WO2011152551A1 - 排ガス処理システム及び方法 - Google Patents
排ガス処理システム及び方法 Download PDFInfo
- Publication number
- WO2011152551A1 WO2011152551A1 PCT/JP2011/062871 JP2011062871W WO2011152551A1 WO 2011152551 A1 WO2011152551 A1 WO 2011152551A1 JP 2011062871 W JP2011062871 W JP 2011062871W WO 2011152551 A1 WO2011152551 A1 WO 2011152551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- mist
- state
- generating substance
- mist generating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/017—Combinations of electrostatic separation with other processes, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/304—Alkali metal compounds of sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/402—Alkaline earth metal or magnesium compounds of magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to an exhaust gas treatment system and method for removing CO 2 in exhaust gas.
- CO 2 absorption tower As the process of removing and recovering CO 2 from flue gas, CO 2 absorption tower (hereinafter, simply referred to as "absorption column”.) And the combustion exhaust gas and the CO 2 absorbing solution in the contacting a, CO 2 absorbing liquid absorbent regenerator that has absorbed CO 2 (hereinafter, simply referred to as “regeneration tower”.) was heated at reproduces the CO 2 absorbing solution with dissipating CO 2
- a CO 2 recovery device having a step of recirculation and reuse in a CO 2 absorption tower (see, for example, Patent Document 1).
- CO 2 absorption tower for example, an amine-based CO 2 absorbing solution such as alkanolamine is used for countercurrent contact, and CO 2 in the exhaust gas is absorbed into the CO 2 absorbing solution by a chemical reaction (exothermic reaction), and CO 2 The exhaust gas from which is removed is discharged out of the system.
- CO 2 absorbent that has absorbed CO 2 is referred to as rich solution.
- the rich solution is pressurized by the pump, the CO 2 absorbing solution in a high temperature CO 2 in the regeneration tower has been regenerated dissipation (lean solution), heated in the heat exchanger, is supplied to the regenerator.
- the exhaust gas treatment system the flue gas introduced into the CO 2 absorber that absorbs CO 2 of the CO 2 recovery apparatus, the mist generating material which is a source of mist generated in the absorption tower of the CO 2 recovery apparatus
- the CO 2 absorbent is entrained by the mist generating substance, and there is a problem that the amount of the CO 2 absorbent that scatters out of the system increases. If there is scattering out of the system such CO 2 absorbing liquid, with leads to a significant loss of the CO 2 absorbing solution, since the supplementing unnecessarily CO 2 absorbing solution, CO out of the system 2 It is necessary to suppress scattering of the absorbing liquid.
- the present invention provides an exhaust gas treatment system capable of significantly reducing entrainment of a CO 2 absorbent and performing an appropriate exhaust gas treatment when exhausting exhaust gas from which CO 2 has been removed outside the system. It is an object to provide a method.
- a first invention of the present invention for solving the above-described problems includes a dust removing device that removes soot and dust in exhaust gas from a boiler, a desulfurization device that removes sulfur oxides in exhaust gas after dust removal, and a desulfurization device.
- a cooling tower which is provided on the downstream side and removes sulfur oxide remaining in the exhaust gas and lowers the gas temperature; an absorption tower which removes CO 2 in the exhaust gas by contacting it with a CO 2 absorbent; 2 CO 2 is released from the absorbing solution to recover CO 2 and is provided on the upstream side of the desulfurization device and a CO 2 recovery device comprising a regeneration tower for regenerating the CO 2 absorbing solution, and the exhaust gas temperature is lowered.
- a mist generating substance in a mist state the mist generating substance in the exhaust gas being changed from a gas state to a mist state, and a heat carbonate that sprays calcium carbonate between the dust removing device and the heat exchanger.
- Carbonated The exhaust gas treatment system is characterized by being neutralized and removed by lucium.
- the second invention is the exhaust gas treatment system according to the first invention, characterized by having a denitration device for removing nitrogen oxides in the exhaust gas.
- a third invention is a desulfurization device that removes sulfur oxide in exhaust gas from a boiler, and a cooling device that is provided on the downstream side of the desulfurization device to remove sulfur oxide remaining in the exhaust gas and lower the gas temperature. and towers, the absorption tower of CO 2 in the flue gas is brought into contact with the CO 2 absorbing solution and removed, together with the recovery of CO 2 to release CO 2 from the CO 2 absorbing solution, reproduction for reproducing CO 2 absorbing solution
- a CO 2 recovery device comprising a tower, and a heat exchanger provided on the upstream side of the desulfurization device for lowering the exhaust gas temperature below the acid dew point, wherein the mist generating substance in the exhaust gas is provided in the heat exchanger.
- the exhaust gas treatment system is characterized in that the gas is changed from a gas state to a condensed state, and a mist generating substance is removed.
- an alkali-based neutralizer spraying device that sprays an alkali-based neutralizer between the heat exchanger and the desulfurization device is provided, and exhaust gas is exhausted by the heat exchanger.
- the exhaust gas treatment system is characterized in that the mist generating substance is changed from a gas state to a mist state, and the mist generating substance in the mist state is neutralized with an alkaline neutralizing agent and removed.
- the fifth invention is an exhaust gas treatment system according to the third or fourth invention, comprising a denitration device for removing nitrogen oxides in the exhaust gas and a dry electric dust collector for removing soot and dust.
- the exhaust gas temperature is lowered, sprayed with calcium carbonate, the mist generating substance in the exhaust gas is changed from the gas state to the mist state, and the mist generating substance in the mist state is neutralized with calcium carbonate.
- the amount of the mist generating substance in the exhaust gas to be removed and introduced into the CO 2 recovery device is reduced to a predetermined amount or less.
- the mist generating substance in the exhaust gas is changed from the gas state to the condensed state while lowering the exhaust gas temperature on the upstream side of the desulfurization apparatus to be removed, and the amount of the mist generating substance in the exhaust gas introduced into the CO 2 recovery apparatus is a predetermined amount.
- the exhaust gas treatment method is characterized by reducing to the following.
- mist generation in a mist state is caused by spraying an alkali neutralizer on the upstream side of the heat exchanger to change a mist generating substance in the exhaust gas from a gas state to a mist state.
- the substance is neutralized with an alkali neutralizing agent and removed.
- the exhaust gas treatment system of the present invention in prior to introducing the CO 2 recovery apparatus, as a mist generating substance remover, is provided with the heat exchanger and the calcium carbonate spraying device, when introduced into the CO 2 absorber
- the amount of mist generating substances in the exhaust gas is greatly reduced.
- the amount of the CO 2 absorbent that is accompanied by the mist and scatters out of the system is reduced. Therefore, the loss of the CO 2 absorbing liquid scattered outside the system can be significantly reduced, and an increase in running cost in the exhaust gas treatment can be suppressed.
- FIG. 1 is a schematic diagram of an exhaust gas treatment system according to an embodiment of the present invention.
- FIG. 2 is a conceptual diagram of the mechanism of mist generation.
- FIG. 3A is a photograph showing the white smoke reduction state in the CO 2 absorption tower.
- FIG. 3-2 is a photograph showing a white smoke generation state in the CO 2 absorption tower.
- FIG. 4 is a schematic diagram of the exhaust gas treatment system according to the first embodiment.
- FIG. 5 is a schematic diagram of another exhaust gas treatment system according to the first embodiment.
- FIG. 6 is a schematic diagram of another exhaust gas treatment system according to the second embodiment.
- FIG. 1 is a schematic diagram of an exhaust gas treatment system according to an embodiment of the present invention.
- the exhaust gas 12 from the boiler 11 is first removed from the nitrogen oxide (NOx) in the exhaust gas 12 by the denitration device 13 and then the air heater AH.
- NOx nitrogen oxide
- the air heater AH The air supplied to the boiler 11 by being led to is heated.
- the exhaust gas 12 is introduced into a dry electrostatic precipitator 14 which is a dust removing device, and dust is removed.
- the exhaust gas 12 is introduced into the desulfurizer 15 to remove sulfur oxides (SOx).
- the exhaust gas 12 is cooled by the cooling tower 16, it is introduced into the CO 2 recovery device 17 to remove carbon dioxide, and the purified gas 18 is released from the top of the CO 2 absorption tower to the atmosphere outside the system.
- the dust removed by the electric dust collector 14 is separately subjected to ash treatment 14a.
- mist generation substance removing apparatus for removing mist generating substance which is a source of mist generated in a CO 2 absorption tower of the CO 2 recovery apparatus 17 20 Is provided.
- the exhaust gas treatment system in prior to introducing the CO 2 recovering apparatus 17, is provided with the mist generator substance remover 20, the exhaust gas as it is introduced into the CO 2 absorber of CO 2 recovering apparatus 17
- the amount of mist generating substances in 12 is greatly reduced.
- the amount of the CO 2 absorbing liquid hereinafter also referred to as “absorbing liquid”
- the loss of the absorbing liquid scattered outside the system is greatly reduced, so that it is not replenished more than necessary, and an increase in running cost in exhaust gas treatment can be suppressed.
- the mist generating material removed by the mist generating material removing apparatus 20 according to the present invention is a SO 3 mist, nitric acid mist, hydrochloric acid mist, water vapor mist, etc., which is a substance that causes mist generation in the CO 2 absorption tower. .
- the apparatus which performs the removal in the gas state before becoming mist is also included in the mist generating substance removing apparatus 20 according to the present invention.
- the mist generating substance Since the exhaust gas 12 from the boiler 11 is in a high temperature state, the mist generating substance initially exists in a gas state. Thereafter, the exhaust gas is cooled in the process of passing through the electrostatic precipitator and the desulfurization device, so that the mist generating substance changes from the gas state to the mist state.
- the mist particle size of the mist generating substance is 3.0 ⁇ m or less.
- FIG. 2 is a conceptual diagram of the mechanism of the accompanying absorption liquid accompanying the generation of mist.
- Figure 3-1 photograph showing a white smoke relief state in the CO 2 absorption tower
- FIG. 3-2 is a photograph showing a white smoke generation state in the CO 2 absorption tower.
- SO 3 mist will be described as an example, but the same applies to other mists.
- the exhaust gas 12 from the boiler 11 is subjected to gas purification treatment such as denitration, dust removal and desulfurization, the exhaust gas 12 is cooled by the cooling tower 16, and the gas temperature becomes about 50 ° C. In this temperature state, since it is below the acid dew point, it is SO 3 mist (for example, 0.1 to 1.0 ⁇ m). In the SO 3 mist 50, SO 3 becomes a nucleus 51, and water vapor 52 is taken around the core 51.
- gas purification treatment such as denitration, dust removal and desulfurization
- the absorbing liquid is sprayed from the nozzle and falls, and CO 2 is absorbed by the absorbing liquid by bringing the falling absorbing liquid and exhaust gas into countercurrent contact.
- the exhaust gas 12 is introduced from below the CO 2 absorption tower and discharged upward. At this time, the SO 3 mist 50 is not absorbed by the absorption liquid and rises in the same manner as the gas flow of the exhaust gas 12.
- the absorbing liquid and water when the absorbing liquid is supplied from the nozzle, the absorbing liquid and water partially evaporate as the absorbing liquid falls, and gaseous absorbing liquid 41G and water vapor 42 are generated. Further, the gaseous absorbent 41G and the water vapor 42 further increase when the temperature of the absorbent rises due to, for example, the exothermic reaction of the absorbent when CO 2 is absorbed.
- an SO 3 mist (blowing mist) 53 containing an enlarged absorbent for example, about 0.5 to 2.0 ⁇ m
- the SO 3 mist 50 in the exhaust gas 12 before being introduced into the CO 2 recovery device 17 takes in the gaseous absorbent 41G and the water vapor 42 in the CO 2 absorption tower, and the SO 3 mist 53 containing the absorbent. And accompanying the exhaust gas 12, it is scattered from the top of the CO 2 absorption tower. Therefore, a loss of the absorbing liquid occurs.
- FIGS. 3-1 and 3-2 The state of white smoke generation in this CO 2 absorption tower is shown in FIGS. 3-1 and 3-2.
- the mist generating substance removing device 20 provided for the flue gas 12 to be introduced into the CO 2 absorption tower, a case with reduced amount of mist generation material below a predetermined amount, the CO 2 absorber the scattering of sO 3 mist (enlarged mist) 53 containing the absorbing liquid in the inner greatly reduced, showing a state in which generation of white smoke is suppressed.
- the mist generated in the CO 2 absorption tower refers to SO 3 mist (blowing mist) 53 containing an absorbing solution.
- SO 3 mist Blowing mist
- the presence or absence of the generation of this enlarged mist can be confirmed by the presence or absence of generation of white smoke.
- the generation of white smoke is eliminated, and consequently This prevents the absorption liquid from scattering.
- the enlarged mist is taken in by the gaseous absorbent 41G alone and the gaseous water vapor 42 alone in the CO 2 absorption tower with respect to the SO 3 mist 50 in the exhaust gas 12.
- SO 3 mists each containing absorption liquid (enlarged mist) 53A may become an SO 3 mist (enlarged mist) 53B containing water vapor.
- the mist (blowing mist) 53B containing water vapor although there is no loss of the absorption liquid, there is the generation of white smoke of the purified gas 18 discharged out of the system. Reduction is necessary.
- mist generated in a CO 2 absorption tower of the CO 2 recovery apparatus 17 SO 3 mists containing absorption liquid is enlarged mist
- mist generating substance removing device 20 that removes the mist generating substance that is the generation source of the gas, it is possible to significantly reduce the loss of the absorbing liquid scattered from the CO 2 absorption tower to the outside of the system.
- the mist generating substance removing device 20 is provided on the upstream side of the dry electrostatic precipitator 14, between the dry electrostatic precipitator 14 and the desulfurization device 15, before or after the cooling tower 16, or integrally with the cooling tower 16. You may do it.
- the SO 3 mist 50 is reduced to 3 ppm or less in order to prevent white smoke in the CO 2 absorption tower and scattering of the absorption liquid. preferable. This is because, when the SO 3 mist 50 is reduced to 3 ppm or less, the prevention of scattering is suppressed and, for example, the amine-based absorption liquid is prevented from being deteriorated by SO 3 .
- the absorption liquid is prevented from scattering and the absorption liquid is prevented from being deteriorated, it is possible to reduce the number of regeneration processes in the absorption liquid regenerating apparatus (reclaiming apparatus), and further, the absorption liquid loss Is greatly reduced, the amount of replenishment of the absorbent can be reduced. Therefore, the system efficiency of the exhaust gas treatment system can be greatly improved.
- the electrostatic precipitator has been described as an example of the dust removing device.
- the present invention is not limited to this as long as it removes the dust in the exhaust gas 12, and other than the electrostatic precipitator. Examples thereof include a bug filter and a venturi scrubber.
- FIG. 4 is a schematic diagram of the exhaust gas treatment system according to the first embodiment.
- FIG. 5 is a schematic diagram of another exhaust gas treatment system according to the first embodiment.
- SO 3 will be described as an example of a mist generating material, but the present invention is not limited to this.
- the exhaust gas treatment system 10 ⁇ / b> A according to the first embodiment includes a denitration device 13 that removes nitrogen oxides in the exhaust gas 12 from a boiler (for example, a coal fired boiler) 11 and a downstream side of the denitration device 13.
- a cooling tower 16 having a cooling section 16a for lowering the gas temperature, an absorption tower 17A for removing CO 2 in the exhaust gas 12 by contacting with the absorption liquid, and CO 2 from the absorption liquid to release CO 2.
- a CO 2 recovery device 17 composed of a regeneration tower 17B for regenerating the absorbing solution.
- the calcium carbonate spray device 31 is provided between the electrostatic precipitator 14 and the desulfurization device 15, and calcium carbonate (CaCO 3 ) is contained in the exhaust gas 12. Spraying. Further, a heat exchanger 32 for lowering the exhaust gas temperature is provided on the upstream side of the sprayed downstream side desulfurization device 15. The calcium carbonate spray device 31 and the heat exchanger 32 according to the present embodiment function as the mist generating material removing device 20.
- the gaseous SO 3 is changed to mist SO 3 and the CaCO 3 (limestone) sprayed on the exhaust gas 12 is added. ) to neutralize the mist sO 3 in, and a non-gas 12 so as to remove the mist of sO 3.
- the SO 3 is mist-generating substance in the exhaust gas 12 from the gas state to a mist state, the result of removing the mist mist generating material, the introduction amount of SO 3 mists 50 to CO 2 recovery apparatus 17 Reduction will be achieved. Therefore, the generation of white smoke of the purified gas 18 discharged from the CO 2 absorption tower 17A due to mist is suppressed, and the accompanying of the absorbing liquid 41 is suppressed. As a result, it is possible to provide an exhaust gas treatment system in which the loss of the absorbing liquid 41 is greatly reduced.
- the exhaust gas 12 from which the dust is removed by the three electrostatic precipitators 14 removes sulfur oxides in the exhaust gas 12 by the desulfurization device 15, and the removed sulfur oxides supply limestone (CaCO 3 ) 15a and oxidizing air 15b. Then, the lime / gypsum method is used to make the gypsum 15c, and the desulfurization drainage 15d is treated separately.
- reference numeral 17a denotes a reboiler
- 17b denotes saturated steam
- 17c denotes condensed water
- 17d denotes a separation drum
- 17e denotes recovered CO 2
- 17f denotes an absorption liquid heat exchanger.
