[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011147382A1 - 上行控制信息的传输和接收方法、终端以及基站 - Google Patents

上行控制信息的传输和接收方法、终端以及基站 Download PDF

Info

Publication number
WO2011147382A1
WO2011147382A1 PCT/CN2011/075504 CN2011075504W WO2011147382A1 WO 2011147382 A1 WO2011147382 A1 WO 2011147382A1 CN 2011075504 W CN2011075504 W CN 2011075504W WO 2011147382 A1 WO2011147382 A1 WO 2011147382A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
bits
coded
rate
coded bit
Prior art date
Application number
PCT/CN2011/075504
Other languages
English (en)
French (fr)
Inventor
成艳
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES11786154.2T priority Critical patent/ES2513596T3/es
Priority to EP18162173.1A priority patent/EP3373490B1/en
Priority to EP11786154.2A priority patent/EP2445133B1/en
Publication of WO2011147382A1 publication Critical patent/WO2011147382A1/zh
Priority to US13/365,718 priority patent/US8619633B2/en
Priority to US14/098,201 priority patent/US9014057B2/en
Priority to US14/660,476 priority patent/US9491745B2/en
Priority to US15/344,078 priority patent/US9839015B2/en
Priority to US15/819,088 priority patent/US10306608B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and a terminal for transmitting and receiving uplink control information, and a base station. Background technique
  • TDD Time Division Duplexing
  • UCI Uplink Control Information
  • the TDD system includes a total of seven uplink and downlink subframes.
  • the number of downlink subframes in a partial ratio is larger than the number of uplink subframes.
  • the UCI corresponding to the data transmission of the subframe needs to be fed back in the same uplink subframe.
  • UCI information is usually encoded using the RM (Reed Mulle) (32, 0) code and transmitted to the base station.
  • the LTE-A (Long Term Evolution Advanced) system is a further evolution and enhancement system of the LTE system.
  • LTE-A TDD Long Term Evolution Advanced
  • the carrier aggregation technology when the terminal accesses multiple component carriers at the same time, the UCI of multiple downlink subframes from multiple downlink component carriers needs to be fed back in the same uplink carrier, and thus one uplink sub-subs
  • the number of bits occupied by the frame by the uplink control information will be greatly increased.
  • the number of bits occupied by UCI exceeds the maximum number of bits supported by RM (32, 0) code, how to transmit UCI becomes an urgent problem to be solved.
  • RM 32, 0
  • the present invention provides a method for transmitting and receiving uplink control information, a terminal, and a base station, in order to solve the problem of UCI transmission of the maximum number of bits supported by the RM (32, 0) code.
  • the technical solution is as follows: A method for transmitting uplink control information, the method includes: calculating a number of modulation symbols to be transmitted by an uplink control information UCI; and dividing the information bit sequence of the UCI to be transmitted into two parts;
  • Each part of the information bit sequence of the UCI to be transmitted is encoded by a Redmere RM (32, 0) code to obtain a 32-bit coded bit sequence, and each 32-length coded bit sequence is rate-matched separately. Matching the first 32-length coded bit sequence rate to " ⁇ /2 1 ⁇ ⁇ » bits, and matching the second 32-length coded bit sequence rate to ⁇ -" ⁇ ! ⁇ bits, where The modulation order corresponding to the UCI to be transmitted, ", represents rounding up; mapping the two parts of the rate-matched coded bit sequence to the physical uplink shared channel PUSCH for transmission to the base station.
  • a method for receiving uplink control information includes:
  • Each part of the candidate control information bit sequence is encoded by a Redmere RM (32, 0) code to obtain a 32-length coded bit sequence, respectively, for each 32-length coded bit sequence Rate matching, matching the first 32-length coded bit sequence rate to " ⁇ /2 1 ⁇ ⁇ » bits, and matching the second 32-length coded bit sequence rate to ⁇ / ⁇ xQ" bits, where For the modulation order corresponding to the uplink control information, ", indicating rounding up; the two pieces of rate-matched coded bit sequences corresponding to each candidate control information bit sequence are used to detect the uplink control information.
  • a terminal where the terminal includes: a calculation module, configured to calculate a number of modulation symbols occupied by an uplink control information UCI to be transmitted, and obtain a modulation order corresponding to the UCI to be transmitted; a first dividing module, configured to divide the information bit sequence of the UCI to be transmitted in the computing module into two parts;
  • a first encoding module configured to encode, by using a Redmer Miller RM (32, 0) code, each partial information bit sequence of the UCI to be transmitted divided by the first dividing module to obtain a 32-length encoded bit sequence, Rate matching each of the 32 long coded bit sequences, matching the first 32 long coded bit sequence rate to "0 /2 ⁇ » bits, and matching the second 32 long coded bit sequence rate to d ⁇ ⁇ l ⁇ Q"bit, where ⁇ " is the modulation order corresponding to the UCI to be transmitted, ", indicating rounding up; a transmission module for rate matching the two parts obtained by the first encoding module
  • the coded bit sequence is mapped to the physical uplink shared channel PUSCH and transmitted to the base station.
  • a base station, the base station includes:
  • a receiving module configured to receive uplink control information sent by the terminal, calculate the number of modulation symbols occupied by the uplink control information, and acquire a modulation order corresponding to the uplink control information; and determine a module, configured to obtain, according to the receiving module, The number of bits of the uplink control information, and the candidate control information bit sequence is determined;
  • a second dividing module configured to divide each candidate control information bit sequence determined by the determining module into two parts
  • a second encoding module configured to encode each partial bit sequence of each candidate control information bit sequence divided by the second dividing module by using a Red Miller RM (32, 0) code, to obtain a 32-length encoding respectively a bit sequence that performs rate matching on each of the 32 long coded bit sequences, matches the first 32 long coded bit sequence rate to "0 /2 ⁇ » bits, and matches the second 32 long coded bit sequence rate a bit of d ⁇ x ⁇ , where is the modulation order corresponding to the uplink control information, ", indicating rounding up;
  • a detecting module configured to detect the uplink control information by using the two-part rate-matched coded bit sequence corresponding to each candidate control information bit sequence obtained by the second coding module.
  • a method for receiving uplink control information including: Calculating the number of modulation symbols occupied by the uplink control information UCI sent by the terminal, where the UCI includes a first part UCI and a second part UCI; and according to the modulation symbol separating the uci, the first part uci corresponds to “ ⁇ / 21 modulation symbols, the second portion corresponding to uci ⁇ - ' ⁇ 2 ⁇ modulation symbols technical solutions provided in embodiments of the present invention is beneficial effects:
  • FIG. 1 is a flowchart of a method for transmitting uplink control information provided in Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of resource mapping of UCIs on each layer of the PUSCH according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for receiving uplink control information provided in Embodiment 1 of the present invention
  • FIG. 5 is a flowchart of a method for receiving uplink control information provided in Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting uplink control information provided in Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of resource mapping of a UCI corresponding to a mode 1 provided in Embodiment 3 of the present invention on each layer of a PUSCH;
  • FIG. 8 is a schematic diagram of resource mapping of each UCI corresponding to mode 2 provided in Embodiment 3 of the present invention on each layer of the PUSCH;
  • FIG. 9 is a schematic diagram of resource mapping of each layer of the UCI corresponding to the mode 3 provided in Embodiment 3 of the present invention on each layer of the PUSCH;
  • FIG. 10 is a flowchart of a method for receiving uplink control information provided in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal provided in Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • FIG. 13 is a flowchart of a method for transmitting uplink control information provided in Embodiment 6 of the present invention
  • FIG. 14 is a flowchart of a method for receiving uplink control information provided in Embodiment 6 of the present invention.
  • this embodiment provides a method for transmitting uplink control information.
  • the following steps are included:
  • the UCI may be an ACK (Acknowledgment acknowledgment)/NACK (Negative Acknowledgement acknowledgment), an RI (Rank Indicator), or other control information, which is not limited in this embodiment.
  • ACK Acknowledgment acknowledgment
  • NACK Negative Acknowledgement acknowledgment
  • RI Rank Indicator
  • the transmission bandwidth of the PUSCH; M is the transmission bandwidth of the current subframe PUSCH; is the SC-FDMA (single carrier frequency division multiple access) occupied by the same transmission block.
  • Poffset is UCI relative to data MCS (Modulation and Coding Scheme, nPUSCH_ HARQ-ACK
  • Poff set - Poffiet 7 Poffset value sum is signaled by higher layer RR C (Radio Resource Control), and is selected based on PUSCH MIMO transmission mode; when PUSCH When two data transmission blocks are carried on the channel, the number of code blocks divided into the channel coding time by the data corresponding to the first data transmission block and the second data transmission block respectively; and the first data transmission block and The sum of the number of information bits of the rth code block of the second data transmission block and the number of CRC (Cyclic Redundancy Check) check bits; min means that the smallest one is taken, ", indicating rounding up. It should be noted that if the PUSCH only corresponds to one data transmission block (that is, there is only one codeword), the specific calculation can also be performed according to the following formula (2), and the formula (2) is simplified by the formula (1), wherein each symbol Contain
  • c is the number of code blocks divided by the data corresponding to the data transmission block at the time of channel coding; and is the sum of the number of information bits of the second code block of the data transmission block and the number of CRC check bits.
  • the information bit sequence of the UCI to be transmitted is divided into two parts.
  • the information bit sequence of the UCI in this embodiment refers to the original information bit sequence of the UCI.
  • the UCI to be transmitted is ACK/NACK
  • the number of bits of the ACK/NACK to be transmitted is 12, which corresponds to 4096 information bit sequences
  • the information bit sequence in this embodiment is 4096 information bits.
  • One of the sequences, for example, can be 12 zeros.
  • the method for dividing the information bit sequence of the UCI into two parts is not limited.
  • the embodiment performs the block according to the following manner: If the number of bits of the UCI is even, the number of bits of the two parts is equal; if the number of UCI bits It is an odd number, one of which is one bit more than the other.
  • the RM (32, 0) code is used to encode each part of the UCI information bit sequence to obtain a 32-length coded bit sequence, and the last 8 bits are removed to obtain a 24-length coded bit sequence.
  • 104 alternately select coding bits from two 24-length coded bit sequences with a coded bit as a granularity to obtain a 48-length coded bit sequence, and match the 48-length coded bit sequence rate to 0 ⁇ » bits.
  • ⁇ " is the modulation order corresponding to the UCI to be transmitted.
  • 105 Map the rate matched coded bit sequence to the PUSCH and transmit the signal to the base station.
  • Figure 2 shows the resource mapping of UCI on each layer of the PUSCH.
  • the transmission method provided by this embodiment divides the information bit sequence of the UCI into two parts, and encodes each part with an RM (32, 0) code to obtain a 32-bit coded bit sequence, and removes the last 8 bits thereof.
  • RM 32, 0
  • a 24-length coded bit sequence alternately selecting coded bits from two 24-bit coded bit sequences at a coded bit size to obtain a 48-length coded bit sequence, and matching the 48-length coded bit sequence rate to 2 ⁇ "The bit is transmitted after the bit, and the number of occupied bits is more than RM (32,
  • this embodiment further provides a method for receiving uplink control information.
  • the following steps are included:
  • This step specifically includes the following two steps:
  • 201a Calculate the number of modulation symbols occupied by the uplink control information sent by the terminal. This step is the same as step 101, and will not be described here.
  • 201b Separate the UCI information transmitted with the data.
  • the base station according to the number of modulation symbols occupied by the UCI obtained in step 201a, according to the resource location shown in FIG. 2 may also be combined with the step of channel interleaving to separate the UCI information transmitted with the data, which may be separated.
  • the modulation symbol corresponding to the UCI information transmitted by the data may be combined with the step of channel interleaving to separate the UCI information transmitted with the data.
  • all bit sequences identical to the number of bits of the UCI to be detected are used as candidate control information bit sequences. For example, when the number of bits of UCI information transmitted with data is 12, there are 2 12 candidate control information bit sequences.
  • the base station separately encodes each candidate control information bit sequence, including the following steps:
  • Each candidate control information bit sequence is divided into two parts.
  • 202b Each part of the information bit sequence of the candidate control information bit sequence is separately encoded by using the RM (32, 0) code to obtain a 32-bit coded bit sequence, and the last 8 bits are removed to obtain a 24-length coded bit sequence.
  • 202c alternately select coding bits from two 24-bit coded bit sequences with a coded bit as a granularity to obtain a 48-length coded bit sequence, and match the 48-length coded bit sequence rate to 0 ⁇ » bits.
  • the receiving method provided in this embodiment is a method corresponding to the transmission method provided in this embodiment, and the receiving method enables the terminal side to transmit UCI information according to the transmission method provided in this implementation, thereby solving the problem that the occupied bit number exceeds RM (32, 0).
  • this embodiment provides a method for transmitting uplink control information, where the method includes:
  • 303 encoding, by using a Rader Miller RM (32, 0) code, each part of the information bit sequence to be transmitted, respectively, to obtain a 32-length coded bit sequence, and performing rate matching on each of the 32-length coded bit sequences respectively. Matching the first 32-length coded bit sequence rate to " ⁇ /2 1 ⁇ ⁇ » bits, and matching the second 32-length coded bit sequence rate to d ⁇ l ⁇ " bits, where ⁇ " is The modulation order corresponding to the UCI to be transmitted, ", indicating rounding up;
  • this embodiment provides a method for receiving uplink control information, where the method includes:
  • each 32-length coded bit sequence is rate-matched separately, and the first 32-length coded bit sequence rate is matched to " ⁇ /2 1 ⁇ ⁇ » Bit, the second 32-length coded bit sequence rate is matched to ⁇ / ⁇ xQ" bits, where is the modulation order corresponding to the uplink control information, ", indicating rounding up; 405: using each candidate control information
  • the two-part rate-matched coded bit sequence corresponding to the bit sequence detects the uplink control information.
  • the transmission method provided in this embodiment separately encodes each information bit sequence of the UCI by dividing the information bit sequence of the UCI into two parts, and obtains a 32-bit coded bit sequence, and then separately performs each 32-length coded bit sequence. After the rate matching is performed, the transmission is solved, and the UCI transmission problem that the number of occupied bits exceeds the maximum number of bits supported by the RM (32, 0) code is solved.
  • the information bit sequence of each part of the UCI can obtain sufficient coding gain when ( ⁇ ' /2) ⁇ ⁇ " is larger than 24 bits, thereby improving the transmission performance of UCI. .
  • the receiving method provided in this embodiment is a method corresponding to the transmission method provided in this embodiment, and the receiving method enables the terminal side to transmit UCI information according to the transmission method provided in this implementation, thereby solving the problem that the occupied bit number exceeds RM (32, 0).
  • the UCI transmission problem of the maximum number of bits supported by the code in addition, compared with the technical solution of Embodiment 1, the information bit sequence of each part of the UCI can be made even if ( 2 '/ 2) ⁇ ⁇ « is greater than 24 bits. Obtaining sufficient coding gain improves the transmission performance of UCI.
  • this embodiment provides a method for transmitting uplink control information.
  • the method includes the following steps:
  • step 501 Calculate the number of modulation symbols to be transmitted by the UCI. This step is the same as step 101, and is briefly described below.
  • the number of modulation symbols occupied by the UCI on each layer of the PUSCH is calculated.
  • the UCI may be an ACK (Acknowledgment acknowledgment) / NACK (Negative Acknowledgement acknowledgment), an RI (Rank Indicator), or other control information, which is not limited in this embodiment. 2 'The specific calculation formula is as follows:
  • Poffset is UCI relative to data MCS (Modulation and Coding Scheme, nPUSCH _ nHARQ-ACK
  • Poffset _ Poffset Poffset value and ⁇ The value is determined by the high-level RRC (Radio Resource Control) signaling, and is selected based on the MIMO transmission mode of the PUSCH; when the two data transmission blocks are carried on the PUSCH channel, respectively, the first data transmission block and the first The number of code blocks divided by the data corresponding to the two data transmission blocks at the time of channel coding; and the number of information bits of the rth code block of the first data transmission block and the second data transmission block, respectively, and CRC (Cyclic) Redundancy Check, the sum of the number of check bits; min means the smallest one, ", means rounding up. It should be noted that if the PUSCH only corresponds to one data transfer block (ie only one codeword) , the specific calculation can also be carried out according to the following formula (2), the formula (2) is simplified by the formula (1), in which each symbol is included
  • c is the number of code blocks divided by the data corresponding to the data transmission block at the time of channel coding; and is the sum of the number of information bits of the second code block of the data transmission block and the number of CRC check bits.
  • the information bit sequence of the UCI to be transmitted is divided into two parts.
  • the information bit sequence of the UCI in this embodiment refers to the original information bit sequence of the UCI.
  • the UCI to be transmitted is ACK/NACK
  • the number of bits of the ACK/NACK to be transmitted is 12, which corresponds to 4096 information bit sequences
  • the information bit sequence in this embodiment is 4096 information bits.
  • One of the sequences, for example, can be 12 zeros.
  • the method for dividing the information bit sequence of the UCI into two parts is not limited.
  • the embodiment performs the block according to the following manner: If the number of bits of the UCI is even, the number of bits of the two parts is equal; if the number of UCI bits It is an odd number, one of which is one bit more than the other.
  • each part of the UCI information bit sequence by using an RM (32, 0) code, respectively obtaining a 32-length coded bit sequence, and performing rate matching on each of the 32-length coded bit sequences respectively, the first one
  • the 32-bit coded bit sequence rate is matched to " ⁇ /2 1 ⁇ ⁇ » bits
  • the second 32-length coded bit sequence rate is matched to d ⁇ 2 ⁇ " bits.
  • one of the obtained two 32-length coded bit sequences may be referred to as a first 32-length coded bit sequence, and the other may be referred to as a second 32-length coded bit sequence.
  • the first 32-bit coded bit sequence rate can be matched to “0 /2 ⁇ » bits, and the second 32-length coded bit sequence rate is matched to _“0 /2 ⁇ ” ⁇ ⁇ bits;
  • the first 32-length coded bit sequence rate can be matched to (0-3 ⁇ 4/2l)xO ! bits, and the second 32- length coded bit sequence rate can be matched to " ⁇ /2 1 ⁇ ⁇ » bits.
  • ⁇ " is the modulation order corresponding to the UCI to be transmitted, and can also be said to be the modulation order corresponding to the data transmission block multiplexed with the UCI; if the data transmission block corresponds to multiple layers, then the " ⁇ " Called the UCI The modulation order corresponding to the data on the layer to which it is mapped.
  • the terminal is usually notified in advance by the base station, whereby both the terminal and the base station can know the value in advance.
  • the first 32-length coded bit sequence rate is matched into " ⁇ /2 1 ⁇ ⁇ » bits, including: if the value of 0/2 ⁇ is less than or equal to 32 bits, the first 32- length coded bits are taken.
  • the base sequence of the code (as shown in Table 1), ' is the number of bits of the information bit sequence corresponding to the first 32-length coded bit sequence. It should be noted that, at this time, since 0' is the first 32-length The number of bits of the information bit sequence corresponding to the coded bit sequence is the bit of the information bit sequence corresponding to the first 32-bit coded bit sequence. When "numbering from 0, the information of the first 32-length coded bit sequence is corresponding.
  • U 1 is a second 32- bit coded bit sequence, where is the bit of the information bit sequence corresponding to the second 32-length coded bit sequence,
  • ⁇ '" is the base sequence of the ! ⁇ (32, 0) code
  • 0' is the number of bits of the information bit sequence corresponding to the second 32-bit coded bit sequence. It should be noted that, at this time, since 0' is The number of bits of the information bit sequence corresponding to the second 32-bit coded bit sequence, 0" is the bit of the information bit sequence corresponding to the second 32-bit coded bit sequence, when "starting from 0, the second 32" Long coded bit sequence does not correspond to the information bit sequence
  • a rate matching method greater than 32 bits may be referred to as a cyclic repetition rate matching method, and a method for matching the entire rate corresponding to each mode may be included, including A rate matching method of 32 bits or less and more than 32 bits is collectively called a method of cyclic repetition rate matching.
  • each part of the UCI information bit sequence is encoded to obtain a 32-length coded bit sequence, and each 32-length coded bit sequence is separately rate-matched by the cyclic repetition method, compared with the technique in Embodiment 1. , so that each part of the UCI information bit sequence obtains sufficient coding gain with (2 '/ 2) ⁇ ⁇ » greater than 24 bits, which improves the transmission performance of UCI.
  • step 504 Process the two-part rate-matched coded bit sequence obtained in step 503 according to one of the following manners. Manner 1: directly connecting two parts of the rate-matched coded bit sequences together to form a new bit sequence; Manner 2: alternately selecting coded bits from the two-part rate-matched coded bit sequence to form a new bit sequence with 4 ⁇ » coded bits as a granularity; that is, according to the first 32-length coded bits matched by the rate-matching After the sequence selects 4 ⁇ » coded bits, it is selected from the rate-matched second 32-length coded bit sequence.
  • the coded bits are alternately selected from the two parts of the rate matched coded bit sequence, and the above process is repeated until the two parts of the rate matched coded bit sequence are selected.
  • Manner 3 alternately select the coded bits from the two-part rate-matched coded bit sequence with a coded bit as a granularity, and exchange the selected two bit-coded coded bit sequences after selecting a total of 4 ⁇ » coded bits. The sequence of bits, and continues to alternately select the coded bits to form a new bit sequence.
  • the order of selecting the coded bits from the second 32-length coded bit sequence matched by the rate is matched from the two parts by rate matching.
  • the coded bit sequence alternately selects the coded bits.
  • the selected sequence is exchanged, that is, after selecting the coded bits according to the second 32-length coded bit sequence matched by the rate,
  • the coded bits are alternately selected from the two parts of the rate matched coded bit sequence by selecting the coded bits from the first 32-bit coded bit sequence matched by the rate matching, and the process is repeated until the two parts are rate matched coded bits.
  • the sequence is selected.
  • step 504 may or may not be performed in this embodiment.
  • 505 Map the two-part rate-matched coded bit sequence of the UCI to the PUSCH and transmit the signal to the base station. It should be noted that, if the operation of step 504 is not performed in this embodiment, this step may map the two-part rate-matched coded bit sequence obtained in step 503 to the PUSCH and transmit the signal to the base station.
  • step 504 the new bit sequence obtained after the rate matching of the two-part coded bit sequence obtained in step 503 is processed on the PUSCH and transmitted to the base station.
  • step 504 is processed in mode 1
  • the new bit sequence is mapped to the PUSCH transmission, and the resource mapping diagram of the UCI on each layer of the PUSCH is as shown in FIG. 7
  • step 504 is processed in the mode 2
  • the new bit sequence is mapped to the PUSCH for transmission, and the UCI is per PUSCH.
  • a schematic diagram of resource mapping on each layer is shown in Figure 9.
  • the bit sequence corresponding to each part of the UCI is mapped to only two of the four SC-FDMA symbols, and the implementation After the processing of mode 1, 2 or 3, the corresponding bit sequence of each part of the UCI can be mapped into 4 SC-FDMA symbols, and even if the corresponding bit sequence of each part of the UCI is discretely distributed on the time-frequency resource, Sufficient time diversity gain and frequency diversity gain to improve UCI transmission performance.
  • mapping the two-part rate-matched coded bit sequence to the PUSCH and transmitting the signal to the base station in the step further includes: performing channel interleaving and adding the two parts of the rate-matched coded bit sequence, data, and other UCI information, such as CQI. Processing such as scrambling, modulation, DFT transform, and resource mapping is transmitted to the base station.
  • the specific mapping method is not limited in this embodiment, and can be consistent with the existing mechanism.
  • the base station receives the UCI information that is transmitted along with the data.
  • the embodiment further provides a method for receiving uplink control information, including the following steps:
  • 601 Receive uplink control information sent by the terminal.
  • This step specifically includes the following two steps:
  • 601a Calculate the number of modulation symbols occupied by the uplink control information sent by the terminal. In this step, if the PUSCH corresponds to a layer, this step calculates the number of modulation symbols occupied by the UCI on each layer of the PUSCH.
  • step 501 is the same as the calculation method of step 501, and details are not described herein again.
  • the base station may separate the UCI information that is transmitted with the data according to the number of modulation symbols occupied by the UCI obtained in step 601a, and may also separate the modulation corresponding to the UCI information transmitted by the data. symbol.
  • the base station may further separate the modulation symbols corresponding to the coded bit sequences of each part of the rate matching in step 503 according to the corresponding manner of step 504.
  • the step may separately separate the modulation symbols corresponding to each part of the UCI according to the resource positions as shown in FIG.
  • this step may separate the modulation corresponding to each part of UCI according to the resource positions as shown in FIG. Symbol; when In step 504, when the two-part coded bit sequences after the rate matching in step 503 are combined according to mode three, this step may separately separate the modulation symbols corresponding to the UCI of each part according to the resource positions as shown in FIG. 9.
  • all bit sequences identical to the number of bits of the UCI to be detected are used as candidate control information bit sequences. For example, when the number of bits of UCI information transmitted with data is 12, there are 2 12 candidate control information bit sequences.
  • the base station separately encodes each candidate control information bit sequence, including the following steps:
  • Each candidate control information bit sequence is divided into two parts.
  • This step is the same as the method implemented in step 502, and details are not described herein again.
  • 602b encoding each partial bit sequence of the candidate control information bit sequence by using an RM (32, 0) code to obtain a 32-length coded bit sequence, and performing rate matching on each of the 32-length coded bit sequences respectively.
  • a 32-bit coded bit sequence rate is matched to " ⁇ /2 1 ⁇ ⁇ » bits, and the second 32-length coded bit sequence rate is matched to ⁇ » bits, where is the uplink control
  • the modulation order corresponding to the information, ", indicates rounding up. This step is the same as the method implemented in step 503, and will not be described here.
  • step 602c The rate-matched two-part coded bit sequence obtained in step 602b is combined in the same manner as step 504.
  • the step is optional.
  • the embodiment executes 602c.
  • the embodiment does not execute 602c.
  • the two-part rate-matched coded bit sequence corresponding to each candidate control information bit sequence obtained in step 602 is used to detect the detected UCI to determine whether the candidate control information bit sequence is a UCI bit sequence transmitted by the user equipment.
  • step 602c is to detect the UCI to be detected according to the rate-matched two-part coded bit sequence obtained in step 602. If the operation of step 602c is performed in the embodiment of the present invention, this step detects the UCI to be detected according to the new bit sequence obtained in step 602.
  • the detection criterion in this step is various. Taking one implementation of the maximum likelihood detection as an example, the base station encodes each candidate control information bit sequence according to step 602, and encodes the encoded candidate control information bit sequence. After modulation, multiplying the conjugate of the modulation symbol corresponding to the UCI information separated in step 601, and adding the real part of the sum value of the product, the obtained value is called a likelihood value; or, using local pilot symbols and The conjugate of the received pilot symbols is multiplied, the products corresponding to the plurality of pilot symbols are added to obtain a first sum value, and the products corresponding to the candidate control information are added to obtain a second sum value, and the first sum value is The second sum value is further added as the likelihood value of the last sum value; the base station uses the candidate control information bit sequence corresponding to the largest likelihood value as the UCI bit sequence transmitted by the user equipment.
  • the transmission method provided in this embodiment separately encodes each information bit sequence of the UCI by dividing the information bit sequence of the UCI into two parts, and obtains a 32-bit coded bit sequence, and then separately performs each 32-length coded bit sequence. After the rate matching is performed, the transmission is solved, and the UCI transmission problem that the number of occupied bits exceeds the maximum number of bits supported by the RM (32, 0) code is solved.
  • the information bit sequence of each part of the UCI can obtain sufficient coding gain when ( ⁇ ' /2) ⁇ ⁇ " is larger than 24 bits, thereby improving the transmission performance of UCI. .
  • the receiving method provided in this embodiment is a method corresponding to the transmission method provided in this embodiment, and the receiving method enables the terminal side to transmit UCI information according to the transmission method provided in this implementation, thereby solving the problem that the occupied bit number exceeds RM (32, 0).
  • the UCI transmission problem of the maximum number of bits supported by the code in addition, compared with the technical solution of Embodiment 1, the information bit sequence of each part of the UCI can be made even if ( 2 '/ 2) ⁇ ⁇ « is greater than 24 bits. Obtaining sufficient coding gain improves the transmission performance of UCI.
  • the embodiment provides a terminal, including: a calculation module 701, configured to calculate a number of modulation symbols to be transmitted by the UCI to be transmitted, and obtain a modulation order corresponding to the UCI to be transmitted; a dividing module 702, configured to divide the information bit sequence of the UCI to be transmitted in the calculating module 701 into two parts;
  • a first encoding module 703 configured to encode, by using a Redmer Miller RM (32, 0) code, each partial information bit sequence of the UCI to be transmitted divided by the first dividing module 702, to obtain a 32-bit encoded bit sequence, respectively.
  • the transmission module 704 includes at least one transmission unit as follows:
  • a first transmission unit configured to serially combine the two-part rate-matched coded bit sequences obtained by the first coding module 703 to form a new bit sequence, and map the new bit sequence to the PUSCH for transmission to the base station;
  • the coded bits are alternately selected from the two-part rate-matched coded bit sequence obtained by the first coding module 703 at a granularity of 4 ⁇ » code bits to form a new bit sequence, and the new bit sequence is mapped to the PUSCH and transmitted to the base station.
  • a third transmission unit configured to alternately select coding bits from the two-part rate-matched coded bit sequence obtained by the first coding module 703 at a coded bit granularity, and after selecting a total of 4 ⁇ » coding bits
  • the sequence of the two-part rate-matched coded bit sequence obtained from the first coding module 703 is exchanged, and the coded bits are alternately selected to form a new bit sequence, and the new bit sequence is mapped to the PUSCH and transmitted to the base station.
  • the first encoding module 703 includes:
  • a first coding unit configured to encode, by using a Redmer Miller RM (32, 0) code, each partial information bit sequence of the UCI to be transmitted divided by the first dividing module 702 to obtain a 32-length coded bit sequence;
  • An obtaining unit configured to obtain a bit of the information bit sequence corresponding to the first 32-bit coded bit sequence obtained by the first coding unit, a base sequence 1 ⁇ ′′ of the RM (32, 0) code, the first 32-length The number of bits of the information bit sequence corresponding to the coded bit sequence;
  • the second acquisition unit is configured to obtain a bit of the information bit sequence corresponding to the second 32-bit coded bit sequence obtained by the first coding unit, and the base sequence 1 of the RM (32, 0) code ⁇ '", the number of bits of the information bit sequence corresponding to the second 32-length coded bit sequence ⁇ ';
  • the terminal provided in this embodiment belongs to the same concept as the terminals involved in the method embodiments 2 and 3, and the specific implementation process is shown in the method embodiments 2 and 3, and details are not described herein again.
  • each UCP information bit sequence is encoded to obtain a 32-length coded bit sequence, and then each 32-length coded bit sequence is rate-matched separately.
  • Transmission which solves the problem of UCI transmission in which the number of occupied bits exceeds the maximum number of bits supported by the RM (32, 0) code.
  • each part of the UCI information bit sequence (s 2 '/ 2) X is made larger than 24 bits, sufficient coding gain can be obtained, and the UCI transmission performance is improved.
  • this embodiment provides a base station, including:
  • the receiving module 801 is configured to receive the uplink control information sent by the terminal, calculate the number of the modulation control number of the uplink control information, and obtain the modulation order corresponding to the uplink control information.
  • the determining module 802 is configured to obtain according to the receiving module 801. The number of bits of the uplink control information, and the candidate control information bit sequence is determined;
  • a second dividing module 803, configured to divide each candidate control information bit sequence determined by the determining module 802 into two parts;
  • the second encoding module 804 is configured to encode each partial bit sequence of each candidate control information bit sequence divided by the second dividing module 803 by using a Reed Miller RM (32, 0) code to obtain a 32-length encoding respectively.
  • the detecting module 805 is configured to detect the uplink control information by using two rate-matched coded bit sequences corresponding to each candidate control information bit sequence obtained by the second encoding module 804.
  • the detecting module 805 includes at least one detecting unit as follows: a first detecting unit, configured to serially combine the two parts of the rate-matched coded bit sequences obtained by the second encoding module 804 to form a new bit sequence, and use the new bit sequence to detect the uplink control information;
  • the coded bits are alternately selected from the two-part rate-matched coded bit sequence obtained by the second coding module 804 at a granularity of 4 ⁇ » code bits to form a new bit sequence, and the new bit sequence is used to detect the uplink control information.
  • a third detecting unit configured to alternately select the coded bits in the two-part rate-matched coded bit sequence obtained from the second encoding module 804 by using the coded bits, and after selecting a total of 4 ⁇ » coded bits
  • the sequence is selected from the two parts of the rate-matched coded bit sequence, and the coded bits are alternately selected to form a new bit sequence, and the new bit sequence is used to detect the uplink control information.
  • the second encoding module 804 includes:
  • a second coding unit configured to encode each partial bit sequence of each candidate control information bit sequence divided by the second dividing module 803 by using a Reed Miller RM (32, 0) code to obtain a 32-length coded bit respectively Sequence
  • the base station provided in this embodiment is the same as the base station involved in the method embodiments 2 and 3.
  • the specific implementation process is shown in the method embodiments 2 and 3, and details are not described herein again.
  • the embodiment is a base station corresponding to the transmission method of the terminal, and the base station enables the terminal side to transmit the UCI information according to the transmission method provided by the implementation, thereby solving the maximum ratio of the occupied bit number exceeding the RM (32, 0) code support.
  • the transmission problem of the uci of the special number, in addition, the information bit sequence of each part of the uci is greater than (2 '/ 2) ⁇ ⁇ »
  • this embodiment provides a method for transmitting uplink control information.
  • the following steps are included:
  • step 901 Calculate the number of modulation symbols to be transmitted by the UCI. This step is the same as the calculation method of step 501, and details are not described herein again.
  • the information bit sequence of the UCI to be transmitted is divided into two parts.
  • This step is the same as the implementation method of step 502, and details are not described herein again.
  • Each part of the information bit sequence of the UCI is separately encoded by using the RM (32, 0) code to obtain a 32-bit coded bit sequence.
  • This step can be implemented according to the calculation formula in Embodiment 3. For details, refer to Embodiment 3, which is not described here.
  • step 904 The two 32-length coded bit sequences obtained in step 903 are processed in one of the following manners.
  • Manner 1 Directly connect two 32-length coded bit sequences together to form a new bit sequence;
  • Method 2 alternately select coding bits from two 32-length coded bit sequences with a coded bit size to obtain a 64-length New bit sequence;
  • mode 3 alternately select code bits from two 32-length coded bit sequences to form a new bit sequence with 4 ⁇ » coded bits as a granularity;
  • mode 4 use two coded bits as granularity from two 32 bits The coded bits are alternately selected in the long coded bit sequence, and when a total of 4 coded bits are selected, the order of the two 32-bit coded bit sequences is exchanged, and the coded bits are alternately selected to form a new bit sequence.
  • ⁇ " is the modulation order corresponding to the UCI to be transmitted.
  • This step can be performed as follows: If the value of ⁇ is less than or equal to 64 bits, the first ⁇ bits of the 64 coded bits are taken; if the value of ⁇ is greater than 64 bits, Then, 64 coded bits are repeatedly matched into G ⁇ S" bits by cyclic repetition, and the rate matching can be specifically performed according to formula (3). For example, if the value of 2 is 96, the first 32 bits of the 64 bits are appended to 64 bits to form 96 bits. The formula is expressed as follows:
  • the coded bit sequence after the rate matching in step 905 is mapped to the PUSCH and transmitted to the base station.
  • the transmission method provided by this embodiment divides the information bit sequence of UCI into two parts, and encodes each part by RM (32, 0) code to obtain a 32-length coded bit sequence, in the manner of step 904.
  • An encoding bit is alternately selected from two 32-length coded bit sequences to obtain a 64-length coded bit sequence, and the 64-length coded bit sequence rate is matched to ⁇ » bits before transmission, thereby solving the occupied bits.
  • the UCI transmission problem exceeds the maximum number of bits supported by the RM (32, 0) code.
  • this embodiment further provides a method for receiving uplink control information.
  • the following steps are included:
  • 1001 Receive uplink control information sent by the terminal.
  • This step specifically includes the following two steps: 1001a: Calculate the number of modulation symbols occupied by the uplink control information sent by the terminal. This step is the same as step 901, and is not described here. 1001b: Separate the UCI information transmitted with the data.
  • the base station may separate the UCI information that is transmitted with the data according to the number of modulation symbols occupied by the UCI obtained in step 1001a, and may also be used to separate the UCI information transmitted with the data. The modulation symbol corresponding to the information.
  • 1002 Determine a plurality of candidate control information bit sequences according to the number of bits of the uplink control information, and encode each candidate control information bit sequence.
  • all bit sequences identical to the number of bits of the UCI to be detected are used as candidate control information bit sequences. For example, when the number of bits of UCI information transmitted with data is 12, there are 2 12 candidate control information bit sequences.
  • the base station separately encodes each candidate control information bit sequence, including the following steps:
  • Each candidate control information bit sequence is divided into two parts.
  • Each part of the information bit sequence of the candidate control information bit sequence is separately encoded by using an RM (32, 0) code to obtain a 32-length coded bit sequence.
  • 1002c The two 32-length coded bit sequences obtained in step 1002b are processed in one of the following ways. Manner 1: Directly connect two 32-length coded bit sequences together to form a new bit sequence; Method 2: alternately select coding bits from two 32-length coded bit sequences with a coded bit size to obtain a 64-length The coded bit sequence, that is, a 64-bit new bit sequence; Method 3: alternately select code bits from two 32-length coded bit sequences to form a new bit sequence with 4 ⁇ » coded bits as a granularity; The coded bits are granularly selected from two 32-length coded bit sequences, and when a total of 4 coded bits are selected, the order of the two 32-length coded bit sequences is exchanged, and the code is alternately selected. The bits form a new bit sequence. 1002d: Match the bit sequence rate obtained in step 1002c to bits. This step is the same as step 905, and will not be described again here.
  • the receiving method provided in this embodiment is a method corresponding to the transmission method provided in this embodiment, and the receiving method enables the terminal side to transmit UCI information according to the transmission method provided in this implementation, thereby solving the problem that the occupied bit number exceeds RM (32, 0).
  • the UCI transmission problem of the maximum number of bits supported by the code may be implemented by software programming, and the software programs thereof are stored in a readable storage medium such as a hard disk, an optical disk or a floppy disk in a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

