[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011030598A1 - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
WO2011030598A1
WO2011030598A1 PCT/JP2010/060599 JP2010060599W WO2011030598A1 WO 2011030598 A1 WO2011030598 A1 WO 2011030598A1 JP 2010060599 W JP2010060599 W JP 2010060599W WO 2011030598 A1 WO2011030598 A1 WO 2011030598A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
transparent electrode
film
layer
substrate
Prior art date
Application number
PCT/JP2010/060599
Other languages
English (en)
French (fr)
Inventor
山口 賢剛
山下 信樹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP10815196A priority Critical patent/EP2477233A1/en
Priority to US13/264,277 priority patent/US20120040494A1/en
Priority to CN2010800185065A priority patent/CN102414842A/zh
Publication of WO2011030598A1 publication Critical patent/WO2011030598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • H01L31/022483
    • H01L31/1884
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device, and particularly to a method for manufacturing a thin film solar cell in which a power generation layer is formed by film formation.
  • a photoelectric conversion device used for a solar cell that converts sunlight energy into electric energy As a photoelectric conversion device used for a solar cell that converts sunlight energy into electric energy, a p-type silicon-based semiconductor (p-layer) and an i-type silicon-based semiconductor (i-layer) are formed on a transparent electrode layer formed on a substrate.
  • a thin film silicon photoelectric conversion device including a photoelectric conversion layer formed by forming a thin film of an n-type silicon semiconductor (n layer) by a plasma CVD method or the like is known.
  • n layer n-type silicon semiconductor
  • a tandem solar that efficiently absorbs incident light by using a photoelectric conversion layer in which two power generation cell layers having different absorption wavelength bands are stacked. Batteries have been proposed.
  • an intermediate contact layer is inserted for the purpose of suppressing dopant interdiffusion between the first power generation cell layer and the second power generation cell layer, which are photoelectric conversion layers, and adjusting the light quantity distribution. May be.
  • the photoelectric conversion layer is used in order to increase the light absorption amount in the photoelectric conversion layer by reflecting the incident light in the solar cell and lengthening the optical path length.
  • a transparent electrode layer may be interposed between the metal electrode on the back surface and the metal electrode on the back surface.
  • the transparent electrode layer on the substrate side, the intermediate contact layer, and the transparent electrode layer on the back side described above are conductive transparent oxide thin films such as a GZO (Ga-doped ZnO) film.
  • GZO Ga-doped ZnO
  • a GZO film applied to a solar cell is required to have transparency and high conductivity, but both tend to be contrary to each other. That is, since the conductivity of the GZO film is caused by oxygen deficiency of ZnO, the conductivity is improved as the oxygen concentration in the atmosphere is lower.
  • Patent Document 1 discloses a solar cell in which a zinc oxide film containing nitrogen atoms as a dopant at a concentration of 5 atomic% or less is formed. It is described that the adhesion between the layers can be improved by providing a zinc oxide film containing nitrogen atoms at the interface between the electrode and the semiconductor layer.
  • Non-Patent Document 1 discloses that in sputtering film formation using a ZnO target, a Zn x N y O z thin film is formed in an Ar and N 2 mixed atmosphere, and the band gap is reduced by adding nitrogen. .
  • the GZO film may be absorbed only in the short wavelength region of visible light, and this is caused by Zn nitride generated by nitrogen in the atmosphere. Nitrogen in the atmosphere was thought to be due to the air that flowed into the deposition chamber due to leakage. Therefore, when applying the GZO film to the substrate side transparent electrode layer, the intermediate contact layer, and the back side transparent electrode layer, it is necessary to control the amount of N 2 gas in the film forming atmosphere to reduce the absorption of the GZO film. It was.
  • the present invention provides a method for producing a photoelectric conversion device having high photoelectric conversion efficiency by suppressing light absorption in a short wavelength region of visible light as a substrate-side transparent electrode layer, an intermediate contact layer, or a back-side transparent electrode layer. provide.
  • the first aspect of the present invention includes at least one of a step of forming a substrate-side transparent electrode layer on a substrate and a step of forming a back-side transparent electrode layer on a photoelectric conversion layer.
  • the step is to apply a transparent conductive film mainly composed of GaO-doped ZnO as the substrate-side transparent electrode layer or the back-side transparent electrode layer to the inert gas partial pressure per unit film thickness of the transparent conductive film.
  • This is a method of manufacturing a photoelectric conversion device that forms a film by controlling the N 2 gas partial pressure so that the ratio of the two gas partial pressures is a predetermined value or less.
  • At least one of the steps and the step of forming the back side transparent electrode layer on the photoelectric conversion layer is Ga doped as the substrate side transparent electrode layer, the intermediate contact layer, and the back side transparent electrode layer.
  • transparent conductive film such that the ratio of N 2 gas partial pressure to an inert gas partial pressure per unit film thickness of the transparent conductive film is equal to or less than a predetermined value, the N 2 gas partial pressure to mainly been ZnO It is a manufacturing method of the photoelectric conversion apparatus which controls and forms a film.
  • the amount of N 2 gas allowed in the atmospheric gas is used as a unit film thickness per GZO film.
  • the ratio of the N 2 gas partial pressure to the inert gas partial pressure is defined.
  • the N 2 gas partial pressure ratio per unit film thickness is It is preferable to determine from the light absorption rate of the GZO film.
  • the substrate-side transparent electrode layer is formed so that the ratio of the N 2 gas partial pressure to the inert gas partial pressure per unit film thickness of the substrate-side transparent electrode layer is 0.001% / nm or less. It is preferable to form a film by controlling the N 2 gas partial pressure.
  • the substrate-side transparent electrode layer is formed thicker than the intermediate contact layer and the back-side transparent electrode layer in order to ensure sufficient conductivity.
  • light is incident from the substrate side, light in the entire visible wavelength range is incident on the substrate-side transparent electrode layer.
  • the GZO film as the substrate-side transparent electrode layer is absorbed by nitrogen, light in the visible light short wavelength region is significantly attenuated. As a result, the short circuit current generated in the photoelectric conversion layer is reduced.
  • the N 2 gas partial pressure ratio per unit film thickness is set to 0.001% / nm or less.
  • substrate side transparent electrode layer can be reduced, and the fall of the short circuit current of a photoelectric conversion apparatus can be suppressed.
  • the N 2 gas partial pressure ratio needs to be a lower value than in the case of the intermediate contact layer or the back-side transparent electrode layer.
  • the ratio of the N 2 gas partial pressure to the inert gas partial pressure per unit film thickness of the intermediate contact layer or the back side transparent electrode layer is 0.025. It is preferable to form a film by controlling the N 2 gas partial pressure so as to be not more than% / nm.
  • a photoelectric conversion device in which a GZO film containing nitrogen is provided as the back side transparent electrode layer and the photoelectric conversion layer is amorphous silicon, most of light with a wavelength of 400 to 550 nm is absorbed by the photoelectric conversion layer.
  • the Light that reaches and enters the back side transparent electrode layer is reflected by the back side electrode layer and emitted from the back side transparent electrode layer, and light having a wavelength of 550 to 700 nm is attenuated by absorption in the back side transparent electrode layer. .
  • the N 2 gas partial pressure ratio per unit film thickness is set to 0.025% / nm or less.
  • the amount of N 2 gas during GZO film formation can be controlled to be low, light absorption in the visible light short wavelength region due to incorporation of nitrogen atoms into the film can be suppressed. As a result, a photoelectric conversion device having high conversion efficiency is manufactured.
  • An optical absorption spectrum of a GZO film having a Ga 2 O 3 doping amount of 0.5 wt% is shown.
  • An optical absorption spectrum of a GZO film having a Ga 2 O 3 doping amount of 5.7 wt% is shown.
  • An optical absorption spectrum of a GZO film having a Ga 2 O 3 doping amount of 0.5 wt% is shown. It is a graph showing the relationship between the short-circuit current and the N 2 gas addition amount of the single-type solar cell formed a GZO film as a back surface side transparent electrode layer. It is a graph showing the relationship between the open-circuit voltage and the N 2 gas addition amount of the single-type solar cell formed a GZO film as a back surface side transparent electrode layer.
  • FIG. 1 is a schematic diagram illustrating a configuration of a photoelectric conversion device of the present invention.
  • the photoelectric conversion device 100 is a tandem silicon solar cell, and includes a substrate 1, a substrate-side transparent electrode layer 2, a first battery layer 91 (amorphous silicon system) and a second battery layer as the solar cell photoelectric conversion layer 3. 92 (crystalline silicon type), an intermediate contact layer 5, a back surface side transparent electrode layer 6, and a back surface electrode layer 4.
  • at least one of the substrate-side transparent electrode layer 2, the intermediate contact layer 5, and the back-side transparent electrode layer 6 is a ZnO (GZO) film doped with Ga.
  • GZO ZnO
  • the above-mentioned silicon system is a general term including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
  • the crystalline silicon system means a silicon system other than the amorphous silicon system, and includes microcrystalline silicon and polycrystalline silicon.
  • a method for manufacturing a photoelectric conversion device according to the first embodiment will be described by taking a process for manufacturing a solar cell panel as an example.
  • 2 to 5 are schematic views showing a method for manufacturing the solar cell panel of the present embodiment.
  • FIG. 2 (a) A soda float glass substrate (for example, an area of 1 m 2 or more, 1.4 m ⁇ 1.1 m ⁇ plate thickness: 3.5 mm to 4.5 mm) is used as the substrate 1.
  • the end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.
  • FIG. 2 (b) As the substrate-side transparent electrode layer 2, a GZO film having a film thickness of 400 nm or more and 1000 nm or less is formed by a DC magnetron sputtering apparatus.
  • the film forming conditions are set to, for example, target: Ga-doped ZnO sintered body, introduced gas: Ar gas and O 2 gas, film forming pressure: 0.2 Pa, and substrate temperature: 120 ° C. If the conductivity and transparency suitable for the substrate-side transparent electrode layer can be ensured, the amount of Ga (Ga 2 O 3 ) doping in the target can be set to an arbitrary value.
  • a texture with appropriate irregularities is formed on the surface of the transparent electrode film.
  • the ratio of N 2 gas partial pressure to the Ar gas partial pressure in the GZO film forming when the N 2 gas partial pressure ratio, N 2 gas partial pressure ratio per unit thickness is 0.001% / nm or less and thus, the N 2 gas partial pressure ratio during GZO film formation as the substrate-side transparent electrode layer 2 is controlled.
  • the N 2 gas partial pressure ratio per unit film thickness is, for example, the relationship between the light absorption characteristics of the GZO film at a predetermined film thickness and the N 2 gas partial pressure ratio, and a short wavelength region of visible light (for example, a wavelength of 450 to 600 nm) It can be obtained from the light absorption rate.
  • the method of setting the N 2 gas partial pressure ratio per unit film thickness in GZO film formation in the above range is, for example, acquiring in advance the relationship between the ultimate pressure in the exhaust before GZO film formation and the N 2 gas partial pressure ratio,
  • the film forming apparatus is controlled to perform evacuation of the chamber until the ultimate pressure at which a desired N 2 gas partial pressure ratio is obtained is reached.
  • the leak source is specified using a He leak detector, and the leak rate is less than the allowable amount with respect to the Ar gas flow rate.
  • the N 2 gas partial pressure ratio is controlled.
  • the film-formed substrate side may be selected as a defective product.
  • the substrate side transparent electrode layer 2 may not be a GZO film.
  • a transparent conductive film having a thickness of 500 nm or more and 800 nm or less mainly composed of tin oxide (SnO 2 ) is formed at about 500 ° C. with a thermal CVD apparatus.
  • an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film in addition to the transparent electrode film.
  • a silicon oxide film (SiO 2 ) is formed at a temperature of about 500 ° C. with a thermal CVD apparatus at 50 nm to 150 nm.
  • FIG. 2 (c) Thereafter, the substrate 1 is set on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side of the transparent electrode film as indicated by an arrow in the figure.
  • the laser power is adjusted to be appropriate for the processing speed, and the transparent electrode film is moved relative to the direction perpendicular to the series connection direction of the power generation cells so that the substrate 1 and the laser light are moved relative to each other to form the groove 10.
  • FIG. 2 (d) As the first battery layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, amorphous silicon p from the incident side of sunlight on the substrate-side transparent electrode layer 2 at a reduced pressure atmosphere: 30 Pa to 1000 Pa, substrate temperature: about 200 ° C. The layer 31, the amorphous silicon i layer 32, and the amorphous silicon n layer 33 are formed in this order.
  • the amorphous silicon p layer 31 is mainly made of amorphous B-doped silicon and has a thickness of 10 nm to 30 nm.
  • the amorphous silicon i layer 32 has a thickness of 200 nm to 350 nm.
  • the amorphous silicon n layer 33 is mainly P-doped silicon containing microcrystalline silicon in amorphous silicon, and has a thickness of 30 nm to 50 nm.
  • a buffer layer may be provided between the amorphous silicon p layer 31 and the amorphous silicon i layer 32 in order to improve interface characteristics.
  • An intermediate contact layer 5 serving as a semi-reflective film is provided between the first battery layer 91 and the second battery layer 92 in order to improve the contact property and obtain current matching.
  • a GZO film having a film thickness of 20 nm to 100 nm is formed by a DC magnetron sputtering apparatus. If conductivity and transparency suitable for the intermediate contact layer can be ensured, the Ga doping amount in the target can be set to an arbitrary value.
  • the film forming conditions are the same as in the case where a GZO film is provided as the substrate-side transparent electrode layer.
  • the N 2 gas partial pressure ratio per unit film thickness during film formation is controlled to be 0.025% / nm or less.
  • the same method as that for the substrate-side transparent electrode layer 2 described above can be adopted.
  • the Ar gas partial pressure and N 2 gas partial pressure in the intermediate contact layer deposition are measured using a mass spectrometer, and the N 2 gas partial pressure ratio exceeds the set value, the deposited intermediate contact layer is not It may be selected as a good product.
  • the intermediate contact layer 5 may be other transparent conductive oxides such as F-doped SnO 2 and ITO. good. Further, the intermediate contact layer 5 may not be provided.
  • a crystalline material as the second battery layer 92 is formed on the first battery layer 91 using a plasma CVD apparatus at a reduced pressure atmosphere: 3000 Pa or less, a substrate temperature: about 200 ° C., and a plasma generation frequency: 40 MHz to 100 MHz.
  • a silicon p layer 41, a crystalline silicon i layer 42, and a crystalline silicon n layer 43 are sequentially formed.
  • the crystalline silicon p layer 41 is mainly made of B-doped microcrystalline silicon and has a thickness of 10 nm to 50 nm.
  • the crystalline silicon i layer 42 is mainly made of microcrystalline silicon and has a film thickness of 1.2 ⁇ m or more and 3.0 ⁇ m or less.
  • the crystalline silicon n layer 43 is mainly made of P-doped microcrystalline silicon and has a thickness of 20 nm to 50 nm.
  • the distance d between the plasma discharge electrode and the surface of the substrate 1 is preferably 3 mm or more and 10 mm or less. If it is smaller than 3 mm, it is difficult to keep the distance d constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.
  • FIG. 2 (e) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the film surface side of the photoelectric conversion layer 3 as shown by the arrow in the figure.
  • Pulse oscillation 10 kHz to 20 kHz
  • the laser power is adjusted to be suitable for the processing speed
  • the groove 11 is formed on the lateral side of the laser etching line of the substrate side transparent electrode layer 2 from about 100 ⁇ m to 150 ⁇ m.
  • Laser etching In addition, this laser may be irradiated from the substrate 1 side.
  • the photoelectric conversion layer is formed by utilizing a high vapor pressure generated by the energy absorbed by the amorphous silicon-based first battery layer of the photoelectric conversion layer 3. Since 3 can be etched, a more stable laser etching process can be performed. The position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.
  • FIG. 3 (a) For the purpose of reducing the contact resistance between the crystalline silicon n layer 43 and the back electrode layer 4 and improving the light reflection, a back side transparent electrode layer 6 is provided between the photoelectric conversion layer 3 and the back electrode layer 4.
  • a back surface side transparent electrode layer 6 As the back surface side transparent electrode layer 6, a GZO film having a film thickness of 50 nm or more and 100 nm or less is formed by a DC magnetron sputtering apparatus. Also in this case, the Ga doping amount in the target can be set to an arbitrary value as long as the conductivity and transparency suitable for the back surface side transparent electrode layer can be secured.
  • the film forming conditions are the same as in the case where a GZO film is provided as the substrate-side transparent electrode layer.
  • the same method as that for the substrate-side transparent electrode layer 2 described above can be adopted.
  • the formed back side transparent electrode layer is formed. May be sorted as defective.
  • the back-side transparent electrode layer 6 may be made of another transparent conductive oxide. Moreover, the substrate side transparent electrode layer 6 may not be provided.
  • an Ag film / Ti film is formed by a sputtering apparatus at a reduced pressure atmosphere and a film forming temperature: 150 ° C. to 200 ° C.
  • an Ag film 150 nm or more and 500 nm or less
  • a Ti film having a high anticorrosion effect 10 nm or more and 20 nm or less are stacked in this order to protect them.
  • the back electrode layer 4 may have a laminated structure of an Ag film having a thickness of 25 nm to 100 nm and an Al film having a thickness of 15 nm to 500 nm.
  • FIG. 3 (b) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the substrate 1 side as indicated by the arrow in the figure.
  • the laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
  • Laser power is adjusted so as to be suitable for processing speed, and laser is formed so that grooves 12 are formed on the lateral side of the laser etching line of the substrate-side transparent electrode layer 2 from 250 ⁇ m to 400 ⁇ m. Etch.
  • FIG. 3 (c) and FIG. 4 (a) The power generation region is divided, and the film edge around the substrate edge is laser-etched to eliminate the effect of short circuit at the serial connection portion.
  • the substrate 1 is set on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the substrate 1 side.
  • the laser light is absorbed by the substrate-side transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / substrate
  • the side transparent electrode layer 2 is removed.
  • Pulse oscillation 1 kHz or more and 10 kHz or less
  • the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 mm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG.
  • Laser etching is performed to form 15.
  • FIG.3 (c) since it becomes X direction sectional drawing cut
  • the insulating groove 15 exhibits an effective effect in suppressing external moisture intrusion into the solar cell module 7 from the end of the solar cell panel by terminating the etching at a position of 5 mm to 15 mm from the end of the substrate 1. Therefore, it is preferable.
  • the laser beam in the above steps is a YAG laser
  • a YVO4 laser or a fiber laser there are some that can use a YVO4 laser or a fiber laser in the same manner.
  • FIG. 4 (a: view from the solar cell film side, b: view from the substrate side of the light receiving surface) Since the laminated film around the substrate 1 (peripheral film removal region 14) has a step and is easy to peel off in order to ensure a sound adhesion / seal surface with the back sheet 24 via EVA or the like in a later process, The film is removed to form a peripheral film removal region 14. When removing the film over the entire periphery of the substrate 1 at 5 to 20 mm from the end of the substrate 1, the X direction is closer to the substrate end than the insulating groove 15 provided in the step of FIG.
  • the back electrode layer 4 / photoelectric conversion layer 3 / substrate-side transparent electrode layer 2 is removed using grinding stone polishing, blast polishing, or the like on the substrate end side with respect to the groove 10 near the side portion. Polishing debris and abrasive grains were removed by cleaning the substrate 1.
  • FIGS. 5 (a) and 5 (b) An attachment portion of the terminal box 23 is provided with an opening through window in the back sheet 24 to take out the current collector plate. Insulating materials are installed in a plurality of layers in the opening through window portion to suppress intrusion of moisture and the like from the outside. Processing so that power can be taken out from the terminal box 23 on the back side of the solar battery panel by collecting copper foil from one end of the photovoltaic power generation cells arranged in series and the other end of the solar power generation cell. To do. In order to prevent a short circuit with each part, the copper foil arranges an insulating sheet wider than the copper foil width.
  • an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is arranged so as to cover the entire solar cell module 7 and not to protrude from the substrate 1. .
  • a back sheet 24 having a high waterproof effect is installed on the EVA.
  • the back sheet 24 has a three-layer structure of PET sheet / Al foil / PET sheet so that the waterproof and moisture-proof effect is high.
  • the one with the back sheet 24 arranged in a predetermined position is deaerated inside in a reduced pressure atmosphere by a laminator and pressed at about 150 to 160 ° C., and EVA is crosslinked and brought into close contact.
  • FIG. 5 (a) The terminal box 23 is attached to the back side of the solar cell module 7 with an adhesive.
  • FIG. 5 (b) The copper foil and the output cable of the terminal box 23 are connected by solder or the like, and the inside of the terminal box 23 is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.
  • FIG. 5 (c) A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG. The power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).
  • FIG. 5 (d) Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.
  • tandem solar cell has been described as a solar cell, but the present invention is not limited to this example.
  • the present invention can be similarly applied to other types of thin film solar cells such as amorphous silicon solar cells, crystalline silicon solar cells including microcrystalline silicon, silicon germanium solar cells, and triple solar cells.
  • the film forming conditions are: ultimate pressure before film forming: 1 ⁇ 10 ⁇ 4 Pa or less, film forming gas: Ar gas, O 2 gas (0.15 sccm), N 2 gas, N 2 gas addition amount with respect to Ar gas amount ( N 2 gas partial pressure ratio): 0 to 4%, film forming pressure: 0.2 Pa, substrate temperature: 120 ° C., target-substrate distance: 90 mm, target film thickness: 80 nm.
  • the N 2 gas partial pressure ratio was a value obtained from the Ar gas flow rate and the N 2 gas flow rate.
  • each GZO film at a wavelength of 300 to 1200 nm were measured, and the light absorption rate was calculated as 100 ⁇ transmittance ⁇ reflectance (%).
  • 6 and 7 show light absorption spectra of the GZO film having Ga 2 O 3 doping amounts of 5.7 wt% and 0.5 wt%, respectively.
  • the horizontal axis represents wavelength and the vertical axis represents light absorption.
  • FIGS. 8 and 9 show the light absorption spectra of FIGS. 6 and 7 in terms of photon energy and absorption coefficient.
  • the horizontal axis represents photon energy and the vertical axis represents the absorption coefficient.
  • Substrate side transparent electrode layer SnO 2 film, average film thickness 400 nm
  • Amorphous silicon p layer film thickness 100nm
  • Amorphous silicon i layer 200 nm thickness
  • Crystalline silicon n layer film thickness 30nm
  • Back side transparent electrode layer GZO film (Ga 2 O 3 0.5 wt%), film thickness 80 nm
  • Back electrode layer Ag film, film thickness 250 nm
  • FIG. 10 to FIG. 13 show the relationship between the battery characteristics of a single solar cell in which a GZO film is formed as the back side transparent electrode layer and the amount of N 2 gas added during GZO film formation.
  • the horizontal axis represents the amount of N 2 gas added.
  • the vertical axis represents the 10 in the short-circuit current, open circuit voltage 11, 12 in the shape factor, FIG. 13, the photoelectric conversion efficiency, obtained by normalizing the value of the time of the N 2 gas amount 0%, respectively as 1.
  • the open circuit voltage and the shape factor did not depend on the N 2 gas addition amount.
  • the N 2 gas addition amount needs to be controlled to 2% or less.
  • the GZO film thickness is 80 nm and the N 2 gas addition amount is 2% or less, a light absorption rate of 20% or less can be reliably achieved in the wavelength region of 450 to 600 nm regardless of the dopant amount.
  • a suitable N 2 gas addition amount N 2 gas partial pressure ratio
  • the optical loss A in the GZO film containing nitrogen is expressed by the formula (1).
  • A I 0 ⁇ ⁇ 1-exp ( ⁇ d) ⁇ (1) (I 0 : incident light intensity, ⁇ : absorption coefficient, d: GZO film thickness)
  • ⁇ d absorption coefficient
  • d GZO film thickness
  • the optical loss A is expressed by Expression (2).
  • the N 2 gas partial pressure ratio was 0.025% / nm or less to suppress the short circuit current and the decrease in photoelectric conversion efficiency. It could be confirmed.
  • the battery performance of the tandem type silicon solar cell in which the N 2 partial pressure ratio at the time of forming the GZO film as the intermediate contact layer was changed was evaluated.
  • the layer structure of the tandem silicon solar battery cell is shown below using a glass substrate having a size of 1.4 m ⁇ 1.1 m.
  • the amount of N 2 gas added to the Ar gas was set to 0%, 1%, 2%, 4%, and 8%.
  • the other GZO film forming conditions were the same as those in the test for confirming the light absorption coefficient of the GZO film.
  • Substrate side transparent electrode layer SnO 2 film, average film thickness 400 nm
  • Amorphous silicon p layer film thickness 10nm
  • Amorphous silicon i layer 200 nm thickness
  • Crystalline silicon n layer film thickness 30nm
  • Intermediate contact layer GZO film (Ga 2 O 3 0.5 wt%)
  • film thickness 80 nm Crystalline silicon p layer film thickness 20nm
  • Crystalline silicon i layer film thickness 2000nm Crystalline silicon n layer: film thickness 30nm
  • Back side transparent electrode layer GZO film (Ga 2 O 3 0.5 wt%, N 2 gas addition amount 0%), film thickness 80 nm Back electrode layer: Ag, film thickness 250 nm
  • the horizontal axis represents the amount of N 2 gas added.
  • the vertical axis represents the short-circuit current in FIG. 14, the open circuit voltage in FIG. 15, the form factor in FIG. 16, the photoelectric conversion efficiency in FIG. 17, and the values when the N 2 gas addition amount is 0% are each normalized as 1.
  • the open circuit voltage and the shape factor did not depend on the N 2 gas addition amount.
  • the N 2 gas addition amount needs to be controlled to 2% or less.
  • the short-circuit current is proportional to the thickness of GZO containing nitrogen
  • the N 2 gas partial pressure ratio per unit thickness is 0.025%. / Nm or less.
  • the N 2 gas partial pressure ratio was 0.025% / nm or less to suppress the short circuit current and the decrease in photoelectric conversion efficiency.
  • the battery performance of the single-type crystalline silicon solar cell in which the N 2 partial pressure ratio at the time of forming the GZO film as the substrate-side transparent electrode layer was changed was evaluated.
  • a glass substrate having a size of 1.4 m ⁇ 1.1 m a single-type crystalline silicon solar battery cell having the following layer structure was produced.
  • Substrate side transparent electrode layer GZO film (Ga 2 O 3 0.5 wt%), average film thickness 400 nm Crystalline silicon p layer: film thickness 20nm Crystalline silicon i layer: film thickness 2000nm Crystalline silicon n layer: film thickness 30nm
  • Back side transparent electrode layer GZO film (Ga 2 O 3 0.5 wt%, N 2 gas addition amount 0%), film thickness 80 nm Back electrode layer: Ag film, film thickness 250 nm
  • the amount of N 2 gas added to the Ar gas is 0%, 0.4%, 1%, 2%, 4%, and 8%. did.
  • the other GZO film forming conditions were the same as those in the test for confirming the light absorption coefficient of the GZO film.
  • FIG. 18 to FIG. 21 show the relationship between the battery characteristics of a single solar cell in which a GZO film is formed as the substrate-side transparent electrode layer, and the amount of N 2 gas added during GZO film formation.
  • the horizontal axis represents the amount of N 2 gas added.
  • the vertical axis represents the short-circuit current in FIG. 18, the open circuit voltage in FIG. 19, the form factor in FIG. 20, the photoelectric conversion efficiency in FIG. 21, and the value when the N 2 gas addition amount is 0% is normalized as 1.
  • the open circuit voltage and the shape factor did not depend on the N 2 gas addition amount.
  • the required light absorption rate of the GZO film may be set as appropriate to determine the N 2 partial pressure ratio.
  • the N 2 gas partial pressure ratio was 0.001% / nm or less and the short circuit current and the decrease in photoelectric conversion efficiency were suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 可視光の短波長領域における光吸収を抑制することにより、高い光電変換効率を有する光電変換装置を製造する方法を提供する。基板(1)上に基板側透明電極層(2)を形成する工程、隣接する2つの電池層(91,92)の間に中間コンタクト層(5)を形成する工程、及び、光電変換層(3)上に裏面側透明電極層(6)を形成する工程において、基板側透明電極層(2)、中間コンタクト層(5)、及び裏面側透明電極層(6)として、GaがドープされたZnOを主とする透明導電膜を、透明導電膜の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が所定値以下となるように、前記Nガス分圧を制御して製膜する光電変換装置(100)の製造方法。

Description

光電変換装置の製造方法
 本発明は光電変換装置の製造方法に関し、特に発電層を製膜で作製する薄膜系太陽電池の製造方法に関する。
 太陽光のエネルギーを電気エネルギーに変換する太陽電池に用いられる光電変換装置としては、基板に形成された透明電極層上にp型シリコン系半導体(p層)、i型シリコン系半導体(i層)及びn型シリコン系半導体(n層)の薄膜をプラズマCVD法等で製膜して形成した光電変換層を備えた薄膜シリコン系光電変換装置が知られている。
 薄膜シリコン系太陽電池の変換効率、すなわち、発電出力を増加させるために、吸収波長帯域が異なる発電セル層を2段重ねた光電変換層とすることによって、入射光を効率良く吸収させるタンデム型太陽電池が提案されている。タンデム型太陽電池では、光電変換層である第1の発電セル層と第2の発電セル層との間でのドーパント相互拡散の抑制、及び、光量配分の調整を目的として、中間コンタクト層が挿入される場合がある。
 また、透明基板側から太陽光が入射するスーパーストレート型においては、太陽電池内で入射光を反射させて光路長を長くして光電変換層での光吸収量を増大させるために、光電変換層と裏面の金属電極との間に、透明電極層を介在させる場合がある。
 上述した基板側の透明電極層、中間コンタクト層、裏面側の透明電極層は、例えばGZO(GaがドープされたZnO)膜などの導電性を有する透明酸化物薄膜とされる。
 GZO製膜時の酸素雰囲気の制御が、GZO膜の膜質制御に重要であることが知られている。太陽電池に適用されるGZO膜は透明性と高い導電性が要求されるが、両者は互いに反する傾向を示す。すなわち、GZO膜の導電性はZnOの酸素欠損に起因することから、雰囲気中の酸素濃度が低いほど導電性が向上する。しかし、酸素欠損(キャリア)の増大に伴う赤外吸収の増大とともに、遊離した金属Znに起因する赤外から可視域の吸収の増大が発生する。また、スパッタ製膜時にターゲット表面に発生する不純物(ノジュール)や放電部からの金属不純物に起因して、GZO膜に吸収が生じる可能性がある。
 ドーパントとしての窒素原子を5原子%以下の濃度で含有する酸化亜鉛膜を形成した太陽電池が、特許文献1に開示されている。電極と半導体層との界面に窒素原子を含有する酸化亜鉛膜を設けることにより、層間の密着性を向上させることができると記載されている。
 非特許文献1には、ZnOターゲットを用いたスパッタリング製膜において、Ar及びN混合雰囲気によりZn薄膜が形成され、窒素の添加によりバンドギャップが縮小することが開示されている。
特許第2908617号公報(請求項1~2、段落[0023]~[0029])
"Optical properties of zincoxynitride thin films", Masanobu Futsuhara et al., Thin Solid Films, 317(1998),p322-325
 本発明者らの検討の結果、GZO膜の吸収が可視光の短波長領域のみで生じる場合があり、この原因は雰囲気中の窒素により発生したZn窒化物であることが判明した。雰囲気中の窒素は、リークにより製膜チャンバ内に流入した大気によるものと考えられた。従って、基板側透明電極層、中間コンタクト層及び裏面側透明電極層にGZO膜を適用する場合には、製膜雰囲気中のNガス量を制御してGZO膜の吸収を低減する必要が生じた。
 本発明は、基板側透明電極層、中間コンタクト層または裏面側透明電極層として、可視光の短波長領域における光吸収を抑制することにより、高い光電変換効率を有する光電変換装置を製造する方法を提供する。
 上記課題を解決するために、本発明の第1の態様は、基板上に基板側透明電極層を形成する工程、及び、光電変換層上に裏面側透明電極層を形成する工程の少なくとも一方の工程が、前記基板側透明電極層または前記裏面側透明電極層として、GaがドープされたZnOを主とする透明導電膜を、該透明導電膜の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が所定値以下となるように、前記Nガス分圧を制御して製膜する光電変換装置の製造方法である。
 本発明の第2の態様は、基板上に基板側透明電極層を形成する工程、光電変換層を構成する複数の電池層のうち、隣接する2つの電池層の間に中間コンタクト層を形成する工程、及び、光電変換層上に裏面側透明電極層を形成する工程のうち少なくとも1つの工程が、前記基板側透明電極層、前記中間コンタクト層、及び前記裏面側透明電極層として、GaがドープされたZnOを主とする透明導電膜を、該透明導電膜の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が所定値以下となるように、前記Nガス分圧を制御して製膜する光電変換装置の製造方法である。
 本発明者らの検討により、同じ膜厚では、GZO膜中のドーパント(Ga)量が変化した場合でも、ほとんど同じ光吸収スペクトルが得られることが判明した。また、製膜中の不活性ガス量に対するNガス量の増加や膜厚の増加に伴い、波長450~600nmの領域における光吸収率が増加する。GZO膜での光吸収は、光電変換装置の短絡電流低下の原因となる。
 従って、本発明では、基板側透明電極層、中間コンタクト層、または裏面側透明電極層としてGZO膜を製膜する場合に雰囲気ガス中に許容されるNガス量として、GZO膜単位膜厚当たり不活性ガス分圧に対するNガス分圧の比(Nガス分圧比)を規定する。こうすることで、Gaドープ量に依らず、GZO膜での光吸収損失を低減して、光電変換装置の短絡電流の低下を抑制することができる。その結果、高い変換効率を示す光電変換装置を製造することができる。なお、上述の通り、雰囲気中のNガス量とGZO膜の波長450~600nmの領域における光吸収率とは相関関係にあるとの観点から、単位膜厚当たりのNガス分圧比は、GZO膜の光吸収率から決定することが好ましい。
 上記発明において、前記基板側透明電極層を、該基板側透明電極層の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が0.001%/nm以下となるように、前記Nガス分圧を制御して製膜することが好ましい。
 基板側透明電極層は、十分な導電性を確保するために、中間コンタクト層や裏面側透明電極層よりも厚く形成される。基板側から光が入射する場合、基板側透明電極層には可視光全波長域の光が入射することになる。基板側透明電極層としてのGZO膜が窒素による吸収が大きくなると、特に可視光短波長領域の光が大幅に減衰する。その結果、光電変換層で発生する短絡電流が低減する。
 本発明では、基板側透明電極層としてGZO膜を製膜する場合、単位膜厚当たりのNガス分圧比を0.001%/nm以下とする。これにより、基板側透明電極層の光損失を低減して、光電変換装置の短絡電流の低下を抑制できる。上記Nガス分圧比は、基板側透明電極層は厚膜であることを考慮し、中間コンタクト層や裏面側透明電極層の場合よりも低い値とする必要がある。
 上記発明において、前記中間コンタクト層または前記裏面側透明電極層を、該中間コンタクト層または裏面側透明電極層の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が0.025%/nm以下となるように、前記Nガス分圧を制御して製膜することが好ましい。
 例えば、裏面側透明電極層として窒素を含有するGZO膜が設けられ、光電変換層が非晶質シリコンとされる光電変換装置では、光電変換層で波長400~550nmの光の大部分が吸収される。裏面側透明電極層に到達し入射した光が、裏面電極層で反射して裏面側透明電極層から出射する過程で、波長550~700nmの光が裏面側透明電極層での吸収により減衰される。
 また、例えば中間コンタクト層に窒素を含有するGZO膜が設けられたタンデム型の光電変換装置において、基板側から光が入射した場合、裏面側の電池層では中間コンタクト層で減衰された光量分だけ、短絡電流が低下する。また、基板側の電池層では、中間コンタクト層を透過し裏面電極層で反射して再び中間コンタクト層から出射する過程で中間コンタクト層に吸収された光量分の短絡電流が減少する。
 本発明では、中間コンタクト層、または、裏面側透明電極層としてGZO膜を製膜する場合、単位膜厚当たりのNガス分圧比を0.025%/nm以下とする。これにより、GZO膜での光損失を低減して、光電変換装置の短絡電流の低下を抑制できる。
 本発明によれば、GZO製膜時のNガス量を低くなるように制御することができるため、窒素原子が膜中に取り込まれることによる可視光短波長領域での光吸収を抑制できる。その結果、高い変換効率を有する光電変換装置が製造される。
本発明の光電変換装置の製造方法により製造される光電変換装置の構成を表す概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 Gaドープ量が5.7wt%とされたGZO膜の光吸収スペクトルを示す。 Gaドープ量が0.5wt%とされたGZO膜の光吸収スペクトルを示す。 Gaドープ量が5.7wt%とされたGZO膜の光吸収スペクトルを示す。 Gaドープ量が0.5wt%とされたGZO膜の光吸収スペクトルを示す。 裏面側透明電極層としてGZO膜を形成したシングル型太陽電池セルの短絡電流とNガス添加量との関係を示すグラフである。 裏面側透明電極層としてGZO膜を形成したシングル型太陽電池セルの開放電圧とNガス添加量との関係を示すグラフである。 裏面側透明電極層としてGZO膜を形成したシングル型太陽電池セルの形状因子とNガス添加量との関係を示すグラフである。 裏面側透明電極層としてGZO膜を形成したシングル型太陽電池セルの光電変換効率とNガス添加量との関係を示すグラフである。 中間コンタクトとしてGZO膜を形成したタンデム型太陽電池セルの短絡電流とNガス添加量との関係を示すグラフである。 中間コンタクトとしてGZO膜を形成したタンデム型太陽電池セルの開放電圧とNガス添加量との関係を示すグラフである。 中間コンタクトとしてGZO膜を形成したタンデム型太陽電池セルの形状因子とNガス添加量との関係を示すグラフである。 中間コンタクトとしてGZO膜を形成したタンデム型太陽電池セルの光電変換効率とNガス添加量との関係を示すグラフである。 基板側透明電極層としてGZO膜を形成したシングル型太陽電池セルの短絡電流とNガス添加量との関係を示すグラフである。 基板側透明電極層としてGZO膜を形成したシングル型太陽電池セルの開放電圧とNガス添加量との関係を示すグラフである。 基板側透明電極層としてGZO膜を形成したシングル型太陽電池セルの形状因子とNガス添加量との関係を示すグラフである。 基板側透明電極層としてGZO膜を形成したシングル型太陽電池セルの光電変換効率とNガス添加量との関係を示すグラフである。
 図1は、本発明の光電変換装置の構成を示す概略図である。光電変換装置100は、タンデム型シリコン系太陽電池であり、基板1、基板側透明電極層2、太陽電池光電変換層3としての第1電池層91(非晶質シリコン系)及び第2電池層92(結晶質シリコン系)、中間コンタクト層5、裏面側透明電極層6、及び裏面電極層4を備える。本実施形態において、基板側透明電極層2、中間コンタクト層5、及び、裏面側透明電極層6のうち少なくとも1つは、GaがドープされたZnO(GZO)膜とされる。
 なお、上述のシリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコンも含まれる。
<第1実施形態>
 第1実施形態に係る光電変換装置の製造方法を、太陽電池パネルを製造する工程を例に挙げて説明する。図2から図5は、本実施形態の太陽電池パネルの製造方法を示す概略図である。
(1)図2(a)
 基板1としてソーダフロートガラス基板(例えば面積が1m以上、1.4m×1.1m×板厚:3.5mm~4.5mm)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(2)図2(b)
 基板側透明電極層2として、DCマグネトロンスパッタリング装置により、膜厚400nm以上1000nm以下のGZO膜を形成する。製膜条件は、例えば、ターゲット:GaドープZnO焼結体、導入ガス:Arガス及びOガス、製膜圧力:0.2Pa、基板温度:120℃に設定する。基板側透明電極層として好適な導電性及び透明性を確保できれば、ターゲット中のGa(Ga)ドープ量は任意の値に設定できる。上記条件の製膜により、透明電極膜の表面には、適当な凹凸のあるテクスチャーが形成される。
 ここで、GZO製膜中のArガス分圧に対するNガス分圧の比をNガス分圧比としたときに、単位膜厚当たりのNガス分圧比が0.001%/nm以下となるように、基板側透明電極層2としてのGZO製膜時のNガス分圧比が制御される。単位膜厚当たりのNガス分圧比は、例えば、所定膜厚でのGZO膜の光吸収特性とNガス分圧比との関係を用い、可視光の短波長領域(例えば波長450~600nm)での光吸収率から取得することができる。
 GZO製膜中の単位膜厚当たりのNガス分圧比を上記範囲とする方法は、例えば、GZO製膜前の排気における到達圧力とNガス分圧比との関係を予め取得しておき、所望のNガス分圧比が得られる到達圧力に達するまで、チャンバの真空排気を実行するように製膜装置を制御する。また、Nガスの主要な混入源は大気からのリークであることから、Heリークディテクタを用いてリーク源の特定を行い、Arガス流量に対して許容量以下のリークレートとすることにより、Nガス分圧比を制御する。
 GZO製膜中のArガス分圧及びNガス分圧をQ-massなどの質量分析計を用いて計測し、Nガス分圧比が設定値を超えた場合に、製膜された基板側透明電極層は不良品として選別しても良い。
 なお、中間コンタクト層5または裏面側透明電極層6としてGZO膜を形成する場合、基板側透明電極層2はGZO膜でなくても良い。例えば、基板側透明電極層2として、酸化錫(SnO)を主成分とする膜厚500nm以上800nm以下の透明導電膜を、熱CVD装置にて約500℃で製膜する。
 基板側透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、酸化シリコン膜(SiO)を50nm~150nm、熱CVD装置にて約500℃で製膜処理する。
(3)図2(c)
 その後、基板1をX-Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極膜の膜面側から照射する。加工速度に適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(4)図2(d)
 第1電池層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、基板側透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコンを主とし、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33は、非晶質シリコンに微結晶シリコンを含有するPドープシリコンを主とし、膜厚30nm以上50nm以下である。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
 第1電池層91と第2電池層92の間に、接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5を設ける。中間コンタクト層5として、DCマグネトロンスパッタリング装置により、膜厚:20nm以上100nm以下のGZO膜を形成する。中間コンタクト層として好適な導電性及び透明性を確保できれば、ターゲット中のGaドープ量は任意の値に設定できる。製膜条件は、基板側透明電極層としてGZO膜を設ける場合と同様とされる。
 中間コンタクト層の場合、製膜中の単位膜厚当たりのNガス分圧比は、0.025%/nm以下となるように制御される。GZO製膜中の単位膜厚当たりのNガス分圧比を上記範囲とする方法は、上述の基板側透明電極層2と同様の方法を採用できる。
 中間コンタクト層製膜中のArガス分圧及びNガス分圧を質量分析計を用いて計測し、Nガス分圧比が設定値を超えた場合に、製膜された中間コンタクト層は不良品として選別しても良い。
 なお、基板側透明電極層2または裏面側透明電極層6としてGZO膜を形成する場合、中間コンタクト層5は、FドープされたSnO、ITOなどの他の透明導電性酸化物とされても良い。また、中間コンタクト層5を設けない場合もある。
 次に、第1電池層91の上に、プラズマCVD装置により、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、第2電池層92としての結晶質シリコンp層41、結晶質シリコンi層42、及び、結晶質シリコンn層43を順次製膜する。結晶質シリコンp層41はBドープした微結晶シリコンを主とし、膜厚10nm以上50nm以下である。結晶質シリコンi層42は微結晶シリコンを主とし、膜厚は1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした微結晶シリコンを主とし、膜厚20nm以上50nm以下である。
 微結晶シリコンを主とするi層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極と基板1の表面との距離dは、3mm以上10mm以下にすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離dを一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。
(5)図2(e)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から照射する。パルス発振:10kHzから20kHzとして、加工速度に適切となるようにレーザーパワーを調整して、基板側透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から照射しても良く、この場合は光電変換層3の非晶質シリコン系の第1電池層で吸収されたエネルギーで発生する高い蒸気圧を利用して光電変換層3をエッチングできるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(6)図3(a)
 結晶質シリコンn層43と裏面電極層4との接触抵抗低減と光反射向上を目的として、光電変換層3と裏面電極層4との間に裏面側透明電極層6が設けられる。裏面側透明電極層6として、DCマグネトロンスパッタリング装置により、膜厚:50nm以上100nm以下のGZO膜を形成する。この場合も、裏面側透明電極層として好適な導電性及び透明性を確保できれば、ターゲット中のGaドープ量は任意の値に設定できる。製膜条件は、基板側透明電極層としてGZO膜を設ける場合と同様とされる。
 中間コンタクト層5と同様に、単位膜厚当たりのNガス分圧比が0.025%/nm以下となるように、裏面側透明電極層6としてのGZO製膜時におけるNガス分圧比が制御される。GZO製膜中の単位膜厚当たりのNガス分圧比を上記範囲とする方法は、上述の基板側透明電極層2と同様の方法を採用できる。また、GZO製膜中のArガス分圧及びNガス分圧を質量分析計を用いて計測し、Nガス分圧比が設定値を超えた場合に、製膜された裏面側透明電極層は不良品として選別しても良い。
 基板側透明電極層2または中間コンタクト層5としてGZO膜を形成する場合、裏面側透明電極層6は、他の透明導電性酸化物とされても良い。また、基板側透明電極層6を設けない場合もある。
 裏面電極層4としてAg膜/Ti膜を、スパッタリング装置により、減圧雰囲気、製膜温度:150℃から200℃にて製膜する。本実施形態では、Ag膜:150nm以上500nm以下、これを保護するものとして防食効果の高いTi膜:10nm以上20nm以下を、この順に積層する。あるいは、裏面電極層4を、25nmから100nmの膜厚を有するAg膜と、15nmから500nmの膜厚を有するAl膜との積層構造としても良い。
(7)図3(b)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から照射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板側透明電極層2のレーザーエッチングラインの250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(8)図3(c)と図4(a)
 発電領域を区分して、基板端周辺の膜端部をレーザーエッチングし、直列接続部分で短絡し易い影響を除去する。基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から照射する。レーザー光が基板側透明電極層2と光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/基板側透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。なお、図3(c)では、光電変換層3が直列に接続された方向に切断したX方向断面図となっているため、本来であれば絶縁溝15位置には裏面電極層4/光電変換層3/基板側透明電極層2の膜研磨除去をした周囲膜除去領域14がある状態(図4(a)参照)が表れるべきであるが、基板1の端部への加工の説明の便宜上、この位置にY方向断面を表して形成された絶縁溝をX方向絶縁溝15として説明する。このとき、Y方向絶縁溝は後工程で基板1周囲膜除去領域の膜面研磨除去処理を行うので、設ける必要がない。
 絶縁溝15は基板1の端より5mmから15mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール7内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。
 尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
(9)図4(a:太陽電池膜面側から見た図、b:受光面の基板側から見た図)
 後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲膜除去領域14)の積層膜は、段差があるとともに剥離し易いため、この膜を除去して周囲膜除去領域14を形成する。基板1の端から5~20mmで基板1の全周囲にわたり膜を除去するにあたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/基板側透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。
 研磨屑や砥粒は基板1を洗浄処理して除去した。
(10)図5(a)(b)
  端子箱23の取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層で設置して外部からの湿分などの浸入を抑制する。
 直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱23の部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
 集電用銅箔などが所定位置に配置された後に、太陽電池モジュール7の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
 EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/Al箔/PETシートの3層構造よりなる。
 バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150~160℃でプレスしながら、EVAを架橋させて密着させる。
(11)図5(a)
 太陽電池モジュール7の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
 銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱23の内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
 図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d)
 発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
 上記実施の形態では太陽電池として、タンデム型太陽電池について説明したが、本発明は、この例に限定されるものではない。例えば、非晶質シリコン太陽電池、微結晶シリコンをはじめとする結晶質シリコン太陽電池、シリコンゲルマニウム太陽電池、トリプル型太陽電池などの他の種類の薄膜太陽電池にも同様に適用可能である。
 <ドーパント組成によるGZO膜の光吸収率>
 5.7wt%Ga-ZnOターゲットまたは0.5wt%Ga-ZnOターゲットを用い、DCマグネトロンスパッタリング装置によりガラス基板上にGZO膜を製膜した。製膜条件は、製膜前の到達圧力:1×10-4Pa以下、製膜ガス:Arガス、Oガス(0.15sccm)、Nガス、Arガス量に対するNガス添加量(Nガス分圧比):0~4%、製膜圧力:0.2Pa、基板温度:120℃、ターゲット-基板間距離:90mm、目標膜厚:80nmとした。なお、Nガス分圧比は、Arガス流量及びNガス流量から求めた値とした。
 波長300~1200nmでの各GZO膜の透過率及び反射率を測定し、光吸収率を100-透過率-反射率(%)として算出した。図6及び図7に、Gaドープ量がそれぞれ5.7wt%、0.5wt%であるGZO膜の光吸収スペクトルを示す。同図において、横軸は波長、縦軸は光吸収率である。
 図6及び図7の光吸収スペクトルを、光子エネルギー及び吸収係数で表したものを図8及び図9に示す。同図において、横軸は光子エネルギー、縦軸は吸収係数である。
 波長400nm以下の領域では、Ga含有量の増加によるGZO吸収端が短波長側にシフトする。波長450nm(2.76eV)~600nm(2.07eV)では、N分圧比が高くなるのにも伴い、Ga添加量が10倍異なるにも拘らずほぼ同等の光吸収率及び吸収係数が得られた。これは、450~600nmの波長域の吸収は、GZO膜に窒素が取り込まれたために生じることを示している。
<GZO製膜時のN分圧比と太陽電池性能との関係>
(裏面側透明電極層)
 裏面側透明電極層としてのGZO膜製膜時のN分圧比を変えたシングル型非晶質シリコン太陽電池セルの電池性能を評価した。
 大きさが1.4m×1.1mのガラス基板を用いて、以下の層構成を有するシングル型非晶質シリコン太陽電池セルを作製した。裏面側透明電極層としてのGZO膜の製膜では、Arガスに対するNガス添加量(Nガス分圧比)を0%、1%、2%、4%、8%とした。その他の製膜条件は、上述のGZO膜の光吸収係数を確認した試験と同一とした。
   基板側透明電極層:SnO膜、平均膜厚400nm
   非晶質シリコンp層:膜厚100nm
   非晶質シリコンi層:膜厚200nm
   結晶質シリコンn層:膜厚30nm
   裏面側透明電極層:GZO膜(Ga0.5wt%)、膜厚80nm
   裏面電極層:Ag膜、膜厚250nm
 図10乃至図13に、裏面側透明電極層としてGZO膜を形成したシングル型太陽電池セルの電池特性と、GZO製膜時のNガス添加量との関係を示す。同図において、横軸はNガス添加量である。縦軸は、図10では短絡電流、図11では開放電圧、図12では形状因子、図13では光電変換効率であり、それぞれNガス添加量0%のときの値を1として規格化した。
 GZO膜製膜時のNガス添加量が増加するに従い、短絡電流及び光電変換効率は減少した。一方、開放電圧及び形状因子はNガス添加量に依存しなかった。GZO膜への窒素混入による太陽電池セル光電変換効率の低下は、5%まで許容できる。従って、裏面側透明電極層としてGZO膜を製膜した場合、Nガス添加量は2%以下に管理する必要がある。
 図6及び図7を参照すると、GZO膜厚80nm及びNガス添加量2%以下の場合、波長450~600nmの領域ではドーパント量に依らず光吸収率20%以下が確実に達成できる。このようなGZO膜の光吸収率とNガス添加量との関係を用いれば、GZO膜の光吸収率から好適なNガス添加量(Nガス分圧比)を取得することができる。
 ここで、窒素を含有するGZO膜での光学的損失Aは式(1)で表される。
   A=I×{1-exp(-αd)} …(1)
      (I:入射光強度、α:吸収係数、d:GZO膜厚)
 αd≦0.2、すなわち、光吸収率20%以下では、1-exp(-αd)≒αdとなるため、光学的損失Aは式(2)で表される。
   A≒I×αd …(2)
 光学的損失分の短絡電流が減少することから、短絡電流の減少量はGZOの膜厚に比例する。従って、裏面側透明電極層としてGZO膜を製膜する場合、単位膜厚当たりのNガス分圧比は、2%/80nm=0.025%/nm以下とする。
 なお、裏面側透明電極層の膜厚が50nmから100nmで同様の実験を行ったところ、Nガス分圧比0.025%/nm以下で、短絡電流及び光電変換効率の低下を抑制することが確認できた。
(中間コンタクト層)
 中間コンタクト層としてのGZO膜製膜時のN分圧比を変えたタンデム型シリコン太陽電池セルの電池性能を評価した。
 大きさが1.4m×1.1mのガラス基板を用いて、タンデム型シリコン太陽電池セルの層構成を以下に示す。中間コンタクト層としてのGZO膜の製膜では、Arガスに対するNガス添加量(Nガス分圧比)を0%、1%、2%、4%、8%とした。その他のGZO製膜条件は、上述のGZO膜の光吸収係数を確認した試験と同一とした。
   基板側透明電極層:SnO膜、平均膜厚400nm
   非晶質シリコンp層:膜厚10nm
   非晶質シリコンi層:膜厚200nm
   結晶質シリコンn層:膜厚30nm
   中間コンタクト層:GZO膜(Ga0.5wt%)、膜厚80nm
   結晶質シリコンp層:膜厚20nm
   結晶質シリコンi層:膜厚2000nm
   結晶質シリコンn層:膜厚30nm
   裏面側透明電極層:GZO膜(Ga0.5wt%、Nガス添加量0%)、膜厚80nm
   裏面電極層:Ag、膜厚250nm
 図14乃至図17に、基板側透明電極層としてGZO膜を形成したタンデム型太陽電池セルの電池特性と、GZO製膜時のNガス添加量との関係を示す。同図において、横軸はNガス添加量である。縦軸は、図14では短絡電流、図15では開放電圧、図16では形状因子、図17では光電変換効率であり、それぞれNガス添加量0%のときの値を1として規格化した。
 GZO膜製膜時のNガス添加量が増加するに従い、短絡電流及び光電変換効率は減少した。一方、開放電圧及び形状因子はNガス添加量に依存しなかった。GZO膜への窒素混入による太陽電池セル光電変換効率の低下は、5%まで許容できる。従って、中間コンタクト層としてGZO膜を製膜した場合、Nガス添加量は2%以下に管理する必要がある。
 上述のように、短絡電流は窒素を含有するGZOの膜厚に比例することから、中間コンタクト層としてGZO膜を製膜する場合、単位膜厚当たりのNガス分圧比は、0.025%/nm以下とする。
 なお、中間コンタクト層の膜厚が20nmから100nmにおいても、Nガス分圧比0.025%/nm以下で、短絡電流及び光電変換効率の低下を抑制することが確認できた。
(基板側透明電極層)
 基板側透明電極層としてのGZO膜製膜時のN分圧比を変えたシングル型結晶質シリコン太陽電池セルの電池性能を評価した。
 大きさが1.4m×1.1mのガラス基板を用いて、以下の層構成を有するシングル型結晶質シリコン太陽電池セルを作製した。
   基板側透明電極層:GZO膜(Ga0.5wt%)、平均膜厚400nm
   結晶質シリコンp層:膜厚20nm
   結晶質シリコンi層:膜厚2000nm
   結晶質シリコンn層:膜厚30nm
   裏面側透明電極層:GZO膜(Ga0.5wt%、Nガス添加量0%)、膜厚80nm
   裏面電極層:Ag膜、膜厚250nm
 基板側透明電極層としてのGZO膜の製膜では、Arガスに対するNガス添加量(Nガス分圧比)を0%、0.4%、1%、2%、4%、8%とした。その他のGZO製膜条件は、上述のGZO膜の光吸収係数を確認した試験と同一とした。
 図18乃至図21に、基板側透明電極層としてGZO膜を形成したシングル型太陽電池セルの電池特性と、GZO製膜時のNガス添加量との関係を示す。同図において、横軸はNガス添加量である。縦軸は、図18では短絡電流、図19では開放電圧、図20では形状因子、図21では光電変換効率であり、それぞれNガス添加量0%のときの値を1として規格化した。
 GZO膜製膜時のNガス添加量が増加するに従い、短絡電流及び光電変換効率は減少した。一方、開放電圧及び形状因子はNガス添加量に依存しなかった。GZO膜への窒素混入による太陽電池セル光電変換効率の低下は、5%まで許容できる。そのため、基板側透明電極層としてGZO膜を製膜した場合、Nガス添加量は0.4%以下に管理する必要がある。すなわち、基板側透明電極層としてGZO膜を製膜する場合、単位膜厚当たりのNガス分圧比は、0.4%/400nm=0.001%/nm以下とする。基板側透明電極層は光電変換層に対して光入射側にあり厚膜とされるため、基板側透明電極層の場合は、中間コンタクト層や裏面側透明電極層の場合よりもGZO膜の光吸収率を小さくすることが必要である。太陽電池中でGZO膜が配置される位置に応じて、要求されるGZO膜の光吸収率を適宜設定し、N分圧比を決定すると良い。
 なお、基板側透明電極層の膜厚が400nmから1000nmにおいても、Nガス分圧比0.001%/nm以下で、短絡電流及び光電変換効率の低下を抑制することが確認できた。
 1 基板
 2 基板側透明電極層
 3 光電変換層
 4 裏面電極層
 5 中間コンタクト層
 6 裏面側透明電極層
 7 太陽電池モジュール
 31 非晶質シリコンp層
 32 非晶質シリコンi層
 33 非晶質シリコンn層
 41 結晶質シリコンp層
 42 結晶質シリコンi層
 43 結晶質シリコンn層
 91 第1電池層
 92 第2電池層
 100 光電変換装置

Claims (5)

  1.  基板上に基板側透明電極層を形成する工程、及び、光電変換層上に裏面側透明電極層を形成する工程の少なくとも一方の工程が、
     前記基板側透明電極層または前記裏面側透明電極層として、GaがドープされたZnOを主とする透明導電膜を、該透明導電膜の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が所定値以下となるように、前記Nガス分圧を制御して製膜する光電変換装置の製造方法。
  2.  基板上に基板側透明電極層を形成する工程、光電変換層を構成する複数の電池層のうち、隣接する2つの電池層の間に中間コンタクト層を形成する工程、及び、光電変換層上に裏面側透明電極層を形成する工程のうち少なくとも1つの工程が、
     前記基板側透明電極層、前記中間コンタクト層、及び前記裏面側透明電極層として、GaがドープされたZnOを主とする透明導電膜を、該透明導電膜の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が所定値以下となるように、前記Nガス分圧を制御して製膜する光電変換装置の製造方法。
  3.  前記中間コンタクト層を、該中間コンタクト層の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が0.025%/nm以下となるように、前記Nガス分圧を制御して製膜する請求項2に記載の光電変換装置の製造方法。
  4.  前記基板側透明電極層を、該基板側透明電極層の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が0.001%/nm以下となるように、前記Nガス分圧を制御して製膜する請求項1乃至請求項3のいずれか1項に記載の光電変換装置の製造方法。
  5.  前記裏面側透明電極層を、該中間コンタクト層または裏面側透明電極層の単位膜厚当たりの不活性ガス分圧に対するNガス分圧の比が0.025%/nm以下となるように、前記Nガス分圧を制御して製膜する請求項1乃至請求項4のいずれか1項に記載の光電変換装置の製造方法。
PCT/JP2010/060599 2009-09-10 2010-06-23 光電変換装置の製造方法 WO2011030598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10815196A EP2477233A1 (en) 2009-09-10 2010-06-23 Production method for photovoltaic device
US13/264,277 US20120040494A1 (en) 2009-09-10 2010-06-23 Process for producing photovoltaic device
CN2010800185065A CN102414842A (zh) 2009-09-10 2010-06-23 光电转换装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-209293 2009-09-10
JP2009209293A JP2011061017A (ja) 2009-09-10 2009-09-10 光電変換装置の製造方法

Publications (1)

Publication Number Publication Date
WO2011030598A1 true WO2011030598A1 (ja) 2011-03-17

Family

ID=43732275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060599 WO2011030598A1 (ja) 2009-09-10 2010-06-23 光電変換装置の製造方法

Country Status (5)

Country Link
US (1) US20120040494A1 (ja)
EP (1) EP2477233A1 (ja)
JP (1) JP2011061017A (ja)
CN (1) CN102414842A (ja)
WO (1) WO2011030598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515311A (ja) * 2014-04-30 2017-06-08 サンパワー コーポレイション 太陽電池金属化のための接合部

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203322A1 (en) * 2013-01-23 2014-07-24 Epistar Corporation Transparent Conductive Structure, Device comprising the same, and the Manufacturing Method thereof
EP2973736B1 (en) * 2013-03-15 2022-01-26 Arkema, Inc. Nitrogen-containing transparent conductive oxide cap layer composition
US9577045B2 (en) 2014-08-04 2017-02-21 Fairchild Semiconductor Corporation Silicon carbide power bipolar devices with deep acceptor doping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908617B2 (ja) 1991-09-24 1999-06-21 キヤノン株式会社 太陽電池
JP2007258537A (ja) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd 光電変換装置及びその製造方法
JP2009057605A (ja) * 2007-08-31 2009-03-19 Hitachi Ltd 酸化亜鉛薄膜、及びそれを用いた透明導電膜、及び表示素子
JP2009135220A (ja) * 2007-11-29 2009-06-18 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056863A1 (en) * 2003-09-17 2005-03-17 Matsushita Electric Industrial Co., Ltd. Semiconductor film, method for manufacturing the semiconductor film, solar cell using the semiconductor film and method for manufacturing the solar cell
US20100155738A1 (en) * 2005-02-22 2010-06-24 Hiroyuki Nabeta Light Emitting Diode and Method for Manufacturing Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908617B2 (ja) 1991-09-24 1999-06-21 キヤノン株式会社 太陽電池
JP2007258537A (ja) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd 光電変換装置及びその製造方法
JP2009057605A (ja) * 2007-08-31 2009-03-19 Hitachi Ltd 酸化亜鉛薄膜、及びそれを用いた透明導電膜、及び表示素子
JP2009135220A (ja) * 2007-11-29 2009-06-18 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASANOBU FUTSUHARA ET AL.: "Optical properties of zinc oxynitride thin films", THIN SOLID FILMS, vol. 317, 1998, pages 322 - 325

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515311A (ja) * 2014-04-30 2017-06-08 サンパワー コーポレイション 太陽電池金属化のための接合部
US10622505B2 (en) 2014-04-30 2020-04-14 Sunpower Corporation Bonds for solar cell metallization
US10923616B2 (en) 2014-04-30 2021-02-16 Sunpower Corporation Bonds for solar cell metallization

Also Published As

Publication number Publication date
US20120040494A1 (en) 2012-02-16
CN102414842A (zh) 2012-04-11
JP2011061017A (ja) 2011-03-24
EP2477233A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
AU2008233856B2 (en) Photovoltaic device and process for producing same.
JP5330723B2 (ja) 光電変換装置
JP5022341B2 (ja) 光電変換装置
WO2010052953A1 (ja) 光電変換装置の製造方法及び光電変換装置
WO2011030598A1 (ja) 光電変換装置の製造方法
JP4764469B2 (ja) 光電変換装置及び光電変換装置の製造方法
WO2009119125A1 (ja) 光電変換装置
WO2011061956A1 (ja) 光電変換装置
JP5030745B2 (ja) 光電変換装置の製造方法
WO2011070805A1 (ja) 光電変換装置の製造方法
WO2010064455A1 (ja) 光電変換装置
JP2011061124A (ja) 光電変換装置の製造方法及び光電変換装置
WO2012036074A1 (ja) 光電変換装置の製造方法
WO2012014550A1 (ja) 光電変換装置の製造方法
WO2009081855A1 (ja) 光電変換装置の製造方法及び光電変換装置
WO2010100782A1 (ja) 光電変換装置の製造方法及び製膜装置
JP5123871B2 (ja) 光電変換装置の製造方法
WO2011033885A1 (ja) 光電変換装置
WO2011004631A1 (ja) 光電変換装置の製造方法
JP2010251424A (ja) 光電変換装置
JP2010135637A (ja) 光電変換装置
JP2008251914A (ja) 多接合型光電変換装置
JP2011096848A (ja) 光電変換装置の製造方法
JP2011077380A (ja) 光電変換装置
JP2010199305A (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018506.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264277

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010815196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE