[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011148755A1 - Process for producing high-strength steel plate for welded structure - Google Patents

Process for producing high-strength steel plate for welded structure Download PDF

Info

Publication number
WO2011148755A1
WO2011148755A1 PCT/JP2011/060341 JP2011060341W WO2011148755A1 WO 2011148755 A1 WO2011148755 A1 WO 2011148755A1 JP 2011060341 W JP2011060341 W JP 2011060341W WO 2011148755 A1 WO2011148755 A1 WO 2011148755A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
less
temperature
toughness
plate thickness
Prior art date
Application number
PCT/JP2011/060341
Other languages
French (fr)
Japanese (ja)
Inventor
浩幸 白幡
龍治 植森
明彦 児島
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45003747&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011148755(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112012029698-1A priority Critical patent/BR112012029698B1/en
Priority to JP2011543021A priority patent/JP4897127B2/en
Publication of WO2011148755A1 publication Critical patent/WO2011148755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Definitions

  • the present invention relates to a method for producing a high-strength steel sheet having excellent toughness, particularly applied to welded structures such as ships, buildings, bridges, tanks, and marine structures. Further, the steel sheet of the present invention may be distributed as a secondary processed product processed into a steel pipe, a column or the like, and these are also targeted.
  • TMCP Thermo-Mechanical Control Process
  • This is a method of refining the structure of a steel sheet by a combination of appropriate heating, hot rolling, cooling, and heat treatment processes, as shown in Non-Patent Document 1, for example.
  • hot rolling CR (Controlled Rolling) performed in a temperature range in which austenite ( ⁇ ) does not recrystallize, and ACC (Accelerated Cooling) that generates fine ferrite ( ⁇ ) grains are particularly important.
  • Non-Patent Document 2 a technique for examining the effect of suppressing ⁇ grain growth on various nitrides, carbides, oxides, sulfides and the like generated in steel.
  • a technique for examining the effect of suppressing ⁇ grain growth on various nitrides, carbides, oxides, sulfides and the like generated in steel can be mentioned.
  • fine particles of TiN are generated in the steel, and ⁇ grain growth in the HAZ of the high heat input welded joint can be effectively suppressed (for example, Non-Patent Document 2).
  • the present invention is excellent in toughness of the base material and HAZ in which the process conditions are defined in order to precisely control the sequential change of the microstructure in the heating, rolling, cooling, and heat treatment processes in consideration of the influence of TiN.
  • a method for producing high-strength steel for welded structures is provided.
  • the strength of the steel sheet may be, for example, a yield strength of 315 MPa or more and 580 MPa or less, a tensile strength of 440 MPa or more and 720 MPa or less, a yield strength of 550 MPa or less, and a tensile strength of 470 MPa or more, 490 MPa or more, or 650 MPa or less or 620 MPa or less.
  • the plate thickness is, for example, 10 to 100 mm, the lower limit may be 12 mm, 20 mm, or 30 mm, and the upper limit may be 70 mm or 50 mm.
  • the gist of the present invention is as follows.
  • the said slab is mass%, Cu: 1.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Ni: 2.0% or less, V: 0.10% or less, B: 0.0030% Mg: 0.0050% or less, Ca: 0.0030% or less, REM: The manufacturing method of the high-strength steel sheet for welded structures as described in said (1)-(5) characterized by including 1 type or 2 types or less of 0.010% or less.
  • Nb amount and Ti amount, and appropriate heating conditions It is a figure which shows the relationship between Nb amount and suitable rough rolling conditions. It is a figure which shows the relationship between Nb amount and the lower limit of the time between passes of rough rolling. It is a figure which shows Nb amount and appropriate finish rolling conditions. It is a figure which shows the relationship between Nb amount and the upper limit of the time between passes of finishing rolling. It is a figure which shows the relationship between product thickness and the cumulative reduction rate of finish rolling.
  • a manufacturing method is important for improving the strength and toughness of a steel sheet.
  • heat the slab perform hot rolling at a high temperature that promotes recrystallization, and recrystallize repeatedly to refine the crystal grain size. be able to.
  • TMCP is applied when the plate thickness of the steel plate is large or when extremely excellent toughness is required.
  • TMCP TMCP
  • the slab is heated, and after rough rolling, generally, finish rolling is generally performed, followed by accelerated cooling.
  • Rough rolling is rolling in a high temperature range in order to refine the structure in a temperature range where ⁇ recrystallizes ( ⁇ recrystallization temperature range).
  • Finish rolling is performed in a temperature range ( ⁇ non-recrystallization temperature range) in which ⁇ does not recrystallize, and is a rolling in a low temperature range for sufficiently stretching ⁇ grains and accumulating strain, and controlled rolling (CR ).
  • ACC accelerated cooling
  • fine ferrite ( ⁇ ) grains are generated from ⁇ grains with accumulated strain.
  • the basic guidelines for obtaining a fine structure can be summarized as follows.
  • hot rolling in the ⁇ recrystallization temperature region is defined as rough rolling
  • hot pressure in the ⁇ non-recrystallization temperature region is defined as finish rolling.
  • Nb produces precipitates such as carbides and nitrides, has the effect of delaying recrystallization and increasing the non-recrystallization temperature range, and contributes to precipitation strengthening. Therefore, a part of the present inventors, according to Patent Document 2, controls the rolling temperature and rolling reduction of each pass of finish rolling according to the amount of Nb added in order to improve the strength and toughness of the steel sheet. (Refer to Patent Document 2).
  • TiN particles and oxide / sulfide particles such as Ti, Ca and Mg are used to suppress ⁇ grain coarsening and promote intragranular ⁇ transformation. Is common. Among these, TiN is easily finely dispersed in steel as compared with oxides and sulfides, and can also be used for controlling the structure of the base material.
  • TiN promotes or delays recrystallization to affect the toughness of the base material, and also acts as pinning particles to affect the HAZ toughness. Therefore, in order to improve the base metal and the HAZ toughness, it is necessary to control the heating temperature of hot rolling, the conditions of rough rolling, and further the conditions of finish rolling in consideration of the precipitation behavior of TiN.
  • the present inventors pay attention to the precipitation behavior of TiN, which is useful for preventing the coarsening of the HAZ structure and can also be used for the structure control of the base material, and details the sequential microstructural changes from the heating to the heat treatment process.
  • the present invention was completed by clarifying the conditions of each process, particularly the heating conditions of hot rolling, the rolling reduction and the time between passes, in order to refine the structure and secure TiN that contributes to pinning. I let you.
  • the production conditions of the present invention will be described in detail.
  • the heating temperature and holding time of hot rolling are extremely important for securing TiN that solidifies Nb having a large influence on the recrystallization behavior and improves HAZ toughness.
  • the heating temperature and holding time of hot rolling are very important for controlling the microstructure of the steel, and in order to ensure the toughness of the steel sheet (base material), a uniform and fine ⁇ structure is used. There is a need.
  • the important points in the heating process are the temperature and holding time that do not completely dissolve TiN, which is effective in suppressing the coarsening of ⁇ grains, while sufficiently dissolving Nb that contributes to increasing the non-recrystallization temperature range and increasing strength. It is to do.
  • the present inventors conducted various experiments and thermodynamic calculations on the precipitation behavior of Nb and Ti, and derived the following equations (3) and (4) based on the results.
  • Functional form of P h is in the tempering parameters used to carry out the conversion of the tempering temperature and time of the reference.
  • the left side of the inequality is the lower limit of the heating condition that changes according to the amount of Nb
  • the right side of the inequality is the upper limit of the heating condition that changes according to the amount of Ti.
  • Each coefficient was experimentally determined from the limit conditions for generating coarse ⁇ and the limit conditions for securing the amount of solute Nb.
  • the holding time was set to 30 minutes or more, which is for uniformly dissolving a trace alloy element such as Nb.
  • the holding time is defined as the time from when the temperature reaches 20 ° C. lower than the set furnace temperature until extraction, and the heating temperature is defined as the average temperature during that time.
  • FIG. 1 shows the lower limit of the heating conditions when Nb: 0.005% and 0.03%, and the upper limit of the heating conditions when Ti: 0.005% and 0.03%. If the lower limit of the heating temperature and holding time changes according to the Nb content, and slab heating is performed within a range that satisfies the conditions shown in FIG. Further, the upper limit of the heating temperature and holding time varies depending on the Ti content, and when the Ti amount is 0.005 to 0.03%, if slab heating is performed within the range shown in FIG. The coarsening can be suppressed. When the Ti amount is 0.003%, the curve indicated by the solid line in FIG. 1 moves downward, and when the Ti amount reaches 0.05%, the curve indicated by the dotted line in FIG. (Curve) moves upward.
  • the left side of the formula (5) represents the lower limit temperature at which recrystallization occurs
  • the right side represents the upper limit temperature at which recrystallization ⁇ does not grow. That is, in the function type of the equation (5), the distortion of each path, that is, the term of “ ⁇ ln (1-R j )” is larger, and the smaller the Nb amount, the easier the recrystallization occurs. This reflects the tendency that the recrystallized ⁇ grains become smaller and the grains grow more easily if the strain of ⁇ increases.
  • the coefficient of each term in the formula (5) was experimentally determined from the limit conditions for causing recrystallization and grain growth.
  • the left side of the formula (6) represents the lower limit time necessary for completing the recrystallization
  • the right side represents the upper limit time necessary for preventing the grain growth.
  • the function type of the equation (6) expresses the tendency that the larger the strain, the higher the temperature, and the smaller the Nb, the faster the recrystallization is completed and the easier the grain growth.
  • the coefficient of each term in the equation (6) was also experimentally determined.
  • FIG. 2 shows the rough rolling temperature, the lower limit and the upper limit of the rolling reduction when Nb is 0.005% and 0.03%.
  • FIG. 3 shows the minimum inter-path time for each Nb amount described above.
  • the steel sheet is thick or when extremely excellent toughness is required, it is preferable to perform finish rolling subsequent to rough rolling.
  • finish rolling After rough rolling, as described above, the structure has been refined to some extent, and since the temperature is low and the cooling rate increases as the plate thickness decreases, grain growth and coarsening of TiN are suppressed. The Therefore, the time until the finish rolling is started after the rough rolling is not particularly defined, but it takes 30 s to 180 s as the time for adjusting the temperature of the finish rolling (cooling time until the finish rolling temperature is reached). There is a case. Air cooling may be performed from the completion of rough rolling to the start of finish rolling, but water cooling may be performed in order to shorten the temperature waiting time from the viewpoint of productivity and to prevent recrystallization ⁇ grain growth. .
  • the finish rolling process introduces a processing structure such as dislocations and deformation bands that become nucleation sites for ⁇ transformation in ⁇ , and promotes transformation in the subsequent accelerated cooling, thereby significantly improving toughness.
  • a processing structure such as dislocations and deformation bands that become nucleation sites for ⁇ transformation in ⁇ , and promotes transformation in the subsequent accelerated cooling, thereby significantly improving toughness.
  • it is effective to increase the cumulative rolling reduction as much as possible under the condition that no recovery or recrystallization occurs between passes. Therefore, it is preferable to increase the rolling reduction ratio of the rolling pass at a low temperature.
  • the finish rolling time becomes long, and thus the productivity is impaired.
  • the present inventors investigated in detail the relationship between the rolling temperature, rolling ratio, holding time, recrystallization and flatness of ⁇ grains in the case of performing finish rolling after rough rolling, and further considered productivity.
  • the plate thickness before finish rolling may be referred to as transfer thickness
  • the plate thickness after finish rolling may be referred to as product thickness.
  • the unit of the plate thickness before finish rolling and the plate thickness after finish rolling is mm. By multiplying the right side of ⁇ R k by 100, the cumulative rolling reduction of finish rolling is substantially the cumulative rolling reduction in% units.
  • Equation (8) represents the upper limit of the time between passes necessary for recrystallization not to start. Note that the shorter the time between passes in the finish rolling process, the more advantageous is the suppression of recrystallization and the improvement of productivity. Therefore, it is not necessary to define the lower limit, and it is determined from the specifications of the rolling apparatus and the length of the steel plate. In a reverse rolling mill, since it is not easy to make the time between passes shorter than 1 s, the lower limit may be set to 1 s.
  • Formulas (7) and (8) are also experimentally adopted in consideration of the effects of temperature, rolling reduction, and Nb amount on the recrystallization behavior, adopting a functional type according to formulas (5) and (6).
  • the coefficient was determined.
  • FIG. 4 shows the finish rolling temperature, the lower limit of the rolling reduction, and the temperature and the upper limit of the rolling reduction when Nb: 0.005% and 0.03%.
  • FIG. 5 shows the maximum inter-path time for each Nb amount described above.
  • Equations (9) and (10) are necessary conditions for improving productivity while ensuring the strength and toughness of the steel sheet. This region is shown in FIG. If the relationship between the product thickness and the cumulative rolling reduction falls below this region, the amount of ⁇ nucleation sites introduced into ⁇ is insufficient, and the base material toughness is not improved. On the other hand, if the relationship between the product thickness and the cumulative rolling reduction is deviated above the region shown in FIG. 6, the strength and toughness are improved, but the productivity of finish rolling is significantly reduced, and the shape of the thin material is also deteriorated. Also, between the finishing rolling passes, air cooling is usually sufficient, but water cooling may be performed.
  • Accelerated cooling is performed after rough rolling or finish rolling. By performing accelerated cooling after rough rolling, growth of crystal grains and coarsening of precipitates can be prevented, and a decrease in toughness can be suppressed.
  • Accelerated cooling after finish rolling is the process of generating a large number of ⁇ grains from ⁇ (work hardening ⁇ ) flattened by finish rolling and strain accumulated by increasing the driving force of transformation. Very important from.
  • the time until the accelerated cooling is performed after the finish rolling is not particularly defined, but it may take 30 to 90 s for transportation from the rolling equipment to the cooling equipment. It is preferable to shorten the time from the finish rolling to the start of accelerated cooling as short as possible in order to suppress dislocation recovery and recrystallization and improve productivity. If necessary, a lower limit of the cooling start temperature such as Ar3, Ar3-10 ° C or Ar3 + 10 ° C may be provided.
  • the cooling rate In order to improve the toughness of the steel sheet, it is necessary to perform accelerated cooling at a cooling rate of 5 ° C./s or more on the average sheet thickness.
  • the cooling rate is less than 5 ° C./s, not only the strength is insufficient, but the structure is not sufficiently refined, and the base material toughness is lowered.
  • the cooling rate has a limit depending on the thickness of the steel sheet and the capacity of the apparatus, and it is difficult to set the cooling rate above 100 ° C./s.
  • the upper limit of the cooling rate may be limited to 75 ° C./s, 50 ° C./s, or 30 ° C./s.
  • the cooling stop temperature is not necessarily limited in the present invention, and may be determined according to the required characteristics of the steel sheet. In order to suppress the growth of crystal grains and precipitates and improve productivity, it is preferable to set the cooling stop temperature of accelerated cooling to 600 ° C. or lower. More preferably, it is 550 degrees C or less. Moreover, if the accelerated cooling is stopped at less than 200 ° C., the time required for the accelerated cooling becomes long and the productivity may be impaired. Therefore, the cooling stop temperature is preferably set to 200 ° C. or higher. The lower limit of the cold stop temperature may be set to 300 ° C., 400 ° C., or 450 ° C. in order to improve the strength.
  • heat treatment may be performed at a temperature of 650 ° C. or lower in order to adjust strength and toughness.
  • the temperature of heat processing shall be 400 degreeC or more. It may be 490 ° C. or higher for further improvement of toughness.
  • the rolling productivity (ton / hr) depends not only on the dimensions of the rolled steel sheet such as the product thickness but also on the equipment specifications of the heating furnace, rolling mill, and accelerated cold speed apparatus. For this reason, in this invention, the target of rolling productivity cannot be defined clearly.
  • % for a component means mass%.
  • C is an essential element for increasing the strength, and 0.03% or more is added.
  • the addition amount increases, it becomes difficult to ensure the HAZ toughness of the high heat input welded joint, so 0.16% is made the upper limit of the C amount.
  • the lower limit of C may be 0.05%, 0.06%, or 0.07%.
  • the upper limit of C may be 0.14%, 0.13%, or 0.12%.
  • Si is an inexpensive deoxidizing element and contributes to solid solution strengthening, so 0.03% or more is added.
  • the upper limit is made 0.5%.
  • the lower limit of Si may be 0.05%, 0.08%, or 0.12%.
  • the upper limit of Si may be 0.40%, 0.35%, or 0.30%.
  • Mn is effective as an element for improving the strength and toughness of the base material, so 0.3% or more is added.
  • the lower limit of the amount of Mn is preferably 0.5% or 0.7%. More preferably, 0.9% or more or 1.0% or more is added.
  • the amount of Mn is preferably 1.8% or less, and more preferably 1.6% or less.
  • the upper limit is 0.020% for P and 0.010% for S.
  • the upper limit of P may be 0.017% or 0.015%, and the upper limit of S may be 0.008%, 0.006%, or 0.004%. The smaller the contents of P and S, the better.
  • the lower limit may be 0.001% for P and 0.0001% for S.
  • Nb is an element that contributes to the refinement of structure, transformation strengthening, and precipitation strengthening by adding a small amount.
  • 0.005% or more of Nb is added to ensure the strength of the base material.
  • the content may be 0.008% or more or 0.010% or more.
  • Nb is added excessively, the HAZ hardens and deteriorates toughness, so 0.030% or less is made the upper limit.
  • a more preferable upper limit of the Nb amount is 0.020%.
  • Al is an important deoxidizing element, 0.002% or more is added. In order to perform deoxidation reliably, it is good also as 0.008% or more or 0.012% or more. However, excessive addition of Al impairs the surface quality of the slab and forms inclusions harmful to toughness, so the upper limit is made 0.10%.
  • the upper limit with preferable Al amount is 0.07% or 0.05%.
  • Ti is an extremely important element in the present invention, and is effective for improving the strength and toughness of the base metal and the HAZ toughness by refinement of the structure, precipitation strengthening, and formation of fine TiN when added in a small amount.
  • a preferable lower limit of the amount of Ti is 0.005% or more, and more preferably 0.008% or more of Ti is added.
  • Ti is added excessively, the HAZ toughness is remarkably deteriorated, so 0.050% is made the upper limit.
  • a preferable upper limit of the Ti amount is 0.040%. The upper limit may be 0.030%, 0.025%, or 0.020%.
  • N is added in an amount of 0.0020% or more in order to form a nitride with Ti and improve the HAZ toughness.
  • a preferable lower limit of the N amount is 0.0030% or more, and more preferably 0.0035% or more.
  • the content is limited to 0.0100% or less. In order to prevent embrittlement, it may be 0.0080% or less or 0.0060% or less.
  • C, Mn, and Nb are elements that contribute to hardenability, and the amount added must satisfy the following formula (1) from the viewpoint of securing the strength of the base metal and HAZ toughness.
  • one or more of Cu, Cr, Mo, Ni, V, B, Mg, Ca, and REM may be added.
  • Cu, Cr, and Mo are all elements that improve hardenability.
  • Cu, Cr, and Mo may be added in an amount of 0.05% or more in order to increase the strength of the base material and prevent softening of the HAZ.
  • the upper limit is 1.5% for Cu and 0.5% for Cr and Mo.
  • the upper limit of Cu is 0.5% or less, 0.35% or 0.20%, the upper limit of Cr is 0.3%, 0.2% or 0.1%. May be limited to 0.2%, 0.1%, and 0.08%.
  • Ni is effective for securing strength, arrestability, and improving HAZ toughness, and may be added by 0.05% or more.
  • an increase in the amount of Ni increases the alloy cost, so the upper limit is made 2.0%.
  • the upper limit of Ni may be set to 0.8%, 0.6%, or 0.4%.
  • V may contribute 0.005% or more because it contributes to strength increase by precipitation strengthening.
  • the upper limit is preferably made 0.10% or less. More preferably, it is 0.080% or less, More preferably, 0.05% or less is good.
  • B is an element that improves hardenability, and 0.0002% or more may be added to increase the strength of the steel. On the other hand, excessive addition of B impairs weldability, so the upper limit of B is made 0.0030%. It is good also as 0.0020% or 0.0015%.
  • Mg, Ca, and REM are elements that contribute to improving HAZ toughness by forming fine oxides and sulfides.
  • Mg is 0.0003% or more
  • Ca is 0.0005% or more
  • REM is 0.0005% or more. May be added.
  • the upper limit of Mg amount is 0.0050% or less
  • the upper limit of Ca amount is 0.0030% or less
  • the upper limit of REM is 0.010. % Or less is preferable.
  • REM is a rare earth metal such as La or Ce.
  • Table 2 is the heating conditions of hot rolling, M L is 56000 / Calculated (1.2-0.18 ⁇ log [Nb]) , P h is the (T + 273) ⁇ (log (t) +25) calc, M U is the calculated value of 91000 / (1.9-0.18 ⁇ log [Ti ]).
  • [X] element addition amount (mass%)
  • T heating temperature (° C.)
  • t heating holding time (min) (where t ⁇ 30).
  • Table 3 shows the thickness of the slab, the thickness (transfer thickness) of the steel plate after rough rolling (before finish rolling), the thickness (product thickness) of the steel plate after product (finish rolling), between rolling passes and rough rolling. The presence or absence of water cooling between the steel and finish rolling, and the cumulative rolling reduction of finish rolling are shown. When accelerated cooling is performed after rough rolling, the transfer thickness is equal to the product thickness.
  • Table 4 shows the sheet thickness on the exit side of each rolling pass, and from the sheet thickness shown in Table 4, the rolling reduction rate of each rolling pass and the cumulative rolling reduction rate of finish rolling were obtained and shown in Table 5.
  • Table 6 and Table 7 show the rolling temperature of each pass of rough rolling, and the calculated values of the left side and the right side of Equation (5).
  • Tables 8 and 9 show the rolling temperature of each pass of finish rolling, The calculated values of the left side and the right side of Equation (6) are shown.
  • Tables 10 and 11 show the time between rolling passes of each pass of rough rolling and finish rolling, the calculated values of the left side and the right side of Equation (7), and the calculated value of the right side of Table (8).
  • Table 12 shows accelerated cooling conditions and heat treatment temperatures.
  • Table 13 shows the strength, toughness, HAZ toughness, and rolling productivity of the base material.
  • a No. 1A full thickness test piece (thickness of 40 mm or less) described in JIS Z 2201 or a No. 4 round bar test piece (thickness of more than 40 mm; thickness center) is taken in the direction perpendicular to the rolling direction.
  • the tensile test was conducted in accordance with the procedure of JIS Z 2241, and the evaluation was made by measuring the yield strength (YP) and the tensile strength (TS).
  • the base metal toughness was obtained by taking a 2 mm V notch Charpy test piece in the rolling direction from the center of the plate thickness of the steel sheet, performing a Charpy impact test at various temperatures, and then performing a fracture surface transition temperature (vTrs ) Was evaluated.
  • the base material toughness was set to be ⁇ 50 ° C. or less in vTrs.
  • HAZ toughness For HAZ toughness, submerged arc welding or electrogas welding was performed under conditions of a heat input of about 100 to 300 kJ / cm, and a Charpy specimen with a notch in HAZ 1 mm away from the melt line at the center of the plate thickness was collected. The test was performed and evaluated by vTrs. The target value of HAZ toughness was set to ⁇ 40 ° C. or less in vTrs. The rolling productivity was evaluated by a value (Ton / h) obtained by dividing the rolling weight by the rolling time (here, the time from the start of rough rolling to the end of finish rolling). Rolling productivity generally decreases as the plate thickness increases.
  • the productivity target is 240, 230, 220, 210, 200, 190, 180, and 170 Ton when the plate thickness is 15 mm or less, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, and 50 mm, respectively. / H or more.
  • Nos. 1 to 16 have chemical components within a predetermined range and were manufactured under predetermined conditions, and as shown in Table 13, all have a sufficient strength as a steel having a tensile strength of 440 MPa or higher in a thickness range of 12 to 50 mm.
  • the base metal toughness was ⁇ 50 ° C. or less in vTrs and the high heat input HAZ toughness was ⁇ 40 ° C. or less in vTrs, both of which were good and the rolling productivity also satisfied the target value.
  • no. 17 to 36 as shown in Tables 1 to 12, since any one of the chemical components and production conditions deviated from the scope of the present invention, as shown in Table 13, the base material strength, base material toughness, HAZ Either toughness or productivity has fallen.
  • No. 20, 22, and 30 are comparative examples in which the heating conditions for hot rolling are out of the scope of the present invention.
  • No. 20 since the Ph exceeded the upper limit, the heating ⁇ was coarsened, a fine structure was not obtained, and the base material toughness was lowered.
  • No. No. 22 had a Ph of less than the lower limit, so that the solid solution of Nb was insufficient and the chemical components were the same. Compared with 7 and 8, the strength is reduced and the base metal toughness is also insufficient.
  • No. 30 had a short heating and holding time, the solution of the alloy element became insufficient, and the base material toughness was lowered.
  • No. Reference numerals 17, 19, 23, and 26 are comparative examples in which the rough rolling conditions are out of the scope of the present invention.
  • No. No. 17 has a longer time between 1 and 2 passes of rough rolling and between 2 and 3 passes.
  • No. 19 has a high rolling temperature of 2 passes and 3 passes, so that the recrystallization ⁇ is coarsened and the toughness of the base material is lowered.
  • No. No. 23 has a short inter-pass time between 1-2 passes and 2-3 passes. In No. 26, the rolling temperature of 8 pass and 9 pass was low, so that recrystallization was not completed and a mixed grain structure was formed, so that the toughness was lowered.
  • No. 18, 21, 24, 25, 28 and 31 are comparative examples in which the finish rolling conditions are outside the scope of the present invention.
  • No. 24 since the rolling temperature was high, ⁇ was partly recrystallized to form a mixed grain structure and toughness was reduced.
  • No. 28 the time between passes was long, and recrystallization ⁇ occurred, resulting in a decrease in toughness.
  • No. 21 has a low rolling temperature in the third pass and the fourth pass. Since No. 18 had a large cumulative rolling reduction, the base metal toughness was good, but the rolling productivity decreased.
  • No. 25 the rolling temperature was too low and excessive two-phase rolling occurred, so that both the base metal toughness and productivity decreased.
  • No. 31 had a small cumulative rolling reduction, so that a fine structure was not obtained and toughness was lowered.
  • No. 32 to 36 are comparative examples in which the chemical components are outside the scope of the present invention.
  • No. 32 since the index Ceq ′ composed of C, Mn, and Nb exceeded the upper limit value, the center segregation became remarkable, and the HAZ toughness particularly decreased.
  • No. 33 the index Ceq 'was less than the lower limit value, so the base material strength decreased.
  • No. 34 had high Ti / N, coarse Ti oxide remained, and particularly HAZ toughness was lowered.
  • No. 35 had a low Ti / N ratio, the HAZ toughness particularly deteriorated due to the effect of solid solution N.
  • No. Since 36 had a large amount of C the strength increased, and the base metal and the HAZ toughness decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A process for efficiently producing a steel plate for welded structures that has excellent matrix toughness and HAZ toughness is provided in which Ti is positively utilized for structural control. An ingot having a composition which has C, Mn, Nb, Ti, and N contents that satisfy given requirements is heated under given conditions and subjected to rough rolling so that each rolling pass satisfies given requirements concerning rolling temperature, draft, and interval between passes, and is subsequently subjected to accelerated cooling at an average rate of cooling in the plate-thickness direction of 5 ºC/s or more. It is preferable that after the rough rolling and before the accelerated cooling, finish rolling should be conducted so that each rolling pass satisfies given requirements concerning rolling temperature, draft, and cumulative draft. After the accelerated cooling, heat treatment may be conducted. Water cooling may be conducted between passes of the rough rolling or of the finish rolling, after the rough rolling, or before the finish rolling.