- the exhaust gas 12 desulfurized by the desulfurization device 15 is cooled to an exhaust gas temperature of 50 ° C. or less by a cooling tower 16 and introduced into a CO 2 recovery device 17 composed of an absorption tower 17A and a regeneration tower 17B.
- CO 2 is removed by, for example, an amine-based absorption liquid 41.
- the amount of SO 3 mist introduced into the CO 2 recovery device 17 is reduced. Therefore, the generation of white smoke of the purified gas 18 discharged from the absorption tower 17A due to mist is suppressed, and the accompanying of the absorbing liquid 41 is suppressed. As a result, it is possible to provide an exhaust gas treatment system with no loss of absorption liquid.
- an amine-based absorbent is illustrated as the absorbent, but the absorbent of the present invention is not limited to the amine-based absorbent.
- the absorbent other than the amine-based absorbent include amino acid-based absorbent, ionic liquid absorbent, and hot potassium carbonate absorbent composed of potassium carbonate and amine.
- FIG. 5 is a schematic diagram of an exhaust gas treatment system according to a modification of the first embodiment.
- the exhaust gas treatment system 10 ⁇ / b> B is provided with a finish desulfurization unit 16 b in the lower part of the cooling tower 16, and limestone (CaCO 3 ) 15 a.
- limestone (CaCO 3 ) 15 a are supplied to form gypsum 15c by the lime / gypsum method.
- a strong alkaline agent such as sodium hydroxide (NaOH) may be added together with limestone.
- a liquid column type is used as a method for supplying the absorbing liquid for desulfurization, but the present invention is not limited to this, and any of a watering type, a jet type, and a filling type is used. be able to.
- a desulfurization absorbing solution used in the finish desulfurization section 16b in addition to limestone (CaCO 3 ), strong alkali such as NaOH, Na 2 CO 3 , NaHCO 3 , Ca (OH) 2 , Mg (OH) 2, etc. Agents can be exemplified.
- a strong alkali agent By using a strong alkali agent, it is possible to further improve the desulfurization performance.
- it is effective when the exhaust gas 12 having a high concentration of sulfur oxide is introduced, and the exhaust gas to be introduced into the CO 2 recovery device 17.
- the concentration of sulfur oxide in 12 can be made extremely low. Compared with the lime / gypsum method, the desulfurization performance is also improved, and even when the concentration of the sulfur oxide in the introduced exhaust gas 12 is high, the desulfurization performance is exhibited, which is preferable.
- the calcium carbonate spray device 31 and the heat exchanger 32 are provided as the mist generating material removing device 20, the exhaust gas from which CO 2 has been removed is discharged to the outside. In this case, it is possible to provide an exhaust gas treatment system that is not accompanied by the absorption liquid 41.
- FIG. 6 is a schematic diagram of an exhaust gas treatment system according to the second embodiment.
- the exhaust gas treatment system 10 ⁇ / b> C according to the second embodiment includes a denitration device 13 that removes nitrogen oxides in the exhaust gas 12 from a boiler (for example, a coal fired boiler) 11 and a downstream side of the denitration device 13.
- a boiler for example, a coal fired boiler
- the desulfurization device 15 Provided in the exhaust gas 12 to remove the dust in the exhaust gas 12, the desulfurization device 15 provided in the downstream side of the electrostatic dust collector 14 to remove the sulfur oxide in the exhaust gas 12, and the upstream side of the desulfurization device A heat exchanger that lowers the exhaust gas temperature below the acid dew point, a cooling tower 16 that is provided on the downstream side of the desulfurization device 15 and lowers the gas temperature, and contacts CO 2 in the exhaust gas 12 with the absorbing liquid.
- an absorption tower 17A to be removed by, as well as recover the CO 2 to release CO 2 from the absorbing solution is for and a CO 2 recovery device 17 comprising a regenerator 17B for reproducing the absorption liquid.
- the heat exchanger 32 is provided on the upstream side of the desulfurization device 15, and the exhaust gas temperature is cooled below the acid dew point, so that the mist generating substance in the exhaust gas is changed from the gas state to the condensed state, thereby To be removed.
- the heat exchanger 32 is not a general steel heat exchange member but is made of a corrosion-resistant material. This is because it is necessary for stable operation over a long period of time that SO 3 which is a mist generating substance changes from a gas state to a condensed state (liquid state) and can withstand corrosion by sulfurous acid or sulfuric acid.
- an acid-resistant organic material or inorganic material can be used as the corrosion-resistant organic material or inorganic material.
- the organic material for example, “Teflon” such as polytetrafluoroethylene (PTFE) is used. (Registered trademark) ".
- PTFE polytetrafluoroethylene
- the constituent member of the heat exchanger may be coated with the corrosion-resistant material, but the constituent member itself may be manufactured from the corrosion-resistant material.
- the heat exchanger 32 functions as the mist generating substance removing device 20.
- SO 3 that is a mist generating substance in the exhaust gas 12 is changed from a gas state to a condensed state (liquid state), and as a result of removing the mist-like mist generating substance, the SO 3 mist 50 to the CO 2 recovery device 17 is obtained.
- This will reduce the amount of introduction. Therefore, the generation of white smoke of the purified gas 18 discharged from the CO 2 absorption tower 17A due to mist is suppressed, and the accompanying of the absorbing liquid 41 is suppressed.
- the condensed condensate is separately collected from the heat exchanger.
- the cooling temperature of the exhaust gas in the heat exchanger 32 is preferably not more than the acid dew point, but more preferably, the temperature of the exhaust gas after the heat exchange is cooled to 100 to 60 ° C.
- the exhaust gas temperature after heat exchange is set to 100 to 85 ° C, whereas it can be cooled to 85 ° C or lower, so SO 3 which is a mist generating substance is more aggressive. Therefore, it can be condensed and removed.
- the exhaust gas 12 desulfurized by the desulfurization device 15 is cooled to an exhaust gas temperature of 50 ° C. or less by a cooling tower 16 and introduced into a CO 2 recovery device 17 composed of an absorption tower 17A and a regeneration tower 17B.
- CO 2 is removed by, for example, an amine-based absorption liquid 41.
- the amount of SO 3 mist introduced into the CO 2 recovery device 17 is reduced. Therefore, the generation of white smoke of the purified gas 18 discharged from the absorption tower 17A due to mist is suppressed, and the accompanying of the absorbing liquid 41 is suppressed. As a result, it is possible to provide an exhaust gas treatment system with no loss of absorption liquid.
- an alkaline neutralizing agent spraying device for spraying an alkaline neutralizing agent between the dust removing device and the heat exchanger is provided, the exhaust gas 12 is cooled by the heat exchanger, and the mist generating substance in the exhaust gas 12 is provided. May be changed from the gas state to the mist state, and the mist generating substance in the mist state may be neutralized with an alkaline neutralizing agent and removed.
- the removal of the mist generating substance by cooling in the heat exchanger the synergistic effect of the neutralizing effect of the mist SO 3 of using an alkaline neutralizing agent, mist SO 3 from the non-gas 12 The removal efficiency may be improved.
- examples of the alkali-based neutralizer include calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ) and the like in addition to the calcium carbonate (CaCO 3 ) exemplified in Example 1. .
- the heat exchanger 32 having corrosion resistance is provided as the mist generating substance removing device 20, so the stage before the exhaust gas 12 is introduced into the CO 2 recovery device. Therefore, when the exhaust gas from which the CO 2 has been removed is discharged from the CO 2 recovery device to the outside, the exhaust gas treatment system without the absorption liquid 41 can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Electrostatic Separation (AREA)
Abstract
Description
このようなCO2吸収液の系外への飛散がある場合には、CO2吸収液の大幅なロスにつながると共に、CO2吸収液を必要以上に補充することとなるので、系外へCO2吸収液が飛散することを抑制する必要がある。
図1に示すように、本発明に係る実施形態の排ガス処理システム10において、ボイラ11からの排ガス12は、脱硝装置13で排ガス12中の窒素酸化物(NOx)を除去した後、まずエアヒータAHに導かれてボイラ11に供給される空気を加熱する。その後排ガス12は、除塵装置である乾式の電気集塵機14に導入されて煤塵が除去される。次に、排ガス12は、脱硫装置15に導入されて硫黄酸化物(SOx)が除去される。次いで、排ガス12は冷却塔16で冷却された後、CO2回収装置17に導入されて、二酸化炭素を除去し、CO2吸収塔の塔頂部から浄化ガス18が系外である大気に放出される。なお、電気集塵機14で除去された煤塵は別途灰処理14aされる。
本発明でミスト発生物質のミストの粒径は、3.0μm以下をいう。
図2は、ミスト発生に伴う吸収液の同伴のメカニズムの概念図である。図3−1は、CO2吸収塔内での白煙軽減状態を示す写真、図3−2は、CO2吸収塔内での白煙発生状態を示す写真である。ミスト発生物質として、SO3ミストを例にして説明するが、他のミストでも同様である。ボイラ11からの排ガス12は、脱硝、煤塵除去及び脱硫等のガス浄化処理がなされ、冷却塔16で排ガス12が冷却され、ガス温度は50℃程度となる。この温度状態では、酸露点以下であるので、SO3ミスト(例えば0.1~1.0μm)となっている。
このSO3ミスト50は、SO3が核51となり、その周囲に水蒸気52が取り込まれたものである。
また、このガス状吸収液41G及び水蒸気42は、CO2を吸収する際の例えば吸収液の発熱反応により吸収液の温度が上昇することで更に増加する。
図3−1では、CO2吸収塔内に導入する排ガス12に対してミスト発生物質除去装置20を設けて、所定量以下にミスト発生物質の量を低減させた場合であり、CO2吸収塔内での吸収液を含むSO3ミスト(肥大化ミスト)53の飛散を大幅に低減し、白煙の発生が抑制されている状態を示す。図3−2では、CO2吸収塔内に導入する排ガス12に対してミスト発生物質除去装置20を設けずに、排ガス12をそのまま導入した場合であり、CO2吸収塔内での吸収液を含むSO3ミスト(肥大化ミスト)53の飛散が生じ、白煙が発生している状態を示す。
この際、水蒸気を含むミスト(肥大化ミスト)53Bの場合には、吸収液のロスは無いものの、系外への排出する浄化ガス18の白煙の発生があるので、やはり、ミスト発生物質の低減が必要となる。
よって、本発明によれば、CO2回収装置17に導入する以前において、ミスト発生物質除去装置20を設けることにより、系外にCO2を除去した排ガス12を排出する際に、CO2吸収液の同伴を大幅に低減すると共に、適正な排ガス処理を行うことができるものとなる。
ここで、CO2回収装置17に排ガス12をその導入する以前において、SO3ミスト50を3ppm以下まで低減するのが、CO2吸収塔内での白煙防止及び吸収液の飛散防止のために好ましい。これは、SO3ミスト50を3ppm以下まで低減すると、飛散防止を抑制すると共に、例えばアミン系の吸収液がSO3により劣化するのを防止するためでもある。
図4に示すように、実施例1に係る排ガス処理システム10Aは、ボイラ(例えば石炭焚ボイラ)11からの排ガス12中の窒素酸化物を除去する脱硝装置13と、脱硝装置13の後流側に設けられ、排ガス12中の煤塵を除去する電気集塵機14と、電気集塵機14の後流側に設けられ、排ガス12中の硫黄酸化物を除去する脱硫装置15と、脱硫装置15の後流側に設けられ、ガス温度を下げる冷却部16aを有する冷却塔16と、前記排ガス12中のCO2を吸収液に接触させて除去する吸収塔17Aと、吸収液からCO2を放出してCO2を回収すると共に、吸収液を再生する再生塔17BとからなるCO2回収装置17とを具備するものである。
この結果、吸収液のロスの無い排ガス処理システムを提供することができる。
本実施例では、仕上げ脱硫部16bにおいて、脱硫用吸収液の供給方法として、液柱式を用いているが、本発明はこれに限定されず、散水式、噴流式、充填式のいずれも用いることができる。
図6に示すように、実施例2に係る排ガス処理システム10Cは、ボイラ(例えば石炭焚ボイラ)11からの排ガス12中の窒素酸化物を除去する脱硝装置13と、脱硝装置13の後流側に設けられ、排ガス12中の煤塵を除去する電気集塵機14と、電気集塵機14の後流側に設けられ、排ガス12中の硫黄酸化物を除去する脱硫装置15と、前記脱硫装置の前流側に設けられ、排ガス温度を酸露点以下に降下させる熱交換器と、脱硫装置15の後流側に設けられ、ガス温度を下げる冷却塔16と、前記排ガス12中のCO2を吸収液に接触させて除去する吸収塔17Aと、吸収液からCO2を放出してCO2を回収すると共に、吸収液を再生する再生塔17BとからなるCO2回収装置17とを具備するものである。
この場合、耐腐食性材料を熱交換器の構成部材に被覆処理してもよいが、構成部材そのものを耐腐食性材料で製造するようにしてもよい。
よって、本実施例においては、熱交換器32がミスト発生物質除去装置20として機能している。
従来においては、熱交換器の腐食性の観点から、熱交換後の排ガス温度を100~85℃としているのに対して、85℃以下に冷却できるので、ミスト発生物質であるSO3をより積極的に凝縮除去することができることとなる。
この結果、吸収液のロスの無い排ガス処理システムを提供することができる。
これにより、熱交換器での冷却によるミスト発生物質の除去と、アルカリ系中和剤を用いてのミスト状のSO3を中和作用との相乗効果により、非ガス12からミスト状のSO3の除去効率を向上させるようにしてもよい。
11 ボイラ
12 排ガス
13 脱硝装置
14 電気集塵機
15 脱硫装置
16 冷却塔
16a 冷却部
16b 仕上げ脱硫部
17 CO2回収装置
17A 吸収塔
17B 再生塔
18 浄化ガス
20 ミスト発生物質除去装置
31 炭酸カルシウム噴霧装置
32 熱交換器
Claims (8)
- ボイラからの排ガス中の煤塵を除去する除塵装置と、
除塵後の排ガス中の硫黄酸化物を除去する脱硫装置と、
脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却塔と、
前記排ガス中のCO2をCO2吸収液に接触させて除去する吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、
前記脱硫装置の前流側に設けられ、排ガス温度を降下させる熱交換器と、
炭酸カルシウムを除塵装置と熱交換器との間に噴霧する炭酸カルシウム噴霧装置とを具備し、
排ガス中のミスト発生物質をガス状態からミスト状態とし、ミスト状態のミスト発生物質を炭酸カルシウムにより中和させ、除去してなることを特徴とする排ガス処理システム。 - 請求項1において、
排ガス中の窒素酸化物を除去する脱硝装置を有することを特徴とする排ガス処理システム。 - ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、
脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却塔と、
前記排ガス中のCO2をCO2吸収液に接触させて除去する吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、
前記脱硫装置の前流側に設けられ、排ガス温度を酸露点以下に降下させる熱交換器とを具備し、
前記熱交換器において、排ガス中のミスト発生物質をガス状態から凝縮状態とし、ミスト発生物質を除去してなることを特徴とする排ガス処理システム。 - 請求項3において、
前記熱交換器と前記脱硫装置との間にアルカリ系中和剤を噴霧するアルカリ系中和剤噴霧装置を具備し、
前記熱交換器により排ガス中のミスト発生物質をガス状態からミスト状態とし、ミスト状態のミスト発生物質をアルカリ系中和剤により中和させ、除去してなることを特徴とする排ガス処理システム。 - 請求項3又は4において、
排ガス中の窒素酸化物を除去する脱硝装置と、煤塵を除去する乾式の電気集塵機とを有することを特徴とする排ガス処理システム。 - 排ガス中のCO2をCO2吸収液に接触させて吸収・除去するCO2回収装置の前流側において、
排ガス中の煤塵を除去した後流側で、硫黄酸化物を除去する脱硫装置の前流側において、排ガス温度を降下させ、炭酸カルシウムを噴霧して、排ガス中のミスト発生物質をガス状態からミスト状態とし、ミスト状態のミスト発生物質を炭酸カルシウムにより中和させ、除去し、
前記CO2回収装置に導入する排ガス中のミスト発生物質の量を所定量以下に低減することを特徴とする排ガス処理方法。 - 排ガス中のCO2をCO2吸収液に接触させて吸収・除去するCO2回収装置の前流側において、
排ガス中の煤塵を除去した後流側で、硫黄酸化物を除去する脱硫装置の前流側において、排ガス温度を降下させつつ、排ガス中のミスト発生物質をガス状態から凝縮状態とし、前記CO2回収装置に導入する排ガス中のミスト発生物質の量を所定量以下に低減することを特徴とする排ガス処理方法。 - 請求項7において、
熱交換器の前流側において、アルカリ中和剤を噴霧して、排ガス中のミスト発生物質をガス状態からミスト状態としつつ、ミスト状態のミスト発生物質をアルカリ中和剤により中和させ、除去することを特徴とする排ガス処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012518481A JPWO2011152551A1 (ja) | 2010-05-31 | 2011-05-31 | 排ガス処理システム及び方法 |
US13/700,924 US8679431B2 (en) | 2010-05-31 | 2011-05-31 | Air pollution control system and method |
EP11789951.8A EP2578298B1 (en) | 2010-05-31 | 2011-05-31 | Exhaust gas processing method |
CA2801159A CA2801159C (en) | 2010-05-31 | 2011-05-31 | Air pollution control system and method |
AU2011259878A AU2011259878B2 (en) | 2010-05-31 | 2011-05-31 | Exhaust gas processing system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010125393 | 2010-05-31 | ||
JP2010-125393 | 2010-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011152551A1 true WO2011152551A1 (ja) | 2011-12-08 |
Family
ID=45066905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062871 WO2011152551A1 (ja) | 2010-05-31 | 2011-05-31 | 排ガス処理システム及び方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8679431B2 (ja) |
EP (1) | EP2578298B1 (ja) |
JP (2) | JPWO2011152551A1 (ja) |
AU (1) | AU2011259878B2 (ja) |
CA (1) | CA2801159C (ja) |
WO (1) | WO2011152551A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103055736A (zh) * | 2012-12-20 | 2013-04-24 | 济南裕兴化工有限责任公司 | 脱硫吸收塔下部浆液搅拌装置 |
US8871164B2 (en) | 2010-05-31 | 2014-10-28 | Mitsubushi Heavy Industries, Ltd. | Air pollution control system and method |
US8894941B2 (en) | 2010-05-31 | 2014-11-25 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and method |
US20150241059A1 (en) * | 2012-10-11 | 2015-08-27 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and air pollution control method |
CN105169917A (zh) * | 2015-09-26 | 2015-12-23 | 国网河南省电力公司电力科学研究院 | 一种基于氨氮摩尔比检测及调控的sncr-scr联合脱硝系统和方法 |
EP2859936A4 (en) * | 2012-05-25 | 2016-03-09 | Mitsubishi Heavy Ind Ltd | DISCHARGE GAS TREATMENT DEVICE |
US9381461B2 (en) | 2010-05-31 | 2016-07-05 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and method |
CN111318101A (zh) * | 2020-03-11 | 2020-06-23 | 佛山市蓝颂科技有限公司 | 一种废气处理设备 |
US10835862B2 (en) | 2010-05-31 | 2020-11-17 | Mitsubishi Heavy Industries Engineering, Ltd. | Air pollution control system and method |
WO2022014553A1 (ja) * | 2020-07-13 | 2022-01-20 | ナノミストテクノロジーズ株式会社 | 排気ガスの浄化方法と浄化装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013015280A1 (de) | 2013-09-16 | 2015-03-19 | Rwe Power Aktiengesellschaft | Verfahren und System zur Gaswäsche von aerosolhaltigen Prozessgasen |
WO2015060795A1 (en) * | 2013-10-21 | 2015-04-30 | Dora Teknolojik Bilgisayar Ürünleri Endüstrisi Anonim Şirketi | Process for the minimization/elimination of so2 and co2 emission emerging from the combustion of coal |
CN103861440B (zh) * | 2013-12-26 | 2016-01-20 | 张明鑫 | 层烧炉脱硫脱氮烟气处理工艺 |
US9174165B1 (en) * | 2014-08-28 | 2015-11-03 | Alstom Technology Ltd | Acidic gas removal using dry sorbent injection |
JP7054581B2 (ja) | 2018-01-30 | 2022-04-14 | 株式会社東芝 | 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法 |
CN108479332A (zh) * | 2018-04-16 | 2018-09-04 | 天津华赛尔传热设备有限公司 | 一种低温烟气脱硫脱硝消白系统 |
CN109569176B (zh) * | 2019-01-23 | 2021-07-16 | 江苏迪思朗环境科技有限公司 | 用于气相白炭黑的环境处理系统 |
CN110067611A (zh) * | 2019-04-22 | 2019-07-30 | 东南大学 | 一种钙循环法捕集co2联合液氧储能的调峰系统及工作方法 |
CN112023671A (zh) * | 2020-09-10 | 2020-12-04 | 上海康恒环境股份有限公司 | 一种垃圾焚烧烟气超低排放低温消白系统 |
JP7309983B1 (ja) * | 2022-08-08 | 2023-07-18 | 株式会社タクマ | 二酸化炭素回収装置、及び二酸化炭素回収方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03193116A (ja) | 1989-12-25 | 1991-08-22 | Mitsubishi Heavy Ind Ltd | 燃焼排ガス中のco↓2の除去方法 |
JPH07241440A (ja) * | 1994-03-08 | 1995-09-19 | Babcock Hitachi Kk | 燃焼排ガス浄化方法および装置 |
JPH10305210A (ja) * | 1997-03-03 | 1998-11-17 | Mitsubishi Heavy Ind Ltd | 排煙処理方法及び設備 |
JP2001347186A (ja) * | 2000-06-09 | 2001-12-18 | Ishikawajima Harima Heavy Ind Co Ltd | 排煙除塵装置 |
JP2005087828A (ja) * | 2003-09-16 | 2005-04-07 | Kansai Electric Power Co Inc:The | 脱硫脱炭酸方法及びその装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5486879A (en) | 1977-12-23 | 1979-07-10 | Sanki Eng Co Ltd | Wet type electric dust collector with harmful gas remover |
DE4133581A1 (de) | 1991-10-10 | 1993-04-15 | Ver Kunststoffwerke Gmbh | Verfahren und vorrichtung zum reinigen von abgasen |
JP3504674B2 (ja) | 1992-03-03 | 2004-03-08 | 関西電力株式会社 | 燃焼排ガス中の二酸化炭素と硫黄酸化物を除去する方法 |
JP4920993B2 (ja) * | 2005-04-26 | 2012-04-18 | 三菱重工メカトロシステムズ株式会社 | 排ガス処理装置および排ガス処理方法 |
EP2127728B1 (en) | 2006-12-27 | 2019-03-13 | Mitsubishi Hitachi Power Systems, Ltd. | Method and apparatus for treating discharge gas |
EP2103339B8 (en) * | 2006-12-27 | 2021-01-20 | Mitsubishi Power, Ltd. | Exhaust gas treating method and apparatus |
JP4318055B2 (ja) * | 2007-01-15 | 2009-08-19 | 株式会社日立プラントテクノロジー | 硫黄酸化物を含む排ガスの処理方法およびその装置 |
JP2008200561A (ja) * | 2007-02-16 | 2008-09-04 | Hitachi Plant Technologies Ltd | 硫黄酸化物を含む排ガスの処理方法 |
JP5384799B2 (ja) * | 2007-03-30 | 2014-01-08 | 三菱重工メカトロシステムズ株式会社 | 排ガス処理装置および排ガス処理方法 |
JP5093205B2 (ja) * | 2009-09-30 | 2012-12-12 | 株式会社日立製作所 | 二酸化炭素回収型発電システム |
AU2011259875B2 (en) * | 2010-05-31 | 2014-08-07 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and method |
JPWO2011152550A1 (ja) | 2010-05-31 | 2013-08-01 | 三菱重工業株式会社 | 排ガス処理システム及び方法 |
US8025860B1 (en) | 2010-07-08 | 2011-09-27 | Air Products And Chemicals, Inc. | Removal of acid mists |
-
2011
- 2011-05-31 US US13/700,924 patent/US8679431B2/en active Active
- 2011-05-31 JP JP2012518481A patent/JPWO2011152551A1/ja active Pending
- 2011-05-31 WO PCT/JP2011/062871 patent/WO2011152551A1/ja active Application Filing
- 2011-05-31 EP EP11789951.8A patent/EP2578298B1/en active Active
- 2011-05-31 AU AU2011259878A patent/AU2011259878B2/en active Active
- 2011-05-31 CA CA2801159A patent/CA2801159C/en active Active
-
2015
- 2015-06-30 JP JP2015132030A patent/JP6045654B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03193116A (ja) | 1989-12-25 | 1991-08-22 | Mitsubishi Heavy Ind Ltd | 燃焼排ガス中のco↓2の除去方法 |
JPH07241440A (ja) * | 1994-03-08 | 1995-09-19 | Babcock Hitachi Kk | 燃焼排ガス浄化方法および装置 |
JPH10305210A (ja) * | 1997-03-03 | 1998-11-17 | Mitsubishi Heavy Ind Ltd | 排煙処理方法及び設備 |
JP2001347186A (ja) * | 2000-06-09 | 2001-12-18 | Ishikawajima Harima Heavy Ind Co Ltd | 排煙除塵装置 |
JP2005087828A (ja) * | 2003-09-16 | 2005-04-07 | Kansai Electric Power Co Inc:The | 脱硫脱炭酸方法及びその装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2578298A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8871164B2 (en) | 2010-05-31 | 2014-10-28 | Mitsubushi Heavy Industries, Ltd. | Air pollution control system and method |
US8894941B2 (en) | 2010-05-31 | 2014-11-25 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and method |
US9381461B2 (en) | 2010-05-31 | 2016-07-05 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and method |
US10835862B2 (en) | 2010-05-31 | 2020-11-17 | Mitsubishi Heavy Industries Engineering, Ltd. | Air pollution control system and method |
EP2859936A4 (en) * | 2012-05-25 | 2016-03-09 | Mitsubishi Heavy Ind Ltd | DISCHARGE GAS TREATMENT DEVICE |
US9789438B2 (en) | 2012-05-25 | 2017-10-17 | Mitsubishi Heavy Industries, Ltd. | Air pollution control apparatus |
US20150241059A1 (en) * | 2012-10-11 | 2015-08-27 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and air pollution control method |
US9568193B2 (en) * | 2012-10-11 | 2017-02-14 | Mitsubishi Heavy Industries, Ltd. | Air pollution control system and air pollution control method |
CN103055736A (zh) * | 2012-12-20 | 2013-04-24 | 济南裕兴化工有限责任公司 | 脱硫吸收塔下部浆液搅拌装置 |
CN105169917A (zh) * | 2015-09-26 | 2015-12-23 | 国网河南省电力公司电力科学研究院 | 一种基于氨氮摩尔比检测及调控的sncr-scr联合脱硝系统和方法 |
CN111318101A (zh) * | 2020-03-11 | 2020-06-23 | 佛山市蓝颂科技有限公司 | 一种废气处理设备 |
WO2022014553A1 (ja) * | 2020-07-13 | 2022-01-20 | ナノミストテクノロジーズ株式会社 | 排気ガスの浄化方法と浄化装置 |
Also Published As
Publication number | Publication date |
---|---|
US8679431B2 (en) | 2014-03-25 |
EP2578298B1 (en) | 2020-12-23 |
CA2801159C (en) | 2015-12-01 |
JPWO2011152551A1 (ja) | 2013-08-01 |
JP6045654B2 (ja) | 2016-12-14 |
CA2801159A1 (en) | 2011-12-08 |
AU2011259878A1 (en) | 2012-12-20 |
US20130156673A1 (en) | 2013-06-20 |
JP2015211969A (ja) | 2015-11-26 |
EP2578298A1 (en) | 2013-04-10 |
AU2011259878B2 (en) | 2015-01-15 |
EP2578298A4 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6045654B2 (ja) | Co2吸収液の飛散抑制方法 | |
JP6045653B2 (ja) | Co2吸収液の飛散抑制方法 | |
JP6045652B2 (ja) | Co2吸収液の飛散抑制方法 | |
WO2011152552A1 (ja) | 排ガス処理システム及び方法 | |
JP6104992B2 (ja) | Co2吸収液の飛散抑制方法 | |
WO2011152546A1 (ja) | 排ガス処理システム及び方法 | |
WO2011152547A1 (ja) | 排ガス処理システム及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789951 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012518481 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9993/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011789951 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2801159 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011259878 Country of ref document: AU Date of ref document: 20110531 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13700924 Country of ref document: US |