WO2011032546A1 - Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente - Google Patents
Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente Download PDFInfo
- Publication number
- WO2011032546A1 WO2011032546A1 PCT/DE2010/001094 DE2010001094W WO2011032546A1 WO 2011032546 A1 WO2011032546 A1 WO 2011032546A1 DE 2010001094 W DE2010001094 W DE 2010001094W WO 2011032546 A1 WO2011032546 A1 WO 2011032546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- growth
- group iii
- iii nitride
- semiconductor layers
- wurtzitic
- Prior art date
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 33
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000010410 layer Substances 0.000 claims description 68
- 230000008569 process Effects 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical group [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 4
- 229910003460 diamond Chemical group 0.000 claims description 3
- 239000010432 diamond Chemical group 0.000 claims description 3
- 150000002831 nitrogen free-radicals Chemical class 0.000 claims description 3
- 238000001311 chemical methods and process Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 210000001654 germ layer Anatomy 0.000 claims description 2
- 238000005121 nitriding Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 abstract description 2
- 239000010980 sapphire Substances 0.000 abstract description 2
- 230000005693 optoelectronics Effects 0.000 abstract 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000001451 molecular beam epitaxy Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000002243 precursor Substances 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000035784 germination Effects 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000005701 quantum confined stark effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
Definitions
- the invention relates to semi-polar wurtzitic group III nitride based
- Group III nitride layers typically grow on substrates in the polar c-axis orientation.
- GaN grow polarization-reduced or non-polar.
- a planar polarization-reduced layer directly on silicon substrates without complex structuring.
- a polarization-reduced alignment of the group III nitride layer can be achieved by using a planar substrate with a zincblende or diamond structure and a (111) surface> 9 ° misoriented surface as recited in claim 1.
- Such surfaces exist z.
- silicon usually from a sequence of stable (1 1 1) surfaces alternating with (OOl) -like steps or surfaces.
- GaN with c-planar orientation grows on the (111) surfaces by suitable process control and is thus inclined to the surface by the corresponding angle. This succeeds particularly well with weak inclination, as for example with Si (21 1), since here the (11 1)
- Pretreatment of the substrate i. the creation of broad steps with (111) surfaces by treatment with physical or chemical processes, whereby the resulting (1 1 1) terraces have a threefold surface symmetry.
- Corresponding pretreatment allows for higher levels and thus wider (1 1 1) levels, where the group III nitride layer grows almost exclusively with c-axis orientation. You can do this, ideally, to the substrate
- Suitable temperatures be it in the MOVPE or better in the MBE. Accordingly, the statements also apply to growth on germanium at lower growth temperatures.
- Silicon surfaces which have a high proportion of Si (l 11) terraces, are suitable for this purpose. Important are, as described in claim 9, terraces with broad steps with (111) surfaces, the resulting (111) terraces having at least a width corresponding to two monolayers, ie that these terraces are not mere step edges, but is at least three adjacent surface atoms in a plane and thus the threefold symmetry of this surface is recognizable. Higher indicated areas, such. B. (411) and (511), but are also suitable depending on the growth temperature and pretreatment, since here also broader (111) surface sections can form and thus also suitable Ankeim consult are given. It turns out, however, that the growth becomes more difficult as the angle increases, because the crystallites twist and tilt more strongly due to the less well-oriented nucleation of the crystallites or the decreasing density of well-oriented nuclei.
- Figure 2 shows a possible surface arrangement schematically.
- possible steps (201) are to be seen, and in between the terraces of the (111) surfaces, which show either no (202) or (203) threefold symmetry of the surface atoms.
- the steps should be at least 0.3 nm or, according to claim 9, two monolayers wide.
- the growth of the Group III nitride layer is not monocrystalline or textured in one orientation, which is indispensable for a closed, high quality layer.
- the seed layer high Al-containing, such. A1N, AlGaN, AlInN or AlGalnN.
- the layer and the substrate destructive meltback etching
- the growth of the layer generally generally begins with a pretreatment of the substrate surface to clean it of organic residues and to deoxygenate it.
- a pretreatment of the substrate surface for this purpose, on the one hand there are wet-chemical methods or bake-out processes, the latter preferably being carried out in a high-purity chamber in the case of a group IV substrate, in order to prevent undesired contamination of the surface.
- Wet-chemical methods are often based on a targeted oxidation of the surface, for. B. with H 2 S0 4 , and subsequent removal of the oxide by means of HF.
- a hydrogen-terminated surface can be achieved which makes the desired step formation possible, since oxidized surfaces generally have no desired crystalline arrangement.
- the prepared substrate is then placed in the test chamber and brought to Bekeimung as quickly as possible to the seeding temperature.
- the growth of the germ layer begins
- Nitrogen precursor is stabilized, adjusting the growth temperature necessary for high-quality thicker layers and the growth of a
- Component buffer layer This is followed by the growth of the active or
- Carrier gas flow (H 2 or N 2 ) is baked out and thereby the surface is changed.
- the surface must be stabilized during such a process to prevent degradation, such.
- care must be taken, at least in MOVPE processes, that heating does not cause any desorption of deposits of the reactor.
- MOVPE reactor connected to the additional chamber for pretreatment, which ideally allows a transfer of the still hot substrate.
- nitridation of at least one monolayer of the surface of the substrate may be achieved by passing ammonia, a nitrogen releasing compound or nitrogen radicals before the beginning of the Group III nitride growth, as described in claim 10.
- ammonia a nitrogen releasing compound or nitrogen radicals
- III-V zinc blende substrates such.
- As GaAs by nitriding the upper substrate layers in the case of GaAs converted into GaN. Such processes are usually started by the introduction of ammonia or nitrogen radicals at temperatures> 350 ° C.
- the temperature is then typically further increased to the optimum temperature for Group III nitride growth and growth of the device layer begun.
- a single-crystal growth can be achieved even without forcing wide (11 1) terraces.
- the process can also be carried out with initial stabilization of the III-V semiconductor layer with the group V element, ie z.
- As an As precursor to GaAs are started and then converted by adding the nitrogen source this. This procedure also allows a higher
- the growth on silicon substrates in an MOVPE process is described below: After cleaning the substrate, it is placed in the test or coating chamber and ideally heated in a hydrogen atmosphere to about 680 ° C. Due to the hydrogen atmosphere, it is possible to stabilize a hydrogen-terminated by the preparation surface, which is beneficial for the seeding effect. Then, as a first step, the pre-flow of aluminum in the form of an aluminum precursor, such as trimethylaluminum, takes place for about 2 to 15 seconds. This step is followed by opening the nitrogen precursor, such as. B: ammonia, or z. B. very suitable at low temperatures, dimethyl hydrazine. At the same time, ideally the aluminum supply remains open.
- an aluminum precursor such as trimethylaluminum
- Layer thicknesses of 1 ⁇ advantageous to either introduce a biasing AlGaN layer in the lower buffer or to use LT-A1N intermediate layers.
- LT-A1N layers are more efficient here. With increasing tilt angle decreases due to the lower coefficient of thermal expansion perpendicular to the c-axis of the group III nitride layer from the tendency to crack, ie here also crack-free layer thicknesses without stress-reducing layers can be achieved, which are more than 1 ⁇ layer thickness.
- FIG. 1 shows by way of example in cross-section the possible interface of a group III nitride layer to a group IV substrate with (211) surface.
- This surface consists of (11 1) terraces and (001) steps.
- the (11) terraces are tilted by about 18 ° to the surface normals.
- Figure 2 shows schematically the top view of a tilted (1 1 1) surface, with only the (1 1 1) sections can be seen. Between the steps (201), terraces can be formed with (1 1 1) surfaces, which are either only one monolayer wide (202) or wider (203). On the narrow terrace (202) no threefold symmetry of the surface atoms can be seen; this occurs only on the broader one
- FIG. 3 shows a scanning electron micrograph of a GaN on Si (21 1) surface. The remaining craters can be improved by optimizing the
- the invention relates to all group III nitrides on zinc blende or group
- the designation of surfaces or directions with () for surfaces and [] for directions is intended to include all equivalent surfaces or directions, e.g. B. (11 1) and the (1 ⁇ ), ( ⁇ 1), (111), (1 ⁇ ), (H l), (1 11), (III) surfaces.
- it relates to all epitaxial manufacturing processes that are suitable for the preparation of Group III nitride layers. This often requires the
- the growth temperatures in the MBE are usually always a few hundred degrees below the MOVPE or HVPE process.
- Orientations for Si is a monocrystalline c-axis-oriented growth described in the literature and accordingly a tilted growth is not meaningful, since the possible low tilt angle is not worth mentioning
- FET field effect transistor
- HVPE Hydride Vapor Phase Epitaxy, hydride
- MBE Molecular Beam Epitaxy, Molecular Beam Epitaxy
- MEMS Micro Electromechnical Systems, Electromechanical
- MOVPE Metal organic vapor phase epitaxy, organometallic
- SAW Surface Acoustic Wave
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10776926A EP2478551A1 (de) | 2009-09-20 | 2010-09-16 | Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente |
JP2012530124A JP2013505590A (ja) | 2009-09-20 | 2010-09-16 | 半極性ウルツ鉱型iii族窒化物をベースとする半導体層、及び当該窒化物をベースとする半導体部材 |
US13/496,957 US20120217617A1 (en) | 2009-09-20 | 2010-09-16 | Semi-Polar Wurtzite Group III Nitride Based Semiconductor Layers and Semiconductor Components Based Thereon |
CN2010800526159A CN102668027A (zh) | 2009-09-20 | 2010-09-16 | 基于半极化纤锌矿型第iii族氮化物的半导体层和基于前者的半导体元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009042349A DE102009042349B4 (de) | 2009-09-20 | 2009-09-20 | Semipolare wurtzitische Gruppe-III-Nitrid basierte Halbleiterschichten und darauf basierende Halbleiterbauelemente |
DE102009042349.4 | 2009-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011032546A1 true WO2011032546A1 (de) | 2011-03-24 |
Family
ID=43480844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2010/001094 WO2011032546A1 (de) | 2009-09-20 | 2010-09-16 | Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120217617A1 (de) |
EP (1) | EP2478551A1 (de) |
JP (1) | JP2013505590A (de) |
KR (1) | KR20120083399A (de) |
CN (1) | CN102668027A (de) |
DE (1) | DE102009042349B4 (de) |
TW (1) | TW201126757A (de) |
WO (1) | WO2011032546A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040706A (zh) * | 2012-01-13 | 2014-09-10 | 应用材料公司 | 在基板上沉积iii-v族层的方法 |
DE102014102039A1 (de) * | 2014-02-18 | 2015-08-20 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Nitrid-Verbindungshalbleiterschicht |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9368582B2 (en) | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
US10916424B2 (en) * | 2017-12-05 | 2021-02-09 | King Abdullah University Of Science And Technology | Methods for forming graded wurtzite III-nitride alloy layers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5843227A (en) * | 1996-01-12 | 1998-12-01 | Nec Corporation | Crystal growth method for gallium nitride films |
EP1577933A2 (de) * | 2004-03-17 | 2005-09-21 | Sumitomo Electric Industries, Ltd. | Verfahren zur Herstellung eines einkristallinen GaN-Substrats und so hergestelltes einkristalline GaN-Substrat |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3500281B2 (ja) * | 1997-11-05 | 2004-02-23 | 株式会社東芝 | 窒化ガリウム系半導体素子およびその製造方法 |
JP2001093834A (ja) * | 1999-09-20 | 2001-04-06 | Sanyo Electric Co Ltd | 半導体素子および半導体ウエハならびにその製造方法 |
JP2007095858A (ja) * | 2005-09-28 | 2007-04-12 | Toshiba Ceramics Co Ltd | 化合物半導体デバイス用基板およびそれを用いた化合物半導体デバイス |
JP2008021889A (ja) * | 2006-07-14 | 2008-01-31 | Covalent Materials Corp | 窒化物半導体単結晶 |
US20080296626A1 (en) * | 2007-05-30 | 2008-12-04 | Benjamin Haskell | Nitride substrates, thin films, heterostructures and devices for enhanced performance, and methods of making the same |
-
2009
- 2009-09-20 DE DE102009042349A patent/DE102009042349B4/de not_active Expired - Fee Related
-
2010
- 2010-09-16 US US13/496,957 patent/US20120217617A1/en not_active Abandoned
- 2010-09-16 EP EP10776926A patent/EP2478551A1/de not_active Withdrawn
- 2010-09-16 KR KR1020127009222A patent/KR20120083399A/ko not_active Application Discontinuation
- 2010-09-16 WO PCT/DE2010/001094 patent/WO2011032546A1/de active Application Filing
- 2010-09-16 JP JP2012530124A patent/JP2013505590A/ja active Pending
- 2010-09-16 CN CN2010800526159A patent/CN102668027A/zh active Pending
- 2010-09-20 TW TW099131883A patent/TW201126757A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5843227A (en) * | 1996-01-12 | 1998-12-01 | Nec Corporation | Crystal growth method for gallium nitride films |
EP1577933A2 (de) * | 2004-03-17 | 2005-09-21 | Sumitomo Electric Industries, Ltd. | Verfahren zur Herstellung eines einkristallinen GaN-Substrats und so hergestelltes einkristalline GaN-Substrat |
Non-Patent Citations (5)
Title |
---|
ABE Y ET AL: "Semipolar nitrides grown on Si(001) offcut substrates with 3C-SiC buffer layers", MATERIALS SCIENCE FORUM TRANS TECH PUBLICATIONS LTD. SWITZERLAND, vol. 600-603, 26 September 2008 (2008-09-26), pages 1281 - 1284, XP009143825, ISSN: 0255-5476 * |
B. M. YANG; H.S. AHN; T. TANIKAWA; Y. HONDA; M. YAMAGUCHI; N. SAWAKI, J. CRYST. GROWTH, vol. 311, 2009, pages 2914 |
F. SCHULZE; J. BLÄSING; A. DADGAR; A. KROST, APPL. PHYS. LETT., vol. 84, 2004, pages 4747 |
SCHULZE F ET AL: "Influence of buffer layers on metalorganic vapor phase epitaxy grown GaN on Si(001)", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 84, no. 23, 7 June 2004 (2004-06-07), pages 4747 - 4749, XP012061725, ISSN: 0003-6951, DOI: DOI:10.1063/1.1760214 * |
T. TANIKAWA; D. RUOLPH; T. HIKOSADA; Y. HONDA; M. YAMAGUCHI; N. SAWAKI, J. CRYST. GROWTH, vol. 310, 2009, pages 4999 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040706A (zh) * | 2012-01-13 | 2014-09-10 | 应用材料公司 | 在基板上沉积iii-v族层的方法 |
DE102014102039A1 (de) * | 2014-02-18 | 2015-08-20 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Nitrid-Verbindungshalbleiterschicht |
US9786498B2 (en) | 2014-02-18 | 2017-10-10 | Osram Opto Semiconductors Gmbh | Method for the production of a nitride compound semiconductor layer |
Also Published As
Publication number | Publication date |
---|---|
US20120217617A1 (en) | 2012-08-30 |
DE102009042349A1 (de) | 2011-03-31 |
CN102668027A (zh) | 2012-09-12 |
JP2013505590A (ja) | 2013-02-14 |
EP2478551A1 (de) | 2012-07-25 |
KR20120083399A (ko) | 2012-07-25 |
TW201126757A (en) | 2011-08-01 |
DE102009042349B4 (de) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1908099B1 (de) | Halbleitersubstrat sowie verfahren und maskenschicht zur herstellung eines freistehenden halbleitersubstrats mittels der hydrid-gasphasenepitaxie | |
DE10392313B4 (de) | Auf Galliumnitrid basierende Vorrichtungen und Herstellungsverfahren | |
US7674699B2 (en) | III group nitride semiconductor substrate, substrate for group III nitride semiconductor device, and fabrication methods thereof | |
EP2815004B1 (de) | Verfahren zur herstellung von iii-n-einkristallen, und iii-n-einkristall | |
DE112006001847B4 (de) | Ausrichtung von Laserdioden auf fehlgeschnittenen Substraten | |
EP2414567A1 (de) | Semipolarer halbleiterkristall und verfahren zur herstellung desselben | |
JP4860736B2 (ja) | 半導体構造物及びそれを製造する方法 | |
DE10196361B4 (de) | Verfahren zur Herstellung eines Gruppe-III-Nitrid-Halbleiterkristalls | |
DE10151092B4 (de) | Verfahren zur Herstellung von planaren und rißfreien Gruppe-III-Nitrid-basierten Lichtemitterstrukturen auf Silizium Substrat | |
EP2478551A1 (de) | Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente | |
DE60303014T2 (de) | Zwischenprodukt für die Herstellung von optischen, elektronischen oder optoelektronischen Komponenten | |
DE102012204553B4 (de) | Verfahren zur Herstellung eines Templats, so hergestelltes Templat, dessen Verwendung, Verfahren zur Herstellung von III-N-Einkristallen, Verfahren zur Herstellung von III-N-Kristallwafern, deren Verwendung und Verwendung von Maskenmaterialien | |
DE102011011043B4 (de) | Halbleiterschichtsystem mit einem semipolaren oder m-planaren Gruppe-III-Nitrid Schichtsystem und ein darauf basierendes Halbleiterbauelement | |
KR101145595B1 (ko) | 질화물계 화합물 반도체의 성장방법 | |
DE102012204551A1 (de) | Verfahren zur Herstellung von III-N-Einkristallen, und III-N-Einkristall | |
RU2750295C1 (ru) | Способ изготовления гетероэпитаксиальных слоев III-N соединений на монокристаллическом кремнии со слоем 3C-SiC | |
WO2001077421A1 (de) | Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien | |
DE10238135B4 (de) | Verfahren zur Herstellung von Gruppe-II-Oxid Schichten mit der Gasphasenepitaxie, Gruppe-II-Oxid Schicht und Gruppe-II-Oxid Halbleiterbauelement | |
DE10206750A1 (de) | Verfahren zum Herstellen von III-V-Laserbauelementen | |
DE10319972B4 (de) | Verfahren zur Herstellung einer epitaktischen ZnO-Schicht | |
DE20122426U1 (de) | Gruppe-III-Nitrid-basierte Lichtemitterstruktur auf Silizium Substrat | |
Kwon et al. | The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si (111) Substrate with an Ultrathin Al Layer | |
DE10321305A1 (de) | Verfahren zur Herstellung von hoch leitfähigen, rissfreien, GaN-basierten Pufferschichten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080052615.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10776926 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2010776926 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010776926 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012530124 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127009222 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13496957 Country of ref document: US |