Description

溶接構造用高強度鋼板の製造方法Manufacturing method of high strength steel sheet for welded structure
 本発明は、特に船舶、建築、橋梁、タンク、海洋構造物等の溶接構造物に適用される、靭性に優れた高強度鋼板の製造方法に関する。また、本発明鋼板は、鋼管、コラム等に加工した二次加工品として流通する場合もあり、これらも対象とする。 The present invention relates to a method for producing a high-strength steel sheet having excellent toughness, particularly applied to welded structures such as ships, buildings, bridges, tanks, and marine structures. Further, the steel sheet of the present invention may be distributed as a secondary processed product processed into a steel pipe, a column or the like, and these are also targeted.
 近年の鋼構造物の大型化に伴い、使用される鋼板の厚手高強度化とともに、安全性を確保する観点から、靭性に対する要求も厳しさを増している。このような鋼板の厚手化に伴い、溶接の施工能率を向上させるために、最近、サブマージアーク溶接やエレクトロガス溶接等の大入熱溶接が適用されることが多くなっている。したがって、母材および溶接熱影響部(Heat Affected Zone:HAZ)の靭性の確保が問題になる。 With the recent increase in the size of steel structures, the demand for toughness has been increasing from the viewpoint of ensuring safety as well as increasing the thickness and strength of the steel sheets used. With the increase in thickness of such steel plates, high heat input welding such as submerged arc welding and electrogas welding has recently been frequently applied in order to improve the welding work efficiency. Therefore, securing the toughness of the base material and the weld heat affected zone (HEAT Affected Zone: HAZ) becomes a problem.
 母材靭性向上のための手段としては、TMCP(Thermo−Mechanical Control Process:熱加工制御)がよく知られている。これは、例えば非特許文献1に示されているように、適切な加熱、熱間圧延、冷却、熱処理工程の組み合わせにより鋼板の組織を微細化する方法である。熱間圧延では、特に、オーステナイト(γ)が再結晶しないような温度域で行うCR(Controlled Rolling)、微細なフェライト(α)粒を生成させるACC(Accelerated Cooling)が重要である。 TMCP (Thermo-Mechanical Control Process) is well known as a means for improving the toughness of the base metal. This is a method of refining the structure of a steel sheet by a combination of appropriate heating, hot rolling, cooling, and heat treatment processes, as shown in Non-Patent Document 1, for example. In hot rolling, CR (Controlled Rolling) performed in a temperature range in which austenite (γ) does not recrystallize, and ACC (Accelerated Cooling) that generates fine ferrite (α) grains are particularly important.
 従来、鋼板の強度および靭性を制御する技術として、化学成分を所定の範囲に限定した上で、特に、熱間圧延の加熱温度、圧延温度、累積圧下率、冷却速度、熱処理温度等を規定する方法が提案されている(例えば、特許文献1)。しかしながら、製造工程における鋼の組織は複雑に変化するため、特許文献1に記載された方法では、所望の特性が得られない場合がある。 Conventionally, as a technique for controlling the strength and toughness of a steel sheet, the chemical components are limited to a predetermined range, and in particular, the heating temperature of the hot rolling, the rolling temperature, the cumulative rolling reduction, the cooling rate, the heat treatment temperature, etc. are specified. A method has been proposed (for example, Patent Document 1). However, since the structure of steel in the manufacturing process changes in a complicated manner, the method described in Patent Document 1 may not provide desired characteristics.
 例えば、粗圧延においては、各パスの温度と圧下率が適切でなければ、局所的なγの再結晶の進行や、再結晶後の粒成長に起因して、微細化効果を十分享受できないことがある。また、仕上圧延においては、条件が適切でなければ、累積歪が不均一になり、部分的に再結晶が生じて、鋼板の強度や靭性が劣化したり、生産性が著しく低下してしまう場合がある。 For example, in rough rolling, if the temperature and rolling reduction of each pass are not appropriate, the effect of refinement cannot be fully enjoyed due to local γ recrystallization and grain growth after recrystallization. There is. Also, in finish rolling, if the conditions are not appropriate, the cumulative strain becomes non-uniform, recrystallization occurs partially, and the strength and toughness of the steel sheet deteriorates or the productivity is significantly reduced. There is.
 これに対して、本発明者らの一部は、熱間圧延中の金属組織の逐次変化に基づいて、圧延温度と圧下率を圧延パス毎に制御する方法を提案している(例えば、特許文献2)。この方法を適用すれば、通常は強度および靭性の良好な鋼板を効率良く製造できる。しかし、大入熱溶接を行った場合は、HAZの靭性の確保が問題になる。 On the other hand, some of the present inventors have proposed a method of controlling the rolling temperature and the rolling reduction for each rolling pass based on the sequential change of the metal structure during hot rolling (for example, patents). Reference 2). If this method is applied, a steel sheet having good strength and toughness can usually be produced efficiently. However, when high heat input welding is performed, securing the toughness of the HAZ becomes a problem.
 これまで、大入熱溶接継手のHAZ靭性を向上させる手段は数多く提案されてきたが、これらは技術思想により次の2つに大別される。一つは、鋼中粒子を活用したピン止め効果を利用したオーステナイト(γ)粒粗大化防止技術であり、もう一つはγ粒内フェライト(α)変態利用による有効結晶粒微細化技術である。 So far, many means for improving the HAZ toughness of the high heat input welded joint have been proposed, but these are roughly divided into the following two according to the technical idea. One is an austenite (γ) grain coarsening prevention technology that uses the pinning effect that utilizes particles in steel, and the other is an effective grain refinement technology that uses γ intragranular ferrite (α) transformation. .
 前者(ピン止め効果)に相当する技術としては、鋼中に生成する各種の窒化物、炭化物、酸化物、硫化物などについてγ粒成長抑制効果を検討したものが挙げられる。例えば、Tiを添加した鋼ではTiNの微細粒子が鋼中に生成し、大入熱溶接継手のHAZにおけるγ粒成長を効果的に抑制することができる(例えば、非特許文献2)。 As a technique corresponding to the former (pinning effect), a technique for examining the effect of suppressing γ grain growth on various nitrides, carbides, oxides, sulfides and the like generated in steel can be mentioned. For example, in steel to which Ti is added, fine particles of TiN are generated in the steel, and γ grain growth in the HAZ of the high heat input welded joint can be effectively suppressed (for example, Non-Patent Document 2).
 一方、後者(粒内変態)に相当する技術として、粒子径が0.1~3.0μm、粒子数が5×10~1×10個/mmのTi酸化物、あるいはTi酸化物とTi窒化物との複合体のいずれかを含有する鋼が提案されている(例えば、特許文献3)。これは、Ti酸化物やTi酸化物とTi窒化物との複合体などの粒子を、大入熱溶接継手の溶接HAZにおいてγ粒内フェライト(α)変態核として作用させ、HAZ組織を微細化して靱性を向上させる技術である。 On the other hand, as a technique corresponding to the latter (intragranular transformation), a Ti oxide having a particle diameter of 0.1 to 3.0 μm and a particle number of 5 × 10 3 to 1 × 10 7 particles / mm 3 , or Ti oxide There has been proposed a steel containing any of a composite of Ti nitride (for example, Patent Document 3). This is because particles such as Ti oxide or a composite of Ti oxide and Ti nitride act as γ intragranular ferrite (α) transformation nuclei in the welded HAZ of a high heat input welded joint to refine the HAZ structure. Technology to improve toughness.
特開2008−214754号公報JP 2008-214754 A 特開2004−269924号公報JP 2004-269924 A 特開昭60−245768号公報JP-A-60-245768
 しかし、特に、Tiを組織制御に積極的に活用し、母材および大入熱溶接継手のHAZの靭性を向上させつつ、生産性の向上をも図るためには、熱間圧延におけるTiの影響を考慮して、製造プロセスを設計する必要がある。本発明は、このような実情に鑑みてなされたものであり、効率的な、母材およびHAZ靭性に優れた溶接構造用鋼板の製造方法を提供することを課題とするものである。 However, in particular, in order to improve the productivity while actively using Ti for structure control and improving the toughness of the HAZ of the base metal and the high heat input welded joint, the influence of Ti in hot rolling It is necessary to design the manufacturing process in consideration of the above. This invention is made | formed in view of such a situation, and makes it a subject to provide the manufacturing method of the efficient steel plate for welded structures excellent in a base material and HAZ toughness.
 本発明は、特に、TiNの影響を考慮し、加熱、圧延、冷却、熱処理工程におけるミクロ組織の逐次的変化を精緻に制御するためにプロセス条件を規定した、母材およびHAZの靭性に優れた溶接構造用高強度鋼の製造方法を提供するものである。鋼板の強度は、例えば、降伏強度315MPa以上580MPa以下、引張強さ440MPa以上720MPa以下であり、降伏強度を550MPa以下、引張強さを470MPa以上又は490MPa以上、若しくは650MPa以下又は620MPa以下としてもよい。板厚は、例えば、10~100mmであり、その下限を12mm、20mm又は30mmに、その上限を70mm又は50mmとしてもよい。本発明の要旨は以下のとおりである。 In particular, the present invention is excellent in toughness of the base material and HAZ in which the process conditions are defined in order to precisely control the sequential change of the microstructure in the heating, rolling, cooling, and heat treatment processes in consideration of the influence of TiN. A method for producing high-strength steel for welded structures is provided. The strength of the steel sheet may be, for example, a yield strength of 315 MPa or more and 580 MPa or less, a tensile strength of 440 MPa or more and 720 MPa or less, a yield strength of 550 MPa or less, and a tensile strength of 470 MPa or more, 490 MPa or more, or 650 MPa or less or 620 MPa or less. The plate thickness is, for example, 10 to 100 mm, the lower limit may be 12 mm, 20 mm, or 30 mm, and the upper limit may be 70 mm or 50 mm. The gist of the present invention is as follows.
 (1) 質量%で、
 C :0.03~0.16%、
 Si:0.03~0.5%、
 Mn:0.3~2.0%、
 Nb:0.005~0.030%、
 Ti:0.003~0.050%、
 Al:0.002~0.10%、
 N :0.0020~0.0100%
を含有し、
 P :0.020%以下、
 S :0.010%以下
に制限し、C、Mn、Nbの含有量が下記(1)式を満足し、Ti、Nの含有量が下記(2)式を満足し、残部がFeおよび不可避的不純物からなる鋳片を下記(3)、(4)式を満たす条件で加熱した後、各圧延パスの圧延温度、圧下率およびパス間時間が下記(5)、(6)式を満たすように粗圧延を行い、引き続いて、板厚方向の平均冷却速度を5℃/s以上として加速冷却することを特徴とする溶接構造用高強度鋼板の製造方法。
 0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39 ・・・(1)
 1.5≦[Ti]/[N]≦3.0    ・・・(2)
 56000/(1.2−0.18×log[Nb])≦(T+273)×{log(t)+25}≦91000/(1.9−0.18×log[Ti]) ・・・(3)
 30≦t  ・・・(4)
 72200/[76.4+A×ln{−ln(1−R)}]−273≦T≦103000/[87.6+8.1×ln{−ln(1−R)}]−273・・(5)
≦t≦B+2700/(T−680)     ・・・(6)
ただし、
=8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
=6.45×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])、
であり、
[X]:元素Xの添加量(質量%)、T:加熱温度(℃)、t:保持時間(分)
:j番目の圧延パスの圧延温度(℃)、
:j番目の圧延パスと(j+1)番目の圧延パス間の時間(秒)、
:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
である。
(1) In mass%,
C: 0.03-0.16%,
Si: 0.03-0.5%,
Mn: 0.3 to 2.0%,
Nb: 0.005 to 0.030%,
Ti: 0.003 to 0.050%,
Al: 0.002 to 0.10%,
N: 0.0020 to 0.0100%
Containing
P: 0.020% or less,
S: 0.010% or less, C, Mn, Nb content satisfies the following formula (1), Ti, N content satisfies the following formula (2), the balance is Fe and inevitable After heating a slab made of a general impurity under the conditions satisfying the following formulas (3) and (4), the rolling temperature, the rolling reduction, and the time between passes in each rolling pass should satisfy the following formulas (5) and (6): A method for producing a high-strength steel sheet for welded structures, characterized in that rough rolling is performed, followed by accelerated cooling at an average cooling rate in the thickness direction of 5 ° C./s or more.
0.32 ≦ [C] +0.15 [Mn] +3.8 [Nb] ≦ 0.39 (1)
1.5 ≦ [Ti] / [N] ≦ 3.0 (2)
56000 / (1.2−0.18 × log [Nb]) ≦ (T + 273) × {log (th h ) +25} ≦ 91000 / (1.9−0.18 × log [Ti]) ( 3)
30 ≦ t h (4)
72200 / [76.4 + A j × ln {−ln (1-R j )}] − 273 ≦ T j ≦ 103000 / [87.6 + 8.1 × ln {−ln (1−R j )}] − 273 ·・ (5)
B j ≦ t j ≦ B j + 2700 / (T j −680) (6)
However,
A j = 8 + {25 × (R j −0.2) +5} × {1−exp (−160 × [Nb])},
B j = 6.45 × 10 -12 × {-ln (1-R j)} -1.4 × exp {32800 / (T j +273)} × exp (73.1 × [Nb]),
And
[X]: the addition amount of the element X (mass%), T: heating temperature (° C.), t h: retention time (min)
T j : rolling temperature (° C.) of the j-th rolling pass,
t j : time (seconds) between the j-th rolling pass and the (j + 1) -th rolling pass,
R j : Reduction ratio of the j-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
It is.
 (2) 前記粗圧延後、前記加速冷却の前に、各圧延パスの圧延温度および圧下率が下記(7)、(8)式を満たし、かつ累積圧下率が(9)式、または(10)式を満たすように仕上圧延を行うことを特徴とする上記(1)記載の溶接構造用高強度鋼板の製造方法。
 62400/[75.3+8.1×ln{−ln(1−R)}]−273≦T≦70200/[77.3+A×ln{−ln(1−R)}]−273 ・・・(7)
 t≦C   ・・・(8)
 0≦ΣR≦h   [h≦20]   ・・・(9)
 3h/4−15≦ΣR≦h   [h>20]   ・・・(10)
ただし、
=8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
=1.5×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])
であり、
:k番目の圧延パスの圧延温度(℃)、
:k番目の圧延パスと(k+1)番目の圧延パス間の時間(秒)、
:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
h:仕上圧延後の板厚(mm)、
ΣR:仕上圧延の累積圧下率=(粗圧延後の板厚−仕上圧延後の板厚)/粗圧延後の板厚×100
である。
(2) After the rough rolling and before the accelerated cooling, the rolling temperature and the rolling reduction of each rolling pass satisfy the following formulas (7) and (8), and the cumulative rolling reduction is the formula (9) or (10 The method for producing a high-strength steel sheet for welded structure according to (1) above, wherein finish rolling is performed so as to satisfy the formula.
62400 / [75.3 + 8.1 × ln {−ln (1-R k )}] − 273 ≦ T k ≦ 70200 / [77.3 + A k × ln {−ln (1−R k )}] − 273 (7)
t k ≦ C k (8)
0 ≦ ΣR k ≦ h [h ≦ 20] (9)
3h / 4-15 ≦ ΣR k ≦ h [h> 20] (10)
However,
A k = 8 + {25 × (R k −0.2) +5} × {1−exp (−160 × [Nb])},
C k = 1.5 × 10 -12 × {-ln (1-R k)} -1.4 × exp {32800 / (T k +273)} × exp (73.1 × [Nb])
And
T k : rolling temperature (° C.) of the k-th rolling pass,
t k : time (seconds) between the k-th rolling pass and the (k + 1) -th rolling pass,
R k : rolling reduction ratio of k-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
h: plate thickness after finish rolling (mm),
ΣR k : cumulative rolling reduction ratio of finish rolling = (sheet thickness after rough rolling−sheet thickness after finish rolling) / sheet thickness after rough rolling × 100
It is.
 (3) 前記粗圧延終了後、前記仕上圧延開始までの間において水冷することを特徴とする上記(2)記載の溶接構造用高強度鋼板の製造方法。 (3) The method for producing a high-strength steel sheet for welded structure according to (2) above, wherein water cooling is performed between the end of the rough rolling and the start of the finish rolling.
 (4) 前記粗圧延、前記仕上圧延の一方または双方の各圧延パス間において水冷することを特徴とする上記(1)~(3)に記載の溶接構造用高強度鋼板の製造方法。 (4) The method for producing a high-strength steel sheet for welded structures according to (1) to (3) above, wherein water cooling is performed between one or both rolling passes of the rough rolling and the finish rolling.
 (5) 前記加速冷却終了後、650℃以下の温度で熱処理することを特徴とする上記(1)~(4)に記載の溶接構造用高強度鋼板の製造方法。 (5) The method for producing a high-strength steel sheet for welded structures according to (1) to (4) above, wherein heat treatment is performed at a temperature of 650 ° C. or less after the accelerated cooling is completed.
 (6) さらに、前記鋳片が質量%で、
 Cu:1.5%以下、
 Cr:0.5%以下、
 Mo:0.5%以下、
 Ni:2.0%以下、
 V:0.10%以下、
 B:0.0030%
 Mg:0.0050%以下、
 Ca:0.0030%以下、
 REM:0.010%以下
の1種または2種以上を含有することを特徴とする上記(1)~(5)に記載の溶接構造用高強度鋼板の製造方法。
(6) Furthermore, the said slab is mass%,
Cu: 1.5% or less,
Cr: 0.5% or less,
Mo: 0.5% or less,
Ni: 2.0% or less,
V: 0.10% or less,
B: 0.0030%
Mg: 0.0050% or less,
Ca: 0.0030% or less,
REM: The manufacturing method of the high-strength steel sheet for welded structures as described in said (1)-(5) characterized by including 1 type or 2 types or less of 0.010% or less.
 本発明の適用によって、引張強度が440MPa級以上の鋼板で、母材靭性および溶接入熱が100~300kJ/cm程度の溶接を行ったときのHAZ靭性が良好な鋼板を、効率的な製造方法により提供することが可能になることから、産業上の効果は極めて大きい。 By applying the present invention, a steel plate having a tensile strength of 440 MPa or higher and a steel plate having good HAZ toughness when welding with a base metal toughness and a welding heat input of about 100 to 300 kJ / cm is achieved. Therefore, the industrial effect is extremely large.
Nb量およびTi量と、適切な加熱条件との関係を示す図である。It is a figure which shows the relationship between Nb amount and Ti amount, and appropriate heating conditions. Nb量と、適切な粗圧延条件との関係を示す図である。It is a figure which shows the relationship between Nb amount and suitable rough rolling conditions. Nb量と、粗圧延のパス間時間の下限値との関係を示す図である。It is a figure which shows the relationship between Nb amount and the lower limit of the time between passes of rough rolling. Nb量と、適切な仕上圧延条件を示す図である。It is a figure which shows Nb amount and appropriate finish rolling conditions. Nb量と、仕上圧延のパス間時間の上限との関係を示す図である。It is a figure which shows the relationship between Nb amount and the upper limit of the time between passes of finishing rolling. 製品厚と仕上圧延の累積圧下率の関係を示す図である。It is a figure which shows the relationship between product thickness and the cumulative reduction rate of finish rolling.
 一般に、鋼板の強度および靭性を向上させるためには製造方法が重要である。鋼板の板厚が薄い場合や、靭性に対する要求が厳しくない場合などは、スラブを加熱し、再結晶が促進される高温で熱間圧延を行い、繰り返し再結晶させて結晶粒径を微細化することができる。これに対して、鋼板の板厚が厚い場合や、非常に優れた靭性が要求される場合は、TMCPが適用される。 Generally, a manufacturing method is important for improving the strength and toughness of a steel sheet. When the thickness of the steel sheet is thin or when the requirements for toughness are not strict, heat the slab, perform hot rolling at a high temperature that promotes recrystallization, and recrystallize repeatedly to refine the crystal grain size. be able to. On the other hand, TMCP is applied when the plate thickness of the steel plate is large or when extremely excellent toughness is required.
 TMCPでは、スラブを加熱し、粗圧延後、引き続き、一般的には仕上圧延を行い、さらに加速冷却を行う。粗圧延は、γが再結晶する温度域(γ再結晶温度域)で行い、組織を微細化するための、高温域における圧延である。仕上圧延は、γが再結晶しないような温度域(γ未再結晶温度域)で行い、γ粒を十分に延伸させ、歪を蓄積させるための、低温域における圧延であり、制御圧延(CR)ともいう。仕上圧延後の加速冷却(ACC)により、歪が蓄積したγ粒から微細なフェライト(α)粒が生成する。 In TMCP, the slab is heated, and after rough rolling, generally, finish rolling is generally performed, followed by accelerated cooling. Rough rolling is rolling in a high temperature range in order to refine the structure in a temperature range where γ recrystallizes (γ recrystallization temperature range). Finish rolling is performed in a temperature range (γ non-recrystallization temperature range) in which γ does not recrystallize, and is a rolling in a low temperature range for sufficiently stretching γ grains and accumulating strain, and controlled rolling (CR ). By accelerated cooling (ACC) after finish rolling, fine ferrite (α) grains are generated from γ grains with accumulated strain.
 微細組織を得るための基本的指針は、以下のようにまとめられる。
(a)加熱工程では、温度と保持時間を適切に制御して、γ粒を均一かつ細粒にする。
(b)粗圧延工程では、1パス当たりの圧下率、累積圧下率を大きくし、再結晶を利用してγ粒を微細化する。
(c)仕上圧延工程では、圧延温度を低く、累積圧下率を大きくし、γ粒の延伸化によって粒界面積を増加させ、歪が蓄積した変形帯等のα核生成サイトを多くする。
(d)加速冷却工程では、冷却速度、冷却開始温度、冷却停止温度を制御して、組織の変態挙動を制御し、適切な組織を生成させる。
 なお、本発明では、γ再結晶温度域での熱間圧延を粗圧延と定義し、γ未再結晶温度域での熱間圧を仕上圧延と定義する。このため、粗圧延を粗圧延機で行う必要はなく、仕上圧延を仕上圧延機で行う必要もない。例えば、粗圧延と仕上圧延をすべてひとつの仕上圧延機で行ってもよい。
The basic guidelines for obtaining a fine structure can be summarized as follows.
(A) In the heating step, the temperature and holding time are appropriately controlled to make the γ grains uniform and fine.
(B) In the rough rolling step, the rolling reduction per pass and the cumulative rolling reduction are increased, and the γ grains are refined using recrystallization.
(C) In the finish rolling step, the rolling temperature is lowered, the cumulative rolling reduction is increased, the interfacial area is increased by stretching the γ grains, and the α nucleation sites such as deformation bands in which strain is accumulated are increased.
(D) In the accelerated cooling step, the transformation rate of the tissue is controlled by controlling the cooling rate, the cooling start temperature, and the cooling stop temperature, and an appropriate tissue is generated.
In the present invention, hot rolling in the γ recrystallization temperature region is defined as rough rolling, and hot pressure in the γ non-recrystallization temperature region is defined as finish rolling. For this reason, it is not necessary to perform rough rolling with a roughing mill, and it is not necessary to perform finish rolling with a finishing mill. For example, rough rolling and finish rolling may all be performed by one finishing mill.
 Nbは、炭化物、窒化物などの析出物を生成し、再結晶を遅延させ、未再結晶温度域を高温化させる効果があり、析出強化にも寄与する。したがって、本発明者らの一部は、特許文献2により、鋼板の強度および靭性を向上させるために、Nbの添加量に応じて、仕上圧延の各パスの圧延温度、圧下率を制御する方法を提案している(特許文献2、参照)。 Nb produces precipitates such as carbides and nitrides, has the effect of delaying recrystallization and increasing the non-recrystallization temperature range, and contributes to precipitation strengthening. Therefore, a part of the present inventors, according to Patent Document 2, controls the rolling temperature and rolling reduction of each pass of finish rolling according to the amount of Nb added in order to improve the strength and toughness of the steel sheet. (Refer to Patent Document 2).
 一方、HAZ靭性を向上させるためには、HAZ組織の微細化、脆化相の低減が必要である。HAZ組織の微細化を達成するための手段としては、TiN粒子やTi、Ca、Mg等の酸化物・硫化物粒子等を利用して、γ粒粗大化抑制、粒内α変態促進を図る方法が一般的である。このうち、TiNは、酸化物や硫化物と比べて鋼中への微細分散が容易であり、母材の組織制御にも利用することができる。 On the other hand, in order to improve the HAZ toughness, it is necessary to refine the HAZ structure and reduce the brittle phase. As means for achieving finer HAZ structure, TiN particles and oxide / sulfide particles such as Ti, Ca and Mg are used to suppress γ grain coarsening and promote intragranular α transformation. Is common. Among these, TiN is easily finely dispersed in steel as compared with oxides and sulfides, and can also be used for controlling the structure of the base material.
 TiNは、再結晶を促進または遅延させて母材の靭性に影響を及ぼし、かつ、ピンニング粒子として作用し、HAZ靭性にも影響を及ぼす。したがって、母材およびHAZ靭性を向上させるためには、TiNの析出挙動を考慮して、熱間圧延の加熱温度、粗圧延の条件、さらには仕上圧延の条件を制御することが必要である。 TiN promotes or delays recrystallization to affect the toughness of the base material, and also acts as pinning particles to affect the HAZ toughness. Therefore, in order to improve the base metal and the HAZ toughness, it is necessary to control the heating temperature of hot rolling, the conditions of rough rolling, and further the conditions of finish rolling in consideration of the precipitation behavior of TiN.
 そこで本発明者らは、HAZ組織の粗大化防止に有用であり、母材の組織制御にも利用できるTiNの析出挙動に着目し、加熱から熱処理工程までの逐次的なミクロ組織変化について詳細な調査を行った。さらに、組織を微細化し、かつ、ピンニングに寄与するTiNを確保するための、各工程の条件、特に、熱間圧延の加熱条件、圧下率およびパス間時間の条件を明確化し、本発明を完成させた。以下、本発明の製造条件について詳細に説明する。 Therefore, the present inventors pay attention to the precipitation behavior of TiN, which is useful for preventing the coarsening of the HAZ structure and can also be used for the structure control of the base material, and details the sequential microstructural changes from the heating to the heat treatment process. We conducted a survey. Furthermore, the present invention was completed by clarifying the conditions of each process, particularly the heating conditions of hot rolling, the rolling reduction and the time between passes, in order to refine the structure and secure TiN that contributes to pinning. I let you. Hereinafter, the production conditions of the present invention will be described in detail.
 まず、熱間圧延の加熱工程(スラブの加熱)について説明する。熱間圧延の加熱温度および保持時間は、再結晶挙動に及ぼす影響が大きいNbを固溶させ、HAZ靭性を向上させるTiNを確保するために極めて重要である。また、熱間圧延の加熱温度および保持時間は、鋼のミクロ組織を制御する上でも非常に重要であり、鋼板(母材)の靭性を確保するためには、均一かつ微細なγ組織とする必要がある。 First, the hot rolling heating process (slab heating) will be described. The heating temperature and holding time of hot rolling are extremely important for securing TiN that solidifies Nb having a large influence on the recrystallization behavior and improves HAZ toughness. In addition, the heating temperature and holding time of hot rolling are very important for controlling the microstructure of the steel, and in order to ensure the toughness of the steel sheet (base material), a uniform and fine γ structure is used. There is a need.
 加熱工程における重要なポイントは、未再結晶温度域上昇や高強度化に寄与するNbを十分固溶させつつ、γ粒粗大化抑制に有効なTiNを完全に固溶させないような温度、保持時間とすることである。本発明者らは、Nb、Tiの析出挙動について、種々の実験と熱力学計算を行い、その結果に基づいて下記の(3)式および(4)式を導出した。
56000/(1.2−0.18×log[Nb])≦P≦91000/(1.9−0.18×log[Ti])   ・・・(3)
30≦t   ・・・(4)
ただし、P=(T+273)×(log(t)+25)であり、[X]:元素Xの添加量(質量%)、T:加熱温度(℃)、t:保持時間(分)である。
The important points in the heating process are the temperature and holding time that do not completely dissolve TiN, which is effective in suppressing the coarsening of γ grains, while sufficiently dissolving Nb that contributes to increasing the non-recrystallization temperature range and increasing strength. It is to do. The present inventors conducted various experiments and thermodynamic calculations on the precipitation behavior of Nb and Ti, and derived the following equations (3) and (4) based on the results.
56000 / (1.2−0.18 × log [Nb]) ≦ P h ≦ 91000 / (1.9−0.18 × log [Ti]) (3)
30 ≦ t h (4)
However, P h = (T + 273) × (log (t h ) +25), [X]: addition amount of element X (mass%), T: heating temperature (° C.), t h : holding time (min) It is.
 Pの関数形は、焼戻しの温度と時間の換算を行うのに用いられる焼戻しパラメータを参考にしている。また、不等式の左辺は、Nb量に応じて変化する加熱条件の下限であり、不等式の右辺は、Ti量に応じて変化する加熱条件の上限である。各係数は、粗大γが生成する限界条件、固溶Nb量を確保するための限界条件から実験的に定めた。保持時間は30分以上としたが、これはNb等の微量合金元素を均一に固溶させるためである。なお、保持時間とは設定した炉温に対して20℃低い温度に達してから抽出するまでの時間とし、加熱温度とはその間の平均温度と定義する。 Functional form of P h is in the tempering parameters used to carry out the conversion of the tempering temperature and time of the reference. The left side of the inequality is the lower limit of the heating condition that changes according to the amount of Nb, and the right side of the inequality is the upper limit of the heating condition that changes according to the amount of Ti. Each coefficient was experimentally determined from the limit conditions for generating coarse γ and the limit conditions for securing the amount of solute Nb. The holding time was set to 30 minutes or more, which is for uniformly dissolving a trace alloy element such as Nb. The holding time is defined as the time from when the temperature reaches 20 ° C. lower than the set furnace temperature until extraction, and the heating temperature is defined as the average temperature during that time.
 図1にNb:0.005%および0.03%のときの加熱条件の下限、Ti:0.005%および0.03%のときの加熱条件の上限を示す。Nbの含有量に応じて加熱温度および保持時間の下限が変化し、図1に示す条件を満たす範囲でスラブ加熱を行えば、固溶Nbを最大限活用できる。また、Tiの含有量に応じて加熱温度および保持時間の上限が変化し、Ti量が0.005~0.03%の場合は、図1に示す範囲でスラブ加熱を行えば、γ粒の粗大化を抑制することができる。なお、Ti量が0.003%の場合は、図1に実線で示す曲線が下方に移動し、Ti量が0.05%になると、図1に点線で示す曲線(加熱条件の上限を示す曲線)が上方に移動する。このようにNbおよびTiの含有量に応じて、適切な条件でスラブ加熱を行うことにより、固溶Nbを確保し、かつγ粒の粗大化が抑制され、その結果、熱間圧延、加速冷却などの後工程の製造負荷をあまり大きくすることなく母材靭性を向上させることができる。
 なお、スラブを高温に加熱しすぎると、非常に厚いスケールが生成し、鋼板の表面疵となる場合もある。このため、スラブの加熱温度を1300℃以下、1250℃以下、1200℃以下又は1180℃以下に制限してもよい。保持時間の上限を特に設ける必要はないが、長時間保持による生産性の低下を避けるために、500分、400分又は300分を保持時間の上限としてもよい。
FIG. 1 shows the lower limit of the heating conditions when Nb: 0.005% and 0.03%, and the upper limit of the heating conditions when Ti: 0.005% and 0.03%. If the lower limit of the heating temperature and holding time changes according to the Nb content, and slab heating is performed within a range that satisfies the conditions shown in FIG. Further, the upper limit of the heating temperature and holding time varies depending on the Ti content, and when the Ti amount is 0.005 to 0.03%, if slab heating is performed within the range shown in FIG. The coarsening can be suppressed. When the Ti amount is 0.003%, the curve indicated by the solid line in FIG. 1 moves downward, and when the Ti amount reaches 0.05%, the curve indicated by the dotted line in FIG. (Curve) moves upward. Thus, by performing slab heating under appropriate conditions according to the contents of Nb and Ti, solid solution Nb is secured and coarsening of γ grains is suppressed. As a result, hot rolling, accelerated cooling are performed. Thus, the base material toughness can be improved without increasing the manufacturing load in the subsequent process.
In addition, when a slab is heated too high, a very thick scale is generated, which may become a surface defect of the steel plate. For this reason, you may restrict | limit the heating temperature of a slab to 1300 degrees C or less, 1250 degrees C or less, 1200 degrees C or less, or 1180 degrees C or less. Although there is no need to provide an upper limit for the holding time, 500 minutes, 400 minutes, or 300 minutes may be set as the upper limit for the holding time in order to avoid a decrease in productivity due to long-time holding.
 スラブを加熱した後、粗圧延を行い、圧延のパス間での再結晶の繰り返しにより、γ粒をできるだけ均一に微細化する。鋼板の板厚が薄い場合や、要求される靭性のレベルが高くない場合は、粗圧延に引き続いて加速冷却を行ってもよい。粗圧延工程で、再結晶γの微細化を図るためには、圧延のパス間で再結晶を完了させ、なおかつ、再結晶γ粒の粗大化を抑制することが必要である。 After heating the slab, rough rolling is performed, and the γ grains are refined as uniformly as possible by repeating recrystallization between rolling passes. If the steel plate is thin or the required toughness level is not high, accelerated cooling may be performed following the rough rolling. In order to refine the recrystallization γ in the rough rolling process, it is necessary to complete the recrystallization between rolling passes and to suppress the coarsening of the recrystallized γ grains.
 本発明者らは、実験室で圧下温度、圧下率、保持時間と再結晶および粒成長との関係について詳細に調査し、粗圧延工程でγ粒を微細化するための条件として、下記の(5)式および式(6)を導いた。
 72200/[76.4+A×ln{−ln(1−R)}]−273≦T≦103000/[87.6+8.1×ln{−ln(1−R)}]−273 ・・・(5)
≦t≦B+2700/(T−680)   ・・・(6)
ただし、
=8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
=6.45×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])、
であり、
:j番目の圧延パスの圧延温度(℃)、
:j番目の圧延パスと(j+1)番目の圧延パス間の時間(秒)、
:j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
である。
The present inventors investigated in detail the relationship between the reduction temperature, reduction ratio, holding time and recrystallization and grain growth in the laboratory, and the following conditions ( 5) Formula and Formula (6) were derived.
72200 / [76.4 + A j × ln {−ln (1-R j )}] − 273 ≦ T j ≦ 103000 / [87.6 + 8.1 × ln {−ln (1−R j )}] − 273 (5)
B j ≦ t j ≦ B j + 2700 / (T j −680) (6)
However,
A j = 8 + {25 × (R j −0.2) +5} × {1−exp (−160 × [Nb])},
B j = 6.45 × 10 -12 × {-ln (1-R j)} -1.4 × exp {32800 / (T j +273)} × exp (73.1 × [Nb]),
And
T j : rolling temperature (° C.) of the j-th rolling pass,
t j : time (seconds) between the j-th rolling pass and the (j + 1) -th rolling pass,
R j : Reduction ratio of the j-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
It is.
 ここで、(5)式の左辺は再結晶が生じる下限温度を表し、右辺は再結晶γが粒成長しない上限温度を表している。すなわち、(5)式の関数型は、各パスの歪、すなわち「−ln(1−R)」の項が大きく、また、Nb量が少ないほど再結晶が生じやすくなり、一方、各パスの歪が大きくすれば再結晶γ粒が小さくなり、粒成長しやすいという傾向を反映させたものである。(5)式の各項の係数は、再結晶、粒成長が生じる限界条件から実験的に決定した。 Here, the left side of the formula (5) represents the lower limit temperature at which recrystallization occurs, and the right side represents the upper limit temperature at which recrystallization γ does not grow. That is, in the function type of the equation (5), the distortion of each path, that is, the term of “−ln (1-R j )” is larger, and the smaller the Nb amount, the easier the recrystallization occurs. This reflects the tendency that the recrystallized γ grains become smaller and the grains grow more easily if the strain of γ increases. The coefficient of each term in the formula (5) was experimentally determined from the limit conditions for causing recrystallization and grain growth.
 また、(6)式の左辺は再結晶が完了するために必要な下限時間を表し、右辺は粒成長を生じさせないために必要な上限時間を表している。(6)式の関数型は、歪が大きく、温度が高く、Nbが少ないほど再結晶が速く完了し、粒成長しやすいという傾向を表現するものである。なお、(6)式の各項の係数も実験的に決定した。 Further, the left side of the formula (6) represents the lower limit time necessary for completing the recrystallization, and the right side represents the upper limit time necessary for preventing the grain growth. The function type of the equation (6) expresses the tendency that the larger the strain, the higher the temperature, and the smaller the Nb, the faster the recrystallization is completed and the easier the grain growth. The coefficient of each term in the equation (6) was also experimentally determined.
 図2にNb:0.005%および0.03%のときの粗圧延温度、圧下率の下限、および上限を示す。また、図3に上記の各Nb量のときの最小パス間時間を示す。これらを満たす条件で粗圧延を行うことにより、加熱γ粒を効果的に再結晶させて、均一かつ微細なγ粒を得ることができる。また、粗圧延のパス間は、空冷でもよいが、デスケーラなどによる水冷を行ってもかまわない。ただし、組織制御の観点から冷却手段や条件を限定する必要はない。 FIG. 2 shows the rough rolling temperature, the lower limit and the upper limit of the rolling reduction when Nb is 0.005% and 0.03%. FIG. 3 shows the minimum inter-path time for each Nb amount described above. By performing rough rolling under conditions that satisfy these conditions, the heated γ grains can be effectively recrystallized to obtain uniform and fine γ grains. In addition, air cooling may be performed between rough rolling passes, but water cooling using a descaler or the like may be performed. However, it is not necessary to limit cooling means and conditions from the viewpoint of tissue control.
 鋼板の板厚が薄く、粗圧延によって組織が十分に微細化される場合や、靭性に対する要求が厳しくない場合は、粗圧延に引き続いて加速冷却を行う。粗圧延の終了後は鋼板の温度が高く、粗圧延によって組織の微細化が進んでいることから、比較的、短時間で再結晶が完了する。また、加速冷却を開始するまでに再結晶が完了していない場合、加速冷却を開始した後、高温では再結晶が進む。したがって、粗圧延の終了から加速冷却を開始するまでの時間は規定しない。生産性の観点から、粗圧延後、直ちに加速冷却を開始することが好ましいが、圧延設備から冷却設備までの搬送に要する時間などのため、30~90sを要する場合もある。なお、加速冷却以後の工程の詳細は後述する。 When the steel plate is thin and the structure is sufficiently refined by rough rolling, or when the requirements for toughness are not severe, accelerated cooling is performed following the rough rolling. Since the temperature of the steel sheet is high after the end of the rough rolling and the structure is refined by the rough rolling, the recrystallization is completed in a relatively short time. If recrystallization is not completed before the start of accelerated cooling, recrystallization proceeds at a high temperature after the start of accelerated cooling. Therefore, the time from the end of rough rolling to the start of accelerated cooling is not specified. From the viewpoint of productivity, it is preferable to start accelerated cooling immediately after rough rolling, but it may take 30 to 90 s due to the time required for conveyance from the rolling equipment to the cooling equipment. Details of the processes after the accelerated cooling will be described later.
 鋼板の板厚が厚い場合や、非常に優れた靭性が要求される場合は、粗圧延に引き続いて仕上圧延を行うことが好ましい。粗圧延後は、上述のように、ある程度、組織が微細化されており、また、温度が低く、板厚の減少に伴って冷却速度が大きくなるため、粒成長やTiNの粗大化が抑制される。したがって、粗圧延後、仕上圧延を開始するまでの時間は特に規定しないが、仕上圧延の温度の調整のための時間(仕上圧延が可能な温度になるまで冷却時間)として、30s~180sを要する場合がある。粗圧延完了から仕上圧延開始までの間は空冷でもかまわないが、生産性の観点から温度待ち時間を短縮させ、また、再結晶γの粒成長を防止するためには、水冷を行ってもよい。 When the steel sheet is thick or when extremely excellent toughness is required, it is preferable to perform finish rolling subsequent to rough rolling. After rough rolling, as described above, the structure has been refined to some extent, and since the temperature is low and the cooling rate increases as the plate thickness decreases, grain growth and coarsening of TiN are suppressed. The Therefore, the time until the finish rolling is started after the rough rolling is not particularly defined, but it takes 30 s to 180 s as the time for adjusting the temperature of the finish rolling (cooling time until the finish rolling temperature is reached). There is a case. Air cooling may be performed from the completion of rough rolling to the start of finish rolling, but water cooling may be performed in order to shorten the temperature waiting time from the viewpoint of productivity and to prevent recrystallization γ grain growth. .
 仕上圧延工程は、γ中にα変態の核生成サイトとなる転位や変形帯等の加工組織を導入させるものであり、その後の加速冷却での変態を促進させ、著しく靭性の向上に寄与する。α核生成サイトを多量に導入させるためには、パス間で回復や再結晶が生じないような条件で、できる限り累積圧下率を大きくすることが有効である。したがって、低温での圧延パスの圧下率を高めることが好ましいが、温度の低下に要する時間などに起因して、仕上圧延の時間が長くなると生産性を損なう。 The finish rolling process introduces a processing structure such as dislocations and deformation bands that become nucleation sites for α transformation in γ, and promotes transformation in the subsequent accelerated cooling, thereby significantly improving toughness. In order to introduce a large amount of α nucleation sites, it is effective to increase the cumulative rolling reduction as much as possible under the condition that no recovery or recrystallization occurs between passes. Therefore, it is preferable to increase the rolling reduction ratio of the rolling pass at a low temperature. However, due to the time required for the temperature to decrease, the finish rolling time becomes long, and thus the productivity is impaired.
 本発明者らは、粗圧延後、仕上圧延を行う場合の圧下温度、圧下率、保持時間と再結晶およびγ粒の扁平との関係について実験室で詳細に調査し、さらに生産性を考慮して、下記の式を導いた。
62400/[75.3+8.1×ln{−ln(1−R)}]−273≦T≦70200/[77.3+A×ln{−ln(1−R)}]−273 ・・・(7)
≦C   ・・・(8)
0≦ΣR≦h   [h≦20]   ・・・(9)
3h/4−15≦ΣR≦h   [h>20]   ・・・(10)
ただし、
=8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
=1.5×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])
であり、
:k番目の圧延パスの圧延温度(℃)、
:k番目の圧延パスと(k+1)番目の圧延パス間の時間(秒)、
:k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
h:仕上圧延後の板厚(mm)、
ΣR:仕上圧延の累積圧下率=(仕上圧延前の板厚−仕上圧延後の板厚)/仕上圧延前の板厚×100
である。なお、仕上圧延前の板厚を移送厚、仕上圧延後の板厚を製品厚ということがある。仕上圧延前の板厚及び仕上圧延後の板厚の単位は、mmである。ΣRの右辺に100を乗じることにより、仕上圧延の累積圧下率は実質的に%単位の累積圧下率としている。
The present inventors investigated in detail the relationship between the rolling temperature, rolling ratio, holding time, recrystallization and flatness of γ grains in the case of performing finish rolling after rough rolling, and further considered productivity. The following formula was derived.
62400 / [75.3 + 8.1 × ln {−ln (1-R k )}] − 273 ≦ T k ≦ 70200 / [77.3 + A k × ln {−ln (1−R k )}] − 273 (7)
t k ≦ C k (8)
0 ≦ ΣR k ≦ h [h ≦ 20] (9)
3h / 4-15 ≦ ΣR k ≦ h [h> 20] (10)
However,
A k = 8 + {25 × (R k −0.2) +5} × {1−exp (−160 × [Nb])},
C k = 1.5 × 10 -12 × {-ln (1-R k)} -1.4 × exp {32800 / (T k +273)} × exp (73.1 × [Nb])
And
T k : rolling temperature (° C.) of the k-th rolling pass,
t k : time (seconds) between the k-th rolling pass and the (k + 1) -th rolling pass,
R k : rolling reduction ratio of k-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
h: plate thickness after finish rolling (mm),
ΣR k : Cumulative rolling reduction ratio of finish rolling = (plate thickness before finish rolling−sheet thickness after finish rolling) / plate thickness before finish rolling × 100
It is. In addition, the plate thickness before finish rolling may be referred to as transfer thickness, and the plate thickness after finish rolling may be referred to as product thickness. The unit of the plate thickness before finish rolling and the plate thickness after finish rolling is mm. By multiplying the right side of ΣR k by 100, the cumulative rolling reduction of finish rolling is substantially the cumulative rolling reduction in% units.
 ここで、(7)式の左辺は均一にγを延伸させ加工組織を導入させるために必要な下限温度、右辺はパス間での再結晶を抑制するための上限温度である。(8)式は再結晶が開始しないために必要なパス間時間の上限を表している。なお、仕上圧延工程でのパス間時間は短いほど再結晶の抑制および生産性の向上に有利であるから、下限を規定する必要はなく、圧延装置の仕様や鋼板の長さから決定される。リバース圧延機においては、パス間時間を1sより短くすることは容易でないため、その下限を1sとしても差し支えない。 Here, the left side of equation (7) is the lower limit temperature required to uniformly stretch γ and introduce the processed structure, and the right side is the upper limit temperature to suppress recrystallization between passes. Equation (8) represents the upper limit of the time between passes necessary for recrystallization not to start. Note that the shorter the time between passes in the finish rolling process, the more advantageous is the suppression of recrystallization and the improvement of productivity. Therefore, it is not necessary to define the lower limit, and it is determined from the specifications of the rolling apparatus and the length of the steel plate. In a reverse rolling mill, since it is not easy to make the time between passes shorter than 1 s, the lower limit may be set to 1 s.
 (7)式および(8)式も、(5)式および(6)式に準じた関数型を採用し、再結晶挙動に及ぼす温度、圧下率、Nb量の影響を考慮して、実験的に係数を定めた。図4に仕上圧延温度、圧下率の下限、および、Nb:0.005%および0.03%のときの温度、圧下率の上限を示す。また、図5に上記の各Nb量のときの最大パス間時間を示す。これらを満たす条件で仕上圧延を行うことにより、効果的にγ粒の偏平化、およびγへの歪蓄積を図ることができる。 Formulas (7) and (8) are also experimentally adopted in consideration of the effects of temperature, rolling reduction, and Nb amount on the recrystallization behavior, adopting a functional type according to formulas (5) and (6). The coefficient was determined. FIG. 4 shows the finish rolling temperature, the lower limit of the rolling reduction, and the temperature and the upper limit of the rolling reduction when Nb: 0.005% and 0.03%. FIG. 5 shows the maximum inter-path time for each Nb amount described above. By performing finish rolling under conditions that satisfy these conditions, it is possible to effectively flatten γ grains and accumulate strain in γ.
 (9)式および(10)式は、鋼板の強度および靭性を確保しつつ、生産性を向上させるために必要な条件である。この領域を図6に示す。製品厚と累積圧下率の関係が、この領域の下方に外れると、γ中に導入されるα核生成サイトの量が不十分となって母材靭性が向上しない。一方、製品厚と累積圧下率の関係が、図6に示す領域の上方に外れると、強度および靭性は向上するが、仕上圧延の生産性が顕著に低下し、薄手材では形状も悪くなる。また、仕上圧延のパス間も、通常は空冷でよいが、水冷を行ってもよい。 Equations (9) and (10) are necessary conditions for improving productivity while ensuring the strength and toughness of the steel sheet. This region is shown in FIG. If the relationship between the product thickness and the cumulative rolling reduction falls below this region, the amount of α nucleation sites introduced into γ is insufficient, and the base material toughness is not improved. On the other hand, if the relationship between the product thickness and the cumulative rolling reduction is deviated above the region shown in FIG. 6, the strength and toughness are improved, but the productivity of finish rolling is significantly reduced, and the shape of the thin material is also deteriorated. Also, between the finishing rolling passes, air cooling is usually sufficient, but water cooling may be performed.
 粗圧延後または仕上圧延後に加速冷却を行う。粗圧延後、加速冷却を行うことにより、結晶粒の成長および析出物の粗大化を防止することができ、靭性の低下を抑制することができる。仕上圧延後の加速冷却は、変態の駆動力を高めることで、仕上圧延によって扁平し、歪が蓄積したγ(加工硬化γ)から多数のα粒を生成させる工程であり、組織微細化の観点から非常に重要である。仕上圧延後、加速冷却を行うまでの時間は、特に規定しないが、圧延設備から冷却設備までの搬送などのため、30~90sを要する場合もある。仕上圧延後、加速冷却を開始するまでの時間は、転位の回復や再結晶を抑制し、生産性を向上させるために、できるだけ短くすることが好ましい。必要に応じて、Ar3、Ar3−10℃又はAr3+10℃などの冷却開始温度の下限を設けてもよい。 Accelerated cooling is performed after rough rolling or finish rolling. By performing accelerated cooling after rough rolling, growth of crystal grains and coarsening of precipitates can be prevented, and a decrease in toughness can be suppressed. Accelerated cooling after finish rolling is the process of generating a large number of α grains from γ (work hardening γ) flattened by finish rolling and strain accumulated by increasing the driving force of transformation. Very important from. The time until the accelerated cooling is performed after the finish rolling is not particularly defined, but it may take 30 to 90 s for transportation from the rolling equipment to the cooling equipment. It is preferable to shorten the time from the finish rolling to the start of accelerated cooling as short as possible in order to suppress dislocation recovery and recrystallization and improve productivity. If necessary, a lower limit of the cooling start temperature such as Ar3, Ar3-10 ° C or Ar3 + 10 ° C may be provided.
 鋼板の靭性を向上させるためには、板厚平均で5℃/s以上の冷却速度で加速冷却を行う必要がある。冷却速度が5℃/s未満であると、強度が不足するだけでなく、組織の微細化が不十分となり、母材靭性が低下してしまう。冷却速度の上限については規定する必要はない。これは、本発明の化学成分、加熱・圧延条件を適用すれば、焼入れ性が過大になることはなく、靭性に悪影響を及ぼす粗大な低温変態相は生成しないためである。ただし、冷却速度は鋼板の板厚や装置の能力に応じて限界があり、100℃/s超とすることは困難である。冷却速度の上限を、75℃/s、50℃/s又は30℃/sに制限してもよい。 In order to improve the toughness of the steel sheet, it is necessary to perform accelerated cooling at a cooling rate of 5 ° C./s or more on the average sheet thickness. When the cooling rate is less than 5 ° C./s, not only the strength is insufficient, but the structure is not sufficiently refined, and the base material toughness is lowered. There is no need to specify the upper limit of the cooling rate. This is because if the chemical components and heating / rolling conditions of the present invention are applied, the hardenability will not be excessive and a coarse low-temperature transformation phase that adversely affects toughness will not be generated. However, the cooling rate has a limit depending on the thickness of the steel sheet and the capacity of the apparatus, and it is difficult to set the cooling rate above 100 ° C./s. The upper limit of the cooling rate may be limited to 75 ° C./s, 50 ° C./s, or 30 ° C./s.
 また、冷却停止温度についても本発明では限定する必要はなく、鋼板の要求特性によって決定すればよい。結晶粒および析出物の成長を抑制し、生産性を向上させるためには、加速冷却の冷却停止温度を600℃以下にすることが好ましい。更に好ましくは550℃以下である。また、加速冷却を200℃未満で停止すると、加速冷却に要する時間が長くなり、生産性を損なうことがあるため、冷却停止温度を200℃以上にすることが好ましい。強度向上などのため、冷速停止温度の下限を300℃、400℃又は450℃としてもよい。 Also, the cooling stop temperature is not necessarily limited in the present invention, and may be determined according to the required characteristics of the steel sheet. In order to suppress the growth of crystal grains and precipitates and improve productivity, it is preferable to set the cooling stop temperature of accelerated cooling to 600 ° C. or lower. More preferably, it is 550 degrees C or less. Moreover, if the accelerated cooling is stopped at less than 200 ° C., the time required for the accelerated cooling becomes long and the productivity may be impaired. Therefore, the cooling stop temperature is preferably set to 200 ° C. or higher. The lower limit of the cold stop temperature may be set to 300 ° C., 400 ° C., or 450 ° C. in order to improve the strength.
 加速冷却後は、強度および靭性を調整するために、650℃以下の温度で熱処理(焼戻し処理)を行ってもよい。温度が650℃を超えるとセメンタイトや結晶粒が粗大化して脆性破壊の発生を助長し、母材の靭性が低下することがある。また、鋼板の靭性を高めるためには、熱処理の温度を400℃以上にすることが好ましい。靭性の一層の改善のため、490℃以上としてもよい。
 なお、圧延生産性(ton/hr)は、製品厚などの圧延鋼板の寸法などに加え、加熱炉・圧延機・加速冷速装置の設備仕様にも依存する。このため、本発明において、圧延生産性の目標を明確に定めることはできない。
After accelerated cooling, heat treatment (tempering treatment) may be performed at a temperature of 650 ° C. or lower in order to adjust strength and toughness. When the temperature exceeds 650 ° C., cementite and crystal grains are coarsened to promote the occurrence of brittle fracture, and the toughness of the base material may be lowered. Moreover, in order to improve the toughness of a steel plate, it is preferable that the temperature of heat processing shall be 400 degreeC or more. It may be 490 ° C. or higher for further improvement of toughness.
Note that the rolling productivity (ton / hr) depends not only on the dimensions of the rolled steel sheet such as the product thickness but also on the equipment specifications of the heating furnace, rolling mill, and accelerated cold speed apparatus. For this reason, in this invention, the target of rolling productivity cannot be defined clearly.
 次に、本発明の成分限定理由について説明する。ここで、成分についての「%」は質量%を意味する。 Next, the reasons for limiting the components of the present invention will be described. Here, “%” for a component means mass%.
 Cは、強度を高めるのに不可欠な元素であり、0.03%以上を添加する。一方、添加量が増えると大入熱溶接継手のHAZ靭性確保が困難となるため、0.16%をC量の上限とする。強度向上のため、Cの下限を0.05%、0.06%又は0.07%としてもよい。HAZ靭性の向上のため、Cの上限を0.14%、0.13%又は0.12%としてもよい。 C is an essential element for increasing the strength, and 0.03% or more is added. On the other hand, if the addition amount increases, it becomes difficult to ensure the HAZ toughness of the high heat input welded joint, so 0.16% is made the upper limit of the C amount. In order to improve the strength, the lower limit of C may be 0.05%, 0.06%, or 0.07%. In order to improve the HAZ toughness, the upper limit of C may be 0.14%, 0.13%, or 0.12%.
 Siは、安価な脱酸元素であり、固溶強化にも寄与するため、0.03%以上を添加する。一方、Si量が0.5%を超えると溶接性とHAZ靭性を劣化させるため上限を0.5%とする。確実な脱酸を行うため、Siの下限を0.05%、0.08%又は0.12%としてもよい。溶接性とHAZ靭性の向上のため、Siの上限を0.40%、0.35%又は0.30%としてもよい。 Si is an inexpensive deoxidizing element and contributes to solid solution strengthening, so 0.03% or more is added. On the other hand, if the Si content exceeds 0.5%, the weldability and the HAZ toughness are deteriorated, so the upper limit is made 0.5%. In order to perform reliable deoxidation, the lower limit of Si may be 0.05%, 0.08%, or 0.12%. In order to improve weldability and HAZ toughness, the upper limit of Si may be 0.40%, 0.35%, or 0.30%.
 Mnは、母材の強度および靭性を向上させる元素として有効であるため0.3%以上添加する。焼入れ性を向上させるためには、Mn量の下限は0.5%又は0.7%とすることが好ましい。より好ましくは、0.9%以上又は1.0%以上を添加する。一方、Mnを過剰に添加するとHAZ靭性、溶接割れ性を劣化させるため2.0%を上限とする。Mn量を1.8%以下とすることが好ましく、1.6%以下とすることがより好ましい。 Mn is effective as an element for improving the strength and toughness of the base material, so 0.3% or more is added. In order to improve hardenability, the lower limit of the amount of Mn is preferably 0.5% or 0.7%. More preferably, 0.9% or more or 1.0% or more is added. On the other hand, if Mn is added excessively, the HAZ toughness and weld cracking properties are deteriorated, so 2.0% is made the upper limit. The amount of Mn is preferably 1.8% or less, and more preferably 1.6% or less.
 P、Sは、不可避的不純物である。母材及びHAZの靭性向上のため、Pは0.020%、Sは0.010%を上限とする。一層の靭性向上のため、Pの上限を0.017%又は0.015%と、Sの上限を0.008%、0.006%又は0.004%としてもよい。PおよびSの含有量は少ないほど望ましいが、工業的に低減させるためには多大なコストがかかることから、Pは0.001%、Sは0.0001%を下限としてもよい。 * P and S are inevitable impurities. In order to improve the toughness of the base material and the HAZ, the upper limit is 0.020% for P and 0.010% for S. In order to further improve toughness, the upper limit of P may be 0.017% or 0.015%, and the upper limit of S may be 0.008%, 0.006%, or 0.004%. The smaller the contents of P and S, the better. However, since it takes a great deal of cost to reduce industrially, the lower limit may be 0.001% for P and 0.0001% for S.
 Nbは、微量の添加により組織の微細化、変態強化、析出強化に寄与する元素である。本発明では、母材の強度を確保するために、0.005%以上のNbを添加する。強度の一層の向上等のため、0.008%以上又は0.010%以上としてもよい。一方、Nbを過剰に添加するとHAZが硬化し、靭性を劣化させるため0.030%以下を上限とする。Nb量のより好ましい上限は、0.020%である。 Nb is an element that contributes to the refinement of structure, transformation strengthening, and precipitation strengthening by adding a small amount. In the present invention, 0.005% or more of Nb is added to ensure the strength of the base material. For further improvement in strength, etc., the content may be 0.008% or more or 0.010% or more. On the other hand, if Nb is added excessively, the HAZ hardens and deteriorates toughness, so 0.030% or less is made the upper limit. A more preferable upper limit of the Nb amount is 0.020%.
 Alは、重要な脱酸元素であるため0.002%以上を添加する。確実に脱酸を行うため、0.008%以上又は0.012%以上としてもよい。しかし、Alを過剰に添加するとスラブの表面品位を損ない、靭性に有害な介在物を形成するため0.10%を上限とする。Al量の好ましい上限は、0.07%又は0.05%である。 Since Al is an important deoxidizing element, 0.002% or more is added. In order to perform deoxidation reliably, it is good also as 0.008% or more or 0.012% or more. However, excessive addition of Al impairs the surface quality of the slab and forms inclusions harmful to toughness, so the upper limit is made 0.10%. The upper limit with preferable Al amount is 0.07% or 0.05%.
 Tiは、本発明では極めて重要な元素であり、微量の添加により組織の微細化、析出強化、微細TiN生成により母材の強度および靭性、HAZ靭性の向上に有効であるため、0.003%以上添加する。Ti量の好ましい下限値は0.005%以上であり、より好ましくは0.008%以上のTiを添加する。一方,Tiを過剰に添加するとHAZ靭性を著しく劣化させるため0.050%を上限とする。Ti量の好ましい上限は0.040%である。その上限を0.030%、0.025%又は0.020%としてもよい。 Ti is an extremely important element in the present invention, and is effective for improving the strength and toughness of the base metal and the HAZ toughness by refinement of the structure, precipitation strengthening, and formation of fine TiN when added in a small amount. Add more. A preferable lower limit of the amount of Ti is 0.005% or more, and more preferably 0.008% or more of Ti is added. On the other hand, when Ti is added excessively, the HAZ toughness is remarkably deteriorated, so 0.050% is made the upper limit. A preferable upper limit of the Ti amount is 0.040%. The upper limit may be 0.030%, 0.025%, or 0.020%.
 Nは、Tiと共に窒化物を形成しHAZ靭性を向上させるため0.0020%以上を添加する。N量の好ましい下限値は0.0030%以上であり、より好ましくは0.0035%以上とする。一方、Nを過剰に添加すると固溶Nによる脆化が生じるため0.0100%以下に限定する。脆化を防止するため、0.0080%以下又は0.0060%以下としてもよい。 N is added in an amount of 0.0020% or more in order to form a nitride with Ti and improve the HAZ toughness. A preferable lower limit of the N amount is 0.0030% or more, and more preferably 0.0035% or more. On the other hand, when N is added excessively, embrittlement due to solute N occurs, so the content is limited to 0.0100% or less. In order to prevent embrittlement, it may be 0.0080% or less or 0.0060% or less.
 C、Mn、Nbは焼入れ性に寄与する元素であり、添加量については、母材強度とHAZ靭性確保の観点から、次の(1)式を満たす必要がある。 C, Mn, and Nb are elements that contribute to hardenability, and the amount added must satisfy the following formula (1) from the viewpoint of securing the strength of the base metal and HAZ toughness.
 0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39 ・・・ (1)
上式の[C]、[Mn]、[Nb]は、各元素の添加量(質量%)であり、係数は焼入れ性への寄与から実験的に求めた。[C]+0.15[Mn]+3.8[Nb]が0.32未満であると、強度が不十分になる。一方、特に、Mn、Nbは、中心偏析を抑制することが難しい元素であり、[C]+0.15[Mn]+3.8[Nb]が0.39を超えると中心偏析が顕著になり、大入熱溶接継手のHAZ靭性が低下してしまう。HAZ靭性の改善のため、0.38又は0.37を上限としてもよく、強度向上のため0.33を下限としてもよい。
0.32 ≦ [C] +0.15 [Mn] +3.8 [Nb] ≦ 0.39 (1)
[C], [Mn], and [Nb] in the above formula are addition amounts (mass%) of each element, and the coefficient was experimentally determined from the contribution to hardenability. If [C] +0.15 [Mn] +3.8 [Nb] is less than 0.32, the strength becomes insufficient. On the other hand, in particular, Mn and Nb are elements that are difficult to suppress center segregation, and when [C] +0.15 [Mn] +3.8 [Nb] exceeds 0.39, center segregation becomes significant. The HAZ toughness of the high heat input welded joint will decrease. 0.38 or 0.37 may be set as the upper limit for improving HAZ toughness, and 0.33 may be set as the lower limit for improving strength.
 TiN粒子をHAZ靭性確保に活用する際には、下記(2)式に示すように、Ti、N単独の添加量だけでなく、バランスも考慮する必要がある。すなわち、TiとNの添加量の比を1.5~3.0の範囲に制御しておくことが必要である。これらの比Ti/Nが1.5未満であると、固溶N量が過剰となり、大入熱溶接継手のHAZ靭性が低下する。一方、Ti/Nが3.0を超えると過剰なTiが粗大な酸化物や硫化物を形成、あるいはTiC析出により強度が上昇するために、HAZ靭性が低下してしまう。 When utilizing TiN particles for securing HAZ toughness, it is necessary to consider not only the addition amount of Ti and N alone but also the balance, as shown in the following formula (2). That is, it is necessary to control the ratio of the addition amount of Ti and N within the range of 1.5 to 3.0. If the ratio Ti / N is less than 1.5, the amount of solute N becomes excessive, and the HAZ toughness of the high heat input welded joint decreases. On the other hand, when Ti / N exceeds 3.0, excess Ti forms coarse oxides and sulfides, or strength increases due to TiC precipitation, so that HAZ toughness is lowered.
 1.5≦[Ti]/[N]≦3.0   ・・・(2)
ただし、上式の[Ti]、[N]は、各元素の添加量(質量%)である。
1.5 ≦ [Ti] / [N] ≦ 3.0 (2)
However, [Ti] and [N] in the above formula are addition amounts (mass%) of each element.
 さらに、強度、靭性を向上させるために、Cu、Cr、Mo、Ni、V、B、Mg、Ca、REMの1種または2種以上を添加してもよい。一方、合金コストの削減のためには、これらの元素の添加を避けた方が好ましい。 Furthermore, in order to improve strength and toughness, one or more of Cu, Cr, Mo, Ni, V, B, Mg, Ca, and REM may be added. On the other hand, in order to reduce alloy costs, it is preferable to avoid the addition of these elements.
 Cu、Cr、Moは、いずれも焼入れ性を向上させる元素である。Cu、Cr、Moは、母材を高強度化し、HAZの軟化を防止するために、0.05%以上を添加してもよい。一方、過度の添加はHAZ靭性を低下させるため、Cuは1.5%以下、CrおよびMoは0.5%以下を上限とする。HAZ靭性の劣化を避けるため、Cuの上限を0.5%以下、0.35%又は0.20%に、Crの上限を0.3%、0.2%又は0.1%に、Moの上限を0.2%、0.1%、0.08%に制限してもよい。 Cu, Cr, and Mo are all elements that improve hardenability. Cu, Cr, and Mo may be added in an amount of 0.05% or more in order to increase the strength of the base material and prevent softening of the HAZ. On the other hand, excessive addition reduces HAZ toughness, so the upper limit is 1.5% for Cu and 0.5% for Cr and Mo. In order to avoid degradation of HAZ toughness, the upper limit of Cu is 0.5% or less, 0.35% or 0.20%, the upper limit of Cr is 0.3%, 0.2% or 0.1%. May be limited to 0.2%, 0.1%, and 0.08%.
 Niは、強度確保とアレスト性、HAZ靭性向上に有効であるため0.05%以上添加してもよい。一方、Ni量の増加は合金コストを上昇させるため、上限は2.0%とする。合金コストの上昇を避けるため、Niの上限を0.8%、0.6%又は0.4%としてもよい。 Ni is effective for securing strength, arrestability, and improving HAZ toughness, and may be added by 0.05% or more. On the other hand, an increase in the amount of Ni increases the alloy cost, so the upper limit is made 2.0%. In order to avoid an increase in alloy cost, the upper limit of Ni may be set to 0.8%, 0.6%, or 0.4%.
 Vは、析出強化により強度上昇に寄与するため0.005%以上添加してもよい。一方、Vを過剰に添加するとHAZ靭性を低下させるため、0.10%以下を上限とすることが好ましい。より好ましくは0.080%以下、さらに好ましくは0.05%以下がよい。 V may contribute 0.005% or more because it contributes to strength increase by precipitation strengthening. On the other hand, if V is added excessively, the HAZ toughness is lowered, so the upper limit is preferably made 0.10% or less. More preferably, it is 0.080% or less, More preferably, 0.05% or less is good.
 Bは、焼入れ性を向上させる元素であり、鋼の強度を高めるために、0.0002%以上を添加してもよい。一方、Bを過度に添加すると溶接性を損ねるため、Bの上限は、0.0030%とする。0.0020%又は0.0015%としてもよい。 B is an element that improves hardenability, and 0.0002% or more may be added to increase the strength of the steel. On the other hand, excessive addition of B impairs weldability, so the upper limit of B is made 0.0030%. It is good also as 0.0020% or 0.0015%.
 Mg、Ca、REMは、微細な酸化物や硫化物を形成しHAZ靭性向上に寄与する元素であり、Mgは0.0003%以上、Caは0.0005%以上、REMは0.0005%以上を添加してもよい。一方、これらを過度に添加すると、介在物が粗大化し、靭性を低下させるため、Mg量の上限は0.0050%以下、Ca量の上限は0.0030%以下、REMの上限は0.010%以下が好ましい。なお、REMとはLa、Ce等の希土類金属のことである。 Mg, Ca, and REM are elements that contribute to improving HAZ toughness by forming fine oxides and sulfides. Mg is 0.0003% or more, Ca is 0.0005% or more, and REM is 0.0005% or more. May be added. On the other hand, when these are added excessively, inclusions become coarse and lower toughness. Therefore, the upper limit of Mg amount is 0.0050% or less, the upper limit of Ca amount is 0.0030% or less, and the upper limit of REM is 0.010. % Or less is preferable. Note that REM is a rare earth metal such as La or Ce.
 表1の化学成分を有するスラブ(鋼片)を用いて、表2~11の製造条件により板厚12~50mmの鋼板を試作した。なお、表1のCeq’は、[C]+0.15[Mn]+3.8[Nb]の計算値である。粗圧延または仕上圧延後、加速冷却を開始するまでの時間、粗圧延後、仕上圧延を開始するまでの時間は、30~90sであった。 Using a slab (steel piece) having the chemical components shown in Table 1, a steel plate having a thickness of 12 to 50 mm was manufactured according to the manufacturing conditions shown in Tables 2 to 11. Note that Ceq ′ in Table 1 is a calculated value of [C] +0.15 [Mn] +3.8 [Nb]. After rough rolling or finish rolling, the time from the start of accelerated cooling to the time after rough rolling to the start of finish rolling was 30 to 90 s.
 表2は熱間圧延の加熱条件であり、Mは56000/(1.2−0.18×log[Nb])の計算値、Pは(T+273)×(log(t)+25)の計算値、Mは91000/(1.9−0.18×log[Ti])の計算値である。ただし、[X]:元素添加量(mass%)、T:加熱温度(℃)、t:加熱保持時間(min)(ただし、t≧30)である。表3には、スラブの板厚、粗圧延後(仕上圧延前)の鋼板の板厚(移送厚)、製品(仕上圧延後)の鋼板の板厚(製品厚)、圧延パス間および粗圧延と仕上圧延との間の水冷の有無、仕上圧延の累積圧下率を示す。粗圧延後、加速冷却を行った場合は、移送厚は製品厚と等しい。 Table 2 is the heating conditions of hot rolling, M L is 56000 / Calculated (1.2-0.18 × log [Nb]) , P h is the (T + 273) × (log (t) +25) calc, M U is the calculated value of 91000 / (1.9-0.18 × log [Ti ]). However, [X]: element addition amount (mass%), T: heating temperature (° C.), t: heating holding time (min) (where t ≧ 30). Table 3 shows the thickness of the slab, the thickness (transfer thickness) of the steel plate after rough rolling (before finish rolling), the thickness (product thickness) of the steel plate after product (finish rolling), between rolling passes and rough rolling. The presence or absence of water cooling between the steel and finish rolling, and the cumulative rolling reduction of finish rolling are shown. When accelerated cooling is performed after rough rolling, the transfer thickness is equal to the product thickness.
 表4には、圧延各パスの出側の板厚を示し、表4に示した板厚から、各圧延パスの圧下率、仕上圧延の累積圧下率を求め、表5に示した。表6および表7に、粗圧延の圧延各パスの圧延温度と、式(5)の左辺および右辺の計算値を示し、表8および表9に、仕上圧延の圧延各パスの圧延温度と、式(6)の左辺および右辺の計算値を示した。表10および表11には、粗圧延および仕上圧延の圧延各パスの圧延パス間時間と、式(7)の左辺および右辺の計算値、表(8)の右辺の計算値を示した。表12に、加速冷却の条件、熱処理温度を示した。 Table 4 shows the sheet thickness on the exit side of each rolling pass, and from the sheet thickness shown in Table 4, the rolling reduction rate of each rolling pass and the cumulative rolling reduction rate of finish rolling were obtained and shown in Table 5. Table 6 and Table 7 show the rolling temperature of each pass of rough rolling, and the calculated values of the left side and the right side of Equation (5). Tables 8 and 9 show the rolling temperature of each pass of finish rolling, The calculated values of the left side and the right side of Equation (6) are shown. Tables 10 and 11 show the time between rolling passes of each pass of rough rolling and finish rolling, the calculated values of the left side and the right side of Equation (7), and the calculated value of the right side of Table (8). Table 12 shows accelerated cooling conditions and heat treatment temperatures.
 表13に母材の強度、靭性、HAZ靭性、圧延生産性を示す。母材強度は、JIS Z 2201に記載された1A号全厚試験片(板厚40mm以下)、または4号丸棒試験片(板厚40mm超;板厚中心部)を圧延直角方向に採取し、JIS Z 2241の要領で引張試験を行い、降伏強度(YP)、引張強度(TS)を測定することで評価した。母材靭性は、JIS Z 2242に準拠して、鋼板の板厚中心部から圧延方向に2mmVノッチシャルピー試験片を採取し、種々の温度でシャルピー衝撃試験を実施した後、破面遷移温度(vTrs)を算出することにより評価した。なお、母材靭性がvTrsで−50℃以下となることを目標とした。 Table 13 shows the strength, toughness, HAZ toughness, and rolling productivity of the base material. For the base material strength, a No. 1A full thickness test piece (thickness of 40 mm or less) described in JIS Z 2201 or a No. 4 round bar test piece (thickness of more than 40 mm; thickness center) is taken in the direction perpendicular to the rolling direction. The tensile test was conducted in accordance with the procedure of JIS Z 2241, and the evaluation was made by measuring the yield strength (YP) and the tensile strength (TS). Based on JIS Z 2242, the base metal toughness was obtained by taking a 2 mm V notch Charpy test piece in the rolling direction from the center of the plate thickness of the steel sheet, performing a Charpy impact test at various temperatures, and then performing a fracture surface transition temperature (vTrs ) Was evaluated. The base material toughness was set to be −50 ° C. or less in vTrs.
 HAZ靭性については、入熱100~300kJ/cm程度の条件にてサブマージアーク溶接またはエレクトロガス溶接を行い、板厚中心部の溶融線から1mm離れたHAZにノッチを入れたシャルピー試験片を採取して試験を行い、vTrsにて評価した。HAZ靭性の目標値はvTrsで−40℃以下とした。圧延生産性は、圧延重量を圧延時間(ここでは粗圧延開始から仕上圧延終了までの時間)で除した値(Ton/h)により評価した。圧延生産性は一般に板厚が厚いほど低下する。これは、粗圧延終了後から仕上圧延開始までの間に温度待ちが発生する場合、通常は板厚が厚いほど待ち時のスラブ厚(移送厚)を厚くする必要があり、それについれて待ち時間が長くなるためである。生産性の目標は、今回用いたスラブでは、板厚が15mm以下、20mm、25mm、30mm、35mm、40mm、45mm、50mmの場合、それぞれ240、230、220、210、200、190、180、170Ton/h以上とした。 For HAZ toughness, submerged arc welding or electrogas welding was performed under conditions of a heat input of about 100 to 300 kJ / cm, and a Charpy specimen with a notch in HAZ 1 mm away from the melt line at the center of the plate thickness was collected. The test was performed and evaluated by vTrs. The target value of HAZ toughness was set to −40 ° C. or less in vTrs. The rolling productivity was evaluated by a value (Ton / h) obtained by dividing the rolling weight by the rolling time (here, the time from the start of rough rolling to the end of finish rolling). Rolling productivity generally decreases as the plate thickness increases. This is because when waiting for temperature occurs from the end of rough rolling to the start of finish rolling, it is usually necessary to increase the waiting slab thickness (transfer thickness) as the plate thickness increases, and wait for it. This is because time becomes longer. The productivity target is 240, 230, 220, 210, 200, 190, 180, and 170 Ton when the plate thickness is 15 mm or less, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, and 50 mm, respectively. / H or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1~12に示すように、本発明例のNo.1~16は化学成分が所定の範囲内にあり、かつ所定の条件で製造したため、表13に示すように、板厚12~50mmの範囲においていずれも引張強度440MPa級以上の鋼として十分な強度を有しており、母材靭性はvTrsで−50℃以下、大入熱溶接HAZ靭性はvTrsで−40℃以下であり、ともに良好で、なおかつ圧延生産性も目標値を満足していた。一方、比較例のNo.17~36は、表1~12に示すように、化学成分、製造条件のいずれかが本発明の範囲を逸脱していたために、表13に示すように、母材強度、母材靭性、HAZ靭性、生産性のいずれかが低下してしまった。 As shown in Tables 1-12, No. of the present invention example. Nos. 1 to 16 have chemical components within a predetermined range and were manufactured under predetermined conditions, and as shown in Table 13, all have a sufficient strength as a steel having a tensile strength of 440 MPa or higher in a thickness range of 12 to 50 mm. The base metal toughness was −50 ° C. or less in vTrs and the high heat input HAZ toughness was −40 ° C. or less in vTrs, both of which were good and the rolling productivity also satisfied the target value. On the other hand, no. 17 to 36, as shown in Tables 1 to 12, since any one of the chemical components and production conditions deviated from the scope of the present invention, as shown in Table 13, the base material strength, base material toughness, HAZ Either toughness or productivity has fallen.
 No.20、22、30は熱間圧延の加熱の条件を本発明の範囲外とした比較例である。No.20はPhが上限を超えたために加熱γが粗大化し、微細組織が得られず、母材靭性が低下した。No.22はPhが下限未満であったためにNbの固溶が不十分になり、化学成分が同一であるNo.7および8に比べると強度が低下し、母材靭性も不十分である。No.30は加熱保持時間が短かったために、合金元素の溶体化が不十分となり、母材靭性が低下した。 No. 20, 22, and 30 are comparative examples in which the heating conditions for hot rolling are out of the scope of the present invention. No. In No. 20, since the Ph exceeded the upper limit, the heating γ was coarsened, a fine structure was not obtained, and the base material toughness was lowered. No. No. 22 had a Ph of less than the lower limit, so that the solid solution of Nb was insufficient and the chemical components were the same. Compared with 7 and 8, the strength is reduced and the base metal toughness is also insufficient. No. Since No. 30 had a short heating and holding time, the solution of the alloy element became insufficient, and the base material toughness was lowered.
 No.17、19、23、26は粗圧延の条件を本発明の範囲外とした比較例である。No.17は粗圧延の1~2パス間および2~3パス間のパス間時間が長く、No.19は2パスおよび3パスの圧延温度が高いため、再結晶γが粗大化し、母材の靭性が低下した。No.23は1~2パス間および2~3パス間のパス間時間が短く、No.26は8パスおよび9パスの圧延温度が低いため、再結晶が完了せず、混粒組織となったために靭性が低下した。 No. Reference numerals 17, 19, 23, and 26 are comparative examples in which the rough rolling conditions are out of the scope of the present invention. No. No. 17 has a longer time between 1 and 2 passes of rough rolling and between 2 and 3 passes. No. 19 has a high rolling temperature of 2 passes and 3 passes, so that the recrystallization γ is coarsened and the toughness of the base material is lowered. No. No. 23 has a short inter-pass time between 1-2 passes and 2-3 passes. In No. 26, the rolling temperature of 8 pass and 9 pass was low, so that recrystallization was not completed and a mixed grain structure was formed, so that the toughness was lowered.
 No.18、21、24、25、28、31は仕上圧延の条件を本発明の範囲外とした比較例である。No.24は圧延温度が高いため、一部γが再結晶して混粒組織となり靭性が低下した。No.28は1~2パス間のパス間時間が長く、再結晶γが生じて靭性が低下した。No.21は3パス目および4パス目の圧延温度が低く、No.18は累積圧下率が大きいため、母材靭性は良好であったが、圧延生産性が低下した。No.25は圧延温度が低すぎて過度の二相域圧延となったため、母材靭性、生産性がともに低下した。No.31は累積圧下率が小さいために、微細組織が得られず靭性が低下した。 No. 18, 21, 24, 25, 28 and 31 are comparative examples in which the finish rolling conditions are outside the scope of the present invention. No. In No. 24, since the rolling temperature was high, γ was partly recrystallized to form a mixed grain structure and toughness was reduced. No. In No. 28, the time between passes was long, and recrystallization γ occurred, resulting in a decrease in toughness. No. No. 21 has a low rolling temperature in the third pass and the fourth pass. Since No. 18 had a large cumulative rolling reduction, the base metal toughness was good, but the rolling productivity decreased. No. In No. 25, the rolling temperature was too low and excessive two-phase rolling occurred, so that both the base metal toughness and productivity decreased. No. No. 31 had a small cumulative rolling reduction, so that a fine structure was not obtained and toughness was lowered.
 No.29は仕上圧延後、加速冷却を行わなかったために、組織が微細化せず靭性が低下した。No.27は熱処理温度が高かったために、セメンタイトと組織が粗大化し、靭性が低下した。 No. In No. 29, accelerated cooling was not performed after finish rolling, so the structure was not refined and toughness was reduced. No. In No. 27, since the heat treatment temperature was high, cementite and the structure became coarse, and the toughness decreased.
 No.32~36は化学成分を本発明の範囲外とした比較例である。No.32はC、Mn、Nbからなる指標Ceq’が上限値を超えたために中心偏析が顕著になり、特にHAZ靭性が低下した。No.33は上記指標Ceq’が下限値に満たなかったために母材強度が低下した。No.34はTi/Nが高かったために、粗大なTi酸化物が残存し、特にHAZ靭性が低下した。No.35はTi/Nが低かったために、固溶Nの影響で特にHAZ靭性が低下した。No.36はC量が多かったために、強度が高くなり、母材およびHAZ靭性が低下した。 No. 32 to 36 are comparative examples in which the chemical components are outside the scope of the present invention. No. In No. 32, since the index Ceq ′ composed of C, Mn, and Nb exceeded the upper limit value, the center segregation became remarkable, and the HAZ toughness particularly decreased. No. In No. 33, the index Ceq 'was less than the lower limit value, so the base material strength decreased. No. Since No. 34 had high Ti / N, coarse Ti oxide remained, and particularly HAZ toughness was lowered. No. Since No. 35 had a low Ti / N ratio, the HAZ toughness particularly deteriorated due to the effect of solid solution N. No. Since 36 had a large amount of C, the strength increased, and the base metal and the HAZ toughness decreased.

Claims (6)

  1.  質量%で、
     C :0.03~0.16%、
     Si:0.03~0.5%、
     Mn:0.3~2.0%、
     Nb:0.005~0.030%、
     Ti:0.003~0.050%、
     Al:0.002~0.10%、
     N :0.0020~0.0100%
    を含有し、
     P :0.020%以下、
     S :0.010%以下
    に制限し、C、Mn、Nbの含有量が下記(1)式を満足し、Ti、Nの含有量が下記(2)式を満足し、残部がFeおよび不可避的不純物からなる鋳片を下記(3)、(4)式を満たす条件で加熱した後、各圧延パスの圧延温度、圧下率およびパス間時間が下記(5)、(6)式を満たすように粗圧延を行い、引き続いて、板厚方向の平均冷却速度を5℃/s以上として加速冷却することを特徴とする溶接構造用高強度鋼の製造方法。
     0.32≦[C]+0.15[Mn]+3.8[Nb]≦0.39 ・・・(1)
     1.5≦[Ti]/[N]≦3.0   ・・・(2)
     56000/(1.2−0.18×log[Nb])≦(T+273)×{log(th)+25}≦91000/(1.9−0.18×log[Ti]) ・・・(3)
     30≦t   ・・・(4)
     72200/[76.4+A×ln{−ln(1−R)}]−273≦T≦103000/[87.6+8.1×ln{−ln(1−R)}]−273 ・・・(5)
    ≦t≦B+2700/(T−680)   ・・・(6)
    ただし、
    =8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
    =6.45×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])、
    であり、
    [X]:元素Xの添加量(質量%)、T:加熱温度(℃)、t:保持時間(分)
    :j番目の圧延パスの圧延温度(℃)、
    :j番目の圧延パスと(j+1)番目の圧延パス間の時間(秒)、
    :j番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
    である。
    % By mass
    C: 0.03-0.16%,
    Si: 0.03-0.5%,
    Mn: 0.3 to 2.0%,
    Nb: 0.005 to 0.030%,
    Ti: 0.003 to 0.050%,
    Al: 0.002 to 0.10%,
    N: 0.0020 to 0.0100%
    Containing
    P: 0.020% or less,
    S: Restricted to 0.010% or less, the contents of C, Mn, and Nb satisfy the following formula (1), the contents of Ti and N satisfy the following formula (2), and the balance is Fe and inevitable After heating a slab made of a general impurity under the conditions satisfying the following formulas (3) and (4), the rolling temperature, the rolling reduction, and the time between passes in each rolling pass should satisfy the following formulas (5) and (6): A method for producing a high strength steel for welded structures, characterized in that rough rolling is performed, followed by accelerated cooling at an average cooling rate in the thickness direction of 5 ° C./s or more.
    0.32 ≦ [C] +0.15 [Mn] +3.8 [Nb] ≦ 0.39 (1)
    1.5 ≦ [Ti] / [N] ≦ 3.0 (2)
    56000 / (1.2−0.18 × log [Nb]) ≦ (T + 273) × {log (th) +25} ≦ 91000 / (1.9−0.18 × log [Ti]) (3 )
    30 ≦ t h (4)
    72200 / [76.4 + A j × ln {−ln (1-R j )}] − 273 ≦ T j ≦ 103000 / [87.6 + 8.1 × ln {−ln (1−R j )}] − 273 (5)
    B j ≦ t j ≦ B j + 2700 / (T j −680) (6)
    However,
    A j = 8 + {25 × (R j −0.2) +5} × {1−exp (−160 × [Nb])},
    B j = 6.45 × 10 -12 × {-ln (1-R j)} -1.4 × exp {32800 / (T j +273)} × exp (73.1 × [Nb]),
    And
    [X]: the addition amount of the element X (mass%), T: heating temperature (° C.), t h: retention time (min)
    T j : rolling temperature (° C.) of the j-th rolling pass,
    t j : time (seconds) between the j-th rolling pass and the (j + 1) -th rolling pass,
    R j : Reduction ratio of the j-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
    It is.
  2.  前記粗圧延後、前記加速冷却の前に、各圧延パスの圧延温度および圧下率が下記(7)、(8)式を満たし、かつ累積圧下率が(9)式、または(10)式を満たすように仕上圧延を行うことを特徴とする請求項1記載の溶接構造用高強度鋼の製造方法。
     62400/[75.3+8.1×ln{−ln(1−R)}]−273≦T≦70200/[77.3+A×ln{−ln(1−R)}]−273 ・・・(7)
     t≦C   ・・・(8)
     0≦ΣR≦h   [h≦20]   ・・・(9)
     3h/4−15≦ΣR≦h   [20<h]   ・・・(10)
    ただし、
    =8+{25×(R−0.2)+5}×{1−exp(−160×[Nb])}、
    =1.5×10−12×{−ln(1−R)}−1.4×exp{32800/(T+273)}×exp(73.1×[Nb])
    であり、
    :k番目の圧延パスの圧延温度(℃)、
    :k番目の圧延パスと(k+1)番目の圧延パス間の時間(秒)、
    :k番目の圧延パスの圧下率=(入側板厚−出側板厚)/入側板厚、
    h:仕上圧延後の板厚(mm)、
    ΣR:仕上圧延の累積圧下率=(粗圧延後の板厚−仕上圧延後の板厚)/粗圧延後の板厚×100である。
    After the rough rolling and before the accelerated cooling, the rolling temperature and rolling reduction of each rolling pass satisfy the following formulas (7) and (8), and the cumulative rolling reduction is formula (9) or formula (10). Finishing rolling so that it may satisfy | fill, The manufacturing method of the high strength steel for welded structures of Claim 1 characterized by the above-mentioned.
    62400 / [75.3 + 8.1 × ln {−ln (1-R k )}] − 273 ≦ T k ≦ 70200 / [77.3 + A k × ln {−ln (1−R k )}] − 273 (7)
    t k ≦ C k (8)
    0 ≦ ΣR k ≦ h [h ≦ 20] (9)
    3h / 4-15 ≦ ΣR k ≦ h [20 <h] (10)
    However,
    A k = 8 + {25 × (R k −0.2) +5} × {1−exp (−160 × [Nb])},
    C k = 1.5 × 10 -12 × {-ln (1-R k)} -1.4 × exp {32800 / (T k +273)} × exp (73.1 × [Nb])
    And
    T k : rolling temperature (° C.) of the k-th rolling pass,
    t k : time (seconds) between the k-th rolling pass and the (k + 1) -th rolling pass,
    R k : rolling reduction ratio of k-th rolling pass = (entry side plate thickness−outer side plate thickness) / entry side plate thickness,
    h: plate thickness after finish rolling (mm),
    ΣR k : cumulative rolling reduction ratio of finish rolling = (plate thickness after rough rolling−sheet thickness after finish rolling) / plate thickness after rough rolling × 100.
  3.  前記粗圧延終了後、前記仕上圧延開始までの間において水冷することを特徴とする請求項2記載の溶接構造用高強度鋼の製造方法。 The method for producing high-strength steel for welded structures according to claim 2, characterized in that water cooling is performed after the rough rolling is completed and before the finish rolling is started.
  4.  前記粗圧延、前記仕上圧延の一方または双方の各圧延パス間において水冷することを特徴とする請求項1~3のいずれか1項に記載の溶接構造用高強度鋼の製造方法。 The method for producing high-strength steel for welded structures according to any one of claims 1 to 3, wherein water cooling is performed between one or both rolling passes of the rough rolling and the finish rolling.
  5.  前記加速冷却終了後、650℃以下の温度で熱処理することを特徴とする請求項1~4のいずれか1項に記載の溶接構造用高強度鋼の製造方法。 The method for producing high-strength steel for welded structures according to any one of claims 1 to 4, wherein heat treatment is performed at a temperature of 650 ° C or less after the accelerated cooling is completed.
  6.  さらに、前記鋳片が質量%で、
     Cu:1.5%以下、
     Cr:0.5%以下、
     Mo:0.5%以下、
     Ni:2.0%以下、
     V:0.10%以下、
     B:0.0030%
     Mg:0.0050%以下、
     Ca:0.0030%以下、
     REM:0.010%以下
    の1種または2種以上を含有することを特徴とする請求項1~5のいずれか1項に記載の溶接構造用高強度鋼の製造方法。
    Further, the slab is in mass%,
    Cu: 1.5% or less,
    Cr: 0.5% or less,
    Mo: 0.5% or less,
    Ni: 2.0% or less,
    V: 0.10% or less,
    B: 0.0030%
    Mg: 0.0050% or less,
    Ca: 0.0030% or less,
    6. The method for producing high-strength steel for welded structure according to any one of claims 1 to 5, characterized by containing one or more of REM: 0.010% or less.
PCT/JP2011/060341 2010-05-27 2011-04-21 Process for producing high-strength steel plate for welded structure WO2011148755A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112012029698-1A BR112012029698B1 (en) 2010-05-27 2011-04-21 METHOD OF PRODUCTION OF A HIGH RESISTANCE STEEL SHEET FOR A WELDED STRUCTURE
JP2011543021A JP4897127B2 (en) 2010-05-27 2011-04-21 Manufacturing method of high strength steel sheet for welded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-121872 2010-05-27
JP2010121872 2010-05-27

Publications (1)

Publication Number Publication Date
WO2011148755A1 true WO2011148755A1 (en) 2011-12-01

Family

ID=45003747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060341 WO2011148755A1 (en) 2010-05-27 2011-04-21 Process for producing high-strength steel plate for welded structure

Country Status (3)

Country Link
JP (1) JP4897127B2 (en)
BR (1) BR112012029698B1 (en)
WO (1) WO2011148755A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766806A (en) * 2012-07-11 2012-11-07 莱芜钢铁集团有限公司 Ultrawide and ultrafine gauge structural steel plate for bridges and production method thereof
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same
JP2014074194A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Thick steel plate having small change of toughness before and after strain ageing
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
JP2016509129A (en) * 2013-01-22 2016-03-24 宝山鋼鉄股▲分▼有限公司 High strength steel plate and manufacturing method thereof
JP2016079449A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Production method of steel pipe and steel pipe
JP2017150067A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP2018076573A (en) * 2016-11-11 2018-05-17 新日鐵住金株式会社 Steel plate excellent brittle crack propagation stopping characteristics and manufacturing method therefor
JP2018095904A (en) * 2016-12-12 2018-06-21 Jfeスチール株式会社 Manufacturing method of hot rolled steel sheet for rectangular steel pipe with low yield ratio and manufacturing method of rectangular steel pipe with low yield ratio
WO2019001464A1 (en) * 2017-06-27 2019-01-03 南京钢铁股份有限公司 Production technology for ultra-fine grain wide-thick pipeline steel plate
CN109365529A (en) * 2018-10-08 2019-02-22 鞍钢股份有限公司 Production method of austenitic stainless steel medium plate
CN115404328A (en) * 2022-09-23 2022-11-29 鞍钢股份有限公司 Method for regulating and controlling low-temperature toughness of wide and thick pipeline steel plate based on superposition rolling
CN115433874A (en) * 2022-08-31 2022-12-06 马鞍山钢铁股份有限公司 Hot-rolled angle steel with yield strength of 460MPa and temperature resistance of-20 ℃ and production method thereof
CN115558851A (en) * 2022-09-23 2023-01-03 鞍钢股份有限公司 Hot rolled steel plate for 370 MPa-level engineering structure and manufacturing method thereof
CN115558849A (en) * 2022-09-23 2023-01-03 鞍钢股份有限公司 Hot rolled steel plate for 345 MPa-level engineering structure and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220821A (en) * 1985-07-17 1987-01-29 Nippon Steel Corp Manufacture of high strength thick steel plate
JPH0853734A (en) * 1994-08-10 1996-02-27 Nippon Steel Corp Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JPH1171615A (en) * 1997-08-29 1999-03-16 Nippon Steel Corp Production of thick steel plate excellent in low temperature toughness
JP2001288512A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Method of producing high tensile strength steel excellent in toughness and ductility
JP2003129134A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp Method for manufacturing high-strength steel sheet superior in low-temperature toughness
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220821A (en) * 1985-07-17 1987-01-29 Nippon Steel Corp Manufacture of high strength thick steel plate
JPH0853734A (en) * 1994-08-10 1996-02-27 Nippon Steel Corp Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JPH1171615A (en) * 1997-08-29 1999-03-16 Nippon Steel Corp Production of thick steel plate excellent in low temperature toughness
JP2001288512A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Method of producing high tensile strength steel excellent in toughness and ductility
JP2003129134A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp Method for manufacturing high-strength steel sheet superior in low-temperature toughness
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same
JPWO2013099179A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
CN102766806A (en) * 2012-07-11 2012-11-07 莱芜钢铁集团有限公司 Ultrawide and ultrafine gauge structural steel plate for bridges and production method thereof
JP2014074194A (en) * 2012-10-03 2014-04-24 Kobe Steel Ltd Thick steel plate having small change of toughness before and after strain ageing
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
US11268176B2 (en) 2013-01-22 2022-03-08 Baoshan Iron & Steel Co., Ltd. High strength steel plate and manufacturing method thereof
JP2016509129A (en) * 2013-01-22 2016-03-24 宝山鋼鉄股▲分▼有限公司 High strength steel plate and manufacturing method thereof
JP2016079449A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Production method of steel pipe and steel pipe
JP2017150067A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP2018076573A (en) * 2016-11-11 2018-05-17 新日鐵住金株式会社 Steel plate excellent brittle crack propagation stopping characteristics and manufacturing method therefor
JP2018095904A (en) * 2016-12-12 2018-06-21 Jfeスチール株式会社 Manufacturing method of hot rolled steel sheet for rectangular steel pipe with low yield ratio and manufacturing method of rectangular steel pipe with low yield ratio
WO2019001464A1 (en) * 2017-06-27 2019-01-03 南京钢铁股份有限公司 Production technology for ultra-fine grain wide-thick pipeline steel plate
CN109365529A (en) * 2018-10-08 2019-02-22 鞍钢股份有限公司 Production method of austenitic stainless steel medium plate
CN115433874A (en) * 2022-08-31 2022-12-06 马鞍山钢铁股份有限公司 Hot-rolled angle steel with yield strength of 460MPa and temperature resistance of-20 ℃ and production method thereof
CN115433874B (en) * 2022-08-31 2023-08-25 马鞍山钢铁股份有限公司 Hot rolled angle steel with yield strength of 460MPa and minus 20 ℃ resistance and production method thereof
CN115404328A (en) * 2022-09-23 2022-11-29 鞍钢股份有限公司 Method for regulating and controlling low-temperature toughness of wide and thick pipeline steel plate based on superposition rolling
CN115558851A (en) * 2022-09-23 2023-01-03 鞍钢股份有限公司 Hot rolled steel plate for 370 MPa-level engineering structure and manufacturing method thereof
CN115558849A (en) * 2022-09-23 2023-01-03 鞍钢股份有限公司 Hot rolled steel plate for 345 MPa-level engineering structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2011148755A1 (en) 2013-07-25
BR112012029698A2 (en) 2016-08-02
BR112012029698B1 (en) 2019-02-19
JP4897127B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4897127B2 (en) Manufacturing method of high strength steel sheet for welded structure
JP4874434B1 (en) Thick steel plate manufacturing method
JP4897126B2 (en) Thick steel plate manufacturing method
WO2013089156A1 (en) High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof
JP6682967B2 (en) Steel plate and method of manufacturing the same
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP6620575B2 (en) Thick steel plate and manufacturing method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2008214652A (en) High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
WO2015025486A1 (en) Thick steel plate and method for manufacturing same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP5181461B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JPWO2020170774A1 (en) Square steel pipe and its manufacturing method, and building structures
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP5157386B2 (en) Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011543021

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786455

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012029698

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012029698

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121122