上行控制信息的传输和接收方法、 终端以及基站
本申请要求于 2010年 11月 15日提交中国专利局、申请号为 CN201010556633.2、 发明名称为 "上行控制信息的传输和接收方法、 终端以及基站"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通信领域, 特别涉及一种上行控制信息的传输和接收方法、终端 以及基站。 背景技术
TDD ( Time Division Duplexing, 时分双工) 系统在一个频率信道上发送和接收 信息,但接收和发送信息使用同一频率载波的不同时隙。下行子帧的数据传输对应的 UCI (Uplink Control Information, 上行控制信息), 如应答信息, 一般通过上行子帧 进行反馈
LTE (Long Term Evolution, 长期演进) TDD系统总共包括 7种上下行子帧的时 间配比方式, 部分配比方式的下行子帧的个数大于上行子帧的个数, 因而会存在多个 下行子帧的数据传输对应的 UCI需要在同一个上行子帧反馈的情况。 UCI信息通常 采用 RM (Reed Mulle 雷德米勒) (32, 0) 码进行编码后传输给基站。
LTE-A (Long Term Evolution Advanced, 高级长期演进)系统是 LTE系统的进一 步演进和增强系统。 在 LTE- A TDD系统中, 由于引入载波聚合技术, 当终端同时接 入多个成员载波时,需要在相同上行载波反馈来自多个下行成员载波的多个下行子帧 的 UCI, 因而一个上行子帧被上行控制信息占用的比特数将大大增加。 当 UCI 占用 的比特数超过 RM ( 32, 0) 码支持的最大比特数 11 比特时, 如何传输 UCI成为一 个急待解决的问题, 然而现有技术还没有相应的解决方案。 发明内容 为了解决占用比特数超过 RM ( 32, 0)码支持的最大比特数的 UCI的传输问题, 本发明实施例提供了一种上行控制信息的传输和接收方法、终端以及基站。所述技术 方案如下: 一种上行控制信息的传输方法, 所述方法包括: 计算待传输上行控制信息 UCI占用调制符号的个数 ; 将所述待传输 UCI的信息比特序列分成两部分;
采用雷德米勒 RM (32, 0)码对所述待传输 UCI的每一部分信息比特序列进行 编码, 分别得到一个 32长的编码比特序列,对每一个 32长的编码比特序列分别进行 速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将第二个 32长 的编码比特序列速率匹配成 ^—「^^!^^比特, 其中, 为所述待传输 UCI对应的 调制阶数, 「,表示向上取整; 将所述两部分经速率匹配的编码比特序列映射到物理上行共享信道 PUSCH上传 输给基站。
一种上行控制信息的接收方法, 所述方法包括:
接收终端发送的上行控制信息, 并计算所述上行控制信息占用调制符号的个数
Q , 根据所述上行控制信息的比特数, 确定候选控制信息比特序列;
将每种候选控制信息比特序列分成两部分;
采用雷德米勒 RM (32, 0) 码对所述每种候选控制信息比特序列的每一部分比 特序列进行编码, 分别得到一个 32长的编码比特序列,对每一个 32长的编码比特序 列分别进行速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将 第二个 32长的编码比特序列速率匹配成 ^ ^/^xQ"比特, 其中, 为所述上行控 制信息对应的调制阶数, 「,表示向上取整; 采用每种候选控制信息比特序列对应的所述两部分经速率匹配的编码比特序列, 对所述上行控制信息进行检测。
一种终端, 所述终端包括: 计算模块, 用于计算待传输上行控制信息 UCI 占用调制符号的个数 , 并获取 所述待传输 UCI对应的调制阶数 ; 第一划分模块, 用于将所述计算模块中的待传输 UCI 的信息比特序列分成两部 分;
第一编码模块, 用于采用雷德米勒 RM (32, 0) 码对所述第一划分模块划分的 待传输 UCI的每一部分信息比特序列进行编码,分别得到一个 32长的编码比特序列, 对每一个 32长的编码比特序列分别进行速率匹配,将第一个 32长的编码比特序列速 率匹配成「0/2 Χβ»比特, 将第二个 32 长的编码比特序列速率匹配成 d^^l^Q"比 特, 其中, βί "为所述待传输 UCI对应的调制阶数, 「,表示向上取整; 传输模块,用于将所述第一编码模块得到的两部分经速率匹配的编码比特序列映 射到物理上行共享信道 PUSCH上传输给基站。
一种基站, 所述基站包括:
接收模块, 用于接收终端发送的上行控制信息, 计算所述上行控制信息占用调制 符号的个数 , 并获取所述上行控制信息对应的调制阶数 ; 确定模块, 用于根据所述接收模块得到的上行控制信息的比特数, 确定候选控制 信息比特序列;
第二划分模块,用于将所述确定模块确定的每种候选控制信息比特序列分成两部 分;
第二编码模块, 用于采用雷德米勒 RM (32, 0) 码对所述第二划分模块划分的 每种候选控制信息比特序列的每一部分比特序列进行编码, 分别得到一个 32长的编 码比特序列,对每一个 32长的编码比特序列分别进行速率匹配,将第一个 32长的编 码比特序列速率匹配成「0/2 Χβ»比特, 将第二个 32 长的编码比特序列速率匹配成 d^^x^比特, 其中, 为所述上行控制信息对应的调制阶数, 「,表示向上取 整;
检测模块,用于采用所述第二编码模块得到的每种候选控制信息比特序列对应的 所述两部分经速率匹配的编码比特序列, 对所述上行控制信息进行检测。
一方面, 提供一种上行控制信息的接收方法, 包括: 计算终端发送的上行控制信息 UCI占用的调制符号个数 , 所述 UCI包括第一 部分 UCI和第二部分 UCI; 根据所述 分离出所述 uci的调制符号,且所述第一部分 uci对应「^/21个调制 符号, 所述第二部分 uci对应 ^—「^ 2^个调制符号。 本发明实施例提供的技术方案带来的有益效果是:
通过将 UCI的信息比特序列分成两部分, 对 UCI每部分信息比特序列进行编码 各得到一个 32长的编码比特序列,对每一个 32长的编码比特序列分别进行速率匹配 再进行传输, 解决了占用比特数超过 RM (32, 0)码支持的最大比特数的 UCI的传 输问题。 另外, 还能够使 UCI的每一部分信息比特序列在 (2'/2)X 大于 24比特的 情况下仍获得足够的编码增益, 提高了 uci的传输性能。 附图说明 图 1是本发明实施例 1中提供的上行控制信息的传输方法流程图;
图 2是本发明实施例 1中提供的 UCI在 PUSCH每个层上资源映射示意图; 图 3是本发明实施例 1中提供的上行控制信息的接收方法流程图;
图 4是本发明实施例 2中提供的上行控制信息的传输方法流程图;
图 5是本发明实施例 2中提供的上行控制信息的接收方法流程图;
图 6是本发明实施例 3中提供的上行控制信息的传输方法流程图;
图 7是本发明实施例 3中提供的方式一对应的 UCI在 PUSCH每个层上资源映射 示意图;
图 8是本发明实施例 3中提供的方式二对应的 UCI在 PUSCH每个层上资源映射 示意图;
图 9是本发明实施例 3中提供的方式三对应的 UCI在 PUSCH每个层上资源映射 示意图;
图 10是本发明实施例 3中提供的上行控制信息的接收方法流程图;
图 11是本发明实施例 4中提供的终端结构示意图;
图 12是本发明实施例 5中提供的基站结构示意图;
图 13是本发明实施例 6中提供的上行控制信息的传输方法流程图; 图 14是本发明实施例 6中提供的上行控制信息的接收方法流程图。 具体实施方式 为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明实施方 式作进一步地详细描述。
实施例 1
参见图 1, 本实施例提供了一种上行控制信息的传输方法, 对于终端侧, 包括以 下步骤:
101: 计算待传输 UCI占用调制符号的个数 。 本步骤中, 若 PUSCH (Physical Uplink Share Channel, 物理上行共享信道)对应 多层 (layer), 则计算的是 UCI在 PUSCH的每个层上占用的调制符号个数。 其中, UCI可以为 ACK( Acknowledgment确认应答)/ NACK(Negative Acknowledgement 否 认应答)、 RI (Rank Indicator, 秩指示) 或其他控制信息, 本实施例并不限定。
2'具体计算公式如下:
Q - min
Figure imgf000007_0001
其中, O为 uci 原始信息的比特数; Μ 为同一个数据传输块初传时
Ji fPUSCH PUSCH -initial
PUSCH的传输带宽; M 为当前子帧 PUSCH的传输带宽; 为同一个 传输块初传时所占的 SC-FDMA ( single carrier frequency division multiple access,单载 nPUSCH
波频分多址)的个数; Poffset 为 UCI相对于数据 MCS( Modulation and Coding Scheme, nPUSCH _ HARQ-ACK
调制编码方式) 的偏移, 当 UCI为 HARQ-ACK时, Ρ " — P set , 当 UCI为 RI nPUSCH _ nRl n HARQ-ACK nRl
时, Poffset - Poffiet 7 Poffset 值和 的值由高层 RRC ( Radio Resource Control, 无线资源控制) 信令通知, 并基于 PUSCH的 MIMO传输模式进行选择; 当 PUSCH 信道上携带两个数据传输块时, 分别为第一个数据传输块和第二个数据传 输块对应的数据在信道编码时分成的码块的个数; 和 分别为第一个数据传输 块和第二个数据传输块的第 r个码块的信息比特数与 CRC( Cyclic Redundancy Check, 循环冗余校验) 校验比特数之和; min表示取最小的一个, 「,表示向上取整。 需要说明的是,如果 PUSCH只对应一个数据传输块(即只有一个码字),则 的 具体计算也可按如下公式 (2) 进行, 公式 (2 ) 由公式 (1 ) 简化得到, 其中各符号 的含
Figure imgf000008_0001
其中, c为该数据传输块对应的数据在信道编码时分成的码块的个数; 为该 数据传输块的第 ^个码块的信息比特数与 CRC校验比特数之和。
102: 将待传输 UCI的信息比特序列分成两部分。
需要说明的是,本实施例中的 UCI的信息比特序列指 UCI的原始信息比特序列。 举例来说,若待传输的 UCI为 ACK/NACK,且待传输的 ACK/NACK的比特数为 12, 则其对应 4096种信息比特序列,则本实施例中的信息比特序列为 4096种信息比特序 列中的一个, 例如可以为 12个 0。
本实施例对将 UCI 的信息比特序列分成两部分的方法不做限定, 优选的, 本实 施例按照如下方式进行分块: 若 UCI的比特数是偶数, 两部分比特数相等; 若 UCI 比特数是奇数, 其中一部分比另一部分多一个比特。
103: 采用 RM ( 32, 0) 码对 UCI的每一部分信息比特序列分别进行编码各得 到一个 32长的编码比特序列, 去掉其末尾 8个比特得到一个 24长的编码比特序列。
104: 以 个编码比特为粒度从两个 24长的编码比特序列中交替选取编码比特, 得到一个 48长的编码比特序列,将上述 48长的编码比特序列速率匹配成 0^^»比特。 其中, βί "为待传输 UCI对应的调制阶数。 105: 将速率匹配后的编码比特序列映射到 PUSCH上传输给基站。
其中, UCI在 PUSCH每个层上资源映射示意图如图 2所示。
本实施例提供的传输方法, 通过将 UCI 的信息比特序列分成两部分, 对每一部 分分别采用 RM ( 32, 0)码进行编码各得到一个 32长的编码比特序列, 去掉其末尾 8个比特得到一个 24长的编码比特序列, 以 个编码比特为粒度从两个 24长的编 码比特序列中交替选取编码比特,得到一个 48长的编码比特序列,将上述 48长的编 码比特序列速率匹配成2^ "比特后再进行传输, 解决了占用比特数超过 RM ( 32,
0) 码支持的最大比特数的 UCI的传输问题。
参见图 3, 本实施例还提供了一种上行控制信息的接收方法, 对于基站侧, 包括 以下步骤:
201: 接收终端发送的上行控制信息。
本步骤具体包括以下两个步骤:
201a: 计算终端发送的上行控制信息占用的调制符号个数 。 本步骤与步骤 101相同, 这里不再赘述。 201b: 根据 分离出随数据传输的 UCI信息。 本步骤中, 基站根据步骤 201a得到的 UCI占用的调制符号个数, 按照图 2所示 的资源位置, 还可结合解信道交织等步骤, 分离出随数据传输的 UCI信息, 具体可 指分离出随数据传输的 UCI信息对应的调制符号。
202: 根据上行控制信息的比特数, 确定多种候选控制信息比特序列, 并对每种 候选控制信息比特序列进行编码。
具体的, 将与待检测 UCI 的比特数相同的所有比特序列, 作为候选控制信息比 特序列。 举例来说, 当随数据传输的 UCI信息的比特数为 12时, 候选控制信息比特 序列有 212种。
基站分别对每种候选控制信息比特序列进行编码, 包括以下步骤:
202a: 将每种候选控制信息比特序列分成两部分。
202b: 采用 RM ( 32, 0) 码对候选控制信息比特序列的每一部分信息比特序列 分别进行编码各得到一个 32长的编码比特序列, 去掉其末尾 8个比特得到一个 24 长的编码比特序列。 202c:以 个编码比特为粒度从两个 24长的编码比特序列中交替选取编码比特, 得到一个 48长的编码比特序列,将上述 48长的编码比特序列速率匹配成 0^^»比特。
203: 根据速率匹配后的编码比特序列, 对上行控制信息进行检测。
本步骤中的检测准则有多种, 如最大似然检测, 本实施例并不限定具体的检测准 则。
本实施例提供的接收方法是与本实施例提供的传输方法相应的方法,该接收方法 使终端侧可以按照本实施提供的传输方法传输 UCI信息, 从而解决占用比特数超过 RM ( 32, 0) 码支持的最大比特数的 UCI的传输问题。 实施例 2
参见图 4, 本实施例提供了一种上行控制信息的传输方法, 该方法包括:
301: 计算待传输上行控制信息 UCI占用调制符号的个数 302: 将该待传输 UCI的信息比特序列分成两部分;
303: 采用雷德米勒 RM ( 32, 0) 码对待传输 UCI的每一部分信息比特序列进 行编码, 分别得到一个 32长的编码比特序列, 对每一个 32长的编码比特序列分别进 行速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将第二个 32 长的编码比特序列速率匹配成 d^^l^^"比特, 其中, ^ "为待传输 UCI对应的调 制阶数, 「,表示向上取整;
304: 将两部分经速率匹配的编码比特序列映射到物理上行共享信道 PUSCH上 传输给基站。
参见图 5, 本实施例提供了一种上行控制信息的接收方法, 该方法包括:
401: 接收终端发送的上行控制信息, 并计算上行控制信息占用调制符号的个数
Q ,
402: 根据上行控制信息的比特数, 确定候选控制信息比特序列;
403: 将每种候选控制信息比特序列分成两部分;
404: 采用雷德米勒 RM ( 32, 0 )码对每种候选控制信息比特序列的每一部分比 特序列进行编码, 分别得到一个 32长的编码比特序列,对每一个 32长的编码比特序 列分别进行速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将 第二个 32长的编码比特序列速率匹配成 ^ ^/^xQ"比特, 其中, 为上行控制信 息对应的调制阶数, 「,表示向上取整; 405:采用每种候选控制信息比特序列对应的两部分经速率匹配的编码比特序列, 对上行控制信息进行检测。
本实施例提供的传输方法, 通过将 UCI的信息比特序列分成两部分, 对 UCI每 部分信息比特序列进行编码各得到一个 32长的编码比特序列,再对每一个 32长的编 码比特序列分别进行速率匹配后再进行传输, 解决了占用比特数超过 RM (32, 0) 码支持的最大比特数的 UCI的传输问题。另外, 与实施例 1的技术方案相比, 使 UCI 的每一部分信息比特序列在 (β'/2) Χ β "大于 24 比特的情况下仍可获得足够的编码增 益, 提高了 UCI的传输性能。
本实施例提供的接收方法是与本实施例提供的传输方法相应的方法,该接收方法 使终端侧可以按照本实施提供的传输方法传输 UCI信息, 从而解决占用比特数超过 RM (32, 0) 码支持的最大比特数的 UCI的传输问题, 另外, 与实施例 1的技术方 案相比, 使 UCI的每一部分信息比特序列在 (2'/2)Χβ«大于 24比特的情况下仍可获 得足够的编码增益, 提高了 UCI的传输性能。 实施例 3
参见图 6, 本实施例提供了一种上行控制信息的传输方法, 对于终端侧, 该方法 包括以下步骤:
501: 计算待传输 UCI占用调制符号的个数 。 本步骤与步骤 101相同, 这里简述如下。
本步骤中, 若 PUSCH对应多层 (layer), 则计算的是 UCI在 PUSCH的每个层 上占用的调制符号个数。其中, UCI可以为 ACK ( Acknowledgment确认应答) /NACK (Negative Acknowledgement 否认应答)、 RI (Rank Indicator, 秩指示) 或其他控制 信息, 本实施例并不限定。 2'具体计算公式如下:
Figure imgf000012_0001
其中, O为 uci 原始信息的比特数; M^ 为同一个数据传输块初传时
PUSCH -initial
PUSCH的传输带宽; 为当前子帧 PUSCH的传输带宽; 为同一个 传输块初传时所占的 SC-FDMA ( single carrier frequency division multiple access,单载 nPUSCH
波频分多址)的个数; Poffset 为 UCI相对于数据 MCS( Modulation and Coding Scheme, nPUSCH _ nHARQ-ACK
调制编码方式) 的偏移, 当 UCI为 HARQ-ACK时, P et ~Ρο^' , 当 UCI为 RI
OPUSCH _ OKI OHARQ-ACK
Poffset _ Poffset Poffset 值禾口〃。 的值由高层 RRC (Radio Resource Control, 无线资源控制) 信令通知, 并基于 PUSCH的 MIMO传输模式进行选择; 当 PUSCH 信道上携带两个数据传输块时, 分别为第一个数据传输块和第二个数据传 输块对应的数据在信道编码时分成的码块的个数; 和 分别为第一个数据传输 块和第二个数据传输块的第 r个码块的信息比特数与 CRC( Cyclic Redundancy Check, 循环冗余校验) 校验比特数之和; min表示取最小的一个, 「,表示向上取整。 需要说明的是,如果 PUSCH只对应一个数据传输块(即只有一个码字),则 的 具体计算也可按如下公式 (2) 进行, 公式 (2) 由公式 (1) 简化得到, 其中各符号 的含
Figure imgf000012_0002
(2) 其中, c为该数据传输块对应的数据在信道编码时分成的码块的个数; 为该 数据传输块的第 ^个码块的信息比特数与 CRC校验比特数之和。
502: 将待传输 UCI的信息比特序列分成两部分。
需要说明的是,本实施例中的 UCI的信息比特序列指 UCI的原始信息比特序列。 举例来说,若待传输的 UCI为 ACK/NACK,且待传输的 ACK/NACK的比特数为 12, 则其对应 4096种信息比特序列,则本实施例中的信息比特序列为 4096种信息比特序 列中的一个, 例如可以为 12个 0。
本实施例对将 UCI 的信息比特序列分成两部分的方法不做限定, 优选的, 本实 施例按照如下方式进行分块: 若 UCI的比特数是偶数, 两部分比特数相等; 若 UCI 比特数是奇数, 其中一部分比另一部分多一个比特。
503: 采用 RM ( 32, 0) 码对 UCI的每一部分信息比特序列进行编码, 分别得 到一个 32长的编码比特序列, 再对每一个 32长的编码比特序列分别进行速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特,将第二个 32长的编码比特 序列速率匹配成 d^2^^"比特。 其中,可将得到的 2个 32长的编码比特序列中的其中一个称为第一个 32长的编 码比特序列, 另一个称为第二个 32 长的编码比特序列。 具体的, 可以将第一个 32 长的编码比特序列速率匹配成「0/2 Χβ»比特, 将第二个 32 长的编码比特序列速率匹 配成 _「0/2Τ)Χ^比特; 也可以将第一个 32 长的编码比特序列速率匹配成 (0-¾/2l)xO!比特, 将第二个 32长的编码比特序列速率匹配成「^/21Χδ»比特。当 偶 数时,
Figure imgf000013_0001
因此, 当 偶数时上述过程也可以表 述为将每一个 32长的编码比特序列速率匹配成 (β'/2) χβ«比特。 其中, ^ "为待传输 UCI对应的调制阶数, 也可以说, 为与该 UCI复用的那 个数据传输块对应的调制阶数; 若该数据传输块对应多层, 则该 ^ "也可称为该 UCI 映射到的那个层上的数据对应的调制阶数。 通常由基站预先通知终端, 由此终端 和基站均可以预先获知 的值。 具体的, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 包括: 若「0/2ΐχ 的值小于等于 32 比特, 则取第一个 32 长的编码比特序列中的前 21χ 个比特; 若「0/2ΐχ 的值大于 32比特, 根据 = md32)
Figure imgf000014_0001
- 1)将第一 个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 其中, 为第一个 32长的编码比 ri ^n = (O„xM;„)mod2 特序列速率匹配成 /2 |>¾»比特后输出的编码比特序列, "=。 ,
_/ = 0,1_,31为第一个 32长的编码比特序列, 其中, 为第一个 32长的编码比特序 列对应的信息比特序列的比特, ^^"为!^ (32, 0)码的基序列(如表 1所示), ' 为第一个 32长的编码比特序列对应的信息比特序列的比特数。需要说明的是,此时, 由于 0'为第一个 32 长的编码比特序列对应的信息比特序列的比特数, 为第一个 32长的编码比特序列对应的信息比特序列的比特, 当"从 0开始编号时, 第一个 32 长的编码比特序列对应的信息比特序列中没有 ^ ^这个比特, 或说 这个比特不存 b =∑ (On x .„ ) mod 2 b =∑ (On x .„ ) mod 2 在, 因此公式 "=。 与公式 "=。
具体的, 将第二个 32长的编码比特序列速率匹配成 ^—I ^Q"比特包括: 若 (^^^^x 的值小于等于 32比特, 则取第二个 32长的编码比特序列中的前 (^-「0/21)Χ 个比特; 若 ((H^lx 的 值 大 于 32 比 特 , 根 据 1 = b.
Figure imgf000015_0001
- 1)将第二个 32 长的编码比特序列速率匹配成 d^^x^比特,其中, 为第二个 32长的编码比特序列速率匹配成^^^2!^^
Figure imgf000015_0002
比特后输出的编码比特序列, , = G,U 1为第二个 32长的 编码比特序列,其中, 为第二个 32长的编码比特序列对应的信息比特序列的比特,
^^'"为!^ ( 32, 0 ) 码的基序列, 0'为第二个 32长的编码比特序列对应的信息比 特序列的比特数。 需要说明的是, 此时, 由于 0'为第二个 32长的编码比特序列对应 的信息比特序列的比特数, 0"为第二个 32长的编码比特序列对应的信息比特序列的 比特, 当"从 0开始编号时, 第二个 32长的编码比特序列对应的信息比特序列中没
= (O„xM;,„) mod 2 有^'这个比特, 或说^ '这个比特不存在, 因此公式 与公式 = (O„xM;,„) mod 2
Figure imgf000015_0003
表 1
j Mj,0 Mj, 1 Mj,2 Mj,3 Mj, 4 Mj,5 Mj,6 Mj, 7 Mj,8 Mj,9 Mj, 10
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1 11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0 需要说明的是,可以将大于 32比特的速率匹配方法称为循环重复速率匹配方法, 也可以将每种方式下对应的整个速率匹配的方法, 包括小于等于 32 比特和大于 32 比特的速率匹配方法, 统一称为循环重复速率匹配的方法。
本步骤中对 UCI每部分信息比特序列进行编码分别得到一个 32长的编码比特序 列, 再利用循环重复方式对每一个 32长的编码比特序列分别进行速率匹配, 与实施 例 1中的技术相比, 使得 UCI的每一部分信息比特序列在 (2'/2) Χβ»大于 24比特的 情况下获得足够的编码增益, 提高了 UCI的传输性能。
504:按照如下方式之一处理步骤 503得到的两部分经速率匹配的编码比特序列。 方式一:直接将两部分经速率匹配的编码比特序列串联在一起组成一个新比特序 列; 方式二: 以 4 ^»个编码比特为粒度从两部分经速率匹配的编码比特序列中交替 选取编码比特组成一个新比特序列; 也即, 按照从经速率匹配的第一个 32长的编码 比特序列选取 4^»个编码比特后, 从经速率匹配的第二个 32长的编码比特序列选取
4^»个编码比特的顺序, 从两部分经速率匹配的编码比特序列中交替选取编码比特, 重复上述过程, 直至将两部分经速率匹配的编码比特序列选取完毕。 方式三: 以 个编码比特为粒度从两部分经速率匹配的编码比特序列中交替选 取编码比特, 且当总共选择了 4 ^»个编码比特后交换从两部分经速率匹配的编码比 特序列选取的先后顺序、 并继续交替选取编码比特组成一个新比特序列。 也即, 按照 从经速率匹配的第一个 32长的编码比特序列选取 个编码比特后,从经速率匹配的 第二个 32 长的编码比特序列选取 个编码比特的顺序从两部分经速率匹配的编码 比特序列中交替选取编码比特, 当总共选取了 4 ^»个编码比特后, 交换选取的先后 顺序, 即按照从经速率匹配的第二个 32长的编码比特序列选取 个编码比特后, 从 经速率匹配的第一个 32 长的编码比特序列选取 个编码比特的顺序从两部分经速 率匹配的编码比特序列中交替选取编码比特, 重复上述过程,直至将两部分经速率匹 配的编码比特序列选取完毕。
其中, 本步骤可选, 也即本实施例可以执行步骤 504, 也可以不执行步骤 504。 505:将 UCI的两部分经速率匹配的编码比特序列映射到 PUSCH上传输给基站。 需要说明的是, 若本实施例不执行步骤 504的操作, 则本步骤可将步骤 503得到 的两部分经速率匹配的编码比特序列映射到 PUSCH上传输给基站。
若本实施例中执行了步骤 504的操作,则将步骤 503得到的速率匹配后的两部分 编码比特序列经过步骤 504处理后得到的新比特序列映射到 PUSCH上传输给基站。 具体的, 当步骤 504以方式一处理时, 则将新比特序列映射到 PUSCH上传输, UCI 在 PUSCH每个层上的资源映射示意图如图 7所示; 当步骤 504以方式二处理时, 则 将新比特序列映射到 PUSCH上传输, UCI在 PUSCH每个层上资源映射示意图如图 8所示; 当步骤 504以方式三处理时, 则将新比特序列映射到 PUSCH上传输, UCI 在 PUSCH每个层上资源映射示意图如图 9所示。
相对于图 2所示的实施例 1的技术方案的资源映射示意图,实施例 1的技术方案 中 UCI的每部分对应的比特序列只映射到 4个 SC-FDMA符号中的两个, 而本实施 通过方式一、二或三的处理后, UCI每部分对应的比特序列可以映射到 4个 SC-FDMA 符号中, 也即使 UCI每部分对应的比特序列离散的分布在时频资源上, 从而能获得 足够的时间分集增益和频率分集增益, 提高 UCI的传输性能。
另外, 本步骤中将两部分经速率匹配的编码比特序列映射到 PUSCH上传输给基 站还包括: 将两部分经速率匹配的编码比特序列、 数据及其他 UCI信息, 如 CQI, 进行信道交织、 加扰、 调制、 DFT 变换及资源映射等处理后再传输给基站。 具体映 射方法本实施例不做限制, 可与现有机制一致。
对于基站侧, 基站对随数据传输的 UCI信息进行接收, 参见图 10, 本实施例还 提供了一种上行控制信息的接收方法, 包括以下步骤:
601: 接收终端发送的上行控制信息。
本步骤具体包括以下两个步骤:
601a: 计算终端发送的上行控制信息占用的调制符号个数 。 本步骤中, 若 PUSCH对应多层 (layer), 则本步骤计算的是 UCI在 PUSCH的 每个层上占用的调制符号个数。
本步骤与步骤 501计算方法相同, 这里不再赘述。
601b: 根据 分离出随数据传输的 UCI信息。 本步骤中, 基站根据步骤 601a得到的 UCI占用的调制符号个数, 还可结合解信 道交织等步骤, 分离出随数据传输的 UCI信息, 具体可指分离出随数据传输的 UCI 信息对应的调制符号。
当本实施例执行了步骤 504时,本步骤中,基站还可以根据步骤 504的相应方式, 分离出步骤 503 中每部分速率匹配后的编码比特序列对应的调制符号。 当步骤 504 中是按照方式一将步骤 503中速率匹配后的两部分编码比特序列联合在一起时,本步 骤可按如图 7所示的资源位置分别分离出每个部分的 UCI对应的调制符号; 当步骤 504中是按照方式二将步骤 503中速率匹配后的两部分编码比特序列联合在一起时, 本步骤可按如图 8所示的资源位置分别分离出每个部分的 UCI对应的调制符号; 当 步骤 504中是按照方式三将步骤 503中速率匹配后的两部分编码比特序列联合在一起 时, 本步骤可按如图 9所示的资源位置分别分离出每个部分的 UCI对应的调制符号。
602: 根据待检测 UCI的比特数, 确定候选控制信息比特序列, 并对每种候选控 制信息比特序列进行编码;
具体的, 将与待检测 UCI 的比特数相同的所有比特序列, 作为候选控制信息比 特序列。 举例来说, 当随数据传输的 UCI信息的比特数为 12时, 候选控制信息比特 序列有 212种。
基站分别对每种候选控制信息比特序列进行编码, 包括以下步骤:
602a: 将每种候选控制信息比特序列分成两部分。
本步骤与步骤 502实现方法相同, 这里不再赘述。
602b: 采用 RM (32, 0) 码对该候选控制信息比特序列的每一部分比特序列进 行编码分别得到一个 32长的编码比特序列,对每一个 32长的编码比特序列分别进行 速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将第二个 32长 的编码比特序列速率匹配成 ^ ^^Ι^δ»比特, 其中, 为所述上行控制信息对应 的调制阶数, 「,表示向上取整。 本步骤与步骤 503实现方法相同, 这里不再赘述。
602c: 按照与步骤 504相同的方式, 将步骤 602b得到的速率匹配后的两部分编 码比特序列联合在一起。
其中, 本步骤可选, 当用户设备侧执行步骤 504时, 本实施例执行 602c, 当用 户设备侧不执行步骤 504时, 本实施例不执行 602c。
603: 采用步骤 602得到的每种候选控制信息比特序列对应的两部分经速率匹配 的编码比特序列, 对待检测 UCI进行检测, 以判断该候选控制信息比特序列是否为 用户设备传输的 UCI比特序列。
需要说明的是, 若本发明实施例中不执行步骤 602c的操作, 则本步骤根据步骤 602得到的速率匹配后的两部分编码比特序列, 对待检测 UCI进行检测。若本发明实 施例中执行了步骤 602c的操作, 则本步骤根据步骤 602得到的新比特序列, 对待检 测 UCI进行检测。
本步骤中的检测准则有多种, 以最大似然检测中的一种实现方式为例, 基站将每 个候选控制信息比特序列按照步骤 602进行编码,将编码后的候选控制信息比特序列 经调制后与步骤 601分离出的 UCI信息对应的调制符号的共轭相乘, 再将乘积相加 取和值的实部, 得到的值称为似然值; 或者, 用本地导频符号与接收到的导频符号的 共轭相乘,将多个导频符号对应的乘积相加得到第一和值,将候选控制信息对应的乘 积相加得到第二和值, 将第一和值与第二和值再相加最后取和值的实部作为似然值; 基站将最大的那个似然值对应的候选控制信息比特序列作为用户设备传输的 UCI 比 特序列。
本实施例提供的传输方法, 通过将 UCI的信息比特序列分成两部分, 对 UCI每 部分信息比特序列进行编码各得到一个 32长的编码比特序列,再对每一个 32长的编 码比特序列分别进行速率匹配后再进行传输, 解决了占用比特数超过 RM (32, 0) 码支持的最大比特数的 UCI的传输问题。另外, 与实施例 1的技术方案相比, 使 UCI 的每一部分信息比特序列在 (β'/2) Χ β "大于 24 比特的情况下仍可获得足够的编码增 益, 提高了 UCI的传输性能。
本实施例提供的接收方法是与本实施例提供的传输方法相应的方法,该接收方法 使终端侧可以按照本实施提供的传输方法传输 UCI信息, 从而解决占用比特数超过 RM (32, 0) 码支持的最大比特数的 UCI的传输问题, 另外, 与实施例 1的技术方 案相比, 使 UCI的每一部分信息比特序列在 (2'/2)Χβ«大于 24比特的情况下仍可获 得足够的编码增益, 提高了 UCI的传输性能。 实施例 4
参见图 11, 本实施例提供了一种终端, 包括: 计算模块 701,用于计算待传输上行控制信息 UCI占用调制符号的个数 ,并获 取所述待传输 UCI对应的调制阶数 ; 第一划分模块 702,用于将计算模块 701中的待传输 UCI的信息比特序列分成两 部分;
第一编码模块 703, 用于采用雷德米勒 RM (32, 0) 码对第一划分模块 702划 分的待传输 UCI的每一部分信息比特序列进行编码, 分别得到一个 32长的编码比特 序列,对每一个 32长的编码比特序列分别进行速率匹配,将第一个 32长的编码比特 序列速率匹配成「0/2 X 比特, 将第二个 32 长的编码比特序列速率匹配成 (0_「^2 < ^特, 其中, 为待传输 UCI对应的调制阶数, 「,表示向上取整; 传输模块 704, 用于将第一编码模块 703得到的两部分经速率匹配的编码比特序 列映射到物理上行共享信道 PUSCH上传输给基站。
其中, 传输模块 704包括如下至少一个传输单元:
第一传输单元,用于将第一编码模块 703得到的两部分经速率匹配的编码比特序 列串联在一起组成一个新比特序列, 将新比特序列映射到 PUSCH上传输给基站; 第二传输单元, 用于以 4^»个编码比特为粒度从第一编码模块 703得到的两部 分经速率匹配的编码比特序列中交替选取编码比特组成一个新比特序列,将新比特序 列映射到 PUSCH上传输给基站; 和 第三传输单元, 用于以 个编码比特为粒度从第一编码模块 703得到的两部分 经速率匹配的编码比特序列中交替选取编码比特, 且当总共选择了 4 ^»个编码比特 后交换从第一编码模块 703 得到的两部分经速率匹配的编码比特序列选取的先后顺 序、 并继续交替选取编码比特组成一个新比特序列, 将新比特序列映射到 PUSCH上 传输给基站。
其中, 第一编码模块 703包括:
第一编码单元, 用于采用雷德米勒 RM (32, 0) 码对第一划分模块 702划分的 待传输 UCI的每一部分信息比特序列进行编码,分别得到一个 32长的编码比特序列; 第一获取单元, 用于获取第一编码单元得到的第一个 32长的编码比特序列对应 的信息比特序列的比特 , RM (32, 0) 码的基序列 1^'", 第一个 32长的编码比 特序列对应的信息比特序列的比特数 ; 第一速率匹配单元, 用于若「0/2 Χβ»的值小于等于 32 比特, 则取第一编码单元 的第一个 32长的编码比特序列中的前「0/21Χ 个比特;若「^/2 Χ 的值大于 32比特, 根据 (』2), = ο,ι_,(「ρ 2,χρ - 1)将第一个 32长的编码比特序列速率匹配成 「0/21ΧΟ„比特, 其中, 为第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特后 b} =f (O„x „)mod2
输出的编码比特序列, "=。 , = H,31为第一个 32长的编码比 特序列, 其中, 。 ^^'"和0 '为第一获取单元得到的参数; 需要说明的是, 此时, 由于 0'为第一个 32 长的编码比特序列对应的信息比特序列的比特数, 为第一个 32长的编码比特序列对应的信息比特序列的比特, 当"从 0开始编号时, 第一个 32 长的编码比特序列对应的信息比特序列中没有 这个比特, 或说 这个比特不存 b】 =∑ (On x .„ ) mod 2 b〗 =∑ (0n x .„ ) mod 2 在, 因此公式 "=。 与公式 "=。 等效。 第二获取单元, 用于获取第一编码单元得到的第二个 32长的编码比特序列对应 的信息比特序列的比特 , RM (32, 0) 码的基序列 1^'", 第二个 32长的编码比 特序列对应的信息比特序列的比特数 ο'; 和
第二速率匹配单元, 用于若 ^ ^/^xQ"的值小于等于 32 比特, 则取第一编码 单元的第二个 32长的编码比特序列中的前 d^^l^Q"个比特;若 (^_「0/2 ¾»的值 大于 32比特,根据 = m°d32), ^^'…'(^— ^ 2!^^—1)将第二个 32长的编码 比特序列速率匹配成 ^—「^^!^^比特, 其中, 为第二个 32长的编码比特序列速 率匹配成 —l^2^^"比特后输出的编码比特序列, "=。 , _/ = 0,1 ,31为第二个 32 长的编码比特序列, 其中, 。nM^^PO'为第二获取单元 得到的参数。 需要说明的是, 此时, 由于 0'为第二个 32长的编码比特序列对应的信 息比特序列的比特数, °"为第二个 32长的编码比特序列对应的信息比特序列的比特, 当"从 0开始编号时,第二个 32长的编码比特序列对应的信息比特序列中没有 这 = (O„xM;,„) mod 2 个比特, 或说 。'这个比特不存在, 因此公式 "=。 与公式 b} = °^ (Οη χΜ j n) mod 2
"=。 等效。
本实施例提供的终端, 与方法实施例 2和 3涉及的终端属于同一构思, 其具体实 现过程详见方法实施例 2和 3, 这里不再赘述。
本实施例通过将 UCI的信息比特序列分成两部分, 对 UCI每部分信息比特序列 进行编码各得到一个 32长的编码比特序列,再对每一个 32长的编码比特序列分别进 行速率匹配后再进行传输, 解决了占用比特数超过 RM ( 32, 0) 码支持的最大比特 数的 UCI的传输问题。 另外, 使 UCI的每一部分信息比特序列在 (2'/2) X 大于 24 比特的情况下仍可获得足够的编码增益, 提高了 UCI的传输性能。 实施例 5
参见图 12, 本实施例提供了一种基站, 包括:
接收模块 801, 用于接收终端发送的上行控制信息, 计算上行控制信息占用调制 守号的个数 , 并获取所述上行控制信息对应的调制阶数 ; 确定模块 802, 用于根据接收模块 801得到的上行控制信息的比特数, 确定候选 控制信息比特序列;
第二划分模块 803, 用于将确定模块 802确定的每种候选控制信息比特序列分成 两部分;
第二编码模块 804, 用于采用雷德米勒 RM ( 32, 0) 码对第二划分模块 803划 分的每种候选控制信息比特序列的每一部分比特序列进行编码, 分别得到一个 32长 的编码比特序列, 对每一个 32 长的编码比特序列分别进行速率匹配, 将第一个 32 长的编码比特序列速率匹配成 Ι 0/2ΙΧβ»比特, 将第二个 32长的编码比特序列速率匹 配成 ^ h比k?特te,_ 其甘由中, _ ^"为上行控制信息对应的调制阶数, I I表示向上取
检测模块 805, 用于采用第二编码模块 804得到的每种候选控制信息比特序列对 应的两部分经速率匹配的编码比特序列, 对上行控制信息进行检测。
其中, 检测模块 805包括如下至少一个检测单元: 第一检测单元,用于将第二编码模块 804得到的两部分经速率匹配的编码比特序 列串联在一起组成一个新比特序列, 采用新比特序列, 对上行控制信息进行检测; 第二检测单元, 用于以 4 ^»个编码比特为粒度从第二编码模块 804得到的两部 分经速率匹配的编码比特序列中交替选取编码比特组成一个新比特序列,采用新比特 序列, 对上行控制信息进行检测; 和 第三检测单元, 用于以 个编码比特为粒度从第二编码模块 804得到的两部分 经速率匹配的编码比特序列中交替选取编码比特, 且当总共选择了 4 ^»个编码比特 后交换从两部分经速率匹配的编码比特序列选取的先后顺序、并继续交替选取编码比 特组成一个新比特序列, 采用新比特序列, 对上行控制信息进行检测。
其中, 第二编码模块 804包括:
第二编码单元, 用于采用雷德米勒 RM ( 32, 0) 码对第二划分模块 803划分的 每种候选控制信息比特序列的每一部分比特序列进行编码, 分别得到一个 32长的编 码比特序列;
第三获取单元, 用于获取第二编码单元得到的第一个 32长的编码比特序列对应 的信息比特序列的比特 , RM ( 32, O ) 码的基序列 1^'", 第一个 32长的编码比 特序列对应的信息比特序列的比特数0'; 第三速率匹配单元, 用于若「0/2 X 的值小于等于 32比特, 则取第一个 32长的 编码比特序列中的前「0/2 Χ^^比特;若「0/2 xQ» 值大于 32比特,根据 (』2), i = 0 ... Q'I^Qm1)将第一个 32长的编码比特序列速率匹配 中, 为第一个 32长的编码比特序列速率匹配成「0/21Χ 比特后输出的编码比特序 b = T(0„x Jmod2
列, "=。 ' , ^:01,…,3 1为第一个 32长的编码比特序列,其中, 、
Μ^^Ρ 0'为第三获取单元得到的参数; 需要说明的是, 此时, 由于 0'为第一个 32 长的编码比特序列对应的信息比特序列的比特数, 0"为第一个 32长的编码比特序列 对应的信息比特序列的比特, 当"从 0开始编号时, 第一个 32长的编码比特序列对 应的信息比特序列中没有 ^ ^这个比特, 或说 ^ ^这个比特不存在, 因此公式 b =∑ (On x .„ ) mod 2 b =∑ (On x .„ ) mod 2
"=。 与公式 "=。 等效。
第四获取单元, 用于获取第二编码单元得到的第二个 32长的编码比特序列对应 的信息比特序列的比特 , RM (32, 0) 码的基序列 1^'", 第二个 32长的编码比 特序列对应的信息比特序列的比特数 ; 第四速率匹配单元, 用于若 d^/2!^^"的值小于等于 32比特, 则取第二个 32 长的编码比特序列中的前 ^^^!^^个比特; 若 d^2^ 的值大于 32比特,根 据 = md32), i = 0X...,((Q,-[Q,/2'])xQm -1)将第二个 32长的编码比特序列速率匹 配成 d^^l^Q"比特, 其中, 为第二个 32 长的编码比特序列速率匹配成 _ICX 比特后输出的编码比特序列, "=。 , ·7 = 0,1 ··,31为 第二个 32 长的编码比特序列, 其中, 0 ^^'"和0'为第四获取单元得到的参数。 需要说明的是, 此时, 由于 '为第二个 32长的编码比特序列对应的信息比特序列的 比特数, 为第二个 32长的编码比特序列对应的信息比特序列的比特, 当"从 0开 始编号时,第二个 32长的编码比特序列对应的信息比特序列中没有 这个比特, 或 n (O„xM;,„)m0d2 说 ' 这 个 比 特 不 存 在 , 因 此 公 式 "=。 与 公 式 b} =°^(ΟηχΜ jn)mod2
"=。 等效。
本实施例提供的基站, 与方法实施例 2和 3涉及的基站属于同一构思, 其具体实 现过程详见方法实施例 2和 3, 这里不再赘述。
本实施例是与终端的传输方法相应的基站,该基站使终端侧可以按照本实施提供 的传输方法传输 UCI信息, 从而解决占用比特数超过 RM (32, 0)码支持的最大比 特数的 uci的传输问题, 另外, 使 uci的每一部分信息比特序列在 (2'/2)χβ»大于
24比特的情况下仍可获得足够的编码增益, 提高了 UCI的传输性能。 实施例 6
参见图 13, 本实施例提供了一种上行控制信息的传输方法, 对于终端侧, 包括 以下步骤:
901: 计算待传输 UCI占用调制符号的个数 。 本步骤与步骤 501计算方法相同, 这里不再赘述。
902: 将待传输 UCI的信息比特序列分成两部分。
本步骤与步骤 502的实现方法相同, 这里不再赘述。
903: 采用 RM ( 32, 0) 码对 UCI的每一部分信息比特序列分别进行编码各得 到一个 32长的编码比特序列。 本步骤具体可以按照实施例 3中 的计算公式实现, 详见实施例 3, 这里不再赘 述。
904: 按照如下方式之一处理步骤 903得到的 2个 32长的编码比特序列。
方式一: 直接将 2个 32长的编码比特序列串联在一起组成一个新比特序列; 方式二: 以 个编码比特为粒度从两个 32长的编码比特序列中交替选取编码比 特, 得到一个 64长的新比特序列; 方式三: 以 4 ^»个编码比特为粒度从两个 32长的编码比特序列中交替选取编码 比特组成一个新比特序列; 方式四: 以 个编码比特为粒度从两个 32长的编码比特序列中交替选取编码比 特, 且当总共选择了 4 个编码比特后交换从两个 32长的编码比特序列选取的先后 顺序、 并继续交替选取编码比特组成一个新比特序列。
905: 将步骤 904中得到的新比特序列速率匹配成2 比特。 其中, βί "为待传输 UCI对应的调制阶数。 该步骤可如下方式进行: 若^ 的值小于等于 64比特,则取 64个编码比特中的前^ 比特;若^ 的值大于 64比特, 则将 64个编码比特通过循环重复匹配成 G^S"比特, 具体可按公 式 (3 ) 进行速率匹配。 例如, 若2 的值为 96, 则将 64比特中的前 32个比特附 在 64比特之后形成 96比特。 公式表示如下:
= = 0,1,八 H - 1 ( 3 ) 其中, 为速率匹配后输出的编码比特序列; j=imod64, 为步骤 904中得到的 64长的比特序列。
906: 将步骤 905速率匹配后的编码比特序列映射到 PUSCH上传输给基站。 本实施例提供的传输方法, 通过将 UCI 的信息比特序列分成两部分, 对每一部 分分别采用 RM ( 32, 0)码进行编码各得到一个 32长的编码比特序列, 以步骤 904 中的方式之一从两个 32长的编码比特序列中交替选取编码比特,得到一个 64长的编 码比特序列, 将上述 64长的编码比特序列速率匹配成 δ^β»比特后再进行传输, 解 决了占用比特数超过 RM ( 32, 0) 码支持的最大比特数的 UCI的传输问题。
参见图 14, 本实施例还提供了一种上行控制信息的接收方法, 对于基站侧, 包 括以下步骤:
1001: 接收终端发送的上行控制信息。
本步骤具体包括以下两个步骤: 1001a: 计算终端发送的上行控制信息占用的调制符号个数 。 本步骤与步骤 901相同, 这里不再赘述。 1001b: 根据 分离出随数据传输的 UCI信息。 本步骤中, 基站根据步骤 1001a得到的 UCI占用的调制符号个数, 还可结合解 信道交织等步骤,分离出随数据传输的 UCI信息,具体可指分离出随数据传输的 UCI 信息对应的调制符号。
1002: 根据上行控制信息的比特数, 确定多种候选控制信息比特序列, 并对每种 候选控制信息比特序列进行编码。
具体的, 将与待检测 UCI 的比特数相同的所有比特序列, 作为候选控制信息比 特序列。 举例来说, 当随数据传输的 UCI信息的比特数为 12时, 候选控制信息比特 序列有 212种。
基站分别对每种候选控制信息比特序列进行编码, 包括以下步骤:
1002a: 将每种候选控制信息比特序列分成两部分。
1002b: 采用 RM (32, 0)码对候选控制信息比特序列的每一部分信息比特序列 分别进行编码各得到一个 32长的编码比特序列。
1002c: 按照如下方式之一处理步骤 1002b得到的 2个 32长的编码比特序列。 方式一: 直接将 2个 32长的编码比特序列串联在一起组成一个新比特序列; 方式二: 以 个编码比特为粒度从两个 32长的编码比特序列中交替选取编码比 特, 得到一个 64长的编码比特序列, 即一个 64长的新比特序列; 方式三: 以 4 ^»个编码比特为粒度从两个 32长的编码比特序列中交替选取编码 比特组成一个新比特序列; 方式四: 以 个编码比特为粒度从两个 32长的编码比特序列中交替选取编码比 特, 且当总共选择了 4 个编码比特后交换从两个 32长的编码比特序列选取的先后 顺序、 并继续交替选取编码比特组成一个新比特序列。 1002d: 将步骤 1002c中得到的比特序列速率匹配成 比特。 该步骤与步骤 905相同, 这里不再赘述。
1003: 根据速率匹配后的编码比特序列, 对上行控制信息进行检测。
本步骤中的检测准则有多种, 如最大似然检测, 本实施例并不限定具体的检测准 则。
本实施例提供的接收方法是与本实施例提供的传输方法相应的方法,该接收方法 使终端侧可以按照本实施提供的传输方法传输 UCI信息, 从而解决占用比特数超过 RM (32, 0) 码支持的最大比特数的 UCI的传输问题。 以上实施例提供的技术方案中的全部或部分内容可以通过软件编程实现,其软件 程序存储在可读取的存储介质中, 存储介质例如: 计算机中的硬盘、 光盘或软盘。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和 原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种上行控制信息的传输方法, 其特征在于, 所述方法包括: 计算待传输上行控制信息 UCI占用调制符号的个数 ; 将所述待传输 UCI的信息比特序列分成两部分;
采用雷德米勒 RM (32, 0) 码对所述待传输 UCI的每一部分信息比特序列 进行编码, 分别得到一个 32长的编码比特序列, 对每一个 32长的编码比特序列 分别进行速率匹配, 将第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 将第二个 32长的编码比特序列速率匹配成 ^ ^/^xQ"比特, 其中, 为所述 待传输 UCI对应的调制阶数, 「,表示向上取整; 将所述两部分经速率匹配的编码比特序列映射到物理上行共享信道 PUSCH 上传输给基站。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将所述两部分经速率匹 配的编码比特序列映射到物理上行共享信道 PUSCH上传输给基站包括:
将所述两部分经速率匹配的编码比特序列串联在一起组成一个新比特序列, 将所述新比特序列映射到 PUSCH上传输给基站; 或者,以 4 ^»个编码比特为粒度从所述两部分经速率匹配的编码比特序列中 交替选取编码比特组成一个新比特序列, 将所述新比特序列映射到 PUSCH上传 输给基站; 或者, 以 个编码比特为粒度从所述两部分经速率匹配的编码比特序列中 交替选取编码比特, 且当总共选择了 4 个编码比特后交换从所述两部分经速 率匹配的编码比特序列选取的先后顺序、并继续交替选取编码比特组成一个新比 特序列, 将所述新比特序列映射到 PUSCH上传输给基站。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述将第一个 32长的编 码比特序列速率匹配成「0/2 xQ»比特包括: 若「0/2ΐχ 的值小于等于 32比特, 则取所述第一个 32长的编码比特序列中 的前「^/2 < ^比特; 若「0/2ΐχ 的值大于 32比特, 根据 = md32)
Figure imgf000031_0001
- 1)将 所述第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 其中, 为所述第 一个 32 长的编码比特序列速率匹配成「0/21Χ 比特后输出的编码比特序列,
Λ = T (0„x „) mod 2
"=。 ' , = H,3 1为所述第一个 32长的编码比特序列,其中,
°"为所述第一个 32长的编码比特序列对应的信息比特序列的比特, Μ〗'"为 RM
(32, 0) 码的基序列, 0'为所述第一个 32长的编码比特序列对应的信息比特 序列的比特数。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述将第二个 32长的编 码比特序列速率匹配成 ^—「^^!^^比特包括: 若 d^^l^ 的值小于等于 32比特, 则取所述第二个 32长的编码比特序 列中的前 d^2^^个比特; 若 d^^l^a 的 值 大 于 32 比 特 , 根 据 q'=b
Figure imgf000031_0002
- 1)将所述第二个 32 长的编码比特序列速率匹配成 d^^l^ 比特, 其中, 为所述第二个 32 长的编码比特序列速率匹配成
(0-|0/2 χ 比特后输出的编码比特序列, „=。 , _/ = 0,1,...,31 为所述第二个 32长的编码比特序列, 其中, 为所述第二个 32长的编码比特 序列对应的信息比特序列的比特, ^'"为!^ (32, 0)码的基序列, 0'为所述 第二个 32长的编码比特序列对应的信息比特序列的比特数。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述对每一个 32长的编 码比特序列分别进行速率匹配,具体为:
通过循环重复对所述每一个 32长的编码比特序列分别进行速率匹配。
6、 一种上行控制信息的接收方法, 其特征在于, 所述方法包括: 接收终端发送的上行控制信息, 并计算上行控制信息占用调制符号的个数 根据所述上行控制信息的比特数, 确定候选控制信息比特序列; 将每种候选控制信息比特序列分成两部分;
采用雷德米勒 RM (32, 0) 码对所述每种候选控制信息比特序列的每一部 分比特序列进行编码, 分别得到一个 32长的编码比特序列, 对每一个 32长的编 码比特序列分别进行速率匹配, 将第一个 32 长的编码比特序列速率匹配成
「0/2 X 比特,将第二个 32长的编码比特序列速率匹配成 ^ ^/^xQ"比特,其 中, βί "为所述上行控制信息对应的调制阶数, 「,表示向上取整; 采用每种候选控制信息比特序列对应的所述两部分经速率匹配的编码比特 序列, 对所述上行控制信息进行检测。
7、 根据权利要求 6所述的方法, 其特征在于, 所述采用每种候选控制信息 比特序列对应的所述两部分经速率匹配的编码比特序列,对所述上行控制信息进 行检测包括:
将所述两部分经速率匹配的编码比特序列串联在一起组成一个新比特序列, 采用所述新比特序列, 对所述上行控制信息进行检测; 或者,以 4 ^»个编码比特为粒度从所述两部分经速率匹配的编码比特序列中 交替选取编码比特组成一个新比特序列, 采用所述新比特序列, 对所述上行控制 信息进行检测; 或者, 以 个编码比特为粒度从所述两部分经速率匹配的编码比特序列中 交替选取编码比特, 且当总共选择了 4 个编码比特后交换从所述两部分经速 率匹配的编码比特序列选取的先后顺序、并继续交替选取编码比特组成一个新比 特序列, 采用所述新比特序列, 对所述上行控制信息进行检测。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述将第一个 32长的编 码比特序列速率匹配成10/2|xQ»比特包括: 若「0/2ΐχ 的值小于等于 32比特, 则取所述第一个 32长的编码比特序列中 的前「^/2 < ^比特; 若 /21X 的值大于 32比特, 根据
Figure imgf000033_0001
- 1)将 所述第一个 32长的编码比特序列速率匹配成「^/21Χδ»比特, 其中, 为所述第 一个 32 长的编码比特序列速率匹配成「0/21Χ 比特后输出的编码比特序列,
Λ = T (0„x „) mod 2
"=。 ' , ^,1,…,3 1为所述第一个 32长的编码比特序列,其中,
°"为所述第一个 32长的编码比特序列对应的信息比特序列的比特, Μ〗'"为 RM ( 32, 0) 码的基序列, 0'为所述第一个 32长的编码比特序列对应的信息比特 序列的比特数。
9、 根据权利要求 6或 7所述的方法, 其特征在于, 所述将第二个 32长的编 码比特序列速率匹配成 ^—「^^!^^比特包括: 若 d^^l^ 的值小于等于 32比特, 则取所述第二个 32长的编码比特序 列中的前 d^2!^^个比特; 若 d^^l^a 的 值 大 于 32 比 特 , 根 据 q'=b
Figure imgf000033_0002
- 1)将所述第二个 32 长的编码比特序列速率匹配成 d^^l^ 比特, 其中, 为所述第二个 32 长的编码比特序列速率匹配成
(0-|0/2 χ 比特后输出的编码比特序列, „=。 , _/ = 0,1,...,31 为所述第二个 32长的编码比特序列, 其中, 为所述第二个 32长的编码比特 序列对应的信息比特序列的比特, ^'"为!^ (32, 0)码的基序列, 0'为所述 第二个 32长的编码比特序列对应的信息比特序列的比特数。
10、 一种终端, 其特征在于, 所述终端包括: 计算模块, 用于计算待传输上行控制信息 UCI 占用调制符号的个数 , 并 获取所述待传输 UCI对应的调制阶数 ; 第一划分模块, 用于将所述计算模块中的待传输 UCI 的信息比特序列分成 两部分;
第一编码模块, 用于采用雷德米勒 RM (32, 0) 码对所述第一划分模块划 分的待传输 UCI的每一部分信息比特序列进行编码, 分别得到一个 32长的编码 比特序列, 对每一个 32长的编码比特序列分别进行速率匹配, 将第一个 32长的 编码比特序列速率匹配成「0/2 Χβ»比特, 将第二个 32长的编码比特序列速率匹 配成 _「0/21 ¾»比特, 其中, 为所述待传输 UCI对应的调制阶数, 「,表示 向上取整;
传输模块,用于将所述第一编码模块得到的两部分经速率匹配的编码比特序 列映射到物理上行共享信道 PUSCH上传输给基站。
11、 根据权利要求 10所述的终端, 其特征在于, 所述传输模块包括如下至 少一个传输单元:
所述第一传输单元,用于将所述第一编码模块得到的两部分经速率匹配的编 码比特序列串联在一起组成一个新比特序列, 将所述新比特序列映射到 PUSCH 上传输给基站; 所述第二传输单元,用于以 4 个编码比特为粒度从所述第一编码模块得到 的两部分经速率匹配的编码比特序列中交替选取编码比特组成一个新比特序列, 将所述新比特序列映射到 PUSCH上传输给基站; 和 所述第三传输单元, 用于以 个编码比特为粒度从所述第一编码模块得到 的两部分经速率匹配的编码比特序列中交替选取编码比特,且当总共选择了 4^» 个编码比特后交换从所述第一编码模块得到的两部分经速率匹配的编码比特序 列选取的先后顺序、并继续交替选取编码比特组成一个新比特序列, 将所述新比 特序列映射到 PUSCH上传输给基站。
12、 根据权利要求 10或 11所述的终端, 其特征在于, 所述第一编码模块包 括:
第一编码单元, 用于采用雷德米勒 RM (32, 0) 码对所述第一划分模块划 分的待传输 UCI的每一部分信息比特序列进行编码, 分别得到一个 32长的编码 比特序列;
第一获取单元, 用于获取所述第一编码单元得到的第一个 32长的编码比特 序列对应的信息比特序列的比特 , RM (32, 0) 码的基序列 1^'", 所述第一 个 32长的编码比特序列对应的信息比特序列的比特数 ; 第一速率匹配单元, 用于若「0/2 Χβ»的值小于等于 32 比特, 则取所述第一 编码单元的第一个 32 长的编码比特序列中的前「^/21Χδ»个比特; 若「^/21χδ»的 值大于 32比特, 根据 = m°d32), z' ^'Ufe ^^"^1)将所述第一个 32长 的编码比特序列速率匹配成「0/2 Χβ»比特, 其中, 为所述第一个 32长的编码 比特序列速率匹配成 「^/21χδ» 比特后输出 的编码 比特序列 ,
Λ = T (0„x „) mod 2
"=。 ' , ^,1,…,3 1为所述第一个 32长的编码比特序列,其中,
。 ^^'"和0 '为所述第一获取单元得到的参数; 第二获取单元, 用于获取所述第一编码单元得到的所述第二个 32长的编码 比特序列对应的信息比特序列的比特 , RM (32, 0) 码的基序列 1^'", 所述 第二个 32长的编码比特序列对应的信息比特序列的比特数 0'; 和 第二速率匹配单元, 用于若 ^ ^/^xQ"的值小于等于 32 比特, 则取所述 第一编码单元的第二个 32 长的编码比特序列中的前 d^/2!^^个比特; 若 (^-「0/2l)x 的值大于 32比特,根据 i = X... (Q,-[Q,/2'])xQm -l) 将所述第二个 32长的编码比特序列速率匹配成 ^ ^/^χβ»比特, 其中, q'为 所述第二个 32长的编码比特序列速率匹配成
Figure imgf000036_0001
比特后输出的编码比
Λ = T (0„x „) mod 2
特序列, "=。 ' , = (),1,-,31为所述第二个 32长的编码比特序 列, 其中, 。 ^^'"和0 '为所述第二获取单元得到的参数。
13、 一种基站, 其特征在于, 所述基站包括:
接收模块, 用于接收终端发送的上行控制信息, 计算所述上行控制信息占用 调制符号的个数 , 并获取所述上行控制信息对应的调制阶数 ; 确定模块, 用于根据所述接收模块得到的上行控制信息的比特数, 确定候选 控制信息比特序列;
第二划分模块,用于将所述确定模块确定的每种候选控制信息比特序列分成 两部分;
第二编码模块, 用于采用雷德米勒 RM ( 32, 0) 码对所述第二划分模块划 分的每种候选控制信息比特序列的每一部分比特序列进行编码, 分别得到一个 32长的编码比特序列, 对每一个 32长的编码比特序列分别进行速率匹配, 将第 一水 32长的编码比特序列速率匹配成 I ^比特,将第二个 32长的编码比特 字列速率匹配成 h比k?特te,_ 其甘由中, _ ^"为所述上行控制信息对应的调制 阶数, 1 1表示向上取整; 检测模块,用于采用所述第二编码模块得到的每种候选控制信息比特序列对 应的所述两部分经速率匹配的编码比特序列, 对所述上行控制信息进行检测。
14、 根据权利要求 13所述的基站, 其特征在于, 所述检测模块包括如下至 码比特序列串联在一起组成一个新比特序列, 采用所述新比特序列, 对所述上行 控制信息进行检测; 所述第二检测单元,用于以 4 个编码比特为粒度从所述第二编码模块得到 的两部分经速率匹配的编码比特序列中交替选取编码比特组成一个新比特序列, 采用所述新比特序列, 对所述上行控制信息进行检测; 和 所述第三检测单元, 用于以 βί "个编码比特为粒度从所述第二编码模块得到 的两部分经速率匹配的编码比特序列中交替选取编码比特,且当总共选择了 4
Figure imgf000037_0001
个编码比特后交换从所述两部分经速率匹配的编码比特序列选取的先后顺序、并 继续交替选取编码比特组成一个新比特序列, 采用所述新比特序列, 对所述上行 控制信息进行检测。
15、 根据权利要求 13或 14所述的基站, 其特征在于, 所述第二编码模块包 括:
第二编码单元, 用于采用雷德米勒 RM (32, 0) 码对所述第二划分模块划 分的每种候选控制信息比特序列的每一部分比特序列进行编码, 分别得到一个 32长的编码比特序列;
第三获取单元, 用于获取所述第二编码单元得到的第一个 32长的编码比特 序列对应的信息比特序列的比特 , RM (32, O) 码的基序列 1^'", 所述第一 个 32长的编码比特序列对应的信息比特序列的比特数 ; 第三速率匹配单元, 用于若「0/2 Χ 的值小于等于 32 比特, 则取所述第一 个 32长的编码比特序列中的前「^/21Χδ»个比特; 若「0/2 X 的值大于 32比特, 根据 (』2), = ο, ..,(「ρ'/2]χρ _ι)将所述第一个 32长的编码比特序列速 率匹配成「0/2 Χβ»比特, 其中, 为所述第一个 32长的编码比特序列速率匹配
O'-l
「^ / l ) mod 2
1 ^ 2 |>¾»比特后输出的编码比特序列, "=。 ' , _/ = 0,1,···,31为 所述第一个 32 长的编码比特序列, 其中, 0 Μ^^Ρ θ'为所述第三获取单元 得到的参数;
第四获取单元, 用于获取所述第二编码单元得到的第二个 32长的编码比特 序列对应的信息比特序列的比特 , RM ( 32, 0) 码的基序列^^ ", 所述第 二个 32长的编码比特序列对应的信息比特序列的比特数 0';
第四速率匹配单元, 用于若 d^^^x^"的值小于等于 32 比特, 则取所述 第二个 32长的编码比特序列中的前 d^/^xQ"个比特;若 d^2!^^的值大 于 32 比特, 根据 = (—),
Figure imgf000038_0001
- 1)将所述第二个 32 长的编码比特序列速率匹配成 ^— ^^x^"比特, 其中, 为所述第二个 32长 的编码比特序列速率匹配成 d^/^xQ"比特后输出的编码比特序列,
Figure imgf000038_0002
, ^,1,…'3 1为所述第二个 32长的编码比特序列,其中,
。 ^^'"和^为所述第四获取单元得到的参数。
16、 一种上行控制信息的接收方法, 其特征在于, 所述方法包括: 计算终端发送的上行控制信息 UCI占用的调制符号个数 , 所述 UCI包括 第一部分 UCI和第二部分 UCI;
根据所述 分离出所述 UCI的调制符号,且所述第一部分 UCI对应「0/2,个 调制符号, 所述第二部分 UCI对应 ^—「^^^个调制符号。
17、 根据权利要求 16所述的方法, 其特征在于, 所述第一部分 UCI对应的
「^/21个调制符号和所述第二部分 UCI对应的 (^—「^ 2^个调制符号分别映射在 4 个单载波频分多址 SC-FDMA符号上。
PCT/CN2011/075504 2010-11-15 2011-06-09 上行控制信息的传输和接收方法、终端以及基站 WO2011147382A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES11786154.2T ES2513596T3 (es) 2010-11-15 2011-06-09 Método de transmisión y de recepción de información de control en enlace ascendente y un terminal y una estación base
EP18162173.1A EP3373490B1 (en) 2010-11-15 2011-06-09 Method for transmitting and receiving uplink control information, terminal, base station
EP11786154.2A EP2445133B1 (en) 2010-11-15 2011-06-09 Transmission and receiving method of uplink control information, terminal and base station
US13/365,718 US8619633B2 (en) 2010-11-15 2012-02-03 Method for transmitting and receiving uplink control information, terminal, base station
US14/098,201 US9014057B2 (en) 2010-11-15 2013-12-05 Method for transmitting and receiving uplink control information, terminal, base station
US14/660,476 US9491745B2 (en) 2010-11-15 2015-03-17 Method for transmitting and receiving uplink control information, terminal, base station
US15/344,078 US9839015B2 (en) 2010-11-15 2016-11-04 Method for transmitting and receiving uplink control information, terminal, base station
US15/819,088 US10306608B2 (en) 2010-11-15 2017-11-21 Method for transmitting and receiving uplink control information, terminal, base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010556633.2 2010-11-15
CN201010556633.2A CN102468917B (zh) 2010-11-15 2010-11-15 上行控制信息的传输和接收方法、终端以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/365,718 Continuation US8619633B2 (en) 2010-11-15 2012-02-03 Method for transmitting and receiving uplink control information, terminal, base station

Publications (1)

Publication Number Publication Date
WO2011147382A1 true WO2011147382A1 (zh) 2011-12-01

Family

ID=45003349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075504 WO2011147382A1 (zh) 2010-11-15 2011-06-09 上行控制信息的传输和接收方法、终端以及基站

Country Status (5)

Country Link
US (5) US8619633B2 (zh)
EP (3) EP2753015B1 (zh)
CN (1) CN102468917B (zh)
ES (1) ES2513596T3 (zh)
WO (1) WO2011147382A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312446A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 上行控制信息的传输方法、设备及系统
CN104429008A (zh) * 2012-08-03 2015-03-18 英特尔公司 具有大量比特的上行链路控制信息传输
US10455555B2 (en) 2012-07-27 2019-10-22 Intel Corporation Uplink control information transmission with large number of bits

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237985B (zh) * 2010-05-06 2015-12-16 中兴通讯股份有限公司 回程链路上行控制信息的处理方法、系统及中继站
EP2421187B1 (en) * 2010-08-20 2018-02-28 LG Electronics Inc. Method for transmitting control information in a wireless communication system and apparatus therefor
WO2013043018A2 (ko) 2011-09-23 2013-03-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
ES2642682T3 (es) 2011-09-23 2017-11-17 Lg Electronics, Inc. Método para transmitir información de control y aparato para el mismo
US8744006B2 (en) * 2011-10-03 2014-06-03 Telefonaktiebolaget L M Ericsson (Publ) Transmit diversity for pre-coded radio control signals
US9414367B2 (en) * 2012-03-16 2016-08-09 Lg Electronics Inc. Method and apparatus for transmitting uplink control information
CN103843421A (zh) 2012-09-29 2014-06-04 华为技术有限公司 功率确定方法、用户设备和基站
CN106712906A (zh) 2013-03-27 2017-05-24 华为技术有限公司 一种对上行控制信息进行编码的方法和装置
US9602235B2 (en) 2014-06-27 2017-03-21 Texas Instruments Incorporated Code block segmentation and configuration for concatenated turbo and RS coding
US10225046B2 (en) 2017-01-09 2019-03-05 At&T Intellectual Property I, L.P. Adaptive cyclic redundancy check for uplink control information encoding
CN109923812B (zh) * 2017-02-25 2021-09-24 上海朗帛通信技术有限公司 一种用户设备、基站中的用于动态调度的方法和装置
GB2565111B (en) * 2017-08-02 2022-04-20 Tcl Communication Ltd Improvement in or relating to communications systems using Reed-Muller codes
CN109391342B (zh) * 2017-08-04 2020-10-23 华为技术有限公司 一种数据传输方法、相关设备及系统
CN113612577A (zh) * 2017-08-04 2021-11-05 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和设备
US10587388B2 (en) 2017-08-22 2020-03-10 Cavium, Llc. Method and apparatus for uplink control channel detection
US10448377B2 (en) 2017-09-28 2019-10-15 Cavium, Llc Methods and apparatus for control channel detection in an uplink shared channel
CN108365921B (zh) * 2017-09-30 2019-03-26 华为技术有限公司 Polar编码方法和编码装置、译码方法和译码装置
CN109714827B (zh) * 2017-10-26 2023-09-01 华为技术有限公司 上行控制信息的传输方法和装置
JP7080619B2 (ja) * 2017-11-15 2022-06-06 シャープ株式会社 端末装置及び通信方法
CN110351049B (zh) * 2018-04-04 2020-10-20 电信科学技术研究院有限公司 一种上行控制信息传输的方法与设备
JP7075805B2 (ja) * 2018-04-17 2022-05-26 シャープ株式会社 端末装置、基地局装置、および、通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
CN101702631A (zh) * 2009-11-04 2010-05-05 中兴通讯股份有限公司 上行控制信令传输方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885176B2 (en) * 2007-06-01 2011-02-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping modulation symbols to resources in OFDM systems
US8467367B2 (en) * 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
WO2010123304A2 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101782647B1 (ko) * 2010-01-28 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 인코딩 방법 및 장치
AU2011224995B2 (en) * 2010-03-10 2014-05-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
KR101813031B1 (ko) * 2010-04-13 2017-12-28 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치
US9100155B2 (en) * 2010-05-03 2015-08-04 Qualcomm Incorporated Method and apparatus for control and data multiplexing in wireless communication
US8848557B2 (en) * 2010-08-25 2014-09-30 Samsung Electronics Co., Ltd. Multiplexing of control and data in UL MIMO system based on SC-FDM
US8670379B2 (en) * 2010-10-02 2014-03-11 Sharp Kabushiki Kaisha Uplink control information multiplexing on the physical uplink control channel for LTE-A

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
CN101702631A (zh) * 2009-11-04 2010-05-05 中兴通讯股份有限公司 上行控制信令传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2445133A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312446A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 上行控制信息的传输方法、设备及系统
US20150003390A1 (en) * 2012-03-16 2015-01-01 Huawei Technologies Co., Ltd. Method, device, and system for transmitting uplink control information
US9781707B2 (en) 2012-03-16 2017-10-03 Huawei Technologies Co., Ltd. Method, device, and system for transmitting uplink control information
US10455555B2 (en) 2012-07-27 2019-10-22 Intel Corporation Uplink control information transmission with large number of bits
CN104429008A (zh) * 2012-08-03 2015-03-18 英特尔公司 具有大量比特的上行链路控制信息传输

Also Published As

Publication number Publication date
EP2445133A1 (en) 2012-04-25
US9014057B2 (en) 2015-04-21
EP2445133B1 (en) 2014-08-06
EP2753015B1 (en) 2018-04-11
EP3373490A1 (en) 2018-09-12
US20140092846A1 (en) 2014-04-03
EP2753015A1 (en) 2014-07-09
CN102468917A (zh) 2012-05-23
US9839015B2 (en) 2017-12-05
US20120134306A1 (en) 2012-05-31
US10306608B2 (en) 2019-05-28
EP2445133A4 (en) 2012-08-08
US20180077701A1 (en) 2018-03-15
US20150195832A1 (en) 2015-07-09
CN102468917B (zh) 2014-04-30
EP3373490B1 (en) 2019-11-20
US9491745B2 (en) 2016-11-08
US20170079030A1 (en) 2017-03-16
US8619633B2 (en) 2013-12-31
ES2513596T3 (es) 2014-10-27

Similar Documents

Publication Publication Date Title
WO2011147382A1 (zh) 上行控制信息的传输和接收方法、终端以及基站
EP2985940B1 (en) Computer program product and a terminal for transmitting uplink control information
CN106464455B (zh) 传输信息的方法、终端设备、网络设备和装置
JP2019506023A (ja) アップリンク制御情報送信の方法およびデバイス
US9532345B2 (en) Method and apparatus for processing UCI and method for transmission thereof based on MIMO system
WO2018090571A1 (zh) 确认/非确认信息的检测方法、装置及存储介质
CN102710376B (zh) 传输上行控制信息的方法和装置
US10165595B2 (en) Device and method of handling uplink transmission
WO2017011980A1 (zh) 信息发送方法和装置、以及信息接收方法和装置
TWI491199B (zh) 用於鏈結適應之資料序列與頻道資訊的同時傳輸與接收的方法及設備
US11303301B2 (en) Coding method and communications device
CN102710391B (zh) 混合自动重传请求反馈信息的反馈方法、基站和用户设备
CN111917510B (zh) 数据处理、指示数据处理的方法、终端及网络设备
CN102386998A (zh) 一种pucch编解码方法及其装置
US20240283684A1 (en) Method and system for identification via channels and computer program product
WO2019064377A1 (ja) 無線通信方法、無線通信システム、基地局、及び無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011786154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE