WO2011142050A1 - 電動式駆動装置およびそれを備えた電動式パワーステアリング装置 - Google Patents
電動式駆動装置およびそれを備えた電動式パワーステアリング装置 Download PDFInfo
- Publication number
- WO2011142050A1 WO2011142050A1 PCT/JP2010/068691 JP2010068691W WO2011142050A1 WO 2011142050 A1 WO2011142050 A1 WO 2011142050A1 JP 2010068691 W JP2010068691 W JP 2010068691W WO 2011142050 A1 WO2011142050 A1 WO 2011142050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive device
- electric drive
- electric motor
- electric
- semiconductor switching
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
- B62D5/0406—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
- H02K7/1163—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
- H02K7/1166—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Definitions
- the present invention relates to an electric drive device and an electric power steering device that assists and energizes a steering device of a vehicle by a driving force of the electric drive device.
- Patent Document 1 discloses an electric power steering device in which a control device is disposed on the axis of a rotor shaft of an electric motor and is mounted with an electric drive device fixed to the electric motor. Further, in Patent Document 2, the control device is fixed on the bracket of the electric motor, and the electric drive device in which the housing of the control device and the cover of the housing are mounted in parallel to the axial direction of the electric motor is mounted.
- An electric power steering device is disclosed.
- the control device is disposed on the axis of the rotor shaft of the electric motor or on the bracket of the electric motor, and is fixed to the electric motor. And the power board is integrated into one sheet, and the electrolytic capacitor is also integrated into one place.
- heat is dissipated in the space inside the electronic control unit (hereinafter referred to as “ECU”) for heat dissipation of the coil of the heat generating component or the electrolytic capacitor.
- ECU electronice control unit
- the power unit and the control unit are connected with terminals arranged in a row, and the heat sink is arranged in the ECU or in the motor case to dissipate heat.
- the power line is constituted by a bus bar, and the structure is formed by a resin mold.
- JP 2007-62433 A Japanese Patent No. 4252486
- bus bars through which a large current flows cannot be wired in parallel, and it is difficult to wire along the arm portion of the bridge circuit.
- the present invention has been made to solve the above-described problems, and its purpose is to reduce the impedance of the three-phase bridge circuit that controls the current flowing in the electric motor, efficiently absorb the ripple, and drive.
- An electric drive device that improves the power efficiency of the device and an electric power steering device including the same are provided.
- An electric drive device is an electric drive device including an electric motor and a control device that is disposed on an axis of a rotor shaft of the electric motor and controls driving of the electric motor,
- the control device is generated during a switching operation of the semiconductor switching element constituting a three-phase bridge circuit for controlling the current of the electric motor, a capacitor for suppressing a ripple component of a current flowing through the electric motor, and the semiconductor switching element.
- a coil for reducing noise, a power circuit unit including the semiconductor switching element, the capacitor, and the coil, a heat sink for dissipating heat generated from the power circuit unit, and a drive signal for driving the semiconductor switching element are generated.
- a control board having a microcomputer mounted thereon, the semiconductor switch Grayed element and the capacitor is a pair for each arm of the three-phase bridge circuit, in which are arranged concentrically to the rotor axis.
- the semiconductor switching element constituting the three-phase bridge circuit that controls the current of the electric motor and the capacitor that suppresses the ripple component of the current flowing through the electric motor can be Since each arm is paired and arranged concentrically on the rotor shaft, the impedance of the three-phase bridge circuit can be reduced, ripples can be absorbed efficiently, and the power efficiency of the drive device can be improved.
- FIG. 1 is a block configuration diagram of an electric power steering apparatus according to Embodiment 1 of the present invention.
- 1 is a cross-sectional view of an electric power steering apparatus according to Embodiment 1 of the present invention.
- FIG. 3 is a cross-sectional side view of the main part of the electric drive device used in the electric power steering device according to Embodiment 1 of the present invention, and is a cross-sectional view taken along the line DD of FIG.
- FIG. 4 is a partial cross-sectional view of a main part for explaining in detail a main part of the electric drive device used in the electric power steering apparatus according to Embodiment 1 of the present invention, and a cross-sectional view taken along line FF in FIG.
- FIG. 2 is a partial fragmentary sectional view for explaining in detail the main part of the electric drive device used in the electric power steering apparatus according to Embodiment 1 of the present invention, and shows part E of FIG. It is a principal part cross-section side view of the electric drive device used for the electric power steering device which concerns on Embodiment 2 of this invention. It is a principal part cross-section side view of the electric drive device used for the electric power steering device which concerns on Embodiment 3 of this invention.
- FIG. 1 is a block configuration diagram of the electric power steering apparatus according to the first embodiment.
- an electric power steering device 100 includes an electric motor 2 that outputs an auxiliary torque to a vehicle handle 1, a control device 3 that controls driving of the electric motor 2, and a rotational speed of the electric motor 2.
- a deceleration device 4 for decelerating, a battery 5 for supplying a current for driving the electric motor 2, and a torque sensor 6 for detecting a steering torque of the handle 1 are provided.
- the electric power steering device 100 includes a power connector 7 that electrically connects the battery 5 and the control device 3, and a vehicle-side signal connector that receives a vehicle-side signal such as a vehicle traveling speed signal from the vehicle side. 8, and a torque sensor connector 9 that electrically connects the torque sensor 6 and the control device 3.
- the electric motor 2 is configured by a three-phase brushless motor, and includes a rotor 10 and a stator 12 having an armature winding 11 composed of a U phase, a V phase, and a W phase.
- the control device 3 includes a large-capacity capacitor 13 (about 2200 ⁇ F ⁇ 3) for absorbing the ripple component of the motor current Im flowing through the electric motor 2, a shunt resistor 14 for detecting the motor current Im, and the handle 1.
- a semiconductor switching element (for example, FET) 15 constituting a three-phase bridge circuit that switches the motor current Im according to the magnitude and direction of the auxiliary torque output to the motor, and a motor supplied from the semiconductor switching element 15 to the electric motor 2
- the semiconductor switching element (for example, FET) 16 which comprises the motor relay which is a switch means to energize and interrupt the current Im is provided.
- control device 3 includes a power circuit unit including a power substrate 35 (described later) on which the shunt resistor 14 and the semiconductor switching elements 15 and 16 are mounted, and electromagnetic noise generated during the switching operation of the semiconductor switching element 15 to the outside.
