[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009119125A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2009119125A1
WO2009119125A1 PCT/JP2009/050098 JP2009050098W WO2009119125A1 WO 2009119125 A1 WO2009119125 A1 WO 2009119125A1 JP 2009050098 W JP2009050098 W JP 2009050098W WO 2009119125 A1 WO2009119125 A1 WO 2009119125A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
transparent electrode
film
photoelectric conversion
Prior art date
Application number
PCT/JP2009/050098
Other languages
English (en)
French (fr)
Inventor
坂井 智嗣
浅原 裕司
小林 靖之
森 匡史
鶴我 薫典
山下 信樹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US12/671,868 priority Critical patent/US20100229935A1/en
Priority to AU2009230532A priority patent/AU2009230532A1/en
Priority to CN200980100102A priority patent/CN101779293A/zh
Priority to EP09725180A priority patent/EP2190028A1/en
Publication of WO2009119125A1 publication Critical patent/WO2009119125A1/ja

Links

Images

Classifications

    • H01L31/022466
    • H01L31/022483
    • H01L31/0236
    • H01L31/02366
    • H01L31/0547
    • H01L31/0687
    • H01L31/1884
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device, and more particularly to a solar cell using silicon as a power generation layer.
  • a solar cell is known as a photoelectric conversion device that receives light and converts it into electric power.
  • solar cells for example, a thin-film solar cell in which a thin-film silicon layer is stacked on a power generation layer (photoelectric conversion layer) is easy to increase in area, and the film thickness is about 1/100 that of a crystalline solar cell.
  • the thin film silicon solar cell can be manufactured at a lower cost than the crystalline solar cell.
  • a disadvantage of the thin-film silicon solar cell is that the conversion efficiency is lower than that of the crystal system.
  • a tandem solar cell has been proposed that obtains high power generation efficiency by efficiently absorbing incident light by stacking two photoelectric conversion cells having different absorption wavelength bands.
  • long wavelength light having a wavelength of 600 nm to 1000 nm is absorbed in the crystalline silicon of the photoelectric conversion cell.
  • the absorption coefficient of crystalline silicon in the same wavelength region is small, the incident light is reflected in the solar cell. Therefore, it is necessary to increase the optical path length and increase the amount of light absorption in crystalline silicon. For this reason, in the super straight type in which sunlight is incident from the transparent substrate side, improvement of the back surface structure on the side opposite to the light incident side with respect to the power generation layer has been studied.
  • a back electrode is formed of a metal exhibiting a high reflectance with respect to light in the wavelength range of sunlight radiation spectrum, and a transparent conductive layer is provided between the back electrode and the silicon semiconductor layer. It is disclosed to form. By forming the transparent conductive layer, it is possible to prevent the back electrode material and the silicon thin film from being alloyed, maintain the high reflectivity of the back electrode, and prevent the conversion efficiency from being lowered.
  • Japanese Patent Publication No. 60-41878 Japanese Patent Publication No. 60-41878
  • the present invention aims to improve the short-circuit current of the photoelectric conversion device by optimizing the transparent conductive layer.
  • a photoelectric conversion device of the present invention is a photoelectric conversion device comprising a first transparent electrode layer, a power generation layer, a second transparent electrode layer, and a back electrode layer on a substrate,
  • the film thickness of the second transparent electrode layer is 80 nm or more and 100 nm or less, and the light absorption rate of the second transparent electrode layer in the region of wavelength 600 nm or more and 1000 nm or less is 1.5% or less.
  • the film thickness of the second transparent electrode layer When the film thickness of the second transparent electrode layer is increased, the distance between the power generation layer and the back electrode layer is increased, so that light absorption on the back electrode layer surface can be suppressed. This is because the electric field intensity distribution of light that penetrates into the back electrode layer becomes shallower and smaller as the thickness of the second transparent electrode layer increases, and the amount of light absorption in the back electrode layer decreases.
  • the conventional second transparent electrode layer since the conventional second transparent electrode layer has a large light absorptance, when the film thickness of the second transparent electrode layer is increased, the amount of light reflected by the back electrode layer and reaching the power generation layer decreases. .
  • the second transparent electrode layer has a film thickness of 80 nm to 100 nm, and the light absorption of the second transparent electrode layer in the wavelength region of 600 nm to 1000 nm.
  • a photoelectric conversion device having a rate of 1.5% or less, light absorption at the surface of the back electrode layer can be reduced, and light absorption at the second transparent electrode layer can also be reduced.
  • the amount of light absorbed by the power generation layer can be increased, and the short circuit current in the power generation layer can be increased.
  • the photoelectric conversion device of the present invention is a photoelectric conversion device comprising a first transparent electrode layer, a power generation layer, a second transparent electrode layer, and a back electrode layer on a substrate, wherein the second transparent electrode layer
  • the reflectance of light reflected by the interface between the second transparent electrode layer and the power generation layer and the interface between the second transparent electrode layer and the back electrode layer is a wavelength of 80 nm to 100 nm. It is characterized by being 91% or more in a region of 600 nm or more and 1000 nm or less.
  • the film thickness of the second transparent electrode layer is 80 nm or more and 100 nm or less, and the second transparent electrode layer and the power generation layer
  • the back electrode layer Light absorption at the surface can be reduced, and light absorption at the second transparent electrode layer can also be reduced. As a result, it is possible to increase the short-circuit current in the power generation layer.
  • the power generation layer preferably includes a crystalline silicon i layer.
  • Crystalline silicon absorbs light in the wavelength region of 600 nm to 1000 nm. Therefore, in the wavelength region of 600 nm to 1000 nm, the light absorptance of the second transparent electrode layer is 1.5% or less, or the reflectance of light reflected by the second transparent electrode layer and the back electrode layer is 91% or more. If so, the amount of light absorption in the crystalline silicon can be increased, so that the short-circuit current of the photoelectric conversion device is further improved.
  • the power generation layer includes two or more battery layers, and has at least one intermediate contact layer provided between one battery layer and another battery layer closest to the one battery layer. Also good.
  • the intermediate contact layer has an effect of enhancing optical confinement.
  • the reflected light from the back electrode layer and the second transparent electrode layer can be increased, and the short-circuit current improvement effect is enhanced.
  • the power generation layer is composed of a single battery layer, the battery layer has an amorphous silicon i layer, and the light absorption rate of the second transparent electrode layer is 1 in a region having a wavelength of 600 nm to 800 nm. It is preferably 0.0% or less.
  • the power generation layer comprises a single battery layer
  • the battery layer has an amorphous silicon i layer, an interface between the second transparent electrode layer and the power generation layer, and the second transparent electrode layer
  • the reflectance of the light reflected at the interface between the back electrode layer and the back electrode layer is preferably 91% or more in a region having a wavelength of 600 nm to 800 nm.
  • the back electrode layer preferably includes one or more kinds of thin films selected from a silver thin film, an aluminum thin film, a gold thin film, and a copper thin film. Since the listed thin films have high reflectance, the amount of light absorbed by the power generation layer can be increased, and the short-circuit current in the power generation layer can be increased.
  • the film thickness of the second transparent electrode layer is 80 nm or more and 100 nm or less, and the light absorption rate of the second transparent electrode layer in the region of wavelength 600 nm or more and 1000 nm or less is 1.5% or less.
  • the amount of light absorption in the power generation layer is increased, and a photoelectric conversion device showing a high short-circuit current is obtained.
  • the thickness of the second transparent electrode layer is 80 nm or more and 100 nm or less, the interface between the second transparent electrode layer and the power generation layer, and the second transparent electrode layer and the back electrode.
  • the reflectance of the light reflected at the interface with the layer is 91% or more in the wavelength region of 600 nm or more and 1000 nm or less, the amount of light absorption in the power generation layer is increased, and a photoelectric conversion device showing a high short-circuit current is obtained. .
  • FIG. 1 is a schematic diagram illustrating a configuration of a photoelectric conversion apparatus according to the present embodiment.
  • the photoelectric conversion device 100 is a silicon-based solar cell, and includes a substrate 1, a first transparent electrode layer 2, a first battery layer 91 (amorphous silicon) as a power generation layer 3, and a second battery layer 92 (crystalline silicon). System), the second transparent electrode layer 6 and the back electrode layer 4 are provided as a back surface structure.
  • the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
  • the crystalline silicon system means a silicon system other than the amorphous silicon system, and includes a microcrystalline silicon and a polycrystalline silicon system.
  • FIG. 2 As the substrate 1, a soda float glass substrate (for example, 1.4 m ⁇ 1.1 m ⁇ plate thickness: a large area substrate having a side of 3 to 6 mm exceeding 1 m) is used.
  • the end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.
  • FIG. 2 (b) As the first transparent electrode layer 2, a transparent electrode film having a thickness of about 500 nm or more and 800 nm or less mainly composed of tin oxide (SnO 2 ) is formed at about 500 ° C. with a thermal CVD apparatus. At this time, a texture with appropriate irregularities is formed on the surface of the transparent electrode film.
  • an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film.
  • a silicon oxide film (SiO 2 ) having a thickness of 50 nm or more and 150 nm or less is formed at about 500 ° C. using a thermal CVD apparatus.
  • FIG. 2 (c) Thereafter, the substrate 1 is set on an XY table, and the first harmonic (1064 nm) of the YAG laser is incident from the layer surface side of the first transparent electrode layer as indicated by an arrow in the figure.
  • the laser power is adjusted so that the processing speed is appropriate, and the substrate 10 and the laser beam are moved relative to each other in the direction perpendicular to the series connection direction of the power generation cells so that the groove 10 is formed. And laser etching into a strip shape having a predetermined width of about 6 mm to 15 mm.
  • FIG. 2 (d) As the first battery layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, amorphous silicon p from the incident side of sunlight on the first transparent electrode layer 2 at a reduced pressure atmosphere: 30 Pa to 1000 Pa, substrate temperature: about 200 ° C. The layer 31, the amorphous silicon i layer 32, and the amorphous silicon n layer 33 are formed in this order. The amorphous silicon p layer 31 is an amorphous B-doped silicon film and has a thickness of 10 nm to 30 nm.
  • the amorphous silicon i layer 32 has a thickness of 200 nm to 350 nm.
  • the amorphous silicon n layer 33 is a P-doped amorphous silicon film and has a thickness of 30 nm to 50 nm.
  • a crystalline silicon film may be formed, or a laminated structure of an amorphous silicon film and a crystalline silicon film may be used.
  • a buffer layer may be provided between the amorphous silicon p layer 31 and the amorphous silicon i layer 32 in order to improve interface characteristics.
  • p layer, i layer, and n layer which consist of a crystalline silicon thin film as a 2nd battery layer 92 are formed into a film with a plasma CVD apparatus.
  • SiH 4 gas and H 2 gas as main raw materials, under reduced pressure atmosphere: 3000 Pa or less, substrate temperature: about 200 ° C., plasma generation frequency: 40 MHz or more and 100 MHz or less, crystalline silicon p layer 41, crystalline silicon i layer 42 Then, the crystalline silicon n layer 43 is formed in this order.
  • the crystalline silicon p layer 41 is a B-doped crystalline silicon film having a thickness of 10 nm to 50 nm.
  • the film thickness of the crystalline silicon i layer 42 is 1.2 ⁇ m or more and 3.0 ⁇ m or less.
  • the crystalline silicon n layer 43 is a P-doped crystalline silicon film having a thickness of 20 nm to 50 nm.
  • the intermediate contact layer 5 serving as a semi-reflective film is formed on the first battery layer 91 in order to improve the contact between the first battery layer 91 and the second battery layer 92 and to achieve current matching. You may do it.
  • a target: Ga-doped ZnO sintered body is used to form a GZO (Ga-doped ZnO) film having a film thickness of 20 nm or more and 100 nm or less using a DC sputtering apparatus.
  • FIG. 2 (e) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is incident from the film surface side of the photoelectric conversion layer 3 as shown by the arrow in the figure.
  • Pulse oscillation The laser power is adjusted to be 10 kHz or more and 20 kHz or less so as to be suitable for the processing speed, and the groove 11 is formed on the lateral side of the laser etching line of the first transparent electrode layer 2 from about 100 ⁇ m to 150 ⁇ m.
  • Laser etching The laser may be incident from the substrate 1 side.
  • the position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.
  • FIG. 3 (a) A second transparent electrode layer 6 and a back electrode layer 4 are formed in this order on the crystalline silicon n layer 43 of the second battery layer 92.
  • a target Ga-doped ZnO sintered body, discharge gas: argon and oxygen, oxygen partial pressure: 0.5% to 2%, substrate temperature: 20 ° C to 200 ° C
  • a GZO film is formed under the condition of 0 ° C. or lower.
  • the film thickness of the second transparent electrode layer 6 is not less than 80 nm and not more than 100 nm, preferably not less than 90 nm and not more than 100 nm.
  • the transparency of the second transparent electrode layer is improved by forming the GZO film while introducing oxygen.
  • the appropriate value of the oxygen partial pressure is set by measuring the absorption rate and conductivity of the second transparent electrode layer. That is, if the oxygen partial pressure is too high, the absorptance becomes small, but the conductivity is deteriorated and it does not function as a transparent electrode layer. If the oxygen partial pressure is too low, the conductivity will be good, but the absorption rate will deteriorate.
  • the thickness of the second transparent electrode layer of the solar cell is determined by exposing the cross section of the solar cell by cutting, polishing, focused ion beam (FIB) processing, etc., and then scanning electron microscope (SEM) or transmission electron microscope (TEM). The cross section is observed and measured using
  • a silver thin film is formed at a target: Ag, a discharge gas: argon, and a film forming temperature: about 150 ° C. by a sputtering apparatus.
  • a silver thin film 200 to 500 nm and a titanium thin film having a high anticorrosive effect as a protective film: 10 to 20 nm may be laminated in order to form a silver thin film / titanium thin film laminated film. good. In this case, it is set as the layer structure by which a silver thin film is installed in the board
  • an aluminum thin film, a gold thin film, or a copper thin film can be formed. In particular, it is preferable to form an aluminum thin film because the material cost can be greatly reduced. Further, for example, a back electrode layer made of a laminated film of a silver thin film / aluminum thin film may be formed.
  • FIG. 3 (b) The substrate 1 is placed on the XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is incident from the substrate 1 side as indicated by the arrow in the figure.
  • the laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
  • Laser power is adjusted so as to be suitable for processing speed, and laser etching is performed so that grooves 12 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 250 ⁇ m to 400 ⁇ m. To do.
  • FIG. 3 (c) The power generation region is divided to eliminate the influence that the serial connection portion due to laser etching is likely to be short-circuited at the film edge around the substrate edge.
  • the substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is incident from the substrate 1 side. Laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode Layer 2 is removed.
  • Pulse oscillation 1 kHz or more and 10 kHz or less
  • the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 mm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG.
  • Laser etching is performed to form 15.
  • the Y-direction insulating groove does not need to be provided because the film surface polishing removal process in the peripheral region of the substrate 1 is performed in a later step.
  • the insulating groove 15 has an effective effect in suppressing external moisture intrusion into the solar cell module 7 from the end of the solar cell panel by terminating the etching at a position of 5 mm to 10 mm from the end of the substrate 1. Therefore, it is preferable.
  • the laser beam in the above steps is a YAG laser
  • a YVO4 laser or a fiber laser there are some that can use a YVO4 laser or a fiber laser in the same manner.
  • Processing is performed so that power can be extracted from the terminal box portion on the back side of the solar cell panel by collecting copper foil from the one end solar cell and the other end solar cell.
  • the copper foil arranges an insulating sheet wider than the copper foil width.
  • a back sheet 24 having a high waterproofing effect is installed on the EVA.
  • the back sheet 24 has a three-layer structure of PET sheet / Al foil / PET sheet so that the waterproof and moisture-proof effect is high.
  • the one with the back sheet 24 arranged at a predetermined position is deaerated inside in a reduced pressure atmosphere by a laminator and pressed at about 150 ° C. to 160 ° C., and EVA is crosslinked and brought into close contact.
  • FIG. 5 (a) The terminal box 23 is attached to the back side of the solar cell module 7 with an adhesive.
  • FIG. 5 (12) FIG. 5 (b) The copper foil and the output cable of the terminal box 23 are connected with solder or the like, and the inside of the terminal box is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.
  • a sealing agent potting agent
  • FIG. 5 (c) A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG.
  • the power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).
  • FIG. 5 Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.
  • the second transparent electrode layer having the above thickness, the distance between the silicon as the power generation layer and the silver thin film as the back electrode layer is increased, and the absorption on the surface of the silver thin film is reduced.
  • the film thickness of the second transparent electrode layer is 80 nm or more and 100 nm or less.
  • the light absorption rate of the second transparent electrode layer in the region of wavelength 600 nm to 1000 nm is 1.5% or less, or in the region of wavelength 600 nm to 1000 nm, the interface between the second transparent electrode layer and the power generation layer and the second (2)
  • the reflectance of light reflected at the interface between the transparent electrode layer and the back electrode layer is 91% or more.
  • the second transparent electrode layer has a film thickness of 80 nm or more and 100 nm or less and has high transparency, the distance between the power generation layer and the silver thin film as the back electrode layer is increased, and the surface of the silver thin film is increased. Absorption and light loss in the second transparent electrode layer are reduced. As a result, the amount of light absorbed by the second battery layer increases and the short-circuit current of the solar battery increases.
  • the battery layer is an amorphous silicon single solar cell having an amorphous silicon i layer
  • the light absorption rate of the second transparent electrode layer in the region of the wavelength of 600 nm to 800 nm is 1.0% or less, or the wavelength In the region of 600 nm or more and 800 nm or less
  • the reflectance of light reflected at the interface between the second transparent electrode layer and the power generation layer and the interface between the second transparent electrode layer and the back electrode layer is set to 91% or more.
  • the light loss in the second transparent electrode layer is reduced.
  • the amount of light absorbed by the battery layer increases and the short-circuit current of the solar battery increases.
  • the absorptivity spectrum of a structural model (structure model 1) in which GZO films having light absorption characteristics (A), (B), and (C) were formed on a glass substrate was calculated.
  • structure model 1 light generated on the air side is incident on the GZO film, part of which is reflected on the air side, and part of the light is transmitted on the glass side.
  • the absorption of light in the GZO film can be obtained without adding the absorption in the semi-infinite medium on both sides of the GZO film to the calculation.
  • the absorption spectrum of the structural model 1 can be experimentally observed by using a sufficiently transparent optical glass for the glass substrate.
  • FIG. 6 shows an example of calculation of the absorptivity spectrum of (A): structural model 1 in which a GZO film having a small optical absorptance is formed.
  • FIG. 7 shows an example of calculation of the absorptivity spectrum of (B): structural model 1 in which a GZO film having a medium optical absorptance is formed.
  • FIG. 8 shows a calculation example of the absorptivity spectrum of (C): structural model 1 in which a GZO film having a large light absorptance is formed. 6 to 8, the horizontal axis represents wavelength and the vertical axis represents absorption rate.
  • FIG. 6 The GZO film having a small light absorption rate has a light absorption rate of 0.2% or less in a region having a film thickness of 100 nm or less and a wavelength of 600 nm or more and 1000 nm or less.
  • the GZO film having a large light absorption rate had a film thickness of 50 nm and a light absorption rate on the long wavelength side (wavelength of 950 nm or more) of greater than 1.5%. As the GZO film thickness increased, the wavelength range exceeding 1.5% of the light absorptance increased.
  • a reflectance spectrum was calculated for the structural model 2 in which a GZO film and a silver thin film (film thickness: 300 nm) were laminated in this order on a glass substrate.
  • the glass substrate, the GZO film, and the silver thin film were assumed to be smooth.
  • the structure model 2 light generated on the glass side is incident on the laminated film of the GZO film and the silver thin film, and a part of the light is reflected on the glass side.
  • the reflectance of the laminated film of the GZO film and the silver thin film can be obtained without adding the glass absorption to the calculation.
  • the reflectance spectrum of the structural model 2 can be experimentally observed by using a sufficiently transparent optical glass for the glass substrate.
  • FIG. 9 shows a calculation example of the reflectance spectrum of (A): structural model 2 in which a GZO film having a small light absorption rate is formed.
  • FIG. 10 shows a calculation example of the reflectance spectrum of the structural model 2 in which (B): a GZO film having a light absorptance is formed.
  • FIG. 11 shows an example of calculation of the reflectance spectrum of the structural model 2 in which (C): a GZO film having a large light absorption rate is formed.
  • the horizontal axis represents wavelength and the vertical axis represents reflectance.
  • the GZO film having a small light absorption rate has a reflectivity of 93% or more in a region where the film thickness is 100 nm or less and the wavelength is 600 nm or more and 1000 nm or less.
  • the GZO film in the light absorptance had a reflectance of 91% or more in a region having a film thickness of 100 nm or less and a wavelength of 600 nm or more and 1000 nm or less.
  • C As shown in FIG. 11, the GZO film having a large light absorptivity had a reduced reflectance when the film thickness was large, and a wavelength region where the reflectance was less than 91% when the film thickness was 70 nm or more appeared.
  • the reflectance spectrum was calculated for the structural model 3 shown in FIG.
  • the structural model 3 in FIG. 12 has a configuration in which a crystalline silicon layer 111 (film thickness: semi-infinite), a GZO film 112, and a silver thin film 113 (film thickness: 300 nm) are stacked in this order.
  • An air layer 114 was provided on the opposite side of the silver thin film 113 from the GZO film 112.
  • light generated on the crystalline silicon layer side is incident on the laminated film of the GZO film and the silver thin film, and a part of the light is reflected on the crystalline silicon side.
  • the reflectance of the laminated film of the GZO film and the silver thin film can be obtained without adding the absorption in the crystalline silicon layer to the calculation.
  • the structure model 3 is similar in structure to the structure model 2, but the medium on the light incident side is different. That is, since the boundary conditions for solving the optical thin film interference are different, the obtained results are completely different. Furthermore, the structural model 3 is theoretically impossible to observe experimentally, and the phenomenon can be examined only by calculation.
  • the thickness of the GZO film having a maximum reflectance becomes 80 nm or more and 100 nm or less, and shifts to the thicker film side than the GZO film having a large light absorption rate.
  • the transparency of the GZO film is improved to reduce the light loss in the GZO film, and the GZO film is thickened to increase the distance between the power generation layer and the silver thin film, thereby reducing the absorption on the surface of the silver thin film. Therefore, it was found that the amount of light reflected by the second transparent electrode layer and the back electrode layer and returning to the power generation layer can be increased.
  • An amorphous silicon p layer, an amorphous silicon i layer and a crystalline silicon n layer, a second transparent electrode layer, and a back electrode layer are sequentially formed on a glass substrate as a first transparent electrode layer and a power generation layer.
  • a silicon solar battery cell was produced.
  • the film thickness of the first transparent electrode layer was 700 nm
  • the film thickness of the amorphous silicon p layer was 10 nm
  • the film thickness of the amorphous silicon i layer was 200 nm
  • the film thickness of the crystalline silicon n layer was 30 nm.
  • a DC sputtering apparatus is used as the second transparent electrode layer, and a GZO film is formed at a target: Ga-doped ZnO sintered body, discharge gas: argon and oxygen, oxygen partial pressure: 0.5%, and substrate temperature: 60 ° C. did. Under the above film forming conditions, the light absorption rate of the second transparent electrode layer in the region of the wavelength of 600 nm or more and 1000 nm or less was 0.2% or less.
  • a DC sputtering apparatus was used as the back electrode layer, and a silver thin film having a thickness of 250 nm was formed at a target: Ag, a discharge gas: argon, and a substrate temperature: 135 ° C. After forming the back electrode layer, an annealing treatment was performed in a nitrogen atmosphere at a temperature of 160 ° C. and a treatment time of 2 hours.
  • FIG. 16 the graph showing the relationship between the film thickness of a 2nd transparent electrode layer (GZO film) and the short circuit current of an amorphous silicon photovoltaic cell is shown.
  • the horizontal axis represents the film thickness
  • the vertical axis represents the relative value of the short-circuit current when the short-circuit current at the second transparent electrode layer thickness of 40 nm is used as a reference.
  • the value of the short circuit current is an average value obtained by measuring 15 cells in a 5 cm square substrate surface and 5 substrates.
  • the short circuit current was almost the same, but the short circuit current was increased at the film thickness of 80 nm and 100 nm.
  • a first transparent electrode layer On a glass substrate, a first transparent electrode layer, a power generation layer made of amorphous silicon (first battery layer), an intermediate contact layer, a power generation layer made of crystalline silicon (second battery layer), a second transparent electrode layer, And the back electrode layer was formed in order and the tandem type photovoltaic cell was produced.
  • the power generation layers were formed in the order of p layer, i layer, and n layer from the substrate side.
  • the film thickness of the first transparent electrode layer was 700 nm.
  • the film thickness of the first battery layer p layer was 10 nm, the film thickness of the first battery layer i layer was 200 nm, and the film thickness of the first battery layer n layer was 30 nm.
  • the film thickness of the intermediate contact layer was 70 nm.
  • the film thickness of the second battery layer p layer was 30 nm, the film thickness of the second battery layer i layer was 2000 nm, and the film thickness of the second battery layer n layer was 30 nm.
  • a DC sputtering apparatus is used as the second transparent electrode layer, and a GZO film is formed at a target: Ga-doped ZnO sintered body, discharge gas: argon and oxygen, oxygen partial pressure: 0.5%, and substrate temperature: 60 ° C. did. Under these film forming conditions, the light absorptance of the second transparent electrode layer in the wavelength region of 600 nm to 1000 nm was 0.2% or less.
  • a DC sputtering apparatus was used as the back electrode layer, and a silver thin film having a thickness of 250 nm was formed at a target: Ag, a discharge gas: argon, and a substrate temperature: 135 ° C. After forming the back electrode layer, an annealing treatment was performed in a nitrogen atmosphere at a temperature of 160 ° C. and a treatment time of 2 hours.
  • FIG. 17 is a graph showing the relationship between the film thickness of the second transparent electrode layer (GZO film) and the short-circuit current of the tandem solar cell.
  • the horizontal axis represents the film thickness
  • the vertical axis represents the relative value of the short-circuit current when the short-circuit current at the second transparent electrode layer thickness of 40 nm is used as a reference.
  • the value of the short circuit current is an average value obtained by measuring 15 cells in a 5 cm square substrate surface and 5 substrates.
  • the short-circuit current was almost the same, but the short-circuit current increased when the film thickness was 80 nm and 100 nm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 透明導電層を最適化することによって、光電変換装置の短絡電流を向上させる。基板(1)上に第1透明電極層(2)と、発電層(3)と、第2透明電極層(6)と、裏面電極層(4)とを備える光電変換装置(100)であって、前記第2透明電極層(6)の膜厚が80nm以上100nm以下であり、波長600nm以上1000nm以下の領域における前記第2透明電極層(6)の光吸収率が1.5%以下であることを特徴とする光電変換装置(100)。及び、前記第2透明電極層(6)の膜厚が80nm以上100nm以下であり、前記第2透明電極層(6)及び前記裏面電極層(4)で反射された光の反射率が、波長600nm以上1000nm以下の領域で91%以上であることを特徴とする光電変換装置(100)。

Description

光電変換装置
 本発明は、光電変換装置に関し、特に発電層としてシリコンを用いる太陽電池に関する。
 光を受光して電力に変換する光電変換装置として、太陽電池が知られている。太陽電池の中でも、例えば発電層(光電変換層)に薄膜シリコン系の層を積層させた薄膜系太陽電池は、大面積化が容易である、膜厚が結晶系太陽電池の1/100程度と薄く、材料が少なくて済む、などの利点がある。このため、薄膜シリコン系太陽電池は、結晶系太陽電池と比較して低コストでの製造が可能となる。しかしながら、薄膜シリコン系太陽電池の短所としては、変換効率が結晶系に比べて低いことが挙げられる。
 薄膜系太陽電池において、変換効率、すなわち、出力電力を増加させるために、種々の工夫がなされてきた。例えば、吸収波長帯域が異なる光電変換セルを2段重ねることによって、入射光を効率良く吸収させて高い発電効率を得るタンデム型太陽電池が提案されている。この場合、光電変換セルの結晶質シリコンにおいて波長600nmから1000nmの長波長光が吸収されるが、同波長域での結晶質シリコンの吸収係数が小さいために、太陽電池内で入射光を反射させて光路長を長くし、結晶質シリコンでの光吸収量を増大させる必要がある。このため、透明基板側から太陽光が入射するスーパーストレート型においては、発電層に対して光入射側と反対側の裏面構造の改良が検討されてきた。
 特許文献1には、裏面構造として、太陽光の放射スペクトルの波長域の光に対して高い反射率を示す金属で背面電極を形成し、背面電極とシリコン半導体層との間に透明導電層を形成することが開示されている。透明導電層を形成することによって、背面電極材料とシリコン薄膜とが合金化するのを防止して背面電極の高反射率を維持し、変換効率の低下を防止することができる。
特公昭60-41878号公報
 従来は、上記透明導電層の製膜条件の適正化が未達であり、透明導電層の内部透明性に問題があった。従来、上記透明導電層の製膜条件を設定する際に、一般的に導電性を重視し、内部透明性が犠牲になる傾向があった。ここで、導電性と内部透明性は背反事象であることが良く知られている。上記透明導電層を形成した場合、透明導電層による光吸収が損失となり、太陽電池の短絡電流低下の原因となっていた。このため、透明導電層の透明性を改善して、太陽電池の短絡電流を向上させることが課題となっていた。
 本発明は、透明導電層を最適化することによって、光電変換装置の短絡電流を向上させることを目的とする。
 上記課題を解決するために、本発明の光電変換装置は、基板上に第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、前記第2透明電極層の膜厚が80nm以上100nm以下であり、波長600nm以上1000nm以下の領域における前記第2透明電極層の光吸収率が1.5%以下であることを特徴とする。
 第2透明電極層の膜厚を増加させると、発電層と裏面電極層との距離が大きくなるので、裏面電極層表面での光吸収を抑制することができる。この理由は、第2透明電極層の膜厚増に応じて、裏面電極層の内部に染み込む光の電界強度分布が浅くかつ小さくなり、裏面電極層での光吸収量が減少するためである。一方で、従来の第2透明電極層は光吸収率が大きいために、第2透明電極層の膜厚を増加させた場合に裏面電極層で反射され発電層に到達する光の光量が減少する。
 最適な第2透明電極層の膜厚及び光学特性を検討した結果、第2透明電極層の膜厚が80nm以上100nm以下であり、波長600nm以上1000nm以下の領域における第2透明電極層の光吸収率が1.5%以下である光電変換装置とすることにより、裏面電極層表面での光吸収を低減させるとともに、第2透明電極層での光吸収も低減させることができる。この結果、発電層で吸収される光の光量を増大させ、発電層での短絡電流を増加させることができる。
 また、本発明の光電変換装置は、基板上に第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、前記第2透明電極層の膜厚が80nm以上100nm以下であり、前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上1000nm以下の領域で91%以上であることを特徴とする。
 このように、最適な第2透明電極層の膜厚及び光学特性を検討した結果、第2透明電極層の膜厚が80nm以上100nm以下であり、前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上1000nm以下の領域で91%以上である光電変換装置とすることにより、裏面電極層表面での光吸収を低減させるとともに、第2透明電極層での光吸収も低減させることができる。この結果、発電層での短絡電流を増加させることが可能となる。
 上記発明において、前記発電層が、結晶質シリコンi層を含むことが好ましい。結晶質シリコンは、波長600nmから1000nmの領域の光を吸収する。従って、波長600nm以上1000nm以下の領域において、第2透明電極層の光吸収率が1.5%以下、または、第2透明電極層及び裏面電極層で反射された光の反射率が91%以上であれば、結晶質シリコンでの光吸収量を増大させることができるので、光電変換装置の短絡電流が更に向上する。
 この場合、前記発電層が、2以上の電池層を備え、1つの電池層と該1つの電池層に最も近い他の電池層との間に設けられた中間コンタクト層を少なくとも1つ有してもよい。
 中間コンタクト層は光閉じ込め増強効果がある。中間コンタクト層を設けることにより、裏面電極層及び第2透明電極層からの反射光を増加させることができ、短絡電流向上効果が高くなる。
 上記発明において、前記発電層が単一の電池層からなり、該電池層が非晶質シリコンi層を有し、波長600nm以上800nm以下の領域における前記第2透明電極層の光吸収率が1.0%以下であることが好ましい。
 非晶質シリコンは、波長600nmから1000nmの領域の光を吸収する。このように、発電層が非晶質シリコンi層を有する単一の電池層からなる光電変換装置においては、波長600nm以上800nm以下の領域で、第2透明電極層の光吸収率が1.0%以下であれば、非晶質シリコンでの光吸収量を増大させることができる。この結果、光電変換装置の短絡電流を増加させることができる。
 上記発明において、前記発電層が単一の電池層からなり、該電池層が非晶質シリコンi層を有し、前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上800nm以下の領域で91%以上であることが好ましい。これにより、発電層が非晶質シリコンi層を有する単一の電池層からなる光電変換装置において、非晶質シリコンでの光吸収量を増大させることができ、光電変換装置の短絡電流を増加させることができる。
 上記発明において、前記裏面電極層が、銀薄膜、アルミ薄膜、金薄膜、銅薄膜の中から選択される1種類以上の薄膜を備えることが好ましい。
 列挙した薄膜は反射率が高いため、発電層で吸収される光の光量を増大させ、発電層での短絡電流を増加させることができる。
 本発明の光電変換装置は、第2透明電極層の膜厚が80nm以上100nm以下であり、波長600nm以上1000nm以下の領域における第2透明電極層の光吸収率が1.5%以下であるため、発電層での光吸収量が増大し、高い短絡電流を示す光電変換装置となる。
 また、本発明の光電変換装置は、第2透明電極層の膜厚が80nm以上100nm以下であり、前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上1000nm以下の領域で91%以上であるため、発電層での光吸収量が増大し、高い短絡電流を示す光電変換装置となる。
本発明の一実施形態に係る光電変換装置の構成を模式的に示した断面図である。 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 光吸収率が小さいGZO膜を形成した構造モデル1の吸収率スペクトルの計算例である。 光吸収率が中程度のGZO膜を形成した構造モデル1の吸収率スペクトルの計算例である。 光吸収率が大きいGZO膜を形成した構造モデル1の吸収率スペクトルの計算例である。 光吸収率が小さいGZO膜を形成した構造モデル2の反射率スペクトルの計算例である。 光吸収率が中程度GZO膜を形成した構造モデル2の反射率スペクトルの計算例である。 光吸収率が大きいGZO膜を形成した構造モデル2の反射率スペクトルの計算例である。 光学薄膜計算に使用した構造モデル3を示す図である。 波長600nmにおける第2透明電極層の膜厚と反射率との関係を示すグラフである。 波長800nmにおける第2透明電極層の膜厚と反射率との関係を示すグラフである。 波長1000nmにおける第2透明電極層の膜厚と反射率との関係を示すグラフである。 第2透明電極層の膜厚と、アモルファスシリコン太陽電池セルの短絡電流の相対値との関係を表すグラフである。 第2透明電極層の膜厚と、タンデム型太陽電池セルの短絡電流の相対値との関係を表すグラフである。
符号の説明
 1 基板
 2 第1透明電極層
 3 光電変換層
 4 裏面電極層
 5 中間コンタクト層
 6 第2透明電極層
 7 太陽電池モジュール
 31 非晶質シリコンp層
 32 非晶質シリコンi層
 33 非晶質シリコンn層
 41 結晶質シリコンp層
 42 結晶質シリコンi層
 43 結晶質シリコンn層
 91 第1電池層
 92 第2電池層
 100 光電変換装置
 本発明の光電変換装置の実施形態の構成について説明する。
 図1は、本実施形態に係る光電変換装置の構成を示す概略図である。光電変換装置100は、シリコン系太陽電池であり、基板1、第1透明電極層2、発電層3としての第1電池層91(非晶質シリコン系)及び第2電池層92(結晶質シリコン系)、裏面構造として第2透明電極層6及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
 次に、本実施形態の光電変換装置として、太陽電池パネルを製造する工程を図2から図5を用いて説明する。
(1)図2(a)
 基板1としてソーダフロートガラス基板(例えば、1.4m×1.1m×板厚:3~6mmの一辺が1mを超える大面積基板)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(2)図2(b)
 第1透明電極層2として酸化錫(SnO)を主成分とする膜厚約500nm以上800nm以下の透明電極膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャが形成される。第1透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、膜厚50nm以上150nm以下の酸化シリコン膜(SiO)を熱CVD装置にて約500℃で製膜する。
(3)図2(c)
 その後、基板1をX-Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、第1透明電極層の層面側から入射する。加工速度が適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(4)図2(d)
 第1電池層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、第1透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコン膜であり、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33はPドープ非晶質シリコン膜であり、膜厚30nm以上50nm以下である。非晶質シリコンn層33に代えて、結晶質シリコン膜を形成しても良く、あるいは、非晶質シリコン膜と結晶質シリコン膜との積層構造としても良い。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
 第1電池層91上に、第2電池層92として結晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、結晶質シリコンp層41、結晶質シリコンi層42、結晶質シリコンn層43の順で製膜する。
 結晶質シリコンp層41はBドープした結晶質シリコン膜であり、膜厚10nm以上50nm以下である。結晶質シリコンi層42の膜厚は、1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした結晶質シリコン膜であり、膜厚20nm以上50nm以下である。
 本実施形態において、第1電池層91上に、第1電池層91と第2電池層92との接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5を形成しても良い。中間コンタクト層5として、DCスパッタリング装置により、ターゲット:GaドープZnO焼結体を用いて、膜厚20nm以上100nm以下のGZO(GaドープZnO)膜を形成する。
(5)図2(e)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10kHz以上20kHz以下として加工速度に適切となるようにレーザーパワーを調整して、第1透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から入射しても良い。この場合は光電変換層3の第1電池層91で吸収されたエネルギーで発生する高い蒸気圧を利用できるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(6)図3(a)
 第2電池層92の結晶質シリコンn層43上に、順に第2透明電極層6及び裏面電極層4を形成する。
 第2透明電極層6として、スパッタリング装置により、ターゲット:GaドープZnO焼結体を用いて、放電ガス:アルゴン及び酸素、酸素分圧:0.5%以上2%以下、基板温度20℃以上200℃以下の条件で、GZO膜を製膜する。第2透明電極層6の膜厚は、80nm以上100nm以下、好ましくは90nm以上100nm以下、とする。上記のように、本実施形態では、酸素を導入しながらGZO膜を製膜することによって、第2透明電極層の透明性を向上させる。
 なお、酸素分圧の適正値は、第2透明電極層の吸収率と導電性を計測し、設定する。すなわち、酸素分圧が高すぎると吸収率は小さくなるが、導電性が悪化し、透明電極層として機能しなくなる。酸素分圧が低すぎると、導電性は良好となるが、吸収率が悪化する。
 太陽電池の第2透明電極層の膜厚は、切断、研磨、集束イオンビーム(FIB)加工などにより太陽電池断面を露出させた後、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて断面を観察して測定する。
 裏面電極層4として、スパッタリング装置により、ターゲット:Ag、放電ガス:アルゴン、製膜温度:約150℃にて銀薄膜を製膜する。あるいは、裏面電極層4として、銀薄膜:200~500nm、これを保護するものとして防食効果の高いチタン薄膜:10~20nmを順に積層して、銀薄膜/チタン薄膜の積層膜を形成しても良い。この場合は、基板側に銀薄膜が設置される層構成とする。
 裏面電極層4として、アルミ薄膜、金薄膜、または銅薄膜を形成することも可能である。特に、アルミ薄膜を形成する場合は、材料コストを大幅に削減できるため好ましい。また、例えば、銀薄膜/アルミ薄膜の積層膜からなる裏面電極層を形成しても良い。
 本実施形態において、波長600nm以上1000nm以下の領域における第2透明電極層7の光吸収率は、1.5%以下、好ましくは0.2%以下とされる。また、波長600nm以上1000nm以下の領域において、第2透明電極層と発電層との界面及び第2透明電極層と裏面電極層との界面で反射された光の反射率は、91%以上、好ましくは93%以上とされる。
(7)図3(b)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(8)図3(c)
 発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3とで吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
 絶縁溝15は基板1の端より5mmから10mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール7内部への外部湿分浸入の抑制に、有効な効果を奏するので好ましい。
 尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
(9)図4(a)
 後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲領域14)の積層膜は、段差があるとともに剥離し易いため、積層膜を除去する。基板1の端から5mmから20mmで基板1の全周囲にわたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。研磨屑や砥粒は基板1を洗浄処理して除去する。
(10)図4(b)
 端子箱取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層設置して外部からの湿分などの浸入を抑制する。
 直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
 集電用銅箔などが所定位置に配置された後に、太陽電池モジュール7の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
 EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/Al箔/PETシートの3層構造よりなる。
 バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150℃から160℃でプレスしながら、EVAを架橋させて密着させる。
(11)図5(a)
 太陽電池モジュール7の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
 銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
 図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d)
 発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
 上記膜厚の第2透明電極層を形成することによって、発電層であるシリコンと裏面電極層である銀薄膜との距離を大きくし、銀薄膜表面での吸収を低減させる。
 本実施形態の太陽電池は、第2透明電極層の膜厚が80nm以上100nm以下とされる。また、波長600nm以上1000nm以下の領域における第2透明電極層の光吸収率が1.5%以下、あるいは、波長600nm以上1000nm以下の領域において、第2透明電極層と発電層との界面及び第2透明電極層と裏面電極層との界面で反射された光の反射率が91%以上とされる。このように、第2透明電極層が膜厚80nm以上100nm以下であり、かつ、高い透明性を有することによって、発電層と裏面電極層である銀薄膜との距離を大きくして銀薄膜表面での吸収が低減するとともに、第2透明電極層での光損失が低減する。この結果、第2電池層で吸収される光の光量が増大し、太陽電池の短絡電流が増加する。
 上記実施形態では、タンデム型太陽電池を例に挙げて説明したが、本発明は非晶質シリコンシングル太陽電池、結晶質シリコンシングル太陽電池、結晶質SiGeシングル型太陽電池、トリプル型太陽電池にも適用可能である。
 特に、電池層が非晶質シリコンi層を有する非晶質シリコンシングル太陽電池の場合、波長600nm以上800nm以下の領域における第2透明電極層の光吸収率が1.0%以下、あるいは、波長600nm以上800nm以下の領域において、第2透明電極層と発電層との界面及び第2透明電極層と裏面電極層との界面で反射された光の反射率が91%以上とされる。これにより、非晶質シリコンシングル型太陽電池においても、第2透明電極層での光損失が低減する。この結果、電池層で吸収される光の光量が増大して、太陽電池の短絡電流が増加する。
(光学薄膜計算)
 光吸収特性(透明性)が(A):光吸収率小、(B):光吸収率中程度、(C):光吸収率大のGZO膜を形成したモデルについて、フレネル反射に基づく光学薄膜干渉計算を行った。計算ソフトは、サイバネット社のOPTAS-FILMを使用した。ガラス及び銀薄膜の媒質データは、公知文献に記載のデータを用いた。GZO膜の媒質データは、ガラス上に形成したGZO膜を光学計測して求めた。結晶質シリコンの媒質データは、公知文献に記載の単結晶Siのデータを用いた。空気は、屈折率1、消衰係数0とした。
 ガラス基板上に光吸収特性がそれぞれ(A)、(B)、(C)のGZO膜を形成した構造モデル(構造モデル1)の吸収率スペクトルを計算した。ここで、ガラス基板及びGZO膜は平滑であると仮定した。構造モデル1では、空気側で発生した光がGZO膜に入射し、一部が空気側に反射し、一部はガラス側に透過する、とした。構造モデル1の計算においては、GZO膜を挟んで両側の半無限媒質における吸収を計算に加えずに、GZO膜における光の吸収を求めることが出来る。構造モデル1の吸収率スペクトルは、充分に透明な光学ガラスをガラス基板に用いることで、実験的に観測することが可能である。
 図6に、(A):光吸収率小のGZO膜を形成した構造モデル1の吸収率スペクトルの計算例を示す。図7に、(B):光吸収率中程度のGZO膜を形成した構造モデル1の吸収率スペクトルの計算例を示す。図8に、(C):光吸収率大のGZO膜を形成した構造モデル1の吸収率スペクトルの計算例を示す。図6乃至図8において、横軸は波長、縦軸は吸収率である。吸収率α(%)は、GZO膜側の空気層から光を入射した場合の反射率R(%)及び透過率T(%)を光学薄膜計算により求めた後、式(1):
   α = 100-(R+T)  ・・・(1)
から求めた。
 図6に示すように、(A):光吸収率小のGZO膜は、膜厚100nm以下で波長600nm以上1000nm以下の領域における光吸収率が0.2%以下であった。図7に示すように、(B):光吸収率中のGZO膜は、膜厚100nm以下で波長600nm以上1000nm以下の領域における光吸収率が1.5%以下であった。図8に示すように、(C):光吸収率大のGZO膜は、膜厚50nmで長波長側(波長950nm以上)における光吸収率が1.5%より大きくなった。GZO膜厚が大きくなるほど、光吸収率1.5%を超える波長域が広がった。
 ガラス基板上にGZO膜、銀薄膜(膜厚:300nm)の順で積層した構造モデル2について、反射率スペクトルを計算した。ここで、ガラス基板、GZO膜、及び銀薄膜は平滑と仮定した。構造モデル2では、ガラス側で発生した光がGZO膜と銀薄膜の積層膜に入射し、一部がガラス側に反射する、とした。構造モデル2の計算においては、ガラスの吸収を計算に加えず、GZO膜と銀薄膜の積層膜による反射率を求めることが出来る。構造モデル2の反射率スペクトルは、充分に透明な光学ガラスをガラス基板に用いることで、実験的に観測することが可能である。
 図9に、(A):光吸収率小のGZO膜を形成した構造モデル2の反射率スペクトルの計算例を示す。図10に、(B):光吸収率中のGZO膜を形成した構造モデル2の反射率スペクトルの計算例を示す。図11に、(C):光吸収率大のGZO膜を形成した構造モデル2の反射率スペクトルの計算例を示す。図9乃至図11において、横軸は波長、縦軸は反射率である。
 (A):光吸収率小のGZO膜は、図9に示すように、膜厚100nm以下、波長600nm以上1000nm以下の領域において、反射率93%以上が得られた。(B):光吸収率中のGZO膜は、図10に示すように、膜厚100nm以下、波長600nm以上1000nm以下の領域において、反射率91%以上が得られた。(C):光吸収率大のGZO膜は、図11に示すように、膜厚が大きい場合に反射率が低下し、膜厚70nm以上で反射率91%未満となる波長領域が表れた。
 図12に示す構造モデル3について、反射率スペクトルを計算した。図12の構造モデル3は、結晶質シリコン層111(膜厚:半無限)、GZO膜112、銀薄膜113(膜厚:300nm)の順で積層された構成である。銀薄膜113のGZO膜112と反対側は、空気層114とした。構造モデル3では、結晶質シリコン層側で発生した光がGZO膜と銀薄膜の積層膜に入射し、一部が結晶質シリコン側に反射する、とした。構造モデル3の計算においては、結晶質シリコン層における吸収を計算に加えずに、GZO膜及び銀薄膜の積層膜による反射率を求めることが出来る。構造モデル3は、構造モデル2と構造が似ているが、光入射側の媒質が異なる。すなわち、光学薄膜干渉を解く際の境界条件が異なるため、得られる結果が全く異なる。さらに、構造モデル3は、実験的に観測することが原理的に不可能であり、計算でのみ現象を調べることができる。
 上記(A),(B),(C)の吸収特性を有するGZO膜を形成した構造モデルの反射率スペクトルから、波長600nm、800nm、1000nmにおける反射率を読み取り、GZO膜厚に対してプロットした。図13乃至図15はそれぞれ、波長600nm、800nm、及び1000nmにおけるGZO膜厚と反射率との関係を示すグラフである。同図において、横軸はGZO膜厚、縦軸は反射率である。
 (C):光吸収率大のGZO膜を形成した場合、各波長での反射率が極大となる膜厚は、40nmから70nmの範囲であった。これに対し、GZO膜の透明性が改善された(A)及び(B)は、各波長で反射率が極大となるGZO膜厚が厚膜側にシフトした。
 (C):光吸収率大のGZO膜を形成した場合、極大となる反射率は97%以下であった。一方、(B):光吸収率中のGZO膜を形成した場合、膜厚80nm以上100nm以下で、波長600nm以上1000nm以下の領域における反射率が97%以上となった。また、(A):光吸収率小のGZO膜を形成した場合、膜厚80nm以上100nm以下で、波長600nm以上1000nm以下の領域における反射率が98%以上となった。このように、GZO膜の透明性を改善することで、反射率を向上させることができた。
 光学薄膜計算の結果、GZO膜の透明性を向上させることにより、反射率が極大となるGZO膜の膜厚が80nm以上100nm以下となり、光吸収率が大きいGZO膜よりも厚膜側にシフトすることが分かった。また、GZO膜の透明性を向上させてGZO膜での光損失を低下させるとともに、GZO膜を厚くして発電層と銀薄膜との距離を大きくし、銀薄膜表面での吸収を減少させることができるため、第2透明電極層及び裏面電極層によって反射されて発電層に戻る光の光量を増加させることができることが分かった。
(第2透明電極層膜厚と太陽電池性能との関係)
 ガラス基板上に第1透明電極層、発電層として、非晶質シリコンp層、非晶質シリコンi層及び結晶質シリコンn層、第2透明電極層、及び裏面電極層を順次形成し、アモルファスシリコン太陽電池セルを作製した。第1透明電極層の膜厚を700nm、非晶質シリコンp層の膜厚を10nm、非晶質シリコンi層の膜厚を200nm、結晶質シリコンn層の膜厚を30nmとした。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、酸素分圧:0.5%、基板温度:60℃にてGZO膜を製膜した。上記製膜条件において、波長600nm以上1000nm以下の領域における第2透明電極層の光吸収率は0.2%以下であった。裏面電極層として、DCスパッタリング装置を用い、ターゲット:Ag、放電ガス:アルゴン、基板温度:135℃で膜厚250nmの銀薄膜を製膜した。裏面電極層を形成後、窒素雰囲気にて温度:160℃、処理時間:2時間のアニール処理を行った。
 図16に、第2透明電極層(GZO膜)の膜厚とアモルファスシリコン太陽電池セルの短絡電流との関係を表すグラフを示す。同図において、横軸は膜厚、縦軸は第2透明電極層膜厚40nmでの短絡電流を基準とした場合の短絡電流の相対値である。なお、短絡電流の値は、5cm角基板面内のセル15点、基板枚数5枚を測定した平均値である。
 第2透明電極層の膜厚が40nm及び60nmのアモルファスシリコン太陽電池セルでは、短絡電流はほぼ同程度であったが、膜厚が80nm及び100nmで短絡電流が増大した。
 ガラス基板上に、第1透明電極層、非晶質シリコンからなる発電層(第1電池層)、中間コンタクト層、結晶質シリコンからなる発電層(第2電池層)、第2透明電極層、及び裏面電極層を順次形成し、タンデム型太陽電池セルを作製した。なお、発電層はそれぞれ基板側からp層、i層、n層の順で製膜した。
 第1透明電極層の膜厚を700nmとした。第1電池層p層の膜厚を10nm、第1電池層i層の膜厚を200nm、第1電池層n層の膜厚を30nmとした。中間コンタクト層の膜厚を70nmとした。第2電池層p層の膜厚を30nm、第2電池層i層の膜厚を2000nm、第2電池層n層の膜厚を30nmとした。第2透明電極層として、DCスパッタリング装置を用い、ターゲット:GaドープZnO焼結体、放電ガス:アルゴン及び酸素、酸素分圧:0.5%、基板温度:60℃にてGZO膜を製膜した。この製膜条件において、波長600nm以上1000nm以下の領域における第2透明電極層の光吸収率は0.2%以下であった。裏面電極層として、DCスパッタリング装置を用い、ターゲット:Ag、放電ガス:アルゴン、基板温度:135℃で膜厚250nmの銀薄膜を製膜した。裏面電極層を形成後、窒素雰囲気にて温度:160℃、処理時間:2時間のアニール処理を行った。
 図17に、第2透明電極層(GZO膜)の膜厚とタンデム型太陽電池セルの短絡電流との関係を表すグラフを示す。同図において、横軸は膜厚、縦軸は第2透明電極層膜厚40nmでの短絡電流を基準とした場合の短絡電流の相対値である。なお、短絡電流の値は、5cm角基板面内のセル15点、基板枚数5枚を測定した平均値である。
 タンデム型太陽電池セルにおいても、第2透明電極層の膜厚が40nm及び60nmの場合は、短絡電流はほぼ同程度であったが、膜厚が80nm及び100nmで短絡電流が増大した。
 上記実施例では、裏面電極層として銀薄膜を形成した太陽電池を用いて説明したが、裏面電極層としてアルミ薄膜、金薄膜、銅薄膜などを形成した太陽電池でも、同様の効果を得ることができる。

Claims (7)

  1.  基板上に第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、
     前記第2透明電極層の膜厚が80nm以上100nm以下であり、
     波長600nm以上1000nm以下の領域における前記第2透明電極層の光吸収率が1.5%以下であることを特徴とする光電変換装置。
  2.  基板上に第1透明電極層と、発電層と、第2透明電極層と、裏面電極層とを備える光電変換装置であって、
     前記第2透明電極層の膜厚が80nm以上100nm以下であり、
     前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上1000nm以下の領域で91%以上であることを特徴とする光電変換装置。
  3.  前記発電層が、結晶質シリコンi層を含む請求項1または請求項2に記載の光電変換装置。
  4.  前記発電層が、2以上の電池層を備え、
     1つの電池層と該1つの電池層に最も近い他の電池層との間に設けられた中間コンタクト層を少なくとも1つ有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の光電変換装置。
  5.  前記発電層が単一の電池層からなり、該電池層が非晶質シリコンi層を有し、
     波長600nm以上800nm以下の領域における前記第2透明電極層の光吸収率が1.0%以下であることを特徴とする請求項1に記載の光電変換装置。
  6.  前記発電層が単一の電池層からなり、該電池層が非晶質シリコンi層を有し、
     前記第2透明電極層と前記発電層との界面及び前記第2透明電極層と前記裏面電極層との界面で反射された光の反射率が、波長600nm以上800nm以下の領域で91%以上であることを特徴とする請求項2に記載の光電変換装置。
  7.  前記裏面電極層が、銀薄膜、アルミ薄膜、金薄膜、銅薄膜の中から選択される1種類以上の薄膜を備えることを特徴とする請求項1乃至請求項6のいずれか1項に記載の光電変換装置。
PCT/JP2009/050098 2008-03-28 2009-01-07 光電変換装置 WO2009119125A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/671,868 US20100229935A1 (en) 2008-03-28 2009-01-07 Photovoltaic device
AU2009230532A AU2009230532A1 (en) 2008-03-28 2009-01-07 Photovoltaic converter
CN200980100102A CN101779293A (zh) 2008-03-28 2009-01-07 光电转换装置
EP09725180A EP2190028A1 (en) 2008-03-28 2009-01-07 Photoelectric converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-088596 2008-03-28
JP2008088596A JP2009246031A (ja) 2008-03-28 2008-03-28 光電変換装置

Publications (1)

Publication Number Publication Date
WO2009119125A1 true WO2009119125A1 (ja) 2009-10-01

Family

ID=41113335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050098 WO2009119125A1 (ja) 2008-03-28 2009-01-07 光電変換装置

Country Status (8)

Country Link
US (1) US20100229935A1 (ja)
EP (1) EP2190028A1 (ja)
JP (1) JP2009246031A (ja)
KR (1) KR20100028112A (ja)
CN (1) CN101779293A (ja)
AU (1) AU2009230532A1 (ja)
TW (1) TW200947719A (ja)
WO (1) WO2009119125A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672522A4 (en) * 2011-01-31 2014-03-19 Sanyo Electric Co PHOTOELECTRIC CONVERSION ELEMENT
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9246434B2 (en) * 2011-09-26 2016-01-26 First Solar, Inc System and method for estimating the short circuit current of a solar device
JP5492354B1 (ja) * 2012-10-02 2014-05-14 株式会社カネカ 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール
FR3061606A1 (fr) * 2016-12-29 2018-07-06 Sunpartner Technologies Procede d'ablation laser de couches minces pour la realisation de modules photovoltaiques semi-transparents

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (ja) * 1991-10-17 1993-04-30 Canon Inc 光起電力素子
JPH05206490A (ja) * 1992-01-27 1993-08-13 Sharp Corp 光電変換装置
JPH07321362A (ja) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd 光起電力装置
JPH11274528A (ja) * 1998-03-25 1999-10-08 Sanyo Electric Co Ltd 光起電力装置
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2003188401A (ja) * 2001-10-09 2003-07-04 Mitsubishi Heavy Ind Ltd タンデム型シリコン系薄膜光電変換装置
JP2003298088A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (ja) * 1991-10-17 1993-04-30 Canon Inc 光起電力素子
JPH05206490A (ja) * 1992-01-27 1993-08-13 Sharp Corp 光電変換装置
JPH07321362A (ja) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd 光起電力装置
JPH11274528A (ja) * 1998-03-25 1999-10-08 Sanyo Electric Co Ltd 光起電力装置
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2003188401A (ja) * 2001-10-09 2003-07-04 Mitsubishi Heavy Ind Ltd タンデム型シリコン系薄膜光電変換装置
JP2003298088A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子

Also Published As

Publication number Publication date
CN101779293A (zh) 2010-07-14
TW200947719A (en) 2009-11-16
JP2009246031A (ja) 2009-10-22
AU2009230532A1 (en) 2009-10-01
KR20100028112A (ko) 2010-03-11
US20100229935A1 (en) 2010-09-16
EP2190028A1 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4418500B2 (ja) 光電変換装置及びその製造方法
WO2010097975A1 (ja) 光電変換装置
JP5330723B2 (ja) 光電変換装置
WO2009119125A1 (ja) 光電変換装置
JP5022341B2 (ja) 光電変換装置
WO2011030598A1 (ja) 光電変換装置の製造方法
JP5254917B2 (ja) 光電変換装置の製造方法
JP2011049460A (ja) 光電変換装置及び透明電極層付き基板
WO2010064455A1 (ja) 光電変換装置
WO2011040078A1 (ja) 光電変換装置
WO2011070805A1 (ja) 光電変換装置の製造方法
WO2011061956A1 (ja) 光電変換装置
WO2012036074A1 (ja) 光電変換装置の製造方法
WO2012014550A1 (ja) 光電変換装置の製造方法
JP2009152441A (ja) 光電変換装置の製造方法及び光電変換装置
JP2010141198A (ja) 光電変換装置
WO2011004631A1 (ja) 光電変換装置の製造方法
WO2011033885A1 (ja) 光電変換装置
JP2010251424A (ja) 光電変換装置
JP2010135637A (ja) 光電変換装置
JP2009231616A (ja) 光電変換装置及びその製造方法
JP2008251914A (ja) 多接合型光電変換装置
JP2011040796A (ja) 光電変換装置及びその製造方法
JP2011077380A (ja) 光電変換装置
JP2012253078A (ja) 多接合型光電変換装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100102.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009230532

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20107001431

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009725180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009230532

Country of ref document: AU

Date of ref document: 20090107

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE