[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011039879A1 - Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures - Google Patents

Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures Download PDF

Info

Publication number
WO2011039879A1
WO2011039879A1 PCT/JP2009/067147 JP2009067147W WO2011039879A1 WO 2011039879 A1 WO2011039879 A1 WO 2011039879A1 JP 2009067147 W JP2009067147 W JP 2009067147W WO 2011039879 A1 WO2011039879 A1 WO 2011039879A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
fiber
epoxy resin
resin composition
Prior art date
Application number
PCT/JP2009/067147
Other languages
French (fr)
Japanese (ja)
Inventor
有 重成
裕之 佐藤
敬 原田
Original Assignee
株式会社Ihiエアロスペース
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihiエアロスペース, 株式会社Ihi filed Critical 株式会社Ihiエアロスペース
Priority to PCT/JP2009/067147 priority Critical patent/WO2011039879A1/en
Priority to JP2011513770A priority patent/JPWO2011040567A1/en
Priority to PCT/JP2010/067145 priority patent/WO2011040567A1/en
Publication of WO2011039879A1 publication Critical patent/WO2011039879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/44Resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the present invention relates to a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having improved impact absorption.
  • Fiber reinforced plastic As a substitute for metal parts, fiber-reinforced plastic materials are attracting attention. Fiber reinforced plastic has been developed for many years as a material for aircraft parts such as a fan case of a jet engine (for example, Patent Document 1).
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having excellent shock absorption. Is to provide.
  • the present inventors have suspended the above particles in a cured product in which an epoxy resin, a curing agent, and elastically deformable particles having a specific average particle diameter are mixed. It has been found that the above object can be achieved by being dispersed and held in a turbid state.
  • the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, (C) 0 to 80 parts by weight of a polyfunctional epoxy resin, (D 1) to 50 parts by weight of the curing agent and (E) elastically deformable particles having an average particle diameter of 0.01 to 0.5 ⁇ m with respect to 100 parts by weight of the total amount of the above (A) to (C).
  • a matrix resin composition for fiber-reinforced plastic in which the particles (D) are dispersed and held in a suspended state in the cured product containing the above (A) to (E).
  • the present invention is a fiber reinforced plastic structure using the matrix resin composition for fiber reinforced plastic.
  • the present invention is an aircraft engine part using the fiber reinforced plastic structure.
  • the matrix resin composition for fiber-reinforced plastics of the present invention particles having an epoxy resin, a curing agent, and a specific average particle diameter, a sufficiently low elastic modulus as compared with the epoxy resin, and being elastically deformable even in the epoxy resin Since the particles are dispersed and held in a suspended state in the cured product in which is mixed, high impact absorbability can be expressed. Since the fiber reinforced plastic structure of the present invention can exhibit high shock absorption, it can be suitably used for aircraft parts such as fan cases, fan blades, and fan frames of jet engines.
  • % such as yield represents a mass percentage unless otherwise specified.
  • the component (A) used in the present invention is a bisphenol epoxy resin.
  • the bisphenol-based epoxy resin include a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, a solid bisphenol A type epoxy resin having an epoxy equivalent of about 400 to 2500, an epoxy equivalent And a solid bisphenol F type epoxy resin having a viscosity of about 400 to 2500. These may be used alone or in combination of two or more. Among them, it is preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, and a mixture thereof.
  • the blending ratio of the component (A) bisphenol-based epoxy resin is 20 to 100 parts by weight, preferably 30 to 90 parts by weight, more preferably 40 to 40 parts by weight based on 100 parts by weight of the total of components (A) to (C). 80 parts by weight, more preferably 50 to 80 parts by weight.
  • Tg glass transition temperature
  • the blending ratio of component (A) is less than 20 parts by weight, the blending ratio of component (B) and component (C) increases, the viscosity of the mixture increases, and the flexibility of the precursor of the fiber reinforced plastic increases. Decreases, and workability at the time of stacking deteriorates, which is not preferable.
  • Component (B) used in the present invention is a modified epoxy resin.
  • the modified epoxy resin include a bifunctional epoxy resin having a naphthalene skeleton and a phenoxy resin having a hydroxyl group in the molecule.
  • the component (B) one or more of the modified epoxy resins can be used in combination.
  • the blending ratio of the component (B) modified epoxy resin is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 to 50 parts per 100 parts by weight of the total of components (A) to (C). Part by weight, more preferably 2 to 30 parts by weight.
  • the blending ratio of component (B) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
  • the blending ratio of the component (B) modified epoxy resin may be 0 parts by weight.
  • Component (C) used in the present invention is a polyfunctional epoxy resin.
  • the polyfunctional epoxy resin include triglycidylparaaminophenol, tetraglycidylaminomethane, and a novolac type epoxy resin.
  • the component (C) one or more polyfunctional epoxy resins can be used in combination.
  • the blending ratio of the polyfunctional epoxy resin of component (C) is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 parts per 100 parts by weight of the total of components (A) to (C). -50 parts by weight, more preferably 2-30 parts by weight.
  • the blending ratio of component (C) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
  • the blending ratio of the polyfunctional epoxy resin of component (C) may be 0 part by weight.
  • Component (D) used in the present invention is a curing agent.
  • the curing agent generally known amine curing agents, acid anhydride curing agents, phenol curing agents and the like can be used.
  • catalyst curing agents such as imidazole and boron trichloride-based amine complexes can be used.
  • an amine-based curing agent as the curing agent.
  • the curing agent of component (D) is a toughness imparting agent, benzenediamine, diaminodimethylmethane, methanephenylenediamine and the like can be used.
  • Component (D) can be used by mixing one or more of the above curing agents.
  • Component (D) curing agent is blended so as to have a blending ratio that completely reacts with components (A) to (C). Specifically, the curing agent of component (D) is blended so as to be equivalent to the epoxy groups contained in the epoxy resins of components (A) to (C) (equal molar ratio).
  • a small amount of salicylic acid, boron trifluoride ethylamine complex or the like may be added for adjusting the reaction rate during curing.
  • Component (E) is an elastically deformable particle having an average particle size of 0.01 to 0.5 ⁇ m, preferably 0.05 to 0.2 ⁇ m.
  • the average particle diameter of the elastically deformable particles of the component (E) is larger than 0.5 ⁇ m, the particles of the component (E) are dispersed in a cured state containing the components (A) to (E). It cannot be held.
  • the elastically deformable particles of the component (E) are dispersed and held in the cured products of the components (A) to (E) to mean the elastic deformation of the component (E).
  • the possible particles are dispersed and held in the cured product, completely phase-separated from the other components without being compatible with the other components (components (A) to (D)) constituting the cured product. Means that.
  • the component (E) is not particularly limited as long as it is an elastically deformable particle having the above average particle diameter, but is selected from the group consisting of polybutadiene rubber, styrene butadiene rubber, and butyl rubber. In addition, it is preferable to contain one or a mixture of two or more.
  • particles in which elastically deformable particles containing the rubber material as described above are dispersed in an epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin may be used.
  • the elastically deformable particles of component (E) may have a core-shell structure consisting of a core portion and a shell layer surrounding it.
  • the core portion contains at least one selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber
  • the shell layer contains vinyl chloride and / or acrylic resin. It is preferable that
  • the blending ratio of the elastically deformable particles of the component (E) is 1 to 50 parts by weight, preferably 2 to 30 parts by weight, more preferably 100 parts by weight of the total amount of the components (A) to (C). 2 to 25 parts by weight, particularly preferably 2 to 15 parts by weight.
  • a cured product cured product of matrix composition
  • the blending ratio of component (E) exceeds 50 parts by weight with respect to 100 parts by weight of the total amount of components (A) to (C), in the mixture containing components (A) to (E) Suspension and dispersibility are reduced.
  • the component (E) is used in which elastically deformable particles are dispersed in an epoxy resin or the like, the blending ratio of the elastically deformable particles is the total amount of the components (A) to (C).
  • the blending ratio of the epoxy resin in which the elastically deformable particles are dispersed may not be considered as long as it is within the above range with respect to 100 parts by weight.
  • the matrix resin composition for fiber-reinforced plastics of the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, and (C) a polyfunctional epoxy resin. 0 to 80 parts by weight, (D) a curing agent, and (E) 1 to 50 parts by weight of elastically deformable particles having an average particle diameter of 0.01 to 0.5 ⁇ m, and the above (A) to (E) Since the above (E) particles are dispersed and held in a suspended state in the cured product containing, high impact absorbability can be expressed.
  • the fiber reinforced plastic structure of the present invention uses the above matrix resin composition for fiber reinforced plastic.
  • a reinforcing fiber can be impregnated with the matrix resin composition and cured to obtain a structure made of a cured product of a specific form.
  • reinforcing fibers examples include glass fibers, carbon fibers, aramid fibers, alumina fibers, and boron fibers.
  • carbon fiber is preferably used because it has excellent properties of high strength and high elastic modulus while being lightweight.
  • the reinforcing fiber either a short fiber or a long fiber can be used.
  • long fibers for example, a length of 10 cm or more
  • short fibers for example, a length of 10 cm or less. Is preferably used.
  • any arrangement structure such as a single direction, two directions, and a random direction can be used, and a woven fabric and a knitted fabric of reinforcing fibers can also be used. In order to further improve the shock absorption, it is preferable to use a woven fabric of reinforcing fibers.
  • the fiber reinforced plastic structure of the present invention uses a matrix resin composition capable of exhibiting high impact absorption, an impact resistant part for aircraft, for example, as shown in FIG.
  • the present invention can be suitably used for fan cases, fan blades, fan frames, etc. of aircraft jet engines as shown.
  • the elastically deformable particles composed of the following rubber components were previously contained in the epoxy resin.
  • E-1 Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of styrene butadiene rubber particles (elastically deformable particles)
  • E-2 Bisphenol F type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
  • E-3 Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
  • Acid anhydride curing agent MHAC-P (Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) (manufactured by Hitachi Chemical Co., Ltd.)
  • Catalyst EHC-30 (Tertiary amine catalyst) (Adeka)
  • -Latent curing agent DY9577 (boron trichloride amine complex) (manufactured by HUNTSMAN)
  • -Latent curing agent 2E4MZ (2-ethyl-4-methylimidazole) (manufactured by Shikoku Chemicals)
  • Table 1 shows the product names and composition of the above components (A) to (E) and other components.
  • the matrix resin composition blended as shown in Table 1 was impregnated into carbon fiber trading card (registered trademark) T (800S-24K (manufactured by Toray Industries, Inc.) to a resin content of 36% by mass by a solvent method.
  • a precursor of reinforced plastic (FRP) was formed and quasi-isotropically laminated.
  • the pseudo-temporal isotropic lamination usually means a layer having a fiber orientation of 0 °, 90 °, 45 °, and ⁇ 45 ° with respect to a reference direction.
  • a pseudo-isotropic laminate of FRP precursors was cured in a 0.6 MPa autoclave at 100 ° C. for 2 hours, then at 120 ° C. for 1 hour, and finally at 180 ° C. for 6 hours to obtain a length of 200 mm ⁇ width of 150 mm X
  • An FRP flat plate having a thickness of 5 mm was obtained
  • Titanium bullets with a diameter of 10 mm x length of 12 mm are shot at a speed of 100 to 250 m / sec with a hunting gun on the surface of the FRP flat plate formed with the composition shown in Table 1, and the bullet velocity before and after penetration of the FRP flat plate was measured with a high-speed camera, and the rate of speed decrease before and after the collision was calculated by the following equation (1), and evaluated as impact absorbability.
  • the results are shown in Table 1.
  • Evaluation formula for impact resistance: Impact absorption rate (%) speed after impact penetration (m / second) / speed before impact (m / second) ⁇ 100 (1)
  • FRP flat plates using the matrix resin compositions of Examples 1 to 12 had a high impact absorption rate of 65% or more.
  • the impact absorptivity of the FRP flat plates of Comparative Examples 1 to 5 not containing the elastically deformable particles of the component (E) was 55% or less.
  • the FRP flat plates of Comparative Examples 1 and 2 using a matrix resin composition containing an amine curing agent have a relatively high impact absorption rate of 50% or more, whereas amine-based curing.
  • the impact absorption rates of Comparative Examples 3 to 5 using a curing agent other than the agent were as small as 32% or less.
  • the fiber reinforced plastic structure of the present invention is excellent in shock-absorbing property, so that safety can be ensured and the weight can be reduced.
  • an aircraft jet as shown in FIG. It can be suitably used for engine fan cases, fan blades, fan frames, and the like, and its industrial utility value is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided are: a matrix resin composition for fiber-reinforced plastics which can yield fiber-reinforced plastics having excellent shock-absorbing properties; and fiber-reinforced plastic structures. A matrix resin composition for fiber-reinforced plastics, which comprises 20 to 100 parts by weight of (A) a bisphenol-based epoxy resin, 0 to 80 parts by weight of (B) a modified epoxy resin, 0 to 80 parts by weight of (C) a polyfunctional epoxy resin, and (D) a curing agent, and further contains (E) elastically deformable particles having a mean particle diameter of 0.01 to 0.5μm in an amount of 1 to 50 parts by weight per 100 parts by weight of the total amount of the components (A) to (C), with the proviso that the elastically deformable particles (E) are such particles that can be dispersed and kept in a suspended state in a cured product prepared from the components (A) to (E).

Description

繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure
 本発明は、衝撃吸収性を向上させた繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体に関する。 The present invention relates to a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having improved impact absorption.
 従来、図1に示すような航空機用のジェットエンジンのファンケース等の耐衝撃用部品には、チタン合金等の金属材料が用いられていた。
 近年、燃料費の高騰等により、エンジン軽量化の要求が強まる傾向にある。
 しかし、安全性を必須とする航空機用の耐衝撃用部品において、金属部品の軽量化にはその特性のため限界がある。
Conventionally, a metal material such as a titanium alloy has been used for impact resistant parts such as a fan case of an aircraft jet engine as shown in FIG.
In recent years, the demand for engine weight reduction tends to increase due to soaring fuel costs.
However, in aircraft impact-resistant parts that require safety, there is a limit to the weight reduction of metal parts due to their characteristics.
 金属部品に代わる材料として、繊維強化プラスチック材料が着目されている。繊維強化プラスチックは、ジェットエンジンのファンケース等の航空部品の材料として長年に亘り開発されている(例えば特許文献1)。 As a substitute for metal parts, fiber-reinforced plastic materials are attracting attention. Fiber reinforced plastic has been developed for many years as a material for aircraft parts such as a fan case of a jet engine (for example, Patent Document 1).
特開2006-305867号公報JP 2006-305867 A
 近年、繊維強化プラスチックは、航空機体等の航空部品への適用が進んでいる。しかし、航空部品のうち、ジェットエンジン部品への適用は、耐衝撃性、耐熱性等の厳しい特性が要求されることから、繊維強化プラスチックの適用が限られているのが現状である。
 例えばファンケースには、単位重量当たりの耐衝撃性が要求されるが、従来の繊維強化プラスチックの単位重量当たりの耐衝撃性は、金属材料と同等かそれよりも劣っている。その結果、繊維強化プラスチック材料を用いても、金属材料を用いたファンケースと比較して、燃費向上に繋がるような軽量化には至っていない。
In recent years, application of fiber reinforced plastics to aviation parts such as aircraft bodies has been progressing. However, as for the application to jet engine parts among aviation parts, since severe characteristics such as impact resistance and heat resistance are required, the application of fiber reinforced plastics is currently limited.
For example, a fan case is required to have impact resistance per unit weight, but the impact resistance per unit weight of a conventional fiber reinforced plastic is equal to or inferior to that of a metal material. As a result, even if a fiber reinforced plastic material is used, it has not been reduced in weight so as to improve fuel efficiency as compared with a fan case using a metal material.
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、優れた衝撃吸収性を有する繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a matrix resin composition for fiber reinforced plastic and a fiber reinforced plastic structure having excellent shock absorption. Is to provide.
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、エポキシ樹脂、硬化剤、及び特定の平均粒子径を有する弾性変形可能な粒子を混合した硬化物中に、上記粒子が懸濁状態で分散保持されることにより、上記目的を達成し得ることを見出した。 As a result of intensive studies to achieve the above object, the present inventors have suspended the above particles in a cured product in which an epoxy resin, a curing agent, and elastically deformable particles having a specific average particle diameter are mixed. It has been found that the above object can be achieved by being dispersed and held in a turbid state.
 即ち、本発明は、(A)ビスフェノール系エポキシ樹脂を20~100重量部、(B)変性エポキシ樹脂を0~80重量部、(C)多官能型エポキシ樹脂を0~80重量部、(D)硬化剤、更に(E)平均粒子径が0.01~0.5μmの弾性変形可能な粒子を上記(A)~(C)の合計量100重量部に対して1~50重量部含有し、上記(A)~(E)を含有させた硬化物中に上記(D)粒子が懸濁状態で分散保持される繊維強化プラスチック用のマトリックス樹脂組成物である。 That is, the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, (C) 0 to 80 parts by weight of a polyfunctional epoxy resin, (D 1) to 50 parts by weight of the curing agent and (E) elastically deformable particles having an average particle diameter of 0.01 to 0.5 μm with respect to 100 parts by weight of the total amount of the above (A) to (C). A matrix resin composition for fiber-reinforced plastic in which the particles (D) are dispersed and held in a suspended state in the cured product containing the above (A) to (E).
 また、本発明は、上記繊維強化プラスチック用のマトリックス樹脂組成物を用いた繊維強化プラスチック構造体である。 Further, the present invention is a fiber reinforced plastic structure using the matrix resin composition for fiber reinforced plastic.
 更に、本発明は、上記繊維強化プラスチック構造体を用いた航空機エンジン部品である。 Furthermore, the present invention is an aircraft engine part using the fiber reinforced plastic structure.
 本発明の繊維強化プラスチック用のマトリックス樹脂組成物によれば、エポキシ樹脂、硬化剤及び特定の平均粒子径を有し、弾性率がエポキシ樹脂と比べて十分低く、エポキシ樹脂中でも弾性変形可能な粒子を混合した硬化物中に、上記粒子が懸濁状態で分散保持させるようにしたので、高い衝撃吸収性を発現することができる。
 本発明の繊維強化プラスチック構造体は、高い衝撃吸収性を発現することができるので、航空部品、例えばジェットエンジンのファンケース、ファンブレード、ファンフレームなどに好適に用いることができる。
According to the matrix resin composition for fiber-reinforced plastics of the present invention, particles having an epoxy resin, a curing agent, and a specific average particle diameter, a sufficiently low elastic modulus as compared with the epoxy resin, and being elastically deformable even in the epoxy resin Since the particles are dispersed and held in a suspended state in the cured product in which is mixed, high impact absorbability can be expressed.
Since the fiber reinforced plastic structure of the present invention can exhibit high shock absorption, it can be suitably used for aircraft parts such as fan cases, fan blades, and fan frames of jet engines.
本発明による航空機エンジン部品の一例であるファンケースの一部を切断して示す概略部分断面図である。It is a schematic fragmentary sectional view which cut and shows a part of fan case which is an example of the aircraft engine components by this invention.
 以下、本発明の繊維強化プラスチック用のマトリックス組成物を構成する成分(A)~(E)及びその他の任意成分について、以下に詳しく説明する。
 なお、本明細書において、収率などの「%」は、特記しない限り、質量百分率を表すものとする。
Hereinafter, components (A) to (E) and other optional components constituting the matrix composition for fiber-reinforced plastic of the present invention will be described in detail below.
In the present specification, “%” such as yield represents a mass percentage unless otherwise specified.
[成分(A)]
 本発明で用いられる成分(A)は、ビスフェノール系エポキシ樹脂である。
 ビスフェノール系エポキシ樹脂としては、例えばエポキシ当量が200以下のビスフェノールA型エポキシ樹脂、エポキシ当量が200以下のビスフェノールF型エポキシ樹脂、エポキシ当量が400~2500程度の固形のビスフェノールA型エポキシ樹脂、エポキシ当量が400~2500程度の固形のビスフェノールF型エポキシ樹脂などが挙げられる。これらは単独でも、2種以上を組み合わせて用いてもよい。
 中でも、エポキシ当量が200以下のビスフェノールA型エポキシ樹脂、エポキシ当量が200以下のビスフェノールF型エポキシ樹脂及びこれらの混合物を用いることが好ましい。
[Component (A)]
The component (A) used in the present invention is a bisphenol epoxy resin.
Examples of the bisphenol-based epoxy resin include a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, a solid bisphenol A type epoxy resin having an epoxy equivalent of about 400 to 2500, an epoxy equivalent And a solid bisphenol F type epoxy resin having a viscosity of about 400 to 2500. These may be used alone or in combination of two or more.
Among them, it is preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 200 or less, a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, and a mixture thereof.
 成分(A)のビスフェノール系エポキシ樹脂の配合割合としては、成分(A)~(C)の合計100重量部に対して20~100重量部、好ましくは30~90重量部、より好ましくは40~80重量部、更に好ましくは50~80重量部である。
 成分(A)の配合割合が90重量部を超えると、硬化樹脂の架橋密度が上昇し、耐熱特性の指標となるガラス転移温度(Tg)が上昇するものの、硬化樹脂の靱性が低下するので好ましくない。
 一方、成分(A)の配合割合が20重量部未満であると、成分(B)、成分(C)の配合割合が多くなり、混合物の粘度が上昇し、繊維強化プラスチックの前駆体の柔軟性が低下し、積層する際の作業性が悪くなるので好ましくない。
The blending ratio of the component (A) bisphenol-based epoxy resin is 20 to 100 parts by weight, preferably 30 to 90 parts by weight, more preferably 40 to 40 parts by weight based on 100 parts by weight of the total of components (A) to (C). 80 parts by weight, more preferably 50 to 80 parts by weight.
When the blending ratio of component (A) exceeds 90 parts by weight, the crosslink density of the cured resin is increased and the glass transition temperature (Tg), which is an index of heat resistance, is increased, but the toughness of the cured resin is decreased. Absent.
On the other hand, when the blending ratio of component (A) is less than 20 parts by weight, the blending ratio of component (B) and component (C) increases, the viscosity of the mixture increases, and the flexibility of the precursor of the fiber reinforced plastic increases. Decreases, and workability at the time of stacking deteriorates, which is not preferable.
[成分(B)]
 本発明で用いられる成分(B)は、変性エポキシ樹脂である。
 変性エポキシ樹脂としては、ナフタレン骨格を有する2官能型エポキシ樹脂、分子内に水酸基を有するフェノキシ樹脂等が挙げられる。
 成分(B)は、変性エポキシ樹脂を1種又は2種以上を混合して使用することができる。
[Component (B)]
Component (B) used in the present invention is a modified epoxy resin.
Examples of the modified epoxy resin include a bifunctional epoxy resin having a naphthalene skeleton and a phenoxy resin having a hydroxyl group in the molecule.
As the component (B), one or more of the modified epoxy resins can be used in combination.
 成分(B)の変性エポキシ樹脂の配合割合としては、成分(A)~(C)の合計100重量部に対して0~80重量部、好ましくは2~80重量部、より好ましくは2~50重量部、更に好ましくは2~30重量部である。
 成分(B)の配合割合が80重量部を超えると、硬化樹脂の架橋密度が上昇し、耐熱特性の指標となるガラス転移温度(Tg)が上昇するものの、硬化樹脂の靱性が低下するので好ましくない。
 なお、耐熱特性を考慮しない場合は、成分(B)の変性エポキシ樹脂の配合割合が0重量部であってもよい。
The blending ratio of the component (B) modified epoxy resin is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 to 50 parts per 100 parts by weight of the total of components (A) to (C). Part by weight, more preferably 2 to 30 parts by weight.
When the blending ratio of component (B) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
In the case where heat resistance characteristics are not taken into consideration, the blending ratio of the component (B) modified epoxy resin may be 0 parts by weight.
[成分(C)]
 本発明で用いられる成分(C)は、多官能型エポキシ樹脂である。
 多官能型エポキシ樹脂としては、3官能基、4官能基を有するエポキシ樹脂としては、トリグリシジルパラアミノフェノール、テトラグリシジルアミノメタン、ノボラック型のエポキシ樹脂等が挙げられる。
 成分(C)は、多官能型エポキシ樹脂を1種又は2種以上を混合して使用することができる。
[Component (C)]
Component (C) used in the present invention is a polyfunctional epoxy resin.
Examples of the polyfunctional epoxy resin include triglycidylparaaminophenol, tetraglycidylaminomethane, and a novolac type epoxy resin.
As the component (C), one or more polyfunctional epoxy resins can be used in combination.
 成分(C)の多官能型エポキシ樹脂の配合割合としては、成分(A)~(C)の合計100重量部に対して0~80重量部、好ましくは2~80重量部、より好ましくは2~50重量部、更に好ましくは2~30重量部である。
 成分(C)の配合割合が80重量部を超えると、硬化樹脂の架橋密度が上昇し、耐熱特性の指標となるガラス転移温度(Tg)が上昇するものの、硬化樹脂の靱性が低下するので好ましくない。
 なお、耐熱特性を考慮しない場合は、成分(C)の多官能型エポキシ樹脂の配合割合が0重量部であってもよい。
The blending ratio of the polyfunctional epoxy resin of component (C) is 0 to 80 parts by weight, preferably 2 to 80 parts by weight, more preferably 2 parts per 100 parts by weight of the total of components (A) to (C). -50 parts by weight, more preferably 2-30 parts by weight.
When the blending ratio of component (C) exceeds 80 parts by weight, it is preferable because the crosslink density of the cured resin increases and the glass transition temperature (Tg), which is an index of heat resistance, increases, but the toughness of the cured resin decreases. Absent.
When heat resistance characteristics are not taken into consideration, the blending ratio of the polyfunctional epoxy resin of component (C) may be 0 part by weight.
[成分(D)]
 本発明で用いられる成分(D)は、硬化剤である。
 硬化剤としては、一般に知られているアミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤等を使用することができる。その他にイミダゾール、三塩化ホウ素系アミン錯体等の触媒硬化剤等を使用することができる。
 中でも、アミン系硬化剤は、耐衝撃吸収性を向上させることができることが試験結果からわかっているので、硬化剤としては、アミン系硬化剤を用いることが好ましい。
 成分(D)の硬化剤が靱性付与剤である場合は、ベンゼンジアミン、ジアミノジメチルメタン、メタンフェニレンジアミン等を使用することができる。
 成分(D)は、上記硬化剤を1種又は2種以上を混合して使用することができる。
[Component (D)]
Component (D) used in the present invention is a curing agent.
As the curing agent, generally known amine curing agents, acid anhydride curing agents, phenol curing agents and the like can be used. In addition, catalyst curing agents such as imidazole and boron trichloride-based amine complexes can be used.
Especially, since it is known from the test results that the amine-based curing agent can improve the shock absorption, it is preferable to use an amine-based curing agent as the curing agent.
When the curing agent of component (D) is a toughness imparting agent, benzenediamine, diaminodimethylmethane, methanephenylenediamine and the like can be used.
Component (D) can be used by mixing one or more of the above curing agents.
 成分(D)の硬化剤は、成分(A)~(C)と完全に反応せしめる配合比となるように配合する。具体的には、成分(A)~(C)のエポキシ樹脂中に含まれるエポキシ基と当量(等モル比)となるように、成分(D)の硬化剤を配合する。 Component (D) curing agent is blended so as to have a blending ratio that completely reacts with components (A) to (C). Specifically, the curing agent of component (D) is blended so as to be equivalent to the epoxy groups contained in the epoxy resins of components (A) to (C) (equal molar ratio).
 上記成分(D)には、硬化時における反応速度調整のために、サリチル酸や三フッ化ホウ素エチルアミン錯体等を微量に添加してもよい。 In the above component (D), a small amount of salicylic acid, boron trifluoride ethylamine complex or the like may be added for adjusting the reaction rate during curing.
[成分(E)]
 成分(E)は、平均粒子径が0.01~0.5μm、好ましくは0.05~0.2μmの弾性変形可能な粒子である。
 成分(E)の弾性変形可能な粒子の平均粒子径が0.5μmより大きくなると、成分(A)~(E)を含有する硬化物中に、成分(E)の粒子を懸濁状態で分散保持させることができない。
 なお、本明細書において、成分(E)の弾性変形可能な粒子が、成分(A)~(E)の硬化物中に懸濁状態で分散保持されるとは、成分(E)の弾性変形可能な粒子が、硬化物を構成する他の成分(成分(A)~(D))と相溶することなく、完全に他の成分と相分離して、硬化物中に分散保持されていることを意味する。
[Ingredient (E)]
Component (E) is an elastically deformable particle having an average particle size of 0.01 to 0.5 μm, preferably 0.05 to 0.2 μm.
When the average particle diameter of the elastically deformable particles of the component (E) is larger than 0.5 μm, the particles of the component (E) are dispersed in a cured state containing the components (A) to (E). It cannot be held.
In the present specification, the elastically deformable particles of the component (E) are dispersed and held in the cured products of the components (A) to (E) to mean the elastic deformation of the component (E). The possible particles are dispersed and held in the cured product, completely phase-separated from the other components without being compatible with the other components (components (A) to (D)) constituting the cured product. Means that.
 成分(E)は、上記平均粒子径を有する弾性変形可能な粒子であれば、粒子を構成する材料は特に限定されるものではないが、ポリブタジエンゴム、スチレンブタジエンゴム、ブチルゴムから成る群より選ばれた1種又は2種以上を混合したものを含有するものであることが好ましい。
 成分(E)は、上記のようなゴム材料を含む弾性変形可能な粒子が、例えばビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂等のエポキシ樹脂に分散されているものを用いてもよい。
The component (E) is not particularly limited as long as it is an elastically deformable particle having the above average particle diameter, but is selected from the group consisting of polybutadiene rubber, styrene butadiene rubber, and butyl rubber. In addition, it is preferable to contain one or a mixture of two or more.
As the component (E), particles in which elastically deformable particles containing the rubber material as described above are dispersed in an epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin may be used.
 成分(E)の弾性変形可能な粒子は、コア部分とそれを囲むシェル層から成るコアシェル構造を有するものであってもよい。
 コアシェル構造を有する粒子を構成する材料としては、コア部分が、ポリブタジエンゴム、スチレンブタジエンゴム、ブチルゴムから成る群より選ばれた少なくとも1種を含有し、シェル層が塩化ビニル及び/又はアクリル樹脂を含有するものであることが好ましい。
The elastically deformable particles of component (E) may have a core-shell structure consisting of a core portion and a shell layer surrounding it.
As a material constituting the particles having a core-shell structure, the core portion contains at least one selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber, and the shell layer contains vinyl chloride and / or acrylic resin. It is preferable that
 成分(E)の弾性変形可能な粒子の配合割合は、成分(A)~(C)の合計量100重量部に対して、1~50重量部、好ましくは2~30重量部、より好ましくは2~25重量部、特に好ましくは2~15重量部である。
 成分(E)の粒子の配合割合が、成分(A)~(C)の合計量100重量部に対して、1重量部未満であると、衝撃負荷時に硬化物(マトリックス組成物の硬化物)に発生する亀裂の進展性を低減する効果が低下する。
 一方、成分(E)の配合割合が、成分(A)~(C)の合計量100重量部に対して、50重量部を超えると、成分(A)~(E)を含む混合物中での懸濁性及び分散性が低下する。
 なお、成分(E)として、弾性変形可能な粒子が、エポキシ樹脂等に分散されているものを用いる場合は、弾性変形可能な粒子の配合割合が、成分(A)~(C)の合計量100重量部に対して、上記範囲内であればよく、弾性変形可能な粒子が分散されているエポキシ樹脂の配合割合は考慮しなくてもよい。
The blending ratio of the elastically deformable particles of the component (E) is 1 to 50 parts by weight, preferably 2 to 30 parts by weight, more preferably 100 parts by weight of the total amount of the components (A) to (C). 2 to 25 parts by weight, particularly preferably 2 to 15 parts by weight.
When the blending ratio of the particles of component (E) is less than 1 part by weight with respect to 100 parts by weight of the total amount of components (A) to (C), a cured product (cured product of matrix composition) upon impact load This reduces the effect of reducing the progress of cracks that occur.
On the other hand, when the blending ratio of component (E) exceeds 50 parts by weight with respect to 100 parts by weight of the total amount of components (A) to (C), in the mixture containing components (A) to (E) Suspension and dispersibility are reduced.
When the component (E) is used in which elastically deformable particles are dispersed in an epoxy resin or the like, the blending ratio of the elastically deformable particles is the total amount of the components (A) to (C). The blending ratio of the epoxy resin in which the elastically deformable particles are dispersed may not be considered as long as it is within the above range with respect to 100 parts by weight.
 本発明の繊維強化プラスチック用のマトリックス樹脂組成物は、(A)ビスフェノール系エポキシ樹脂を20~100重量部、(B)変性エポキシ樹脂を0~80重量部、(C)多官能型エポキシ樹脂を0~80重量部、(D)硬化剤、更に(E)平均粒子径が0.01~0.5μmの弾性変形可能な粒子を1~50重量部含有し、上記(A)~(E)を含有させた硬化物中に上記(E)粒子が懸濁状態で分散保持されるため、高い衝撃吸収性を発現することができる。 The matrix resin composition for fiber-reinforced plastics of the present invention comprises (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin, (B) 0 to 80 parts by weight of a modified epoxy resin, and (C) a polyfunctional epoxy resin. 0 to 80 parts by weight, (D) a curing agent, and (E) 1 to 50 parts by weight of elastically deformable particles having an average particle diameter of 0.01 to 0.5 μm, and the above (A) to (E) Since the above (E) particles are dispersed and held in a suspended state in the cured product containing, high impact absorbability can be expressed.
 本発明の繊維強化プラスチック構造体は、上記繊維強化プラスチック用のマトリックス樹脂組成物を用いたものである。
 繊維強化プラスチック構造体の製造方法としては、強化繊維に上記マトリックス樹脂組成物を含浸し、硬化させて、特定の形態の硬化物からなる構造体を得ることができる。
The fiber reinforced plastic structure of the present invention uses the above matrix resin composition for fiber reinforced plastic.
As a method for producing a fiber-reinforced plastic structure, a reinforcing fiber can be impregnated with the matrix resin composition and cured to obtain a structure made of a cured product of a specific form.
 強化繊維としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維及びボロン繊維等が挙げられる。中でも、軽量でありながら、高強度、高弾性率であるという優れた特性を有するため、炭素繊維が好ましく用いられる。 Examples of reinforcing fibers include glass fibers, carbon fibers, aramid fibers, alumina fibers, and boron fibers. Among them, carbon fiber is preferably used because it has excellent properties of high strength and high elastic modulus while being lightweight.
 強化繊維としては、短繊維及び長繊維のいずれも用いることができる。機械的強度等の機械的特性を重視する場合には、長繊維(例えば10cm以上の長さ)を用いることが好ましく、成形性を重視する場合には、短繊維(例えば10cm以下の長さ)を用いることが好ましい。 As the reinforcing fiber, either a short fiber or a long fiber can be used. When placing importance on mechanical properties such as mechanical strength, it is preferable to use long fibers (for example, a length of 10 cm or more), and when placing importance on formability, short fibers (for example, a length of 10 cm or less). Is preferably used.
 強化繊維の配列構造としては、単一方向、二方向及びランダム方向等、いずれの配列構造のものでも用いることができ、強化繊維の織物及び編み物も用いることができる。
 耐衝撃吸収性をより向上させるためには、強化繊維の織物を用いることが好ましい。
As the arrangement structure of the reinforcing fibers, any arrangement structure such as a single direction, two directions, and a random direction can be used, and a woven fabric and a knitted fabric of reinforcing fibers can also be used.
In order to further improve the shock absorption, it is preferable to use a woven fabric of reinforcing fibers.
 本発明の繊維強化プラスチック構造体は、高い衝撃吸収性を発現することができるマトリックス樹脂組成物を用いているので、軽量化の要求が強まっている航空機用の耐衝撃用部品、例えば図1に示すような航空機用のジェットエンジンのファンケース、ファンブレード、ファンフレーム等に好適に用いることができる。 Since the fiber reinforced plastic structure of the present invention uses a matrix resin composition capable of exhibiting high impact absorption, an impact resistant part for aircraft, for example, as shown in FIG. The present invention can be suitably used for fan cases, fan blades, fan frames, etc. of aircraft jet engines as shown.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 成分(A)~(E)として、以下の材料を用意した。
[成分(A)]
(A-1)jer806;ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン社製)
(A-2)jer807;ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製)
(A-3)jer1001;ビスフェノールA型固形エポキシ樹脂(ジャパンエポキシレジン社製)
(A-4)jer4004P;ビスフェノールF型固形エポキシ樹脂(ジャパンエポキシレジン社製)
The following materials were prepared as components (A) to (E).
[Component (A)]
(A-1) jer806; bisphenol F type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
(A-2) jer807: Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
(A-3) jer1001; bisphenol A type solid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
(A-4) jer4004P; bisphenol F type solid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
[成分(B)]
(B)HP4032;ナフタレン骨格含有エポキシ樹脂(大日本インキ化学工業社製)
[Component (B)]
(B) HP4032; naphthalene skeleton-containing epoxy resin (Dainippon Ink Chemical Co., Ltd.)
[成分(C)]
(C)jer604;4官能基型エポキシ樹脂(ジャパンエポキシレジン社製)
[Component (C)]
(C) jer604; tetrafunctional epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
[成分(D)]
(D-1)jerW;アミン系硬化剤(ジャパンエポキシレジン社製)
 上記(D-1)硬化剤は、靱性付与剤としての機能する。
(D-2)EK150D;DDM(ジアミノジフェニルメタン)(ジャパンエポキシレジン社製)
[Component (D)]
(D-1) jerW: amine-based curing agent (manufactured by Japan Epoxy Resin Co., Ltd.)
The (D-1) curing agent functions as a toughness imparting agent.
(D-2) EK150D; DDM (diaminodiphenylmethane) (manufactured by Japan Epoxy Resin Co., Ltd.)
[成分(E)]
 実施例において、下記のゴム成分から成る弾性変形可能な粒子が、予めエポキシ樹脂に含まれているものを用いた。また、下記の(E-1)~(E-3)中に含まれる粒子は、全て平均粒子径が0.01~0.5μmであった。
(E-1)スチレンブタジエンゴム粒子(弾性変形可能な粒子)25wt%を配合したビスフェノールA型エポキシ樹脂(カネカ社製)
(E-2)ポリブタジエンゴム粒子(弾性変形可能な粒子)25wt%を配合したビスフェノールF型エポキシ樹脂(カネカ社製)
(E-3)ポリブタジエンゴム粒子(弾性変形可能な粒子)25wt%を配合したビスフェノールA型エポキシ樹脂(カネカ社製)
[Ingredient (E)]
In the examples, the elastically deformable particles composed of the following rubber components were previously contained in the epoxy resin. The particles contained in the following (E-1) to (E-3) all had an average particle diameter of 0.01 to 0.5 μm.
(E-1) Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of styrene butadiene rubber particles (elastically deformable particles)
(E-2) Bisphenol F type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
(E-3) Bisphenol A type epoxy resin (manufactured by Kaneka Corporation) containing 25 wt% of polybutadiene rubber particles (elastically deformable particles)
 比較例に用いた他の成分として、次の化合物を準備した。
・酸無水物硬化剤:MHAC-P(メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸)(日立化成工業社製)
・触媒:EHC-30(三級アミン触媒)(アデカ社製)
・潜在性硬化剤:DY9577(三塩化ホウ素アミン錯体)(HUNTSMAN社製)
・潜在性硬化剤:2E4MZ(2-エチル-4-メチルイミダゾール)(四国化成社製)
The following compounds were prepared as other components used in the comparative example.
Acid anhydride curing agent: MHAC-P (Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) (manufactured by Hitachi Chemical Co., Ltd.)
・ Catalyst: EHC-30 (Tertiary amine catalyst) (Adeka)
-Latent curing agent: DY9577 (boron trichloride amine complex) (manufactured by HUNTSMAN)
-Latent curing agent: 2E4MZ (2-ethyl-4-methylimidazole) (manufactured by Shikoku Chemicals)
 上記成分(A)~(E)及びその他の成分の製品名及び配合組成を表1に示す。
 表1のように配合したマトリックス樹脂組成物を、炭素繊維トレカ(登録商標)T(800S-24K(東レ社製)に、溶剤法により樹脂含有率36質量%になるように含浸させて、繊維強化プラスチック(FRP)の前駆体を形成し、これを疑似等方積層した。
 なお、擬時等方積層とは、通常、基準になる方向に対し繊維配向が0°、90°、45°、-45°の配向の層を有するものをいう。
 FRP前駆体を疑似等方積層したものを、0.6MPaのオートクレーブ中で、100℃で2時間、次に、120℃で1時間、最後に180℃で6時間硬化させ、縦200mm×横150mm×厚さ5mmのFRP平板を得た。
Table 1 shows the product names and composition of the above components (A) to (E) and other components.
The matrix resin composition blended as shown in Table 1 was impregnated into carbon fiber trading card (registered trademark) T (800S-24K (manufactured by Toray Industries, Inc.) to a resin content of 36% by mass by a solvent method. A precursor of reinforced plastic (FRP) was formed and quasi-isotropically laminated.
Incidentally, the pseudo-temporal isotropic lamination usually means a layer having a fiber orientation of 0 °, 90 °, 45 °, and −45 ° with respect to a reference direction.
A pseudo-isotropic laminate of FRP precursors was cured in a 0.6 MPa autoclave at 100 ° C. for 2 hours, then at 120 ° C. for 1 hour, and finally at 180 ° C. for 6 hours to obtain a length of 200 mm × width of 150 mm X An FRP flat plate having a thickness of 5 mm was obtained.
[評価方法]
 表1に示す配合組成で形成したFRP平板表面に、直径10mm×長さ12mmのチタン性弾丸を狩猟用銃で100~250m/秒の速度で撃ち込み、FRP平板の衝突前と貫通後の弾丸速度を、高速度カメラにより計測し、衝突前後の速度低下率を次式(1)により算出し、衝撃吸収性として評価した。結果を表1に示す。
耐衝撃吸収性の評価式:
衝撃吸収率(%)=衝突貫通後速度(m/秒)/衝突前速度(m/秒)×100・・・(1)
[Evaluation methods]
Titanium bullets with a diameter of 10 mm x length of 12 mm are shot at a speed of 100 to 250 m / sec with a hunting gun on the surface of the FRP flat plate formed with the composition shown in Table 1, and the bullet velocity before and after penetration of the FRP flat plate Was measured with a high-speed camera, and the rate of speed decrease before and after the collision was calculated by the following equation (1), and evaluated as impact absorbability. The results are shown in Table 1.
Evaluation formula for impact resistance:
Impact absorption rate (%) = speed after impact penetration (m / second) / speed before impact (m / second) × 100 (1)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、本実施例1~12のマトリックス樹脂組成物を用いたFRP平板は、65%以上の高い衝撃吸収率を有していた。
 これに対して、表2に示すように、成分(E)の弾性変形可能な粒子を含有していない比較例1~5のFRP平板の衝撃吸収率は55%以下であった。
 なお、比較例において、アミン系硬化剤を含むマトリックス樹脂組成物を用いた比較例1、比較例2のFRP平板は、衝撃吸収率が50%以上と比較的高いのに対して、アミン系硬化剤以外の硬化剤を用いた比較例3~5の衝撃吸収率は32%以下と小さかった。
As shown in Table 1, FRP flat plates using the matrix resin compositions of Examples 1 to 12 had a high impact absorption rate of 65% or more.
On the other hand, as shown in Table 2, the impact absorptivity of the FRP flat plates of Comparative Examples 1 to 5 not containing the elastically deformable particles of the component (E) was 55% or less.
In the comparative examples, the FRP flat plates of Comparative Examples 1 and 2 using a matrix resin composition containing an amine curing agent have a relatively high impact absorption rate of 50% or more, whereas amine-based curing. The impact absorption rates of Comparative Examples 3 to 5 using a curing agent other than the agent were as small as 32% or less.
 本発明の繊維強化プラスチック用のマトリックス樹脂組成物によれば、(A)ビスフェノール系エポキシ樹脂を20~100重量部、(B)変性エポキシ樹脂を0~80重量部、(C)多官能型エポキシ樹脂を0~80重量部、(D)硬化剤、更に(E)平均粒子径が0.01~0.5μmの弾性変形可能な粒子を1~50重量部含有し、上記(A)~(E)を含有させた硬化物中に上記(E)粒子が懸濁状態で分散保持させるようにしたので、高い衝撃吸収性を発現することができる。
 上記マトリックス樹脂組成物を用いた繊維強化プラスチック構造体は、単位重量当たりの耐衝撃吸収性が1.5倍と優れており、金属材料と比べて軽量化が可能である。
 このように本発明の繊維強化プラスチック構造体は、耐衝撃吸収性に優れているため安全性を確保することができ、しかも軽量化が可能であるので、例えば図1に示すような航空機のジェットエンジンのファンケース、ファンブレード、ファンフレーム等に好適に用いることができ、産業上の利用価値は極めて大きい。
According to the matrix resin composition for fiber-reinforced plastic of the present invention, (A) 20-100 parts by weight of bisphenol-based epoxy resin, (B) 0-80 parts by weight of modified epoxy resin, (C) polyfunctional epoxy Containing 0 to 80 parts by weight of resin, (D) a curing agent, and (E) 1 to 50 parts by weight of elastically deformable particles having an average particle size of 0.01 to 0.5 μm. Since the particles (E) are dispersed and held in a suspended state in the cured product containing E), high impact absorbability can be expressed.
The fiber reinforced plastic structure using the matrix resin composition has an impact resistance per unit weight that is 1.5 times as excellent, and can be reduced in weight compared to a metal material.
As described above, the fiber reinforced plastic structure of the present invention is excellent in shock-absorbing property, so that safety can be ensured and the weight can be reduced. For example, an aircraft jet as shown in FIG. It can be suitably used for engine fan cases, fan blades, fan frames, and the like, and its industrial utility value is extremely high.

Claims (8)

  1. (A)ビスフェノール系エポキシ樹脂を20~100重量部、
    (B)変性エポキシ樹脂を0~80重量部、
    (C)多官能型エポキシ樹脂を0~80重量部、
    (D)硬化剤、
    更に
    (E)平均粒子径が0.01~0.5μmの弾性変形可能な粒子を上記(A)~(C)の合計量100重量部に対して1~50重量部含有し、
    上記(A)~(E)を含有させた硬化物中に上記(E)粒子が懸濁状態で分散保持されることを特徴とする繊維強化プラスチック用のマトリックス樹脂組成物。
    (A) 20 to 100 parts by weight of a bisphenol-based epoxy resin,
    (B) 0 to 80 parts by weight of the modified epoxy resin,
    (C) 0 to 80 parts by weight of a polyfunctional epoxy resin,
    (D) a curing agent,
    Furthermore, (E) 1 to 50 parts by weight of elastically deformable particles having an average particle diameter of 0.01 to 0.5 μm are contained with respect to 100 parts by weight of the total amount of the above (A) to (C),
    A matrix resin composition for fiber-reinforced plastic, wherein the particles (E) are dispersed and held in a suspended state in a cured product containing the above (A) to (E).
  2.  上記(E)粒子がポリブタジエンゴム、スチレンブタジエンゴム、ブチルゴムから成る群より選ばれた少なくとも1種のものを含有することを特徴とする請求項1に記載の繊維強化プラスチック用のマトリックス樹脂組成物。 2. The matrix resin composition for fiber-reinforced plastics according to claim 1, wherein the (E) particles contain at least one selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber.
  3.  上記(E)粒子がコア部分とそれを囲むシェル層から成るコアシェル構造を有するものであり、上記コア部分がポリブタジエンゴム、スチレンブタジエンゴム、ブチルゴムから成る群より選ばれた少なくとも1種のものを含有し、上記シェル層が塩化ビニル樹脂及び/又はアクリル樹脂を含有することを特徴とする請求項1又は2に記載の繊維強化プラスチック用のマトリックス樹脂組成物。 The (E) particles have a core-shell structure consisting of a core portion and a shell layer surrounding the core portion, and the core portion contains at least one selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber The matrix resin composition for fiber reinforced plastics according to claim 1 or 2, wherein the shell layer contains a vinyl chloride resin and / or an acrylic resin.
  4.  上記(E)粒子を、上記(A)~(C)の合計量100重量部に対して、2~30重量部含有することを特徴とする請求項1~3のいずれか1つの項に記載の繊維強化プラスチック用のマトリックス樹脂組成物。 The particle (E) is contained in an amount of 2 to 30 parts by weight with respect to 100 parts by weight of the total amount of (A) to (C). Matrix resin composition for fiber reinforced plastics.
  5.  上記(D)硬化剤がアミン系硬化剤であることを特徴とする請求項1~4のいずれか1つの項に記載の繊維強化プラスチック用のマトリックス樹脂組成物。 The matrix resin composition for fiber-reinforced plastics according to any one of claims 1 to 4, wherein the (D) curing agent is an amine curing agent.
  6.  上記(D)硬化剤が靱性付与剤であることを特徴とする請求項1~5のいずれか1つの項に記載の繊維強化プラスチック用のマトリックス樹脂組成物。 The matrix resin composition for fiber-reinforced plastics according to any one of claims 1 to 5, wherein the (D) curing agent is a toughness imparting agent.
  7.  請求項1~6のいずれか1つの項に記載の繊維強化プラスチック用のマトリックス樹脂組成物を用いた繊維強化プラスチック構造体。 A fiber reinforced plastic structure using the matrix resin composition for fiber reinforced plastic according to any one of claims 1 to 6.
  8.  請求項7に記載の繊維強化プラスチック構造体を用いた航空機エンジン部品。 An aircraft engine part using the fiber-reinforced plastic structure according to claim 7.
PCT/JP2009/067147 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures WO2011039879A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
JP2011513770A JPWO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure
PCT/JP2010/067145 WO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures

Publications (1)

Publication Number Publication Date
WO2011039879A1 true WO2011039879A1 (en) 2011-04-07

Family

ID=43825733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
PCT/JP2010/067145 WO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067145 WO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure

Country Status (2)

Country Link
JP (1) JPWO2011040567A1 (en)
WO (2) WO2011039879A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP2015529273A (en) * 2012-09-26 2015-10-05 ヘクセル コンポジッツ、リミテッド Resin composition and composite structure containing resin
WO2018125692A1 (en) * 2016-12-29 2018-07-05 3M Innovative Properties Company Curable compositions
WO2019004457A1 (en) * 2017-06-29 2019-01-03 日立化成株式会社 Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package
WO2022138343A1 (en) * 2020-12-22 2022-06-30 旭化成株式会社 Epoxy resin composition, adhesive film, printed wiring board, semiconductor chip package, semiconductor device, and method for using adhesive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948784B2 (en) * 2011-10-13 2016-07-06 三菱レイヨン株式会社 Epoxy resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH09137044A (en) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd Epoxy resin composition
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567950B2 (en) * 1995-09-29 2004-09-22 日本ゼオン株式会社 Epoxy resin composition, prepreg and molded article using the same
JPH09157498A (en) * 1995-12-12 1997-06-17 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2004315572A (en) * 2003-04-11 2004-11-11 Kanegafuchi Chem Ind Co Ltd Method for producing epoxy resin composition
US7485680B2 (en) * 2003-09-18 2009-02-03 Kaneka Corporation Process for producing rubbery polymer particle and process for producing resin composition containing the same
JP2005255822A (en) * 2004-03-11 2005-09-22 Kaneka Corp Rubber-reinforced epoxy resin product
JP5544162B2 (en) * 2007-02-28 2014-07-09 株式会社カネカ Rubber-like polymer particle-dispersed thermosetting resin composition and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH09137044A (en) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd Epoxy resin composition
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
JP5737408B2 (en) * 2012-06-05 2015-06-17 三菱レイヨン株式会社 Tow prepreg and composite reinforced pressure vessel
US10233324B2 (en) 2012-06-05 2019-03-19 Mitsubishi Chemical Corporation Epoxy resin composition
JP2015529273A (en) * 2012-09-26 2015-10-05 ヘクセル コンポジッツ、リミテッド Resin composition and composite structure containing resin
WO2018125692A1 (en) * 2016-12-29 2018-07-05 3M Innovative Properties Company Curable compositions
WO2019004457A1 (en) * 2017-06-29 2019-01-03 日立化成株式会社 Resin composition for sealing, semiconductor package, and method for manufacturing semiconductor package
JPWO2019004457A1 (en) * 2017-06-29 2020-05-21 日立化成株式会社 Sealing resin composition, semiconductor package, and method for manufacturing semiconductor package
JP7231833B2 (en) 2017-06-29 2023-03-02 株式会社レゾナック Sealing resin composition, semiconductor package, and method for manufacturing semiconductor package
WO2022138343A1 (en) * 2020-12-22 2022-06-30 旭化成株式会社 Epoxy resin composition, adhesive film, printed wiring board, semiconductor chip package, semiconductor device, and method for using adhesive film

Also Published As

Publication number Publication date
WO2011040567A1 (en) 2011-04-07
JPWO2011040567A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2011039879A1 (en) Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
JP5672006B2 (en) Binder composition, reinforced fiber substrate, preform, fiber reinforced composite material and method for producing the same
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
CA2650563C (en) Epoxy resin composition for fiber-reinforced composite material
KR101819842B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
EP3712192B1 (en) Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor
KR20160127023A (en) Epoxy resin composition, resin cured product, fibre-reinforced composite material, and prepreg
US10253142B2 (en) Epoxy resin composition and fiber reinforced composite material
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
US12091479B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method thereof
JP6673474B2 (en) Prepreg and fiber reinforced composite materials
JP6156569B2 (en) Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
JP2013181112A (en) Binder composition, reinforcing fiber base material, preform, fiber-reinforced composite material and method for producing the same
JP2005298815A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP5252869B2 (en) Epoxy resin composition for fiber reinforced composite material and prepreg
EP1526152B1 (en) Composite material, its manufacturing method and its use
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JP2676390B2 (en) Epoxy resin composition
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
KR20230146005A (en) Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite materials, and method for producing fiber-reinforced composite materials
CN109808266B (en) Amorphous alloy composite bulletproof material and preparation method thereof
WO2021132464A1 (en) Prepreg, fiber-reinforced composite material, and method for manufacturing fiber-reinforced composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP