WO2011036723A1 - 同期発電機 - Google Patents
同期発電機 Download PDFInfo
- Publication number
- WO2011036723A1 WO2011036723A1 PCT/JP2009/004866 JP2009004866W WO2011036723A1 WO 2011036723 A1 WO2011036723 A1 WO 2011036723A1 JP 2009004866 W JP2009004866 W JP 2009004866W WO 2011036723 A1 WO2011036723 A1 WO 2011036723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circumferential direction
- stator
- synchronous generator
- rotor
- radial direction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/22—Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
- H02K19/24—Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding
Definitions
- the present invention relates to a synchronous generator having a field winding on a stator.
- a permanent magnet type synchronous generator In a permanent magnet type synchronous generator, a rotor is generally provided with a permanent magnet, and a stator has an armature winding. A static magnetic field is formed by this permanent magnet.
- Such a permanent magnet type synchronous generator uses a lot of expensive neodymium permanent magnets, and is therefore expensive.
- a high-cost permanent magnet type synchronous generator there is one that uses a synchronous generator that excites a static magnetic field in the stator.
- a synchronous generator as disclosed in Patent Document 1 is known.
- stators of a synchronous generator that excites a static magnetic field have a protruding portion that protrudes radially inward on the inner peripheral surface of a ring-shaped member.
- the projecting portion is provided with a field winding for exciting a static magnetic field and an armature winding for generating an electromotive force.
- the rotor side often has a magnetic pole protruding in the radial direction on the outer peripheral surface of a ring made of a magnetic material.
- cogging torque When the rotor rotates, cogging torque may occur when the protrusions of the stator and the magnetic poles of the rotor intersect each other.
- vibration When the value of the cogging torque is increased, vibration such as noise is generated. This vibration is a factor that reduces power generation efficiency and the like.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce cogging torque generated when a synchronous generator that excites a static magnetic field generates power.
- a synchronous generator includes a plurality of projecting magnetic pole portions formed so as to project radially outward from an outer peripheral surface and are arranged at intervals in the circumferential direction.
- An inner ring member made of a body, the inner ring-shaped member being configured to rotate about an axis, and covering the rotor from the radially outer side and projecting radially inward from the inner peripheral surface.
- a stator core having an outer ring-shaped member in which a plurality of fixed protrusions that can face each of the protruding magnetic pole parts are arranged at intervals in the circumferential direction; An armature winding formed by winding a coil around each portion in the radial direction; and a stator that covers the stator from the outside in the radial direction and fixes the stator.
- the synchronous generator according to the present invention includes an inner ring made of a magnetic material in which a plurality of protruding magnetic pole portions formed so as to protrude radially outward from the outer peripheral surface are arranged at intervals in the circumferential direction.
- a rotor configured to rotate around its axis, and the inner ring-shaped member covering the rotor from the radially outer side and projecting from the inner peripheral surface toward the radially inner side to project each of the projecting magnetic poles
- a plurality of fixed protrusions that can be opposed to each of the respective parts, and a stator core having a static magnetic field formed by outer ring members arranged in the circumferential direction at intervals, and each of the fixed protrusions in a radial direction
- a stator having an armature winding formed by winding a coil around the housing, and a housing configured to cover the stator from the outside in a radial direction and fix the stator.
- FIG. 3 is a schematic front view showing a part of the stator and the rotor of the synchronous generator according to the first embodiment of the present invention linearly developed in the circumferential direction when viewed from the axial direction. It is a schematic perspective view which shows the state which expand
- FIG. 3 is a schematic perspective view showing a set of armature windings and field windings formed on a stator iron core formed on the stator of FIG. 2.
- FIG. 5 It is a schematic perspective view which shows a part of rotor of FIG. It is a front view which shows the example which generates a three-phase electromotive force with the synchronous generator of FIG. It is a schematic perspective view which shows a part of conventional rotor. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 5 is used. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 6 is used.
- FIG. 6 It is a schematic perspective view which shows a part of rotor of FIG. It is a front view which shows the example which generates a three-phase electromotive force with the synchronous generator of FIG. It is a schematic perspective view which shows a part of conventional rotor. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 5 is used. It is a
- FIG. 6 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a second embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction.
- FIG. 10 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a third embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction. It is a schematic perspective view which shows the synchronous generator which concerns on the 4th Embodiment of this invention.
- FIG. 1 is a schematic front view showing a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment as seen in the axial direction and linearly developed in the circumferential direction.
- FIG. 2 is a schematic perspective view showing a state where the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis.
- FIG. 3 is a schematic perspective view showing a state in which the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis, where (a) is the rotor 10 and (b) is the stator.
- FIG. 4 is a schematic perspective view showing a part of the rotor 10 of FIG.
- FIG. 5 is a front view showing an example of generating a three-phase electromotive force in the synchronous generator of FIG.
- FIG. 6 is a schematic perspective view showing a part of the conventional rotor 10.
- FIG. 7 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 5 is used.
- FIG. 8 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 6 is used.
- the synchronous generator includes a rotor 10 having a ring-shaped rotor core 16 that can rotate around a horizontal axis 70, and a stator that covers the rotor 10 from the outside in the radial direction. And a housing 30 for covering the stator 20 from the outside in the radial direction and fixing the stator 20.
- the rotor core 16 is a ring-shaped member made of a magnetic material such as a silicon steel plate and configured to be rotatable around a horizontal axis.
- a plurality of protruding magnetic pole portions 12 are formed on the outer peripheral surface of the rotor core 16 so as to protrude outward in the radial direction. These protruding magnetic pole portions 12 are arranged at intervals in the circumferential direction. The intervals between the protruding magnetic pole portions 12 are configured to be equal intervals.
- the protruding magnetic pole portion 12 will be described later.
- a rotating shaft (not shown) that rotates around a horizontal axis is arranged inside the rotor 10.
- the rotor 10 is fixed to the rotating shaft and rotates together with the rotating shaft.
- the stator 20 has a stator core 22, an armature winding 26 disposed on the stator core 22, and a field winding 25 disposed in the vicinity of the armature winding 26.
- the stator core 22 is a ring-shaped member made of a magnetic material such as a silicon steel plate, and is configured to cover the rotor 10 from the outside in the radial direction.
- a plurality of fixed projecting portions 24 projecting inward in the radial direction are formed on the inner peripheral surface of the stator core 22. These fixed projecting portions 24 are arranged at intervals in the circumferential direction, and can be opposed to the projecting magnetic pole portions 12 of the rotor 10.
- the central angle formed by each of the adjacent fixed protruding portions 24 and the shaft 70 is configured to be equal to the central angle formed by each of the adjacent protruding magnetic pole portions 12 and the shaft 70.
- the stator core 22 is configured to be divided for each fixed protrusion 24. That is, the stator core 22 includes a plurality of members including the fixed protrusions 24 shown in FIG. 3 arranged in the circumferential direction to form one ring.
- Each of these fixed protrusions 24 is provided with a field winding 25 formed by winding a coil around the protrusion direction (radial direction).
- a static magnetic field is formed in the stator 20 by passing a direct current through the field winding 25.
- a static magnetic field is formed such that the direction of the magnetic flux becomes the arrow A shown in FIG.
- the fixed protrusion 24 is provided with an armature winding 26 on the inner side in the radial direction than the field winding 25.
- the armature winding 26 is formed by winding a coil around the radial direction.
- the armature winding 26 is configured to generate an electromotive force or the like.
- the inner front end surface 29 facing the radially inner side of each of the fixed projecting portions 24 is disposed so as to maintain a predetermined distance in the radial direction from the outer front end surface 14 facing the radially outer side of each projecting magnetic pole portion 12. ing.
- stator 20 is fixed by the housing 30 as described above.
- each protruding magnetic pole portion 12 of the rotor 10 is formed such that the central portion in the circumferential direction protrudes radially outward from both ends in the circumferential direction.
- the outer front end surface 14 of the present embodiment is formed with a partial cylindrical surface in which the center in the circumferential direction protrudes in the radial direction from both ends in the circumferential direction.
- the center of curvature of the partial cylindrical surface is configured to be radially outside the rotation center of the rotor 10, that is, the shaft 70.
- ten fixed protrusions 24 arranged adjacent to each other in the circumferential direction constitute one fixed protrusion 24 group.
- it has three fixed protrusion parts 24 group, ie, the 1st fixed protrusion part group 41, the 2nd fixed protrusion part group 42, and the 3rd fixed protrusion part group 43.
- the first to third fixed projecting portion groups 41, 42, 43 are arranged at intervals in the circumferential direction.
- the first to third fixed protruding portion groups 41, 42, and 43 are arranged so that the circumferential interval is larger than the interval between the adjacent fixed protruding portions 24.
- the first to third fixed protrusion groups 41, 42, and 43 each generate a one-phase electromotive force, and the first to third fixed protrusion groups 41, 42, and 43 generate a three-phase electromotive force.
- the outer tip surfaces 14 of the projecting magnetic pole portions 12 correspond to the inner tip surfaces 29 of the fixed projecting portions 24, respectively. Move while crossing each other.
- the vicinity of the end of the outer front end surface 14 on the rotation direction overlaps one end of the inner front end surface 29 in the radial direction.
- the circumferential center portion of the outer tip surface 14 does not overlap the inner tip surface 29 in the radial direction.
- the outer front end face 14 moves to positions where the circumferential positions differ from each other with respect to the inner front end face 29. That is, the protruding magnetic pole portion 12 is in a state between the adjacent fixed protruding portions 24. After this, it moves so that it may approach the fixed protrusion part 24 which overlaps with a radial direction next.
- the armature voltage changes according to the distance between the outer front end surface 14 and the inner front end surface 29.
- the armature voltage changes as shown in FIG.
- the armature voltage is maximized when the outer tip surface 14 of the projecting magnetic pole portion 12 overlaps the inner tip surface 29 of the fixed projecting portion 24 in the radial direction.
- the armature voltage is minimized. This corresponds to the case where the portion 12 is between the adjacent fixed protrusions 24.
- the armature voltage changes as shown in FIG.
- the circumferential end of the outer tip surface 14 begins to overlap the inner tip surface 29, the distance between the outer tip surface 14 and the inner tip surface 29 decreases rapidly. For this reason, the waveform of the armature voltage has a steep slope near zero.
- the outer end surface 14 and the inner front end surface 29 are formed because the end in the circumferential direction is radially inward of the center in the circumferential direction of the outer end surface 14. When they start to overlap each other, it is possible to suppress the mutual distance from being rapidly reduced as compared with the comparative example.
- the waveform shown in FIG. 7 has a gentler slope near the armature voltage of zero than the waveform shown in FIG. 8, and FIG. 7 (the present embodiment) has a higher slope than the example of FIG.
- the waveform is close to a sine wave.
- the cogging torque of the synchronous generator can be suppressed by suppressing the rapid change in the armature voltage.
- the outer tip surface 14 of the projecting magnetic pole portion 12 of the rotor 10 is a partial cylindrical surface, so that the waveform of the armature voltage becomes close to a sine wave. As a result, the cogging torque of the synchronous generator can be suppressed.
- FIG. 9 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
- this embodiment is a modification of 1st Embodiment, Comprising: The same code
- a partially convex cylindrical surface is formed on the inner front end surface 29 of the fixed protrusion 24 formed on the stator 20 as in the first embodiment.
- the outer front end surface 14 is formed with a substantially flat surface.
- the cogging torque can be reduced as in the first embodiment.
- FIG. 10 shows the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
- this embodiment is a modification of 1st Embodiment, Comprising: The same code
- This embodiment is a combination of the features of the first embodiment and the features of the second embodiment. That is, a partially convex cylindrical surface is formed on each of the outer front end surface 14 and the inner front end surface 29.
- the cogging torque can be reduced as in the first and second embodiments.
- FIG. 11 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
- this embodiment is a modification of 1st Embodiment, Comprising: The same code
- the combination of the stator 20 and the rotor 10 shown in FIG. 2 described in the first embodiment is arranged in three layers in the axial direction, and the first generator layer 51 and the second generator layer 52 are arranged.
- the synchronous generator which has the 3rd generator layer 53 is comprised.
- Each layer is configured to generate an electromotive force corresponding to one phase and to generate a three-phase electromotive force in the first to third generator layers 51, 52, and 53.
- the features of the fourth embodiment may be combined with the features of the second embodiment or the features of the third embodiment.
- the static magnetic field is formed by providing the field winding 25 in the stator 20, it is not limited to this. For example, if it is a comparatively small thing, it is also possible to arrange
- the outer tip surface 14 and the inner tip surface 29 are partial cylindrical surfaces, but are not limited thereto.
- the circumferential ends may be chamfered.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
Abstract
Description
本発明に係る第1の実施形態について、図1~図8を用いて説明する。図1は、本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。図2は、図1の同期発電機の固定子20および回転子10等を回転軸方向に展開した状態を示す概略斜視図である。図3は、図1の同期発電機の固定子20および回転子10等を回転軸方向に展開した状態を示す概略斜視図であって、(a)は回転子10、(b)は固定子20、(c)はハウジング30、(d)は同期発電機が組み上がった状態を示している。図4は、図2の回転子10の一部を示す概略斜視図である。図5は、図2の同期発電機で、3相起電力を発生させる例を示す正面図である。
本発明に係る同期発電機の第2の実施形態について、図9を用いて説明する。図9は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
本発明に係る同期発電機の第3の実施形態について、図10を用いて説明する。図10は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
本発明に係る同期発電機の第4の実施形態について、図11を用いて説明する。図11は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
上記実施形態の説明は、本発明を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
Claims (9)
- 外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、
前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、
前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、
を有する同期発電機において、
前記各突出磁極部それぞれの半径方向外側に面する端面部の周方向中央部が、周方向両端よりも半径方向外側に突出するように形成されていること、
を特徴とする同期発電機。 - 前記各突出磁極部それぞれの端面部は、周方向両端よりも周方向中央部が突出するように形成された部分円筒面で、この部分円筒面の曲率中心が前記回転子の回転中心よりも半径方外側にあるように構成されていること、
を特徴とする請求項1に記載の同期発電機。 - 前記各突出磁極部それぞれの端面部は周方向両端が面取りされていること、を特徴とする請求項1に記載の同期発電機。
- 前記回転子は、軸方向に積層された複数の前記内側リング状部材を有し、
前記固定子は、前記各内側リング状部材それぞれと一対となり前記各突出磁極部それぞれと対向可能な複数の外側リング状部材を有すること、
を特徴とする請求項1ないし請求項3のいずれか一項に記載の同期発電機。 - 周方向に隣接する複数の前記固定突出部によって1つの固定突出部群が形成されて、
前記外側リング部材の内周面に、3つの前記固定突出部群が周方向に互いに間隔をあけて配列されて、周方向に隣接する前記固定突出部群同士の間隔は、前記各固定突出部群内の隣接する前記固定突出部同士の周方向間隔よりも大きくなるように形成されて、
3つの前記各固定突出部群それぞれが1相の起電力を発生させて、3群で3相起電力を発生させるように構成されていること、
を特徴とする請求項1ないし請求項4のいずれか一項の記載の同期発電機。 - 半径方向に互いに対向する一対の前記内側リング部材および外側リング部材によって形成されるリング部材対が、軸方向に3つ積層されて1組のリング部材群を構成し、
各リング部材対が1相の起電力を発生させて、1組のリング部材群で3相起電力を発生させるように構成されていること、
を特徴とする請求項1ないし請求項4のいずれか一項に記載の同期発電機。 - 前記固定突出部の半径方向内側に面する端面部の周方向中央部が、周方向端部両側よりも半径方向内側に突出するように形成されていること、
を特徴とする請求項1ないし請求項6のいずれか一項に記載の同期発電機。 - 外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、
前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、
前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、
を有する同期発電機において、
前記各固定突出部それぞれの半径方向内側に面する端面部の周方向中央部が、周方向両端よりも半径方向内側に突出するように形成されていること、
を特徴とする同期発電機。 - 前記各固定突出部それぞれには、前記電機子巻線の半径方向内側に界磁巻線が形成されていること、を特徴とする請求項1ないし請求項8のいずれか一項に記載の同期発電機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801616728A CN102577050A (zh) | 2009-09-25 | 2009-09-25 | 同步发电机 |
JP2011532805A JPWO2011036723A1 (ja) | 2009-09-25 | 2009-09-25 | 同期発電機 |
PCT/JP2009/004866 WO2011036723A1 (ja) | 2009-09-25 | 2009-09-25 | 同期発電機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/004866 WO2011036723A1 (ja) | 2009-09-25 | 2009-09-25 | 同期発電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036723A1 true WO2011036723A1 (ja) | 2011-03-31 |
Family
ID=43795496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004866 WO2011036723A1 (ja) | 2009-09-25 | 2009-09-25 | 同期発電機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2011036723A1 (ja) |
CN (1) | CN102577050A (ja) |
WO (1) | WO2011036723A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748772A (zh) * | 2011-08-11 | 2014-04-23 | 东芝三菱电机产业系统株式会社 | 旋转电机 |
JP7530117B2 (ja) | 2020-05-13 | 2024-08-07 | ザ トラスティーズ フォー ザ タイム ビーイング オブ ザ ケーエムエヌ フルフィルメント トラスト | 複数の固定子を備える発電機 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7205272B2 (ja) * | 2019-02-08 | 2023-01-17 | 株式会社デンソー | 電機子及び回転電機 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5395104U (ja) * | 1976-12-30 | 1978-08-03 | ||
JPS5885472U (ja) * | 1981-12-07 | 1983-06-09 | デンヨ−株式会社 | 複数の出力を有する溶接機 |
JPH089609A (ja) * | 1994-06-17 | 1996-01-12 | Osaka Seimitsu Denki Kosakusho:Kk | エンジン駆動アーク溶接機 |
JPH11262225A (ja) * | 1998-01-20 | 1999-09-24 | Switched Reluctance Drives Ltd | リラクタンス機械におけるノイズの低減 |
JP2001128426A (ja) * | 1999-10-28 | 2001-05-11 | Tamagawa Seiki Co Ltd | バリアブルリラクタンスシンクロ |
JP2007282323A (ja) * | 2006-04-04 | 2007-10-25 | Toyota Motor Corp | モータおよびそのモータの通電制御装置 |
-
2009
- 2009-09-25 CN CN2009801616728A patent/CN102577050A/zh active Pending
- 2009-09-25 JP JP2011532805A patent/JPWO2011036723A1/ja active Pending
- 2009-09-25 WO PCT/JP2009/004866 patent/WO2011036723A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5395104U (ja) * | 1976-12-30 | 1978-08-03 | ||
JPS5885472U (ja) * | 1981-12-07 | 1983-06-09 | デンヨ−株式会社 | 複数の出力を有する溶接機 |
JPH089609A (ja) * | 1994-06-17 | 1996-01-12 | Osaka Seimitsu Denki Kosakusho:Kk | エンジン駆動アーク溶接機 |
JPH11262225A (ja) * | 1998-01-20 | 1999-09-24 | Switched Reluctance Drives Ltd | リラクタンス機械におけるノイズの低減 |
JP2001128426A (ja) * | 1999-10-28 | 2001-05-11 | Tamagawa Seiki Co Ltd | バリアブルリラクタンスシンクロ |
JP2007282323A (ja) * | 2006-04-04 | 2007-10-25 | Toyota Motor Corp | モータおよびそのモータの通電制御装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748772A (zh) * | 2011-08-11 | 2014-04-23 | 东芝三菱电机产业系统株式会社 | 旋转电机 |
CN103748772B (zh) * | 2011-08-11 | 2016-06-08 | 东芝三菱电机产业系统株式会社 | 旋转电机 |
JP7530117B2 (ja) | 2020-05-13 | 2024-08-07 | ザ トラスティーズ フォー ザ タイム ビーイング オブ ザ ケーエムエヌ フルフィルメント トラスト | 複数の固定子を備える発電機 |
Also Published As
Publication number | Publication date |
---|---|
CN102577050A (zh) | 2012-07-11 |
JPWO2011036723A1 (ja) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013047076A1 (ja) | 回転電機 | |
JP5695748B2 (ja) | 回転電機 | |
JP2009033952A (ja) | 電動機 | |
JP6388066B2 (ja) | ブラシレスモータ | |
JP6406355B2 (ja) | ダブルステータ型回転機 | |
EP3352347B1 (en) | Permanent magnet (pm) brushless machine with outer rotor | |
JP2016538817A (ja) | 横磁束形電気機械 | |
JP2008312318A (ja) | 回転電機の回転子及び回転電機 | |
JP2018082600A (ja) | ダブルロータ型の回転電機 | |
JP5702118B2 (ja) | ロータの構造及びモータ | |
WO2011036723A1 (ja) | 同期発電機 | |
JP5441584B2 (ja) | 電動機 | |
US20160268859A1 (en) | Multi-pole, three-phase rotary electric machine | |
JP2005130689A (ja) | 回転電機 | |
JP6658707B2 (ja) | 回転電機 | |
JP5918760B2 (ja) | 回転電機 | |
WO2011101886A1 (ja) | 同期発電機 | |
JP2006025486A (ja) | 回転電機 | |
EP4329152A1 (en) | Rotor | |
WO2023281892A1 (ja) | モータ | |
EP4329153A1 (en) | Permanent magnet rotor with reduced torque ripple | |
WO2021149753A1 (ja) | 磁気ギアード回転電機、及びステータの製造方法 | |
JP5401753B2 (ja) | 回転電機 | |
WO2021019703A1 (ja) | 三相交流発電機 | |
JP5924913B2 (ja) | 発電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980161672.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09849754 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532805 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3617/CHENP/2012 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09849754 Country of ref document: EP Kind code of ref document: A1 |