ヒト(宿主)に感染したウイルスの挙動を観察するものであり、ヒトにおける疲労のメカニズムを反映したバイオマーカーを測定するものではない。そのため、特許文献1記載の技術では、個々の被験者の疲労状態を評価したり、治療法または予防法を提供したりすることができない。また、非特許文献1記載の技術は、非侵襲的に実施され得るという利点があるが、特殊な機器による指尖容積脈波の測定、および特殊な原理に基づくデータ処理が必要であり、汎用性に乏しい。さらに、非特許文献2には、血液、唾液、尿にて評価し得る、疲労の生化学的マーカー候補が列挙されており、これらの因子が、疲労および疲労感と関連深い旨が記載されている。また、非特許文献3には、種々の生体サンプルにおけるいくつかの因子が、精神的疲労および肉体的疲労に関連してその量を変動させることが記載されている。しかし、非特許文献2および3に記載の因子には、一時的な負荷による疲労を反映したものが多く、特に、日常生活の中で長期間持続している疲労の診断および評価はまだ実現されていない。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、客観的かつ簡便な疲労の診断および評価を可能にするバイオマーカーを提供することにある。 A mechanism for maintaining homeostasis (homeostasis), that is, a mechanism for restoring disordered homeostasis is inherently provided in the living body. Development of a technique for objectively evaluating fatigue in accordance with the mechanism inherent to the living body is desired. Specifically, it is expected to identify a biological index (biomarker) that can quantify or quantify biological information based on the concentration of a chemical substance contained in a biological sample.
The technique described inPatent Document 1 collects the body fluid of a subject, measures the amount of human herpesvirus in the body fluid, and evaluates the relationship with the degree of fatigue. However, this technique observes the behavior of a virus that infects a human (host), and does not measure a biomarker that reflects the mechanism of fatigue in humans. For this reason, the technique described in Patent Document 1 cannot evaluate the fatigue state of an individual subject or provide a treatment or prevention method. The technique described in Non-Patent Document 1 has an advantage that it can be implemented non-invasively, but requires measurement of fingertip volume pulse waves by a special device and data processing based on a special principle. Poor sex. Further, Non-Patent Document 2 lists fatigue biochemical marker candidates that can be evaluated in blood, saliva, and urine, and describes that these factors are closely related to fatigue and fatigue. Yes. Non-Patent Document 3 describes that several factors in various biological samples change their amounts in relation to mental fatigue and physical fatigue. However, many of the factors described in Non-Patent Documents 2 and 3 reflect fatigue due to temporary load, and in particular, diagnosis and evaluation of fatigue that has been sustained for a long time in daily life has not yet been realized. Not.
The present invention has been made in view of the above problems, and an object thereof is to provide a biomarker that enables objective and simple diagnosis and evaluation of fatigue.
特許文献1記載の技術は、被験者の体液を採取し、体液中のヒトヘルペスウイルスの量を測定し、疲労度との関係を評価している。しかし、この技術は、ヒト(宿主)に感染したウイルスの挙動を観察するものであり、ヒトにおける疲労のメカニズムを反映したバイオマーカーを測定するものではない。そのため、特許文献1記載の技術では、個々の被験者の疲労状態を評価したり、治療法または予防法を提供したりすることができない。また、非特許文献1記載の技術は、非侵襲的に実施され得るという利点があるが、特殊な機器による指尖容積脈波の測定、および特殊な原理に基づくデータ処理が必要であり、汎用性に乏しい。さらに、非特許文献2には、血液、唾液、尿にて評価し得る、疲労の生化学的マーカー候補が列挙されており、これらの因子が、疲労および疲労感と関連深い旨が記載されている。また、非特許文献3には、種々の生体サンプルにおけるいくつかの因子が、精神的疲労および肉体的疲労に関連してその量を変動させることが記載されている。しかし、非特許文献2および3に記載の因子には、一時的な負荷による疲労を反映したものが多く、特に、日常生活の中で長期間持続している疲労の診断および評価はまだ実現されていない。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、客観的かつ簡便な疲労の診断および評価を可能にするバイオマーカーを提供することにある。 A mechanism for maintaining homeostasis (homeostasis), that is, a mechanism for restoring disordered homeostasis is inherently provided in the living body. Development of a technique for objectively evaluating fatigue in accordance with the mechanism inherent to the living body is desired. Specifically, it is expected to identify a biological index (biomarker) that can quantify or quantify biological information based on the concentration of a chemical substance contained in a biological sample.
The technique described in
The present invention has been made in view of the above problems, and an object thereof is to provide a biomarker that enables objective and simple diagnosis and evaluation of fatigue.
本発明にかかる第1の疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値(第1の測定値)の、第1の基準値に対する第1の比率を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値(第2の測定値)の、第2の基準値に対する第2の比率を得る工程、(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値(第3の測定値)の、第3の基準値に対する第3の比率を得る工程、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値(第4の測定値)の、第4の基準値に対する第4の比率を得る工程、(5)被験者から得た生体サンプル中のコハク酸濃度の測定値(第5の測定値)の、第5の基準値に対する第5の比率を得る工程、(6)被験者から得た生体サンプル中のリンゴ酸濃度の測定値(第6の測定値)の、第6の基準値に対する第6の比率を得る工程、および、(7)被験者から得た生体サンプル中の乳酸濃度の測定値(第7の測定値)の、第7の基準値に対する第7の比率を得る工程、からなる群より選択される少なくとも2つの工程を包含することを特徴としている。
慢性疲労症候群の診断において、診断されるまでの測定項目の多さ、長期間にわたる観察(測定)時間、経済的な負担、医師の判断基準の個人差などが問題となる。上記構成を有することによって、本発明にかかる方法は、生体サンプル中の特定の代謝物を測定することのみによって客観的な診断を下すためのデータを提供し得るので、疲労についての、迅速かつ低コストな、そして客観的な診断を可能にする。すなわち、本発明にかかる方法は、疲労の診断基準または判定基準を提供する方法でもあり得る。また、グルコース、クエン酸およびcis−アコニット酸はエネルギー産生に深く関係しているので、本発明にかかる方法は、疲労全般(慢性疲労、蓄積疲労、慢性疲労症候群を含む。)の診断にも利用可能である。
本明細書中にて使用される場合、用語「生体サンプル」は、被験体から採取された任意の組織(血液等の体液を含む。)または細胞が意図され、これらから調製された組織切片または細胞溶解物もまた生体サンプルに包含され得る。本発明に用いるに好ましい生体サンプルとしては、血液、唾液、尿、間質液、汗、およびこれらからの調製物(例えば、血清、血漿など)などが挙げられるがこれらに限定されない。なお、サンプル取得の第一段階として組織または細胞をヒト被験体から直接取り出す工程は、医師によるものであり、本発明の範囲外である。また、本発明の方法によって得られた結果を用いて、疲労(慢性疲労、蓄積疲労、慢性疲労症候群を含む。)であるか否かの判定を医師が下す工程もまた、本発明の範囲外である。
本明細書中にて使用される場合、第1~第7の基準値は、それぞれ、複数の健常者から得た生体サンプル中の平均グルコース濃度、平均クエン酸濃度、平均cis−アコニット酸濃度、平均イソクエン酸濃度、平均コハク酸濃度、平均リンゴ酸濃度、および平均乳酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。なお、第1~第7の基準値は、予め規定された値であっても、被験者からのサンプリングと同時に健常者のサンプリングを行い、得られた生体サンプル中の各代謝物質の濃度に基づいて算出された値であってもよい。また、第1~第7の基準値は、第1~第7の測定値を得る際に用いた測定方法と同一の測定方法によって得られることが好ましい。
本発明にかかる第1の疲労評価方法は、上記少なくとも2つの工程によって得られた少なくとも2つの比率において、少なくとも一対を比較する工程をさらに包含してもよく、好ましくは、本発明にかかる第1の疲労評価方法は、上記(1)~(5)の工程からなる群より選択される少なくとも2つの工程を包含している。少なくとも一対を比較する工程における比較は、2つの値の差を得ても、比率を得てもよい。
1つの局面において、本発明にかかる第1の疲労評価方法は、(a)第1の比率と第2の比率とを比較する工程、(b)第2の比率と第3の比率とを比較する工程、および(c)第1の比率と第3の比率とを比較する工程、の少なくとも1つをさらに包含し、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、および(III)第1の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
さらなる局面において、(d)第1の比率と第4の比率とを比較する工程、(e)第2の比率と第4の比率とを比較する工程、および(f)第3の比率と第4の比率とを比較する工程、の少なくとも1つをさらに包含し、(IV)第1の比率が第4の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。上記(4)の工程を包含する場合、本発明にかかる第1の疲労評価方法は、上記(5)の工程をさらに包含することが好ましく、この場合、本発明にかかる疲労評価方法は、(g)第1の比率と第5の比率とを比較する工程、(h)第2の比率と第5の比率とを比較する工程、(i)第3の比率と第5の比率とを比較する工程、および(j)第4の比率と第5の比率とを比較する工程の少なくとも1つをさらに包含し、(VII)第1の比率が第2の比率よりも大きい、(VIII)第2の比率が第4の比率よりも大きい、(IX)第5の比率が第4の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
コハク酸もまた、グルコース、クエン酸およびcis−アコニット酸と同様にエネルギー産生に深く関係しているので、疲労全般の診断にも利用可能である。cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でないが、サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。
上記(a)~(j)の工程において比率が得られる場合は、本発明にかかる第1の疲労評価方法は、得られた比率の少なくとも1つを用いて、判別分析、Partial Least Square、Support Vector Machine等の分析を行う工程をさらに包含してもよい。また、(6)および(7)によって得られた第6の比率および第7の比率は、上述した第1~第5の比率と同様に用いられ得る。リンゴ酸および乳酸もまた、グルコース、クエン酸、cis−アコニット酸およびコハク酸と同様にエネルギー産生に深く関係しているので、疲労全般の診断にも利用可能である。
上記構成を有することによって、本発明にかかる方法は、慢性疲労についての客観的な診断を迅速かつ低コストにて提供し得る。さらに、本発明による診断結果が病態そのものを表すため、本発明を用いれば治療方針を立てることも可能である。すなわち、本発明を用いれば、被験者が疲労状態にあるのか否かだけでなく、慢性疲労に陥っているのか否か、さらには、患者が慢性疲労症候群に属するか否か、を判定する(あるいは、判定するためのデータを提供する)ことができる。
本発明にかかる第2の疲労評価方法は、上記(2)~(7)の工程からなる群より選択される少なくとも1つの工程を包含することを特徴としている。本発明にかかる第2の疲労評価方法は、第2の比率~第7の比率について、得られた比率を該比率に対応する参照値と比較する工程をさらに包含してもよく、具体的には、上記工程(2)~(7)に対応して、(k)第2の比率を該比率に対応する参照値と比較する工程、(l)第3の比率を該比率に対応する参照値と比較する工程、(m)第4の比率を該比率に対応する参照値と比較する工程、(n)第5の比率を該比率に対応する参照値と比較する工程、(o)第6の比率を該比率に対応する参照値と比較する工程、および(p)第7の比率を該比率に対応する参照値と比較する工程、の少なくとも1つをさらに包含してもよい。なお、参照値は、測定値を用いた決定木数理モデルに基づく解析によって得た閾値と、基準値との比率として得られるものであり、具体的には、(閾値/基準値)×100(%)として算出される値である。この場合、上記工程(k)~(p)に対応して、(X)第2の比率が、第2の比率に対応する参照値よりも小さい、(XI)第3の比率が、第3の比率に対応する参照値よりも小さい、(XII)第4の比率が、第4の比率に対応する参照値よりも小さい、(XIII)第5の比率が、第5の比率に対応する参照値よりも小さい、(XIV)第6の比率が、第6の比率に対応する参照値よりも小さい、(XV)第7の比率が、第7の比率に対応する参照値よりも小さい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含することが好ましい。
医師は、上記(X)~(XV)の少なくとも1つの条件が成立する場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属する可能性があると判定することができる。
また、後述する疲労評価システムでは、判定部が同様の判定を行うことができる。なお、本発明にかかる第2の疲労評価方法は、第1の測定値と第1の基準値との間で実質的な差異がない(すなわち、上記工程(1)で得られた第1の比率が実質的に1に等しい)場合に用いられることが好ましい。本明細書中において、上記工程(1)を用いることなく第1の測定値と第1の基準値との間で実質的な差異がないと客観的に判断することもまた、上記工程(1)を用いて第1の比率が実質的に1に等しいと判断することに包含される。
1つの局面において、本発明にかかる第2の疲労評価方法は、第3の比率を得る工程、第4の比率を得る工程、および、第5の比率を得る工程の少なくとも1つを包含することが好ましい。図3および5に示すように、第3~第5の比率は、健常者と慢性疲労症候群患者との間で明らかに差異がある。また、後述する実施例に示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、単独であっても、被験者が慢性疲労症候群患者であるか否かを、95%の確率で判定するマーカーとなり得る。これらの中で、コハク酸がマーカーとして最も好ましく、次いで、イソクエン酸、cis−アコニット酸の順に好ましい。すなわち、本発明にかかる第2の疲労評価方法において、第5の比率を得る工程が好ましく、第4の比率を得る工程が第5の比率を得る工程に引き続いて行われることがより好ましく、第3の比率を得る工程が第4の比率を得る工程に引き続いて行われることが最も好ましい。
また、本発明にかかる疲労評価方法は、(1’)被験者から得た生体サンプル中のグルコース濃度の測定値と第1の閾値とを比較する工程、(2’)被験者から得た生体サンプル中のクエン酸濃度の測定値と第2の閾値とを比較する工程、(3’)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値と第3の閾値とを比較する工程、(4’)被験者から得た生体サンプル中のイソクエン酸濃度の測定値と第4の閾値とを比較する工程、(5’)被験者から得た生体サンプル中のコハク酸濃度の測定値と第5の閾値とを比較する工程、(6’)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の第6の閾値とを比較する工程、および(7’)被験者から得た生体サンプル中の乳酸濃度の測定値の第7の閾値とを比較する工程、の少なくとも1つを包含することを特徴としており、好ましくは、上記(3’)~(5’)の工程の少なくとも1つを包含し、少なくとも(5’)の工程を包含することがより好ましく、(5’)の工程の次に(4’)の工程を行うことがより好ましく、引き続いて(3’)の工程を行うことがさらに好ましい。本実施形態にかかる疲労評価方法は、(1’)~(7’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよく、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る観点から、(3’)~(5’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含することが好ましい。この場合、少なくとも1つがそれぞれに対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。医師は、上記条件の少なくとも1つが成立する場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属する可能性があると判定することができる。また、後述する疲労評価システムでは、判定部が同様の判定を行うことができる。
本発明にかかる第3の疲労評価方法は、基準値を用いずに、被験者から得た生体サンプル中の、第1の測定値~第5の測定値からなる群より選択される少なくとも2つにおいて、少なくとも一対の比率を得る工程を包含することを特徴としている。上記得られた少なくとも一対の比率を、判別分析、Partial Least Square、またはSupport Vector Machineの分析に供する工程をさらに包含することが好ましい。本発明にかかる疲労評価方法は、例えば、被験者から得た生体サンプル中の、第2の測定値の第1の測定値に対する比率、第3の測定値の第1の測定値に対する比率、第3の測定値の第2の測定値に対する比率、第4の測定値の第1の測定値に対する比率、第4の測定値の第2の測定値に対する比率、および第4の測定値の第3の測定値に対する比率の少なくとも1つを用いて分析を行うことが好ましく、上記構成を有することによって、本発明にかかる方法は、90%以上の正確さで慢性疲労症候群患者を判別することができる。また、例えば、被験者から得た生体サンプル中の、第2の測定値の第1の測定値に対する比率、第4の測定値の第1の測定値に対する比率、第4の測定値の第2の測定値に対する比率、第5の測定値の第1の測定値に対する比率、第5の測定値の第2の測定値に対する比率、および第5の測定値の第4の測定値に対する比率の少なくとも1つを用いて分析を行うことがより好ましく、上記構成を有することによって、本発明にかかる方法は、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別することができる。
なお、本発明において、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸の濃度を測定する工程(第1~第7の測定値を得る工程)は必須ではなく、得られるべき「測定値」は、本発明の実行者が自ら取得および/または算出しても、第三者によって取得および/または算出された値が、本発明の実行者に提供されてもよい。
本発明にかかる第1のキットは、疲労を評価するために、コハク酸濃度を測定するための第5の試薬を備えていることを特徴としている。本発明にかかる第1のキットは、イソクエン酸濃度を測定するための第4の試薬をさらに備えていてもよく、さらに、グルコース濃度を測定するための第1の試薬、クエン酸濃度を測定するための第2の試薬、cis−アコニット酸濃度を測定するための第3の試薬、リンゴ酸濃度を測定するための第6の試薬、および、乳酸濃度を測定するための第7の試薬からなる群より選択される試薬の少なくとも1つを備えていてもよい。本発明にかかるキットは、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸の濃度の各々の基準値が表示された指示書をさらに備えていることが好ましい。
本発明にかかる第2のキットは、疲労を評価するために、第5の比率を示す第5呈示部を備えていることを特徴としている。本発明にかかる第2のキットは、第4の比率を示す第4呈示部をさらに備えていてもよく、さらに、第1の比率を示す第1呈示部、第2の比率を示す第2呈示部、第3の比率を示す第3呈示部、第6の比率を示す第6呈示部、および、第7の比率を示す第7呈示部からなる群より選択される呈示部の少なくとも1つを備えていてもよい。
上記構成を有することによって、本発明にかかるキットは、実際の医療現場にて簡便に使用することができるので、より速く、安く、客観的な、疲労の評価方法および慢性疲労症候群の診断方法を提供し得る。
本発明にかかる第1の疲労評価システムは、第1~第7の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、第1~第7の基準値からなる群より選択される少なくとも2つの基準値を格納した基準値格納部、測定値受容部からの測定値と基準値格納部からの基準値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、上記演算部が、第1の比率~第7の比率からなる群より選択される少なくとも2つの比率を算出することを特徴としている。
本発明にかかる第1の疲労評価システムは、上記演算部が、上記少なくとも2つの比率において、少なくとも一対の比較を実行してもよい。好ましくは、本発明にかかる第1の疲労評価システムは、上記測定値受容部が、第1~5の測定値からなる群より選択される少なくとも2つの測定値を受容し、上記基準値格納部が、第1~第5の基準値からなる群より選択される少なくとも2つの基準値を格納し、上記演算部が、第1の比率~第5の比率からなる群より選択される少なくとも2つの比率をさらに算出し、上記少なくとも2つの比率において、少なくとも一対の比較を実行する。上記少なくとも一対の比較は、2つの値の差を得るものであっても、比率を得るものであってもよい。例えば、本発明にかかる第1の疲労評価システムにおいて、評価部は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、(III)第1の比率が第3の比率よりも大きい、(IV)第1の比率が第4の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第3の比率よりも大きい、(VII)第1の比率が第2の比率よりも大きい、(VIII)第2の比率が第4の比率よりも大きい、(IX)第5の比率が第4の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定することが好ましい。上記少なくとも一対の比較において比率が得られる場合は、上記演算部は、得られた比率に基づいて、判別分析、Partial Least Square、またはSupport Vector Machineの分析を実行してもよい。また、得られた第6の比率および第7の比率は、上述した第1~第5の比率と同様に、本発明にかかる第1の疲労評価システムにて処理され得る。
本発明にかかる第2の疲労評価システムは、上記演算部が、第1の比率を算出するとともに、第2~第7の比率からなる群より選択される少なくとも1つの比率を算出することを特徴としている。本発明にかかる第2の疲労評価システムは、上記基準値格納部が、第2の比率~第7の比率に対応する参照値からなる群より選択される少なくとも1つの参照値を格納していてもよく、この場合、上記演算部が、該基準値格納部からの該参照値を受け取って、算出された比率と該比率に対応する参照値との比較を実行することが好ましい。なお、参照値は、測定値を用いた決定木数理モデルに基づく解析によって得た閾値と、基準値との比率として得られるものであり、具体的には、(閾値/基準値)×100(%)として算出される値である。この場合、上記評価部は、第2の比率が、第2の比率に対応する参照値よりも小さい、第3の比率が、第3の比率に対応する参照値よりも小さい、第4の比率が、第4の比率に対応する参照値よりも小さい、第5の比率が、第5の比率に対応する参照値よりも小さい、第6の比率が、第6の比率に対応する参照値よりも小さい、第7の比率が、第7の比率に対応する参照値よりも小さい、の少なくとも1つの条件が成立した場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属すると判定する。好ましくは、本発明にかかる第2の疲労評価システムは、上記演算部が、第3の比率~第5の比率の少なくとも1つを算出する。この場合、上記演算部が、上記第5の比率に引き続いて上記第4の比率を算出することが好ましく、上記第4の比率に引き続いて上記第3の比率を算出することがより好ましい。また、本発明にかかる第2の疲労評価システムは、上記判定部が、第1の比率が実質的に1であるか否かを判定することが好ましい。上記構成を有することによって、本発明にかかるシステムは、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別することができる。
また、本発明にかかる疲労評価システムは、上記演算部が、第1~第7の測定値と第1~第7の測定値の各々に対応する閾値とを比較することを特徴としている。本発明にかかる疲労評価システムは、上記基準値格納部が、第1~第7の測定値の各々に対応する閾値からなる群より選択される少なくとも1つの閾値を格納していてもよく、この場合、上記演算部が、該基準値格納部からの該閾値を受け取って、測定値と該測定値に対応する閾値との比較を実行することが好ましい。特に、第3~第5の測定値についての比較を実行することが好ましく、第5の測定値についての比較を優先して行うことがより好ましく、次いで第4の測定値についての比較を行い、さらに第3の測定値についての比較を行うことがなお好ましい。上記判定部は、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る観点から、(3’)~(5’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定することが好ましい。この場合、少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属すると判定する。
本発明にかかる第3の疲労評価システムは、第1~第5の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、測定値受容部からの測定値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、上記演算部が、該少なくとも2つの測定値において、少なくとも一対の比較を実行して、少なくとも一対の比率を得ることを特徴としている。本発明にかかる第3の疲労評価システムにおいて、上記演算部は、上記得られた少なくとも一対の比率に基づいて、判別分析、Partial Least Square、またはSupport Vector Machineの分析を実行することが好ましい。上記構成を有することによって、本発明にかかるシステムは、90%以上の正確さで判別することができる。
好ましい局面において、本発明にかかる第3の疲労評価システムは、被験者から得た生体サンプル中の、第3、第4および第5の測定値の少なくとも1つを用いて疲労の評価を行う。本発明にかかる疲労評価システムは、第3、第4および第5の測定値の少なくとも1つを受容する測定値受容部、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度のそれぞれに対応する第3、第4および第5の基準値の少なくとも1つを格納した基準値格納部、測定値受容部からの測定値と基準値格納部からの基準値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、演算部が、第3の比率、第4の比率、および第5の比率の少なくとも1つを算出する。この場合、演算部が、第5の比率を算出することが好ましく、第5の比率に引き続いて第4の比率を算出することがより好ましく、さらに、第4の比率に引き続いて第3の比率を算出することが最も好ましい。本発明にかかる第3の疲労評価システムにおいて、上記基準値格納部は、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度のそれぞれに対応する参照値の少なくとも1つを格納していてもよく、この場合、上記演算部が、該基準値格納部からの該参照値を受け取って、算出した比率と該比率に対応する参照値との比較を実行することが好ましい。また、上記演算部は、例えば、第3の比率、第4の比率および第5の比率の少なくとも1つを用いた分析を行ってもよい。
本発明にかかる疲労評価システムは、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度、および乳酸濃度のそれぞれを測定する第1~第7の測定部をさらに備えてもよく、この場合、第1~第7の測定部にて得られた値が測定値受容部に入力される。
上記構成を有することによって、本発明にかかるシステムは、従来公知の簡便な技術によって取得され得る測定値を独自の手順に従って処理するので、従来得ることができなかった客観的かつ信憑性の高い判定結果を、迅速かつ低コストにて提示することができる。
本発明において好適に用いられる化合物は、グルコースであり、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも1つが、グルコースと組み合わせて用いられることが好ましい。また、cis−アコニット酸またはイソクエン酸の濃度よりもクエン酸、コハク酸、リンゴ酸または乳酸の濃度の測定が比較的容易であることから、クエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも1つがグルコースと組み合わせて用いられることがより好ましく、クエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも2つが、グルコースと組み合わせて用いられることもまた好ましい。
このように、本発明において、バイオマーカーが2つ用いられる場合、対象となる化合物の組合せは、グルコースと、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される1つとの組合せであることが好ましく、バイオマーカーが3つ用いられる場合、対象となる化合物の組合せは、グルコース、クエン酸およびコハク酸、グルコース、クエン酸およびリンゴ酸、グルコース、クエン酸および乳酸、グルコース、コハク酸およびリンゴ酸、グルコース、コハク酸および乳酸、あるいは、グルコース、リンゴ酸および乳酸であることが好ましく、バイオマーカーが4つ以上用いられる場合、対象となる化合物の組合せは、グルコース、クエン酸、コハク酸およびリンゴ酸、グルコース、クエン酸、コハク酸および乳酸、グルコース、クエン酸、リンゴ酸および乳酸、グルコース、コハク酸、リンゴ酸および乳酸、あるいは、グルコース、クエン酸、コハク酸、リンゴ酸および乳酸であることが好ましい。 The first fatigue evaluation method according to the present invention includes (1) a step of obtaining a first ratio of a measured value (first measured value) of a glucose concentration in a biological sample obtained from a subject to a first reference value. (2) A step of obtaining a second ratio of the measured value (second measured value) of the citric acid concentration in the biological sample obtained from the subject to the second reference value, (3) the biological sample obtained from the subject A step of obtaining a third ratio of a measured value (third measured value) of the cis-aconitic acid concentration in the sample to a third reference value, (4) a measured value of the isocitrate concentration in the biological sample obtained from the subject A step of obtaining a fourth ratio of the (fourth measurement value) to the fourth reference value; (5) a measurement value (fifth measurement value) of the succinic acid concentration in the biological sample obtained from the subject; Obtaining a fifth ratio to a reference value of 5, (6) raw obtained from the subject Obtaining a sixth ratio of the measured value of the malic acid concentration in the sample (sixth measured value) to the sixth reference value; and (7) the measured value of the lactic acid concentration in the biological sample obtained from the subject. It includes at least two steps selected from the group consisting of a step of obtaining a seventh ratio of (seventh measurement value) to a seventh reference value.
In the diagnosis of chronic fatigue syndrome, there are problems such as the number of measurement items until diagnosis, long-term observation (measurement) time, economic burden, and individual differences in doctor's judgment criteria. By having the above configuration, the method according to the present invention can provide data for making an objective diagnosis only by measuring a specific metabolite in a biological sample. Enables costly and objective diagnosis. That is, the method according to the present invention may be a method for providing a diagnostic criterion or determination criterion for fatigue. In addition, since glucose, citric acid and cis-aconitic acid are deeply related to energy production, the method according to the present invention is also used for diagnosis of general fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome). Is possible.
As used herein, the term “biological sample” is intended to be any tissue (including body fluids such as blood) or cells taken from a subject, and tissue sections or cells prepared therefrom. Cell lysates can also be included in the biological sample. Preferred biological samples for use in the present invention include, but are not limited to, blood, saliva, urine, interstitial fluid, sweat, and preparations thereof (eg, serum, plasma, etc.). It should be noted that the step of directly removing the tissue or cells from the human subject as the first stage of sample acquisition is performed by a doctor and is outside the scope of the present invention. In addition, the step in which the doctor determines whether or not the patient is fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome) using the result obtained by the method of the present invention is also outside the scope of the present invention. It is.
As used herein, the first to seventh reference values are the average glucose concentration, average citric acid concentration, average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively. The average isocitrate concentration, the average succinic acid concentration, the average malic acid concentration, and the average lactic acid concentration are preferable, but are not limited to the average value, and may be a mode value obtained from a binomial distribution or the like. In addition, even if the first to seventh reference values are predetermined values, the healthy person is sampled at the same time as the sampling from the subject, and based on the concentration of each metabolite in the obtained biological sample. It may be a calculated value. The first to seventh reference values are preferably obtained by the same measurement method as that used when obtaining the first to seventh measurement values.
The first fatigue evaluation method according to the present invention may further include a step of comparing at least a pair in at least two ratios obtained by the at least two steps, preferably, the first fatigue evaluation method according to the present invention. The fatigue evaluation method includes at least two steps selected from the group consisting of the steps (1) to (5). The comparison in the step of comparing at least a pair may obtain a difference between two values or a ratio.
In one aspect, the first fatigue evaluation method according to the present invention includes (a) a step of comparing the first ratio and the second ratio, and (b) comparing the second ratio and the third ratio. And (c) comparing at least one of the first ratio and the third ratio, (I) the first ratio is greater than the second ratio, (II) The method further includes the step of determining whether or not at least one of the second ratio is greater than the third ratio and (III) the first ratio is greater than the third ratio is satisfied. Also good.
In a further aspect, (d) comparing the first ratio and the fourth ratio, (e) comparing the second ratio and the fourth ratio, and (f) the third ratio and the second ratio. And (IV) the first ratio is greater than the fourth ratio, and (V) the second ratio is greater than the fourth ratio. (VI) You may further include the process of determining whether at least 1 condition that a 4th ratio is larger than a 3rd ratio is satisfied. When the step (4) is included, the first fatigue evaluation method according to the present invention preferably further includes the step (5). In this case, the fatigue evaluation method according to the present invention includes ( g) comparing the first ratio and the fifth ratio, (h) comparing the second ratio and the fifth ratio, (i) comparing the third ratio and the fifth ratio. And (j) at least one of comparing the fourth ratio and the fifth ratio, (VII) the first ratio is greater than the second ratio, (VIII) The method may further include a step of determining whether or not at least one condition of (IX) the fifth ratio is greater than the fourth ratio is satisfied. .
Succinic acid is also as closely related to energy production as glucose, citric acid and cis-aconitic acid, and can be used to diagnose fatigue overall. Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. However, if the concentration of succinic acid in the sample is used, the present invention can be carried out more easily.
When the ratio is obtained in the above steps (a) to (j), the first fatigue evaluation method according to the present invention uses discriminant analysis, Partial Last Square, Support using at least one of the obtained ratios. You may further include the process of performing analysis, such as Vector Machine. Further, the sixth ratio and the seventh ratio obtained by (6) and (7) can be used in the same manner as the above-described first to fifth ratios. Malic acid and lactic acid are also as closely related to energy production as glucose, citric acid, cis-aconitic acid and succinic acid, and can be used for diagnosis of general fatigue.
By having the said structure, the method concerning this invention can provide the objective diagnosis about chronic fatigue rapidly and at low cost. Furthermore, since the diagnosis result according to the present invention represents the disease state itself, it is possible to make a treatment policy by using the present invention. That is, according to the present invention, it is determined not only whether or not the subject is in a fatigue state but also whether or not the subject is suffering from chronic fatigue, and further whether or not the patient belongs to chronic fatigue syndrome (or Provide data for determination).
The second fatigue evaluation method according to the present invention includes at least one step selected from the group consisting of the steps (2) to (7). The second fatigue evaluation method according to the present invention may further include, for the second ratio to the seventh ratio, a step of comparing the obtained ratio with a reference value corresponding to the ratio. Corresponding to the above steps (2) to (7), (k) comparing the second ratio with a reference value corresponding to the ratio, and (l) a reference corresponding to the third ratio corresponding to the ratio. (M) comparing the fourth ratio with a reference value corresponding to the ratio; (n) comparing the fifth ratio with a reference value corresponding to the ratio; It may further include at least one of comparing a ratio of 6 with a reference value corresponding to the ratio, and (p) comparing a seventh ratio with a reference value corresponding to the ratio. The reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) × 100 ( %). In this case, corresponding to the above steps (k) to (p), (X) the second ratio is smaller than the reference value corresponding to the second ratio, (XI) the third ratio is the third (XII) the fourth ratio is smaller than the reference value corresponding to the fourth ratio, (XIII) the fifth ratio corresponds to the fifth ratio, which is smaller than the reference value corresponding to the ratio of (XIV) the sixth ratio is smaller than the reference value corresponding to the sixth ratio, (XV) the seventh ratio is smaller than the reference value corresponding to the seventh ratio, It is preferable to further include a step of determining whether or not at least one condition is satisfied.
The doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the conditions (X) to (XV) is satisfied.
Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination. In the second fatigue evaluation method according to the present invention, there is no substantial difference between the first measured value and the first reference value (that is, the first obtained in the step (1)). It is preferably used when the ratio is substantially equal to 1. In this specification, it is also possible to objectively determine that there is no substantial difference between the first measured value and the first reference value without using the step (1). ) To determine that the first ratio is substantially equal to 1.
In one aspect, the second fatigue evaluation method according to the present invention includes at least one of a step of obtaining a third ratio, a step of obtaining a fourth ratio, and a step of obtaining a fifth ratio. Is preferred. As shown in FIGS. 3 and 5, the third to fifth ratios are clearly different between healthy individuals and patients with chronic fatigue syndrome. Moreover, as shown in the Example mentioned later, even if cis-aconitic acid, isocitric acid, and succinic acid are independent, the marker which determines whether a test subject is a chronic fatigue syndrome patient with a 95% probability. Can be. Of these, succinic acid is most preferred as a marker, followed by isocitrate and cis-aconitic acid in this order. That is, in the second fatigue evaluation method according to the present invention, the step of obtaining the fifth ratio is preferable, the step of obtaining the fourth ratio is more preferably performed following the step of obtaining the fifth ratio, Most preferably, the step of obtaining a ratio of 3 is performed subsequent to the step of obtaining a fourth ratio.
The fatigue evaluation method according to the present invention includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold, and (2 ′) in a biological sample obtained from the subject. (3 ′) comparing the measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject with the third threshold value (3 ′). 4 ′) a step of comparing the measured value of the isocitrate concentration in the biological sample obtained from the subject with the fourth threshold; (5 ′) the measured value of the succinic acid concentration in the biological sample obtained from the subject and the fifth A step of comparing with a threshold, (6 ′) a step of comparing with a sixth threshold of the measured value of malic acid concentration in the biological sample obtained from the subject, and (7 ′) lactic acid in the biological sample obtained from the subject. Comparing the seventh measured value of the concentration with the seventh threshold value. It is characterized by including at least one, and preferably includes at least one of the steps (3 ′) to (5 ′), and more preferably includes at least (5 ′). More preferably, the step (4 ′) is performed after the step (5 ′), and the step (3 ′) is further preferably performed subsequently. The fatigue evaluation method according to the present embodiment may further include a step of determining whether or not the condition that the measurement value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′), Whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (3 ′) to (5 ′) from the viewpoint of determining whether or not the subject has chronic fatigue syndrome with a probability of 95% or more. It is preferable to further include a step of determining whether or not. In this case, you may further include the process of determining whether the conditions that at least 1 is smaller than the threshold value corresponding to each are satisfied. The doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the above conditions is satisfied. Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination.
In the third fatigue evaluation method according to the present invention, in at least two selected from the group consisting of the first measurement value to the fifth measurement value in the biological sample obtained from the subject without using the reference value. And at least a step of obtaining a pair of ratios. It is preferable that the method further includes a step of subjecting the obtained at least one pair of ratios to analysis of discriminant analysis, Partial Last Square, or Support Vector Machine. The fatigue evaluation method according to the present invention includes, for example, a ratio of a second measurement value to a first measurement value, a ratio of a third measurement value to a first measurement value, and a third measurement value in a biological sample obtained from a subject. The ratio of the measured value to the second measured value, the ratio of the fourth measured value to the first measured value, the ratio of the fourth measured value to the second measured value, and the third of the fourth measured value The analysis is preferably performed using at least one of the ratios to the measured values. By having the above-described configuration, the method according to the present invention can discriminate patients with chronic fatigue syndrome with an accuracy of 90% or more. Also, for example, in a biological sample obtained from a subject, the ratio of the second measurement value to the first measurement value, the ratio of the fourth measurement value to the first measurement value, the second of the fourth measurement value At least one of a ratio to the measurement value, a ratio of the fifth measurement value to the first measurement value, a ratio of the fifth measurement value to the second measurement value, and a ratio of the fifth measurement value to the fourth measurement value; It is more preferable that the analysis method is used, and by having the above configuration, the method according to the present invention can discriminate chronic fatigue syndrome patients with 90% accuracy and 95% sensitivity / specificity. it can.
In the present invention, the step of measuring the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid in the biological sample (steps for obtaining the first to seventh measurement values) Although the “measurement value” to be obtained is not essential, the value obtained and / or calculated by a third party is provided to the practitioner of the present invention, even if the practitioner of the present invention obtains and / or calculates the “measurement value”. May be.
The first kit according to the present invention is characterized by including a fifth reagent for measuring a succinic acid concentration in order to evaluate fatigue. The first kit according to the present invention may further include a fourth reagent for measuring isocitrate concentration, and further measures the first reagent for measuring glucose concentration, citric acid concentration. A second reagent for measuring, a third reagent for measuring cis-aconitic acid concentration, a sixth reagent for measuring malic acid concentration, and a seventh reagent for measuring lactic acid concentration At least one reagent selected from the group may be provided. It is preferable that the kit according to the present invention further includes an instruction sheet displaying the respective reference values of the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid.
In order to evaluate fatigue, the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio. The 2nd kit concerning the present invention may further be provided with the 4th presentation part which shows the 4th ratio, and also the 1st presentation part which shows the 1st ratio, and the 2nd presentation which shows the 2nd ratio At least one of a presentation unit selected from the group consisting of: a third presentation unit showing a third ratio; a sixth presentation unit showing a sixth ratio; and a seventh presentation unit showing a seventh ratio. You may have.
By having the above-described configuration, the kit according to the present invention can be easily used in an actual medical field, so that a faster, cheaper, objective fatigue evaluation method and chronic fatigue syndrome diagnosis method can be provided. Can be provided.
A first fatigue evaluation system according to the present invention includes a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to seventh measurement values, and first to seventh reference values. A reference value storage unit storing at least two reference values selected from the group, an operation for receiving the measurement value from the measurement value receiving unit and the reference value from the reference value storage unit, and generating information for evaluating fatigue And an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue, and the calculation unit is selected from the group consisting of the first ratio to the seventh ratio. It is characterized by calculating a ratio.
In the first fatigue evaluation system according to the present invention, the calculation unit may execute at least a pair of comparisons in the at least two ratios. Preferably, in the first fatigue evaluation system according to the present invention, the measurement value receiving unit receives at least two measurement values selected from the group consisting of the first to fifth measurement values, and the reference value storage unit Stores at least two reference values selected from the group consisting of the first to fifth reference values, and the arithmetic unit is at least two selected from the group consisting of the first ratio to the fifth ratio A ratio is further calculated and at least a pair of comparisons are performed on the at least two ratios. The at least one pair of comparisons may obtain a difference between two values or may obtain a ratio. For example, in the first fatigue evaluation system according to the present invention, the evaluation unit (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, (III) the first ratio is greater than the third ratio, (IV) the first ratio is greater than the fourth ratio, (V) the second ratio is greater than the fourth ratio, (VI ) The fourth ratio is greater than the third ratio, (VII) the first ratio is greater than the second ratio, (VIII) the second ratio is greater than the fourth ratio, (IX) th It is preferable to determine whether or not at least one condition that the ratio of 5 is larger than the fourth ratio is satisfied. When a ratio is obtained in the at least one pair of comparisons, the calculation unit may perform a discriminant analysis, a Partial Last Square, or an analysis of a support vector machine based on the obtained ratio. Further, the obtained sixth ratio and seventh ratio can be processed by the first fatigue evaluation system according to the present invention in the same manner as the first to fifth ratios described above.
In the second fatigue evaluation system according to the present invention, the calculation unit calculates the first ratio and calculates at least one ratio selected from the group consisting of the second to seventh ratios. It is said. In the second fatigue evaluation system according to the present invention, the reference value storage unit stores at least one reference value selected from the group consisting of reference values corresponding to the second ratio to the seventh ratio. In this case, it is preferable that the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio. The reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) × 100 ( %). In this case, the evaluation unit has a fourth ratio in which the second ratio is smaller than the reference value corresponding to the second ratio, the third ratio is smaller than the reference value corresponding to the third ratio. Is smaller than the reference value corresponding to the fourth ratio, the fifth ratio is smaller than the reference value corresponding to the fifth ratio, and the sixth ratio is more than the reference value corresponding to the sixth ratio. If the at least one condition that the seventh ratio is smaller than the reference value corresponding to the seventh ratio is satisfied, it is determined that the subject who provided the biological sample belongs to the chronic fatigue syndrome. Preferably, in the second fatigue evaluation system according to the present invention, the calculation unit calculates at least one of a third ratio to a fifth ratio. In this case, it is preferable that the calculation unit calculates the fourth ratio subsequent to the fifth ratio, and more preferably calculates the third ratio subsequent to the fourth ratio. In the second fatigue evaluation system according to the present invention, it is preferable that the determination unit determines whether or not the first ratio is substantially 1. By having the said structure, the system concerning this invention can discriminate | determine a chronic fatigue syndrome patient with 90% or more of accuracy, and 95% or more of sensitivity / specificity.
The fatigue evaluation system according to the present invention is characterized in that the calculation unit compares the first to seventh measured values with thresholds corresponding to the first to seventh measured values. In the fatigue evaluation system according to the present invention, the reference value storage unit may store at least one threshold value selected from the group consisting of threshold values corresponding to each of the first to seventh measurement values. In this case, it is preferable that the arithmetic unit receives the threshold value from the reference value storage unit and compares the measured value with the threshold value corresponding to the measured value. In particular, it is preferable to perform the comparison for the third to fifth measurement values, more preferably to perform the comparison for the fifth measurement value, and then to perform the comparison for the fourth measurement value, It is further preferred to make a comparison for the third measurement value. From the viewpoint that the determination unit can determine whether or not the subject has chronic fatigue syndrome with a probability of 95% or more, in (3 ′) to (5 ′), the condition that the measured value is smaller than the corresponding threshold value It is preferable to determine whether or not is established. In this case, when the condition that at least one is smaller than the corresponding threshold value is satisfied, it is determined that the subject who provided the biological sample belongs to chronic fatigue syndrome.
A third fatigue evaluation system according to the present invention receives a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to fifth measurement values, and a measurement value from the measurement value receiving unit. A calculation unit that generates information for evaluating fatigue, and an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue, wherein the calculation unit includes the at least two measured values. The method is characterized in that at least a pair of comparisons is performed to obtain at least a pair of ratios. In the third fatigue evaluation system according to the present invention, it is preferable that the calculation unit performs a discriminant analysis, a Partial Last Square, or a Support Vector Machine analysis based on the obtained at least one pair of ratios. By having the above configuration, the system according to the present invention can be determined with an accuracy of 90% or more.
In a preferred aspect, the third fatigue evaluation system according to the present invention evaluates fatigue using at least one of the third, fourth, and fifth measurement values in a biological sample obtained from a subject. The fatigue evaluation system according to the present invention corresponds to each of a measurement value receiving unit that receives at least one of the third, fourth, and fifth measurement values, a cis-aconitic acid concentration, an isocitrate concentration, and a succinic acid concentration. A reference value storage unit storing at least one of the third, fourth and fifth reference values, a measurement value from the measurement value receiving unit and a reference value from the reference value storage unit for receiving and evaluating fatigue An arithmetic unit that generates information, and an evaluation unit that receives evaluation information from the arithmetic unit and evaluates fatigue, and the arithmetic unit includes a third ratio, a fourth ratio, and a fifth ratio. At least one of the following is calculated. In this case, the calculation unit preferably calculates the fifth ratio, more preferably calculates the fourth ratio following the fifth ratio, and further, the third ratio continues after the fourth ratio. Is most preferably calculated. In the third fatigue evaluation system according to the present invention, the reference value storage unit may store at least one of reference values corresponding to each of cis-aconitic acid concentration, isocitrate concentration, and succinic acid concentration. In this case, it is preferable that the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio. In addition, the calculation unit may perform analysis using at least one of the third ratio, the fourth ratio, and the fifth ratio, for example.
The fatigue evaluation system according to the present invention includes first to seventh measuring units for measuring glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, respectively. In this case, the values obtained by the first to seventh measurement units are input to the measurement value receiving unit.
By having the above-described configuration, the system according to the present invention processes measurement values that can be obtained by a conventionally known simple technique according to a unique procedure, and therefore, objective and highly reliable determination that could not be obtained conventionally. Results can be presented quickly and at low cost.
The compound preferably used in the present invention is glucose, and at least one selected from the group consisting of citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid is used in combination with glucose. Is preferred. In addition, since the concentration of citric acid, succinic acid, malic acid or lactic acid is relatively easy to measure rather than the concentration of cis-aconitic acid or isocitric acid, it is from the group consisting of citric acid, succinic acid, malic acid and lactic acid. More preferably, at least one selected is used in combination with glucose, and at least two selected from the group consisting of citric acid, succinic acid, malic acid and lactic acid are also preferably used in combination with glucose.
Thus, in the present invention, when two biomarkers are used, the target compound combination is selected from the group consisting of glucose and citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid. Preferably in combination with one selected, and when three biomarkers are used, the compound combination of interest is glucose, citric acid and succinic acid, glucose, citric acid and malic acid, glucose, citric acid And lactic acid, glucose, succinic acid and malic acid, glucose, succinic acid and lactic acid, or glucose, malic acid and lactic acid, and when four or more biomarkers are used, the combination of compounds of interest is: Glucose, citric acid, succinic acid and malic acid, glucose, Phosphate, succinic acid and lactic acid, glucose, citric acid, malic acid and lactic acid, glucose, succinic acid, malic acid and lactic acid or, glucose, citric acid, succinic acid is preferably malic acid and lactic acid.
慢性疲労症候群の診断において、診断されるまでの測定項目の多さ、長期間にわたる観察(測定)時間、経済的な負担、医師の判断基準の個人差などが問題となる。上記構成を有することによって、本発明にかかる方法は、生体サンプル中の特定の代謝物を測定することのみによって客観的な診断を下すためのデータを提供し得るので、疲労についての、迅速かつ低コストな、そして客観的な診断を可能にする。すなわち、本発明にかかる方法は、疲労の診断基準または判定基準を提供する方法でもあり得る。また、グルコース、クエン酸およびcis−アコニット酸はエネルギー産生に深く関係しているので、本発明にかかる方法は、疲労全般(慢性疲労、蓄積疲労、慢性疲労症候群を含む。)の診断にも利用可能である。
本明細書中にて使用される場合、用語「生体サンプル」は、被験体から採取された任意の組織(血液等の体液を含む。)または細胞が意図され、これらから調製された組織切片または細胞溶解物もまた生体サンプルに包含され得る。本発明に用いるに好ましい生体サンプルとしては、血液、唾液、尿、間質液、汗、およびこれらからの調製物(例えば、血清、血漿など)などが挙げられるがこれらに限定されない。なお、サンプル取得の第一段階として組織または細胞をヒト被験体から直接取り出す工程は、医師によるものであり、本発明の範囲外である。また、本発明の方法によって得られた結果を用いて、疲労(慢性疲労、蓄積疲労、慢性疲労症候群を含む。)であるか否かの判定を医師が下す工程もまた、本発明の範囲外である。
本明細書中にて使用される場合、第1~第7の基準値は、それぞれ、複数の健常者から得た生体サンプル中の平均グルコース濃度、平均クエン酸濃度、平均cis−アコニット酸濃度、平均イソクエン酸濃度、平均コハク酸濃度、平均リンゴ酸濃度、および平均乳酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。なお、第1~第7の基準値は、予め規定された値であっても、被験者からのサンプリングと同時に健常者のサンプリングを行い、得られた生体サンプル中の各代謝物質の濃度に基づいて算出された値であってもよい。また、第1~第7の基準値は、第1~第7の測定値を得る際に用いた測定方法と同一の測定方法によって得られることが好ましい。
本発明にかかる第1の疲労評価方法は、上記少なくとも2つの工程によって得られた少なくとも2つの比率において、少なくとも一対を比較する工程をさらに包含してもよく、好ましくは、本発明にかかる第1の疲労評価方法は、上記(1)~(5)の工程からなる群より選択される少なくとも2つの工程を包含している。少なくとも一対を比較する工程における比較は、2つの値の差を得ても、比率を得てもよい。
1つの局面において、本発明にかかる第1の疲労評価方法は、(a)第1の比率と第2の比率とを比較する工程、(b)第2の比率と第3の比率とを比較する工程、および(c)第1の比率と第3の比率とを比較する工程、の少なくとも1つをさらに包含し、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、および(III)第1の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
さらなる局面において、(d)第1の比率と第4の比率とを比較する工程、(e)第2の比率と第4の比率とを比較する工程、および(f)第3の比率と第4の比率とを比較する工程、の少なくとも1つをさらに包含し、(IV)第1の比率が第4の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。上記(4)の工程を包含する場合、本発明にかかる第1の疲労評価方法は、上記(5)の工程をさらに包含することが好ましく、この場合、本発明にかかる疲労評価方法は、(g)第1の比率と第5の比率とを比較する工程、(h)第2の比率と第5の比率とを比較する工程、(i)第3の比率と第5の比率とを比較する工程、および(j)第4の比率と第5の比率とを比較する工程の少なくとも1つをさらに包含し、(VII)第1の比率が第2の比率よりも大きい、(VIII)第2の比率が第4の比率よりも大きい、(IX)第5の比率が第4の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
コハク酸もまた、グルコース、クエン酸およびcis−アコニット酸と同様にエネルギー産生に深く関係しているので、疲労全般の診断にも利用可能である。cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でないが、サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。
上記(a)~(j)の工程において比率が得られる場合は、本発明にかかる第1の疲労評価方法は、得られた比率の少なくとも1つを用いて、判別分析、Partial Least Square、Support Vector Machine等の分析を行う工程をさらに包含してもよい。また、(6)および(7)によって得られた第6の比率および第7の比率は、上述した第1~第5の比率と同様に用いられ得る。リンゴ酸および乳酸もまた、グルコース、クエン酸、cis−アコニット酸およびコハク酸と同様にエネルギー産生に深く関係しているので、疲労全般の診断にも利用可能である。
上記構成を有することによって、本発明にかかる方法は、慢性疲労についての客観的な診断を迅速かつ低コストにて提供し得る。さらに、本発明による診断結果が病態そのものを表すため、本発明を用いれば治療方針を立てることも可能である。すなわち、本発明を用いれば、被験者が疲労状態にあるのか否かだけでなく、慢性疲労に陥っているのか否か、さらには、患者が慢性疲労症候群に属するか否か、を判定する(あるいは、判定するためのデータを提供する)ことができる。
本発明にかかる第2の疲労評価方法は、上記(2)~(7)の工程からなる群より選択される少なくとも1つの工程を包含することを特徴としている。本発明にかかる第2の疲労評価方法は、第2の比率~第7の比率について、得られた比率を該比率に対応する参照値と比較する工程をさらに包含してもよく、具体的には、上記工程(2)~(7)に対応して、(k)第2の比率を該比率に対応する参照値と比較する工程、(l)第3の比率を該比率に対応する参照値と比較する工程、(m)第4の比率を該比率に対応する参照値と比較する工程、(n)第5の比率を該比率に対応する参照値と比較する工程、(o)第6の比率を該比率に対応する参照値と比較する工程、および(p)第7の比率を該比率に対応する参照値と比較する工程、の少なくとも1つをさらに包含してもよい。なお、参照値は、測定値を用いた決定木数理モデルに基づく解析によって得た閾値と、基準値との比率として得られるものであり、具体的には、(閾値/基準値)×100(%)として算出される値である。この場合、上記工程(k)~(p)に対応して、(X)第2の比率が、第2の比率に対応する参照値よりも小さい、(XI)第3の比率が、第3の比率に対応する参照値よりも小さい、(XII)第4の比率が、第4の比率に対応する参照値よりも小さい、(XIII)第5の比率が、第5の比率に対応する参照値よりも小さい、(XIV)第6の比率が、第6の比率に対応する参照値よりも小さい、(XV)第7の比率が、第7の比率に対応する参照値よりも小さい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含することが好ましい。
医師は、上記(X)~(XV)の少なくとも1つの条件が成立する場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属する可能性があると判定することができる。
また、後述する疲労評価システムでは、判定部が同様の判定を行うことができる。なお、本発明にかかる第2の疲労評価方法は、第1の測定値と第1の基準値との間で実質的な差異がない(すなわち、上記工程(1)で得られた第1の比率が実質的に1に等しい)場合に用いられることが好ましい。本明細書中において、上記工程(1)を用いることなく第1の測定値と第1の基準値との間で実質的な差異がないと客観的に判断することもまた、上記工程(1)を用いて第1の比率が実質的に1に等しいと判断することに包含される。
1つの局面において、本発明にかかる第2の疲労評価方法は、第3の比率を得る工程、第4の比率を得る工程、および、第5の比率を得る工程の少なくとも1つを包含することが好ましい。図3および5に示すように、第3~第5の比率は、健常者と慢性疲労症候群患者との間で明らかに差異がある。また、後述する実施例に示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、単独であっても、被験者が慢性疲労症候群患者であるか否かを、95%の確率で判定するマーカーとなり得る。これらの中で、コハク酸がマーカーとして最も好ましく、次いで、イソクエン酸、cis−アコニット酸の順に好ましい。すなわち、本発明にかかる第2の疲労評価方法において、第5の比率を得る工程が好ましく、第4の比率を得る工程が第5の比率を得る工程に引き続いて行われることがより好ましく、第3の比率を得る工程が第4の比率を得る工程に引き続いて行われることが最も好ましい。
また、本発明にかかる疲労評価方法は、(1’)被験者から得た生体サンプル中のグルコース濃度の測定値と第1の閾値とを比較する工程、(2’)被験者から得た生体サンプル中のクエン酸濃度の測定値と第2の閾値とを比較する工程、(3’)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値と第3の閾値とを比較する工程、(4’)被験者から得た生体サンプル中のイソクエン酸濃度の測定値と第4の閾値とを比較する工程、(5’)被験者から得た生体サンプル中のコハク酸濃度の測定値と第5の閾値とを比較する工程、(6’)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の第6の閾値とを比較する工程、および(7’)被験者から得た生体サンプル中の乳酸濃度の測定値の第7の閾値とを比較する工程、の少なくとも1つを包含することを特徴としており、好ましくは、上記(3’)~(5’)の工程の少なくとも1つを包含し、少なくとも(5’)の工程を包含することがより好ましく、(5’)の工程の次に(4’)の工程を行うことがより好ましく、引き続いて(3’)の工程を行うことがさらに好ましい。本実施形態にかかる疲労評価方法は、(1’)~(7’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよく、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る観点から、(3’)~(5’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含することが好ましい。この場合、少なくとも1つがそれぞれに対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。医師は、上記条件の少なくとも1つが成立する場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属する可能性があると判定することができる。また、後述する疲労評価システムでは、判定部が同様の判定を行うことができる。
本発明にかかる第3の疲労評価方法は、基準値を用いずに、被験者から得た生体サンプル中の、第1の測定値~第5の測定値からなる群より選択される少なくとも2つにおいて、少なくとも一対の比率を得る工程を包含することを特徴としている。上記得られた少なくとも一対の比率を、判別分析、Partial Least Square、またはSupport Vector Machineの分析に供する工程をさらに包含することが好ましい。本発明にかかる疲労評価方法は、例えば、被験者から得た生体サンプル中の、第2の測定値の第1の測定値に対する比率、第3の測定値の第1の測定値に対する比率、第3の測定値の第2の測定値に対する比率、第4の測定値の第1の測定値に対する比率、第4の測定値の第2の測定値に対する比率、および第4の測定値の第3の測定値に対する比率の少なくとも1つを用いて分析を行うことが好ましく、上記構成を有することによって、本発明にかかる方法は、90%以上の正確さで慢性疲労症候群患者を判別することができる。また、例えば、被験者から得た生体サンプル中の、第2の測定値の第1の測定値に対する比率、第4の測定値の第1の測定値に対する比率、第4の測定値の第2の測定値に対する比率、第5の測定値の第1の測定値に対する比率、第5の測定値の第2の測定値に対する比率、および第5の測定値の第4の測定値に対する比率の少なくとも1つを用いて分析を行うことがより好ましく、上記構成を有することによって、本発明にかかる方法は、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別することができる。
なお、本発明において、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸の濃度を測定する工程(第1~第7の測定値を得る工程)は必須ではなく、得られるべき「測定値」は、本発明の実行者が自ら取得および/または算出しても、第三者によって取得および/または算出された値が、本発明の実行者に提供されてもよい。
本発明にかかる第1のキットは、疲労を評価するために、コハク酸濃度を測定するための第5の試薬を備えていることを特徴としている。本発明にかかる第1のキットは、イソクエン酸濃度を測定するための第4の試薬をさらに備えていてもよく、さらに、グルコース濃度を測定するための第1の試薬、クエン酸濃度を測定するための第2の試薬、cis−アコニット酸濃度を測定するための第3の試薬、リンゴ酸濃度を測定するための第6の試薬、および、乳酸濃度を測定するための第7の試薬からなる群より選択される試薬の少なくとも1つを備えていてもよい。本発明にかかるキットは、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸の濃度の各々の基準値が表示された指示書をさらに備えていることが好ましい。
本発明にかかる第2のキットは、疲労を評価するために、第5の比率を示す第5呈示部を備えていることを特徴としている。本発明にかかる第2のキットは、第4の比率を示す第4呈示部をさらに備えていてもよく、さらに、第1の比率を示す第1呈示部、第2の比率を示す第2呈示部、第3の比率を示す第3呈示部、第6の比率を示す第6呈示部、および、第7の比率を示す第7呈示部からなる群より選択される呈示部の少なくとも1つを備えていてもよい。
上記構成を有することによって、本発明にかかるキットは、実際の医療現場にて簡便に使用することができるので、より速く、安く、客観的な、疲労の評価方法および慢性疲労症候群の診断方法を提供し得る。
本発明にかかる第1の疲労評価システムは、第1~第7の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、第1~第7の基準値からなる群より選択される少なくとも2つの基準値を格納した基準値格納部、測定値受容部からの測定値と基準値格納部からの基準値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、上記演算部が、第1の比率~第7の比率からなる群より選択される少なくとも2つの比率を算出することを特徴としている。
本発明にかかる第1の疲労評価システムは、上記演算部が、上記少なくとも2つの比率において、少なくとも一対の比較を実行してもよい。好ましくは、本発明にかかる第1の疲労評価システムは、上記測定値受容部が、第1~5の測定値からなる群より選択される少なくとも2つの測定値を受容し、上記基準値格納部が、第1~第5の基準値からなる群より選択される少なくとも2つの基準値を格納し、上記演算部が、第1の比率~第5の比率からなる群より選択される少なくとも2つの比率をさらに算出し、上記少なくとも2つの比率において、少なくとも一対の比較を実行する。上記少なくとも一対の比較は、2つの値の差を得るものであっても、比率を得るものであってもよい。例えば、本発明にかかる第1の疲労評価システムにおいて、評価部は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、(III)第1の比率が第3の比率よりも大きい、(IV)第1の比率が第4の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第3の比率よりも大きい、(VII)第1の比率が第2の比率よりも大きい、(VIII)第2の比率が第4の比率よりも大きい、(IX)第5の比率が第4の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定することが好ましい。上記少なくとも一対の比較において比率が得られる場合は、上記演算部は、得られた比率に基づいて、判別分析、Partial Least Square、またはSupport Vector Machineの分析を実行してもよい。また、得られた第6の比率および第7の比率は、上述した第1~第5の比率と同様に、本発明にかかる第1の疲労評価システムにて処理され得る。
本発明にかかる第2の疲労評価システムは、上記演算部が、第1の比率を算出するとともに、第2~第7の比率からなる群より選択される少なくとも1つの比率を算出することを特徴としている。本発明にかかる第2の疲労評価システムは、上記基準値格納部が、第2の比率~第7の比率に対応する参照値からなる群より選択される少なくとも1つの参照値を格納していてもよく、この場合、上記演算部が、該基準値格納部からの該参照値を受け取って、算出された比率と該比率に対応する参照値との比較を実行することが好ましい。なお、参照値は、測定値を用いた決定木数理モデルに基づく解析によって得た閾値と、基準値との比率として得られるものであり、具体的には、(閾値/基準値)×100(%)として算出される値である。この場合、上記評価部は、第2の比率が、第2の比率に対応する参照値よりも小さい、第3の比率が、第3の比率に対応する参照値よりも小さい、第4の比率が、第4の比率に対応する参照値よりも小さい、第5の比率が、第5の比率に対応する参照値よりも小さい、第6の比率が、第6の比率に対応する参照値よりも小さい、第7の比率が、第7の比率に対応する参照値よりも小さい、の少なくとも1つの条件が成立した場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属すると判定する。好ましくは、本発明にかかる第2の疲労評価システムは、上記演算部が、第3の比率~第5の比率の少なくとも1つを算出する。この場合、上記演算部が、上記第5の比率に引き続いて上記第4の比率を算出することが好ましく、上記第4の比率に引き続いて上記第3の比率を算出することがより好ましい。また、本発明にかかる第2の疲労評価システムは、上記判定部が、第1の比率が実質的に1であるか否かを判定することが好ましい。上記構成を有することによって、本発明にかかるシステムは、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別することができる。
また、本発明にかかる疲労評価システムは、上記演算部が、第1~第7の測定値と第1~第7の測定値の各々に対応する閾値とを比較することを特徴としている。本発明にかかる疲労評価システムは、上記基準値格納部が、第1~第7の測定値の各々に対応する閾値からなる群より選択される少なくとも1つの閾値を格納していてもよく、この場合、上記演算部が、該基準値格納部からの該閾値を受け取って、測定値と該測定値に対応する閾値との比較を実行することが好ましい。特に、第3~第5の測定値についての比較を実行することが好ましく、第5の測定値についての比較を優先して行うことがより好ましく、次いで第4の測定値についての比較を行い、さらに第3の測定値についての比較を行うことがなお好ましい。上記判定部は、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る観点から、(3’)~(5’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定することが好ましい。この場合、少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合に、上記生体サンプルを提供した被験者が慢性疲労症候群に属すると判定する。
本発明にかかる第3の疲労評価システムは、第1~第5の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、測定値受容部からの測定値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、上記演算部が、該少なくとも2つの測定値において、少なくとも一対の比較を実行して、少なくとも一対の比率を得ることを特徴としている。本発明にかかる第3の疲労評価システムにおいて、上記演算部は、上記得られた少なくとも一対の比率に基づいて、判別分析、Partial Least Square、またはSupport Vector Machineの分析を実行することが好ましい。上記構成を有することによって、本発明にかかるシステムは、90%以上の正確さで判別することができる。
好ましい局面において、本発明にかかる第3の疲労評価システムは、被験者から得た生体サンプル中の、第3、第4および第5の測定値の少なくとも1つを用いて疲労の評価を行う。本発明にかかる疲労評価システムは、第3、第4および第5の測定値の少なくとも1つを受容する測定値受容部、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度のそれぞれに対応する第3、第4および第5の基準値の少なくとも1つを格納した基準値格納部、測定値受容部からの測定値と基準値格納部からの基準値を受け取って、疲労を評価するための情報を生成する演算部、および、演算部からの評価情報を受け取って、疲労を評価する評価部、を備えており、演算部が、第3の比率、第4の比率、および第5の比率の少なくとも1つを算出する。この場合、演算部が、第5の比率を算出することが好ましく、第5の比率に引き続いて第4の比率を算出することがより好ましく、さらに、第4の比率に引き続いて第3の比率を算出することが最も好ましい。本発明にかかる第3の疲労評価システムにおいて、上記基準値格納部は、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度のそれぞれに対応する参照値の少なくとも1つを格納していてもよく、この場合、上記演算部が、該基準値格納部からの該参照値を受け取って、算出した比率と該比率に対応する参照値との比較を実行することが好ましい。また、上記演算部は、例えば、第3の比率、第4の比率および第5の比率の少なくとも1つを用いた分析を行ってもよい。
本発明にかかる疲労評価システムは、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度、および乳酸濃度のそれぞれを測定する第1~第7の測定部をさらに備えてもよく、この場合、第1~第7の測定部にて得られた値が測定値受容部に入力される。
上記構成を有することによって、本発明にかかるシステムは、従来公知の簡便な技術によって取得され得る測定値を独自の手順に従って処理するので、従来得ることができなかった客観的かつ信憑性の高い判定結果を、迅速かつ低コストにて提示することができる。
本発明において好適に用いられる化合物は、グルコースであり、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも1つが、グルコースと組み合わせて用いられることが好ましい。また、cis−アコニット酸またはイソクエン酸の濃度よりもクエン酸、コハク酸、リンゴ酸または乳酸の濃度の測定が比較的容易であることから、クエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも1つがグルコースと組み合わせて用いられることがより好ましく、クエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される少なくとも2つが、グルコースと組み合わせて用いられることもまた好ましい。
このように、本発明において、バイオマーカーが2つ用いられる場合、対象となる化合物の組合せは、グルコースと、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸および乳酸からなる群より選択される1つとの組合せであることが好ましく、バイオマーカーが3つ用いられる場合、対象となる化合物の組合せは、グルコース、クエン酸およびコハク酸、グルコース、クエン酸およびリンゴ酸、グルコース、クエン酸および乳酸、グルコース、コハク酸およびリンゴ酸、グルコース、コハク酸および乳酸、あるいは、グルコース、リンゴ酸および乳酸であることが好ましく、バイオマーカーが4つ以上用いられる場合、対象となる化合物の組合せは、グルコース、クエン酸、コハク酸およびリンゴ酸、グルコース、クエン酸、コハク酸および乳酸、グルコース、クエン酸、リンゴ酸および乳酸、グルコース、コハク酸、リンゴ酸および乳酸、あるいは、グルコース、クエン酸、コハク酸、リンゴ酸および乳酸であることが好ましい。 The first fatigue evaluation method according to the present invention includes (1) a step of obtaining a first ratio of a measured value (first measured value) of a glucose concentration in a biological sample obtained from a subject to a first reference value. (2) A step of obtaining a second ratio of the measured value (second measured value) of the citric acid concentration in the biological sample obtained from the subject to the second reference value, (3) the biological sample obtained from the subject A step of obtaining a third ratio of a measured value (third measured value) of the cis-aconitic acid concentration in the sample to a third reference value, (4) a measured value of the isocitrate concentration in the biological sample obtained from the subject A step of obtaining a fourth ratio of the (fourth measurement value) to the fourth reference value; (5) a measurement value (fifth measurement value) of the succinic acid concentration in the biological sample obtained from the subject; Obtaining a fifth ratio to a reference value of 5, (6) raw obtained from the subject Obtaining a sixth ratio of the measured value of the malic acid concentration in the sample (sixth measured value) to the sixth reference value; and (7) the measured value of the lactic acid concentration in the biological sample obtained from the subject. It includes at least two steps selected from the group consisting of a step of obtaining a seventh ratio of (seventh measurement value) to a seventh reference value.
In the diagnosis of chronic fatigue syndrome, there are problems such as the number of measurement items until diagnosis, long-term observation (measurement) time, economic burden, and individual differences in doctor's judgment criteria. By having the above configuration, the method according to the present invention can provide data for making an objective diagnosis only by measuring a specific metabolite in a biological sample. Enables costly and objective diagnosis. That is, the method according to the present invention may be a method for providing a diagnostic criterion or determination criterion for fatigue. In addition, since glucose, citric acid and cis-aconitic acid are deeply related to energy production, the method according to the present invention is also used for diagnosis of general fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome). Is possible.
As used herein, the term “biological sample” is intended to be any tissue (including body fluids such as blood) or cells taken from a subject, and tissue sections or cells prepared therefrom. Cell lysates can also be included in the biological sample. Preferred biological samples for use in the present invention include, but are not limited to, blood, saliva, urine, interstitial fluid, sweat, and preparations thereof (eg, serum, plasma, etc.). It should be noted that the step of directly removing the tissue or cells from the human subject as the first stage of sample acquisition is performed by a doctor and is outside the scope of the present invention. In addition, the step in which the doctor determines whether or not the patient is fatigue (including chronic fatigue, cumulative fatigue, and chronic fatigue syndrome) using the result obtained by the method of the present invention is also outside the scope of the present invention. It is.
As used herein, the first to seventh reference values are the average glucose concentration, average citric acid concentration, average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively. The average isocitrate concentration, the average succinic acid concentration, the average malic acid concentration, and the average lactic acid concentration are preferable, but are not limited to the average value, and may be a mode value obtained from a binomial distribution or the like. In addition, even if the first to seventh reference values are predetermined values, the healthy person is sampled at the same time as the sampling from the subject, and based on the concentration of each metabolite in the obtained biological sample. It may be a calculated value. The first to seventh reference values are preferably obtained by the same measurement method as that used when obtaining the first to seventh measurement values.
The first fatigue evaluation method according to the present invention may further include a step of comparing at least a pair in at least two ratios obtained by the at least two steps, preferably, the first fatigue evaluation method according to the present invention. The fatigue evaluation method includes at least two steps selected from the group consisting of the steps (1) to (5). The comparison in the step of comparing at least a pair may obtain a difference between two values or a ratio.
In one aspect, the first fatigue evaluation method according to the present invention includes (a) a step of comparing the first ratio and the second ratio, and (b) comparing the second ratio and the third ratio. And (c) comparing at least one of the first ratio and the third ratio, (I) the first ratio is greater than the second ratio, (II) The method further includes the step of determining whether or not at least one of the second ratio is greater than the third ratio and (III) the first ratio is greater than the third ratio is satisfied. Also good.
In a further aspect, (d) comparing the first ratio and the fourth ratio, (e) comparing the second ratio and the fourth ratio, and (f) the third ratio and the second ratio. And (IV) the first ratio is greater than the fourth ratio, and (V) the second ratio is greater than the fourth ratio. (VI) You may further include the process of determining whether at least 1 condition that a 4th ratio is larger than a 3rd ratio is satisfied. When the step (4) is included, the first fatigue evaluation method according to the present invention preferably further includes the step (5). In this case, the fatigue evaluation method according to the present invention includes ( g) comparing the first ratio and the fifth ratio, (h) comparing the second ratio and the fifth ratio, (i) comparing the third ratio and the fifth ratio. And (j) at least one of comparing the fourth ratio and the fifth ratio, (VII) the first ratio is greater than the second ratio, (VIII) The method may further include a step of determining whether or not at least one condition of (IX) the fifth ratio is greater than the fourth ratio is satisfied. .
Succinic acid is also as closely related to energy production as glucose, citric acid and cis-aconitic acid, and can be used to diagnose fatigue overall. Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. However, if the concentration of succinic acid in the sample is used, the present invention can be carried out more easily.
When the ratio is obtained in the above steps (a) to (j), the first fatigue evaluation method according to the present invention uses discriminant analysis, Partial Last Square, Support using at least one of the obtained ratios. You may further include the process of performing analysis, such as Vector Machine. Further, the sixth ratio and the seventh ratio obtained by (6) and (7) can be used in the same manner as the above-described first to fifth ratios. Malic acid and lactic acid are also as closely related to energy production as glucose, citric acid, cis-aconitic acid and succinic acid, and can be used for diagnosis of general fatigue.
By having the said structure, the method concerning this invention can provide the objective diagnosis about chronic fatigue rapidly and at low cost. Furthermore, since the diagnosis result according to the present invention represents the disease state itself, it is possible to make a treatment policy by using the present invention. That is, according to the present invention, it is determined not only whether or not the subject is in a fatigue state but also whether or not the subject is suffering from chronic fatigue, and further whether or not the patient belongs to chronic fatigue syndrome (or Provide data for determination).
The second fatigue evaluation method according to the present invention includes at least one step selected from the group consisting of the steps (2) to (7). The second fatigue evaluation method according to the present invention may further include, for the second ratio to the seventh ratio, a step of comparing the obtained ratio with a reference value corresponding to the ratio. Corresponding to the above steps (2) to (7), (k) comparing the second ratio with a reference value corresponding to the ratio, and (l) a reference corresponding to the third ratio corresponding to the ratio. (M) comparing the fourth ratio with a reference value corresponding to the ratio; (n) comparing the fifth ratio with a reference value corresponding to the ratio; It may further include at least one of comparing a ratio of 6 with a reference value corresponding to the ratio, and (p) comparing a seventh ratio with a reference value corresponding to the ratio. The reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) × 100 ( %). In this case, corresponding to the above steps (k) to (p), (X) the second ratio is smaller than the reference value corresponding to the second ratio, (XI) the third ratio is the third (XII) the fourth ratio is smaller than the reference value corresponding to the fourth ratio, (XIII) the fifth ratio corresponds to the fifth ratio, which is smaller than the reference value corresponding to the ratio of (XIV) the sixth ratio is smaller than the reference value corresponding to the sixth ratio, (XV) the seventh ratio is smaller than the reference value corresponding to the seventh ratio, It is preferable to further include a step of determining whether or not at least one condition is satisfied.
The doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the conditions (X) to (XV) is satisfied.
Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination. In the second fatigue evaluation method according to the present invention, there is no substantial difference between the first measured value and the first reference value (that is, the first obtained in the step (1)). It is preferably used when the ratio is substantially equal to 1. In this specification, it is also possible to objectively determine that there is no substantial difference between the first measured value and the first reference value without using the step (1). ) To determine that the first ratio is substantially equal to 1.
In one aspect, the second fatigue evaluation method according to the present invention includes at least one of a step of obtaining a third ratio, a step of obtaining a fourth ratio, and a step of obtaining a fifth ratio. Is preferred. As shown in FIGS. 3 and 5, the third to fifth ratios are clearly different between healthy individuals and patients with chronic fatigue syndrome. Moreover, as shown in the Example mentioned later, even if cis-aconitic acid, isocitric acid, and succinic acid are independent, the marker which determines whether a test subject is a chronic fatigue syndrome patient with a 95% probability. Can be. Of these, succinic acid is most preferred as a marker, followed by isocitrate and cis-aconitic acid in this order. That is, in the second fatigue evaluation method according to the present invention, the step of obtaining the fifth ratio is preferable, the step of obtaining the fourth ratio is more preferably performed following the step of obtaining the fifth ratio, Most preferably, the step of obtaining a ratio of 3 is performed subsequent to the step of obtaining a fourth ratio.
The fatigue evaluation method according to the present invention includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold, and (2 ′) in a biological sample obtained from the subject. (3 ′) comparing the measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject with the third threshold value (3 ′). 4 ′) a step of comparing the measured value of the isocitrate concentration in the biological sample obtained from the subject with the fourth threshold; (5 ′) the measured value of the succinic acid concentration in the biological sample obtained from the subject and the fifth A step of comparing with a threshold, (6 ′) a step of comparing with a sixth threshold of the measured value of malic acid concentration in the biological sample obtained from the subject, and (7 ′) lactic acid in the biological sample obtained from the subject. Comparing the seventh measured value of the concentration with the seventh threshold value. It is characterized by including at least one, and preferably includes at least one of the steps (3 ′) to (5 ′), and more preferably includes at least (5 ′). More preferably, the step (4 ′) is performed after the step (5 ′), and the step (3 ′) is further preferably performed subsequently. The fatigue evaluation method according to the present embodiment may further include a step of determining whether or not the condition that the measurement value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′), Whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (3 ′) to (5 ′) from the viewpoint of determining whether or not the subject has chronic fatigue syndrome with a probability of 95% or more. It is preferable to further include a step of determining whether or not. In this case, you may further include the process of determining whether the conditions that at least 1 is smaller than the threshold value corresponding to each are satisfied. The doctor can determine that the subject who provided the biological sample may belong to chronic fatigue syndrome when at least one of the above conditions is satisfied. Moreover, in the fatigue evaluation system mentioned later, the determination part can perform the same determination.
In the third fatigue evaluation method according to the present invention, in at least two selected from the group consisting of the first measurement value to the fifth measurement value in the biological sample obtained from the subject without using the reference value. And at least a step of obtaining a pair of ratios. It is preferable that the method further includes a step of subjecting the obtained at least one pair of ratios to analysis of discriminant analysis, Partial Last Square, or Support Vector Machine. The fatigue evaluation method according to the present invention includes, for example, a ratio of a second measurement value to a first measurement value, a ratio of a third measurement value to a first measurement value, and a third measurement value in a biological sample obtained from a subject. The ratio of the measured value to the second measured value, the ratio of the fourth measured value to the first measured value, the ratio of the fourth measured value to the second measured value, and the third of the fourth measured value The analysis is preferably performed using at least one of the ratios to the measured values. By having the above-described configuration, the method according to the present invention can discriminate patients with chronic fatigue syndrome with an accuracy of 90% or more. Also, for example, in a biological sample obtained from a subject, the ratio of the second measurement value to the first measurement value, the ratio of the fourth measurement value to the first measurement value, the second of the fourth measurement value At least one of a ratio to the measurement value, a ratio of the fifth measurement value to the first measurement value, a ratio of the fifth measurement value to the second measurement value, and a ratio of the fifth measurement value to the fourth measurement value; It is more preferable that the analysis method is used, and by having the above configuration, the method according to the present invention can discriminate chronic fatigue syndrome patients with 90% accuracy and 95% sensitivity / specificity. it can.
In the present invention, the step of measuring the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid in the biological sample (steps for obtaining the first to seventh measurement values) Although the “measurement value” to be obtained is not essential, the value obtained and / or calculated by a third party is provided to the practitioner of the present invention, even if the practitioner of the present invention obtains and / or calculates the “measurement value”. May be.
The first kit according to the present invention is characterized by including a fifth reagent for measuring a succinic acid concentration in order to evaluate fatigue. The first kit according to the present invention may further include a fourth reagent for measuring isocitrate concentration, and further measures the first reagent for measuring glucose concentration, citric acid concentration. A second reagent for measuring, a third reagent for measuring cis-aconitic acid concentration, a sixth reagent for measuring malic acid concentration, and a seventh reagent for measuring lactic acid concentration At least one reagent selected from the group may be provided. It is preferable that the kit according to the present invention further includes an instruction sheet displaying the respective reference values of the concentrations of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid.
In order to evaluate fatigue, the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio. The 2nd kit concerning the present invention may further be provided with the 4th presentation part which shows the 4th ratio, and also the 1st presentation part which shows the 1st ratio, and the 2nd presentation which shows the 2nd ratio At least one of a presentation unit selected from the group consisting of: a third presentation unit showing a third ratio; a sixth presentation unit showing a sixth ratio; and a seventh presentation unit showing a seventh ratio. You may have.
By having the above-described configuration, the kit according to the present invention can be easily used in an actual medical field, so that a faster, cheaper, objective fatigue evaluation method and chronic fatigue syndrome diagnosis method can be provided. Can be provided.
A first fatigue evaluation system according to the present invention includes a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to seventh measurement values, and first to seventh reference values. A reference value storage unit storing at least two reference values selected from the group, an operation for receiving the measurement value from the measurement value receiving unit and the reference value from the reference value storage unit, and generating information for evaluating fatigue And an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue, and the calculation unit is selected from the group consisting of the first ratio to the seventh ratio. It is characterized by calculating a ratio.
In the first fatigue evaluation system according to the present invention, the calculation unit may execute at least a pair of comparisons in the at least two ratios. Preferably, in the first fatigue evaluation system according to the present invention, the measurement value receiving unit receives at least two measurement values selected from the group consisting of the first to fifth measurement values, and the reference value storage unit Stores at least two reference values selected from the group consisting of the first to fifth reference values, and the arithmetic unit is at least two selected from the group consisting of the first ratio to the fifth ratio A ratio is further calculated and at least a pair of comparisons are performed on the at least two ratios. The at least one pair of comparisons may obtain a difference between two values or may obtain a ratio. For example, in the first fatigue evaluation system according to the present invention, the evaluation unit (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, (III) the first ratio is greater than the third ratio, (IV) the first ratio is greater than the fourth ratio, (V) the second ratio is greater than the fourth ratio, (VI ) The fourth ratio is greater than the third ratio, (VII) the first ratio is greater than the second ratio, (VIII) the second ratio is greater than the fourth ratio, (IX) th It is preferable to determine whether or not at least one condition that the ratio of 5 is larger than the fourth ratio is satisfied. When a ratio is obtained in the at least one pair of comparisons, the calculation unit may perform a discriminant analysis, a Partial Last Square, or an analysis of a support vector machine based on the obtained ratio. Further, the obtained sixth ratio and seventh ratio can be processed by the first fatigue evaluation system according to the present invention in the same manner as the first to fifth ratios described above.
In the second fatigue evaluation system according to the present invention, the calculation unit calculates the first ratio and calculates at least one ratio selected from the group consisting of the second to seventh ratios. It is said. In the second fatigue evaluation system according to the present invention, the reference value storage unit stores at least one reference value selected from the group consisting of reference values corresponding to the second ratio to the seventh ratio. In this case, it is preferable that the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio. The reference value is obtained as a ratio between a threshold value obtained by analysis based on a decision tree mathematical model using measured values and a reference value, and specifically, (threshold value / reference value) × 100 ( %). In this case, the evaluation unit has a fourth ratio in which the second ratio is smaller than the reference value corresponding to the second ratio, the third ratio is smaller than the reference value corresponding to the third ratio. Is smaller than the reference value corresponding to the fourth ratio, the fifth ratio is smaller than the reference value corresponding to the fifth ratio, and the sixth ratio is more than the reference value corresponding to the sixth ratio. If the at least one condition that the seventh ratio is smaller than the reference value corresponding to the seventh ratio is satisfied, it is determined that the subject who provided the biological sample belongs to the chronic fatigue syndrome. Preferably, in the second fatigue evaluation system according to the present invention, the calculation unit calculates at least one of a third ratio to a fifth ratio. In this case, it is preferable that the calculation unit calculates the fourth ratio subsequent to the fifth ratio, and more preferably calculates the third ratio subsequent to the fourth ratio. In the second fatigue evaluation system according to the present invention, it is preferable that the determination unit determines whether or not the first ratio is substantially 1. By having the said structure, the system concerning this invention can discriminate | determine a chronic fatigue syndrome patient with 90% or more of accuracy, and 95% or more of sensitivity / specificity.
The fatigue evaluation system according to the present invention is characterized in that the calculation unit compares the first to seventh measured values with thresholds corresponding to the first to seventh measured values. In the fatigue evaluation system according to the present invention, the reference value storage unit may store at least one threshold value selected from the group consisting of threshold values corresponding to each of the first to seventh measurement values. In this case, it is preferable that the arithmetic unit receives the threshold value from the reference value storage unit and compares the measured value with the threshold value corresponding to the measured value. In particular, it is preferable to perform the comparison for the third to fifth measurement values, more preferably to perform the comparison for the fifth measurement value, and then to perform the comparison for the fourth measurement value, It is further preferred to make a comparison for the third measurement value. From the viewpoint that the determination unit can determine whether or not the subject has chronic fatigue syndrome with a probability of 95% or more, in (3 ′) to (5 ′), the condition that the measured value is smaller than the corresponding threshold value It is preferable to determine whether or not is established. In this case, when the condition that at least one is smaller than the corresponding threshold value is satisfied, it is determined that the subject who provided the biological sample belongs to chronic fatigue syndrome.
A third fatigue evaluation system according to the present invention receives a measurement value receiving unit for receiving at least two measurement values selected from the group consisting of first to fifth measurement values, and a measurement value from the measurement value receiving unit. A calculation unit that generates information for evaluating fatigue, and an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue, wherein the calculation unit includes the at least two measured values. The method is characterized in that at least a pair of comparisons is performed to obtain at least a pair of ratios. In the third fatigue evaluation system according to the present invention, it is preferable that the calculation unit performs a discriminant analysis, a Partial Last Square, or a Support Vector Machine analysis based on the obtained at least one pair of ratios. By having the above configuration, the system according to the present invention can be determined with an accuracy of 90% or more.
In a preferred aspect, the third fatigue evaluation system according to the present invention evaluates fatigue using at least one of the third, fourth, and fifth measurement values in a biological sample obtained from a subject. The fatigue evaluation system according to the present invention corresponds to each of a measurement value receiving unit that receives at least one of the third, fourth, and fifth measurement values, a cis-aconitic acid concentration, an isocitrate concentration, and a succinic acid concentration. A reference value storage unit storing at least one of the third, fourth and fifth reference values, a measurement value from the measurement value receiving unit and a reference value from the reference value storage unit for receiving and evaluating fatigue An arithmetic unit that generates information, and an evaluation unit that receives evaluation information from the arithmetic unit and evaluates fatigue, and the arithmetic unit includes a third ratio, a fourth ratio, and a fifth ratio. At least one of the following is calculated. In this case, the calculation unit preferably calculates the fifth ratio, more preferably calculates the fourth ratio following the fifth ratio, and further, the third ratio continues after the fourth ratio. Is most preferably calculated. In the third fatigue evaluation system according to the present invention, the reference value storage unit may store at least one of reference values corresponding to each of cis-aconitic acid concentration, isocitrate concentration, and succinic acid concentration. In this case, it is preferable that the arithmetic unit receives the reference value from the reference value storage unit and compares the calculated ratio with the reference value corresponding to the ratio. In addition, the calculation unit may perform analysis using at least one of the third ratio, the fourth ratio, and the fifth ratio, for example.
The fatigue evaluation system according to the present invention includes first to seventh measuring units for measuring glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, respectively. In this case, the values obtained by the first to seventh measurement units are input to the measurement value receiving unit.
By having the above-described configuration, the system according to the present invention processes measurement values that can be obtained by a conventionally known simple technique according to a unique procedure, and therefore, objective and highly reliable determination that could not be obtained conventionally. Results can be presented quickly and at low cost.
The compound preferably used in the present invention is glucose, and at least one selected from the group consisting of citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid is used in combination with glucose. Is preferred. In addition, since the concentration of citric acid, succinic acid, malic acid or lactic acid is relatively easy to measure rather than the concentration of cis-aconitic acid or isocitric acid, it is from the group consisting of citric acid, succinic acid, malic acid and lactic acid. More preferably, at least one selected is used in combination with glucose, and at least two selected from the group consisting of citric acid, succinic acid, malic acid and lactic acid are also preferably used in combination with glucose.
Thus, in the present invention, when two biomarkers are used, the target compound combination is selected from the group consisting of glucose and citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid and lactic acid. Preferably in combination with one selected, and when three biomarkers are used, the compound combination of interest is glucose, citric acid and succinic acid, glucose, citric acid and malic acid, glucose, citric acid And lactic acid, glucose, succinic acid and malic acid, glucose, succinic acid and lactic acid, or glucose, malic acid and lactic acid, and when four or more biomarkers are used, the combination of compounds of interest is: Glucose, citric acid, succinic acid and malic acid, glucose, Phosphate, succinic acid and lactic acid, glucose, citric acid, malic acid and lactic acid, glucose, succinic acid, malic acid and lactic acid or, glucose, citric acid, succinic acid is preferably malic acid and lactic acid.
本発明は、疲労の評価および慢性疲労症候群の診断を客観的かつ簡便に行うことを可能にする。本発明はさらに、疲労の治療に有用な技術を提供し得る。
The present invention enables objective and simple evaluation of fatigue and diagnosis of chronic fatigue syndrome. The present invention may further provide techniques useful for treating fatigue.
図1は、健常者および慢性疲労症候群(CFS)の患者の血漿中に含まれている種々の代謝物の濃度を示す図である。
図2は、解糖系およびクエン酸回路を形成する代謝物について、代謝物と代謝物との相関、および代謝物とパフォーマンス・ステイタス(PS)との相関を調べた結果を示す図である。
図3は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、候補物質の量の結果を示す図である。健常者のそれぞれの候補物質の量の平均値を100とし、その比率で示した。
図4は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、グルコース、クエン酸、cis−アコニット酸およびイソクエン酸について、それぞれの比率を3軸上に示した図である。
図5は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、候補物質の量の結果を示す図である。健常者のそれぞれの候補物質の量の平均値を100とし、その比率で示した。
図6は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、グルコース、クエン酸、イソクエン酸およびコハク酸について、それぞれの比率を3軸上に示した図である。
図7は、血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。 FIG. 1 is a diagram showing the concentrations of various metabolites contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS).
FIG. 2 is a diagram showing the results of examining the correlation between a metabolite and a metabolite and the correlation between the metabolite and performance status (PS) for a metabolite forming a glycolytic system and a citric acid cycle.
FIG. 3 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
FIG. 4 is a graph showing the ratios of glucose, citric acid, cis-aconitic acid and isocitric acid contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS) on three axes. It is.
FIG. 5 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
FIG. 6 is a graph showing the ratios of glucose, citric acid, isocitrate and succinic acid on the three axes included in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). .
FIG. 7 is a diagram illustrating a result of executing a random forest program using all parameters including measured values of metabolites in a plasma sample.
図2は、解糖系およびクエン酸回路を形成する代謝物について、代謝物と代謝物との相関、および代謝物とパフォーマンス・ステイタス(PS)との相関を調べた結果を示す図である。
図3は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、候補物質の量の結果を示す図である。健常者のそれぞれの候補物質の量の平均値を100とし、その比率で示した。
図4は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、グルコース、クエン酸、cis−アコニット酸およびイソクエン酸について、それぞれの比率を3軸上に示した図である。
図5は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、候補物質の量の結果を示す図である。健常者のそれぞれの候補物質の量の平均値を100とし、その比率で示した。
図6は、健常者および慢性疲労症候群(CFS)の各患者の血漿中に含まれている、グルコース、クエン酸、イソクエン酸およびコハク酸について、それぞれの比率を3軸上に示した図である。
図7は、血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。 FIG. 1 is a diagram showing the concentrations of various metabolites contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS).
FIG. 2 is a diagram showing the results of examining the correlation between a metabolite and a metabolite and the correlation between the metabolite and performance status (PS) for a metabolite forming a glycolytic system and a citric acid cycle.
FIG. 3 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
FIG. 4 is a graph showing the ratios of glucose, citric acid, cis-aconitic acid and isocitric acid contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS) on three axes. It is.
FIG. 5 is a graph showing the results of the amount of candidate substances contained in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). The average value of the amount of each candidate substance of a healthy person was set to 100, and the ratio was shown as a ratio.
FIG. 6 is a graph showing the ratios of glucose, citric acid, isocitrate and succinic acid on the three axes included in the plasma of healthy subjects and patients with chronic fatigue syndrome (CFS). .
FIG. 7 is a diagram illustrating a result of executing a random forest program using all parameters including measured values of metabolites in a plasma sample.
〔1〕疲労
現在、疲労・倦怠感を主症状として医療機関へ訪れる患者の数は、痛みを主症状とする患者の数に次いで2番目に多い。しかしながら、疲労を客観的に評価する方法は、これまでに開発されていない。疲労感および倦怠感は、ヒトが日常的に経験する感覚であり、生体のホメオスタシスの乱れを知らせる重要な生体シグナルである。しかし、疲労感はあくまでも主観的なものであり、疲労度を客観的に示すものではない。乳酸が疲労の原因物質であると考えられた時期もあるが、乳酸レベルの変動は、運動の指標になり得るが、疲労状態の指標にはならないということもわかってきている。さらに、疲労に効果的な治療法も見出されておらず、抗疲労成分として、カフェインやタウリン、アスコルビン酸などが知られているに過ぎない。
アメリカ疾病予防管理センター(CDC)が、「慢性疲労症候群」という、原因不明の強い疲労を呈する疾患を1988年に報告してから、そのメカニズムの解明、バイオマーカーの探索、および治療予防法の開発を中心とした、種々の研究がなされてきた。しかし、慢性疲労症候群の発症メカニズムは未だ解明されておらず、客観的バイオマーカーについても開発されていない。現在においても、CDCが1994年に発表した、症状および身体所見の基準を用いて慢性疲労症候群の診断がなされている。
一方、これまでに、ウイルス活性化または自律神経異常を指標とした疲労バイオマーカーが提案されている。しかし、これらはヒトの疲労の原因やそのメカニズムに則したものではないため、疲労(特に慢性疲労、慢性疲労症候群)に特異的なバイオマーカーとはいいがたい。さらに、これらは、ホメオスタシスの維持/回復のメカニズムの間接的な指標であっても直接的な指標ではないため、具体的な治療法の提供にまで発展させることは試行錯誤が必要である。
疲労負荷モデル動物において、血中アミノ酸量の変動(特に分枝鎖アミノ酸量の増加)が見出された。そこで、本発明者らは、疲労患者の血液を用いて同様の検査を行ったが、同様の結果は見出せなかった。この結果を検証するために、本発明者らは、種々の代謝物を網羅的に解析することができるメタボローム解析を、慢性疲労症候群患者の血漿を用いて行った。しかし、上述した分枝鎖アミノ酸に関しては、健常者と慢性疲労症候群患者との間において量的な差異を見出せなかった。
また、モデル動物を用いた研究において、肝臓や筋肉組織のATPの減少、脳内サイトカインの活性化などが、これまでに示されているが、このような知見をヒトにおける診断および/または治療に適用することは、倫理的な観点から困難である。このようにモデル動物から得られた知見は、まだまだ疲労患者に適用することができず、疲労の原因や疲労が生成される機序は未だ解明されていない。
〔2〕本発明のバイオマーカー
本発明者らは、健常者および慢性疲労症候群の患者の血漿における代謝物の変動をさらに解析し、得られた測定値に対してさらに独自の手法を組み合わせることによって、疲労のバイオマーカーを見出し、本発明を完成するに至った。
後述する実施例に示すように、本発明にかかるバイオマーカーは、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、cis−アコニット酸、リンゴ酸、および乳酸の濃度に基づくものである。近年、種々のサンプルを、種々の項目について網羅的に解析する技術が開発されている。本発明者らが採用したメタボローム解析もまたその一つである。ただし、図1に示すように、生体サンプル中の濃度が被験者のものと健常者のものとの間で有意に異なる化合物(代謝物)は多く存在し、上記のうちの少なくとも2種(必要に応じて全種類)の選択を明確に動機付ける知見は、当該分野に存在しない。本発明者らは、生体サンプル中の濃度が被験者のものと健常者のものとの間で有意に異なる代謝物を、PSと有意な相関を示すものに絞り込み、さらに種々の数理モデル解析手法に供した。このような手順を行うこともまた、本発明者ら独自の観点である。なお、パス解析に供する化合物として、メタボローム解析から得られたもの以外にグルコースを選択したこと、およびグルコースと他の代謝物とを関連付けたこともまた、本発明者ら独自の観点である。さらに、上記代謝物質を用いた場合(すなわち、少なくとも2つのバイオマーカーを用いた場合)、90%を超える正確さで健常者と慢性疲労症候群の患者とを識別し得るという、格別優れた結果を提供する。
なお、クエン酸を疲労と関連付ける報告がこれまでになされている(例えば、特許文献2および3参照)。しかし、いずれの報告に基づいても当業者は本発明に想到し得ない。
本発明においては、生体サンプル中の代謝産物(グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸)の、健常者の測定値に対する被験者の測定値の比率を算出し、いずれか1つの代謝産物の比率と他の代謝産物の1つの比率との差がバイオマーカーとして用いられる。例えば、本発明において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、グルコースに関する基準値(第1の基準値B1)との比(第1の比率R1)を算出し、被験者から得た生体サンプル中のクエン酸濃度(測定値M2)と、クエン酸に関する基準値(第2の基準値B2)との比(第2の比率R2)を算出し、被験者から得た生体サンプル中のcis−アコニット酸濃度(測定値M3)と、cis−アコニット酸に関する基準値(第3の基準値B3)との比(第3の比率R3)を算出し、これらR1~R3を比較することによって、本発明のバイオマーカーが得られる。
第1実施形態において、本発明のバイオマーカーは、R1とR2との差Q1、R2とR3との差Q2であり得る。
バイオマーカーQ1=R1−R2
バイオマーカーQ2=R2−R3
として得られたバイオマーカーQ1およびQ2の少なくとも一方が正(Q1>0またはQ2>0)の場合に、「疲労あり」と評価され、バイオマーカーQ1およびQ2のいずれもが負(Q1<0かつQ2<0)の場合に、「疲労なし」と評価される。なお、生体サンプル中のイソクエン酸の、健常者の測定値に対する被験者の測定値の比率を算出し、イソクエン酸の比率とcis−アコニット酸の比率との差がバイオマーカーとして用いられてもよい。すなわち、被験者から得た生体サンプル中のイソクエン酸濃度(測定値M4)と、イソクエン酸に関する基準値(第4の基準値B4)との比(第4の比率R4)を算出し、これらに基づいて、
バイオマーカーQ3=R4−R3
として得られたバイオマーカーQ3も、バイオマーカーQ1およびQ2とともに用いられてもよく、この場合、バイオマーカーQ1~Q3の少なくとも一つが正(Q1>0、Q2>0またはQ3>0)の場合に、「疲労あり」と評価され、バイオマーカーQ1~Q3のいずれもが負(Q1<0かつQ2<0かつQ3<0)の場合に、「疲労なし」と評価される。
このような実施形態は、後述する実施例(例えば、図3)にて実証されている。ここで、バイオマーカーQ1~Q3と同様に、
バイオマーカーQ4=R1−R3
バイオマーカーQ5=R1−R4
バイオマーカーQ6=R2−R4
もまた、本発明のバイオマーカーであり、バイオマーカーQ1~Q3と同様に疲労の評価に用いられ得ることを、本明細書を読んだ当業者は容易に理解する。
cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でない。このような場合には、グルコース、クエン酸およびイソクエン酸とともにコハク酸を用いればよい。コハク酸もまた、グルコース、クエン酸およびcis−アコニット酸と同様にエネルギー産生に深く関係している。サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。すなわち、第1実施形態において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、グルコースに関する基準値(第1の基準値B1)との比(第1の比率R1)を算出し、被験者から得た生体サンプル中のクエン酸濃度(測定値M2)と、クエン酸に関する基準値(第2のB2)との比(第2の比率R2)を算出し、被験者から得た生体サンプル中のイソクエン酸濃度(測定値M4)と、イソクエン酸に関する基準値(第4の基準値B4)との比(第4の比率R4)を算出し、被験者から得た生体サンプル中のコハク酸濃度(測定値M5)と、コハク酸に関する基準値(第5の基準値B5)との比(第5の比率R5)を算出し、これらR1,R2,R4およびR5を比較することによって、本発明のバイオマーカーを得ることが好ましい。この場合、本実施形態のバイオマーカーは、R1とR2との差Q1a、R2とR4との差Q2a、R4とR5との差Q3aであり得る。
バイオマーカーQ1a=R1−R2
バイオマーカーQ2a=R2−R4
バイオマーカーQ3a=R5−R4
として得られたバイオマーカーの少なくとも1つが正(Q1a>0、Q2a>0またはQ3a>0)の場合に、「疲労あり」と評価され、バイオマーカーのいずれもが負(Q1a<0かつQ2a<0かつQ3a<0)の場合に、「疲労なし」と評価される。
このような実施形態は、後述する実施例(例えば、図5)にて実証されている。ここで、バイオマーカーQ1a、Q2a,Q3aと同様に、
バイオマーカーQ4a=R1−R4
バイオマーカーQ5a=R1−R5
バイオマーカーQ6a=R2−R5
もまた、本発明のバイオマーカーであり、バイオマーカーQ1a、Q2a,Q3aと同様に疲労の評価に用いられ得ることを、本明細書を読んだ当業者は容易に理解する。
被験者から得た生体サンプル中のグルコース濃度の測定値と基準値との間で実質的な差異がない場合(すなわちR1≒1)、R2~R5がバイオマーカーとなり得る。また、被験者から得た生体サンプル中のリンゴ酸濃度(測定値M6)と、リンゴ酸に関する基準値(第6の基準値B6)との比(第6の比率R6)を算出し、被験者から得た生体サンプル中の乳酸濃度(測定値M7)と、乳酸に関する基準値(第7の基準値B7)との比(第7の比率R7)を算出し、これらR6~R7をR1~R5とともに用いてもよい。すなわち、第2実施形態において、本発明のバイオマーカーは、R2~R7でもあり得る。本発明のさらなるバイオマーカーは、
バイオマーカーQ7=第2の比率R2
バイオマーカーQ8=第3の比率R3
バイオマーカーQ9=第4の比率R4
バイオマーカーQ10=第5の比率R5
バイオマーカーQ11=第6の比率R6
バイオマーカーQ12=第7の比率R7
として提供される。バイオマーカー(Q7~Q12)は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、バイオマーカーQ7~Q12の少なくとも1つが条件(R2<79.1%、R3<69.3%、R4<66.0%、R5<66.6%、R6<83.7%、およびR7<74.3%)を満たした場合、「疲労あり」と評価され、バイオマーカーQ7~Q12の全てが上記の条件を満たさない場合、「疲労なし」と評価される。
後述する実施例にて示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、健常者と患者とを区別する際に、他の因子と組み合わせることなく単独で利用可能である。このような非常に優れた機能は、当業者が予測し得ない、格別顕著なものである。
上述したバイオマーカーによって得られた知見に基づけば、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸およびコハク酸の濃度の測定値自体もまた、疲労の診断基準/判定基準(例えば、疲労を診断または判定するためのデータ)を提供し得、被験者から得た生体サンプル中の代謝産物の濃度の測定値M2~M7もまたバイオマーカーとなり得る。すなわち、本発明のさらなるバイオマーカーは、
バイオマーカーQ7a=第2の測定値M2
バイオマーカーQ8a=第3の測定値M3
バイオマーカーQ9a=第4の測定値M4
バイオマーカーQ10a=第5の測定値M5
バイオマーカーQ11a=第6の測定値M6
バイオマーカーQ12a=第7の測定値M7
として提供される。バイオマーカー(Q7a~Q12a)は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。特に、Q8a~Q10aが好ましく、バイオマーカーQ8a~Q10aの少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合、「疲労あり」と評価され、バイオマーカーQ8a~Q10aの全てが上記の条件を満たさない場合、「疲労なし」と評価されてもよい。バイオマーカーQ8a~Q10aは、Q9aが優先して用いられることが好ましく、次いでQ8aが用いられ、さらにQ10aが用いられることが好ましい。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
後述する実施例にて示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、健常者と患者とを区別する際に、他の因子と組み合わせることなく単独で利用可能である。このような非常に優れた機能は、当業者が予測し得ない、格別顕著なものである。
またさらに、本発明において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、クエン酸濃度(測定値M2)と、cis−アコニット酸濃度(測定値M3)と、イソクエン酸濃度(測定値M4)と、コハク酸濃度(測定値M5)とを比較することによって、本発明のバイオマーカーが得られる。第3実施形態において、本発明のバイオマーカーは、
バイオマーカーQ13=M2/M1
バイオマーカーQ14=M3/M2
バイオマーカーQ15=M4/M3
バイオマーカーQ16=M3/M1
バイオマーカーQ17=M4/M1
バイオマーカーQ18=M4/M2
として提供され、同様に用いられ得る。このような実施形態は、後述する実施例(例えば、図4)にて実証されている。図4に示すような、それぞれを3軸上に示した場合に、正常群と慢性疲労症候群とを差別化し得る。例えば、後述する実施例にて示すように、Q13~Q15を用いて、
(a*Q13+b*Q14+c*Q15)+d ・・・(A)
の数値a,b,c,dを判別分析によって演算したところ、90%以上の正確さで慢性疲労症候群患者を判別し得た。ここで、d>0の場合が正常群を示し、d<0の場合が慢性疲労症候群を示す。また、判別分析の代りにPartial Least Square、Support Vector Machine等の分析を行った場合であっても、同様の結果を得られた。
また、本実施形態において、イソクエン酸を、グルコース、クエン酸およびコハク酸とともに用いた場合、本発明のバイオマーカーは、
バイオマーカーQ13a=M2/M1
バイオマーカーQ14a=M4/M2
バイオマーカーQ15a=M5/M4
バイオマーカーQ16a=M4/M1
バイオマーカーQ17a=M5/M1
バイオマーカーQ18a=M5/M2
として同様に提供されかつ用いられ、図6に示すような、それぞれを3軸上に示した場合に、正常群と慢性疲労症候群とを差別化し得る。例えば、後述する実施例にて示すように、Q13a~Q15aを用いて、
(a*Q13a+b*Q14a+c*Q15a)+d ・・・(A’)
の数値a,b,c,dを判別分析によって演算したところ、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別し得た。ここで、d>0の場合が正常群を示し、d<0の場合が慢性疲労症候群を示す。また、判別分析の代りにPartial Least Square、Support Vector Machine等の分析を行った場合であっても、同様の結果を得られた。
なお、グルコース、クエン酸、cis−アコニット酸、イソクエン酸およびコハク酸が、健常者と患者とを区別する際に非常に有用な因子であることは、本発明を完成することによって十分に裏付けられた事実である。すなわち、これまでに知られていた知見に基づいて、健常者と患者との区別に利用可能な因子であることを見出すことは、当業者が容易になし得ることではなかった。
このように、本発明のバイオマーカーは、客観的かつ簡便な、疲労の評価および診断を可能にする。さらに、本発明のバイオマーカーを用いれば、慢性疲労症候群の診断法および治療法を開発し得る。
〔3〕本発明のバイオマーカーの利用
本発明は、上述したバイオマーカーに基づいた、疲労を評価するための方法、キットおよびシステムを提供する。
〔3−1〕疲労評価方法
上述した第1実施形態におけるバイオマーカーQ1~Q6のうち少なくとも2つ(またはバイオマーカーQ1a~Q6aのうち少なくとも2つ)を用いることによって、被験者の疲労状態を評価することができる。例えば、バイオマーカーQ1およびQ2は
Q1=第1の比率R1−第2の比率R2
Q2=第2の比率R2−第3の比率R3
として提供され、「疲労あり」の評価は
Q1>0またはQ2>0
として提供され、「疲労なし」の評価は
Q1<0かつQ2<0
として提供されるので、
R1=M1/B1
R2=M2/B2
R3=M3/B3
として得られた第1~第3の比率(R1~R3)に基づいてQ1およびQ2を算出することによって、被験者の疲労状態が評価され得る。なお、Q1およびQ2は少なくとも一方が正であればよいので、一方を算出するだけで被験者の疲労状態が評価され得る場合がある。すなわち、R1とR2を比較するか、またはR2とR3を比較するだけで、被験者の疲労状態が評価され得る場合がある。
このような観点から、一実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値の、第1の基準値に対する第1の比率を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、および(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を得る工程、を包含し、第1の比率と第2の比率とを比較する工程、および第2の比率と第3の比率とを比較する工程の少なくとも一方をさらに包含することを特徴としている。本実施形態にかかる疲労評価方法は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、および(III)第1の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
なお、本発明にかかる疲労評価方法を用いることにより、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかる疲労評価方法は、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供する方法(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得する方法)でもあり得る。
上述したように、バイオマーカーQ3もまた、被験者の疲労状態を評価するために有用である。バイオマーカーQ3は
バイオマーカーQ3=第4の比率R4−第3の比率R3
として提供され、バイオマーカーQ1およびQ2と組み合わせた「疲労あり」の評価は
Q1>0、Q2>0、またはQ3>0
として提供され、バイオマーカーQ1およびQ2と組み合わせた「疲労なし」の評価は
Q1<0かつQ2<0かつQ3<0
として提供されるので、
R4=M4/B4
として得られた第4の比率(R4)とすでに得られている第3の比率(R3)とに基づいて算出したQ3を用いることによって、Q1およびQ2を用いる場合と同様に、被験者の疲労状態が評価され得る。すなわち、本発明にかかる疲労評価方法は、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程をさらに包含してもよく、この場合、第1の比率と第4の比率とを比較する工程、第2の比率と第4の比率とを比較する工程、および、第3の比率と第4の比率とを比較する工程、の少なくとも1つをさらに包含することが好ましく、例えば、第2の比率の、第1の比率に対する比率、第3の比率の、第2の比率に対する比率、および第4の比率の、第3の比率に対する比率の少なくとも1つを用いて、判別分析、Partial Least Square、Support Vector Machine等の分析を行う工程をさらに包含することがより好ましい。
本実施形態においてイソクエン酸に関する第4の比率R4が用いられる場合、上述したように、グルコースに関する第1の比率R1、クエン酸に関する第2の比率R2、およびコハク酸に関する第5の比率R5とともに用いられることが好ましい。すなわち、
バイオマーカーQ1a=第1の比率R1−第2の比率R2
バイオマーカーQ2a=第2の比率R2−第4の比率R4
バイオマーカーQ3a=第5の比率R5−第4の比率R4
として提供され、この場合の「疲労あり」の評価は
Q1a>0、Q2a>0、およびQ3a>0の中、少なくとも一つを満たすこと、
として提供され、「疲労なし」の評価は
Q1a<0かつQ2a<0かつQ3a<0
として提供されるので、
R1=M1/B1
R2=M2/B2
R4=M4/B4
R5=M5/B5
として得られた第1、第2、第4および第5の比率(R1、R2、R4およびR5)に基づいてQ1a~Q3aを算出することによって、被験者の疲労状態が評価され得る。なお、Q1a~Q3aもまた少なくとも1つが正であればよいので、いずれか1つを算出するだけで被験者の疲労状態が評価され得る場合がある。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値の、第1の基準値に対する第1の比率を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、(3)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程、(4)被験者から得た生体サンプル中のコハク酸濃度の測定値の、第5の基準値に対する第5の比率を得る工程、を少なくとも2つ包含し、第1の比率と第2の比率とを比較する工程、第2の比率と第4の比率とを比較する工程、および第4の比率と第5の比率とを比較する工程の少なくとも1つをさらに包含することを特徴としている。本実施形態にかかる疲労評価方法は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、(III)第4の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよく、(IV)第1の比率が第2の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第5の比率よりも小さい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
また、上述した第2実施形態におけるバイオマーカーQ7~Q12を用いることによって、慢性疲労症候群であるか否かを評価(診断または判定)することができる。上述したように、バイオマーカーQ7~Q12は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。被験者から得た生体サンプル中のグルコース濃度の測定値が基準値と実質的に等しい場合に、後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、バイオマーカーQ7~Q12の少なくとも1つが条件(R2<79.1%、R3<69.3%、R4<66.0%、R5<66.6%、R6<83.7%、およびR7<74.3%)を満たした場合、「疲労あり」と評価され、バイオマーカーQ21~Q26の全てが上記の条件を満たさない場合、「疲労なし」と評価される。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値と、第1の基準値とを比較する工程を包含し、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を得る工程、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程、(5)被験者から得た生体サンプル中のコハク酸濃度の測定値の、第5の基準値に対する第5の比率を得る工程、(6)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の、第6の基準値に対する第6の比率を得る工程、および(7)被験者から得た生体サンプル中の乳酸濃度の測定値の、第7の基準値に対する第7の比率を得る工程、の少なくとも1つをさらに包含することを特徴としている。工程(1)において、グルコース濃度の測定値と第1の基準値との間で実質的な差異がない場合に、本実施形態にかかる疲労評価方法は、(2)~(7)において得られた比率が所定の割合よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。なお、後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、上記所定の割合は、(2)~(7)についてそれぞれ79.1%、69.3%、66.0%、66.6%、83.7%および74.3%である。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
さらに、上述したバイオマーカーQ7a~Q12aを用いることによって、慢性疲労症候群であるか否かを評価(診断または判定)することができる。上述したように、バイオマーカーQ7a~Q12aは、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。特に、Q8a~Q10aを用いることが好ましく、バイオマーカーQ8a~Q10aの少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合、「疲労あり」と評価され、バイオマーカーQ8a~Q10aの全てが上記の条件を満たさない場合、「疲労なし」と評価されてもよい。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1’)被験者から得た生体サンプル中のグルコース濃度の測定値と、第1の閾値とを比較する工程を包含し、(2’)被験者から得た生体サンプル中のクエン酸濃度の測定値と、第2の閾値とを比較する工程、(3’)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値と、第3の閾値とを比較する工程、(4’)被験者から得た生体サンプル中のイソクエン酸濃度の測定値と、第4の閾値とを比較する工程、(5’)被験者から得た生体サンプル中のコハク酸濃度の測定値と、第5の閾値とを比較する工程、(6’)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の、第6の閾値とを比較する工程、および(7’)被験者から得た生体サンプル中の乳酸濃度の測定値の、第7の閾値とを比較する工程、の少なくとも1つをさらに包含することを特徴としており、好ましくは、上記(3’)~(5’)の工程の少なくとも1つを包含し、少なくとも(5’)の工程を包含することがより好ましく、(5’)の工程の次に(4’)の工程を行うことがより好ましく、引き続いて(3’)の工程を行うことがさらに好ましい。本実施形態にかかる疲労評価方法は、(1’)~(7’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
また、上述した第3実施形態におけるバイオマーカーQ13~Q18の少なくとも1つ(またはバイオマーカーQ13a~Q18aのうち少なくとも1つ)を用いて、判別分析、Partial Least Square、またはSupport Vector Machine等の分析を行うことによって、基準値を用いることなく、慢性疲労症候群であるか否かを評価(診断または判定)することができる。例えば、バイオマーカーQ13~Q18のいずれか3つ(例えば、Q13~Q15)を判別分析、Partial Least Square、またはSupport Vector Machine等の分析に供することによって、より高度な判別を行い得る。特に、代表的な判別解析を行い、上述したように、式(B)
(a*M2/M1+b*M3/M2+c*M4/M3)+d ・・・(B)
にM1~M4の全てを入力して得られた結果に基づいて慢性疲労症候群であるか否かを判定することが好ましい。また、バイオマーカーQ13a~Q18aのいずれか3つ(例えば、Q13a~Q15a)を判別分析、Partial Least Square、またはSupport Vector Machine等の分析に供することによって、より高度な判別を行い得る。特に、代表的な判別解析を行い、上述したように、式(B’)
(a*M2a/M1a+b*M4a/M2a+c*M5a/M4a)+d
・・・(B’)
にM1a、M2a、M4aおよびM5aの全てを入力して得られた結果に基づいて慢性疲労症候群であるか否かを判定することが好ましい。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値を得る工程、(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値を得る工程、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値を得る工程、および(5)被験者から得た生体サンプル中のコハク酸濃度の測定値を得る工程、を少なくとも3つ包含することを特徴としており、得られた測定値を分析する工程をさらに包含することが好ましい。
本発明にかかる疲労評価方法を、本発明のバイオマーカーの第1実施形態および第2実施形態に従って説明したが、本発明にかかる疲労評価方法はこれらに限定されず、例えば、基準値を用いずに、被験者から得た生体サンプル中の、グルコース濃度の測定値、クエン酸濃度の測定値、および、cis−アコニット酸濃度の測定値(必要に応じて、イソクエン酸濃度の測定値、リンゴ酸濃度の測定値、および乳酸濃度の測定値)を用いて疲労を評価する方法や、被験者から得た生体サンプル中の測定値と、それぞれの基準値とを比較して疲労を評価する方法もまた、本発明にかかる疲労評価方法の範囲内であることを、本明細書を読んだ当業者は容易に理解する。
本発明にかかる疲労評価方法は、被験者から得た生体サンプル中のグルコース濃度、クエン酸濃度およびcis−アコニット酸濃度を測定する工程をさらに包含してもよく、必要に応じて、イソクエン酸濃度、リンゴ酸濃度および乳酸濃度を測定する工程をさらに包含してもよい。すなわち、本発明にかかる疲労評価方法は、予め測定されたグルコース濃度、クエン酸濃度およびcis−アコニット酸濃度(および必要に応じてイソクエン酸濃度、リンゴ酸濃度および乳酸濃度)に基づいて実行されてもよく、グルコース濃度、クエン酸濃度およびcis−アコニット酸濃度(および必要に応じてイソクエン酸濃度、リンゴ酸濃度および乳酸濃度)を被験者から得た生体サンプルから測定する段階から開始されてもよい。
本発明にかかる疲労評価方法において、第1~第3の基準値が、それぞれ、複数の健常者から得た生体サンプル中の平均グルコース濃度、平均クエン酸濃度および平均cis−アコニット酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。もちろん、第4~第7の基準値についてもまた、複数の健常者から得た生体サンプル中の平均イソクエン酸濃度、平均コハク酸濃度、平均リンゴ酸濃度および平均乳酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。また、これらの値は、予め規定された値であっても、被験者からのサンプリングと同時に健常者のサンプリングを行い、得られた生体サンプル中の各代謝物質の濃度に基づいて算出された値であってもよい。
本発明を実行するに際し、生体サンプル中の代謝物質の濃度(グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度)を測定する必要がある。当該分野において、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸または乳酸を基質とする酵素反応がよく知られている。このことは、このような技術を用いた測定キットが市販されていることからも明らかである。すなわち、当業者は、このような種々の技術を任意に利用して、生体サンプル中の代謝物質の濃度測定を首尾よく行い得る。
〔3−2〕疲労評価キット
上述したような疲労評価方法を実施するために用いられる試薬を併せ持つキットもまた、本発明の範囲内である。すなわち、本発明にかかる第1のキットは、疲労を評価するために、コハク酸濃度を測定するための第5の試薬を備えていることを特徴としており、必要に応じて、イソクエン酸濃度を測定するための第4の試薬をさらに備えていてもよく、さらに、グルコース濃度を測定するための第1の試薬、クエン酸濃度を測定するための第2の試薬、cis−アコニット酸濃度を測定するための第3の試薬、リンゴ酸濃度を測定するための第6の試薬、および、乳酸濃度を測定するための第7の試薬からなる群より選択される試薬の少なくとも1つをさらに備えていてもよい。
第1のキットは、コハク酸の濃度の基準値が表示された指示書をさらに備えていることが好ましく、必要に応じて、該指示書には、イソクエン酸、さらにはcis−アコニット酸、なおさらにはグルコース、クエン酸、リンゴ酸および乳酸の濃度の基準値が表示されていてもよい。
当該分野において、当該分野において、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸または乳酸を基質とする酵素反応がよく知られている。すなわち、当業者は、このような種々の技術を任意に利用して、生体サンプル中の濃度測定を首尾よく行い得る。例えば、第1の試薬は、グルコースを基質とする酵素Glucose oxidase,peroxidaseであってもよく、その場合、好適な発色試薬として酸化還元反応によって発色するもの(例えばo−Dianisidine)が本発明のキットに備えられていればよく、第2の試薬は、クエン酸を基質とする酵素Citrate Lyase,Malic dehydrogenaseであってもよく、その場合、好適な発色試薬としてβ−NADHが本発明のキットに備えられていることが好ましく、第3の試薬は、cis−アコニット酸を基質とする酵素Aconitase,Citrate Lyaseであってもよく、その場合、好適な発色試薬としてβ−NADH,phenylhydrazineが本発明のキットに備えられていることが好ましく、第4の試薬は、イソクエン酸を基質とする酵素Isocitrate Lyaseであってもよく、その場合、好適な発色試薬としてphenylhydrazineが本発明のキットに備えられていることが好ましい。さらに、第5の試薬は、コハク酸を基質とする酵素Succinyl CoA Synthetase、Pyruvate Kinase、Lactate Dehydrogenaseであってもよく、その場合、好適な発色試薬としてβ−NADHが本発明のキットに備えられていることが好ましく、第6の試薬は、リンゴ酸を基質とする酵素Malate Dehydrogenaseであってもよく、その場合、好適な発色試薬としてNAD+が本発明のキットに備えられていることが好ましく、第7の試薬は、乳酸を基質とする酵素Lactate Dehydrogenase、Glutamic Pyruvic Transaminaseであってもよく、その場合、好適な発色試薬としてNAD+が本発明のキットに備えられていることが好ましい。
また、上述したような疲労評価方法によって得られるバイオマーカーQ1~Q7を、目視にて検出する構成を有するキットもまた、本発明の範囲内である。すなわち、本発明にかかる第2のキットは、疲労を評価するために、第5の比率を示す第5呈示部を備えていることを特徴としており、第4の比率を示す第4呈示部をさらに備えていてもよく、さらに、第1の比率を示す第1呈示部、第2の比率を示す第2呈示部、第3の比率を示す第3呈示部、第6の比率を示す第6呈示部、および、第7の比率を示す第7呈示部からなる群より選択される呈示部の少なくとも1つ、をさらに備えていてもよい。本発明にかかる第2のキットは、第1~第7呈示部がそれぞれ設けられた別個の部材を備えていてもよく、第1~第7呈示部の全て設けられた単一部材を備えていてもよい。
第2のキットにおける第1~第7呈示部はそれぞれ、測定値に応じて目視可能な色調を呈示する構成を有していることが好ましく、呈示された色調と比較されるべき参照が記載された指示書をさらに備えていることが好ましい。第1呈示部ではR1に基づいて第1色C1が呈示され、第2呈示部ではR2に基づいて第2色C2が呈示され、C1およびC2ならびに参照を比較することによって、バイオマーカーQ1(すなわち、C1とC2との差異に基づく値)を得ることができる。また、第3呈示部ではR3に基づいて第3色C3が呈示され、C2およびC3ならびに参照を比較することによって、バイオマーカーQ2(すなわち、C2とC3との差異に基づく値)を得ることができる。このように、本発明にかかる第2のキットを用いて得られたバイオマーカー(Q1およびQ2)を利用して、被験者の疲労状態を評価することができる。また、必要に応じて、第4呈示部ではR4に基づいて第4色C4が呈示され、C3およびC4ならびに参照を比較することによって、バイオマーカーQ3(すなわち、C3とC4との差異に基づく値)を得ることができるので、バイオマーカーQ3をバイオマーカーQ1およびバイオマーカーQ2とともに利用することもできる。本願明細書を読んだ当業者は、第5呈示部~第7呈示部を同様に設けて利用することができる。このような第1~第7呈示部には、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸、乳酸を基質とした酵素を利用した酵素−発色法を利用することができる。
本明細書中において使用される場合、用語「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュなど)を備えた包装が意図されるが、組成物としての一物質中に材料を含有している形態もまた、用語「キット」に包含される。キットは、各材料を使用するための指示書を備えていることが好ましい。本明細書中においてキットの局面において使用される場合、「備えた(備えている)」は、キットを構成する個々の容器のいずれかの中に内包されている状態が意図される。また、本発明に係るキットは、複数の異なる組成物を1つに梱包した包装であり得、溶液形態の場合は容器中に内包されていてもよい。本発明に係るキットは、その複数の構成要素を同一の容器に混合して備えていても別々の容器に備えていてもよい。「指示書」は、紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能ディスクまたはテープ、CD−ROMなどのような電子媒体に付されてもよい。本発明に係るキットはまた、希釈剤、溶媒、洗浄液またはその他の試薬を内包した容器を備え得る。さらに、本発明に係るキットは、生体サンプルを採取するために必要な器具および試薬を備えていてもよい。また、本発明に係るキットは、生体サンプルから目的の調製物を調製するために必要な器具および試薬を備えていてもよい。
上記構成を有することによって、本発明にかかるキットは、実際の医療現場にて簡便に使用することができるので、疲労をより速く、安く、客観的な診断を提供し得る。
なお、本発明にかかるキットを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるキットは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのキット(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのキット)でもあり得る。
〔3−3〕疲労評価システム
上述したような疲労評価方法を実行するために用いられるシステムもまた、本発明の範囲内である。下記実施形態では、本発明に係る疲労評価システムを構成する各部材が、「CPUなどの演算手段がROMやRAMなどの記録媒体に格納されたプログラムコードを実行することによって実現される機能ブロックである」場合を例にして説明するが、同様の処理を行うハードウェアによって実現してもよい。また、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。さらに、上記各部材のうち、ハードウェアとして説明した部材であっても、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。なお、上記演算手段は、単体であってもよいし、装置内部のバスや種々の通信路を介して接続された複数の演算手段が共同してプログラムコードを実行してもよい。
本発明にかかる疲労評価システムは、その機能ブロックとして、測定部11、格納部12、CPU13、および表示部14を備えている。測定部11は、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度を測定する測定部11a~11gとしての機能を有しており、格納部12は、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の測定値M1~M7を受容する測定値受容部12a、およびグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の基準値B1~B7を格納した基準値格納部12bとしての機能を有しており、CPU13は、疲労を評価するための情報を生成する演算部13a、および演算部13aからの評価情報を受け取って疲労を評価する評価部13bとしての機能を有しており、表示部14は、評価部13bによる評価結果を表示する評価結果表示部14としての機能を有している。なお、この機能ブロックは、CPU13が格納部12に格納されたプログラムを実行し、図示しない入出力回路などの周辺回路を制御することによって実現される。
第1実施形態にかかる疲労評価システムでは、グルコースについて以下のステップ11~16が実行される。測定部11aがサンプル中のグルコース濃度を測定し、グルコース濃度測定値M1を取得する(S11)。測定部11aが、取得したグルコース濃度測定値M1を測定値受容部12aへ出力する(S12)。演算部13aが、測定値受容部12aに格納されたグルコース濃度測定値M1を読み出す(S13)。また、演算部13aが、基準値格納部12bに格納されたグルコース濃度基準値(第1の基準値)B1を読み出す(S14)。演算部13aが、M1のB1に対する比率(第1の比率)R1を算出する(S15)。演算部13aが、第1の比率R1を評価部13bへ出力する(S16)。
第1実施形態にかかる疲労評価システムでは、クエン酸について、上記ステップ11~16にそれぞれ対応するステップ21~26が実行されて、演算部13aが、第2の比率R2を評価部13bへ出力し、cis−アコニット酸について、上記ステップ11~16にそれぞれ対応するステップ31~36が実行されて、演算部13aが、第3の比率R3を評価部13bへ出力し、イソクエン酸について、上記ステップ11~16にそれぞれ対応するステップ41~46が実行されて、演算部13aが、第4の比率R4を評価部13bへ出力する。
続いて、評価部13bは、演算部13aによって出力された第1~第4の比率R1~R4を受け取り、第1の比率R1を第2の比率R2とを比較する(S51)。評価部13bは、第1の比率R1が第2の比率R2よりも大きい(R1>R2)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S52)。評価部13bは、第1の比率R1が第2の比率R2よりも小さい(R1<R2)と判定した場合に、第2の比率R2を第3の比率R3とを比較する(S53)。評価部13bは、第2の比率R2が第3の比率R3よりも大きい(R2>R3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S54)。評価部13bは、第2の比率R2が第3の比率R3よりも小さい(R2<R3)と判定した場合に、第3の比率R3を第4の比率R4とを比較する(S55)。評価部13bは、第4の比率R4が第3の比率R3よりも大きい(R4>R3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S56)。評価部13bは、第4の比率R4が第3の比率R3よりも小さい(R4<R3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する(S57)。
このような第1実施形態においては、ステップ41~46が実行されてもされなくてもよく、R4が疲労の評価に用いられなくてもよい。この場合、ステップ54の後に、評価部13bは、第2の比率R2が第3の比率R3よりも小さい(R2<R3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力すればよい(S58)。
上述したステップ51~58については、R1とR2との比較を優先的に行う態様を例に挙げて説明したが、R2とR3との比較、あるいはR3とR4との比較を優先的に行ってもよい。また、4つのステップ群(すなわち、ステップ11~16、ステップ21~26、ステップ31~36、およびステップ41~46)が同時に実行されることによって、R1~R4の全てが取得されている場合を例に説明したが、R1~R4の取得は同時に行われなくてもよい。また、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度およびイソクエン酸濃度を例に挙げて本実施形態を説明したが、コハク酸濃度、リンゴ酸濃度および乳酸濃度を用いる場合も同様の処理が行われる。
本発明にかかる疲労評価システムにおいて、R1~R7の差を用いて疲労を評価するよりもむしろ以下の処理が優先して実行されてもよい(第2実施形態)。第2実施形態において、格納部12は、測定値受容部12a、基準値格納部12b、ならびにグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の参照値t1~t7を格納した参照値格納部12cとしての機能を有している。演算部13aは、第1の比率R1を評価部13bへ出力する(S16)とともに、測定値受容部12cに格納されたグルコース濃度の参照値(第1の参照値)t1を読み出して、評価部13bへ出力する(S116)。評価部13bは、第1の比率R1および第1の参照値t1を受け取り、両者を比較する(S150)。評価部13bは、第1の比率R1が第1の参照値t1とほぼ等しい(R1≒t1)と判定した場合に、引き続いて、評価部13bは、第5の比率R5および第5の参照値t5を受け取り、両者を比較する(S151)。評価部13bは、第5の比率R5が第5の参照値t5よりも小さい(R5<t5)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S152)。評価部13bは、第5の比率R5が第5の参照値t5よりも大きい(R5≧t5)と判定した場合に、引き続いて、評価部13bは、第4の比率R4および第4の参照値t4を受け取り、両者を比較する(S153)。評価部13bは、第4の比率R4が第4の参照値t4よりも小さい(R4<t4)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S154)。評価部13bは、第4の比率R4が第4の参照値t4よりも大きい(R4≧t4)と判定した場合に、引き続いて、評価部13bは、第3の比率R3および第3の参照値t3を受け取り、両者を比較する(S155)。評価部13bは、第3の比率R3が第3の参照値t3よりも小さい(R3<t3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S156)。評価部13bは、第3の比率R3が第3の参照値t3よりも大きい(R3≧t3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する(S157)。コハク酸濃度、イソクエン酸濃度およびcis−アコニット酸濃度を例に挙げて本実施形態を説明したが、グルコース濃度、クエン酸濃度、リンゴ酸濃度および乳酸濃度をさらに用いる場合も同様の処理が行われる。もちろん、確率の高いcis−アコニット酸濃度、イソクエン酸濃度および/またはコハク酸濃度のみに基づいて疲労が評価され得る。
本発明にかかる疲労評価システムにおいて、以下の処理が優先して実行されてもよい。本実施形態において、格納部12は、測定値受容部12a、基準値格納部12b、ならびにグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の閾値T1~T7を格納した閾値格納部12dとしての機能を有している。演算部13aは、第5の測定値M4を評価部13bへ出力するとともに、測定値受容部12dに格納されたコハク酸濃度の閾値(第5の閾値)T5を読み出して、評価部13bへ出力する。評価部13bは、第5の測定値M5および第5の閾値T5を受け取り、両者を比較する。評価部13bは、第5の測定値M5が第5の閾値T5よりも小さい(M5<T5)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第5の測定値M5が第5の閾値T5よりも大きい(M5≧T5)と判定した場合に、引き続いて、評価部13bは、第4の測定値M4および第4の閾値T4を受け取り、両者を比較する。評価部13bは、第4の測定値M4が第4の閾値T4よりも小さい(M4<T4)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第4の測定値M4が第4の閾値T4よりも大きい(M4≧T4)と判定した場合に、引き続いて、評価部13bは、第3の測定値M3および第3の閾値T3を受け取り、両者を比較する。評価部13bは、第3の測定値M3が第3の閾値T3よりも小さい(M3<T3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第3の測定値M3が第3の閾値T3よりも大きい(M3≧T3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する。
また、基準値格納部12bが存在しない場合、あるいは基準値格納部12bに第1~7の基準値B1~B7が格納されていない場合もまた、本発明にかかる疲労評価システムは、疲労の有無を評価し得る(第3実施形態)。演算部13aは測定値受容部12aに格納された測定値M1~M7を読み出すとともに評価部13bへ出力する。演算部13aは測定値受容部12aに格納された測定値M1~M7を読み出すとともに評価部13bへ出力する。続いて、評価部13bは、演算部13aによって出力された第1~第7の測定値M1~M7を受け取り、M1~M74の大小を比較する(S61)。例えば、評価部13bは、受け取ったM1~M4から得られるM2/M1、M3/M2、M4/M3、M3/M1、M4/M1、M4/M2の値を再度演算部13aへ出力する(S62)。演算部13aでは、例えば、入力されたM2/M1、M3/M2、M4/M3の値を用いた分析(例えば、判別分析、Partial Least Square、Support Vector Machine等)を実行する(S63)。演算部13aから出力された分析結果を受容した評価部13bは、カットオフ値に基づいて慢性疲労症候群患者であるか否かの判別結果を評価結果表示部14へ出力する(S64)。グルコース濃度、クエン酸濃度、cis−アコニット酸濃度およびイソクエン酸濃度を例に挙げて本実施形態を説明したが、コハク酸濃度、リンゴ酸濃度および乳酸濃度をさらに用いる場合も同様の処理が行われる。
グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度を測定部11が測定し、測定部11にて得られた値が測定値受容部12aに入力される態様を用いて、本発明を説明したが、予め取得されたグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度が、直接測定値受容部12aに入力される態様であってもよく、この場合は、本発明にかかる疲労評価システムは、測定部11を備えていなくてもよい。
なお、本発明にかかるシステムを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるシステムは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのシステム(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのシステム)でもあり得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 [1] Fatigue
Currently, the number of patients who visit a medical institution with fatigue and fatigue as the main symptom is the second largest after the number of patients with pain as the main symptom. However, no method for objectively evaluating fatigue has been developed so far. Fatigue and fatigue are sensations that humans experience on a daily basis, and are important biological signals that inform the disturbance of homeostasis in the living body. However, the feeling of fatigue is subjective only and does not objectively indicate the degree of fatigue. Although there were times when lactic acid was considered to be a causative agent of fatigue, it has also been found that fluctuations in lactic acid level can be an indicator of exercise, but not an indicator of fatigue. Furthermore, no effective treatment for fatigue has been found, and only caffeine, taurine, ascorbic acid and the like are known as anti-fatigue components.
The US Center for Disease Control and Prevention (CDC) reported a chronic fatigue syndrome called “chronic fatigue syndrome” in 1988, elucidating the mechanism, searching for biomarkers, and developing treatment prevention methods. Various researches have been made with a focus on. However, the onset mechanism of chronic fatigue syndrome has not yet been elucidated, and no objective biomarker has been developed. Even now, the diagnosis of chronic fatigue syndrome is made using the criteria of symptoms and physical findings published by CDC in 1994.
On the other hand, fatigue biomarkers using virus activation or autonomic abnormality as an index have been proposed. However, since these do not conform to the cause of human fatigue and its mechanism, they are not biomarkers specific to fatigue (particularly chronic fatigue, chronic fatigue syndrome). Furthermore, since these are indirect indicators of the maintenance / recovery mechanism of homeostasis, they are not direct indicators, and it is necessary to trial and error to develop them to provide specific treatments.
In the fatigue-bearing model animals, changes in blood amino acid levels (especially increases in branched chain amino acid levels) were found. Therefore, the present inventors conducted a similar test using the blood of a fatigue patient, but could not find a similar result. In order to verify this result, the present inventors performed metabolomic analysis that can comprehensively analyze various metabolites using plasma of patients with chronic fatigue syndrome. However, regarding the above-mentioned branched chain amino acids, no quantitative difference was found between healthy subjects and patients with chronic fatigue syndrome.
In studies using model animals, ATP reduction in liver and muscle tissue, activation of cytokines in the brain, etc. have been shown so far, but such findings are useful for diagnosis and / or treatment in humans. It is difficult to apply from an ethical point of view. Thus, the knowledge obtained from model animals cannot be applied to fatigue patients, and the cause of fatigue and the mechanism by which fatigue is generated have not yet been elucidated.
[2] Biomarker of the present invention
The present inventors further analyzed changes in metabolites in the plasma of healthy subjects and patients with chronic fatigue syndrome, and found a biomarker of fatigue by combining the original measurement with the obtained measurement values, The present invention has been completed.
As shown in the examples described later, the biomarker according to the present invention can be used for the concentration of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, cis-aconitic acid, malic acid, and lactic acid in a biological sample. Is based. In recent years, techniques for exhaustively analyzing various samples for various items have been developed. Metabolome analysis adopted by the present inventors is one of them. However, as shown in FIG. 1, there are many compounds (metabolites) whose concentrations in the biological sample are significantly different between those of the subject and those of healthy subjects, and at least two of the above (necessary) There is no knowledge in the field that clearly motivates the selection of all types). The present inventors narrowed down the metabolites whose concentrations in the biological sample are significantly different between those of the subject and those of the healthy subject to those showing a significant correlation with PS, and further to various mathematical model analysis methods. Provided. Performing such a procedure is also a viewpoint unique to the present inventors. In addition, it is the inventors' original viewpoint that glucose was selected as a compound to be used for path analysis in addition to those obtained from metabolome analysis and that glucose and other metabolites were associated. Furthermore, when using the above metabolite (that is, when using at least two biomarkers), it is possible to distinguish between a healthy person and a patient with chronic fatigue syndrome with an accuracy exceeding 90%. provide.
In addition, there have been reports so far that citric acid is associated with fatigue (see, for example, Patent Documents 2 and 3). However, those skilled in the art cannot conceive of the present invention based on any report.
In the present invention, the ratio of the measured value of the subject to the measured value of the healthy subject of the metabolite (glucose, citric acid, cis-aconitic acid, isocitrate, succinic acid) in the biological sample is calculated. The difference between the ratio of the metabolite and one of the other metabolites is used as a biomarker. For example, in the present invention, the glucose concentration in the biological sample obtained from the subject (measured value M1) And a reference value for glucose (first reference value B)1) Ratio (first ratio R)1) And citric acid concentration (measured value M) in the biological sample obtained from the subject.2) And a reference value for citric acid (second reference value B)2) Ratio (second ratio R)2), And the cis-aconitic acid concentration (measured value M) in the biological sample obtained from the subject.3) And a reference value for the cis-aconitic acid (third reference value B)3) (The third ratio R)3) To calculate these R1~ R3Is obtained, the biomarker of the present invention is obtained.
In the first embodiment, the biomarker of the present invention is R1And R2Difference Q from1, R2And R3Difference Q from2It can be.
Biomarker Q1= R1-R2
Biomarker Q2= R2-R3
Biomarker Q obtained as1And Q2Is positive (Q1> 0 or Q2> 0) is evaluated as “fatigue” and biomarker Q1And Q2Are both negative (Q1<0 and Q2If <0), it is evaluated as “no fatigue”. It should be noted that the ratio of the measured value of the subject to the measured value of the healthy person for isocitrate in the biological sample may be calculated, and the difference between the ratio of isocitrate and the ratio of cis-aconitic acid may be used as a biomarker. That is, the isocitrate concentration in the biological sample obtained from the subject (measured value M4) And a reference value for isocitrate (fourth reference value B)4) And the ratio (fourth ratio R)4) And based on these,
Biomarker Q3= R4-R3
Biomarker Q obtained as3Also, biomarker Q1And Q2In this case, the biomarker Q1~ Q3Is positive (Q1> 0, Q2> 0 or Q3> 0) is evaluated as “fatigue” and biomarker Q1~ Q3Are both negative (Q1<0 and Q2<0 and Q3If <0), it is evaluated as “no fatigue”.
Such an embodiment is demonstrated in an example described later (for example, FIG. 3). Where biomarker Q1~ Q3alike,
Biomarker Q4= R1-R3
Biomarker Q5= R1-R4
Biomarker Q6= R2-R4
Is also a biomarker of the present invention, and biomarker Q1~ Q3Those of ordinary skill in the art who have read this specification will readily appreciate that it can be used for fatigue assessment as well.
Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. In such a case, succinic acid may be used together with glucose, citric acid and isocitric acid. Succinic acid is also deeply involved in energy production, as is glucose, citric acid and cis-aconitic acid. If the concentration of succinic acid in the sample is used, the present invention can be carried out more easily. That is, in the first embodiment, the glucose concentration in the biological sample obtained from the subject (measured value M1) And a reference value for glucose (first reference value B)1) Ratio (first ratio R)1) And citric acid concentration (measured value M) in the biological sample obtained from the subject.2) And a reference value for citric acid (second B2) Ratio (second ratio R)2) And isocitrate concentration (measured value M) in the biological sample obtained from the subject.4) And a reference value for isocitrate (fourth reference value B)4) And the ratio (fourth ratio R)4), And the succinic acid concentration (measured value M) in the biological sample obtained from the subject.5) And a reference value for succinic acid (fifth reference value B)5) (The fifth ratio R)5) To calculate these R1, R2, R4And R5It is preferable to obtain the biomarker of the present invention by comparing. In this case, the biomarker of this embodiment is R1And R2Difference Q from1a, R2And R4Difference Q from2a, R4And R5Difference Q from3aIt can be.
Biomarker Q1a= R1-R2
Biomarker Q2a= R2-R4
Biomarker Q3a= R5-R4
At least one of the biomarkers obtained as1a> 0, Q2a> 0 or Q3a> 0), it is evaluated as “fatigue” and both biomarkers are negative (Q1a<0 and Q2a<0 and Q3aIf <0), it is evaluated as “no fatigue”.
Such an embodiment is demonstrated in an example described later (for example, FIG. 5). Where biomarker Q1a, Q2a, Q3aalike,
Biomarker Q4a= R1-R4
Biomarker Q5a= R1-R5
Biomarker Q6a= R2-R5
Is also a biomarker of the present invention, and biomarker Q1a, Q2a, Q3aThose of ordinary skill in the art who have read this specification will readily appreciate that it can be used for fatigue assessment as well.
When there is no substantial difference between the measured value of the glucose concentration in the biological sample obtained from the subject and the reference value (ie R1≒ 1), R2~ R5Can be a biomarker. In addition, malic acid concentration in the biological sample obtained from the subject (measured value M6) And a reference value for malic acid (sixth reference value B)6) Ratio (sixth ratio R)6), And the lactic acid concentration (measured value M) in the biological sample obtained from the subject.7) And a reference value for lactic acid (seventh reference value B)7) And the ratio (seventh ratio R)7) To calculate these R6~ R7R1~ R5May be used together. That is, in the second embodiment, the biomarker of the present invention is R2~ R7But it can be. Further biomarkers of the invention include
Biomarker Q7= Second ratio R2
Biomarker Q8= Third ratio R3
Biomarker Q9= 4th ratio R4
Biomarker Q10= 5th ratio R5
Biomarker Q11= 6th ratio R6
Biomarker Q12= Seventh ratio R7
Offered as. Biomarker (Q7~ Q12) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model. As shown in the examples described later, when analyzed using the items listed in FIG.7~ Q12At least one of the conditions (R2<79.1%, R3<69.3%, R4<66.0%, R5<66.6%, R6<83.7% and R7<74.3%) is evaluated as “fatigue” and biomarker Q7~ Q12If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
As shown in the examples described later, cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
Based on the findings obtained by the biomarkers described above, the measured values of glucose, citric acid, cis-aconitic acid, isocitrate and succinic acid in biological samples themselves can also be used as a diagnostic / criterion for fatigue (eg, Data for diagnosing or determining fatigue) and a measure M of the concentration of a metabolite in a biological sample obtained from a subject2~ M7Can also be a biomarker. That is, the further biomarker of the present invention is:
Biomarker Q7a= Second measured value M2
Biomarker Q8a= Third measured value M3
Biomarker Q9a= Fourth measured value M4
Biomarker Q10a= 5th measured value M5
Biomarker Q11a= 6th measured value M6
Biomarker Q12a= Seventh measured value M7
Offered as. Biomarker (Q7a~ Q12a) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model. In particular, Q8a~ Q10aIs preferred, biomarker Q8a~ Q10aIf at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q8a~ Q10aIf all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”. Biomarker Q8a~ Q10aQ9aIs preferably used in preference, then Q8aAnd Q10aIs preferably used. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
As shown in the examples described later, cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
Furthermore, in the present invention, the glucose concentration in the biological sample obtained from the subject (measured value M1) And citric acid concentration (measured value M2) And cis-aconitic acid concentration (measured value M3) And isocitrate concentration (measured value M4) And succinic acid concentration (measured value M5) To obtain the biomarker of the present invention. In a third embodiment, the biomarker of the present invention is
Biomarker Q13= M2/ M1
Biomarker Q14= M3/ M2
Biomarker Q15= M4/ M3
Biomarker Q16= M3/ M1
Biomarker Q17= M4/ M1
Biomarker Q18= M4/ M2
Can be used as well. Such an embodiment is demonstrated in an example described later (for example, FIG. 4). When each is shown on three axes as shown in FIG. 4, the normal group and the chronic fatigue syndrome can be differentiated. For example, as shown in the examples described later, Q13~ Q15Using,
(A * Q13+ B * Q14+ C * Q15) + D (A)
When the numerical values a, b, c, and d were calculated by discriminant analysis, it was possible to discriminate chronic fatigue syndrome patients with an accuracy of 90% or more. Here, the case where d> 0 indicates the normal group, and the case where d <0 indicates the chronic fatigue syndrome. Similar results were obtained even when analysis of Partial Last Square, Support Vector Machine or the like was performed instead of discriminant analysis.
In this embodiment, when isocitrate is used together with glucose, citric acid and succinic acid, the biomarker of the present invention is
Biomarker Q13a= M2/ M1
Biomarker Q14a= M4/ M2
Biomarker Q15a= M5/ M4
Biomarker Q16a= M4/ M1
Biomarker Q17a= M5/ M1
Biomarker Q18a= M5/ M2
As shown in FIG. 6, when each is shown on three axes, the normal group and the chronic fatigue syndrome can be differentiated. For example, as shown in the examples described later, Q13a~ Q15aUsing,
(A * Q13a+ B * Q14a+ C * Q15a) + D (A ')
When the numerical values a, b, c, and d were calculated by discriminant analysis, it was possible to discriminate chronic fatigue syndrome patients with 90% accuracy and 95% sensitivity / specificity. Here, the case where d> 0 indicates the normal group, and the case where d <0 indicates the chronic fatigue syndrome. Similar results were obtained even when analysis of Partial Last Square, Support Vector Machine or the like was performed instead of discriminant analysis.
It is fully supported by the completion of the present invention that glucose, citric acid, cis-aconitic acid, isocitric acid and succinic acid are very useful factors in distinguishing healthy subjects from patients. It is a fact. That is, it has not been easy for those skilled in the art to find out based on the knowledge that has been known so far that it is a factor that can be used to distinguish between a healthy person and a patient.
Thus, the biomarker of the present invention enables objective and simple fatigue evaluation and diagnosis. Furthermore, by using the biomarker of the present invention, diagnostic methods and treatment methods for chronic fatigue syndrome can be developed.
[3] Use of the biomarker of the present invention
The present invention provides a method, kit and system for assessing fatigue based on the biomarkers described above.
[3-1] Fatigue evaluation method
Biomarker Q in the first embodiment described above1~ Q6At least two (or biomarkers Q)1a~ Q6aCan be used to evaluate the fatigue state of the subject. For example, biomarker Q1And Q2Is
Q1= First ratio R1-Second ratio R2
Q2= Second ratio R2-Third ratio R3
The evaluation of “with fatigue” is provided as
Q1> 0 or Q2> 0
The evaluation of “no fatigue” is provided as
Q1<0 and Q2<0
As provided
R1= M1/ B1
R2= M2/ B2
R3= M3/ B3
The first to third ratios (R1~ R3) Based on Q1And Q2By calculating the fatigue state of the subject can be evaluated. Q1And Q2Since it is sufficient that at least one of them is positive, there is a case where the fatigue state of the subject can be evaluated only by calculating one. That is, R1And R2Or R2And R3In some cases, the fatigue state of the subject can be evaluated simply by comparing the two.
From such a viewpoint, in one embodiment, the fatigue evaluation method according to the present invention (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value; and (3) cis-aconite in the biological sample obtained from the subject. Obtaining a third ratio of the measured value of the acid concentration with respect to the third reference value, comparing the first ratio and the second ratio, and the second ratio and the third ratio The method further includes at least one of the steps of comparing. In the fatigue evaluation method according to the present embodiment, (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, and (III) the first ratio. A step of determining whether or not at least one of the following conditions is satisfied may be further included.
In addition, by using the fatigue evaluation method according to the present invention, not only can fatigue be evaluated and a treatment method can be proposed, but also a criterion for determination of fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided. Therefore, it becomes easy to diagnose whether or not the state is fatigued. That is, the fatigue evaluation method according to the present invention diagnoses fatigue (including chronic fatigue and chronic fatigue syndrome). Or a method of acquiring data for determination).
As mentioned above, biomarker Q3Is also useful for assessing a subject's fatigue status. Biomarker Q3Is
Biomarker Q3= 4th ratio R4-Third ratio R3
Biomarker Q1And Q2The evaluation of “with fatigue” in combination with
Q1> 0, Q2> 0 or Q3> 0
Biomarker Q1And Q2The evaluation of “no fatigue” in combination with
Q1<0 and Q2<0 and Q3<0
As provided
R4= M4/ B4
The fourth ratio (R4) And the third ratio already obtained (R3) Q calculated based on3By using Q1And Q2As with the case, the fatigue state of the subject can be evaluated. That is, the fatigue evaluation method according to the present invention may further include (4) a step of obtaining a fourth ratio of the measured value of isocitrate concentration in the biological sample obtained from the subject to the fourth reference value. In this case, the step of comparing the first ratio and the fourth ratio, the step of comparing the second ratio and the fourth ratio, and the step of comparing the third ratio and the fourth ratio , For example, a ratio of the second ratio to the first ratio, a third ratio to the second ratio, and a fourth ratio of the third ratio. More preferably, the method further includes a step of performing discriminant analysis, analysis of Partial Last Square, Support Vector Machine, or the like using at least one of the ratios to the above ratio.
In this embodiment, the fourth ratio R related to isocitrate4Is used, as described above, the first ratio R for glucose R1, Second ratio R for citric acid2And a fifth ratio R for succinic acid5It is preferable to be used together. That is,
Biomarker Q1a= First ratio R1-Second ratio R2
Biomarker Q2a= Second ratio R2-Fourth ratio R4
Biomarker Q3a= 5th ratio R5-Fourth ratio R4
The evaluation of “with fatigue” in this case is
Q1a> 0, Q2a> 0 and Q3aSatisfy at least one of> 0,
The evaluation of “no fatigue” is provided as
Q1a<0 and Q2a<0 and Q3a<0
As provided
R1= M1/ B1
R2= M2/ B2
R4= M4/ B4
R5= M5/ B5
The first, second, fourth and fifth ratios (R1, R2, R4And R5) Based on Q1a~ Q3aBy calculating the fatigue state of the subject can be evaluated. Q1a~ Q3aSince at least one of them may be positive, the fatigue state of the subject may be evaluated only by calculating one of them.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value. A step, (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value, and (3) the isocitrate concentration in the biological sample obtained from the subject. A step of obtaining a fourth ratio of the measured value to the fourth reference value, and (4) a step of obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value. , And comparing the first ratio and the second ratio, comparing the second ratio and the fourth ratio, and the fourth ratio and the fifth ratio. Further wrap at least one of the comparing steps It is characterized in that. In the fatigue evaluation method according to the present embodiment, (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, (III) the fourth ratio is The method may further include a step of determining whether or not at least one condition of greater than the third ratio is satisfied, (IV) the first ratio is greater than the second ratio, (V) The method may further include a step of determining whether or not at least one of the second ratio is larger than the fourth ratio and (VI) the fourth ratio is smaller than the fifth ratio is satisfied. Good.
Also, the biomarker Q in the second embodiment described above7~ Q12Can be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome. As mentioned above, biomarker Q7~ Q12As a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more. When the measured value of the glucose concentration in the biological sample obtained from the subject is substantially equal to the reference value, as shown in the examples described later, when the analysis is performed using the items listed in FIG.7~ Q12At least one of the conditions (R2<79.1%, R3<69.3%, R4<66.0%, R5<66.6%, R6<83.7% and R7<74.3%) is evaluated as “fatigue” and biomarker Q21~ Q26If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1) a step of comparing a measured value of a glucose concentration in a biological sample obtained from a subject with a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value, and (3) cis-aconitic acid in the biological sample obtained from the subject. A step of obtaining a third ratio of the measured concentration value to the third reference value; (4) a fourth ratio of the measured value of isocitrate concentration in the biological sample obtained from the subject to the fourth reference value; A step of obtaining, (5) a step of obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value, and (6) the malic acid concentration in the biological sample obtained from the subject. Of the measured value of the sixth At least one of obtaining a sixth ratio with respect to the reference value, and (7) obtaining a seventh ratio with respect to the seventh reference value of the measured value of the lactic acid concentration in the biological sample obtained from the subject. It is characterized by inclusion. In step (1), when there is no substantial difference between the measured value of glucose concentration and the first reference value, the fatigue evaluation method according to the present embodiment is obtained in (2) to (7). A step of determining whether or not the condition that the ratio is smaller than the predetermined ratio is satisfied may be further included. In addition, as shown in the Example mentioned later, when analyzing using the item quoted in FIG. 7, the said predetermined ratio is 79.1%, 69.3% about (2)-(7), respectively. 66.0%, 66.6%, 83.7% and 74.3%. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
Furthermore, the above-mentioned biomarker Q7a~ Q12aCan be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome. As mentioned above, biomarker Q7a~ Q12aAs a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more. In particular, Q8a~ Q10aIt is preferable to use biomarker Q8a~ Q10aIf at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q8a~ Q10aIf all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold value. And (2 ′) a step of comparing the measured value of the citric acid concentration in the biological sample obtained from the subject with the second threshold, and (3 ′) the cis-aconitic acid concentration in the biological sample obtained from the subject. A step of comparing the measured value with a third threshold, (4 ′) a step of comparing the measured value of the isocitrate concentration in the biological sample obtained from the subject with the fourth threshold, and (5 ′) from the subject. A step of comparing the measured value of the succinic acid concentration in the obtained biological sample with the fifth threshold value, (6 ′) a sixth threshold value of the measured value of the malic acid concentration in the biological sample obtained from the subject. Comparing, and (7 ') subject The method further comprises at least one of a step of comparing the measured value of the lactic acid concentration in the obtained biological sample with a seventh threshold value, preferably (3 ′) to (5 ′) above. More preferably, the method includes at least one of the steps (5 ′), and more preferably includes the step (4 ′) after the step (5 ′). More preferably, step 3 ′) is performed. The fatigue evaluation method according to the present embodiment may further include a step of determining whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′). Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
Also, the biomarker Q in the third embodiment described above13~ Q18At least one of (or biomarker Q13a~ Q18aBy using discriminant analysis, Partial Last Square, or Support Vector Machine analysis, etc., it is evaluated (diagnosis or determination) without using a reference value. )can do. For example, biomarker Q13~ Q18Any three (for example, Q13~ Q15) For discriminant analysis, analysis of Partial Last Square, or Support Vector Machine, etc., it is possible to perform more advanced discrimination. In particular, a representative discriminant analysis is performed, and as described above, the formula (B)
(A * M2/ M1+ B * M3/ M2+ C * M4/ M3) + D (B)
M1~ M4It is preferable to determine whether or not the patient has chronic fatigue syndrome based on the result obtained by inputting all of the above. Biomarker Q13a~ Q18aAny three (for example, Q13a~ Q15a) For discriminant analysis, analysis of Partial Last Square, or Support Vector Machine, etc., it is possible to perform more advanced discrimination. In particular, a representative discriminant analysis is performed and, as described above, the formula (B ′)
(A * M2a/ M1a+ B * M4a/ M2a+ C * M5a/ M4a) + D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Com, or,,,, this, we will be confused with the following:..
M1a, M2a, M4aAnd M5aIt is preferable to determine whether or not the patient has chronic fatigue syndrome based on the result obtained by inputting all of the above.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1) a step of obtaining a measured value of glucose concentration in a biological sample obtained from a subject, and (2) in a biological sample obtained from the subject. (3) a step of obtaining a measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject, (4) a measurement of the isocitrate concentration in the biological sample obtained from the subject. A step of obtaining a value, and (5) a step of obtaining a measurement value of succinic acid concentration in a biological sample obtained from a subject, and further comprising the step of analyzing the obtained measurement value It is preferable to include.
Although the fatigue evaluation method according to the present invention has been described according to the first and second embodiments of the biomarker of the present invention, the fatigue evaluation method according to the present invention is not limited to these, for example, without using a reference value. In the biological sample obtained from the subject, the measured value of glucose concentration, the measured value of citric acid concentration, and the measured value of cis-aconitic acid concentration (if necessary, the measured value of isocitrate concentration, malic acid concentration The method of evaluating fatigue using the measured value of lactic acid and the measured value of lactic acid concentration), and the method of evaluating fatigue by comparing the measured value in the biological sample obtained from the subject with each reference value, Those skilled in the art who have read this specification will easily understand that it is within the scope of the fatigue evaluation method according to the present invention.
The fatigue evaluation method according to the present invention may further include a step of measuring a glucose concentration, a citric acid concentration, and a cis-aconitic acid concentration in a biological sample obtained from a subject. You may further include the process of measuring malic acid concentration and lactic acid concentration. That is, the fatigue evaluation method according to the present invention is executed based on the glucose concentration, citric acid concentration, and cis-aconitic acid concentration (and isocitrate concentration, malic acid concentration, and lactic acid concentration as necessary) measured in advance. Alternatively, the glucose concentration, citric acid concentration and cis-aconitic acid concentration (and optionally the isocitrate concentration, malic acid concentration and lactic acid concentration) may be measured from a biological sample obtained from the subject.
In the fatigue evaluation method according to the present invention, the first to third reference values are an average glucose concentration, an average citric acid concentration, and an average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively. However, it is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like. Of course, the fourth to seventh reference values are also preferably the average isocitrate concentration, average succinic acid concentration, average malic acid concentration, and average lactic acid concentration in biological samples obtained from a plurality of healthy subjects, It is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like. In addition, even if these values are pre-defined values, the healthy subjects are sampled simultaneously with the sampling from the subject, and the values calculated based on the concentration of each metabolite in the obtained biological sample. There may be.
In carrying out the present invention, it is necessary to measure the concentrations of metabolites (glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration) in a biological sample. . In the art, enzymatic reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as substrates are well known. This is also clear from the fact that measurement kits using such a technique are commercially available. In other words, those skilled in the art can successfully measure the concentration of a metabolite in a biological sample by arbitrarily using such various techniques.
[3-2] Fatigue evaluation kit
A kit having a reagent used for carrying out the fatigue evaluation method as described above is also within the scope of the present invention. That is, the first kit according to the present invention is characterized by including a fifth reagent for measuring the succinic acid concentration in order to evaluate fatigue. A fourth reagent for measuring may further be provided. Further, the first reagent for measuring glucose concentration, the second reagent for measuring citric acid concentration, and cis-aconitic acid concentration are measured. And at least one selected from the group consisting of a third reagent for measuring, a sixth reagent for measuring malic acid concentration, and a seventh reagent for measuring lactic acid concentration May be.
Preferably, the first kit further comprises instructions displaying a reference value for the concentration of succinic acid, optionally including isocitrate, further cis-aconitic acid, and even more. May be displayed with reference values for the concentrations of glucose, citric acid, malic acid and lactic acid.
In this field, enzyme reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as a substrate are well known in the field. That is, those skilled in the art can successfully measure the concentration in a biological sample by arbitrarily using such various techniques. For example, the first reagent may be an enzyme Glucose oxidase or peroxidase using glucose as a substrate, and in this case, a color developing agent by a redox reaction (for example, o-Dianiside) as a suitable color developing reagent. The second reagent may be an enzyme Citrate Lyase or Malic dehydrogenase using citric acid as a substrate. In this case, β-NADH is provided in the kit of the present invention as a suitable coloring reagent. The third reagent may be an enzyme Aconitase or Citrate Lyase using cis-aconitic acid as a substrate. In this case, β-NADH, phenylhydrazine is a suitable coloring reagent. In Preferably, the fourth reagent may be an enzyme Isocitrate lyase using isocitrate as a substrate, and in that case, phenylhydrazine is preferably provided in the kit of the present invention as a suitable coloring reagent. preferable. Furthermore, the fifth reagent may be an enzyme Succinyl CoA Synthetase, Pyruvate Kinase, or Lactate Dehydrogenase using succinic acid as a substrate. In this case, β-NADH is provided in the kit of the present invention as a suitable coloring reagent. The sixth reagent may be the enzyme Malate Dehydrogenase using malic acid as a substrate. In this case, it is preferable that NAD + is provided in the kit of the present invention as a suitable coloring reagent. The reagent of No. 7 may be an enzyme Lactate Dehydrogenase or Glutamic Pyrovic Transaminese using lactic acid as a substrate. In this case, NAD + is provided in the kit of the present invention as a suitable coloring reagent. It is preferred that the.
Also, biomarker Q obtained by the fatigue evaluation method as described above1~ Q7A kit having a configuration for visually detecting is also within the scope of the present invention. In other words, the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio in order to evaluate fatigue, and a fourth presenting portion showing the fourth ratio is provided. Furthermore, you may provide further, the 1st presentation part which shows the 1st ratio, the 2nd presentation part which shows the 2nd ratio, the 3rd presentation part which shows the 3rd ratio, and the 6th which shows the 6th ratio You may further provide at least 1 of the presentation part selected from the group which consists of a presentation part and the 7th presentation part which shows a 7th ratio. The second kit according to the present invention may include a separate member provided with each of the first to seventh presentation parts, or a single member provided with all of the first to seventh presentation parts. May be.
Each of the first to seventh presenting parts in the second kit preferably has a configuration that presents a visible color tone according to the measured value, and a reference to be compared with the presented color tone is described. It is preferable to further include instructions. R in the first presentation part1Based on the first color C1Is presented, and in the second presentation part, R2Based on the second color C2Is presented and C1And C2As well as biomarker Q by comparing references1(Ie C1And C2Value based on the difference between the In the third presentation part, R3Based on the third color C3Is presented and C2And C3As well as biomarker Q by comparing references2(Ie C2And C3Value based on the difference between the Thus, the biomarker (Q obtained using the second kit according to the present invention)1And Q2) Can be used to evaluate the fatigue state of the subject. Moreover, in the 4th presentation part, it is R as needed.44th color C based on4Is presented and C3And C4As well as biomarker Q by comparing references3(Ie C3And C4Value based on the difference between the biomarker Q and the3Biomarker Q1And biomarker Q2It can also be used together. Those skilled in the art who have read the present specification can similarly provide and use the fifth to seventh presenting units. For the first to seventh presentation parts, an enzyme-coloring method using an enzyme with glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid, or lactic acid as a substrate may be used. it can.
As used herein, the term “kit” is intended as a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material, but as a composition. Forms containing the material in the substance are also encompassed by the term “kit”. The kit preferably includes instructions for using each material. As used herein, in the aspect of a kit, “comprising” is intended to mean being contained in any of the individual containers that make up the kit. Moreover, the kit which concerns on this invention may be the packaging which packed several different compositions in one, and in the case of a solution form, you may enclose in the container. The kit according to the present invention may be provided with a plurality of components mixed in the same container or in separate containers. The “instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. . The kit according to the present invention may also include a container containing a diluent, a solvent, a washing solution or other reagent. Furthermore, the kit according to the present invention may include instruments and reagents necessary for collecting a biological sample. In addition, the kit according to the present invention may be provided with instruments and reagents necessary for preparing a target preparation from a biological sample.
By having the above-described configuration, the kit according to the present invention can be used easily in an actual medical field, so that it is possible to provide an objective diagnosis with faster and cheaper fatigue.
The kit according to the present invention not only can evaluate fatigue and propose a treatment method, but can also provide a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome). It becomes easy to diagnose whether or not That is, the kit according to the present invention diagnoses a kit (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnostic standard or a criterion for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a kit for acquiring data for determination).
[3-3] Fatigue evaluation system
The system used to perform the fatigue assessment method as described above is also within the scope of the present invention. In the following embodiment, each member constituting the fatigue evaluation system according to the present invention is a functional block realized by executing a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU. A case of “some” will be described as an example, but it may be realized by hardware that performs the same processing. Moreover, it is also possible to realize a combination of hardware that performs a part of the processing and the above arithmetic unit that executes program code for controlling the hardware and the remaining processing. Further, even among the members described above as hardware, the hardware for performing a part of the processing and the arithmetic means for executing the program code for performing the control of the hardware and the remaining processing It can also be realized in combination. The arithmetic means may be a single unit, or a plurality of arithmetic means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
The fatigue evaluation system according to the present invention includes a measurement unit 11, astorage unit 12, a CPU 13, and a display unit 14 as functional blocks. The measuring unit 11 has functions as measuring units 11a to 11g for measuring glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration. Part 12 is a measured value M of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration and lactic acid concentration.1~ M7And a reference value B for glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitric acid concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration1~ B7The CPU 13 functions as a reference value storage unit 12b, and the CPU 13 receives the evaluation information from the calculation unit 13a that generates information for evaluating fatigue and the calculation unit 13a, and evaluates fatigue. The display part 14 has a function as the evaluation result display part 14 which displays the evaluation result by the evaluation part 13b. This functional block is realized by the CPU 13 executing a program stored in the storage unit 12 and controlling peripheral circuits such as an input / output circuit (not shown).
In the fatigue evaluation system according to the first embodiment, the following steps 11 to 16 are performed for glucose. The measurement unit 11a measures the glucose concentration in the sample, and the glucose concentration measurement value M1Is acquired (S11). The measurement unit 11a acquires the measured glucose concentration value M.1Is output to the measured value receiving unit 12a (S12). The calculation unit 13a receives the glucose concentration measurement value M stored in the measurement value reception unit 12a.1Is read (S13). In addition, the calculation unit 13a has a glucose concentration reference value (first reference value) B stored in the reference value storage unit 12b.1Is read (S14). The calculation unit 13a is M1B1Ratio to (first ratio) R1Is calculated (S15). The calculation unit 13a uses the first ratio R1Is output to the evaluation unit 13b (S16).
In the fatigue evaluation system according to the first embodiment, steps 21 to 26 corresponding to the above steps 11 to 16 are executed for citric acid, and the calculation unit 13a performs the second ratio R.2Is output to the evaluation unit 13b, and steps 31 to 36 corresponding to the above steps 11 to 16 are executed for the cis-aconitic acid, and the calculation unit 13a performs the third ratio R.3Is output to the evaluation unit 13b, and steps 41 to 46 corresponding to the above steps 11 to 16 are executed for isocitrate, and the calculation unit 13a performs the fourth ratio R.4Is output to the evaluation unit 13b.
Subsequently, the evaluation unit 13b outputs the first to fourth ratios R output by the calculation unit 13a.1~ R4The first ratio R1To the second ratio R2Are compared (S51). The evaluation unit 13b uses the first ratio R1Is the second ratio R2Greater than (R1> R2), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S52). The evaluation unit 13b uses the first ratio R1Is the second ratio R2Less than (R1<R2), The second ratio R2To the third ratio R3Are compared (S53). The evaluation unit 13b uses the second ratio R2Is the third ratio R3Greater than (R2> R3), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S54). The evaluation unit 13b uses the second ratio R2Is the third ratio R3Less than (R2<R3), The third ratio R3To the fourth ratio R4Are compared (S55). The evaluation unit 13b uses the fourth ratio R4Is the third ratio R3Greater than (R4> R3), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S56). The evaluation unit 13b uses the fourth ratio R4Is the third ratio R3Less than (R4<R3), It is evaluated as “no fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S57).
In such a first embodiment, steps 41 to 46 may or may not be executed, and R4May not be used for fatigue evaluation. In this case, after step 54, the evaluation unit 13b determines that the second ratio R2Is the third ratio R3Less than (R2<R3), It is sufficient to evaluate “no fatigue” and output the evaluation result to the evaluation result display unit 14 (S58).
For steps 51 to 58 described above, R1And R2As an example, a mode of preferentially comparing with the above has been described.2And R3Or R3And R4Comparison may be made with priority. In addition, four step groups (that is, steps 11 to 16, steps 21 to 26, steps 31 to 36, and steps 41 to 46) are executed simultaneously, so that R1~ R4The case where all of the above has been acquired has been described as an example, but R1~ R4May not be performed simultaneously. Further, although the present embodiment has been described by taking the glucose concentration, citric acid concentration, cis-aconitic acid concentration and isocitrate concentration as examples, the same processing is performed when the succinic acid concentration, malic acid concentration and lactic acid concentration are used. Is called.
In the fatigue evaluation system according to the present invention, R1~ R7Rather than evaluating fatigue using the difference, the following processing may be preferentially executed (second embodiment). In the second embodiment, thestorage unit 12 includes the measurement value receiving unit 12a, the reference value storage unit 12b, and the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid. Reference value t of concentration1~ t7As a reference value storage unit 12c. The calculation unit 13a uses the first ratio R1Is output to the evaluation unit 13b (S16), and the reference value (first reference value) t of the glucose concentration stored in the measurement value receiving unit 12c.1Is output to the evaluation unit 13b (S116). The evaluation unit 13b uses the first ratio R1And the first reference value t1And compare the two (S150). The evaluation unit 13b uses the first ratio R1Is the first reference value t1Is almost equal to (R1≒ t1), The evaluation unit 13b subsequently determines that the fifth ratio R5And the fifth reference value t5And compare the two (S151). The evaluation unit 13b uses the fifth ratio R5Is the fifth reference value t5Less than (R5<T5), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S152). The evaluation unit 13b uses the fifth ratio R5Is the fifth reference value t5Greater than (R5≧ t5), The evaluation unit 13b subsequently determines that the fourth ratio R4And the fourth reference value t4And compare the two (S153). The evaluation unit 13b uses the fourth ratio R4Is the fourth reference value t4Less than (R4<T4), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S154). The evaluation unit 13b uses the fourth ratio R4Is the fourth reference value t4Greater than (R4≧ t4), The evaluation unit 13b subsequently determines that the third ratio R3And the third reference value t3And compare the two (S155). The evaluation unit 13b uses the third ratio R3Is the third reference value t3Less than (R3<T3), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S156). The evaluation unit 13b uses the third ratio R3Is the third reference value t3Greater than (R3≧ t3), It is evaluated as “no fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S157). The present embodiment has been described by taking the succinic acid concentration, isocitric acid concentration, and cis-aconitic acid concentration as examples, but the same processing is performed when the glucose concentration, citric acid concentration, malic acid concentration, and lactic acid concentration are further used. . Of course, fatigue can be assessed based solely on the high probability cis-aconitic acid concentration, isocitrate concentration and / or succinic acid concentration.
In the fatigue evaluation system according to the present invention, the following processing may be preferentially executed. In the present embodiment, thestorage unit 12 includes the measurement value receiving unit 12a, the reference value storage unit 12b, and the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration. Threshold T1~ T7As a threshold storage unit 12d. The calculation unit 13a calculates the fifth measurement value M4Is output to the evaluation unit 13b, and the succinic acid concentration threshold (fifth threshold) T stored in the measurement value receiving unit 12d5Is output to the evaluation unit 13b. The evaluation unit 13b receives the fifth measurement value M5And the fifth threshold T5And compare the two. The evaluation unit 13b receives the fifth measurement value M5Is the fifth threshold T5Smaller than (M5<T5) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14. The evaluation unit 13b receives the fifth measurement value M5Is the fifth threshold T5Larger than (M5≧ T5), The evaluation unit 13b subsequently determines that the fourth measurement value M4And the fourth threshold T4And compare the two. The evaluation unit 13b receives the fourth measurement value M4Is the fourth threshold T4Smaller than (M4<T4) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14. The evaluation unit 13b receives the fourth measurement value M4Is the fourth threshold T4Larger than (M4≧ T4), The evaluation unit 13b continues to determine the third measurement value M.3And the third threshold T3And compare the two. The evaluation unit 13b receives the third measurement value M3Is the third threshold T3Smaller than (M3<T3) Is evaluated, “it is fatigued”, and the evaluation result is output to the evaluation result display unit 14. The evaluation unit 13b receives the third measurement value M3Is the third threshold T3Larger than (M3≧ T3) Is evaluated, “no fatigue” is evaluated, and the evaluation result is output to the evaluation result display unit 14.
In addition, when the reference value storage unit 12b does not exist or when the reference value storage unit 12b has the first to seventh reference values B1~ B7In the case where is not stored, the fatigue evaluation system according to the present invention can also evaluate the presence or absence of fatigue (third embodiment). The calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a.1~ M7Is output to the evaluation unit 13b. The calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a.1~ M7Is output to the evaluation unit 13b. Subsequently, the evaluation unit 13b first to seventh measurement values M output from the calculation unit 13a.1~ M7Receive M1~ M74Are compared (S61). For example, the evaluation unit 13b receives the received M1~ M4M obtained from2/ M1, M3/ M2, M4/ M3, M3/ M1, M4/ M1, M4/ M2Is again output to the calculation unit 13a (S62). In the calculation unit 13a, for example, the input M2/ M1, M3/ M2, M4/ M3(For example, discriminant analysis, Partial Last Square, Support Vector Machine, etc.) is executed (S63). The evaluation unit 13b that has received the analysis result output from the calculation unit 13a outputs a determination result as to whether or not the patient is a chronic fatigue syndrome patient to the evaluation result display unit 14 based on the cutoff value (S64). Although the present embodiment has been described by taking the glucose concentration, citric acid concentration, cis-aconitic acid concentration and isocitrate concentration as examples, the same processing is performed when the succinic acid concentration, malic acid concentration and lactic acid concentration are further used. .
The measurement unit 11 measures the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, and the value obtained by the measurement unit 11 is the measured value receiving unit 12a. Although the present invention has been described using the embodiment inputted in the above, the previously obtained glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration are directly The aspect inputted to the measured value reception part 12a may be sufficient, and the fatigue evaluation system concerning this invention does not need to be provided with the measurement part 11 in this case.
In addition, if the system according to the present invention is used, not only can fatigue be evaluated and a treatment method can be proposed, but also a judgment criterion for fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided. It becomes easy to diagnose whether or not That is, the system according to the present invention diagnoses a system (for example, fatigue (including chronic fatigue, chronic fatigue syndrome)) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue, chronic fatigue syndrome). Or a system for obtaining data for determination).
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
現在、疲労・倦怠感を主症状として医療機関へ訪れる患者の数は、痛みを主症状とする患者の数に次いで2番目に多い。しかしながら、疲労を客観的に評価する方法は、これまでに開発されていない。疲労感および倦怠感は、ヒトが日常的に経験する感覚であり、生体のホメオスタシスの乱れを知らせる重要な生体シグナルである。しかし、疲労感はあくまでも主観的なものであり、疲労度を客観的に示すものではない。乳酸が疲労の原因物質であると考えられた時期もあるが、乳酸レベルの変動は、運動の指標になり得るが、疲労状態の指標にはならないということもわかってきている。さらに、疲労に効果的な治療法も見出されておらず、抗疲労成分として、カフェインやタウリン、アスコルビン酸などが知られているに過ぎない。
アメリカ疾病予防管理センター(CDC)が、「慢性疲労症候群」という、原因不明の強い疲労を呈する疾患を1988年に報告してから、そのメカニズムの解明、バイオマーカーの探索、および治療予防法の開発を中心とした、種々の研究がなされてきた。しかし、慢性疲労症候群の発症メカニズムは未だ解明されておらず、客観的バイオマーカーについても開発されていない。現在においても、CDCが1994年に発表した、症状および身体所見の基準を用いて慢性疲労症候群の診断がなされている。
一方、これまでに、ウイルス活性化または自律神経異常を指標とした疲労バイオマーカーが提案されている。しかし、これらはヒトの疲労の原因やそのメカニズムに則したものではないため、疲労(特に慢性疲労、慢性疲労症候群)に特異的なバイオマーカーとはいいがたい。さらに、これらは、ホメオスタシスの維持/回復のメカニズムの間接的な指標であっても直接的な指標ではないため、具体的な治療法の提供にまで発展させることは試行錯誤が必要である。
疲労負荷モデル動物において、血中アミノ酸量の変動(特に分枝鎖アミノ酸量の増加)が見出された。そこで、本発明者らは、疲労患者の血液を用いて同様の検査を行ったが、同様の結果は見出せなかった。この結果を検証するために、本発明者らは、種々の代謝物を網羅的に解析することができるメタボローム解析を、慢性疲労症候群患者の血漿を用いて行った。しかし、上述した分枝鎖アミノ酸に関しては、健常者と慢性疲労症候群患者との間において量的な差異を見出せなかった。
また、モデル動物を用いた研究において、肝臓や筋肉組織のATPの減少、脳内サイトカインの活性化などが、これまでに示されているが、このような知見をヒトにおける診断および/または治療に適用することは、倫理的な観点から困難である。このようにモデル動物から得られた知見は、まだまだ疲労患者に適用することができず、疲労の原因や疲労が生成される機序は未だ解明されていない。
〔2〕本発明のバイオマーカー
本発明者らは、健常者および慢性疲労症候群の患者の血漿における代謝物の変動をさらに解析し、得られた測定値に対してさらに独自の手法を組み合わせることによって、疲労のバイオマーカーを見出し、本発明を完成するに至った。
後述する実施例に示すように、本発明にかかるバイオマーカーは、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、cis−アコニット酸、リンゴ酸、および乳酸の濃度に基づくものである。近年、種々のサンプルを、種々の項目について網羅的に解析する技術が開発されている。本発明者らが採用したメタボローム解析もまたその一つである。ただし、図1に示すように、生体サンプル中の濃度が被験者のものと健常者のものとの間で有意に異なる化合物(代謝物)は多く存在し、上記のうちの少なくとも2種(必要に応じて全種類)の選択を明確に動機付ける知見は、当該分野に存在しない。本発明者らは、生体サンプル中の濃度が被験者のものと健常者のものとの間で有意に異なる代謝物を、PSと有意な相関を示すものに絞り込み、さらに種々の数理モデル解析手法に供した。このような手順を行うこともまた、本発明者ら独自の観点である。なお、パス解析に供する化合物として、メタボローム解析から得られたもの以外にグルコースを選択したこと、およびグルコースと他の代謝物とを関連付けたこともまた、本発明者ら独自の観点である。さらに、上記代謝物質を用いた場合(すなわち、少なくとも2つのバイオマーカーを用いた場合)、90%を超える正確さで健常者と慢性疲労症候群の患者とを識別し得るという、格別優れた結果を提供する。
なお、クエン酸を疲労と関連付ける報告がこれまでになされている(例えば、特許文献2および3参照)。しかし、いずれの報告に基づいても当業者は本発明に想到し得ない。
本発明においては、生体サンプル中の代謝産物(グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸)の、健常者の測定値に対する被験者の測定値の比率を算出し、いずれか1つの代謝産物の比率と他の代謝産物の1つの比率との差がバイオマーカーとして用いられる。例えば、本発明において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、グルコースに関する基準値(第1の基準値B1)との比(第1の比率R1)を算出し、被験者から得た生体サンプル中のクエン酸濃度(測定値M2)と、クエン酸に関する基準値(第2の基準値B2)との比(第2の比率R2)を算出し、被験者から得た生体サンプル中のcis−アコニット酸濃度(測定値M3)と、cis−アコニット酸に関する基準値(第3の基準値B3)との比(第3の比率R3)を算出し、これらR1~R3を比較することによって、本発明のバイオマーカーが得られる。
第1実施形態において、本発明のバイオマーカーは、R1とR2との差Q1、R2とR3との差Q2であり得る。
バイオマーカーQ1=R1−R2
バイオマーカーQ2=R2−R3
として得られたバイオマーカーQ1およびQ2の少なくとも一方が正(Q1>0またはQ2>0)の場合に、「疲労あり」と評価され、バイオマーカーQ1およびQ2のいずれもが負(Q1<0かつQ2<0)の場合に、「疲労なし」と評価される。なお、生体サンプル中のイソクエン酸の、健常者の測定値に対する被験者の測定値の比率を算出し、イソクエン酸の比率とcis−アコニット酸の比率との差がバイオマーカーとして用いられてもよい。すなわち、被験者から得た生体サンプル中のイソクエン酸濃度(測定値M4)と、イソクエン酸に関する基準値(第4の基準値B4)との比(第4の比率R4)を算出し、これらに基づいて、
バイオマーカーQ3=R4−R3
として得られたバイオマーカーQ3も、バイオマーカーQ1およびQ2とともに用いられてもよく、この場合、バイオマーカーQ1~Q3の少なくとも一つが正(Q1>0、Q2>0またはQ3>0)の場合に、「疲労あり」と評価され、バイオマーカーQ1~Q3のいずれもが負(Q1<0かつQ2<0かつQ3<0)の場合に、「疲労なし」と評価される。
このような実施形態は、後述する実施例(例えば、図3)にて実証されている。ここで、バイオマーカーQ1~Q3と同様に、
バイオマーカーQ4=R1−R3
バイオマーカーQ5=R1−R4
バイオマーカーQ6=R2−R4
もまた、本発明のバイオマーカーであり、バイオマーカーQ1~Q3と同様に疲労の評価に用いられ得ることを、本明細書を読んだ当業者は容易に理解する。
cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でない。このような場合には、グルコース、クエン酸およびイソクエン酸とともにコハク酸を用いればよい。コハク酸もまた、グルコース、クエン酸およびcis−アコニット酸と同様にエネルギー産生に深く関係している。サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。すなわち、第1実施形態において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、グルコースに関する基準値(第1の基準値B1)との比(第1の比率R1)を算出し、被験者から得た生体サンプル中のクエン酸濃度(測定値M2)と、クエン酸に関する基準値(第2のB2)との比(第2の比率R2)を算出し、被験者から得た生体サンプル中のイソクエン酸濃度(測定値M4)と、イソクエン酸に関する基準値(第4の基準値B4)との比(第4の比率R4)を算出し、被験者から得た生体サンプル中のコハク酸濃度(測定値M5)と、コハク酸に関する基準値(第5の基準値B5)との比(第5の比率R5)を算出し、これらR1,R2,R4およびR5を比較することによって、本発明のバイオマーカーを得ることが好ましい。この場合、本実施形態のバイオマーカーは、R1とR2との差Q1a、R2とR4との差Q2a、R4とR5との差Q3aであり得る。
バイオマーカーQ1a=R1−R2
バイオマーカーQ2a=R2−R4
バイオマーカーQ3a=R5−R4
として得られたバイオマーカーの少なくとも1つが正(Q1a>0、Q2a>0またはQ3a>0)の場合に、「疲労あり」と評価され、バイオマーカーのいずれもが負(Q1a<0かつQ2a<0かつQ3a<0)の場合に、「疲労なし」と評価される。
このような実施形態は、後述する実施例(例えば、図5)にて実証されている。ここで、バイオマーカーQ1a、Q2a,Q3aと同様に、
バイオマーカーQ4a=R1−R4
バイオマーカーQ5a=R1−R5
バイオマーカーQ6a=R2−R5
もまた、本発明のバイオマーカーであり、バイオマーカーQ1a、Q2a,Q3aと同様に疲労の評価に用いられ得ることを、本明細書を読んだ当業者は容易に理解する。
被験者から得た生体サンプル中のグルコース濃度の測定値と基準値との間で実質的な差異がない場合(すなわちR1≒1)、R2~R5がバイオマーカーとなり得る。また、被験者から得た生体サンプル中のリンゴ酸濃度(測定値M6)と、リンゴ酸に関する基準値(第6の基準値B6)との比(第6の比率R6)を算出し、被験者から得た生体サンプル中の乳酸濃度(測定値M7)と、乳酸に関する基準値(第7の基準値B7)との比(第7の比率R7)を算出し、これらR6~R7をR1~R5とともに用いてもよい。すなわち、第2実施形態において、本発明のバイオマーカーは、R2~R7でもあり得る。本発明のさらなるバイオマーカーは、
バイオマーカーQ7=第2の比率R2
バイオマーカーQ8=第3の比率R3
バイオマーカーQ9=第4の比率R4
バイオマーカーQ10=第5の比率R5
バイオマーカーQ11=第6の比率R6
バイオマーカーQ12=第7の比率R7
として提供される。バイオマーカー(Q7~Q12)は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、バイオマーカーQ7~Q12の少なくとも1つが条件(R2<79.1%、R3<69.3%、R4<66.0%、R5<66.6%、R6<83.7%、およびR7<74.3%)を満たした場合、「疲労あり」と評価され、バイオマーカーQ7~Q12の全てが上記の条件を満たさない場合、「疲労なし」と評価される。
後述する実施例にて示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、健常者と患者とを区別する際に、他の因子と組み合わせることなく単独で利用可能である。このような非常に優れた機能は、当業者が予測し得ない、格別顕著なものである。
上述したバイオマーカーによって得られた知見に基づけば、生体サンプル中のグルコース、クエン酸、cis−アコニット酸、イソクエン酸およびコハク酸の濃度の測定値自体もまた、疲労の診断基準/判定基準(例えば、疲労を診断または判定するためのデータ)を提供し得、被験者から得た生体サンプル中の代謝産物の濃度の測定値M2~M7もまたバイオマーカーとなり得る。すなわち、本発明のさらなるバイオマーカーは、
バイオマーカーQ7a=第2の測定値M2
バイオマーカーQ8a=第3の測定値M3
バイオマーカーQ9a=第4の測定値M4
バイオマーカーQ10a=第5の測定値M5
バイオマーカーQ11a=第6の測定値M6
バイオマーカーQ12a=第7の測定値M7
として提供される。バイオマーカー(Q7a~Q12a)は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。特に、Q8a~Q10aが好ましく、バイオマーカーQ8a~Q10aの少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合、「疲労あり」と評価され、バイオマーカーQ8a~Q10aの全てが上記の条件を満たさない場合、「疲労なし」と評価されてもよい。バイオマーカーQ8a~Q10aは、Q9aが優先して用いられることが好ましく、次いでQ8aが用いられ、さらにQ10aが用いられることが好ましい。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
後述する実施例にて示すように、cis−アコニット酸、イソクエン酸およびコハク酸は、健常者と患者とを区別する際に、他の因子と組み合わせることなく単独で利用可能である。このような非常に優れた機能は、当業者が予測し得ない、格別顕著なものである。
またさらに、本発明において、被験者から得た生体サンプル中のグルコース濃度(測定値M1)と、クエン酸濃度(測定値M2)と、cis−アコニット酸濃度(測定値M3)と、イソクエン酸濃度(測定値M4)と、コハク酸濃度(測定値M5)とを比較することによって、本発明のバイオマーカーが得られる。第3実施形態において、本発明のバイオマーカーは、
バイオマーカーQ13=M2/M1
バイオマーカーQ14=M3/M2
バイオマーカーQ15=M4/M3
バイオマーカーQ16=M3/M1
バイオマーカーQ17=M4/M1
バイオマーカーQ18=M4/M2
として提供され、同様に用いられ得る。このような実施形態は、後述する実施例(例えば、図4)にて実証されている。図4に示すような、それぞれを3軸上に示した場合に、正常群と慢性疲労症候群とを差別化し得る。例えば、後述する実施例にて示すように、Q13~Q15を用いて、
(a*Q13+b*Q14+c*Q15)+d ・・・(A)
の数値a,b,c,dを判別分析によって演算したところ、90%以上の正確さで慢性疲労症候群患者を判別し得た。ここで、d>0の場合が正常群を示し、d<0の場合が慢性疲労症候群を示す。また、判別分析の代りにPartial Least Square、Support Vector Machine等の分析を行った場合であっても、同様の結果を得られた。
また、本実施形態において、イソクエン酸を、グルコース、クエン酸およびコハク酸とともに用いた場合、本発明のバイオマーカーは、
バイオマーカーQ13a=M2/M1
バイオマーカーQ14a=M4/M2
バイオマーカーQ15a=M5/M4
バイオマーカーQ16a=M4/M1
バイオマーカーQ17a=M5/M1
バイオマーカーQ18a=M5/M2
として同様に提供されかつ用いられ、図6に示すような、それぞれを3軸上に示した場合に、正常群と慢性疲労症候群とを差別化し得る。例えば、後述する実施例にて示すように、Q13a~Q15aを用いて、
(a*Q13a+b*Q14a+c*Q15a)+d ・・・(A’)
の数値a,b,c,dを判別分析によって演算したところ、90%以上の正確さと95%以上の感受性/特異性で慢性疲労症候群患者を判別し得た。ここで、d>0の場合が正常群を示し、d<0の場合が慢性疲労症候群を示す。また、判別分析の代りにPartial Least Square、Support Vector Machine等の分析を行った場合であっても、同様の結果を得られた。
なお、グルコース、クエン酸、cis−アコニット酸、イソクエン酸およびコハク酸が、健常者と患者とを区別する際に非常に有用な因子であることは、本発明を完成することによって十分に裏付けられた事実である。すなわち、これまでに知られていた知見に基づいて、健常者と患者との区別に利用可能な因子であることを見出すことは、当業者が容易になし得ることではなかった。
このように、本発明のバイオマーカーは、客観的かつ簡便な、疲労の評価および診断を可能にする。さらに、本発明のバイオマーカーを用いれば、慢性疲労症候群の診断法および治療法を開発し得る。
〔3〕本発明のバイオマーカーの利用
本発明は、上述したバイオマーカーに基づいた、疲労を評価するための方法、キットおよびシステムを提供する。
〔3−1〕疲労評価方法
上述した第1実施形態におけるバイオマーカーQ1~Q6のうち少なくとも2つ(またはバイオマーカーQ1a~Q6aのうち少なくとも2つ)を用いることによって、被験者の疲労状態を評価することができる。例えば、バイオマーカーQ1およびQ2は
Q1=第1の比率R1−第2の比率R2
Q2=第2の比率R2−第3の比率R3
として提供され、「疲労あり」の評価は
Q1>0またはQ2>0
として提供され、「疲労なし」の評価は
Q1<0かつQ2<0
として提供されるので、
R1=M1/B1
R2=M2/B2
R3=M3/B3
として得られた第1~第3の比率(R1~R3)に基づいてQ1およびQ2を算出することによって、被験者の疲労状態が評価され得る。なお、Q1およびQ2は少なくとも一方が正であればよいので、一方を算出するだけで被験者の疲労状態が評価され得る場合がある。すなわち、R1とR2を比較するか、またはR2とR3を比較するだけで、被験者の疲労状態が評価され得る場合がある。
このような観点から、一実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値の、第1の基準値に対する第1の比率を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、および(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を得る工程、を包含し、第1の比率と第2の比率とを比較する工程、および第2の比率と第3の比率とを比較する工程の少なくとも一方をさらに包含することを特徴としている。本実施形態にかかる疲労評価方法は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、および(III)第1の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
なお、本発明にかかる疲労評価方法を用いることにより、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかる疲労評価方法は、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供する方法(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得する方法)でもあり得る。
上述したように、バイオマーカーQ3もまた、被験者の疲労状態を評価するために有用である。バイオマーカーQ3は
バイオマーカーQ3=第4の比率R4−第3の比率R3
として提供され、バイオマーカーQ1およびQ2と組み合わせた「疲労あり」の評価は
Q1>0、Q2>0、またはQ3>0
として提供され、バイオマーカーQ1およびQ2と組み合わせた「疲労なし」の評価は
Q1<0かつQ2<0かつQ3<0
として提供されるので、
R4=M4/B4
として得られた第4の比率(R4)とすでに得られている第3の比率(R3)とに基づいて算出したQ3を用いることによって、Q1およびQ2を用いる場合と同様に、被験者の疲労状態が評価され得る。すなわち、本発明にかかる疲労評価方法は、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程をさらに包含してもよく、この場合、第1の比率と第4の比率とを比較する工程、第2の比率と第4の比率とを比較する工程、および、第3の比率と第4の比率とを比較する工程、の少なくとも1つをさらに包含することが好ましく、例えば、第2の比率の、第1の比率に対する比率、第3の比率の、第2の比率に対する比率、および第4の比率の、第3の比率に対する比率の少なくとも1つを用いて、判別分析、Partial Least Square、Support Vector Machine等の分析を行う工程をさらに包含することがより好ましい。
本実施形態においてイソクエン酸に関する第4の比率R4が用いられる場合、上述したように、グルコースに関する第1の比率R1、クエン酸に関する第2の比率R2、およびコハク酸に関する第5の比率R5とともに用いられることが好ましい。すなわち、
バイオマーカーQ1a=第1の比率R1−第2の比率R2
バイオマーカーQ2a=第2の比率R2−第4の比率R4
バイオマーカーQ3a=第5の比率R5−第4の比率R4
として提供され、この場合の「疲労あり」の評価は
Q1a>0、Q2a>0、およびQ3a>0の中、少なくとも一つを満たすこと、
として提供され、「疲労なし」の評価は
Q1a<0かつQ2a<0かつQ3a<0
として提供されるので、
R1=M1/B1
R2=M2/B2
R4=M4/B4
R5=M5/B5
として得られた第1、第2、第4および第5の比率(R1、R2、R4およびR5)に基づいてQ1a~Q3aを算出することによって、被験者の疲労状態が評価され得る。なお、Q1a~Q3aもまた少なくとも1つが正であればよいので、いずれか1つを算出するだけで被験者の疲労状態が評価され得る場合がある。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値の、第1の基準値に対する第1の比率を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、(3)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程、(4)被験者から得た生体サンプル中のコハク酸濃度の測定値の、第5の基準値に対する第5の比率を得る工程、を少なくとも2つ包含し、第1の比率と第2の比率とを比較する工程、第2の比率と第4の比率とを比較する工程、および第4の比率と第5の比率とを比較する工程の少なくとも1つをさらに包含することを特徴としている。本実施形態にかかる疲労評価方法は、(I)第1の比率が第2の比率よりも大きい、(II)第2の比率が第3の比率よりも大きい、(III)第4の比率が第3の比率よりも大きい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよく、(IV)第1の比率が第2の比率よりも大きい、(V)第2の比率が第4の比率よりも大きい、(VI)第4の比率が第5の比率よりも小さい、の少なくとも1つの条件が成立するか否かを判定する工程をさらに包含してもよい。
また、上述した第2実施形態におけるバイオマーカーQ7~Q12を用いることによって、慢性疲労症候群であるか否かを評価(診断または判定)することができる。上述したように、バイオマーカーQ7~Q12は、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。被験者から得た生体サンプル中のグルコース濃度の測定値が基準値と実質的に等しい場合に、後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、バイオマーカーQ7~Q12の少なくとも1つが条件(R2<79.1%、R3<69.3%、R4<66.0%、R5<66.6%、R6<83.7%、およびR7<74.3%)を満たした場合、「疲労あり」と評価され、バイオマーカーQ21~Q26の全てが上記の条件を満たさない場合、「疲労なし」と評価される。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値と、第1の基準値とを比較する工程を包含し、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を得る工程、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程、(5)被験者から得た生体サンプル中のコハク酸濃度の測定値の、第5の基準値に対する第5の比率を得る工程、(6)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の、第6の基準値に対する第6の比率を得る工程、および(7)被験者から得た生体サンプル中の乳酸濃度の測定値の、第7の基準値に対する第7の比率を得る工程、の少なくとも1つをさらに包含することを特徴としている。工程(1)において、グルコース濃度の測定値と第1の基準値との間で実質的な差異がない場合に、本実施形態にかかる疲労評価方法は、(2)~(7)において得られた比率が所定の割合よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。なお、後述する実施例に示すように、図7に挙げた項目を用いて解析した場合は、上記所定の割合は、(2)~(7)についてそれぞれ79.1%、69.3%、66.0%、66.6%、83.7%および74.3%である。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
さらに、上述したバイオマーカーQ7a~Q12aを用いることによって、慢性疲労症候群であるか否かを評価(診断または判定)することができる。上述したように、バイオマーカーQ7a~Q12aは、決定木数理モデルにより解析された結果、何れも90%以上の感受性と特異性を示している。特に、Q8a~Q10aを用いることが好ましく、バイオマーカーQ8a~Q10aの少なくとも1つがそれぞれに対応する閾値よりも小さいという条件を満たした場合、「疲労あり」と評価され、バイオマーカーQ8a~Q10aの全てが上記の条件を満たさない場合、「疲労なし」と評価されてもよい。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1’)被験者から得た生体サンプル中のグルコース濃度の測定値と、第1の閾値とを比較する工程を包含し、(2’)被験者から得た生体サンプル中のクエン酸濃度の測定値と、第2の閾値とを比較する工程、(3’)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値と、第3の閾値とを比較する工程、(4’)被験者から得た生体サンプル中のイソクエン酸濃度の測定値と、第4の閾値とを比較する工程、(5’)被験者から得た生体サンプル中のコハク酸濃度の測定値と、第5の閾値とを比較する工程、(6’)被験者から得た生体サンプル中のリンゴ酸濃度の測定値の、第6の閾値とを比較する工程、および(7’)被験者から得た生体サンプル中の乳酸濃度の測定値の、第7の閾値とを比較する工程、の少なくとも1つをさらに包含することを特徴としており、好ましくは、上記(3’)~(5’)の工程の少なくとも1つを包含し、少なくとも(5’)の工程を包含することがより好ましく、(5’)の工程の次に(4’)の工程を行うことがより好ましく、引き続いて(3’)の工程を行うことがさらに好ましい。本実施形態にかかる疲労評価方法は、(1’)~(7’)において、測定値が対応する閾値よりも小さいという条件が成立するか否かを判定する工程をさらに包含してもよい。これによって、被験者が慢性疲労症候群であるか否かを95%以上の確率で判定し得る。
また、上述した第3実施形態におけるバイオマーカーQ13~Q18の少なくとも1つ(またはバイオマーカーQ13a~Q18aのうち少なくとも1つ)を用いて、判別分析、Partial Least Square、またはSupport Vector Machine等の分析を行うことによって、基準値を用いることなく、慢性疲労症候群であるか否かを評価(診断または判定)することができる。例えば、バイオマーカーQ13~Q18のいずれか3つ(例えば、Q13~Q15)を判別分析、Partial Least Square、またはSupport Vector Machine等の分析に供することによって、より高度な判別を行い得る。特に、代表的な判別解析を行い、上述したように、式(B)
(a*M2/M1+b*M3/M2+c*M4/M3)+d ・・・(B)
にM1~M4の全てを入力して得られた結果に基づいて慢性疲労症候群であるか否かを判定することが好ましい。また、バイオマーカーQ13a~Q18aのいずれか3つ(例えば、Q13a~Q15a)を判別分析、Partial Least Square、またはSupport Vector Machine等の分析に供することによって、より高度な判別を行い得る。特に、代表的な判別解析を行い、上述したように、式(B’)
(a*M2a/M1a+b*M4a/M2a+c*M5a/M4a)+d
・・・(B’)
にM1a、M2a、M4aおよびM5aの全てを入力して得られた結果に基づいて慢性疲労症候群であるか否かを判定することが好ましい。
このような観点から、好ましい実施形態において、本発明にかかる疲労評価方法は、(1)被験者から得た生体サンプル中のグルコース濃度の測定値を得る工程、(2)被験者から得た生体サンプル中のクエン酸濃度の測定値を得る工程、(3)被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値を得る工程、(4)被験者から得た生体サンプル中のイソクエン酸濃度の測定値を得る工程、および(5)被験者から得た生体サンプル中のコハク酸濃度の測定値を得る工程、を少なくとも3つ包含することを特徴としており、得られた測定値を分析する工程をさらに包含することが好ましい。
本発明にかかる疲労評価方法を、本発明のバイオマーカーの第1実施形態および第2実施形態に従って説明したが、本発明にかかる疲労評価方法はこれらに限定されず、例えば、基準値を用いずに、被験者から得た生体サンプル中の、グルコース濃度の測定値、クエン酸濃度の測定値、および、cis−アコニット酸濃度の測定値(必要に応じて、イソクエン酸濃度の測定値、リンゴ酸濃度の測定値、および乳酸濃度の測定値)を用いて疲労を評価する方法や、被験者から得た生体サンプル中の測定値と、それぞれの基準値とを比較して疲労を評価する方法もまた、本発明にかかる疲労評価方法の範囲内であることを、本明細書を読んだ当業者は容易に理解する。
本発明にかかる疲労評価方法は、被験者から得た生体サンプル中のグルコース濃度、クエン酸濃度およびcis−アコニット酸濃度を測定する工程をさらに包含してもよく、必要に応じて、イソクエン酸濃度、リンゴ酸濃度および乳酸濃度を測定する工程をさらに包含してもよい。すなわち、本発明にかかる疲労評価方法は、予め測定されたグルコース濃度、クエン酸濃度およびcis−アコニット酸濃度(および必要に応じてイソクエン酸濃度、リンゴ酸濃度および乳酸濃度)に基づいて実行されてもよく、グルコース濃度、クエン酸濃度およびcis−アコニット酸濃度(および必要に応じてイソクエン酸濃度、リンゴ酸濃度および乳酸濃度)を被験者から得た生体サンプルから測定する段階から開始されてもよい。
本発明にかかる疲労評価方法において、第1~第3の基準値が、それぞれ、複数の健常者から得た生体サンプル中の平均グルコース濃度、平均クエン酸濃度および平均cis−アコニット酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。もちろん、第4~第7の基準値についてもまた、複数の健常者から得た生体サンプル中の平均イソクエン酸濃度、平均コハク酸濃度、平均リンゴ酸濃度および平均乳酸濃度であることが好ましいが、平均値に限定されず、二項分布等から得られる最頻値であってもよい。また、これらの値は、予め規定された値であっても、被験者からのサンプリングと同時に健常者のサンプリングを行い、得られた生体サンプル中の各代謝物質の濃度に基づいて算出された値であってもよい。
本発明を実行するに際し、生体サンプル中の代謝物質の濃度(グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度)を測定する必要がある。当該分野において、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸または乳酸を基質とする酵素反応がよく知られている。このことは、このような技術を用いた測定キットが市販されていることからも明らかである。すなわち、当業者は、このような種々の技術を任意に利用して、生体サンプル中の代謝物質の濃度測定を首尾よく行い得る。
〔3−2〕疲労評価キット
上述したような疲労評価方法を実施するために用いられる試薬を併せ持つキットもまた、本発明の範囲内である。すなわち、本発明にかかる第1のキットは、疲労を評価するために、コハク酸濃度を測定するための第5の試薬を備えていることを特徴としており、必要に応じて、イソクエン酸濃度を測定するための第4の試薬をさらに備えていてもよく、さらに、グルコース濃度を測定するための第1の試薬、クエン酸濃度を測定するための第2の試薬、cis−アコニット酸濃度を測定するための第3の試薬、リンゴ酸濃度を測定するための第6の試薬、および、乳酸濃度を測定するための第7の試薬からなる群より選択される試薬の少なくとも1つをさらに備えていてもよい。
第1のキットは、コハク酸の濃度の基準値が表示された指示書をさらに備えていることが好ましく、必要に応じて、該指示書には、イソクエン酸、さらにはcis−アコニット酸、なおさらにはグルコース、クエン酸、リンゴ酸および乳酸の濃度の基準値が表示されていてもよい。
当該分野において、当該分野において、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸または乳酸を基質とする酵素反応がよく知られている。すなわち、当業者は、このような種々の技術を任意に利用して、生体サンプル中の濃度測定を首尾よく行い得る。例えば、第1の試薬は、グルコースを基質とする酵素Glucose oxidase,peroxidaseであってもよく、その場合、好適な発色試薬として酸化還元反応によって発色するもの(例えばo−Dianisidine)が本発明のキットに備えられていればよく、第2の試薬は、クエン酸を基質とする酵素Citrate Lyase,Malic dehydrogenaseであってもよく、その場合、好適な発色試薬としてβ−NADHが本発明のキットに備えられていることが好ましく、第3の試薬は、cis−アコニット酸を基質とする酵素Aconitase,Citrate Lyaseであってもよく、その場合、好適な発色試薬としてβ−NADH,phenylhydrazineが本発明のキットに備えられていることが好ましく、第4の試薬は、イソクエン酸を基質とする酵素Isocitrate Lyaseであってもよく、その場合、好適な発色試薬としてphenylhydrazineが本発明のキットに備えられていることが好ましい。さらに、第5の試薬は、コハク酸を基質とする酵素Succinyl CoA Synthetase、Pyruvate Kinase、Lactate Dehydrogenaseであってもよく、その場合、好適な発色試薬としてβ−NADHが本発明のキットに備えられていることが好ましく、第6の試薬は、リンゴ酸を基質とする酵素Malate Dehydrogenaseであってもよく、その場合、好適な発色試薬としてNAD+が本発明のキットに備えられていることが好ましく、第7の試薬は、乳酸を基質とする酵素Lactate Dehydrogenase、Glutamic Pyruvic Transaminaseであってもよく、その場合、好適な発色試薬としてNAD+が本発明のキットに備えられていることが好ましい。
また、上述したような疲労評価方法によって得られるバイオマーカーQ1~Q7を、目視にて検出する構成を有するキットもまた、本発明の範囲内である。すなわち、本発明にかかる第2のキットは、疲労を評価するために、第5の比率を示す第5呈示部を備えていることを特徴としており、第4の比率を示す第4呈示部をさらに備えていてもよく、さらに、第1の比率を示す第1呈示部、第2の比率を示す第2呈示部、第3の比率を示す第3呈示部、第6の比率を示す第6呈示部、および、第7の比率を示す第7呈示部からなる群より選択される呈示部の少なくとも1つ、をさらに備えていてもよい。本発明にかかる第2のキットは、第1~第7呈示部がそれぞれ設けられた別個の部材を備えていてもよく、第1~第7呈示部の全て設けられた単一部材を備えていてもよい。
第2のキットにおける第1~第7呈示部はそれぞれ、測定値に応じて目視可能な色調を呈示する構成を有していることが好ましく、呈示された色調と比較されるべき参照が記載された指示書をさらに備えていることが好ましい。第1呈示部ではR1に基づいて第1色C1が呈示され、第2呈示部ではR2に基づいて第2色C2が呈示され、C1およびC2ならびに参照を比較することによって、バイオマーカーQ1(すなわち、C1とC2との差異に基づく値)を得ることができる。また、第3呈示部ではR3に基づいて第3色C3が呈示され、C2およびC3ならびに参照を比較することによって、バイオマーカーQ2(すなわち、C2とC3との差異に基づく値)を得ることができる。このように、本発明にかかる第2のキットを用いて得られたバイオマーカー(Q1およびQ2)を利用して、被験者の疲労状態を評価することができる。また、必要に応じて、第4呈示部ではR4に基づいて第4色C4が呈示され、C3およびC4ならびに参照を比較することによって、バイオマーカーQ3(すなわち、C3とC4との差異に基づく値)を得ることができるので、バイオマーカーQ3をバイオマーカーQ1およびバイオマーカーQ2とともに利用することもできる。本願明細書を読んだ当業者は、第5呈示部~第7呈示部を同様に設けて利用することができる。このような第1~第7呈示部には、グルコース、クエン酸、cis−アコニット酸、イソクエン酸、コハク酸、リンゴ酸、乳酸を基質とした酵素を利用した酵素−発色法を利用することができる。
本明細書中において使用される場合、用語「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュなど)を備えた包装が意図されるが、組成物としての一物質中に材料を含有している形態もまた、用語「キット」に包含される。キットは、各材料を使用するための指示書を備えていることが好ましい。本明細書中においてキットの局面において使用される場合、「備えた(備えている)」は、キットを構成する個々の容器のいずれかの中に内包されている状態が意図される。また、本発明に係るキットは、複数の異なる組成物を1つに梱包した包装であり得、溶液形態の場合は容器中に内包されていてもよい。本発明に係るキットは、その複数の構成要素を同一の容器に混合して備えていても別々の容器に備えていてもよい。「指示書」は、紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能ディスクまたはテープ、CD−ROMなどのような電子媒体に付されてもよい。本発明に係るキットはまた、希釈剤、溶媒、洗浄液またはその他の試薬を内包した容器を備え得る。さらに、本発明に係るキットは、生体サンプルを採取するために必要な器具および試薬を備えていてもよい。また、本発明に係るキットは、生体サンプルから目的の調製物を調製するために必要な器具および試薬を備えていてもよい。
上記構成を有することによって、本発明にかかるキットは、実際の医療現場にて簡便に使用することができるので、疲労をより速く、安く、客観的な診断を提供し得る。
なお、本発明にかかるキットを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるキットは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのキット(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのキット)でもあり得る。
〔3−3〕疲労評価システム
上述したような疲労評価方法を実行するために用いられるシステムもまた、本発明の範囲内である。下記実施形態では、本発明に係る疲労評価システムを構成する各部材が、「CPUなどの演算手段がROMやRAMなどの記録媒体に格納されたプログラムコードを実行することによって実現される機能ブロックである」場合を例にして説明するが、同様の処理を行うハードウェアによって実現してもよい。また、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。さらに、上記各部材のうち、ハードウェアとして説明した部材であっても、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。なお、上記演算手段は、単体であってもよいし、装置内部のバスや種々の通信路を介して接続された複数の演算手段が共同してプログラムコードを実行してもよい。
本発明にかかる疲労評価システムは、その機能ブロックとして、測定部11、格納部12、CPU13、および表示部14を備えている。測定部11は、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度を測定する測定部11a~11gとしての機能を有しており、格納部12は、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の測定値M1~M7を受容する測定値受容部12a、およびグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の基準値B1~B7を格納した基準値格納部12bとしての機能を有しており、CPU13は、疲労を評価するための情報を生成する演算部13a、および演算部13aからの評価情報を受け取って疲労を評価する評価部13bとしての機能を有しており、表示部14は、評価部13bによる評価結果を表示する評価結果表示部14としての機能を有している。なお、この機能ブロックは、CPU13が格納部12に格納されたプログラムを実行し、図示しない入出力回路などの周辺回路を制御することによって実現される。
第1実施形態にかかる疲労評価システムでは、グルコースについて以下のステップ11~16が実行される。測定部11aがサンプル中のグルコース濃度を測定し、グルコース濃度測定値M1を取得する(S11)。測定部11aが、取得したグルコース濃度測定値M1を測定値受容部12aへ出力する(S12)。演算部13aが、測定値受容部12aに格納されたグルコース濃度測定値M1を読み出す(S13)。また、演算部13aが、基準値格納部12bに格納されたグルコース濃度基準値(第1の基準値)B1を読み出す(S14)。演算部13aが、M1のB1に対する比率(第1の比率)R1を算出する(S15)。演算部13aが、第1の比率R1を評価部13bへ出力する(S16)。
第1実施形態にかかる疲労評価システムでは、クエン酸について、上記ステップ11~16にそれぞれ対応するステップ21~26が実行されて、演算部13aが、第2の比率R2を評価部13bへ出力し、cis−アコニット酸について、上記ステップ11~16にそれぞれ対応するステップ31~36が実行されて、演算部13aが、第3の比率R3を評価部13bへ出力し、イソクエン酸について、上記ステップ11~16にそれぞれ対応するステップ41~46が実行されて、演算部13aが、第4の比率R4を評価部13bへ出力する。
続いて、評価部13bは、演算部13aによって出力された第1~第4の比率R1~R4を受け取り、第1の比率R1を第2の比率R2とを比較する(S51)。評価部13bは、第1の比率R1が第2の比率R2よりも大きい(R1>R2)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S52)。評価部13bは、第1の比率R1が第2の比率R2よりも小さい(R1<R2)と判定した場合に、第2の比率R2を第3の比率R3とを比較する(S53)。評価部13bは、第2の比率R2が第3の比率R3よりも大きい(R2>R3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S54)。評価部13bは、第2の比率R2が第3の比率R3よりも小さい(R2<R3)と判定した場合に、第3の比率R3を第4の比率R4とを比較する(S55)。評価部13bは、第4の比率R4が第3の比率R3よりも大きい(R4>R3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S56)。評価部13bは、第4の比率R4が第3の比率R3よりも小さい(R4<R3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する(S57)。
このような第1実施形態においては、ステップ41~46が実行されてもされなくてもよく、R4が疲労の評価に用いられなくてもよい。この場合、ステップ54の後に、評価部13bは、第2の比率R2が第3の比率R3よりも小さい(R2<R3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力すればよい(S58)。
上述したステップ51~58については、R1とR2との比較を優先的に行う態様を例に挙げて説明したが、R2とR3との比較、あるいはR3とR4との比較を優先的に行ってもよい。また、4つのステップ群(すなわち、ステップ11~16、ステップ21~26、ステップ31~36、およびステップ41~46)が同時に実行されることによって、R1~R4の全てが取得されている場合を例に説明したが、R1~R4の取得は同時に行われなくてもよい。また、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度およびイソクエン酸濃度を例に挙げて本実施形態を説明したが、コハク酸濃度、リンゴ酸濃度および乳酸濃度を用いる場合も同様の処理が行われる。
本発明にかかる疲労評価システムにおいて、R1~R7の差を用いて疲労を評価するよりもむしろ以下の処理が優先して実行されてもよい(第2実施形態)。第2実施形態において、格納部12は、測定値受容部12a、基準値格納部12b、ならびにグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の参照値t1~t7を格納した参照値格納部12cとしての機能を有している。演算部13aは、第1の比率R1を評価部13bへ出力する(S16)とともに、測定値受容部12cに格納されたグルコース濃度の参照値(第1の参照値)t1を読み出して、評価部13bへ出力する(S116)。評価部13bは、第1の比率R1および第1の参照値t1を受け取り、両者を比較する(S150)。評価部13bは、第1の比率R1が第1の参照値t1とほぼ等しい(R1≒t1)と判定した場合に、引き続いて、評価部13bは、第5の比率R5および第5の参照値t5を受け取り、両者を比較する(S151)。評価部13bは、第5の比率R5が第5の参照値t5よりも小さい(R5<t5)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S152)。評価部13bは、第5の比率R5が第5の参照値t5よりも大きい(R5≧t5)と判定した場合に、引き続いて、評価部13bは、第4の比率R4および第4の参照値t4を受け取り、両者を比較する(S153)。評価部13bは、第4の比率R4が第4の参照値t4よりも小さい(R4<t4)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S154)。評価部13bは、第4の比率R4が第4の参照値t4よりも大きい(R4≧t4)と判定した場合に、引き続いて、評価部13bは、第3の比率R3および第3の参照値t3を受け取り、両者を比較する(S155)。評価部13bは、第3の比率R3が第3の参照値t3よりも小さい(R3<t3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する(S156)。評価部13bは、第3の比率R3が第3の参照値t3よりも大きい(R3≧t3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する(S157)。コハク酸濃度、イソクエン酸濃度およびcis−アコニット酸濃度を例に挙げて本実施形態を説明したが、グルコース濃度、クエン酸濃度、リンゴ酸濃度および乳酸濃度をさらに用いる場合も同様の処理が行われる。もちろん、確率の高いcis−アコニット酸濃度、イソクエン酸濃度および/またはコハク酸濃度のみに基づいて疲労が評価され得る。
本発明にかかる疲労評価システムにおいて、以下の処理が優先して実行されてもよい。本実施形態において、格納部12は、測定値受容部12a、基準値格納部12b、ならびにグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の閾値T1~T7を格納した閾値格納部12dとしての機能を有している。演算部13aは、第5の測定値M4を評価部13bへ出力するとともに、測定値受容部12dに格納されたコハク酸濃度の閾値(第5の閾値)T5を読み出して、評価部13bへ出力する。評価部13bは、第5の測定値M5および第5の閾値T5を受け取り、両者を比較する。評価部13bは、第5の測定値M5が第5の閾値T5よりも小さい(M5<T5)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第5の測定値M5が第5の閾値T5よりも大きい(M5≧T5)と判定した場合に、引き続いて、評価部13bは、第4の測定値M4および第4の閾値T4を受け取り、両者を比較する。評価部13bは、第4の測定値M4が第4の閾値T4よりも小さい(M4<T4)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第4の測定値M4が第4の閾値T4よりも大きい(M4≧T4)と判定した場合に、引き続いて、評価部13bは、第3の測定値M3および第3の閾値T3を受け取り、両者を比較する。評価部13bは、第3の測定値M3が第3の閾値T3よりも小さい(M3<T3)と判定した場合に、「疲労あり」と評価して、その評価結果を評価結果表示部14へ出力する。評価部13bは、第3の測定値M3が第3の閾値T3よりも大きい(M3≧T3)と判定した場合に、「疲労なし」と評価して、その評価結果を評価結果表示部14へ出力する。
また、基準値格納部12bが存在しない場合、あるいは基準値格納部12bに第1~7の基準値B1~B7が格納されていない場合もまた、本発明にかかる疲労評価システムは、疲労の有無を評価し得る(第3実施形態)。演算部13aは測定値受容部12aに格納された測定値M1~M7を読み出すとともに評価部13bへ出力する。演算部13aは測定値受容部12aに格納された測定値M1~M7を読み出すとともに評価部13bへ出力する。続いて、評価部13bは、演算部13aによって出力された第1~第7の測定値M1~M7を受け取り、M1~M74の大小を比較する(S61)。例えば、評価部13bは、受け取ったM1~M4から得られるM2/M1、M3/M2、M4/M3、M3/M1、M4/M1、M4/M2の値を再度演算部13aへ出力する(S62)。演算部13aでは、例えば、入力されたM2/M1、M3/M2、M4/M3の値を用いた分析(例えば、判別分析、Partial Least Square、Support Vector Machine等)を実行する(S63)。演算部13aから出力された分析結果を受容した評価部13bは、カットオフ値に基づいて慢性疲労症候群患者であるか否かの判別結果を評価結果表示部14へ出力する(S64)。グルコース濃度、クエン酸濃度、cis−アコニット酸濃度およびイソクエン酸濃度を例に挙げて本実施形態を説明したが、コハク酸濃度、リンゴ酸濃度および乳酸濃度をさらに用いる場合も同様の処理が行われる。
グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度を測定部11が測定し、測定部11にて得られた値が測定値受容部12aに入力される態様を用いて、本発明を説明したが、予め取得されたグルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度が、直接測定値受容部12aに入力される態様であってもよく、この場合は、本発明にかかる疲労評価システムは、測定部11を備えていなくてもよい。
なお、本発明にかかるシステムを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるシステムは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのシステム(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのシステム)でもあり得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 [1] Fatigue
Currently, the number of patients who visit a medical institution with fatigue and fatigue as the main symptom is the second largest after the number of patients with pain as the main symptom. However, no method for objectively evaluating fatigue has been developed so far. Fatigue and fatigue are sensations that humans experience on a daily basis, and are important biological signals that inform the disturbance of homeostasis in the living body. However, the feeling of fatigue is subjective only and does not objectively indicate the degree of fatigue. Although there were times when lactic acid was considered to be a causative agent of fatigue, it has also been found that fluctuations in lactic acid level can be an indicator of exercise, but not an indicator of fatigue. Furthermore, no effective treatment for fatigue has been found, and only caffeine, taurine, ascorbic acid and the like are known as anti-fatigue components.
The US Center for Disease Control and Prevention (CDC) reported a chronic fatigue syndrome called “chronic fatigue syndrome” in 1988, elucidating the mechanism, searching for biomarkers, and developing treatment prevention methods. Various researches have been made with a focus on. However, the onset mechanism of chronic fatigue syndrome has not yet been elucidated, and no objective biomarker has been developed. Even now, the diagnosis of chronic fatigue syndrome is made using the criteria of symptoms and physical findings published by CDC in 1994.
On the other hand, fatigue biomarkers using virus activation or autonomic abnormality as an index have been proposed. However, since these do not conform to the cause of human fatigue and its mechanism, they are not biomarkers specific to fatigue (particularly chronic fatigue, chronic fatigue syndrome). Furthermore, since these are indirect indicators of the maintenance / recovery mechanism of homeostasis, they are not direct indicators, and it is necessary to trial and error to develop them to provide specific treatments.
In the fatigue-bearing model animals, changes in blood amino acid levels (especially increases in branched chain amino acid levels) were found. Therefore, the present inventors conducted a similar test using the blood of a fatigue patient, but could not find a similar result. In order to verify this result, the present inventors performed metabolomic analysis that can comprehensively analyze various metabolites using plasma of patients with chronic fatigue syndrome. However, regarding the above-mentioned branched chain amino acids, no quantitative difference was found between healthy subjects and patients with chronic fatigue syndrome.
In studies using model animals, ATP reduction in liver and muscle tissue, activation of cytokines in the brain, etc. have been shown so far, but such findings are useful for diagnosis and / or treatment in humans. It is difficult to apply from an ethical point of view. Thus, the knowledge obtained from model animals cannot be applied to fatigue patients, and the cause of fatigue and the mechanism by which fatigue is generated have not yet been elucidated.
[2] Biomarker of the present invention
The present inventors further analyzed changes in metabolites in the plasma of healthy subjects and patients with chronic fatigue syndrome, and found a biomarker of fatigue by combining the original measurement with the obtained measurement values, The present invention has been completed.
As shown in the examples described later, the biomarker according to the present invention can be used for the concentration of glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, cis-aconitic acid, malic acid, and lactic acid in a biological sample. Is based. In recent years, techniques for exhaustively analyzing various samples for various items have been developed. Metabolome analysis adopted by the present inventors is one of them. However, as shown in FIG. 1, there are many compounds (metabolites) whose concentrations in the biological sample are significantly different between those of the subject and those of healthy subjects, and at least two of the above (necessary) There is no knowledge in the field that clearly motivates the selection of all types). The present inventors narrowed down the metabolites whose concentrations in the biological sample are significantly different between those of the subject and those of the healthy subject to those showing a significant correlation with PS, and further to various mathematical model analysis methods. Provided. Performing such a procedure is also a viewpoint unique to the present inventors. In addition, it is the inventors' original viewpoint that glucose was selected as a compound to be used for path analysis in addition to those obtained from metabolome analysis and that glucose and other metabolites were associated. Furthermore, when using the above metabolite (that is, when using at least two biomarkers), it is possible to distinguish between a healthy person and a patient with chronic fatigue syndrome with an accuracy exceeding 90%. provide.
In addition, there have been reports so far that citric acid is associated with fatigue (see, for example, Patent Documents 2 and 3). However, those skilled in the art cannot conceive of the present invention based on any report.
In the present invention, the ratio of the measured value of the subject to the measured value of the healthy subject of the metabolite (glucose, citric acid, cis-aconitic acid, isocitrate, succinic acid) in the biological sample is calculated. The difference between the ratio of the metabolite and one of the other metabolites is used as a biomarker. For example, in the present invention, the glucose concentration in the biological sample obtained from the subject (measured value M1) And a reference value for glucose (first reference value B)1) Ratio (first ratio R)1) And citric acid concentration (measured value M) in the biological sample obtained from the subject.2) And a reference value for citric acid (second reference value B)2) Ratio (second ratio R)2), And the cis-aconitic acid concentration (measured value M) in the biological sample obtained from the subject.3) And a reference value for the cis-aconitic acid (third reference value B)3) (The third ratio R)3) To calculate these R1~ R3Is obtained, the biomarker of the present invention is obtained.
In the first embodiment, the biomarker of the present invention is R1And R2Difference Q from1, R2And R3Difference Q from2It can be.
Biomarker Q1= R1-R2
Biomarker Q2= R2-R3
Biomarker Q obtained as1And Q2Is positive (Q1> 0 or Q2> 0) is evaluated as “fatigue” and biomarker Q1And Q2Are both negative (Q1<0 and Q2If <0), it is evaluated as “no fatigue”. It should be noted that the ratio of the measured value of the subject to the measured value of the healthy person for isocitrate in the biological sample may be calculated, and the difference between the ratio of isocitrate and the ratio of cis-aconitic acid may be used as a biomarker. That is, the isocitrate concentration in the biological sample obtained from the subject (measured value M4) And a reference value for isocitrate (fourth reference value B)4) And the ratio (fourth ratio R)4) And based on these,
Biomarker Q3= R4-R3
Biomarker Q obtained as3Also, biomarker Q1And Q2In this case, the biomarker Q1~ Q3Is positive (Q1> 0, Q2> 0 or Q3> 0) is evaluated as “fatigue” and biomarker Q1~ Q3Are both negative (Q1<0 and Q2<0 and Q3If <0), it is evaluated as “no fatigue”.
Such an embodiment is demonstrated in an example described later (for example, FIG. 3). Where biomarker Q1~ Q3alike,
Biomarker Q4= R1-R3
Biomarker Q5= R1-R4
Biomarker Q6= R2-R4
Is also a biomarker of the present invention, and biomarker Q1~ Q3Those of ordinary skill in the art who have read this specification will readily appreciate that it can be used for fatigue assessment as well.
Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. In such a case, succinic acid may be used together with glucose, citric acid and isocitric acid. Succinic acid is also deeply involved in energy production, as is glucose, citric acid and cis-aconitic acid. If the concentration of succinic acid in the sample is used, the present invention can be carried out more easily. That is, in the first embodiment, the glucose concentration in the biological sample obtained from the subject (measured value M1) And a reference value for glucose (first reference value B)1) Ratio (first ratio R)1) And citric acid concentration (measured value M) in the biological sample obtained from the subject.2) And a reference value for citric acid (second B2) Ratio (second ratio R)2) And isocitrate concentration (measured value M) in the biological sample obtained from the subject.4) And a reference value for isocitrate (fourth reference value B)4) And the ratio (fourth ratio R)4), And the succinic acid concentration (measured value M) in the biological sample obtained from the subject.5) And a reference value for succinic acid (fifth reference value B)5) (The fifth ratio R)5) To calculate these R1, R2, R4And R5It is preferable to obtain the biomarker of the present invention by comparing. In this case, the biomarker of this embodiment is R1And R2Difference Q from1a, R2And R4Difference Q from2a, R4And R5Difference Q from3aIt can be.
Biomarker Q1a= R1-R2
Biomarker Q2a= R2-R4
Biomarker Q3a= R5-R4
At least one of the biomarkers obtained as1a> 0, Q2a> 0 or Q3a> 0), it is evaluated as “fatigue” and both biomarkers are negative (Q1a<0 and Q2a<0 and Q3aIf <0), it is evaluated as “no fatigue”.
Such an embodiment is demonstrated in an example described later (for example, FIG. 5). Where biomarker Q1a, Q2a, Q3aalike,
Biomarker Q4a= R1-R4
Biomarker Q5a= R1-R5
Biomarker Q6a= R2-R5
Is also a biomarker of the present invention, and biomarker Q1a, Q2a, Q3aThose of ordinary skill in the art who have read this specification will readily appreciate that it can be used for fatigue assessment as well.
When there is no substantial difference between the measured value of the glucose concentration in the biological sample obtained from the subject and the reference value (ie R1≒ 1), R2~ R5Can be a biomarker. In addition, malic acid concentration in the biological sample obtained from the subject (measured value M6) And a reference value for malic acid (sixth reference value B)6) Ratio (sixth ratio R)6), And the lactic acid concentration (measured value M) in the biological sample obtained from the subject.7) And a reference value for lactic acid (seventh reference value B)7) And the ratio (seventh ratio R)7) To calculate these R6~ R7R1~ R5May be used together. That is, in the second embodiment, the biomarker of the present invention is R2~ R7But it can be. Further biomarkers of the invention include
Biomarker Q7= Second ratio R2
Biomarker Q8= Third ratio R3
Biomarker Q9= 4th ratio R4
Biomarker Q10= 5th ratio R5
Biomarker Q11= 6th ratio R6
Biomarker Q12= Seventh ratio R7
Offered as. Biomarker (Q7~ Q12) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model. As shown in the examples described later, when analyzed using the items listed in FIG.7~ Q12At least one of the conditions (R2<79.1%, R3<69.3%, R4<66.0%, R5<66.6%, R6<83.7% and R7<74.3%) is evaluated as “fatigue” and biomarker Q7~ Q12If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
As shown in the examples described later, cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
Based on the findings obtained by the biomarkers described above, the measured values of glucose, citric acid, cis-aconitic acid, isocitrate and succinic acid in biological samples themselves can also be used as a diagnostic / criterion for fatigue (eg, Data for diagnosing or determining fatigue) and a measure M of the concentration of a metabolite in a biological sample obtained from a subject2~ M7Can also be a biomarker. That is, the further biomarker of the present invention is:
Biomarker Q7a= Second measured value M2
Biomarker Q8a= Third measured value M3
Biomarker Q9a= Fourth measured value M4
Biomarker Q10a= 5th measured value M5
Biomarker Q11a= 6th measured value M6
Biomarker Q12a= Seventh measured value M7
Offered as. Biomarker (Q7a~ Q12a) Shows a sensitivity and specificity of 90% or more as a result of analysis by a decision tree mathematical model. In particular, Q8a~ Q10aIs preferred, biomarker Q8a~ Q10aIf at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q8a~ Q10aIf all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”. Biomarker Q8a~ Q10aQ9aIs preferably used in preference, then Q8aAnd Q10aIs preferably used. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
As shown in the examples described later, cis-aconitic acid, isocitric acid, and succinic acid can be used alone without being combined with other factors when distinguishing healthy subjects from patients. Such a very good function is particularly remarkable and cannot be predicted by a person skilled in the art.
Furthermore, in the present invention, the glucose concentration in the biological sample obtained from the subject (measured value M1) And citric acid concentration (measured value M2) And cis-aconitic acid concentration (measured value M3) And isocitrate concentration (measured value M4) And succinic acid concentration (measured value M5) To obtain the biomarker of the present invention. In a third embodiment, the biomarker of the present invention is
Biomarker Q13= M2/ M1
Biomarker Q14= M3/ M2
Biomarker Q15= M4/ M3
Biomarker Q16= M3/ M1
Biomarker Q17= M4/ M1
Biomarker Q18= M4/ M2
Can be used as well. Such an embodiment is demonstrated in an example described later (for example, FIG. 4). When each is shown on three axes as shown in FIG. 4, the normal group and the chronic fatigue syndrome can be differentiated. For example, as shown in the examples described later, Q13~ Q15Using,
(A * Q13+ B * Q14+ C * Q15) + D (A)
When the numerical values a, b, c, and d were calculated by discriminant analysis, it was possible to discriminate chronic fatigue syndrome patients with an accuracy of 90% or more. Here, the case where d> 0 indicates the normal group, and the case where d <0 indicates the chronic fatigue syndrome. Similar results were obtained even when analysis of Partial Last Square, Support Vector Machine or the like was performed instead of discriminant analysis.
In this embodiment, when isocitrate is used together with glucose, citric acid and succinic acid, the biomarker of the present invention is
Biomarker Q13a= M2/ M1
Biomarker Q14a= M4/ M2
Biomarker Q15a= M5/ M4
Biomarker Q16a= M4/ M1
Biomarker Q17a= M5/ M1
Biomarker Q18a= M5/ M2
As shown in FIG. 6, when each is shown on three axes, the normal group and the chronic fatigue syndrome can be differentiated. For example, as shown in the examples described later, Q13a~ Q15aUsing,
(A * Q13a+ B * Q14a+ C * Q15a) + D (A ')
When the numerical values a, b, c, and d were calculated by discriminant analysis, it was possible to discriminate chronic fatigue syndrome patients with 90% accuracy and 95% sensitivity / specificity. Here, the case where d> 0 indicates the normal group, and the case where d <0 indicates the chronic fatigue syndrome. Similar results were obtained even when analysis of Partial Last Square, Support Vector Machine or the like was performed instead of discriminant analysis.
It is fully supported by the completion of the present invention that glucose, citric acid, cis-aconitic acid, isocitric acid and succinic acid are very useful factors in distinguishing healthy subjects from patients. It is a fact. That is, it has not been easy for those skilled in the art to find out based on the knowledge that has been known so far that it is a factor that can be used to distinguish between a healthy person and a patient.
Thus, the biomarker of the present invention enables objective and simple fatigue evaluation and diagnosis. Furthermore, by using the biomarker of the present invention, diagnostic methods and treatment methods for chronic fatigue syndrome can be developed.
[3] Use of the biomarker of the present invention
The present invention provides a method, kit and system for assessing fatigue based on the biomarkers described above.
[3-1] Fatigue evaluation method
Biomarker Q in the first embodiment described above1~ Q6At least two (or biomarkers Q)1a~ Q6aCan be used to evaluate the fatigue state of the subject. For example, biomarker Q1And Q2Is
Q1= First ratio R1-Second ratio R2
Q2= Second ratio R2-Third ratio R3
The evaluation of “with fatigue” is provided as
Q1> 0 or Q2> 0
The evaluation of “no fatigue” is provided as
Q1<0 and Q2<0
As provided
R1= M1/ B1
R2= M2/ B2
R3= M3/ B3
The first to third ratios (R1~ R3) Based on Q1And Q2By calculating the fatigue state of the subject can be evaluated. Q1And Q2Since it is sufficient that at least one of them is positive, there is a case where the fatigue state of the subject can be evaluated only by calculating one. That is, R1And R2Or R2And R3In some cases, the fatigue state of the subject can be evaluated simply by comparing the two.
From such a viewpoint, in one embodiment, the fatigue evaluation method according to the present invention (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value; and (3) cis-aconite in the biological sample obtained from the subject. Obtaining a third ratio of the measured value of the acid concentration with respect to the third reference value, comparing the first ratio and the second ratio, and the second ratio and the third ratio The method further includes at least one of the steps of comparing. In the fatigue evaluation method according to the present embodiment, (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, and (III) the first ratio. A step of determining whether or not at least one of the following conditions is satisfied may be further included.
In addition, by using the fatigue evaluation method according to the present invention, not only can fatigue be evaluated and a treatment method can be proposed, but also a criterion for determination of fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided. Therefore, it becomes easy to diagnose whether or not the state is fatigued. That is, the fatigue evaluation method according to the present invention diagnoses fatigue (including chronic fatigue and chronic fatigue syndrome). Or a method of acquiring data for determination).
As mentioned above, biomarker Q3Is also useful for assessing a subject's fatigue status. Biomarker Q3Is
Biomarker Q3= 4th ratio R4-Third ratio R3
Biomarker Q1And Q2The evaluation of “with fatigue” in combination with
Q1> 0, Q2> 0 or Q3> 0
Biomarker Q1And Q2The evaluation of “no fatigue” in combination with
Q1<0 and Q2<0 and Q3<0
As provided
R4= M4/ B4
The fourth ratio (R4) And the third ratio already obtained (R3) Q calculated based on3By using Q1And Q2As with the case, the fatigue state of the subject can be evaluated. That is, the fatigue evaluation method according to the present invention may further include (4) a step of obtaining a fourth ratio of the measured value of isocitrate concentration in the biological sample obtained from the subject to the fourth reference value. In this case, the step of comparing the first ratio and the fourth ratio, the step of comparing the second ratio and the fourth ratio, and the step of comparing the third ratio and the fourth ratio , For example, a ratio of the second ratio to the first ratio, a third ratio to the second ratio, and a fourth ratio of the third ratio. More preferably, the method further includes a step of performing discriminant analysis, analysis of Partial Last Square, Support Vector Machine, or the like using at least one of the ratios to the above ratio.
In this embodiment, the fourth ratio R related to isocitrate4Is used, as described above, the first ratio R for glucose R1, Second ratio R for citric acid2And a fifth ratio R for succinic acid5It is preferable to be used together. That is,
Biomarker Q1a= First ratio R1-Second ratio R2
Biomarker Q2a= Second ratio R2-Fourth ratio R4
Biomarker Q3a= 5th ratio R5-Fourth ratio R4
The evaluation of “with fatigue” in this case is
Q1a> 0, Q2a> 0 and Q3aSatisfy at least one of> 0,
The evaluation of “no fatigue” is provided as
Q1a<0 and Q2a<0 and Q3a<0
As provided
R1= M1/ B1
R2= M2/ B2
R4= M4/ B4
R5= M5/ B5
The first, second, fourth and fifth ratios (R1, R2, R4And R5) Based on Q1a~ Q3aBy calculating the fatigue state of the subject can be evaluated. Q1a~ Q3aSince at least one of them may be positive, the fatigue state of the subject may be evaluated only by calculating one of them.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention (1) obtains a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value. A step, (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value, and (3) the isocitrate concentration in the biological sample obtained from the subject. A step of obtaining a fourth ratio of the measured value to the fourth reference value, and (4) a step of obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value. , And comparing the first ratio and the second ratio, comparing the second ratio and the fourth ratio, and the fourth ratio and the fifth ratio. Further wrap at least one of the comparing steps It is characterized in that. In the fatigue evaluation method according to the present embodiment, (I) the first ratio is larger than the second ratio, (II) the second ratio is larger than the third ratio, (III) the fourth ratio is The method may further include a step of determining whether or not at least one condition of greater than the third ratio is satisfied, (IV) the first ratio is greater than the second ratio, (V) The method may further include a step of determining whether or not at least one of the second ratio is larger than the fourth ratio and (VI) the fourth ratio is smaller than the fifth ratio is satisfied. Good.
Also, the biomarker Q in the second embodiment described above7~ Q12Can be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome. As mentioned above, biomarker Q7~ Q12As a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more. When the measured value of the glucose concentration in the biological sample obtained from the subject is substantially equal to the reference value, as shown in the examples described later, when the analysis is performed using the items listed in FIG.7~ Q12At least one of the conditions (R2<79.1%, R3<69.3%, R4<66.0%, R5<66.6%, R6<83.7% and R7<74.3%) is evaluated as “fatigue” and biomarker Q21~ Q26If all of the above do not satisfy the above conditions, it is evaluated as “no fatigue”.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1) a step of comparing a measured value of a glucose concentration in a biological sample obtained from a subject with a first reference value. (2) obtaining a second ratio of the measured value of the citric acid concentration in the biological sample obtained from the subject to the second reference value, and (3) cis-aconitic acid in the biological sample obtained from the subject. A step of obtaining a third ratio of the measured concentration value to the third reference value; (4) a fourth ratio of the measured value of isocitrate concentration in the biological sample obtained from the subject to the fourth reference value; A step of obtaining, (5) a step of obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value, and (6) the malic acid concentration in the biological sample obtained from the subject. Of the measured value of the sixth At least one of obtaining a sixth ratio with respect to the reference value, and (7) obtaining a seventh ratio with respect to the seventh reference value of the measured value of the lactic acid concentration in the biological sample obtained from the subject. It is characterized by inclusion. In step (1), when there is no substantial difference between the measured value of glucose concentration and the first reference value, the fatigue evaluation method according to the present embodiment is obtained in (2) to (7). A step of determining whether or not the condition that the ratio is smaller than the predetermined ratio is satisfied may be further included. In addition, as shown in the Example mentioned later, when analyzing using the item quoted in FIG. 7, the said predetermined ratio is 79.1%, 69.3% about (2)-(7), respectively. 66.0%, 66.6%, 83.7% and 74.3%. Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
Furthermore, the above-mentioned biomarker Q7a~ Q12aCan be used to evaluate (diagnose or determine) whether or not the patient has chronic fatigue syndrome. As mentioned above, biomarker Q7a~ Q12aAs a result of analysis by a decision tree mathematical model, both show sensitivity and specificity of 90% or more. In particular, Q8a~ Q10aIt is preferable to use biomarker Q8a~ Q10aIf at least one of the conditions is smaller than the corresponding threshold value, it is evaluated as “fatigue” and the biomarker Q8a~ Q10aIf all of the above do not satisfy the above conditions, it may be evaluated as “no fatigue”.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1 ′) a step of comparing a measured value of glucose concentration in a biological sample obtained from a subject with a first threshold value. And (2 ′) a step of comparing the measured value of the citric acid concentration in the biological sample obtained from the subject with the second threshold, and (3 ′) the cis-aconitic acid concentration in the biological sample obtained from the subject. A step of comparing the measured value with a third threshold, (4 ′) a step of comparing the measured value of the isocitrate concentration in the biological sample obtained from the subject with the fourth threshold, and (5 ′) from the subject. A step of comparing the measured value of the succinic acid concentration in the obtained biological sample with the fifth threshold value, (6 ′) a sixth threshold value of the measured value of the malic acid concentration in the biological sample obtained from the subject. Comparing, and (7 ') subject The method further comprises at least one of a step of comparing the measured value of the lactic acid concentration in the obtained biological sample with a seventh threshold value, preferably (3 ′) to (5 ′) above. More preferably, the method includes at least one of the steps (5 ′), and more preferably includes the step (4 ′) after the step (5 ′). More preferably, step 3 ′) is performed. The fatigue evaluation method according to the present embodiment may further include a step of determining whether or not the condition that the measured value is smaller than the corresponding threshold value is satisfied in (1 ′) to (7 ′). Accordingly, it can be determined with a probability of 95% or more whether or not the subject has chronic fatigue syndrome.
Also, the biomarker Q in the third embodiment described above13~ Q18At least one of (or biomarker Q13a~ Q18aBy using discriminant analysis, Partial Last Square, or Support Vector Machine analysis, etc., it is evaluated (diagnosis or determination) without using a reference value. )can do. For example, biomarker Q13~ Q18Any three (for example, Q13~ Q15) For discriminant analysis, analysis of Partial Last Square, or Support Vector Machine, etc., it is possible to perform more advanced discrimination. In particular, a representative discriminant analysis is performed, and as described above, the formula (B)
(A * M2/ M1+ B * M3/ M2+ C * M4/ M3) + D (B)
M1~ M4It is preferable to determine whether or not the patient has chronic fatigue syndrome based on the result obtained by inputting all of the above. Biomarker Q13a~ Q18aAny three (for example, Q13a~ Q15a) For discriminant analysis, analysis of Partial Last Square, or Support Vector Machine, etc., it is possible to perform more advanced discrimination. In particular, a representative discriminant analysis is performed and, as described above, the formula (B ′)
(A * M2a/ M1a+ B * M4a/ M2a+ C * M5a/ M4a) + D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Com, or,,,, this, we will be confused with the following:..
M1a, M2a, M4aAnd M5aIt is preferable to determine whether or not the patient has chronic fatigue syndrome based on the result obtained by inputting all of the above.
From such a viewpoint, in a preferred embodiment, the fatigue evaluation method according to the present invention includes (1) a step of obtaining a measured value of glucose concentration in a biological sample obtained from a subject, and (2) in a biological sample obtained from the subject. (3) a step of obtaining a measured value of the cis-aconitic acid concentration in the biological sample obtained from the subject, (4) a measurement of the isocitrate concentration in the biological sample obtained from the subject. A step of obtaining a value, and (5) a step of obtaining a measurement value of succinic acid concentration in a biological sample obtained from a subject, and further comprising the step of analyzing the obtained measurement value It is preferable to include.
Although the fatigue evaluation method according to the present invention has been described according to the first and second embodiments of the biomarker of the present invention, the fatigue evaluation method according to the present invention is not limited to these, for example, without using a reference value. In the biological sample obtained from the subject, the measured value of glucose concentration, the measured value of citric acid concentration, and the measured value of cis-aconitic acid concentration (if necessary, the measured value of isocitrate concentration, malic acid concentration The method of evaluating fatigue using the measured value of lactic acid and the measured value of lactic acid concentration), and the method of evaluating fatigue by comparing the measured value in the biological sample obtained from the subject with each reference value, Those skilled in the art who have read this specification will easily understand that it is within the scope of the fatigue evaluation method according to the present invention.
The fatigue evaluation method according to the present invention may further include a step of measuring a glucose concentration, a citric acid concentration, and a cis-aconitic acid concentration in a biological sample obtained from a subject. You may further include the process of measuring malic acid concentration and lactic acid concentration. That is, the fatigue evaluation method according to the present invention is executed based on the glucose concentration, citric acid concentration, and cis-aconitic acid concentration (and isocitrate concentration, malic acid concentration, and lactic acid concentration as necessary) measured in advance. Alternatively, the glucose concentration, citric acid concentration and cis-aconitic acid concentration (and optionally the isocitrate concentration, malic acid concentration and lactic acid concentration) may be measured from a biological sample obtained from the subject.
In the fatigue evaluation method according to the present invention, the first to third reference values are an average glucose concentration, an average citric acid concentration, and an average cis-aconitic acid concentration in biological samples obtained from a plurality of healthy subjects, respectively. However, it is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like. Of course, the fourth to seventh reference values are also preferably the average isocitrate concentration, average succinic acid concentration, average malic acid concentration, and average lactic acid concentration in biological samples obtained from a plurality of healthy subjects, It is not limited to an average value, and may be a mode value obtained from a binomial distribution or the like. In addition, even if these values are pre-defined values, the healthy subjects are sampled simultaneously with the sampling from the subject, and the values calculated based on the concentration of each metabolite in the obtained biological sample. There may be.
In carrying out the present invention, it is necessary to measure the concentrations of metabolites (glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration) in a biological sample. . In the art, enzymatic reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as substrates are well known. This is also clear from the fact that measurement kits using such a technique are commercially available. In other words, those skilled in the art can successfully measure the concentration of a metabolite in a biological sample by arbitrarily using such various techniques.
[3-2] Fatigue evaluation kit
A kit having a reagent used for carrying out the fatigue evaluation method as described above is also within the scope of the present invention. That is, the first kit according to the present invention is characterized by including a fifth reagent for measuring the succinic acid concentration in order to evaluate fatigue. A fourth reagent for measuring may further be provided. Further, the first reagent for measuring glucose concentration, the second reagent for measuring citric acid concentration, and cis-aconitic acid concentration are measured. And at least one selected from the group consisting of a third reagent for measuring, a sixth reagent for measuring malic acid concentration, and a seventh reagent for measuring lactic acid concentration May be.
Preferably, the first kit further comprises instructions displaying a reference value for the concentration of succinic acid, optionally including isocitrate, further cis-aconitic acid, and even more. May be displayed with reference values for the concentrations of glucose, citric acid, malic acid and lactic acid.
In this field, enzyme reactions using glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid or lactic acid as a substrate are well known in the field. That is, those skilled in the art can successfully measure the concentration in a biological sample by arbitrarily using such various techniques. For example, the first reagent may be an enzyme Glucose oxidase or peroxidase using glucose as a substrate, and in this case, a color developing agent by a redox reaction (for example, o-Dianiside) as a suitable color developing reagent. The second reagent may be an enzyme Citrate Lyase or Malic dehydrogenase using citric acid as a substrate. In this case, β-NADH is provided in the kit of the present invention as a suitable coloring reagent. The third reagent may be an enzyme Aconitase or Citrate Lyase using cis-aconitic acid as a substrate. In this case, β-NADH, phenylhydrazine is a suitable coloring reagent. In Preferably, the fourth reagent may be an enzyme Isocitrate lyase using isocitrate as a substrate, and in that case, phenylhydrazine is preferably provided in the kit of the present invention as a suitable coloring reagent. preferable. Furthermore, the fifth reagent may be an enzyme Succinyl CoA Synthetase, Pyruvate Kinase, or Lactate Dehydrogenase using succinic acid as a substrate. In this case, β-NADH is provided in the kit of the present invention as a suitable coloring reagent. The sixth reagent may be the enzyme Malate Dehydrogenase using malic acid as a substrate. In this case, it is preferable that NAD + is provided in the kit of the present invention as a suitable coloring reagent. The reagent of No. 7 may be an enzyme Lactate Dehydrogenase or Glutamic Pyrovic Transaminese using lactic acid as a substrate. In this case, NAD + is provided in the kit of the present invention as a suitable coloring reagent. It is preferred that the.
Also, biomarker Q obtained by the fatigue evaluation method as described above1~ Q7A kit having a configuration for visually detecting is also within the scope of the present invention. In other words, the second kit according to the present invention is characterized by including a fifth presenting portion showing a fifth ratio in order to evaluate fatigue, and a fourth presenting portion showing the fourth ratio is provided. Furthermore, you may provide further, the 1st presentation part which shows the 1st ratio, the 2nd presentation part which shows the 2nd ratio, the 3rd presentation part which shows the 3rd ratio, and the 6th which shows the 6th ratio You may further provide at least 1 of the presentation part selected from the group which consists of a presentation part and the 7th presentation part which shows a 7th ratio. The second kit according to the present invention may include a separate member provided with each of the first to seventh presentation parts, or a single member provided with all of the first to seventh presentation parts. May be.
Each of the first to seventh presenting parts in the second kit preferably has a configuration that presents a visible color tone according to the measured value, and a reference to be compared with the presented color tone is described. It is preferable to further include instructions. R in the first presentation part1Based on the first color C1Is presented, and in the second presentation part, R2Based on the second color C2Is presented and C1And C2As well as biomarker Q by comparing references1(Ie C1And C2Value based on the difference between the In the third presentation part, R3Based on the third color C3Is presented and C2And C3As well as biomarker Q by comparing references2(Ie C2And C3Value based on the difference between the Thus, the biomarker (Q obtained using the second kit according to the present invention)1And Q2) Can be used to evaluate the fatigue state of the subject. Moreover, in the 4th presentation part, it is R as needed.44th color C based on4Is presented and C3And C4As well as biomarker Q by comparing references3(Ie C3And C4Value based on the difference between the biomarker Q and the3Biomarker Q1And biomarker Q2It can also be used together. Those skilled in the art who have read the present specification can similarly provide and use the fifth to seventh presenting units. For the first to seventh presentation parts, an enzyme-coloring method using an enzyme with glucose, citric acid, cis-aconitic acid, isocitric acid, succinic acid, malic acid, or lactic acid as a substrate may be used. it can.
As used herein, the term “kit” is intended as a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material, but as a composition. Forms containing the material in the substance are also encompassed by the term “kit”. The kit preferably includes instructions for using each material. As used herein, in the aspect of a kit, “comprising” is intended to mean being contained in any of the individual containers that make up the kit. Moreover, the kit which concerns on this invention may be the packaging which packed several different compositions in one, and in the case of a solution form, you may enclose in the container. The kit according to the present invention may be provided with a plurality of components mixed in the same container or in separate containers. The “instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. . The kit according to the present invention may also include a container containing a diluent, a solvent, a washing solution or other reagent. Furthermore, the kit according to the present invention may include instruments and reagents necessary for collecting a biological sample. In addition, the kit according to the present invention may be provided with instruments and reagents necessary for preparing a target preparation from a biological sample.
By having the above-described configuration, the kit according to the present invention can be used easily in an actual medical field, so that it is possible to provide an objective diagnosis with faster and cheaper fatigue.
The kit according to the present invention not only can evaluate fatigue and propose a treatment method, but can also provide a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome). It becomes easy to diagnose whether or not That is, the kit according to the present invention diagnoses a kit (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnostic standard or a criterion for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a kit for acquiring data for determination).
[3-3] Fatigue evaluation system
The system used to perform the fatigue assessment method as described above is also within the scope of the present invention. In the following embodiment, each member constituting the fatigue evaluation system according to the present invention is a functional block realized by executing a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU. A case of “some” will be described as an example, but it may be realized by hardware that performs the same processing. Moreover, it is also possible to realize a combination of hardware that performs a part of the processing and the above arithmetic unit that executes program code for controlling the hardware and the remaining processing. Further, even among the members described above as hardware, the hardware for performing a part of the processing and the arithmetic means for executing the program code for performing the control of the hardware and the remaining processing It can also be realized in combination. The arithmetic means may be a single unit, or a plurality of arithmetic means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
The fatigue evaluation system according to the present invention includes a measurement unit 11, a
In the fatigue evaluation system according to the first embodiment, the following steps 11 to 16 are performed for glucose. The measurement unit 11a measures the glucose concentration in the sample, and the glucose concentration measurement value M1Is acquired (S11). The measurement unit 11a acquires the measured glucose concentration value M.1Is output to the measured value receiving unit 12a (S12). The calculation unit 13a receives the glucose concentration measurement value M stored in the measurement value reception unit 12a.1Is read (S13). In addition, the calculation unit 13a has a glucose concentration reference value (first reference value) B stored in the reference value storage unit 12b.1Is read (S14). The calculation unit 13a is M1B1Ratio to (first ratio) R1Is calculated (S15). The calculation unit 13a uses the first ratio R1Is output to the evaluation unit 13b (S16).
In the fatigue evaluation system according to the first embodiment, steps 21 to 26 corresponding to the above steps 11 to 16 are executed for citric acid, and the calculation unit 13a performs the second ratio R.2Is output to the evaluation unit 13b, and steps 31 to 36 corresponding to the above steps 11 to 16 are executed for the cis-aconitic acid, and the calculation unit 13a performs the third ratio R.3Is output to the evaluation unit 13b, and steps 41 to 46 corresponding to the above steps 11 to 16 are executed for isocitrate, and the calculation unit 13a performs the fourth ratio R.4Is output to the evaluation unit 13b.
Subsequently, the evaluation unit 13b outputs the first to fourth ratios R output by the calculation unit 13a.1~ R4The first ratio R1To the second ratio R2Are compared (S51). The evaluation unit 13b uses the first ratio R1Is the second ratio R2Greater than (R1> R2), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S52). The evaluation unit 13b uses the first ratio R1Is the second ratio R2Less than (R1<R2), The second ratio R2To the third ratio R3Are compared (S53). The evaluation unit 13b uses the second ratio R2Is the third ratio R3Greater than (R2> R3), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S54). The evaluation unit 13b uses the second ratio R2Is the third ratio R3Less than (R2<R3), The third ratio R3To the fourth ratio R4Are compared (S55). The evaluation unit 13b uses the fourth ratio R4Is the third ratio R3Greater than (R4> R3), It is evaluated as “with fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S56). The evaluation unit 13b uses the fourth ratio R4Is the third ratio R3Less than (R4<R3), It is evaluated as “no fatigue”, and the evaluation result is output to the evaluation result display unit 14 (S57).
In such a first embodiment, steps 41 to 46 may or may not be executed, and R4May not be used for fatigue evaluation. In this case, after step 54, the evaluation unit 13b determines that the second ratio R2Is the third ratio R3Less than (R2<R3), It is sufficient to evaluate “no fatigue” and output the evaluation result to the evaluation result display unit 14 (S58).
For steps 51 to 58 described above, R1And R2As an example, a mode of preferentially comparing with the above has been described.2And R3Or R3And R4Comparison may be made with priority. In addition, four step groups (that is, steps 11 to 16, steps 21 to 26, steps 31 to 36, and steps 41 to 46) are executed simultaneously, so that R1~ R4The case where all of the above has been acquired has been described as an example, but R1~ R4May not be performed simultaneously. Further, although the present embodiment has been described by taking the glucose concentration, citric acid concentration, cis-aconitic acid concentration and isocitrate concentration as examples, the same processing is performed when the succinic acid concentration, malic acid concentration and lactic acid concentration are used. Is called.
In the fatigue evaluation system according to the present invention, R1~ R7Rather than evaluating fatigue using the difference, the following processing may be preferentially executed (second embodiment). In the second embodiment, the
In the fatigue evaluation system according to the present invention, the following processing may be preferentially executed. In the present embodiment, the
In addition, when the reference value storage unit 12b does not exist or when the reference value storage unit 12b has the first to seventh reference values B1~ B7In the case where is not stored, the fatigue evaluation system according to the present invention can also evaluate the presence or absence of fatigue (third embodiment). The calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a.1~ M7Is output to the evaluation unit 13b. The calculation unit 13a uses the measurement value M stored in the measurement value receiving unit 12a.1~ M7Is output to the evaluation unit 13b. Subsequently, the evaluation unit 13b first to seventh measurement values M output from the calculation unit 13a.1~ M7Receive M1~ M74Are compared (S61). For example, the evaluation unit 13b receives the received M1~ M4M obtained from2/ M1, M3/ M2, M4/ M3, M3/ M1, M4/ M1, M4/ M2Is again output to the calculation unit 13a (S62). In the calculation unit 13a, for example, the input M2/ M1, M3/ M2, M4/ M3(For example, discriminant analysis, Partial Last Square, Support Vector Machine, etc.) is executed (S63). The evaluation unit 13b that has received the analysis result output from the calculation unit 13a outputs a determination result as to whether or not the patient is a chronic fatigue syndrome patient to the evaluation result display unit 14 based on the cutoff value (S64). Although the present embodiment has been described by taking the glucose concentration, citric acid concentration, cis-aconitic acid concentration and isocitrate concentration as examples, the same processing is performed when the succinic acid concentration, malic acid concentration and lactic acid concentration are further used. .
The measurement unit 11 measures the glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration, and the value obtained by the measurement unit 11 is the measured value receiving unit 12a. Although the present invention has been described using the embodiment inputted in the above, the previously obtained glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration are directly The aspect inputted to the measured value reception part 12a may be sufficient, and the fatigue evaluation system concerning this invention does not need to be provided with the measurement part 11 in this case.
In addition, if the system according to the present invention is used, not only can fatigue be evaluated and a treatment method can be proposed, but also a judgment criterion for fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided. It becomes easy to diagnose whether or not That is, the system according to the present invention diagnoses a system (for example, fatigue (including chronic fatigue, chronic fatigue syndrome)) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue, chronic fatigue syndrome). Or a system for obtaining data for determination).
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
健常者20名(男女比=1:1、平均年齢=36.10歳;大阪市立大学附属病院から提供)、慢性疲労症候群20名(男女比=1:1、平均年齢=36.15歳;大阪市立大学附属病院から提供)を対象とした。血漿中の代謝物の測定には、キャピラリー電気泳動−質量分析器が用いられた。血糖値の測定には、Glucose analysis kit II(Biovision)を用いた。統計解析には、SPSS 17.0およびAmos 18.0を用いた有意差検定、相関検定、およびパス解析を採用した。
健常者および慢性疲労症候群(CFS)の患者から採取した血液から血漿サンプルを調製した。前処理した血漿サンプル中の代謝物質の測定を、慶応義塾大学先端生命科学研究所に依頼した。その結果、分岐鎖アミノ酸を含む代謝物の大多数において、健常者とCFS患者との間に量的な差異を見出せなかったが、いくつかの代謝物の量が、CFS患者群にて有意に低下していることを見出した。図1には、健常者とCFS患者との間に量的な差異が見られた、解糖系およびクエン酸回路を形成する代謝物を挙げた。
次いで、疲労の有無に対応して血漿中の量が有意に変動した代謝物質と、パフォーマンス・ステイタス(PS)と相関を調べた。PSは、疲労の主観的重症度の尺度であり、数値が高いほど重症であることを示す。結果を図2に示す。調べた代謝物質のうちのいくつかが、PSと有意な相関を示すことがわかった。
さらに、疲労の有無に基づいて血漿中における量が有意に変動し、かつPSと有意な相関を示した代謝物質について、因果関係を予想するパス解析にて詳細に解析した。なお、これまでの結果に基づいてCFSの患者における解糖系およびクエン酸回路に異常が生じていることを推測し、同一サンプルにおける血糖値を別途測定し、同様にパス解析に供した。その結果、調べた代謝物のうちの3種類(グルコース、クエン酸、cis−アコニット酸)の血漿中の量に基づいてCFS患者を健常者と識別し得ることがわかった(図3)。図3は、健常者とCFS患者との間での代謝物の比較を示す。図中、健常者における平均値を100としている。また、さらにもう1種類(イソクエン酸)の血漿中の量を用いれば、CFS患者を健常者とより判別しやすくなることがわかった(図3)。
また、判別分析に基づいて、これらの代謝物の測定値を用いて、クエン酸/グルコース比率、cis−アコニット酸/クエン酸比率、イソクエン酸/cis−アコニット酸比率を3軸にて同時に評価することによって、正常群と慢性疲労症候群患者をほぼ完全に分けることに成功した(図4)。図3に示されたクエン酸/グルコースの勾配およびcis−アコニット酸/クエン酸の勾配と比較して、イソクエン酸/cis−アコニット酸の勾配が緩やかであることから、正常群と慢性疲労症候群患者との判別には、イソクエン酸が他の3つの代謝物よりも重要でないかもしれないと考えられたが、図4に示された結果は、このような予測を大きく超えていた。なお、この解析は、判別分析だけでなくPartial Least Square、Support Vector Machineなどを用いた場合であっても、90%以上の正確さでCFS患者を判別し得ることがわかった(データは示さず)。
さらなる代謝物についても調べたところ、コハク酸もまた、血漿中の量に基づいてCFS患者を健常者と識別するに有用であることがわかった(図5)。cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でないが、サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。また、判別分析の結果、クエン酸/グルコース比率、イソクエン酸/クエン酸比率、コハク酸/イソクエン酸比率を3軸にて同時に評価することによって、正常群と慢性疲労症候群患者をほぼ完全に分けることに成功した(図6)。なお、この解析もまた、判別分析だけでなくPartial Least Square、Support Vector Machineなどを用いた場合であっても、90%以上の正確さでCFS患者を判別し得ることがわかった(データは示さず)。
血漿サンプル中の代謝物質の測定値を解析ソフトR(フリーソフト、バージョン 2.11.1)に入力してランダムフォレスト(Random Forest)プログラムを実行した。Random Forestは識別、回帰、クラスタリングに用いられるアルゴリズムである。図7に示すように、健常者と慢性疲労患者とを分類する際に、複数の測定項目の中で、イソクエン酸、コハク酸およびCis−アコニット酸が非常に重要であること、そして、イソクエン酸、コハク酸およびCis−アコニット酸のいずれかの1つを測定することによって被験者が慢性疲労症候群であるか否かを判定し得ることがわかった。
血漿サンプル中の代謝物質(図7に挙げた化合物)の測定値を解析ソフトRに入力して樹木モデル(tree−based model)プログラムを実行した。このプログラムは、決定理論の分野において、計画を立案して目標に到達するために用いられる。表1に示すように、健常者と慢性疲労患者とを分類する際に、複数の測定項目の中で、コハク酸が最も重要な因子であること、そして、コハク酸測定値が閾値T2(14.56μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。次いで、コハク酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した。その結果、表1に示すように、健常者と慢性疲労患者とを分類する際に、コハク酸を除く複数の測定項目の中で、イソクエン酸が最も重要な因子であること、そして、イソクエン酸測定値が閾値T1(7.46μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。さらに、コハク酸測定値およびイソクエン酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した。
その結果、表1に示すように、健常者と慢性疲労患者とを分類する際に、コハク酸およびイソクエン酸を除く複数の測定項目の中で、cis−アコニット酸が最も重要な因子であること、そして、cis−アコニット酸測定値が閾値T3(10.66μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。
コハク酸測定値、イソクエン酸測定値およびcis−アコニット酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した場合は、被験者が慢性疲労症候群であると判定する確率が80%を下回った。リンゴ酸をグルタミン酸およびイソロイシンとともに測定することによって、被験者が慢性疲労症候群であると判定し得る確率が95%以上になり、乳酸をクエン酸およびクレアチンとともに測定することによって、被験者が慢性疲労症候群であると判定し得る確率が95%以上になる。しかし、複数の物質の血漿中の量を測定することが必要になるので、あまり好ましくないといえる。
このように、被験者の血漿中のイソクエン酸、コハク酸およびcis−アコニット酸のいずれか1つを測定することによって、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。特に、コハク酸が最も重要であり、次いで、イソクエン酸、cis−アコニット酸の順に重要であるので、単一の代謝物を用いて慢性疲労症候群の判定を行う場合は、コハク酸の測定を行うことが最も好ましく、複数の代謝物を用いて慢性疲労症候群の判定を行う場合は、コハク酸、イソクエン酸の順、あるいはコハク酸、イソクエン酸、cis−アコニット酸の順に測定を行うことが最も好ましい。
なお、測定値を得る方法が異なることによって算出される閾値が異なる可能性がある。この可能性を考慮して、t1、t2、t3のいずれかが最小値よりも小さいという条件を満たす場合に慢性疲労症候群であると判定することが好ましい。なお、本実施例におけるt1~t3はそれぞれ、被験者からのイソクエン酸、コハク酸およびcis−アコニット酸の測定値と、イソクエン酸、コハク酸およびcis−アコニット酸の健常者の平均値との比率(%)を示す。また、参照値は「t=(閾値T/健常者の平均値)×100%」によって得られる値であり、本実施例にて用いた解析対象化合物および解析ソフトウエアにおいて、イソクエン酸、コハク酸およびcis−アコニット酸に関する参照値はそれぞれ66.0%、66.6%および69.3%である。
本発明を用いれば、簡便なキットでの疲労診断が可能になる。さらに、本発明を用いた診断結果に基づいて、効果的な治療法を見出す可能性がある。例えば、強い疲労感や長期にわたる疲労感を訴える患者に対して、本発明を適用することによって、疲労度の客観的評価ができ、さらには慢性疲労症候群か否かの判別ができる。本発明による疲労度の評価は、疲労に関する高度な知識を必要としないので、一般の医療施設においても実施可能である。また、本発明を用いれば、生体内のエネルギー(ATP)産生代謝系のどの部分に異常があるかを推測することができるので、患者の生活指導に活かせるだけでなく、原因と考えられる代謝系を促進する食薬、あるいは代謝異常下であってもエネルギー産生を促進できる食薬を提供することが可能となる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 20 healthy persons (male / female ratio = 1: 1, average age = 36.10 years; provided by Osaka City University Hospital), 20 chronic fatigue syndrome (male / female ratio = 1: 1, average age = 36.15 years; (Provided by Osaka City University Hospital). A capillary electrophoresis-mass spectrometer was used to measure metabolites in plasma. Glucose analysis kit II (Biovision) was used for blood glucose level measurement. For statistical analysis, significance test, correlation test, and path analysis using SPSS 17.0 and Amos 18.0 were adopted.
Plasma samples were prepared from blood collected from healthy individuals and patients with chronic fatigue syndrome (CFS). We asked Keio University Institute for Advanced Life Sciences to measure metabolites in pretreated plasma samples. As a result, in the majority of metabolites containing branched chain amino acids, no quantitative difference was found between healthy subjects and CFS patients, but the amount of some metabolites was significantly different in the CFS patient group. I found that it was falling. In FIG. 1, metabolites that form a glycolytic system and a citric acid cycle, in which a quantitative difference was observed between healthy subjects and CFS patients, were listed.
Next, the correlation between metabolite whose amount in plasma significantly changed corresponding to the presence of fatigue and performance status (PS) was examined. PS is a measure of the subjective severity of fatigue, with higher numbers indicating more severe. The results are shown in FIG. It was found that some of the metabolites examined showed a significant correlation with PS.
Furthermore, the metabolite whose amount in plasma significantly changed based on the presence or absence of fatigue and showed a significant correlation with PS was analyzed in detail by a path analysis for predicting a causal relationship. Based on the results thus far, it was estimated that abnormalities occurred in the glycolysis system and citrate circuit in CFS patients, and the blood glucose level in the same sample was separately measured and similarly subjected to path analysis. As a result, it was found that CFS patients can be distinguished from healthy individuals based on the plasma levels of three types of metabolites (glucose, citric acid, cis-aconitic acid) (FIG. 3). FIG. 3 shows a metabolite comparison between healthy and CFS patients. In the figure, the average value for healthy individuals is 100. It was also found that the use of another kind of plasma (isocitrate) in plasma makes it easier to distinguish CFS patients from healthy individuals (FIG. 3).
In addition, based on discriminant analysis, the measured values of these metabolites are used to simultaneously evaluate the citric acid / glucose ratio, cis-aconitic acid / citric acid ratio, and isocitrate / cis-aconitic acid ratio on three axes. As a result, the normal group and the chronic fatigue syndrome patient were successfully separated almost completely (FIG. 4). Compared with the citric acid / glucose gradient and the cis-aconitic acid / citric acid gradient shown in FIG. Although it was thought that isocitrate may be less important than the other three metabolites, the results shown in FIG. It was found that this analysis can discriminate CFS patients with an accuracy of 90% or more even in the case of using not only discriminant analysis but also Partial Least Square, Support Vector Machine, etc. (data not shown) ).
When examined for additional metabolites, succinic acid was also found to be useful in distinguishing CFS patients from healthy individuals based on plasma levels (FIG. 5). Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. However, if the concentration of succinic acid in the sample is used, the present invention can be carried out more easily. Also, as a result of discriminant analysis, the normal group and the chronic fatigue syndrome patient can be almost completely separated by simultaneously evaluating the citric acid / glucose ratio, isocitrate / citric acid ratio, and succinic acid / isocitrate ratio on three axes. (Fig. 6). In addition, it was found that this analysis can discriminate CFS patients with 90% or more accuracy even when using the Partial Last Square, Support Vector Machine, etc. as well as the discriminant analysis (data shown) )
The measured value of the metabolite in the plasma sample was input to analysis software R (free software, version 2.11.1), and a random forest (Random Forest) program was executed. Random Forest is an algorithm used for identification, regression, and clustering. As shown in FIG. 7, isocitrate, succinic acid and Cis-aconitic acid are very important among a plurality of measurement items when classifying healthy subjects and chronic fatigue patients, and isocitrate It has been found that measuring one of succinic acid and Cis-aconitic acid can determine whether a subject has chronic fatigue syndrome.
The measured value of the metabolite (the compound listed in FIG. 7) in the plasma sample was input to the analysis software R to execute a tree-based model program. This program is used in the field of decision theory to plan and reach goals. As shown in Table 1, when classifying healthy subjects and chronic fatigue patients, succinic acid is the most important factor among the plurality of measurement items, and the succinic acid measurement value is a threshold T2 (14 When it is lower than .56 μM), it has been found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome. Next, the remaining measurement values excluding the succinic acid measurement values were input to the analysis software R to execute the tree model program. As a result, as shown in Table 1, isocitrate is the most important factor among a plurality of measurement items excluding succinic acid when classifying healthy subjects and chronic fatigue patients, and isocitrate When the measured value was lower than the threshold value T1 (7.46 μM), it was found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome. Further, the remaining measurement values excluding the succinic acid measurement value and the isocitrate measurement value were input to the analysis software R to execute the tree model program.
As a result, as shown in Table 1, cis-aconitic acid is the most important factor among a plurality of measurement items excluding succinic acid and isocitrate when classifying healthy subjects and chronic fatigue patients. And when the measured value of cis-aconitic acid was lower than the threshold value T3 (10.66 μM), it was found that the test subject can be determined with a probability of 95% as having chronic fatigue syndrome.
Probability of determining that a subject has chronic fatigue syndrome when the remaining measurement values excluding succinic acid measurement value, isocitric acid measurement value and cis-aconitic acid measurement value are input to analysis software R and the tree model program is executed Was less than 80%. By measuring malic acid with glutamic acid and isoleucine, the probability that the subject can be determined to have chronic fatigue syndrome is greater than 95%, and by measuring lactic acid with citric acid and creatine, the subject has chronic fatigue syndrome Is 95% or more. However, since it is necessary to measure the amount of a plurality of substances in plasma, it can be said that it is not preferable.
Thus, by measuring any one of isocitrate, succinic acid and cis-aconitic acid in the plasma of the subject, it was found that the subject can be determined with a 95% probability that the subject has chronic fatigue syndrome. . In particular, succinic acid is the most important, followed by isocitrate and cis-aconitic acid in this order. Therefore, when determining chronic fatigue syndrome using a single metabolite, succinic acid is measured. It is most preferable that when determining the chronic fatigue syndrome using a plurality of metabolites, it is most preferable to perform the measurement in the order of succinic acid and isocitric acid, or in the order of succinic acid, isocitric acid and cis-aconitic acid. .
Note that the calculated threshold value may differ depending on the method of obtaining the measurement value. In consideration of this possibility, it is preferable to determine that the patient has chronic fatigue syndrome when the condition that any one of t1, t2, and t3 is smaller than the minimum value is satisfied. In the examples, t1 to t3 are ratios between the measured values of isocitric acid, succinic acid and cis-aconitic acid from subjects and the average values of healthy individuals of isocitric acid, succinic acid and cis-aconitic acid ( %). The reference value is a value obtained by “t = (threshold value T / average value of healthy subjects) × 100%”. In the analysis target compound and analysis software used in this example, isocitrate and succinic acid were used. And the reference values for cis-aconitic acid are 66.0%, 66.6% and 69.3%, respectively.
If the present invention is used, fatigue diagnosis with a simple kit becomes possible. Furthermore, there is a possibility of finding an effective treatment based on the result of diagnosis using the present invention. For example, by applying the present invention to a patient who complains of a strong feeling of fatigue or a long-term feeling of fatigue, an objective evaluation of the degree of fatigue can be performed, and further, it can be determined whether or not the patient has chronic fatigue syndrome. The evaluation of the degree of fatigue according to the present invention does not require a high level of knowledge about fatigue, and therefore can be performed in general medical facilities. In addition, by using the present invention, it is possible to infer which part of the in vivo energy (ATP) -producing metabolic system is abnormal, so that not only can it be used for the patient's life guidance, but also the possible metabolism It becomes possible to provide a food that promotes the system or a food that can promote energy production even under abnormal metabolism.
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
健常者および慢性疲労症候群(CFS)の患者から採取した血液から血漿サンプルを調製した。前処理した血漿サンプル中の代謝物質の測定を、慶応義塾大学先端生命科学研究所に依頼した。その結果、分岐鎖アミノ酸を含む代謝物の大多数において、健常者とCFS患者との間に量的な差異を見出せなかったが、いくつかの代謝物の量が、CFS患者群にて有意に低下していることを見出した。図1には、健常者とCFS患者との間に量的な差異が見られた、解糖系およびクエン酸回路を形成する代謝物を挙げた。
次いで、疲労の有無に対応して血漿中の量が有意に変動した代謝物質と、パフォーマンス・ステイタス(PS)と相関を調べた。PSは、疲労の主観的重症度の尺度であり、数値が高いほど重症であることを示す。結果を図2に示す。調べた代謝物質のうちのいくつかが、PSと有意な相関を示すことがわかった。
さらに、疲労の有無に基づいて血漿中における量が有意に変動し、かつPSと有意な相関を示した代謝物質について、因果関係を予想するパス解析にて詳細に解析した。なお、これまでの結果に基づいてCFSの患者における解糖系およびクエン酸回路に異常が生じていることを推測し、同一サンプルにおける血糖値を別途測定し、同様にパス解析に供した。その結果、調べた代謝物のうちの3種類(グルコース、クエン酸、cis−アコニット酸)の血漿中の量に基づいてCFS患者を健常者と識別し得ることがわかった(図3)。図3は、健常者とCFS患者との間での代謝物の比較を示す。図中、健常者における平均値を100としている。また、さらにもう1種類(イソクエン酸)の血漿中の量を用いれば、CFS患者を健常者とより判別しやすくなることがわかった(図3)。
また、判別分析に基づいて、これらの代謝物の測定値を用いて、クエン酸/グルコース比率、cis−アコニット酸/クエン酸比率、イソクエン酸/cis−アコニット酸比率を3軸にて同時に評価することによって、正常群と慢性疲労症候群患者をほぼ完全に分けることに成功した(図4)。図3に示されたクエン酸/グルコースの勾配およびcis−アコニット酸/クエン酸の勾配と比較して、イソクエン酸/cis−アコニット酸の勾配が緩やかであることから、正常群と慢性疲労症候群患者との判別には、イソクエン酸が他の3つの代謝物よりも重要でないかもしれないと考えられたが、図4に示された結果は、このような予測を大きく超えていた。なお、この解析は、判別分析だけでなくPartial Least Square、Support Vector Machineなどを用いた場合であっても、90%以上の正確さでCFS患者を判別し得ることがわかった(データは示さず)。
さらなる代謝物についても調べたところ、コハク酸もまた、血漿中の量に基づいてCFS患者を健常者と識別するに有用であることがわかった(図5)。cis−アコニット酸は不安定であるのでサンプル中の濃度の測定が容易でないが、サンプル中のコハク酸の濃度を用いれば本発明の実行をより簡便に行うことができる。また、判別分析の結果、クエン酸/グルコース比率、イソクエン酸/クエン酸比率、コハク酸/イソクエン酸比率を3軸にて同時に評価することによって、正常群と慢性疲労症候群患者をほぼ完全に分けることに成功した(図6)。なお、この解析もまた、判別分析だけでなくPartial Least Square、Support Vector Machineなどを用いた場合であっても、90%以上の正確さでCFS患者を判別し得ることがわかった(データは示さず)。
血漿サンプル中の代謝物質の測定値を解析ソフトR(フリーソフト、バージョン 2.11.1)に入力してランダムフォレスト(Random Forest)プログラムを実行した。Random Forestは識別、回帰、クラスタリングに用いられるアルゴリズムである。図7に示すように、健常者と慢性疲労患者とを分類する際に、複数の測定項目の中で、イソクエン酸、コハク酸およびCis−アコニット酸が非常に重要であること、そして、イソクエン酸、コハク酸およびCis−アコニット酸のいずれかの1つを測定することによって被験者が慢性疲労症候群であるか否かを判定し得ることがわかった。
血漿サンプル中の代謝物質(図7に挙げた化合物)の測定値を解析ソフトRに入力して樹木モデル(tree−based model)プログラムを実行した。このプログラムは、決定理論の分野において、計画を立案して目標に到達するために用いられる。表1に示すように、健常者と慢性疲労患者とを分類する際に、複数の測定項目の中で、コハク酸が最も重要な因子であること、そして、コハク酸測定値が閾値T2(14.56μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。次いで、コハク酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した。その結果、表1に示すように、健常者と慢性疲労患者とを分類する際に、コハク酸を除く複数の測定項目の中で、イソクエン酸が最も重要な因子であること、そして、イソクエン酸測定値が閾値T1(7.46μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。さらに、コハク酸測定値およびイソクエン酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した。
その結果、表1に示すように、健常者と慢性疲労患者とを分類する際に、コハク酸およびイソクエン酸を除く複数の測定項目の中で、cis−アコニット酸が最も重要な因子であること、そして、cis−アコニット酸測定値が閾値T3(10.66μM)よりも低くなると、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。
コハク酸測定値、イソクエン酸測定値およびcis−アコニット酸測定値を除く残りの測定値を解析ソフトRに入力して樹木モデルプログラムを実行した場合は、被験者が慢性疲労症候群であると判定する確率が80%を下回った。リンゴ酸をグルタミン酸およびイソロイシンとともに測定することによって、被験者が慢性疲労症候群であると判定し得る確率が95%以上になり、乳酸をクエン酸およびクレアチンとともに測定することによって、被験者が慢性疲労症候群であると判定し得る確率が95%以上になる。しかし、複数の物質の血漿中の量を測定することが必要になるので、あまり好ましくないといえる。
このように、被験者の血漿中のイソクエン酸、コハク酸およびcis−アコニット酸のいずれか1つを測定することによって、被験者が慢性疲労症候群であると95%の確率で判定し得ることがわかった。特に、コハク酸が最も重要であり、次いで、イソクエン酸、cis−アコニット酸の順に重要であるので、単一の代謝物を用いて慢性疲労症候群の判定を行う場合は、コハク酸の測定を行うことが最も好ましく、複数の代謝物を用いて慢性疲労症候群の判定を行う場合は、コハク酸、イソクエン酸の順、あるいはコハク酸、イソクエン酸、cis−アコニット酸の順に測定を行うことが最も好ましい。
なお、測定値を得る方法が異なることによって算出される閾値が異なる可能性がある。この可能性を考慮して、t1、t2、t3のいずれかが最小値よりも小さいという条件を満たす場合に慢性疲労症候群であると判定することが好ましい。なお、本実施例におけるt1~t3はそれぞれ、被験者からのイソクエン酸、コハク酸およびcis−アコニット酸の測定値と、イソクエン酸、コハク酸およびcis−アコニット酸の健常者の平均値との比率(%)を示す。また、参照値は「t=(閾値T/健常者の平均値)×100%」によって得られる値であり、本実施例にて用いた解析対象化合物および解析ソフトウエアにおいて、イソクエン酸、コハク酸およびcis−アコニット酸に関する参照値はそれぞれ66.0%、66.6%および69.3%である。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 20 healthy persons (male / female ratio = 1: 1, average age = 36.10 years; provided by Osaka City University Hospital), 20 chronic fatigue syndrome (male / female ratio = 1: 1, average age = 36.15 years; (Provided by Osaka City University Hospital). A capillary electrophoresis-mass spectrometer was used to measure metabolites in plasma. Glucose analysis kit II (Biovision) was used for blood glucose level measurement. For statistical analysis, significance test, correlation test, and path analysis using SPSS 17.0 and Amos 18.0 were adopted.
Plasma samples were prepared from blood collected from healthy individuals and patients with chronic fatigue syndrome (CFS). We asked Keio University Institute for Advanced Life Sciences to measure metabolites in pretreated plasma samples. As a result, in the majority of metabolites containing branched chain amino acids, no quantitative difference was found between healthy subjects and CFS patients, but the amount of some metabolites was significantly different in the CFS patient group. I found that it was falling. In FIG. 1, metabolites that form a glycolytic system and a citric acid cycle, in which a quantitative difference was observed between healthy subjects and CFS patients, were listed.
Next, the correlation between metabolite whose amount in plasma significantly changed corresponding to the presence of fatigue and performance status (PS) was examined. PS is a measure of the subjective severity of fatigue, with higher numbers indicating more severe. The results are shown in FIG. It was found that some of the metabolites examined showed a significant correlation with PS.
Furthermore, the metabolite whose amount in plasma significantly changed based on the presence or absence of fatigue and showed a significant correlation with PS was analyzed in detail by a path analysis for predicting a causal relationship. Based on the results thus far, it was estimated that abnormalities occurred in the glycolysis system and citrate circuit in CFS patients, and the blood glucose level in the same sample was separately measured and similarly subjected to path analysis. As a result, it was found that CFS patients can be distinguished from healthy individuals based on the plasma levels of three types of metabolites (glucose, citric acid, cis-aconitic acid) (FIG. 3). FIG. 3 shows a metabolite comparison between healthy and CFS patients. In the figure, the average value for healthy individuals is 100. It was also found that the use of another kind of plasma (isocitrate) in plasma makes it easier to distinguish CFS patients from healthy individuals (FIG. 3).
In addition, based on discriminant analysis, the measured values of these metabolites are used to simultaneously evaluate the citric acid / glucose ratio, cis-aconitic acid / citric acid ratio, and isocitrate / cis-aconitic acid ratio on three axes. As a result, the normal group and the chronic fatigue syndrome patient were successfully separated almost completely (FIG. 4). Compared with the citric acid / glucose gradient and the cis-aconitic acid / citric acid gradient shown in FIG. Although it was thought that isocitrate may be less important than the other three metabolites, the results shown in FIG. It was found that this analysis can discriminate CFS patients with an accuracy of 90% or more even in the case of using not only discriminant analysis but also Partial Least Square, Support Vector Machine, etc. (data not shown) ).
When examined for additional metabolites, succinic acid was also found to be useful in distinguishing CFS patients from healthy individuals based on plasma levels (FIG. 5). Since cis-aconitic acid is unstable, it is not easy to measure the concentration in the sample. However, if the concentration of succinic acid in the sample is used, the present invention can be carried out more easily. Also, as a result of discriminant analysis, the normal group and the chronic fatigue syndrome patient can be almost completely separated by simultaneously evaluating the citric acid / glucose ratio, isocitrate / citric acid ratio, and succinic acid / isocitrate ratio on three axes. (Fig. 6). In addition, it was found that this analysis can discriminate CFS patients with 90% or more accuracy even when using the Partial Last Square, Support Vector Machine, etc. as well as the discriminant analysis (data shown) )
The measured value of the metabolite in the plasma sample was input to analysis software R (free software, version 2.11.1), and a random forest (Random Forest) program was executed. Random Forest is an algorithm used for identification, regression, and clustering. As shown in FIG. 7, isocitrate, succinic acid and Cis-aconitic acid are very important among a plurality of measurement items when classifying healthy subjects and chronic fatigue patients, and isocitrate It has been found that measuring one of succinic acid and Cis-aconitic acid can determine whether a subject has chronic fatigue syndrome.
The measured value of the metabolite (the compound listed in FIG. 7) in the plasma sample was input to the analysis software R to execute a tree-based model program. This program is used in the field of decision theory to plan and reach goals. As shown in Table 1, when classifying healthy subjects and chronic fatigue patients, succinic acid is the most important factor among the plurality of measurement items, and the succinic acid measurement value is a threshold T2 (14 When it is lower than .56 μM), it has been found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome. Next, the remaining measurement values excluding the succinic acid measurement values were input to the analysis software R to execute the tree model program. As a result, as shown in Table 1, isocitrate is the most important factor among a plurality of measurement items excluding succinic acid when classifying healthy subjects and chronic fatigue patients, and isocitrate When the measured value was lower than the threshold value T1 (7.46 μM), it was found that it can be determined with a probability of 95% that the subject has chronic fatigue syndrome. Further, the remaining measurement values excluding the succinic acid measurement value and the isocitrate measurement value were input to the analysis software R to execute the tree model program.
As a result, as shown in Table 1, cis-aconitic acid is the most important factor among a plurality of measurement items excluding succinic acid and isocitrate when classifying healthy subjects and chronic fatigue patients. And when the measured value of cis-aconitic acid was lower than the threshold value T3 (10.66 μM), it was found that the test subject can be determined with a probability of 95% as having chronic fatigue syndrome.
Probability of determining that a subject has chronic fatigue syndrome when the remaining measurement values excluding succinic acid measurement value, isocitric acid measurement value and cis-aconitic acid measurement value are input to analysis software R and the tree model program is executed Was less than 80%. By measuring malic acid with glutamic acid and isoleucine, the probability that the subject can be determined to have chronic fatigue syndrome is greater than 95%, and by measuring lactic acid with citric acid and creatine, the subject has chronic fatigue syndrome Is 95% or more. However, since it is necessary to measure the amount of a plurality of substances in plasma, it can be said that it is not preferable.
Thus, by measuring any one of isocitrate, succinic acid and cis-aconitic acid in the plasma of the subject, it was found that the subject can be determined with a 95% probability that the subject has chronic fatigue syndrome. . In particular, succinic acid is the most important, followed by isocitrate and cis-aconitic acid in this order. Therefore, when determining chronic fatigue syndrome using a single metabolite, succinic acid is measured. It is most preferable that when determining the chronic fatigue syndrome using a plurality of metabolites, it is most preferable to perform the measurement in the order of succinic acid and isocitric acid, or in the order of succinic acid, isocitric acid and cis-aconitic acid. .
Note that the calculated threshold value may differ depending on the method of obtaining the measurement value. In consideration of this possibility, it is preferable to determine that the patient has chronic fatigue syndrome when the condition that any one of t1, t2, and t3 is smaller than the minimum value is satisfied. In the examples, t1 to t3 are ratios between the measured values of isocitric acid, succinic acid and cis-aconitic acid from subjects and the average values of healthy individuals of isocitric acid, succinic acid and cis-aconitic acid ( %). The reference value is a value obtained by “t = (threshold value T / average value of healthy subjects) × 100%”. In the analysis target compound and analysis software used in this example, isocitrate and succinic acid were used. And the reference values for cis-aconitic acid are 66.0%, 66.6% and 69.3%, respectively.
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
本発明を用いれば、疲労の評価および診断を客観的かつ簡便に行うことが可能となる。本発明はさらに、疲労の治療に有用な技術を提供し得る。疲労は、非常に重大な健康問題であるので、疲労の評価、診断および治療が実現することは、あらゆる産業にわたって大いに貢献する。
The use of the present invention makes it possible to objectively and easily perform fatigue evaluation and diagnosis. The present invention may further provide techniques useful for treating fatigue. Because fatigue is a very significant health problem, the realization of fatigue assessment, diagnosis and treatment contributes greatly across all industries.
Claims (37)
- 被験者から得た生体サンプル中のグルコース濃度の測定値の、第1の基準値に対する第1の比率を得る工程、
被験者から得た生体サンプル中のクエン酸濃度の測定値の、第2の基準値に対する第2の比率を得る工程、
被験者から得た生体サンプル中のcis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を得る工程、
被験者から得た生体サンプル中のイソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を得る工程、
被験者から得た生体サンプル中のコハク酸濃度の測定値の、第5の基準値に対する第5の比率を得る工程、
被験者から得た生体サンプル中のリンゴ酸濃度の測定値の、第6の基準値に対する第6の比率を得る工程、および
被験者から得た生体サンプル中の乳酸濃度の測定値の、第7の基準値に対する第7の比率を得る工程
からなる群より選択される少なくとも2つの工程を包含する、疲労を評価する方法。 Obtaining a first ratio of a measured value of glucose concentration in a biological sample obtained from a subject to a first reference value;
Obtaining a second ratio of a measured value of citrate concentration in a biological sample obtained from a subject to a second reference value;
Obtaining a third ratio of a measured value of cis-aconitic acid concentration in a biological sample obtained from a subject to a third reference value;
Obtaining a fourth ratio of a measured value of isocitrate concentration in a biological sample obtained from a subject to a fourth reference value;
Obtaining a fifth ratio of the measured value of the succinic acid concentration in the biological sample obtained from the subject to the fifth reference value;
Obtaining a sixth ratio of a measured value of malic acid concentration in a biological sample obtained from a subject to a sixth reference value; and a seventh reference of a measured value of lactic acid concentration in the biological sample obtained from the subject A method for assessing fatigue comprising at least two steps selected from the group consisting of obtaining a seventh ratio to value. - 上記少なくとも2つの工程によって得られた少なくとも2つの比率において、少なくとも一対を比較する工程をさらに包含する、請求項1に記載の方法。 The method according to claim 1, further comprising the step of comparing at least one pair in at least two ratios obtained by the at least two steps.
- 上記第1の比率を得る工程、上記第2の比率を得る工程、上記第3の比率を得る工程、上記第4の比率を得る工程、および上記第5の比率を得る工程からなる群より選択される少なくとも2つの工程を包含する、請求項2に記載の方法。 Selected from the group consisting of obtaining the first ratio, obtaining the second ratio, obtaining the third ratio, obtaining the fourth ratio, and obtaining the fifth ratio. The method of claim 2 comprising at least two steps.
- 第1の比率を得る工程、ならびに、第2の比率を得る工程~第7の比率を得る工程からなる群より選択される少なくとも1つの工程を包含する、請求項1に記載の方法。 The method according to claim 1, comprising at least one step selected from the group consisting of a step of obtaining a first ratio and a step of obtaining a second ratio to a step of obtaining a seventh ratio.
- 第2の比率~第7の比率について、得られた比率を該比率に対応する閾値と比較する工程をさらに包含する、請求項4に記載の方法。 5. The method according to claim 4, further comprising, for the second ratio to the seventh ratio, a step of comparing the obtained ratio with a threshold corresponding to the ratio.
- 第3の比率を得る工程~第5の比率を得る工程の少なくとも1つを包含する、請求項4または5に記載の方法。 6. The method according to claim 4, comprising at least one of a step of obtaining a third ratio to a step of obtaining a fifth ratio.
- 上記第4の比率を得る工程が、上記第5の比率を得る工程に引き続いて行われる、請求項6に記載の方法。 The method according to claim 6, wherein the step of obtaining the fourth ratio is performed subsequent to the step of obtaining the fifth ratio.
- 上記第3の比率を得る工程が、第4の比率を得る工程に引き続いて行われる、請求項7に記載の方法。 The method according to claim 7, wherein the step of obtaining the third ratio is performed subsequent to the step of obtaining the fourth ratio.
- 第1の比率が実質的に1である場合に行われる、請求項4~8のいずれか1項に記載の方法。 The method according to any one of claims 4 to 8, which is carried out when the first ratio is substantially 1.
- 被験者から得た生体サンプル中のグルコース濃度の第1の測定値と第1の閾値とを比較する工程、
被験者から得た生体サンプル中のクエン酸濃度の第2の測定値と第2の閾値とを比較する工程、
被験者から得た生体サンプル中のcis−アコニット酸濃度の第3の測定値と第3の閾値とを比較する工程、
被験者から得た生体サンプル中のイソクエン酸濃度の第4の測定値と第4の閾値とを比較する工程、
被験者から得た生体サンプル中のコハク酸濃度の第5の測定値と第5の閾値とを比較する工程、
被験者から得た生体サンプル中のリンゴ酸濃度の第6の測定値の第6の閾値とを比較する工程、および
被験者から得た生体サンプル中の乳酸濃度の第7の測定値の第7の閾値とを比較する工程
の少なくとも1つを包含する、疲労を評価する方法。 Comparing a first measured value of a glucose concentration in a biological sample obtained from a subject with a first threshold;
Comparing the second measured value of the citric acid concentration in the biological sample obtained from the subject with the second threshold,
Comparing a third measured value of a cis-aconitic acid concentration in a biological sample obtained from a subject with a third threshold;
Comparing the fourth measured value of the isocitrate concentration in the biological sample obtained from the subject with a fourth threshold;
Comparing the fifth measured value of the succinic acid concentration in the biological sample obtained from the subject and the fifth threshold value,
Comparing the sixth threshold value of the sixth measurement value of the malic acid concentration in the biological sample obtained from the subject, and the seventh threshold value of the seventh measurement value of the lactic acid concentration in the biological sample obtained from the subject. A method for assessing fatigue, comprising at least one of the steps of: - 第3の測定値と第3の閾値とを比較する工程、
第4の測定値と第4の閾値とを比較する工程、および
第5の測定値と第5の閾値とを比較する工程
の少なくとも1つを包含する、請求項10に記載の方法。 Comparing the third measurement with a third threshold;
11. The method of claim 10, comprising at least one of comparing a fourth measurement value with a fourth threshold value and comparing a fifth measurement value with a fifth threshold value. - 上記第4の測定値と第4の閾値とを比較する工程が、上記第5の測定値と第5の閾値とを比較する工程に引き続いて行われる、請求項11に記載の方法。 The method according to claim 11, wherein the step of comparing the fourth measured value with a fourth threshold value is performed subsequent to the step of comparing the fifth measured value with a fifth threshold value.
- 上記第3の測定値と第3の閾値とを比較する工程が、第5の測定値と第5の閾値とを比較する工程に引き続いて行われる、請求項12に記載の方法。 The method according to claim 12, wherein the step of comparing the third measurement value and the third threshold value is performed subsequent to the step of comparing the fifth measurement value and the fifth threshold value.
- 被験者から得た生体サンプル中の、グルコース濃度の測定値、クエン酸濃度の測定値、cis−アコニット酸濃度の測定値、イソクエン酸濃度の測定値、およびコハク酸濃度の測定値からなる群より選択される少なくとも2つにおいて、少なくとも一対の比率を得る工程を包含する、疲労を評価する方法。 Selected from the group consisting of measured glucose concentration, measured citric acid concentration, measured cis-aconitic acid concentration, measured isocitrate concentration, and measured succinic acid concentration in a biological sample obtained from a subject A method of assessing fatigue, comprising the step of obtaining at least a pair of ratios in at least two.
- 上記得られた少なくとも一対の比率を、判別分析、Partial Least Square、またはSupport Vector Machineの分析に供する工程をさらに包含する、請求項14に記載の方法。 15. The method according to claim 14, further comprising a step of subjecting the obtained at least a pair of ratios to analysis of discriminant analysis, Partial Last Square, or Support Vector Machine.
- コハク酸濃度を測定するための第5の試薬を備えている、疲労を評価するためのキット。 A kit for evaluating fatigue, comprising a fifth reagent for measuring succinic acid concentration.
- イソクエン酸濃度を測定するための第4の試薬をさらに備えている、請求項16に記載のキット。 The kit according to claim 16, further comprising a fourth reagent for measuring the isocitrate concentration.
- グルコース濃度を測定するための第1の試薬、
クエン酸濃度を測定するための第2の試薬、
cis−アコニット酸濃度を測定するための第3の試薬、
リンゴ酸濃度を測定するための第6の試薬、および
乳酸濃度を測定するための第7の試薬
の少なくとも1つをさらに備えている、請求項17に記載のキット。 A first reagent for measuring glucose concentration;
A second reagent for measuring citric acid concentration,
a third reagent for measuring the cis-aconitic acid concentration;
The kit according to claim 17, further comprising at least one of a sixth reagent for measuring malic acid concentration and a seventh reagent for measuring lactic acid concentration. - コハク酸濃度の測定値の、第5の基準値に対する第5の比率を示す第5呈示部を備えている、疲労を評価するためのキット。 A kit for evaluating fatigue, comprising a fifth presenting portion showing a fifth ratio of the measured value of the succinic acid concentration to the fifth reference value.
- イソクエン酸濃度の測定値の、第4の基準値に対する第4の比率を示す第4呈示部をさらに備えている、請求項19に記載のキット。 The kit according to claim 19, further comprising a fourth presentation unit indicating a fourth ratio of the measured value of the isocitrate concentration to the fourth reference value.
- グルコース濃度の測定値の、第1の基準値に対する第1の比率を示す第1呈示部、
クエン酸濃度の測定値の、第2の基準値に対する第2の比率を示す第2呈示部、
cis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率を示す第3呈示部、
リンゴ酸濃度の測定値の、第6の基準値に対する第6の比率を示す第6呈示部、および
乳酸濃度の測定値の、第7の基準値に対する第7の比率を示す第7呈示部
の少なくとも1つをさらに備えている、請求項20に記載のキット。 A first presentation unit that indicates a first ratio of a measured value of glucose concentration to a first reference value;
A second presentation unit showing a second ratio of the measured value of the citric acid concentration to the second reference value;
a third presentation unit showing a third ratio of the measured value of the cis-aconitic acid concentration to the third reference value;
A sixth presenting unit indicating a sixth ratio of the measured value of malic acid concentration to a sixth reference value; and a seventh presenting unit indicating a seventh ratio of the measured value of lactic acid concentration to the seventh reference value. 21. The kit according to claim 20, further comprising at least one. - グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、
グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度のそれぞれに対応する第1~第7の基準値からなる群より選択される少なくとも2つの基準値を格納した基準値格納部、
測定値受容部からの測定値と基準値格納部からの基準値を受け取って、疲労を評価するための情報を生成する演算部、および
演算部からの評価情報を受け取って、疲労を評価する評価部
を備えた疲労評価システムであって、
演算部が、
グルコース濃度の測定値の、第1の基準値に対する第1の比率、
クエン酸濃度の測定値の、第2の基準値に対する第2の比率、
cis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率、
イソクエン酸濃度の測定値の、第4の基準値に対する第4の比率、
コハク酸濃度の測定値の、第5の基準値に対する第5の比率、
リンゴ酸濃度の測定値の、第6の基準値に対する第6の比率、および
乳酸濃度の測定値の、第7の基準値に対する第7の比率
からなる群より選択される少なくとも2つの比率を算出する、疲労評価システム。 A measurement value receiving unit for receiving at least two measurement values selected from the group consisting of measurement values of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration;
At least two selected from the group consisting of first to seventh reference values corresponding to each of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration A reference value storage unit that stores reference values,
An evaluation unit that receives the measurement value from the measurement value receiving unit and the reference value from the reference value storage unit and generates information for evaluating fatigue, and an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue A fatigue evaluation system comprising a part,
The calculation unit
A first ratio of a measured glucose concentration value to a first reference value;
A second ratio of a measured value of citric acid concentration to a second reference value;
a third ratio of the measured value of cis-aconitic acid concentration to a third reference value;
A fourth ratio of the measured value of isocitrate concentration to a fourth reference value;
A fifth ratio of the measured value of succinic acid concentration to a fifth reference value;
Calculate at least two ratios selected from the group consisting of the sixth ratio of the measured value of malic acid concentration to the sixth reference value and the seventh ratio of the measured value of lactate concentration to the seventh reference value A fatigue evaluation system. - 上記演算部が、上記少なくとも2つの比率において、少なくとも一対の比較を実行する、請求項22に記載の疲労評価システム。 The fatigue evaluation system according to claim 22, wherein the calculation unit performs at least a pair of comparisons in the at least two ratios.
- 上記測定値受容部が、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度の測定値からなる群より選択される少なくとも2つの測定値を受容し、
上記基準値格納部が、グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度およびコハク酸濃度のそれぞれに対応する第1~第5の基準値からなる群より選択される少なくとも2つの基準値を格納し、
上記演算部が、
グルコース濃度の測定値の、第1の基準値に対する第1の比率、
クエン酸濃度の測定値の、第2の基準値に対する第2の比率、
cis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率、
イソクエン酸濃度の測定値の、第4の基準値に対する第4の比率、および
コハク酸濃度の測定値の、第5の基準値に対する第5の比率
からなる群より選択される少なくとも2つの比率をさらに算出し、
上記少なくとも2つの比率において、少なくとも一対の比較を実行する、請求項23に記載の疲労評価システム。 The measurement value receiving unit receives at least two measurement values selected from the group consisting of measurement values of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration and succinic acid concentration;
The reference value storage unit is at least two selected from the group consisting of first to fifth reference values corresponding to glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, and succinic acid concentration, respectively. Store the reference value,
The arithmetic unit is
A first ratio of a measured glucose concentration value to a first reference value;
A second ratio of a measured value of citric acid concentration to a second reference value;
a third ratio of the measured value of cis-aconitic acid concentration to a third reference value;
At least two ratios selected from the group consisting of a fourth ratio of a measured value of isocitrate concentration to a fourth reference value and a fifth ratio of a measured value of succinic acid concentration to a fifth reference value; Calculate further,
24. The fatigue assessment system of claim 23, wherein at least a pair of comparisons are performed at the at least two ratios. - 上記演算部が、第1の比率を算出するとともに、
クエン酸濃度の測定値の、第2の基準値に対する第2の比率、
cis−アコニット酸濃度の測定値の、第3の基準値に対する第3の比率、
イソクエン酸濃度の測定値の、第4の基準値に対する第4の比率、
コハク酸濃度の測定値の、第5の基準値に対する第5の比率、
リンゴ酸濃度の測定値の、第6の基準値に対する第6の比率、および
乳酸濃度の測定値の、第7の基準値に対する第7の比率
からなる群より選択される少なくとも1つの比率を算出する、請求項24に記載の疲労評価システム。 The calculation unit calculates the first ratio,
A second ratio of a measured value of citric acid concentration to a second reference value;
a third ratio of the measured value of cis-aconitic acid concentration to a third reference value;
A fourth ratio of the measured value of isocitrate concentration to a fourth reference value;
A fifth ratio of the measured value of succinic acid concentration to a fifth reference value;
Calculate at least one ratio selected from the group consisting of the sixth ratio of the measured value of malic acid concentration to the sixth reference value and the seventh ratio of the measured value of lactic acid concentration to the seventh reference value The fatigue evaluation system according to claim 24. - 上記基準値格納部が、第2の比率~第7の比率に対応する閾値からなる群より選択される少なくとも1つの閾値を格納しており、
上記演算部が、該基準値格納部からの該閾値を受け取って、算出された比率と該比率に対応する閾値との比較を実行する、請求項25に記載のシステム。 The reference value storage unit stores at least one threshold selected from the group consisting of thresholds corresponding to the second ratio to the seventh ratio;
26. The system according to claim 25, wherein the arithmetic unit receives the threshold value from the reference value storage unit, and compares the calculated ratio with a threshold value corresponding to the ratio. - 上記演算部が、第3の比率~第5の比率の少なくとも1つを算出する、請求項25または26に記載の疲労評価システム。 27. The fatigue evaluation system according to claim 25, wherein the calculation unit calculates at least one of a third ratio to a fifth ratio.
- 上記演算部が、上記第4の比率に引き続いて上記第5の比率を算出する、請求項27に記載の疲労評価システム。 The fatigue evaluation system according to claim 27, wherein the calculation unit calculates the fifth ratio subsequent to the fourth ratio.
- 上記演算部が、上記第5の比率に引き続いて上記第3の比率を算出する、請求項28に記載の疲労評価システム。 The fatigue evaluation system according to claim 28, wherein the calculation unit calculates the third ratio subsequent to the fifth ratio.
- 上記判定部が、第1の比率が実質的に1であるか否かを判定する、請求項25~29のいずれか1項に記載の疲労評価システム。 30. The fatigue evaluation system according to any one of claims 25 to 29, wherein the determination unit determines whether or not the first ratio is substantially 1.
- グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度の測定値からなる群より選択される少なくとも1つの測定値を受容する測定値受容部、
グルコース濃度、クエン酸濃度、cis−アコニット酸濃度、イソクエン酸濃度、コハク酸濃度、リンゴ酸濃度および乳酸濃度のそれぞれに対応する第1~第7の閾値からなる群より選択される少なくとも1つの閾値を格納した閾値格納部、
測定値受容部からの測定値と閾値格納部からの閾値を受け取って、疲労を評価するための情報を生成する演算部、および
演算部からの評価情報を受け取って、疲労を評価する評価部
を備えた疲労評価システムであって、
演算部が、
グルコース濃度の測定値と第1の閾値との第1の比較、
クエン酸濃度の測定値と第2の閾値との第2の比較、
cis−アコニット酸濃度の測定値と第3の閾値との第3の比較、
イソクエン酸濃度の測定値と第4の閾値との第4の比較、
コハク酸濃度の測定値と第5の閾値との第5の比較、
リンゴ酸濃度の測定値と第6の閾値との第6の比較、および
乳酸濃度の測定値と第7の閾値との第7の比較
からなる群より選択される少なくとも1つを実行する、疲労評価システム。 A measurement value receiver that receives at least one measurement value selected from the group consisting of a measurement value of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration, and lactic acid concentration;
At least one threshold selected from the group consisting of first to seventh thresholds corresponding to each of glucose concentration, citric acid concentration, cis-aconitic acid concentration, isocitrate concentration, succinic acid concentration, malic acid concentration and lactic acid concentration Threshold storage unit storing
A calculation unit that receives the measurement value from the measurement value receiving unit and the threshold value from the threshold storage unit and generates information for evaluating fatigue, and an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue A fatigue evaluation system comprising:
The calculation unit
A first comparison between a measured glucose concentration and a first threshold;
A second comparison of the measured citric acid concentration with a second threshold;
a third comparison of the measured cis-aconitic acid concentration with a third threshold;
A fourth comparison of the measured value of isocitrate concentration with a fourth threshold;
A fifth comparison of the measured succinic acid concentration with a fifth threshold;
Performing at least one selected from the group consisting of a sixth comparison of the measured value of malic acid concentration with a sixth threshold, and a seventh comparison of the measured value of lactate concentration with a seventh threshold. Evaluation system. - 上記第3~第5の比較からなる群より選択される少なくとも1つを実行する、請求項31に記載の疲労評価システム。 32. The fatigue evaluation system according to claim 31, wherein at least one selected from the group consisting of the third to fifth comparisons is executed.
- 上記第4の比較が、上記第5の比較に引き続いて行われる、請求項32に記載の疲労評価システム。 The fatigue evaluation system according to claim 32, wherein the fourth comparison is performed subsequent to the fifth comparison.
- 上記第3の比較が、第5の比較に引き続いて行われる、請求項33に記載の疲労評価システム。 The fatigue evaluation system according to claim 33, wherein the third comparison is performed subsequent to the fifth comparison.
- グルコース濃度、クエン酸濃度、cis−アコニット酸濃度の測定値、イソクエン酸濃度の測定値、およびコハク酸濃度の測定値からなる群より選択される少なくとも2つの測定値を受容する測定値受容部、
測定値受容部からの測定値を受け取って、疲労を評価するための情報を生成する演算部、および
演算部からの評価情報を受け取って、疲労を評価する評価部
を備えた疲労評価システムであって、
上記演算部が、該少なくとも2つの測定値において、少なくとも一対の比較を実行して、少なくとも一対の比率を得る、疲労評価システム。 A measurement value receiving unit for receiving at least two measurement values selected from the group consisting of a glucose concentration, a citric acid concentration, a cis-aconitic acid concentration measurement value, an isocitrate concentration measurement value, and a succinic acid concentration measurement value;
This is a fatigue evaluation system including a calculation unit that receives measurement values from a measurement value receiving unit and generates information for evaluating fatigue, and an evaluation unit that receives evaluation information from the calculation unit and evaluates fatigue. And
The fatigue evaluation system in which the arithmetic unit performs at least a pair of comparisons in the at least two measured values to obtain at least a pair of ratios. - 上記演算部が、上記得られた少なくとも一対の比率に基づいて、判別分析、Partial Least Square、またはSupport Vector Machineの分析を実行する、請求項35に記載の疲労評価システム。 36. The fatigue evaluation system according to claim 35, wherein the calculation unit executes discriminant analysis, Partial Last Square, or Support Vector Machine analysis based on the obtained at least a pair of ratios.
- グルコース濃度、クエン酸濃度およびcis−アコニット酸濃度のそれぞれを測定する第1~第3の測定部、ならびに、必要に応じて、イソクエン酸濃度を測定する第4の測定部、コハク酸濃度を測定する第5の測定部、リンゴ酸濃度を測定する第6の測定部、および乳酸濃度を測定する第7の測定部をさらに備え、
第1~第7の測定部にて得られた値が測定値受容部に入力される、請求項22~36の何れか1項に記載の疲労評価システム。 First to third measuring units for measuring glucose concentration, citric acid concentration and cis-aconitic acid concentration, and a fourth measuring unit for measuring isocitrate concentration, if necessary, for measuring succinic acid concentration A fifth measuring unit, a sixth measuring unit for measuring malic acid concentration, and a seventh measuring unit for measuring lactic acid concentration,
37. The fatigue evaluation system according to claim 22, wherein values obtained by the first to seventh measurement units are input to the measurement value receiving unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/805,449 US20130210045A1 (en) | 2011-02-21 | 2011-08-22 | Biomarker for fatigue, and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-144128 | 2010-06-24 | ||
JP2010144128 | 2010-06-24 | ||
JP2011-034875 | 2011-02-21 | ||
JP2011034875A JP5811545B2 (en) | 2010-06-24 | 2011-02-21 | Fatigue biomarkers and their use |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011161544A2 true WO2011161544A2 (en) | 2011-12-29 |
WO2011161544A3 WO2011161544A3 (en) | 2012-03-01 |
WO2011161544A8 WO2011161544A8 (en) | 2012-04-19 |
Family
ID=45371880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/001917 WO2011161544A2 (en) | 2010-06-24 | 2011-08-22 | Biomarker for fatigue, and use thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5811545B2 (en) |
WO (1) | WO2011161544A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3471604A4 (en) * | 2016-06-17 | 2020-04-01 | Predictive Safety Srp, Inc. | Impairment detection system and method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9040082B2 (en) * | 2011-06-24 | 2015-05-26 | K-Pax Pharmaceuticals, Inc. | Compositions and methods for treatment of chronic fatigue |
WO2015030211A1 (en) * | 2013-08-30 | 2015-03-05 | 独立行政法人理化学研究所 | Fatigue biomarker and use thereof |
WO2018147472A1 (en) * | 2017-02-09 | 2018-08-16 | 学校法人慶應義塾 | Blood biomarker |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143784A (en) * | 1997-11-25 | 2000-11-07 | The University Of Nottingham | Reducing muscle fatigue |
JP2010085369A (en) * | 2008-10-02 | 2010-04-15 | Ttc:Kk | Method and kit for evaluation fatigue |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3861300B2 (en) * | 1995-09-14 | 2006-12-20 | 大正製薬株式会社 | How to measure fatigue |
-
2011
- 2011-02-21 JP JP2011034875A patent/JP5811545B2/en active Active
- 2011-08-22 WO PCT/IB2011/001917 patent/WO2011161544A2/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143784A (en) * | 1997-11-25 | 2000-11-07 | The University Of Nottingham | Reducing muscle fatigue |
JP2010085369A (en) * | 2008-10-02 | 2010-04-15 | Ttc:Kk | Method and kit for evaluation fatigue |
Non-Patent Citations (10)
Title |
---|
GIBALA, MARTIN J. ET AL.: 'Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise' AMERICAN JOURNAL OF PHYSIOLOGY vol. 275, no. 2, 1998, pages E235 - E242 * |
GIBALA, MARTIN J. ET AL.: 'Tricarboxylic acid cycle intermediates in human muscle at rest and during prolonged cycling' AMERICAN JOURNAL OF PHYSIOLOGY vol. 272, no. 2, 1997, pages E239 - E244 * |
MOHAN P K ET AL.: 'Modulation of muscle dehydrogenases by ascorbic acid in exhausted albino rats' INDIAN J BIOCHEM BIOPHYS vol. 24, no. 2, 1987, pages 114 - 116 * |
NOZAKI SATOSHI ET AL.: 'Mental and physical fatigue-related biochemical alterations' NUTRITION vol. 25, no. 1, 2009, pages 51 - 57 * |
OSAMI KAJIMOTO: 'Development of human fatigue biochemical biomarkers (Ketsueki, Nyo)' JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE vol. 228, no. 6, 2009, pages 659 - 663 * |
POERTNER, H. 0. ET AL.: 'Metabolism and energetics in squid (Illex illecebrosus, Loligo pealei) during muscular fatigue and recovery' AMERICAN JOURNAL OF PHYSIOLOGY vol. 265, no. 1, 1993, pages R157 - R165 * |
RENNIE M J ET AL.: 'Interaction between glutamine availability and metabolism of glycogen, tricarboxylic acid cycle intermediates and glutathione' THE JOURNAL OF NUTRITION vol. 131, no. 9, 2001, pages 2488S - 2490S * |
SPENCER M K ET AL.: 'EFFECT OF LOW GLYCOGEN ON CARBOHYDRATE AND ENERGY METABOLISM IN HUMAN MUSCLE DURING EXERCISE' AMERICAN JOURNAL OF PHYSIOLOGY vol. 262, no. 4, 1992, pages C975 - C979 * |
TARNOPOLSKY, MARK A. ET AL.: 'Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans' JOURNAL OF PHYSIOLOGY vol. 533, no. 3, 2001, pages 881 - 889 * |
WLODEK DANUTA ET AL.: 'Decreased energy levels can cause and sustain obesity' JOURNAL OF THEORETICAL BIOLOGY vol. 225, no. 1, 2003, pages 33 - 44 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3471604A4 (en) * | 2016-06-17 | 2020-04-01 | Predictive Safety Srp, Inc. | Impairment detection system and method |
EP3472796A4 (en) * | 2016-06-17 | 2020-04-29 | Predictive Safety SRP, Inc. | Geo-fencing system and method |
US10867272B2 (en) | 2016-06-17 | 2020-12-15 | Predictive Safety Srp, Inc. | Geo-fencing system and method |
US10867271B2 (en) | 2016-06-17 | 2020-12-15 | Predictive Safety Srp, Inc. | Computer access control system and method |
US10956851B2 (en) | 2016-06-17 | 2021-03-23 | Predictive Safety Srp, Inc. | Adaptive alertness testing system and method |
US10970664B2 (en) | 2016-06-17 | 2021-04-06 | Predictive Safety Srp, Inc. | Impairment detection system and method |
US11074538B2 (en) | 2016-06-17 | 2021-07-27 | Predictive Safety Srp, Inc. | Adaptive alertness testing system and method |
US11282024B2 (en) | 2016-06-17 | 2022-03-22 | Predictive Safety Srp, Inc. | Timeclock control system and method |
Also Published As
Publication number | Publication date |
---|---|
JP2012024555A (en) | 2012-02-09 |
WO2011161544A3 (en) | 2012-03-01 |
WO2011161544A8 (en) | 2012-04-19 |
JP5811545B2 (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ong et al. | Visual impairment, age-related eye diseases, and cognitive function: the Singapore Malay Eye study | |
Brady et al. | The HEART score: A guide to its application in the emergency department | |
Yim et al. | Early screening for cardiovascular abnormalities with preparticipation echocardiography: utility of focused physician‐operated echocardiography in preparticipation screening of athletes | |
Chan et al. | Recalibration of the Global Registry of Acute Coronary Events risk score in a multiethnic Asian population | |
Kline et al. | Methodology for a rapid protocol to rule out pulmonary embolism in the emergency department | |
JP2022540159A (en) | Methods of detecting sepsis using vital signs, including systolic blood pressure, blood parameters, and combinations thereof | |
WO2011161544A2 (en) | Biomarker for fatigue, and use thereof | |
JP6521321B2 (en) | Biomarkers of fatigue and their use | |
Mena et al. | Machine learning approach to extract diagnostic and prognostic thresholds: application in prognosis of cardiovascular mortality | |
Greenslade et al. | Examining renal impairment as a risk factor for acute coronary syndrome: a prospective observational study | |
JP6401297B2 (en) | Insulin secretion capacity analysis apparatus, insulin secretion capacity analysis system including the apparatus, and insulin secretion capacity analysis method | |
KR20090003406A (en) | Stroke risk prediction apparatus and method for the same | |
US20050021235A1 (en) | Method and system for optically performing an assay to determine a medical condition | |
Dougherty et al. | Prediction and prevention of sudden death in young populations: the role of ECG screening | |
Knottnerus et al. | Evaluation of diagnostic procedures.(Evidence base of clinical diagnosis) | |
JP6629782B2 (en) | Age-related macular degeneration risk assessment method and system | |
US20130210045A1 (en) | Biomarker for fatigue, and use thereof | |
May et al. | Superior predictive ability for death of a basic metabolic profile risk score | |
CN113906296B (en) | Machine learning based diagnosis method and device for autism spectrum disorder using metabolite as marker | |
US20240296959A1 (en) | Assessment of risk for major adverse cardiac event | |
Schucht et al. | Beyond Glasgow Coma Scale: Prehospital prediction of traumatic brain injury | |
Tremblay et al. | 2.21 The level of agreement and nature of disagreements between the detection of suspected concussions in the field and initial physician diagnosis | |
Nambiar et al. | Agreement between clinical criteria and quantitative polymerase chain reaction for diagnosing scabies in Auckland children | |
TW201907328A (en) | Method for coronary syndrome screening by cardiovascular marking and machine learning algorithm using machine learning algorithm to improve convenience, economic efficiency, and correctness of coronary syndrome screening | |
Rattanasompattikul et al. | Appraisal of a Simplified Protein Energy Wasting Score in CKD Patients at a Single University-Based Hospital: A Five-Year Retrospective Cohort Study: FR-PO956 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11797693 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13805449 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11797693 Country of ref document: EP Kind code of ref document: A2 |