- the semiconductor switching element for example, FET
- the semiconductor switching element which comprises the coil 17 which prevents flowing out and becomes radio noise
- the power supply relay which is a switch means which supplies and interrupts the battery current Ib supplied from the battery 5 to the semiconductor switching element 15 18 and a relay substrate 19 on which the semiconductor switching element 18 is mounted.
- the semiconductor switching element (for example, FET) 16 may be configured by a plurality of semiconductor switching elements. Further, the semiconductor switching element 16 is included as one part of the bridge circuit.
- the control device 3 includes a resolver 20 that is a rotational position sensor that detects the rotational position of the rotor 10, a current detection unit 21 that is connected to one end of the shunt resistor 14 and detects a current flowing through the electric motor 2, The auxiliary torque is calculated based on the steering torque signal from the torque sensor 6, and the current corresponding to the auxiliary torque is calculated by feeding back the motor current Im and the rotational position of the rotor 10 detected by the resolver 20.
- the microcomputer 22 further includes a well-known self-diagnosis function in addition to an AD converter, a PWM timer circuit, and the like, and always performs self-diagnosis as to whether the system is operating normally.
- the current Im is cut off.
- the microcomputer 22 receives the steering torque from the torque sensor 6 and the rotational position information of the rotor 10 from the resolver 20, and from the vehicle-side signal connector 8. A travel speed signal is input as one of the vehicle side signals. Further, the motor current Im is fed back to the microcomputer 22 through the current detecting means 21 by the shunt resistor 14. In the microcomputer 22, a current control amount corresponding to the rotation direction command of the power steering and the auxiliary torque is generated from these information and signals, and each drive signal is input to the drive circuit 23.
- the motor current Im detected through the shunt resistor 14 and the current detection means 21 is fed back to the microcomputer 22 so that it matches the motor current command IM sent from the microcomputer 22 to the drive circuit 23. Be controlled.
- the motor current Im includes a ripple component due to the switching operation of the semiconductor switching element 15 during PWM driving, but is smoothed and controlled by the large-capacitance capacitor 13.
- FIG. 2 is a cross-sectional view of the electric power steering apparatus 100.
- 3 is a cross-sectional side view of the main part of the electric drive device used in the electric power steering device 100, and is a cross-sectional view taken along the line DD of FIG. 2, with the power connector 7 and the motor housing 49 omitted.
- Yes. 4 is a fragmentary sectional view for explaining the details of the principal part of the electric drive device, and is a sectional view taken along the line FF of FIG. 3.
- the control board 24, motor housing 49, circuit case 42 is also included.
- FIG. 5 is a partial fragmentary sectional view for explaining in detail the main part of the electric drive device, showing the E part of FIG. 2 and omitting the coil 17.
- reference numeral 150 denotes an electric drive device.
- the electric motor 2 of the electric drive device 150 is magnetized to the rotor shaft 30 and 10 poles on the rotor shaft 30.
- the rotor shaft 30 is rotatably supported by bearings 30a and 30b.
- the stator 12 is wound around 12 insulators mounted on 12 salient poles that are opposed to the outer periphery of the permanent magnet 31, and is connected to three phases of the U phase, the V phase, and the W phase.
- Armature winding 11 is provided.
- the winding end 11a of the armature winding 11 extends in the direction of the control device 3 in parallel with the axial direction of the electric motor 2, and is connected to U-phase, V-phase, and W-phase output terminals.
- the control device 3 for controlling the driving of the electric motor 2 includes a power substrate 35 (FIGS. 3 and 5) and a relay substrate 19 (FIGS. 3 and 4) made of a ceramic substrate having high thermal conductivity, and a control board 24 (FIG. 3). 2, 4, 5), a heat sink 36 (FIGS. 2 to 5) made of a high thermal conductivity metal such as aluminum or aluminum alloy, and a plurality of conductive plates 37, 38, 39, 40, 41 ( 3 to 5) are insert-molded into an insulating resin, and a coil 17 (FIGS. 2 to 4) for removing electromagnetic noise, a large amount for absorbing the ripple component of the motor current flowing through the electric motor 2.
- a circuit case 42 (FIGS.
- the control device 3 (FIG. 2) is fixed with a screw (not shown) to the speed reduction device 4 that reduces the rotational speed of the electric motor 2 via the heat sink 36.
- the reduction gear 4 includes a gear case 50 that is a housing that contacts the heat sink 36, a worm gear 51 that is provided inside the gear case 50 and that is a means for reducing the rotation of the rotor shaft 30, and a worm geared to the worm gear 51.
- a wheel 52 is provided.
- a coupling 53 is fixed to the end of the worm gear 51 on the rotor shaft 30 side. By coupling the coupling 53 and the coupling 33, torque is transmitted from the electric motor 2 to the worm gear 51.
- the gear case 50 is made of a metal having high thermal conductivity, such as aluminum or an aluminum alloy.
- the power substrate 35 shown in FIGS. 3 and 5 is a ceramic substrate having high thermal conductivity.
- an aluminum plate thermal conductivity 237 W / mk
- aluminum nitride thermal conductivity 180 W / mk.
- the wiring pattern on the power board 35 includes a semiconductor switching element 15 and a semiconductor switching element 15 that constitute a three-phase bridge circuit for switching the motor current Im of the electric motor 2 according to the magnitude and direction of the auxiliary torque.
- a semiconductor switching element 16 constituting a motor relay which is a switch means for energizing and interrupting the motor current Im supplied from the motor to the electric motor 2 and a shunt resistor 14 for detecting the electric current of the electric motor 2 ( A maximum of 100 Arms) is mounted with solder.
- the gate pads, source pads, and wiring patterns on the semiconductor switching elements 15 and 16 are connected by wire bonding (not shown).
- the relay substrate 19 (FIGS. 3 and 4) is a ceramic substrate with high thermal conductivity similar to the power substrate 35.
- an aluminum plate thermal conductivity 237 W / mk
- aluminum nitride thermal conductivity 180 W / mk
- the wiring pattern on the relay board 19 is mounted with a semiconductor switching element 18 that constitutes a power supply relay, which is a switch means for energizing and interrupting the battery current Ib supplied from the battery 5 to the three-phase bridge circuit, by solder. Yes.
- the gate pad, the source pad and the wiring pattern on the semiconductor switching element 18 are connected by wire bonding (not shown).
- the control board 24 (FIGS. 2, 4, and 5) is formed of a multilayer (for example, four layers) glass / epoxy board, and includes a microcomputer 22, a drive circuit 23, and motor current detection means 21 on the control board 24. Peripheral circuit elements are mounted by soldering.
- the microcomputer 22 calculates the auxiliary torque based on the steering torque signal from the current detection circuit 21 for detecting the motor current Im flowing through the electric motor 2 through one end of the shunt resistor 14 and the torque sensor 6.
- the motor current Im and the rotational position of the rotor 10 detected by the resolver 20 are fed back to calculate a current corresponding to the auxiliary torque.
- the microcomputer 22 outputs a signal for controlling the semiconductor switching elements 15, 16, and 18.
- the microcomputer 22 includes a well-known self-diagnosis function in addition to an AD converter, a PWM timer circuit, and the like, and always self-diagnose whether the system is operating normally. When an abnormality occurs, the motor current is cut off.
- the control board 24 is provided with a through hole through which the rotor shaft 30 described above passes and a notch through which the winding end 11a of the armature winding 11 passes.
- the resolver 20 is a rotational position sensor that detects the position of the rotor 10, and includes a resolver rotor 20a and a resolver stator 20b.
- the outer diameter of the resolver rotor 20a is a special curve in which the permeance of the radial gap between the resolver stator 20b and the resolver rotor 20a changes in a sine wave shape with an angle.
- An exciting coil and two sets of output coils are wound around the resolver stator 20b.
- a change in the radial gap between the resolver rotor 20a and the resolver stator 20b is detected to obtain a sine and a cosine.
- a changing two-phase output voltage is output.
- the heat sink 36 (FIGS. 2 to 5) is disposed on the rotor shaft 30 side of the electric motor 2, and the power board 35 (FIGS. 3 and 5) and the relay board 19 ( 3 and 4) are arranged in close contact. Further, a terminal block 48 (FIG. 5) is fixed to the surface of the heat sink 36 on which the power substrate 35 (FIG. 5) is arranged, and a circuit case on which the coil 17 and the capacitor 13 are mounted. 42 (FIGS. 4 and 5) is fixed by screws (not shown).
- the coil 17 and the capacitor 13 are arranged by being inserted into a hole 36 a (FIG. 4) formed in the heat sink 36, and heat generated from the coil 17 and the capacitor 13 is radiated to the heat sink 36. Therefore, the temperature rise of the coil 17 and the capacitor 13 is suppressed, and the reliability of the coil 17 and the capacitor 13 is improved.
- the gap between the hole 36a formed in the heat sink 36 and the coil 17 and the capacitor 13 is filled with an insulating adhesive or grease that is not shown in the figure, and heat dissipation of the coil 17 and the capacitor 13 is performed. Is promoted.
- the heat sink 36 is fixed to the control device 3 with screws (not shown). As a result, heat generated from the semiconductor switching element 15, the coil 17, and the capacitor 13 is radiated to the heat sink 36 and then further radiated to the speed reduction device 4, so that the heat radiation performance of the control device 3 is improved.
- the circuit case 42 includes a power connector 7 that is electrically connected to the battery 5 of the vehicle, a vehicle signal connector 8 that inputs and outputs signals to and from the vehicle via external wiring, and a torque sensor via the external wiring.
- the torque sensor connector 9 to / from which signals from 6 are input / output is integrally formed of an insulating resin, and the conductive plates 37, 38, 39, 40 through which a maximum current of about 100 A flows and a signal current of about several A Parts such as the flowing conductive plate 41 are insert-molded.
- One end of the conductive plate 37 (FIG. 3) is exposed from the insulating resin as the connector terminal 37 a of the power connector 7. Further, a welded portion 37b is exposed from the insulating resin on the other end side of the connector terminal 37a, and electromagnetic noise generated during the switching operation of the semiconductor switching element 15 flows out to the welded portion 37b.
- One end of the coil 17 to be prevented is welded and electrically connected.
- One end of the conductive plate 38 (FIGS. 3 and 4) is exposed as a welded portion 38a, and the other end of the coil 17 described above is welded and electrically connected to the welded portion 38a. Further, on the other end side of the conductive plate 38, a welded portion 38b that is welded and electrically connected to a conductive plate 43 of a terminal block 48 described later is exposed from the insulating resin.
- the conductive plate 39 and the conductive plate 40 are one of the components constituting the three-phase bridge circuit.
- the welded portion 39c that is welded and electrically connected to the conductive plate 44 of the terminal block 48 described later, and the welded portions 39a and 40a that are welded and electrically connected to the conductive plates 45 and 46 of the terminal block 48 described later are insulated. Exposed from the adhesive resin.
- the welded portions 39a and 40a are connected to the power board 35, respectively.
- the conductive plates 39 and 40 have three welded portions 39b and 40b exposed from the insulating resin, respectively, and the welded portions 39b and 40b are welded with the capacitor 13 that absorbs the ripple of the motor current Im. Connected.
- the power board 35 (FIG. 3) on which the semiconductor switching elements 15 and 16 are mounted and the capacitor 13 are disposed so as to form a pair for each of the arms A, B, and C of the three-phase bridge circuit, and are concentric with the rotor shaft 30. Arranged in a shape.
- the conductive plates 39 and 40 are arranged in parallel and concentrically so as to connect the arms A, B and C in the shortest distance. By doing so, the impedance of the three-phase bridge circuit can be reduced, ripples can be absorbed efficiently, and the power efficiency of the drive device can be improved. Further, electromagnetic noise generated from the power line formed by the conductive plates 39 and 40 can be reduced.
- One end of the conductive plate 41 (FIG. 5) is exposed from the insulating resin as the vehicle-side signal connector 8 or the connector terminal 41 a of the torque sensor connector 9. Further, a soldering portion 41b is exposed from the insulating resin on the other end side of the connector terminal 41a. This soldering portion 41b is inserted into a through hole of the control board 24 and soldered, and the control board 24 is exposed. The wiring pattern is electrically connected.
- the circuit case 42 (FIG. 2) is provided with a notch through which the winding end 11a of the armature winding 11 passes (FIG. 2).
- the terminal block 48 (FIGS. 4 and 5) is electrically connected to the conductive plates 43, 44, 45, 46 and the control board 24 that are electrically connected to the conductive plates 38, 39, 40 of the circuit case 42.
- a conductive plate (not shown) electrically connected to the conductive plate 47 and the winding end portion 11a of the armature winding 11 is insert-molded in an insulating resin.
- pads 43a and 44a connected to the relay substrate 19 by wire bonding and supplied with current to the relay substrate 19 are formed exposed from the insulating resin.
- the welded portions 43b and 44b are exposed from the insulating resin on the other end side of the conductive plates 43 and 44.
- the welded portions 43b and 44b and the conductive plates 38 and 39 of the circuit case 42 are electrically connected by resistance welding. Connected.
- pads 45a and 46a connected to the power substrate 35 by wire bonding and supplied with current to the power substrate 35 are exposed from the insulating resin.
- the welded portions 45b and 46b are exposed from the insulating resin on the other end side of the conductive plates 45 and 46.
- the welded portions 45b and 46b and the conductive plates 39 and 40 of the circuit case 42 are electrically connected by resistance welding. Connected.
- a pad 47a is connected to the power substrate 35 (FIGS. 3 and 5) by wire bonding to input / output signals to / from the control substrate 24. It is exposed and formed.
- the soldering portion 47b is exposed from the insulating resin on the other end side of the conductive plate 47, and this soldering portion 47b is inserted into the through hole of the control board 24 and soldered, and the power board 35 is mounted.
- the wiring pattern of the control board 24 are electrically connected (FIG. 4). Therefore, the electronic circuit on the control board 24 is electrically connected to the semiconductor switching element 15 on the power board 35, the shunt resistor 14 and the like via the conductive plate 47 and the wire bonding aluminum wire.
- the pad 47a for connecting the power board 35 and the control board 24 and the soldering part 47b are arranged around the rotor shaft 30 which is the center of the driving device. By doing so, the vicinity of the center where the mounting efficiency on the control board 24 is poor can be used effectively, the mounting efficiency as a whole is improved, and the apparatus can be downsized.
- the motor housing 49 (FIG. 2) is fastened by the heat sink 36 and the screw 54 and covers the power board 35, the relay board 19, the control board 24, the circuit case 42, and the terminal block 48 together with the heat sink 36.
- the motor housing 49 is fastened to the electric motor 2 with screws (not shown).
- the power board 35, the relay board 19, and the control board 24, which are electronic components of the control device 3, are all arranged in a closed space surrounded by the electric motor 2, the heat sink 36, and the motor housing 49. Therefore, when the electric drive device 150 is operated, the temperature of the electronic component further increases due to the influence of heat transfer and heat radiation from the electric motor 2 in addition to the temperature increase due to its own heat generation.
- a plate 49a perpendicular to the axial direction of the rotor shaft 30 of the electric motor 2 is integrally formed in the motor housing 49.
- a space surrounded by the electric motor 2, the heat sink 36, and the motor housing 49 is divided by the plate 49a. Since the plate 49a is made of aluminum die-casting similarly to the motor housing 49, the thermal conductivity is sufficiently higher than that of air (thermal conductivity: air: 0.028 W / mk, aluminum die-casting (ADC12): 96 W / mk). ).
- the plate 49a is formed with a through hole through which the rotor shaft 30 passes and a through hole through which the winding end portion 11a of the armature winding 11 passes, and the rotor is fixed when the electric motor 2 is fixed.
- the shaft 30 and the winding end 11a of the armature winding 11 can be fixed without causing interference.
- FIG. 6 is a cross-sectional side view of an essential part of the electric drive device used in the electric power steering device according to the second embodiment, and corresponds to FIG. 3 of the first embodiment. Other parts are the same as those in the first embodiment.
- the hot end (start of winding) and the cold end (end of winding) of the conductive plates 60 and 61 are connected.
- the conductive plate 61 is connected to a connector terminal (not shown).
- the conductive plate 60 is connected to the output side of the relay board 19.
- connection between the conductive plate 61 and the connector terminal and the conductive plate 60 and the relay board 19 is one point, but there may be a plurality of connections. Further, when there is no relay board 19, a terminal that changes to that may be used. By doing so, since the impedance of the power line that supplies power to each arm A, B, C of the three-phase bridge circuit can be reduced, the ripple of the electric drive device 250 is reduced, and the power efficiency can be improved.
- FIG. 7 is a cross-sectional side view of an essential part of the electric drive device used in the electric power steering device according to the third embodiment, and corresponds to FIG. 3 of the first embodiment. Other parts are the same as those in the first embodiment.
- the pad 70a for connecting the control board 24 and the power circuit unit, and the soldering unit 70b (control terminal) ) Is arranged along a circle at the periphery of the rotor shaft 30 around the rotor shaft 30 of the electric drive device 350.
- the pad 70a (control terminal) is formed in an arc shape with respect to the center.
- the power board 35 (FIG. 3) and the capacitor 13 of the control device 3 are configured as a pair for each of the arms A, B, and C of the three-phase bridge circuit. And since it arrange
- the positive electrode side wiring and the negative electrode side wiring of the DC power source are arranged in parallel, and are arranged concentrically on the rotor shaft 30 along the arms A, B, and C. Therefore, electromagnetic noise can be reduced.
- the internal impedance is further reduced, the ripple is reduced, and the power efficiency can be improved.
- the heat radiation efficiency of the capacitor 13 which is a heat generating component is improved.
- the heat dissipation is improved by filling the gap between the buried capacitor 13 and the heat sink 36 with a heat conductive member.
- the heat dissipation efficiency of the coil 17 which is a heat generating component is improved.
- the heat dissipation is improved by filling the gap between the buried coil 17 and the heat sink 36 with a heat conductive member.
- the control device 3 is disposed between the electric motor 2 and the speed reduction device 4 and the heat sink 36 is fixed in contact with the speed reduction device 4, the power substrate 35 such as the semiconductor switching element 15 or the shunt resistor 14. (FIG. 5), the heat dissipation performance of the electronic components on the control board 24, and the electronic components disposed in the holes 36a formed in the heat sink 36, such as the coil 17 and the capacitor 13, is increased, and the apparatus is downsized. High output and long life can be achieved, and the reliability and durability of the device are improved.
- the connection between the power board 35 and the control board 24 is arranged around the rotor shaft 30 that is the center of the electric drive device, the mounting efficiency of the control board 24 is improved and the apparatus is downsized. Can be planned.
- connection between the power board 35 and the control board 24 is arranged around the rotor shaft 30 that is the center of the electric drive device, and along the peripheral portion of the rotor shaft 30.
- the number of poles of the permanent magnet 31 is 10 and the number of salient poles of the stator 12 is 12.
- the present invention is not limited to this combination. It may be a combination of the number of poles.
- the electric motor 2 is not limited to a brushless motor, and may be an induction motor or a switched reluctance motor (SR motor).
- the armature winding 11 of the electric motor 2 is a ⁇ connection, but may be a Y connection.
- the connection of each phase of the armature winding 11 is 2 series and 2 parallel, other connection shapes such as 4 parallel may be used.
- the semiconductor switching elements 16 and 18 for the power relay and the motor relay may be omitted.
- the power substrate 35 has been described as an FET mounted on a ceramic substrate, it may be a metal substrate or a resin molded package product, and the semiconductor switching element may be a bipolar transistor, an IGBT, or the like.
- the semiconductor switching element may be a bipolar transistor, an IGBT, or the like.
- A, B, C arms (Figs. 1 and 3) 1 Handle (Fig. 1) 2 Electric motor (Figs.1, 2) 3 Control device (Figs. 1 and 2) 4 Reducer (Figs. 1 and 2) 5 Battery (Fig. 1) 6 Torque sensor (Fig. 1)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Steering Mechanism (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
例えば、特許文献1には、制御装置が電動モータの回転子軸の軸線上に配置され、電動モータに固定された電動式駆動装置を搭載した電動式パワーステアリング装置が開示されている。また、特許文献2には、制御装置が電動モータのブラケット上に固定され、その制御装置のハウジングとハウジングのカバーが、前記電動モータの軸線方向と平行に装着された電動式駆動装置を搭載した電動式パワーステアリング装置が開示されている。
この発明の前記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
図1は、実施の形態1に係る電動式パワーステアリング装置のブロック構成図である。図1において、電動式パワーステアリング装置100は、車両のハンドル1に対して補助トルクを出力する電動モータ2と、この電動モータ2の駆動を制御する制御装置3と、電動モータ2の回転速度を減速させる減速装置4と、電動モータ2を駆動する電流を供給するバッテリ5と、ハンドル1の操舵トルクを検出するトルクセンサ6を備えている。
次に、実施の形態2に係る電動式パワーステアリング装置について説明する。図6は、実施の形態2に係る電動式パワーステアリング装置に用いられる電動式駆動装置の要部断面側面図で、実施の形態1の図3に相当する図である。なお、その他の部分については実施の形態1と同様である。
次に、実施の形態3に係る電動式パワーステアリング装置について説明する。図7は、実施の形態3に係る電動式パワーステアリング装置に用いられる電動式駆動装置の要部断面側面図で、実施の形態1の図3に相当する図である。なお、その他の部分については実施の形態1と同様である。
この発明の各種の変形または変更は、関連する熟練技術者が、この発明の範囲と精神を逸脱しない中で実現可能であり、この明細書に記載された各実施の形態には制限されないことと理解されるべきである。
1 ハンドル(図1)
2 電動モータ(図1,2)
3 制御装置(図1,2)
4 減速装置(図1,2)
5 バッテリ(図1)
6 トルクセンサ(図1)
8 車両側信号用コネクタ(図1)
9 トルクセンサコネクタ(図1,5)
10 回転子(図1,2)
11 電機子巻線(図1,2)
11a 巻線端部(図2,3,6)
12 固定子(図1,2)
13 コンデンサ(図1,3,4,6)
14 シャント抵抗器(図1,5)
15 半導体スイッチング素子(図1,5)
17 コイル(図1,2,3,4,6)
18 半導体スイッチング素子(図1,4)
19 リレー基板(図1,3,4,6,7)
20 レゾルバ(図1,2)
21 モータ電流検出手段(図1)
22 マイクロコンピュータ(図1)
23 駆動回路(図1)
24 制御基板(図2,4,5,7)
30 回転子軸(図2,3,6,7)
32 ヨーク(図2)
33 カップリング(図2)
34 インシュレータ(図2)
35 パワー基板(図3,5,6,7)
36 ヒートシンク(図2,3,4,5,6)
37 導電板(図3)
38 導電板(図3,4,6,7)
39 導電板(図3,4,5)
40 導電板(図3,4,5)
42 回路ケース(図2,4,5)
43 導電板(図4)
44 導電板(図4)
45 導電板(図5)
46 導電板(図5)
47 導電板(図4)
48 端子台(図2,3,4,5,6)
49 モータハウジング(図2,4,5)
50 ギヤケース(図2)
52 ウォームホイール(図2)
53 カップリング(図2)
60 導電板(図6)
61 導電板(図6)
70a パッド(図7)
70b 半田付け部(図7)
100 電式動パワーステアリング装置(図1,2)
150 電動式駆動装置(図2,3)
250 電動式駆動装置(図6)
350 電動式駆動装置(図7)
Claims (14)
- 電動モータと、この電動モータの回転子軸の軸線上に配置され、前記電動モータの駆動を制御する制御装置とを備えた電動式駆動装置であって、
前記制御装置は、前記電動モータの電流を制御する3相ブリッジ回路を構成する半導体スイッチング素子と、
前記電動モータに流れる電流のリップル成分を抑制するコンデンサと、
前記半導体スイッチング素子のスイッチング動作時に発生するノイズを低減するコイルと、
前記半導体スイッチング素子、前記コンデンサ、および前記コイルを含むパワー回路部と、
前記パワー回路部から発生する熱を放熱するヒートシンクと、
前記半導体スイッチング素子を駆動する駆動信号を生成するマイクロコンピュータを搭載した制御基板とを備え、
前記半導体スイッチング素子および前記コンデンサは、前記3相ブリッジ回路のアームごとに一対となって、前記回転子軸に同心円状に配置されることを特徴とする電動式駆動装置。 - 前記アームと、前記コンデンサとを電気的に接続する導電板を備え、
前記導電板は、直流電源の正極側配線と負極側配線とが並行に配置されると共に、前記各アームに沿って配置されることを特徴とする請求項1記載の電動式駆動装置。 - 前記導電板は、正極側配線と負極側配線とが前記回転子軸に同心円状に配置されると共に、リング形状に形成されることを特徴とする請求項2記載の電動式駆動装置。
- 前記ヒートシンクは、前記コンデンサの外径より大きな穴が形成され、この穴に前記コンデンサが挿入されていることを特徴とする請求項1記載の電動式駆動装置。
- 前記ヒートシンクの穴と前記コンデンサとで形成される隙間に、高熱伝導性部材を充填することを特徴とする請求項4記載の電動式駆動装置。
- 前記ヒートシンクは、前記コイルの外径より大きな穴が形成され、この穴に前記コイルが挿入されていることを特徴とする請求項1~請求項5の何れか一項に記載の電動式駆動装置。
- 前記ヒートシンクの穴と前記コイルとで形成される隙間に、高熱伝導性部材を充填することを特徴とする請求項6記載の電動式駆動装置。
- 前記パワー回路部と前記制御基板とを電気的に接続する制御端子を備え、この制御端子は、前記電動モータの回転子軸を中心とする、前記回転子軸の周縁部に沿って配置されることを特徴とする請求項1~請求項5の何れか一項に記載の電動式駆動装置。
- 前記制御基板は、前記電動モータの回転子軸が貫通する穴が形成され、この穴と前記制御端子が同心円状に配置されることを特徴とする請求項8記載の電動式駆動装置。
- 前記パワー回路部は、前記制御装置に流れる電流を通電、または遮断するスイッチ手段を備え、このスイッチ手段は複数の半導体スイッチング素子で構成されることを特徴とする請求項1~請求項5の何れか一項に記載の電動式駆動装置。
- 前記電動モータを減速する減速装置を備え、この減速装置の筐体に前記ヒートシンクを取付けたことを特徴とする請求項1~請求項5の何れか一項に記載の電動式駆動装置。
- 前記減速装置の筐体および前記ヒートシンクは、高熱伝導性の金属で構成されることを特徴とする請求項11記載の電動式駆動装置。
- 前記高熱伝導性の金属は、アルミニウム、またはアルミニウム合金であることを特徴とする請求項12記載の電動式駆動装置。
- 請求項1~5の何れか一項に記載の電動式駆動装置を備えたことを特徴とする電動パワーステアリング装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/580,284 US9045156B2 (en) | 2010-05-11 | 2010-10-22 | Electric driving device and electric power steering system including the same |
EP10851432.4A EP2571147B1 (en) | 2010-05-11 | 2010-10-22 | Electric driving device and electric power steering device equipped with same |
CN201080065513.0A CN102812623B (zh) | 2010-05-11 | 2010-10-22 | 电动式驱动装置和具有该电动式驱动装置的电动式动力转向装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010109156A JP5039171B2 (ja) | 2010-05-11 | 2010-05-11 | 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置 |
JP2010-109156 | 2010-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011142050A1 true WO2011142050A1 (ja) | 2011-11-17 |
Family
ID=44914116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068691 WO2011142050A1 (ja) | 2010-05-11 | 2010-10-22 | 電動式駆動装置およびそれを備えた電動式パワーステアリング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9045156B2 (ja) |
EP (1) | EP2571147B1 (ja) |
JP (1) | JP5039171B2 (ja) |
CN (1) | CN102812623B (ja) |
WO (1) | WO2011142050A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015516792A (ja) * | 2012-03-15 | 2015-06-11 | ボルグワーナー トルクトランスファー システムズ エービー | 道路車両のための電気的駆動軸装置 |
EP2808226A4 (en) * | 2012-01-25 | 2016-04-06 | Mitsubishi Electric Corp | ELECTRIC POWER STEERING DEVICE |
CN106797153A (zh) * | 2014-09-30 | 2017-05-31 | 日本电产株式会社 | 马达 |
JPWO2018088162A1 (ja) * | 2016-11-11 | 2019-04-11 | 日本精工株式会社 | 電子制御装置及びステアリング装置 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634066B1 (en) * | 2010-10-27 | 2020-03-25 | Mitsubishi Electric Corporation | Device for controlling drive of motor for electric power steering device |
CN103502081B (zh) * | 2011-05-11 | 2016-02-10 | 三菱电机株式会社 | 电动动力转向装置 |
EP2757665B1 (en) * | 2011-09-12 | 2017-03-01 | Mitsubishi Electric Corporation | Electric drive device |
JP5912430B2 (ja) * | 2011-11-10 | 2016-04-27 | 日本電産エレシス株式会社 | 電動パワーステアリング用の電子制御ユニット |
DE102011056383B4 (de) * | 2011-12-14 | 2020-02-27 | Robert Bosch Automotive Steering Gmbh | Lenksystem in einem Fahrzeug |
EP2824807B1 (en) | 2012-03-06 | 2017-08-23 | Mitsubishi Electric Corporation | Electric power steering drive device |
JP5967425B2 (ja) * | 2012-06-27 | 2016-08-10 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
JP5484531B2 (ja) * | 2012-08-09 | 2014-05-07 | 三菱電機株式会社 | 交流発電機 |
JP6064479B2 (ja) * | 2012-09-19 | 2017-01-25 | 株式会社ジェイテクト | 制御装置および同装置を備えるモータユニット |
JP5511929B2 (ja) * | 2012-10-24 | 2014-06-04 | 三菱電機株式会社 | 交流発電機 |
JP5595537B2 (ja) * | 2013-02-20 | 2014-09-24 | 三菱電機株式会社 | 電動パワーステアリング装置 |
JPWO2015001684A1 (ja) * | 2013-07-03 | 2017-02-23 | 三菱電機株式会社 | 電動パワーステアリング装置 |
CN103318248A (zh) * | 2013-07-16 | 2013-09-25 | 江苏博众汽车部件有限公司 | 一种伺服壳体 |
DE112014005305T5 (de) * | 2013-11-21 | 2016-08-04 | Mabuchi Motor Co., Ltd. | Motor |
JP6457256B2 (ja) | 2013-12-19 | 2019-01-23 | 日本電産エレシス株式会社 | 電動パワーステアリング用のモータ駆動装置 |
CN106031000B (zh) * | 2014-02-19 | 2019-05-21 | 三菱电机株式会社 | 马达驱动装置 |
WO2015145630A1 (ja) * | 2014-03-26 | 2015-10-01 | 三菱電機株式会社 | 電動パワーステアリング装置 |
JP6312170B2 (ja) * | 2014-04-08 | 2018-04-18 | 三菱電機株式会社 | モールドモジュール |
US10618545B2 (en) | 2014-05-08 | 2020-04-14 | Mitsubishi Electric Corporation | Electric power steering apparatus |
DE102014109244A1 (de) | 2014-07-02 | 2016-01-21 | Hanning Elektro-Werke Gmbh & Co. Kg | Elektromotor und Verfahren zum elektrischen Kontaktieren desselben |
JP6569306B2 (ja) * | 2014-09-30 | 2019-09-04 | 日本電産株式会社 | モータ |
JP6578642B2 (ja) | 2014-09-30 | 2019-09-25 | 日本電産株式会社 | モータ |
JP6435754B2 (ja) | 2014-09-30 | 2018-12-12 | 日本電産株式会社 | モータ |
JP6368936B2 (ja) | 2014-09-30 | 2018-08-08 | 日本電産株式会社 | モータ |
JP6520033B2 (ja) | 2014-09-30 | 2019-05-29 | 日本電産株式会社 | モータ |
EP3220521B1 (en) | 2014-11-13 | 2019-03-13 | Mitsubishi Electric Corporation | Control unit and electric power steering device using same |
CN106856667B (zh) * | 2015-01-23 | 2019-08-06 | 三菱电机株式会社 | 电动动力转向用马达驱动控制装置 |
JP6396228B2 (ja) * | 2015-02-05 | 2018-09-26 | 日立オートモティブシステムズ株式会社 | 電動駆動装置及び電動パワーステアリング装置 |
CN105932810B (zh) * | 2015-02-27 | 2019-10-22 | 博泽沃尔兹堡汽车零部件有限公司 | 电机结构组件 |
DE102015204794A1 (de) * | 2015-03-17 | 2016-09-22 | Volkswagen Aktiengesellschaft | Leistungsschalteranordnung und Leistungsschaltermodul für ein elektrisch unterstütztes Lenksystem |
WO2017046940A1 (ja) * | 2015-09-18 | 2017-03-23 | 三菱電機株式会社 | 一体型電動パワーステアリング装置 |
EP3297140A1 (en) | 2016-09-19 | 2018-03-21 | Black & Decker Inc. | Control and power module for brushless motor |
JP6968453B2 (ja) | 2016-12-08 | 2021-11-17 | リアクション アナリティクス, インコーポレイテッドReaction Analytics, Inc. | フィルターインサート及び該フィルターインサートを用いたサンプルバイアル |
CN108964363A (zh) * | 2017-05-17 | 2018-12-07 | 德昌电机(深圳)有限公司 | 一种电机、控制电路板及应用该电机的引擎冷却模组 |
GB201710104D0 (en) * | 2017-06-23 | 2017-08-09 | Trw Ltd | Electric power assisted steering |
TWM576750U (zh) | 2017-07-25 | 2019-04-11 | 美商米沃奇電子工具公司 | 電氣組合物、電動化裝置系統、電池組、電馬達、馬達總成及電馬達總成 |
DE102017222999B4 (de) | 2017-12-18 | 2021-10-21 | Robert Bosch Gmbh | Sensoreinrichtung für ein Lenksystem eines Fahrzeugs |
DE102018118759A1 (de) * | 2018-08-02 | 2020-02-06 | Seg Automotive Germany Gmbh | Rotor einer elektrischen Maschine, insbesondere einer Klauenpolmaschine |
DE102018006915A1 (de) * | 2018-08-30 | 2020-03-05 | eMoSys GmbH | Permanenterregte elektrische Maschine |
JP6608555B1 (ja) * | 2019-05-17 | 2019-11-20 | 三菱電機株式会社 | 駆動装置、および電動パワーステアリング装置 |
CN112449532A (zh) * | 2019-08-29 | 2021-03-05 | 光宝电子(广州)有限公司 | 保护装置 |
KR102311692B1 (ko) * | 2020-03-16 | 2021-10-12 | 엘지전자 주식회사 | 모터 |
JP7478010B2 (ja) * | 2020-03-31 | 2024-05-02 | 平田機工株式会社 | 回転電機 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206232A (ja) * | 2000-01-28 | 2001-07-31 | Mitsubishi Electric Corp | 電動式パワーステアリング制御装置 |
JP2004048823A (ja) * | 2002-07-08 | 2004-02-12 | Hitachi Unisia Automotive Ltd | インバータ付き電気機械 |
JP2007062433A (ja) | 2005-08-29 | 2007-03-15 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP4252486B2 (ja) | 2004-04-13 | 2009-04-08 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP2009248864A (ja) * | 2008-04-09 | 2009-10-29 | Mitsubishi Electric Corp | 電動式パワーステアリング装置及びその製造方法 |
WO2010007672A1 (ja) * | 2008-07-16 | 2010-01-21 | 三菱電機株式会社 | 電動パワーステアリング装置、及び制御装置一体型電動機 |
JP2010092999A (ja) * | 2008-10-07 | 2010-04-22 | Toyota Motor Corp | 放熱構造及び車両用インバータ |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3100834B2 (ja) * | 1994-06-30 | 2000-10-23 | 三菱電機株式会社 | 電動式パワーステアリング回路装置 |
JP3563835B2 (ja) | 1995-07-12 | 2004-09-08 | 光洋精工株式会社 | パワーステアリング装置 |
KR100356894B1 (ko) * | 1997-10-01 | 2002-10-19 | 카야바 고교 가부시기가이샤 | 전동 파워 스티어링 장치의 전동 모터 |
JP2000043740A (ja) | 1998-07-29 | 2000-02-15 | Mitsubishi Electric Corp | 電動式パワーステアリング回路装置 |
JP3556121B2 (ja) | 1999-05-11 | 2004-08-18 | 三菱電機株式会社 | 電動式パワーステアリング回路装置 |
JP3614380B2 (ja) | 2001-05-17 | 2005-01-26 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP3638269B2 (ja) * | 2002-03-14 | 2005-04-13 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP2004023877A (ja) * | 2002-06-14 | 2004-01-22 | Hitachi Unisia Automotive Ltd | インバータ付き電気機械 |
JP4161074B2 (ja) * | 2004-02-02 | 2008-10-08 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP4471752B2 (ja) * | 2004-07-06 | 2010-06-02 | 日立オートモティブシステムズ株式会社 | 電動パワーステアリング用制御装置および電動パワーステアリングシステム |
JP4432709B2 (ja) * | 2004-10-01 | 2010-03-17 | トヨタ自動車株式会社 | 電動パワーステアリング装置 |
JP4615405B2 (ja) | 2004-11-22 | 2011-01-19 | 日立オートモティブシステムズ株式会社 | モータ制御装置、パワーステアリング装置および制動力制御装置 |
JP2006180643A (ja) | 2004-12-24 | 2006-07-06 | Aichi Electric Co Ltd | 電動機 |
JP2007186145A (ja) | 2006-01-16 | 2007-07-26 | Nsk Ltd | 電動パワーステアリング装置 |
JP4434181B2 (ja) * | 2006-07-21 | 2010-03-17 | 株式会社日立製作所 | 電力変換装置 |
JP5001662B2 (ja) | 2007-01-18 | 2012-08-15 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
WO2008146664A1 (ja) | 2007-05-25 | 2008-12-04 | Nsk Ltd. | 電動パワーステアリング装置 |
JP2009012631A (ja) | 2007-07-05 | 2009-01-22 | Nsk Ltd | 電動パワーステアリング装置 |
JP5125434B2 (ja) * | 2007-11-12 | 2013-01-23 | 株式会社ジェイテクト | モータおよび電気式動力舵取装置 |
JP5444619B2 (ja) | 2008-02-07 | 2014-03-19 | 株式会社ジェイテクト | 多層回路基板およびモータ駆動回路基板 |
JP5397658B2 (ja) | 2008-02-12 | 2014-01-22 | 株式会社ジェイテクト | 車両用操舵装置及びそのサブアセンブリの移送方法 |
WO2009125506A1 (ja) * | 2008-04-07 | 2009-10-15 | 三菱電機株式会社 | 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置 |
JP5250329B2 (ja) | 2008-07-30 | 2013-07-31 | 日立オートモティブシステムズ株式会社 | 電動パワーステアリング用制御装置および電動パワーステアリング装置 |
JP4909961B2 (ja) | 2008-09-02 | 2012-04-04 | 日立オートモティブシステムズ株式会社 | 電動パワーステアリング用制御装置 |
JP5625242B2 (ja) | 2009-02-25 | 2014-11-19 | 日本精工株式会社 | 電動パワーステアリング装置、制御ユニットおよび車両 |
-
2010
- 2010-05-11 JP JP2010109156A patent/JP5039171B2/ja not_active Expired - Fee Related
- 2010-10-22 EP EP10851432.4A patent/EP2571147B1/en active Active
- 2010-10-22 CN CN201080065513.0A patent/CN102812623B/zh not_active Expired - Fee Related
- 2010-10-22 WO PCT/JP2010/068691 patent/WO2011142050A1/ja active Application Filing
- 2010-10-22 US US13/580,284 patent/US9045156B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206232A (ja) * | 2000-01-28 | 2001-07-31 | Mitsubishi Electric Corp | 電動式パワーステアリング制御装置 |
JP2004048823A (ja) * | 2002-07-08 | 2004-02-12 | Hitachi Unisia Automotive Ltd | インバータ付き電気機械 |
JP4252486B2 (ja) | 2004-04-13 | 2009-04-08 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
JP2007062433A (ja) | 2005-08-29 | 2007-03-15 | Mitsubishi Electric Corp | 電動式パワーステアリング装置 |
JP2009248864A (ja) * | 2008-04-09 | 2009-10-29 | Mitsubishi Electric Corp | 電動式パワーステアリング装置及びその製造方法 |
WO2010007672A1 (ja) * | 2008-07-16 | 2010-01-21 | 三菱電機株式会社 | 電動パワーステアリング装置、及び制御装置一体型電動機 |
JP2010092999A (ja) * | 2008-10-07 | 2010-04-22 | Toyota Motor Corp | 放熱構造及び車両用インバータ |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2808226A4 (en) * | 2012-01-25 | 2016-04-06 | Mitsubishi Electric Corp | ELECTRIC POWER STEERING DEVICE |
US9586615B2 (en) | 2012-01-25 | 2017-03-07 | Mitsubishi Electric Corporation | Electric power steering apparatus |
JP2015516792A (ja) * | 2012-03-15 | 2015-06-11 | ボルグワーナー トルクトランスファー システムズ エービー | 道路車両のための電気的駆動軸装置 |
US9744850B2 (en) | 2012-03-15 | 2017-08-29 | Borgwarner Torqtransfer Systems Ab | Electric drive axle arrangement for a road vehicle |
CN106797153A (zh) * | 2014-09-30 | 2017-05-31 | 日本电产株式会社 | 马达 |
CN106797153B (zh) * | 2014-09-30 | 2018-11-23 | 日本电产株式会社 | 马达 |
JPWO2018088162A1 (ja) * | 2016-11-11 | 2019-04-11 | 日本精工株式会社 | 電子制御装置及びステアリング装置 |
US11148708B2 (en) | 2016-11-11 | 2021-10-19 | Nsk Ltd. | Electronic control device and steering device |
Also Published As
Publication number | Publication date |
---|---|
US20120313467A1 (en) | 2012-12-13 |
US9045156B2 (en) | 2015-06-02 |
EP2571147A4 (en) | 2018-03-14 |
JP2011239574A (ja) | 2011-11-24 |
EP2571147A1 (en) | 2013-03-20 |
CN102812623A (zh) | 2012-12-05 |
EP2571147B1 (en) | 2019-11-27 |
CN102812623B (zh) | 2014-09-17 |
JP5039171B2 (ja) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5039171B2 (ja) | 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置 | |
KR101260577B1 (ko) | 전동 파워 스티어링 장치, 및 제어 장치 일체형 전동기 | |
JP5970668B2 (ja) | 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置 | |
JP6056827B2 (ja) | 回転電機制御装置 | |
US9123693B2 (en) | Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus | |
JP5496357B2 (ja) | 電動パワーステアリング用モータ駆動制御装置 | |
JP6582568B2 (ja) | 駆動装置、および、これを用いた電動パワーステアリング装置 | |
KR101204624B1 (ko) | 제어 장치 일체형 전동 파워 스티어링 장치용 모터 및 전동 파워 스티어링 장치 | |
JP5619279B2 (ja) | 電動パワーステアリング装置 | |
WO2016117144A1 (ja) | 電動パワーステアリング用モータ駆動制御装置 | |
CN105322723A (zh) | 驱动单元和包括驱动单元的电动助力转向装置 | |
US8520394B2 (en) | Control device | |
JP4203055B2 (ja) | 電動式パワーステアリング装置 | |
WO2019012792A1 (ja) | 電動駆動装置及び電動パワーステアリング装置 | |
JP4981939B2 (ja) | 電動式駆動装置および電動式パワーステアリング装置 | |
US20160351479A1 (en) | Molded module | |
JP2011083065A (ja) | 駆動制御装置、およびモータユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065513.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10851432 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010851432 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13580284 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9336/CHENP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |