[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09137044A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH09137044A
JPH09137044A JP32252695A JP32252695A JPH09137044A JP H09137044 A JPH09137044 A JP H09137044A JP 32252695 A JP32252695 A JP 32252695A JP 32252695 A JP32252695 A JP 32252695A JP H09137044 A JPH09137044 A JP H09137044A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
viscosity
weight
poise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32252695A
Other languages
Japanese (ja)
Other versions
JP3631543B2 (en
Inventor
Kazuya Goto
和也 後藤
Kazutami Mitani
和民 三谷
Masahiro Sugimori
正裕 杉森
Tetsuya Yamamoto
哲也 山本
Shigeru Nishiyama
西山  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32252695A priority Critical patent/JP3631543B2/en
Publication of JPH09137044A publication Critical patent/JPH09137044A/en
Application granted granted Critical
Publication of JP3631543B2 publication Critical patent/JP3631543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition, having a temperature for stably maintaining a low viscosity for a long period, a small shrinking stress when cured, hardly causing cracking in a cured molding product and suitable for use as a matrix resin in the molding product according to especially a resin transfer molding (RTM) molding method. SOLUTION: This epoxy resin composition comprises 100 pts. by wt. bisphenol type epoxy resin, 50-250 pts. by wt. bifunctional epoxy resin having a naphthalene skeleton, 5-60 pts. by wt. cross-linked rubber fine particles having <=0.5μm particle diameter and a curing agent and is capable of maintaing <=10P viscosity for >=2hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主としてFRPま
たはコンポジットと呼ばれる繊維強化複合材料用のマト
リックス樹脂として使用するのに好適なエポキシ樹脂組
成物に関する。
TECHNICAL FIELD The present invention relates to an epoxy resin composition suitable for use as a matrix resin for a fiber-reinforced composite material mainly called FRP or composite.

【0002】[0002]

【従来の技術】硬化させたエポキシ樹脂形成体は、機械
的特性及び電気的特性に優れており、エポキシ樹脂を繊
維強化複合材料用のマトリックス樹脂として用いたFR
Pまたはコンポジットと呼ばれる成形体は、航空機から
釣竿やゴルフクラブ用のシャフトに至る迄の広範囲に亙
って利用されている。またエポキシ樹脂は接着特性等に
優れており、例えば電子材料用封止材、塗料、及び舗装
材料等としても使用されている。
2. Description of the Related Art A cured epoxy resin-formed product has excellent mechanical properties and electrical properties, and FR using the epoxy resin as a matrix resin for a fiber-reinforced composite material.
Molded products called P or composites are used in a wide range from aircraft to shafts for fishing rods and golf clubs. Further, the epoxy resin has excellent adhesive properties and the like, and is used, for example, as a sealing material for electronic materials, a paint, a paving material, and the like.

【0003】上記のFRP成形体の成形方法として、近
年レジントランスファーモウルディング法(RTM成形
法)が注目されている。このRTM成形法は、繊維強化
材としてのプリフォームを型内に装填した後、前記型内
に樹脂を注入、硬化させることによって目的の成形体を
得る方法であり、生産性が高く、しかも一般の積層方法
によっては得られない厚さ方向に補強された複合材料を
得ることができる点で優れている。
As a molding method of the above FRP molded body, a resin transfer molding method (RTM molding method) has recently attracted attention. This RTM molding method is a method of obtaining a target molded article by loading a preform as a fiber reinforcement into a mold, and then injecting and curing a resin into the mold, which has high productivity and is generally used. It is excellent in that a composite material reinforced in the thickness direction, which cannot be obtained by the above-mentioned lamination method, can be obtained.

【0004】上記のRTM成形法による成形体用のマト
リックス樹脂に要求される特性は、低粘度で長時間安定
であり、しかも硬化の際の収縮応力が小さくクラックが
硬化成形体に発生し難いことである。
The characteristics required for the matrix resin for the molded product by the above RTM molding method are that it has a low viscosity and is stable for a long time, and that the shrinkage stress at the time of curing is small and cracks are hard to occur in the cured molded product. Is.

【0005】ところで熱硬化性樹脂は、通常雰囲気温度
が上がると、初期の粘度は低下するが、粘度上昇速度が
速くなる。また、逆に雰囲気温度が下がると、粘度上昇
速度が遅くなって安定性を維持するが、粘度のレベルが
成形には不適当な程に上昇する。これに対して、上記の
RTM成形法による成形体のマトリックス樹脂は、10
ポイズ以下の粘度となり、しかも2時間以上10ポイズ
以下の粘度を保持していることが必要である。
By the way, in a thermosetting resin, when the atmospheric temperature rises, the initial viscosity decreases, but the viscosity increasing speed increases. On the contrary, when the atmospheric temperature decreases, the viscosity increasing rate slows down and the stability is maintained, but the viscosity level increases to an extent unsuitable for molding. On the other hand, the matrix resin of the molded body produced by the above RTM molding method is 10
It is necessary to have a viscosity of poise or less and to keep the viscosity of 10 poise or less for 2 hours or more.

【0006】また、上記のRTM成形法による成形体に
おけるクラックの発生は、樹脂の硬化時の収縮応力が大
きいことに起因するものである。この樹脂の硬化時の収
縮には、樹脂の反応に伴う反応収縮と、成形温度から室
温迄冷却するときに発生する熱収縮とがあり、更に熱収
縮には、ゴム状収縮と呼ばれる成形温度からガラス転移
温度(Tg)迄のゴム状態での収縮と、ガラス状収縮と
呼ばれるガラス転移温度から室温迄のガラス状態での収
縮とがある。そして上記のRTM成形法による成形体の
マトリックス樹脂には、これらの全ての硬化収縮に対し
て発生する応力、すなわち硬化収縮応力が小さいことが
必要である。
The occurrence of cracks in the molded product produced by the RTM molding method is due to the large shrinkage stress of the resin when it is cured. The shrinkage during curing of the resin includes reaction shrinkage accompanying the reaction of the resin and heat shrinkage that occurs when the temperature is cooled from the molding temperature to room temperature. There is a contraction in a rubber state up to a glass transition temperature (Tg) and a contraction in a glass state called a glassy contraction from a glass transition temperature to room temperature. The matrix resin of the molded body produced by the RTM molding method is required to have a small stress generated by all of these curing shrinkages, that is, a curing shrinkage stress.

【0007】上記の樹脂の硬化収縮応力を低減させる方
法として、樹脂組成物中に高分子量ポリマーや無機物を
配合するのが有効であるが、高分子ポリマーや無機物を
配合した樹脂組成物によっては、低粘度のものにするこ
とができない。このため、マトリックス樹脂としてエポ
キシ樹脂を使用するRTM成形法においては、通常のエ
ポキシ樹脂組成物を使用し、成形条件を種々工夫するこ
とによって樹脂の硬化収縮に伴うクラックの発生を抑え
ているのが現状である。
As a method for reducing the curing shrinkage stress of the above resin, it is effective to mix a high molecular weight polymer or an inorganic material in the resin composition. However, depending on the resin composition containing the high molecular polymer or the inorganic material, It cannot be of low viscosity. Therefore, in the RTM molding method using an epoxy resin as a matrix resin, it is possible to suppress the occurrence of cracks due to curing shrinkage of the resin by using an ordinary epoxy resin composition and devising various molding conditions. The current situation.

【0008】[0008]

【発明が解決しようとする課題】したがって本発明の目
的は、10ポイズ以下の低粘度を長時間の間安定して保
持しており、しかも硬化の際の収縮応力が小さく、硬化
成形体にクラックが発生し難いエポキシ樹脂組成物を提
供することであり、特にRTM成形法による成形体のマ
トリックス樹脂として使用するのに好適なエポキシ樹脂
組成物を提供することにある。
Therefore, an object of the present invention is to stably maintain a low viscosity of 10 poise or less for a long time, and to reduce the shrinkage stress at the time of curing, and to prevent the cured molded article from cracking. It is an object of the present invention to provide an epoxy resin composition that is less likely to generate, and particularly to provide an epoxy resin composition that is suitable for use as a matrix resin for a molded product by the RTM molding method.

【0009】[0009]

【課題を解決するための手段】上記の目的は、以下の構
成による本発明のエポキシ樹脂組成物によって達成され
る。すなわち本発明は、ビスフェノール型エポキシ樹脂
(A)100重量部、ナフタレン骨格を具備する2官能
エポキシ樹脂(B)50〜250重量部、粒径0.5μ
m以下の架橋ゴム微粒子(C)5〜60重量部、及び硬
化剤(D)からなり、しかも10ポイズ以下の粘度に2
時間以上保持することが可能なことを特徴とするエポキ
シ樹脂組成物にある。
The above object is achieved by the epoxy resin composition of the present invention having the following constitution. That is, according to the present invention, 100 parts by weight of a bisphenol type epoxy resin (A), 50 to 250 parts by weight of a bifunctional epoxy resin (B) having a naphthalene skeleton, and a particle size of 0.5 μm.
It is composed of 5 to 60 parts by weight of crosslinked rubber fine particles (C) of m or less and a curing agent (D), and has a viscosity of 10 poise or less.
The epoxy resin composition is characterized in that it can be held for a time or longer.

【0010】[0010]

【発明の実施の形態】上記の本発明のエポキシ樹脂組成
物において、ビスフェノール型エポキシ樹脂(A)は、
単独のビスフェノール型エポキシ樹脂であっても、ある
いは種類の相違するビスフェノール型エポキシ樹脂の混
合物であってもよく、このビスフェノール型エポキシ樹
脂(A)としては、エポキシ当量200以下のビスフェ
ノールF型のエポキシ樹脂やビスフェノールA型のエポ
キシ樹脂が好ましい。これらのエポキシ樹脂は単独で、
または2以上を混合して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the above-mentioned epoxy resin composition of the present invention, the bisphenol type epoxy resin (A) is
The bisphenol epoxy resin may be a single bisphenol epoxy resin or a mixture of different kinds of bisphenol epoxy resins. The bisphenol epoxy resin (A) may be a bisphenol F epoxy resin having an epoxy equivalent of 200 or less. A bisphenol A type epoxy resin is preferable. These epoxy resins alone,
Alternatively, two or more may be mixed and used.

【0011】ナフタレン骨格を具備するエポキシ樹脂
(B)としては、分子内にナフタレン骨格を具備する2
官能のエポキシ樹脂を使用する。なおナフタレン骨格を
具備する2官能エポキシ樹脂(B)としては、市販品で
あるエピクロンHP−4032「大日本インキ化学工業
(株) 製」を挙げることができる。
The epoxy resin (B) having a naphthalene skeleton has a naphthalene skeleton in its molecule.
A functional epoxy resin is used. As the bifunctional epoxy resin (B) having a naphthalene skeleton, a commercially available product, Epiclon HP-4032 "Dainippon Ink and Chemicals, Inc."
Co., Ltd. ”can be mentioned.

【0012】ビスフェノール型エポキシ樹脂(A)10
0重量部に対して、上記のナフタレン骨格を具備するエ
ポキシ樹脂(B)が50重量部未満になると、十分な耐
クラック性及び剛性のある成形体が得られなくなり、ま
た250重量部を超えると、成形体の靭性が低下するよ
うになる。このため、ナフタレン骨格を具備するエポキ
シ樹脂(B)は、ビスフェノール型エポキシ樹脂(A)
100重量部に対して50〜250重量部、好ましく7
5〜150重量部の範囲内で配合する。
Bisphenol type epoxy resin (A) 10
When the amount of the epoxy resin (B) having the naphthalene skeleton is less than 50 parts by weight with respect to 0 parts by weight, a molded product having sufficient crack resistance and rigidity cannot be obtained, and when it exceeds 250 parts by weight. As a result, the toughness of the molded product is reduced. Therefore, the epoxy resin (B) having a naphthalene skeleton is a bisphenol type epoxy resin (A).
50 to 250 parts by weight, preferably 7 to 100 parts by weight
It is mixed in the range of 5 to 150 parts by weight.

【0013】粒径0.5μm以下の架橋ゴム微粒子
(C)は、ゴムの種類に制限されるものではなく、例え
ばアクリルゴム、シリコンゴム、ブチルゴム、NBR、
SBR、IR、EPR等の架橋ゴム微粒子を使用するこ
とができ、含浸不良を避けるために粒径0.5μm以
下、好ましくは0.3μm以下のものを配合する。
The crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less are not limited to the kind of rubber, and include, for example, acrylic rubber, silicone rubber, butyl rubber, NBR,
Crosslinked rubber fine particles such as SBR, IR and EPR can be used, and those having a particle size of 0.5 μm or less, preferably 0.3 μm or less are blended in order to avoid defective impregnation.

【0014】ビスフェノール型エポキシ樹脂(A)10
0重量部に対して、上記の粒径0.5μm以下の架橋ゴ
ム微粒子(C)が5重量部未満になると、樹脂組成物の
低応力効果が小さくなり過ぎ、また60重量部を超える
と、樹脂組成物の粘度が高くなり過ぎて含浸性が低下す
る。このため、粒径0.5μm以下の架橋ゴム微粒子
(C)は、ビスフェノール型エポキシ樹脂(A)100
重量部に対して、5〜60重量部、好ましくは10〜5
0重量部の範囲内で配合する。
Bisphenol type epoxy resin (A) 10
When the amount of the crosslinked rubber fine particles (C) having a particle diameter of 0.5 μm or less is less than 5 parts by weight with respect to 0 parts by weight, the low stress effect of the resin composition becomes too small, and when it exceeds 60 parts by weight, The viscosity of the resin composition becomes too high and the impregnating property decreases. For this reason, the crosslinked rubber fine particles (C) having a particle diameter of 0.5 μm or less can be converted into the bisphenol type epoxy resin (A) 100.
5 to 60 parts by weight, preferably 10 to 5 parts by weight
It is compounded within the range of 0 parts by weight.

【0015】粒径0.5μm以下の架橋ゴム微粒子
(C)は、本発明のエポキシ樹脂組成物を調整する際
に、ビスフェノール型エポキシ樹脂(A)、ナフタレン
骨格を具備するエポキシ樹脂(B)、あるいはこれらの
混合樹脂中に配合してもよいが、ビスフェノール型エポ
キシ樹脂(A)中に予め粒径0.5μm以下の架橋ゴム
微粒子(C)を配合して市販されている樹脂組成物、例
えばBPA328「日本触媒(株) 製」、BPF307
「日本触媒 (株) 製」、BPA601「日本触媒 (株)
製」、架橋NBR変性エポキシ樹脂「日本合成ゴム
(株) 製」等を使用してもよい。
The crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less are used as the bisphenol type epoxy resin (A), the epoxy resin (B) having a naphthalene skeleton, when the epoxy resin composition of the present invention is prepared. Alternatively, it may be blended in these mixed resins, but a commercially available resin composition obtained by previously blending bisphenol type epoxy resin (A) with crosslinked rubber fine particles (C) having a particle size of 0.5 μm or less, for example, BPA328 "Nippon Shokubai Co., Ltd.", BPF307
"Nippon Shokubai Co., Ltd.", BPA601 "Nippon Shokubai Co., Ltd."
Made ", cross-linked NBR modified epoxy resin" Nippon Synthetic Rubber "
Co., Ltd. ”or the like may be used.

【0016】硬化剤(D)としての制限は特になく、例
えばアミン系、酸無水物系、フェノール系、アニオン重
合触媒系、カチオン重合触媒系等を使用することができ
る。
The curing agent (D) is not particularly limited and, for example, amine type, acid anhydride type, phenol type, anionic polymerization catalyst type, cationic polymerization catalyst type and the like can be used.

【0017】本発明のエポキシ樹脂組成物は、上記のビ
スフェノール型エポキシ樹脂(A)100重量部、ナフ
タレン骨格を具備する2官能エポキシ樹脂(B)50〜
250重量部、粒径0.5μm以下の架橋ゴム微粒子
(C)5〜60重量部、及び硬化剤(D)からなり、し
かも10ポイズ以下の粘度に2時間以上安定に保持する
ことが可能であり、より好ましくは5ポイズ以下の粘度
に2時間以上保持することが可能である。
The epoxy resin composition of the present invention comprises 100 parts by weight of the above bisphenol type epoxy resin (A) and 50 to 50 of the bifunctional epoxy resin (B) having a naphthalene skeleton.
It is composed of 250 parts by weight, 5 to 60 parts by weight of crosslinked rubber fine particles (C) having a particle diameter of 0.5 μm or less, and a curing agent (D), and can stably maintain a viscosity of 10 poise or less for 2 hours or more. It is possible to maintain the viscosity of 5 poise or less for 2 hours or more.

【0018】なお、エポキシ樹脂組成物が10ポイズ以
下の粘度に2時間以上保持することが可能か否かの基準
は、エポキシ樹脂組成物の2時間の等温粘度を、レオメ
トリックス製の測定装置RDA−700により、Dis
k Plate 25mmφ、Gap 0.5mm、R
ate 10rad/secの測定条件で測定したとき
のものである。
The criterion for determining whether or not the epoxy resin composition can be kept at a viscosity of 10 poise or less for 2 hours or more is to measure the isothermal viscosity of the epoxy resin composition for 2 hours by using a measuring device RDA manufactured by Rheometrics. -700, Dis
k Plate 25mmφ, Gap 0.5mm, R
ate 10 rad / sec.

【0019】[0019]

【実施例】以下、本発明のエポキシ樹脂組成物の具体的
な構成を説明し、該エポキシ樹脂組成物の特性につい
て、比較例のエポキシ樹脂組成物の特性と比較して説明
する。
EXAMPLES The concrete constitution of the epoxy resin composition of the present invention will be explained below, and the characteristics of the epoxy resin composition will be explained in comparison with the characteristics of the epoxy resin composition of the comparative example.

【0020】以下の実施例及び比較例で使用した各成分
は以下の通りである。 Ep828 :ビスフェノールA型エポキシ樹脂「油化シェル (株) 製」 HP−4032 :ナフタレン骨格を具備する2官能のエポキシ樹脂 「大日本インキ化学工業 (株) 製」 BPA328 :ビスフェノール型エポキシ樹脂100重量部中に粒径0. 3μmの架橋ゴム微粒子であるアクリルゴム微粒子20重 量部を分散配合させてあるエポキシ樹脂組成物 「日本触媒 (株) 製」 BPF307 :ビスフェノール型エポキシ樹脂100重量部中に粒径0. 3μmの架橋ゴム微粒子であるアクリルゴム微粒子20重 量部を分散配合させてあるエポキシ樹脂組成物 「日本触媒 (株) 製」 DDS :ジアミノジフェニルスルホン MNA :メチルナジック酸無水物 2E4MZ :4−エチル−2−メチルイミダゾール DCMU :ジクロロジメチルウレア Dicy :ジシアンジアミド アクリルゴム :粒径0.5μm以下の架橋ゴム微粒子
The components used in the following examples and comparative examples are as follows. Ep828: Bisphenol A type epoxy resin "Yukaka Shell Co., Ltd." HP-4032: Bifunctional epoxy resin having a naphthalene skeleton "Dainippon Ink and Chemicals Co., Ltd." BPA328: Bisphenol type epoxy resin 100 parts by weight Particle size of 0. Epoxy resin composition in which 20 parts by weight of acrylic rubber fine particles, which are 3 μm cross-linked rubber fine particles, are dispersed and blended “Nippon Shokubai Co., Ltd.” BPF307: 100 parts by weight of bisphenol type epoxy resin. Epoxy resin composition in which 20 parts by weight of acrylic rubber fine particles, which are 3 μm crosslinked rubber fine particles, are dispersed and blended “Nippon Shokubai Co., Ltd.” DDS: diaminodiphenylsulfone MNA: methylnadic acid anhydride 2E4MZ: 4-ethyl- 2-Methylimidazole DCMU: Dichlorodimethylurea Dicy: Dicyandiamide Acrylic rubber: Crosslinked rubber fine particles having a particle size of 0.5 μm or less

【0021】[実施例1〜11]、[比較例1〜5] 表1の所定欄に記載した各成分の配合物によるエポキシ
樹脂組成物を調製した。なお、表1中には配合組成物中
の各成分の重量部を記載した。
[Examples 1 to 11] and [Comparative Examples 1 to 5] Epoxy resin compositions were prepared by blending the components shown in the predetermined column of Table 1. In addition, in Table 1, the weight part of each component in a compounding composition is described.

【0022】[0022]

【表1】 [Table 1]

【0023】[実施例12〜19]表2の所定欄に記載
した各成分の配合物によるエポキシ樹脂組成物を調製し
た。なお、表2中には、配合組成物中の各成分の重量部
を記載した。
[Examples 12 to 19] Epoxy resin compositions were prepared by blending the components shown in the predetermined column of Table 2. In addition, in Table 2, the weight part of each component in a compounding composition is described.

【0024】[0024]

【表2】 [Table 2]

【0025】以上の各実施例、比較例で調製したエポキ
シ樹脂組成物について、表3、4に示した各種の測定、
評価を行った。その結果を一括して表3、表4に示し
た。測定方法、評価は次のように行った。
With respect to the epoxy resin compositions prepared in the above Examples and Comparative Examples, various measurements shown in Tables 3 and 4,
An evaluation was performed. The results are collectively shown in Tables 3 and 4. The measuring method and evaluation were performed as follows.

【0026】[樹脂組成物の粘度測定及び評価]エポキ
シ樹脂組成物の2時間の等温粘度を、レオメトリックス
製の測定装置RDA−700により、Disk Pla
te 25mmφ、Gap 0.5mm、Rate 1
0rad/secの測定条件によって測定し、粘度10
ポイズ以下になる温度に2時間保持し、2時間後におい
ても粘度が10ポイズ以下を保持している組成物を、表
3及び表4の粘度安定性の欄に○で表示し、10ポイズ
を超えたものを、同じく表3及び表4の粘度安定性の欄
に×で示した。
[Measurement and Evaluation of Viscosity of Resin Composition] The isothermal viscosity of the epoxy resin composition for 2 hours was measured by using a measuring device RDA-700 manufactured by Rheometrics to determine the density of Disk Pla.
te 25mmφ, Gap 0.5mm, Rate 1
The viscosity is 10 when measured under the measurement condition of 0 rad / sec.
A composition which is kept at a temperature of not higher than poise for 2 hours and has a viscosity of not higher than 10 poise even after 2 hours is indicated by ○ in the viscosity stability column of Tables 3 and 4, and 10 poises Those that exceeded were also indicated by x in the viscosity stability column of Tables 3 and 4.

【0027】これを具体例で示すと、ある組成の樹脂を
保持温度60℃、80℃、100℃及び120℃で等温
粘度を測定したところ下表の結果が得られたとする。こ
の樹脂組成においては80℃と100℃との間の温度で
2時間以上10ポイズ以下の粘度を保持できたことにな
る。このような温度を有する樹脂組成物を○とした。 保持温度 初期粘度 2時間保持後の粘度 60℃ >10ポイズ 測定せず 80℃ <10ポイズ <10ポイズ 100℃ <10ポイズ <10ポイズ 120℃ <10ポイズ >10ポイズ
As a concrete example, it is assumed that when the resin having a certain composition is subjected to the isothermal viscosity measurement at the holding temperatures of 60 ° C., 80 ° C., 100 ° C. and 120 ° C., the results shown in the following table are obtained. With this resin composition, it was possible to maintain a viscosity of 10 poise or less for 2 hours or more at a temperature between 80 ° C and 100 ° C. The resin composition having such a temperature was marked with “◯”. Holding temperature Initial viscosity Viscosity after holding for 2 hours 60 ° C.> 10 poise Not measured 80 ° C. <10 poise <10 poise 100 ° C. <10 poise <10 poise 120 ° C. <10 poise> 10 poise

【0028】また、別の樹脂組成の樹脂について同じ測
定をした場合下表のような結果を得たとする。このよう
な場合は60℃と80℃との間の温度に初期粘度と2時
間保持後の粘度が共に10ポイズ以下となることが考え
られるので、この間温度を更に細分して同様の測定をす
る。その結果ある温度においてさきの条件が満足されれ
ば○とする。 保持温度 初期粘度 2時間保持後の粘度 60℃ >10ポイズ 測定せず 80℃ <10ポイズ >10ポイズ 100℃ <10ポイズ >10ポイズ 120℃ <10ポイズ >10ポイズ 以上の操作を繰り返してもさきの条件が満足される温度
が見いだせなかった樹脂組成物は×とした。
Further, it is assumed that when the same measurement is carried out for resins having different resin compositions, the results shown in the following table are obtained. In such a case, it is considered that both the initial viscosity at a temperature between 60 ° C. and 80 ° C. and the viscosity after being held for 2 hours become 10 poises or less. Therefore, during this period, the temperature is further subdivided and the same measurement is performed. . If, as a result, the above conditions are satisfied at a certain temperature, it is marked with a circle. Holding temperature Initial viscosity Viscosity after holding for 2 hours 60 ° C.> 10 poise Not measured 80 ° C. <10 poise> 10 poise 100 ° C. <10 poise> 10 poise 120 ° C. <10 poise> 10 poise Repeat the above operation. The resin composition in which the temperature at which the above condition was satisfied could not be found was marked with x.

【0029】[Tgの測定及び結果]実施例及び比較例
のエポキシ樹脂組成物により、60mm(l)×12m
m(w)×2mm(t)のサンプル成形体を硬化成形し
た。硬化成形の硬化条件は、実施例1〜12、実施例1
5〜19、及び比較例1〜5のエポキシ樹脂組成物につ
いては、120℃×1時間+150℃×1時間+180
℃×2時間+200℃×3時間、実施例13のエポキシ
樹脂組成物については、120℃×1時間+150℃×
2時間+180℃×3時間、実施例14のエポキシ樹脂
組成物については、100℃×1時間+120℃×2時
間+150℃×3時間である。
[Measurement and Results of Tg] With the epoxy resin compositions of Examples and Comparative Examples, 60 mm (l) × 12 m
A sample molded body of m (w) × 2 mm (t) was cured and molded. The curing conditions for curing and molding are as follows: Examples 1 to 12, Example 1
5 to 19 and the epoxy resin compositions of Comparative Examples 1 to 5 are 120 ° C. × 1 hour + 150 ° C. × 1 hour + 180.
℃ × 2 hours + 200 ℃ × 3 hours, for the epoxy resin composition of Example 13, 120 ℃ × 1 hour + 150 ℃ ×
2 hours + 180 ° C. × 3 hours, for the epoxy resin composition of Example 14, 100 ° C. × 1 hour + 120 ° C. × 2 hours + 150 ° C. × 3 hours.

【0030】得られたサンプル成形体の温度−G’のカ
ーブを、レオメトリックス製の測定装置RDA−700
により、5℃/STEP 昇温、Rate 10rad
/sec の測定条件にて取得し、ガラス状態領域での
G’に引いた接線と、G’が大きく変化している転移領
域でG’に引いた接線との交点により、ガラス転移温度
(Tg)を求めた。結果を表3、4に示した。
The curve of temperature-G 'of the obtained sample molded body was measured by a measuring device RDA-700 manufactured by Rheometrics.
5 ° C / STEP temperature rise, Rate 10rad
The glass transition temperature (Tg) is obtained by the intersection of the tangent line drawn to G ′ in the glass state region and the tangent line drawn to G ′ in the transition region where G ′ changes greatly ) Was asked. The results are shown in Tables 3 and 4.

【0031】[曲げ強度、弾性率、伸度(3点曲げ)]
上記Tg測定の項と同様にエポキシ樹脂組成物を成形し
た60mm(l)×8mm(w)×2mm(t)の各サ
ンプル成形体を、オリエンテック製テンシロンによる3
点曲げ試験によって、L/D(=支点間距離/厚み):
16、圧子先端半径:3.2mm、CROSS HEA
D SPEED:2mm/min.の測定条件で測定し
て得られた、荷重−CROSS HEAD移重量曲線か
ら曲げ強度、弾性率、伸度を求めた。結果を表3及び表
4に示す。
[Bending strength, elastic modulus, elongation (three-point bending)]
Each sample molded body of 60 mm (l) x 8 mm (w) x 2 mm (t) obtained by molding the epoxy resin composition in the same manner as in the above Tg measurement was processed by Orientec Tensilon 3
L / D (= distance between fulcrums / thickness) by point bending test:
16, indenter tip radius: 3.2 mm, CROSS HEA
D SPEED: 2 mm / min. Bending strength, elastic modulus, and elongation were obtained from the load-CROSS HEAD transfer weight curve obtained by measuring under the measurement conditions of. The results are shown in Tables 3 and 4.

【0032】[FRP硬化成形体の断面(クラック、ボ
イド)評価]100mm×100mm×10mmの炭素
繊維プリフォームをプレス型に装填し、加熱して粘度1
0ポイズとした上記の各例のエポキシ樹脂組成物を含浸
させた後、5kg/cm2 のプレス形成に付し、FRP
サンプル成形体を得た。なお、炭素繊維プリフォームと
して、実施例4と実施例6のエポキシ樹脂組成物につい
ては三次元織物を、それ以外の実施例及び比較例のエポ
キシ樹脂組成物については平織ステッチ材を使用した。
[Evaluation of Cross Section (Crack, Void) of FRP Cured Molded Product] 100 mm × 100 mm × 10 mm carbon fiber preform was loaded into a press die and heated to have a viscosity of 1
After impregnating the epoxy resin composition of each of the above examples with 0 poise, it was subjected to press formation of 5 kg / cm 2 and then FRP.
A sample compact was obtained. As the carbon fiber preform, a three-dimensional woven fabric was used for the epoxy resin compositions of Examples 4 and 6, and a plain weave stitch material was used for the epoxy resin compositions of the other Examples and Comparative Examples.

【0033】このFRP硬化成形体の硬化条件は、実施
例1〜12、実施例15〜19、及び比較例1〜5のエ
ポキシ樹脂組成物については、120℃×1時間+15
0℃×1時間+180℃×2時間+200℃×3時間、
実施例13のエポキシ樹脂組成物については、120℃
×1時間+150℃×2時間+180℃×3時間、実施
例14のエポキシ樹脂組成物については、100℃×1
時間+120℃×2時間+150℃×3時間である。
The curing conditions for this FRP cured molded article are 120 ° C. × 1 hour + 15 for the epoxy resin compositions of Examples 1-12, Examples 15-19 and Comparative Examples 1-5.
0 ℃ × 1 hour + 180 ℃ × 2 hours + 200 ℃ × 3 hours,
120 ° C. for the epoxy resin composition of Example 13
× 1 hour + 150 ° C. × 2 hours + 180 ° C. × 3 hours, for the epoxy resin composition of Example 14, 100 ° C. × 1
Time + 120 ° C. × 2 hours + 150 ° C. × 3 hours.

【0034】得られたFRPサンプル成形体をカット研
磨した後の断面を顕微鏡で観察し、クラックとボイドの
発生の状況を観察した。その結果、クラックあるいはボ
イドの発生が全く無いものを○、少しみられたものを
△、やや多くみられたものを×により、表3及び表4に
示す。
The obtained FRP sample molded body was cut and polished, and its cross section was observed with a microscope to observe the state of occurrence of cracks and voids. The results are shown in Tables 3 and 4 by ∘ when no cracks or voids were generated, by Δ when slightly observed, and by x when slightly observed.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】以上の通り、実施例1〜実施例11のエポ
キシ樹脂組成物による硬化樹脂の物性は良好であり、ま
たプリフォームによる繊維強化材を使用したFRP成形
体にもクラックやボイドの発生は無かった。
As described above, the physical properties of the cured resins prepared from the epoxy resin compositions of Examples 1 to 11 are good, and cracks and voids are not generated in the FRP molded articles using the fiber reinforced preform. There was no

【0038】これに対して、比較例1のエポキシ樹脂組
成物によるFRP成形体には、クラックの発生が観察さ
れ、また比較例2のエポキシ樹脂組成物によるFRP成
形体には、クラックの発生が若干観察された。更に、比
較例3のエポキシ樹脂組成物は粘度安定性が悪く、該エ
ポキシ樹脂組成物によるFRP成形体にはボイドが発生
していた。また、比較例4のエポキシ樹脂組成物による
硬化成形体は、曲げ強度及び弾性率が極端に低く、比較
例5のエポキシ樹脂組成物による硬化成形体は伸度が低
く、FRP成形体にはクラックが発生していた。
On the other hand, cracks were observed in the FRP molded product of the epoxy resin composition of Comparative Example 1, and cracks were observed in the FRP molded product of the epoxy resin composition of Comparative Example 2. Some were observed. Furthermore, the epoxy resin composition of Comparative Example 3 had poor viscosity stability, and voids were generated in the FRP molded product made of the epoxy resin composition. Further, the cured molded article of the epoxy resin composition of Comparative Example 4 has extremely low bending strength and elastic modulus, the cured molded article of the epoxy resin composition of Comparative Example 5 has low elongation, and the FRP molded article has cracks. Was occurring.

【0039】実施例12〜19のエポキシ樹脂組成物に
よる硬化成形体の物性は、実施例1〜11のエポキシ樹
脂組成物によるものと同様に良好であり、またプリフォ
ームによる炭素繊維強化材を使用したFRP成形体にも
クラックやボイドの発生は無かった。
The physical properties of the cured moldings made from the epoxy resin compositions of Examples 12 to 19 are as good as those of the epoxy resin compositions of Examples 1 to 11, and the carbon fiber reinforced by preform is used. No crack or void was generated in the FRP molded product.

【0040】[0040]

【発明の効果】本発明のエポキシ樹脂組成物によれば、
諸物性に優れた硬化成形体に成形することができ、ま
た、繊維強化複合材料用のマトリックス樹脂として使用
することにより、成形時にクラックやボイドの発生が極
めて少ないFRP成形体に成形することができる。
According to the epoxy resin composition of the present invention,
It can be molded into a cured molded product having excellent physical properties, and when used as a matrix resin for a fiber-reinforced composite material, it can be molded into an FRP molded product with extremely few cracks and voids during molding. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉森 正裕 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 山本 哲也 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空・宇宙システム製 作所内 (72)発明者 西山 茂 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空・宇宙システム製 作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masahiro Sugimori Inventor, Masahiro Sugimori 4-chome, Sunadabashi, Higashi-ku, Aichi Prefecture Mitsubishi Rayon Co., Ltd. Product Development Laboratory (72) Inventor Tetsuya Yamamoto 10 Oe-cho, Minato-ku, Nagoya-shi, Aichi Address Mitsubishi Heavy Industries, Ltd.Nagoya Aerospace Systems Works (72) Inventor Shigeru Nishiyama 10 Oemachi, Minato-ku, Nagoya, Aichi Prefecture Mitsubishi Heavy Industries Nagoya Aviation & Space Systems Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ビスフェノール型エポキシ樹脂(A)1
00重量部、ナフタレン骨格を具備する2官能エポキシ
樹脂(B)50〜250重量部、粒径0.5μm以下の
架橋ゴム微粒子(C)5〜60重量部、及び硬化剤
(D)からなり、しかも10ポイズ以下の粘度に2時間
以上保持することが可能なことを特徴とするエポキシ樹
脂組成物。
1. A bisphenol type epoxy resin (A) 1
00 parts by weight, 50 to 250 parts by weight of a bifunctional epoxy resin (B) having a naphthalene skeleton, 5 to 60 parts by weight of crosslinked rubber fine particles (C) having a particle diameter of 0.5 μm or less, and a curing agent (D), Moreover, an epoxy resin composition characterized by being able to maintain a viscosity of 10 poise or less for 2 hours or more.
JP32252695A 1995-11-17 1995-11-17 Epoxy resin composition Expired - Lifetime JP3631543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32252695A JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32252695A JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH09137044A true JPH09137044A (en) 1997-05-27
JP3631543B2 JP3631543B2 (en) 2005-03-23

Family

ID=18144657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32252695A Expired - Lifetime JP3631543B2 (en) 1995-11-17 1995-11-17 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3631543B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620510B1 (en) 1998-12-25 2003-09-16 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
US6787606B1 (en) * 2001-07-02 2004-09-07 Henkel Corporation Electrochromic device with composition of epoxy resin, toughener and latent curative
GB2460050A (en) * 2008-05-14 2009-11-18 Hexcel Composites Ltd Epoxy composite
WO2011039879A1 (en) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
WO2014049028A3 (en) * 2012-09-26 2014-05-22 Hexcel Composites Limited Resin composition and composite structure containing resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620510B1 (en) 1998-12-25 2003-09-16 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
US6787606B1 (en) * 2001-07-02 2004-09-07 Henkel Corporation Electrochromic device with composition of epoxy resin, toughener and latent curative
GB2460050A (en) * 2008-05-14 2009-11-18 Hexcel Composites Ltd Epoxy composite
US20110049426A1 (en) * 2008-05-14 2011-03-03 Hexcel Composites, Ltd. Moulding processes
WO2011039879A1 (en) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
WO2011040567A1 (en) * 2009-10-01 2011-04-07 株式会社Ihi Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure
WO2014049028A3 (en) * 2012-09-26 2014-05-22 Hexcel Composites Limited Resin composition and composite structure containing resin
CN104684955A (en) * 2012-09-26 2015-06-03 赫克塞尔合成有限公司 Resin composition and composite structure containing resin
US9695312B2 (en) 2012-09-26 2017-07-04 Hexcel Composites Limited Resin composition and composite structure containing resin
RU2647850C2 (en) * 2012-09-26 2018-03-21 Хексел Композитс Лимитед Polymer composition and composite structure, which includes resin

Also Published As

Publication number Publication date
JP3631543B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP7552668B2 (en) Manufacturing method of sheet molding compound
US6242083B1 (en) Curable compositions
JPH09137043A (en) Epoxy resin composition
KR101542338B1 (en) Epoxy resin composition and fiber-reinforced composite material
JP5584047B2 (en) Benzoxazine resin composition and fiber reinforced composite material
ES2336476T3 (en) COMPOSITE MATERIAL.
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
CN110650989A (en) Molding material and fiber-reinforced composite material
US7230052B2 (en) Epoxy resin composition and fiber reinforced composite material using epoxy resin composition
JPH09137044A (en) Epoxy resin composition
WO2020050200A1 (en) Sheet molding compound and fiber-reinforced composite material
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP2003073456A (en) Epoxy resin composition and prepreg using the same composition
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPH0827360A (en) Epoxy resin composition and fiber-reinforced composite material
EP3956401B1 (en) High impact strength bismaleimide plastics
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2000191746A (en) Epoxy resin composition
JP3581204B2 (en) Epoxy resin prepreg and method for producing the same
JPH05305674A (en) Pultrusion material and molded product
KR20230146005A (en) Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite materials, and method for producing fiber-reinforced composite materials
JPH0526808B2 (en)
JPH02265918A (en) Resin composition for fibrous reinforcement
Brocks et al. Comparison between commercial and synthesized hyperbranched polyesters regarding fracture toughness of epoxy matrix

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term