[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011027410A1 - オートサンプラ - Google Patents

オートサンプラ Download PDF

Info

Publication number
WO2011027410A1
WO2011027410A1 PCT/JP2009/004408 JP2009004408W WO2011027410A1 WO 2011027410 A1 WO2011027410 A1 WO 2011027410A1 JP 2009004408 W JP2009004408 W JP 2009004408W WO 2011027410 A1 WO2011027410 A1 WO 2011027410A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
cleaning liquid
cleaning
metering pump
liquid
Prior art date
Application number
PCT/JP2009/004408
Other languages
English (en)
French (fr)
Inventor
前田愛明
保永研壱
中村恭章
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2009/004408 priority Critical patent/WO2011027410A1/ja
Priority to PCT/JP2010/064935 priority patent/WO2011027784A1/ja
Priority to CN201080035914.1A priority patent/CN102549421B/zh
Priority to JP2011529918A priority patent/JP5310861B2/ja
Priority to US13/382,499 priority patent/US8770046B2/en
Publication of WO2011027410A1 publication Critical patent/WO2011027410A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe

Definitions

  • the present invention relates to an autosampler that automatically collects a sample solution for an analyzer such as a liquid chromatograph and analyzes the sample and introduces it into the analyzer.
  • an analyzer such as a liquid chromatograph
  • FIG. 1 is a diagram showing an outline of a flow path of an autosampler in a conventional liquid chromatograph.
  • the high pressure valve 1 is a flow path switching valve having six ports a to f
  • the low pressure valve 2 is a flow path switching valve having seven ports g to m.
  • the port a of the high pressure valve 1 is a mobile phase flow path to which a mobile phase is supplied
  • the port b is to the needle 11
  • the port c is to the port k of the low pressure valve 2
  • the port d is to the drain via the electromagnetic valve 12
  • the port e is connected to the injection port 13 and port f is connected to the flow path to the column.
  • the port g of the low pressure valve 2 is in the mobile phase, the ports h and i are in the cleaning liquids R1 and R2, the port j is in the metering pump 14, the port k is in the port c of the high pressure valve 1, and the port l is in the cleaning port 15.
  • the port m is configured to be able to communicate with any of the ports g to l, and to be able to communicate with adjacent ports g to l.
  • FIG. 2 is a block diagram schematically showing the control system of the autosampler.
  • the high-pressure valve 1 and the low-pressure valve 2, the metering pump 14, and the moving mechanism 6 for the needle 11 are connected to the control unit 7, and the control unit 7 switches the ports of the high-pressure valve 1 and the low-pressure valve 2.
  • the driving of the plunger and the movement of the needle 11 are controlled.
  • each port of the high pressure valve 1 and the low pressure valve 2 is brought into a connected state (load state) shown in FIG. Then, the needle 11 is moved onto the sample vial, and the tip of the needle 11 is inserted into the sample solution (a state indicated by a broken line in FIG. 1A).
  • a predetermined amount of sample liquid is extracted from the vial through the mobile phase (or the cleaning solution that is the same component) filled in the flow path from the metering pump 14 to the needle 11. Is aspirated and filled into the sample loop 16.
  • the needle 11 After sample collection, the needle 11 is returned to the injection port 13 and connected to the injection port 13, and each port of the high-pressure valve 1 is switched to the connection state shown in FIG. 1B (injection state). Then, the mobile phase supplied from the liquid feed pump 3 is sent to the column 4 through the sample loop 16, the needle 11, and the injection port 13. At this time, the sample liquid filled in the sample loop 16 is sent to the column 4 together with the mobile phase, and when passing through the column 4, the components are separated and sequentially detected by a detector (not shown).
  • Washing of the needle 11 to which the sample solution is adhered by the above-described sample collection is performed as follows. First, the port m and the port h of the low-pressure valve 2 are communicated, and in this state, the plunger of the metering pump 14 is pulled to suck the cleaning liquid R1 (FIG. 3A). Next, the port m and the port l of the low pressure valve 2 are connected, and the plunger of the metering pump 14 is pushed (FIG. 3B). Then, the cleaning liquid R1 is introduced into the cleaning port 15 and stored in the cleaning port 15. Next, the needle 11 is moved onto the cleaning port 15 and immersed in the cleaning liquid in the cleaning port 15 for cleaning.
  • the above-described cleaning operation of the needle 11 is performed every time the introduction operation of each sample is completed. Therefore, cross contamination in which the previous sample solution is mixed into the next sample solution is considerably reduced.
  • the above-described cleaning operation does not completely eliminate cross contamination. The reason is as follows.
  • FIG. 4 shows an enlarged view of the connection portion between the injection port 13 and the needle 11.
  • a through hole 17 is provided at the center of the injection port 13, and a funnel-shaped sealing surface 18 is formed at the upper end of the through hole 17. Since the tip of the needle 11 is tapered, when the needle 11 is lowered and inserted into the through hole 17 of the injection port 13, the outer peripheral surface of the tip of the needle 11 comes into close contact with the seal surface 18 at a certain lowered position. As a result, liquid tightness is ensured.
  • the sample solution When the sample solution is aspirated from the vial, the sample solution adheres to the outer periphery of the tip of the needle 11. In order to insert the needle 11 into the injection port 13 in this state, the sample solution adheres to a portion of the seal surface 18 that contacts the needle 11 (hereinafter referred to as a contact point 19). Even when the mobile phase flows from the needle 11 to the through hole 17 of the injection port 13, the sample liquid adhering to the contact point 19 remains without being washed away by the mobile phase. For this reason, when the next sample liquid is introduced into the injection port 13 by the needle 11, the sample liquid remaining at the contact point 19 of the seal surface 18 may be pushed by the needle 11 and mixed into the flow path. There is.
  • Patent Document 3 it has been proposed to wash the sealing surface 18 by pouring a cleaning liquid from the needle 11 to the injection port 13 with the tip of the needle 11 slightly raised from the sealing surface 18 (Patent Document). 3).
  • Patent Document 3 if the cleaning liquid poured into the injection port 13 overflows from the injection port 13, the surroundings are contaminated. Therefore, in the autosampler of Patent Document 3, the injection port 13 is surrounded by a barrier, and the cleaning liquid overflowing in the barrier is forcibly discharged by an air pump, thereby preventing contamination by the cleaning liquid (cleaning waste liquid).
  • the present invention has been made in view of the above problems, and an object thereof is to provide an autosampler that can clean the needle seal surface of an injection port with a simple configuration.
  • the present invention includes a needle having a tapered tip, a metering pump for sucking and discharging liquid through the needle, and the needle in the horizontal and vertical directions.
  • a moving mechanism for moving and an injection port having a needle seal surface, and after aspirating the sample liquid stored in the sample container through the needle, the tip of the needle is pressed against the needle seal surface and the sample In an autosampler configured to introduce the sample liquid into the analysis flow path via a valve communicating with the injection port by discharging the liquid, After the cleaning liquid is sucked into the needle by the metering pump, the needle is moved to a position where the tip of the needle does not contact the needle seal surface, and the cleaning liquid is discharged to the injection port through the needle by the metering pump. It has a control part which wash
  • the controller sucks the cleaning liquid onto the needle with the metering pump
  • the tip of the needle is pressed against the needle seal surface, and the needle is brought into contact with the injection port by the metering pump.
  • the inside of the analysis flow path is cleaned by discharging and sucking the cleaning liquid through.
  • the cleaning liquid discharged from the needle to the injection port is Can be prevented from overflowing. For this reason, it is not necessary to provide an additional structure for preventing the cleaning liquid from overflowing from the injection port when the needle seal surface is cleaned. Further, since cleaning is performed by suction and discharge within a limited range without providing another pump for cleaning, the amount of cleaning liquid used when cleaning the needle seal surface can be reduced.
  • the washing operation in the analysis channel is performed using the metering pump, so that the cleaning liquid necessary for washing in the analysis channel is accurately measured and introduced into the analysis channel. be able to. Therefore, it is possible to reduce the amount of the cleaning solution used when cleaning the analysis channel. In this case, since the cleaning liquid is sucked and discharged through the needle by the metering pump and the cleaning liquid in the analysis channel is moved in both directions, the analysis channel can be efficiently cleaned even with a small amount of cleaning liquid.
  • FIG. 1 It is the schematic which shows an example of the flow-path structure of the autosampler in the conventional liquid chromatograph, (a) is a load state, (b) shows an injection state.
  • Flow path configuration diagram (a) for explaining the suction / holding operation of the cleaning liquid by the metering pump of the autosampler in the conventional liquid chromatograph, and for explaining the discharging operation of the cleaning liquid from the needle to the cleaning port by the metering pump
  • cleaning conditions of a liquid chromatograph using the autosampler of an Example The figure which shows an example of the chromatogram obtained by introduce
  • the autosampler of this embodiment is characterized by a washing operation after sampling, and the flow path configuration is almost the same as the conventional autosampler shown in FIGS. Further, since the high-pressure valve, low-pressure valve, needle, and the like constituting the autosampler have substantially the same configuration as the conventional autosampler, the autosampler of the present embodiment will be described here focusing on the cleaning operation. In the following description, the same reference numerals are used for the same parts as those of the conventional autosampler shown in FIGS.
  • the control unit 7 controls the movement of the needle 11, the switching of the ports of the high pressure valve 1 and the low pressure valve 2, and the drive of the metering pump 14, thereby cleaning the needle 11 and the needle seal surface 18.
  • needle cleaning operation and a cleaning operation in the analysis channel (hereinafter referred to as “channel cleaning operation”) can be executed.
  • FIG. 5A (b) the needle cleaning operation will be described with reference to FIGS. 5A, 5B, 6, and 7.
  • FIG. 5A (b) the needle seal surface 18 is cleaned after the outer peripheral surface at the tip of the needle 11 is cleaned.
  • each port of the high-pressure valve 1 is switched to the injection state (see FIGS. 1A and 1B), and the needle 11 is connected to the injection port 13 (FIG. 5A (a)).
  • the sample liquid filled in the sample loop 16 is introduced into the column 4 together with the mobile phase.
  • the high pressure valve 1 is switched to the load state, and the connection state of the port of the low pressure valve 2 is sequentially switched from the state shown in FIG. 3A to the state shown in FIG.
  • the needle 11 to the cleaning port 15 the outer peripheral surface of the tip of the needle 11 is cleaned (FIG. 5A (b)).
  • the cleaning operation of the needle seal surface 18 is executed.
  • the needle 11 is lowered to a height position such that the tip of the needle 11 does not contact the needle seal surface 18, for example, a position 1 mm above the contact point 19, and then the metering pump
  • the plunger 14 is pushed out, and the cleaning liquid is discharged from the tip of the needle 11 toward the injection port 13. Since the mobile phase is introduced to the vicinity of the contact point 19 in the through-hole 17 of the injection port 13, the cleaning liquid discharged to the injection port 13 is stored in a portion of the injection port 13 above the vicinity of the contact point 19. (FIG. 5A (c)).
  • the push-out amount of the plunger of the metering pump 14 (that is, the discharge of the needle 11) so that the cleaning liquid discharged from the needle 11 does not overflow from the injection port 13 and the tip of the needle 11 is immersed in the cleaning liquid. Amount) is set.
  • the second cleaning operation and the third cleaning operation are performed.
  • the height is 0.6 mm above the contact point 19 and the height is 0.3 mm (see FIGS. 5A (e), (f) and FIG. 5B (g), (h)).
  • the tip of the needle 11 is at a height position where it does not contact the needle seal surface 18.
  • the discharge and suction operations of the cleaning liquid from the needle 11 are the same as the first cleaning operation.
  • the needle 11 is moved to the drain port 5 (see FIG. 6), and the cleaning liquid (cleaning waste liquid) in the needle 11 is discharged to the drain port 5 by the metering pump 14 (FIG. 5B (i)).
  • the flow path cleaning operation will be described with reference to FIGS.
  • the plunger of the metering pump 14 is pulled with the port m and port i of the low pressure valve 2 connected, and the cleaning liquid R2 is sucked and held in the metering pump 14 (FIG. 7).
  • the connection between the port m and the port i of the low-pressure valve 2 is released and the port j and the port k are connected, so that the high-pressure valve 1 is loaded (FIG. 8).
  • the plunger of the metering pump 14 is pushed out, the cleaning liquid R2 held in the metering pump 14 is discharged into the flow path passing through the sample loop 16, the needle 11, and the injection port 13, and the cleaning liquid R2 is discharged into the flow path.
  • the amount of the cleaning liquid pushed out from the metering pump 14 is set to an amount (for example, 200 ⁇ l) sufficient to replace the inside of the flow path.
  • the plunger of the metering pump 14 is pulled to suck the cleaning liquid in the flow path (suction operation (reverse cleaning operation), FIG. 9).
  • suction operation reverse cleaning operation
  • FIG. 9 The suction amount of the metering pump 14 at this time is very small compared to the amount of cleaning liquid during the discharge operation, and is set to several tens of ⁇ l, for example.
  • the plunger of the metering pump 14 is pushed out, and a larger amount of cleaning liquid than the suction amount is discharged again into the flow path (FIG. 8).
  • Such a discharge operation and a suction operation of the cleaning liquid by the metering pump 14 are repeated a plurality of times. Thereby, the cleaning liquid in the flow path moves in both forward and reverse directions, and the flow path is cleaned.
  • the cleaning liquid in the flow path by moving the cleaning liquid in the flow path in both forward and reverse directions, the residual liquid that tends to stay at the joints of the parts constituting the flow path can be efficiently washed away. Moreover, since the cleaning liquid in the flow path is repeatedly moved in both directions, the inside of the flow path can be cleaned with a small amount of cleaning liquid. Furthermore, since the inside of the flow path is cleaned with a small amount of cleaning liquid, the metering pump 14 that is used for sample introduction and that is suitable for feeding a relatively small amount of liquid can be used for the cleaning operation. For this reason, it is not necessary to provide a new liquid feed pump for cleaning the inside of the flow path. Further, since the discharge amount of the cleaning liquid by the metering pump is made larger than the suction amount, the residual liquid staying in the flow path can be gradually moved by repeating the discharge operation and the suction operation. It can be extruded efficiently from within.
  • the mobile phase is sent by the metering pump 14 to replace the cleaning liquid in the flow path with the mobile phase, as in the needle seal surface 18 cleaning mode.
  • the effect of reducing cross-contamination was evaluated by the ratio ( ⁇ / ⁇ ) of the peak area ⁇ of the blank sample to the peak area ⁇ of the 2000 mg / l caffeine aqueous solution sample.
  • the peak voltage value of the 2000 mg / l caffeine aqueous solution exceeded the upper limit, the peak area ⁇ of the 2000 mg / l caffeine aqueous solution was obtained by multiplying the peak area of the 20 mg / l caffeine aqueous solution by 100 times. .
  • FIG. 11 shows an example of a chromatogram which is an analysis result of a 20 mg / l caffeine aqueous solution.
  • FIG. 11 shows that the caffeine peak appears between 2.3 minutes and 2.7 minutes after the start of analysis.
  • FIG. 12 shows a chromatogram which is an analysis result of the first blank liquid of the example
  • FIG. 13 shows a chromatogram which is an analysis result of the first blank liquid of the comparative example.
  • the scale of the horizontal axis (time axis) of both chromatograms is the same as the horizontal axis of FIG. 11, and a peak corresponding to caffeine appears in the chromatogram of any blank sample around 2.3 to 2.7 minutes after the start of analysis. It shows that
  • the scale of the vertical axis which is the intensity axis of FIGS. 12 and 13, is much smaller than that of FIG. 11, and the peak area of caffeine in the blank sample in both the comparative example and the example is 20 mg / kg. It is shown that the peak area of the l caffeine aqueous solution) is greatly reduced.
  • the scale of the vertical axis of FIG. 13 is half that of FIG. 12, it can be seen that the example has a smaller caffeine peak area in the blank sample than the comparative example.
  • FIG. 14 shows the peak areas and ratio ⁇ / ⁇ values of the samples of the comparative example and the example.
  • FIG. 14 shows that the ratio ⁇ / ⁇ is much smaller in the example than in the comparative example. In particular, it was not detected in the fourth and fifth blank samples in the example, and it can be seen that the amount of cross-contamination was significantly reduced in the autosampler of this example compared to the conventional autosampler.
  • this invention is not limited to said Example, A suitable change is accept
  • the position of the needle 11 of the cleaning liquid is sequentially lowered and the cleaning liquid is discharged and sucked a plurality of times.
  • the discharge and suction may be repeated a plurality of times at the same position.
  • the height position of the needle 11 during the cleaning operation of the needle seal surface may be a position where the tip of the needle 11 does not contact the needle seal surface.
  • the tip of the needle 11 is the open end of the through-hole 17 of the injection port 13. It may be located above.
  • the surface of the cleaning liquid may be positioned above the opening end of the through-hole 17 due to surface tension, so that the tip of the needle 11 is in the through-hole 17 of the injection port 13. This is because the cleaning liquid can be sucked by the needle 11 even if it is located above the opening end.
  • the autosampler having a flow channel structure capable of injecting the entire amount of the measured sample has been described as an example. However, if the autosampler has a cleaning port, a part of the measured sample is injected.
  • the present invention is also applicable to an autosampler having a channel structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

  本発明のオートサンプラは、ニードル(11)と、該ニードル(11)を通して液体を吸引・吐出するための計量ポンプ(14)と、ニードル(11)を移動させる移動機構(6)と、ニードルシール面(18)を有するインジェクションポート(13)を備える。流路内に試料液を導入するときは、試料容器内に貯留された試料液を前記ニードル(11)を通して吸引した後に、前記ニードルシール面(18)に前記ニードル(11)の先端部を押し当てて試料液を吐出する。ニードルシール面洗浄時は、インジェクションポート(13)内に貯留可能な量の洗浄液を前記計量ポンプ(14)でニードル(11)に吸引した後、ニードル(11)を該ニードル(11)の先端部がニードルシール面(18)と接触しない位置に移動させインジェクションポート(13)に洗浄液を吐出・吸引する。これにより、少量の洗浄液でニードルシール面(18)を洗浄することができる。

Description

オートサンプラ
 本発明は、液体クロマトグラフなどの液体を分析対象とする分析装置のために自動的に試料液を採取して該分析装置に導入するオートサンプラに関する。
 液体クロマトグラフでは、多数の液体試料のうちの一つを自動的に選択してカラムに導入するためにオートサンプラが使用される。図1は従来の液体クロマトグラフにおけるオートサンプラの流路の概略を示した図である。
 図1において、高圧バルブ1は6つのポートa~fを有する流路切換バルブであり、低圧バルブ2は7つのポートg~mを有する流路切換バルブである。高圧バルブ1のポートaは移動相が供給される移動相流路に、ポートbはニードル11に、ポートcは低圧バルブ2のポートkに、ポートdは電磁弁12を介してドレインに、ポートeはインジェクションポート13に、ポートfはカラムに至る流路に接続されている。また、低圧バルブ2のポートgは移動相に、ポートh、iは洗浄液R1、R2に、ポートjは計量ポンプ14に、ポートkは高圧バルブ1のポートcに、ポートlは洗浄ポート15に接続されており、ポートmはポートg~lのいずれかに連通可能に、また、隣り合うポートg~l同士を連通可能に構成されている。
 図2は、オートサンプラの制御系を概略的に示すブロック図である。高圧バルブ1及び低圧バルブ2、計量ポンプ14、ニードル11の移動機構6は制御部7に接続されており、この制御部7によって高圧バルブ1及び低圧バルブ2のポートの切り換え、前記計量ポンプ14のプランジャーの駆動、ニードル11の移動が制御される。
 上記オートサンプラにおける試料導入時の基本的な動作について説明する。試料採取時には、高圧バルブ1及び低圧バルブ2の各ポートを図1(a)で示す接続状態(ロード状態)にする。そして、ニードル11をサンプルのバイアル上に移動し、試料溶液中にニードル11の先端を挿入する(図1(a)に破線で示す状態)。この状態で計量ポンプ14のプランジャーが引かれると、計量ポンプ14からニードル11に至る流路中に満たされている移動相(又は同じ成分である洗浄液)を介してバイアルから所定量の試料液が吸引され、サンプルループ16中に充填される。
 試料採取後、前記ニードル11をインジェクションポート13に戻して該インジェクションポート13に接続し、高圧バルブ1の各ポートを図1(b)に示す接続状態に切り換える(インジェクション状態)。すると、送液ポンプ3から供給された移動相が、サンプルループ16、ニードル11、インジェクションポート13を通ってカラム4に送られる。このとき、サンプルループ16内に充填されていた試料液は移動相と共にカラム4に送り込まれ、カラム4を通過する際に成分分離されて図示しない検出器によって順次検出される。
 上述の試料採取によって試料液が付着したニードル11の洗浄は以下のように行われる。まず、低圧バルブ2のポートmとポートhを連通し、この状態で計量ポンプ14のプランジャーを引き、洗浄液R1を吸引する(図3(a))。次に、低圧バルブ2のポートmとポートlを接続し、計量ポンプ14のプランジャーを押す(図3(b))。すると、洗浄液R1が洗浄ポート15に導入されて当該洗浄ポート15内に貯留される。次に、ニードル11を洗浄ポート15上に移動させ、洗浄ポート15内の洗浄液中に浸漬させて洗浄する。ニードル11が浸漬されている間、洗浄液を洗浄ポート15の下部から流入させ、洗浄ポート15上部から流出させるようにし、洗浄ポート15内の洗浄液を常に清浄にすることで、ニードル11先端の洗浄効果を高めることができる。ニードルの洗浄に関しては、複数の洗浄方法で洗浄を可能にするもの(特許文献1)、大流量の洗浄液で以ってニードルの洗浄を行なうもの(特許文献2)がこれまでに提案されている。
 一定時間、ニードル11を洗浄液で洗浄した後、ニードル11をインジェクションポート13に移動させる。洗浄廃液は洗浄ポート15からドレインに排出される。
 上述のオートサンプラでは、各試料の導入操作が終わる毎に上述したニードル11の洗浄動作が行われる。従って、前回の試料液が次の試料液に混入するクロスコンタミネーションはかなり軽減される。しかし、上述した洗浄動作によってもクロスコンタミネーションが完全になくなるわけではない。その理由は次の通りである。
 図4はインジェクションポート13とニードル11の接続部分の拡大図を示している。インジェクションポート13の中心部には貫通孔17が設けられ、前記貫通孔17の上端は漏斗状のシール面18が形成されている。ニードル11の先端部がテーパ状であるため、ニードル11を降下させてインジェクションポート13の貫通孔17に挿入させると、ある降下位置でニードル11の先端部の外周面がシール面18に緊密に接触し、これによって液密性が確保される。
 バイアルから試料液を吸引する際、ニードル11の先端部の外周に試料液が付着する。この状態でインジェクションポート13にニードル11を挿入するため、シール面18のうちニードル11が接触する部分(以下、接触点19という)に試料液が付着する。接触点19に付着した試料液は、ニードル11からインジェクションポート13の貫通孔17に移動相が流れる際にも該移動相によって洗い流されることなく残留する。このため、次の試料液がニードル11によってインジェクションポート13に導入される際に、シール面18の接触点19に残留した試料液がニードル11に押されて流路内に混入してしまう可能性がある。
 このような問題を解決するため、ニードル11の先端をシール面18から僅かに上げた状態でニードル11からインジェクションポート13に洗浄液を注ぎ、シール面18を洗浄することが提案されている(特許文献3参照)。この場合、インジェクションポート13に注がれた洗浄液がインジェクションポート13から溢れ出すと周辺を汚染してしまう。そこで、特許文献3のオートサンプラでは、インジェクションポート13を障壁で囲み、前記障壁内に溢れ出た洗浄液をエアポンプで強制的に排出することにより、洗浄液(洗浄廃液)による汚染を防止している。
特開2004-271241号公報 特開2008-145112号公報 実用新案登録第3129218号公報
 しかし、インジェクションポート13付近はもともと入り組んだ構成となっており、障壁や障壁内の洗浄液を排出するための構造を追加すると、構成がさらに複雑化する。また、追加の構造を設けることによりインジェクションポート13が大型化するという問題もある。
 本発明は上記の問題点に鑑みて成されたものであり、簡単な構成でインジェクションポートのニードルシール面の洗浄を行うことができるオートサンプラを提供することを目的とする。
 上記課題を解決するために成された本発明は、先端部がテーパ状に形成されたニードルと、該ニードルを通して液体を吸引・吐出するための計量ポンプと、前記ニードルを水平方向及び垂直方向に移動させる移動機構と、ニードルシール面を有するインジェクションポートとを備え、試料容器内に貯留された試料液を前記ニードルを通して吸引した後に、前記ニードルシール面に前記ニードルの先端部を押し当てて前記試料液を吐出することにより、該インジェクションポートに連通するバルブを介して分析流路に前記試料液を導入するように構成されたオートサンプラにおいて、
 前記計量ポンプで前記ニードルに洗浄液を吸引した後、前記ニードルを該ニードルの先端部が前記ニードルシール面と接触しない位置に移動させ、前記計量ポンプにより前記ニードルを通して前記インジェクションポートに前記洗浄液を吐出・吸引することにより前記ニードルシール面を洗浄する制御部を有することを特徴とする。
 さらに本発明のオートサンプラは、前記制御部が、前記計量ポンプで前記ニードルに洗浄液を吸引した後、前記ニードルの先端部を前記ニードルシール面に押し当て、前記計量ポンプにより前記インジェクションポートに前記ニードルを通して前記洗浄液を吐出・吸引することにより分析流路内の洗浄を行うことを特徴とする。
 本発明では、正確な量の試料をニードルで吸引するためにオートサンプラが予め備える計量ポンプを用いて正確な量の洗浄液をニードルに吸引するため、ニードルからインジェクションポートに吐出された洗浄液がインジェクションポートから溢出することを防止できる。このため、ニードルシール面の洗浄動作の実行時にインジェクションポートから洗浄液が溢出することを防止するための追加の構造を設けなくても済む。また、洗浄のための別のポンプを設けることなく、限られた範囲での吸引・吐出により洗浄を行なうので、ニードルシール面の洗浄時に使用する洗浄液量を少なくすることができる。
 さらに本発明のオートサンプラでは、計量ポンプを利用して分析流路内の洗浄動作を行うようにしたため、分析流路内の洗浄に必要な洗浄液を正確に計量して分析流路内に導入することができる。従って、分析流路内の洗浄時に使用する洗浄液量を少なくすることができる。この場合、計量ポンプによりニードルを通して洗浄液を吸引・吐出し、分析流路内の洗浄液を両方向に移動させたため、少ない洗浄液量であっても効率よく分析流路内を洗浄することができる。
従来の液体クロマトグラフにおけるオートサンプラの流路構成の一例を示す概略図であり、(a)はロード状態、(b)はインジェクション状態を示す。 オートサンプラの制御機構の概略構成図。 従来の液体クロマトグラフにおけるオートサンプラの計量ポンプによる洗浄液の吸引・保持動作を説明するための流路構成図(a)、及び計量ポンプによるニードルから洗浄ポートへの洗浄液の吐出動作を説明するための流路構成図(b)。 ニードルとインジェクションポートとの接続部分を拡大して示す断面図。 本発明の実施例に係るニードル及びニードルシール面の洗浄動作を説明するための図(No.1)。 本発明の実施例に係るニードル及びニードルシール面の洗浄動作を説明するための図(No.2)。 図5Bの(j)の状態における流路構成図。 流路洗浄動作時において計量ポンプが洗浄液を吸引・保持するときの流路構成を示す図。 流路洗浄動作時において分析流路内の移動相を洗浄液で置換するときの流路構成図。 流路洗浄動作時において計量ポンプにより分析流路内の洗浄液を吸引するときの様子を説明するための流路構成図。 実施例のオートサンプラを用いた液体クロマトグラフの分析条件及び洗浄条件を示す表。 実施例のオートサンプラを用いて液体クロマトグラフに試料(20mg/lのカフェイン水溶液)を導入して得られたクロマトグラムの一例を示す図。 比較例のオートサンプラを用いて液体クロマトグラフに試料を導入した後、移動相を導入して得られた移動相のクロマトグラムの一例を示す図。 実施例のオートサンプラを用いて液体クロマトグラフに試料を導入した後、移動相を導入して得られた移動相のクロマトグラムの一例を示す図。 比較例及び実施例の分析結果を示す表。
 以下、本発明の実施例について図5A及び図5B並びに図6~図14を用いて説明する。
 本実施例のオートサンプラは試料採取後の洗浄動作に特徴があり、流路構成は図1~4に示した従来のオートサンプラとほぼ同様である。また、オートサンプラを構成する高圧バルブや低圧バルブ、ニードル等についても従来のオートサンプラとほぼ同様の構成を有するため、ここでは洗浄動作を中心に本実施例のオートサンプラについて説明する。尚、以下の説明では図1~4に示した従来のオートサンプラと同一部分には同一符号を用いた。
 本実施例のオートサンプラでは、制御部7がニードル11の移動、高圧バルブ1及び低圧バルブ2のポートの切り換え、計量ポンプ14の駆動を制御することで、ニードル11及びニードルシール面18の洗浄動作(以下、「ニードル洗浄動作」という)及び分析流路内の洗浄動作(以下、「流路洗浄動作」という)が実行可能である。
 まず、ニードル洗浄動作について図5A、図5B、図6、図7を用いて説明する。ニードル洗浄動作では、ニードル11の先端の外周面が洗浄された後、ニードルシール面18が洗浄される。
 前述したように、試料採取後、高圧バルブ1の各ポートはインジェクション状態に切り換えられ(図1(a)、(b)参照)、ニードル11がインジェクションポート13に接続される(図5A(a))。このとき、サンプルループ16内に充填されていた試料液は移動相とともにカラム4に導入される。この後、高圧バルブ1をロード状態に切り換えると共に、低圧バルブ2のポートの接続状態を図3(a)に示す状態から図3(b)に示す状態に順次切り換える。そして、ニードル11を洗浄ポート15に移動させることにより、ニードル11先端の外周面を洗浄する(図5A(b))。
 ニードル11先端の外周面の洗浄が終わると、ニードルシール面18の洗浄動作が実行される。ニードルシール面18の洗浄動作では、まず、ニードル11の先端部がニードルシール面18に接触しない程度の高さ位置、例えば接触点19から1mm上の位置にニードル11を降下させた後、計量ポンプ14のプランジャーを押し出してニードル11先端からインジェクションポート13に向けて洗浄液を吐出する。インジェクションポート13の貫通孔17には接触点19付近まで移動相が導入されているため、インジェクションポート13に吐出された洗浄液は当該インジェクションポート13内のうち接触点19付近よりも上の部分に貯留される(図5A(c))。このとき、ニードル11から吐出された洗浄液がインジェクションポート13から溢れないように、且つ、ニードル11の先端が洗浄液内に浸漬するように、計量ポンプ14のプランジャーの押し出し量(即ちニードル11の吐出量)が設定されている。
 続いて、計量ポンプ14のプランジャーを引き、インジェクションポート13内の洗浄液を空気と共にニードル11内に吸引する(図5A(d))。このとき、ニードル11は洗浄液の吐出時と同じ高さ位置に保持されているため、インジェクションポート13内の洗浄液の一部は吸引されることなくインジェクションポート13内に残留する。以上の1回目の洗浄動作が終了すると、ニードル11を少しずつ降下させて1ないし複数回の洗浄動作を実行する。
 本実施例では、1回目の洗浄動作の後、2回目の洗浄動作及び3回目の洗浄動作を行う。2回目の洗浄動作及び3回目の洗浄動作では、例えば接触点19から0.6mm上の高さ、0.3mm上の高さに保持して行われる(図5A(e)、(f)及び図5B(g)、(h))。いずれも、ニードル11の先端部がニードルシール面18に接触しない高さ位置である。ニードル11からの洗浄液の吐出、吸引動作は1回目の洗浄動作と同じである。
 洗浄作業終了後、ニードル11はドレインポート5(図6参照)に移動され、計量ポンプ14によりニードル11内の洗浄液(洗浄廃液)がドレインポート5に排出される(図5B(i))。
 このように、接触しない程度の高さ位置でニードル11からインジェクションポート13への洗浄液の吐出・吸引を繰り返し行うことにより、洗浄液に接することがなかったニードルシール面18が洗浄され、ニードルシール面18の接触点19に付着している試料溶液がほぼ完全に除去される。ニードルシール面18の限られた範囲で洗浄液の吸引・吐出を行なうため、洗浄液の消費量を少なく抑えることができる。
 ニードル11内の洗浄液がドレインポート5に排出されると、ニードル11はドレインポート5からインジェクションポート13に戻されて、ニードルシール面18に緊密に接触するまで降下される。この状態で低圧バルブ2のポートmとポートgを接続し、計量ポンプ14のプランジャーを引いて該計量ポンプ14内に移動相を吸引、保持する。そして、図6に示すように、低圧バルブ2のポートmとポートkを接続すると共に、高圧バルブ1をロード状態に切り換えて、計量ポンプ14内の移動相を吐出する。これにより、ニードル11内、インジェクションポート13内、各流路内の洗浄液が移動相に置換される(図5B(j))。
 この後、高圧バルブ1をインジェクション状態(図1(b)参照)に切り換えてニードル11を送液ポンプ3と接続し、次の試料注入動作に備える(図5B(k))。
 次に、流路洗浄動作について図7~図9を用いて説明する。
 まず、低圧バルブ2のポートmとポートiを接続した状態で計量ポンプ14のプランジャーを引き、洗浄液R2を計量ポンプ14内に吸引、保持する(図7)。
 続いて、低圧バルブ2のポートmとポートiの接続を解除すると共にポートjとポートkを接続し、高圧バルブ1をロード状態にする(図8)。この状態で、計量ポンプ14のプランジャーを押し出し、該計量ポンプ14内に保持された洗浄液R2をサンプルループ16、ニードル11、インジェクションポート13を通る流路内に吐出し、流路内を洗浄液R2で置換する(吐出動作)。このとき計量ポンプ14から押し出される洗浄液量は、流路内を置換するに十分な量(例えば200μl)に設定されている。
 次に、高圧バルブ1及び低圧バルブ2を同じ状態に保持したまま、計量ポンプ14のプランジャーを引き、流路内の洗浄液を吸引する(吸引動作(逆洗浄動作)、図9)。これにより、流路内の洗浄液が押出動作時とは逆方向に移動する。このときの計量ポンプ14の吸引量は、吐出動作時の洗浄液量に比べると非常に少なく、例えば数十μlに設定されている。
 この後、計量ポンプ14のプランジャーを押し出し、吸引量より多い量の洗浄液を再び流路内に吐出する(図8)。
 このような計量ポンプ14による洗浄液の吐出動作及び吸引動作は複数回繰り返される。これにより、流路内の洗浄液が正逆両方向に移動し、流路内が洗浄される。
 具体的には、流路内の洗浄液を正逆両方向に移動させたことにより、流路を構成する各部品の継ぎ目に滞留しやすい残留液を効率的に押し流すことができる。
 また、流路内の洗浄液を繰り返し両方向に移動させることとしたため、少量の洗浄液で流路内を洗浄することができる。
 さらに、少量の洗浄液で流路内を洗浄するようにしたため、試料導入のために用いられる、比較的少量の送液に適した計量ポンプ14を洗浄動作に用いることができる。このため、流路内を洗浄するための新たな送液ポンプを設ける必要がない。
 また、計量ポンプによる洗浄液の吐出量を吸引量よりも多くしたため、吐出動作及び吸引動作を繰り返すことにより、流路内に滞留する残留液を徐々に移動させることができ、前記残留液を流路内から効率的に押し出すことができる。
 流路洗浄動作が終了すると、ニードルシール面18洗浄モードのときと同様、計量ポンプ14によって移動相を送液して流路内の洗浄液を移動相に置換する。
 次に、本実施例に係るオートサンプラのクロスコンタミネーションの低減効果を調べるために実験を行った。この実験では、試料としての20mg/lのカフェイン水溶液及び2000mg/lのカフェイン水溶液とブランク試料(移動相のみ)を順に液体クロマトグラフに導入してそれぞれ分析を行った。ブランク試料の分析は5回連続して行い、各試料及びブランク試料の分析が終了する毎に上述の洗浄動作(ニードル洗浄動作、流路洗浄動作)を実行した。また、比較例として、洗浄動作を行わずに分析を行った。分析諸条件は図10に示す通りである。
 実験では、2000mg/lのカフェイン水溶液試料のピーク面積αに対するブランク試料のピーク面積βの比率(β/α)を以て、クロスコンタミネーションの低減効果を評価した。ただし、2000mg/lのカフェイン水溶液のピーク電圧値が上限値を超えたため、2000mg/lのカフェイン水溶液のピーク面積αは、20mg/lカフェイン水溶液のピーク面積を100倍することにより求めた。
 図11は20mg/l カフェイン水溶液の分析結果であるクロマトグラムの一例を示している。図11から、カフェインのピークは分析開始後2.3分から2.7分の間に出現することが分かる。図12は実施例の1回目のブランク液の分析結果であるクロマトグラムを、図13は比較例の1回目のブランク液の分析結果であるクロマトグラムをそれぞれ示している。両クロマトグラムの横軸(時間軸)の目盛は、図11の横軸と同じであり、いずれのブランク試料のクロマトグラムでも分析開始後2.3分から2.7分の辺りにカフェインに対応するピークが出現することを示している。
 一方、図12及び図13の強度軸である縦軸の目盛は図11に比べるとずいぶんと小さく、比較例及び実施例のいずれにおいてもブランク試料中のカフェインのピーク面積は、試料(20mg/lのカフェイン水溶液)のピーク面積よりも大幅に減少していることを示している。ここで、図13の縦軸の目盛は図12の半分であることから、実施例は比較例よりもブランク試料中のカフェインのピーク面積が小さいことが分かる。
 図14は、比較例及び実施例の各試料のピーク面積、及び比率β/αの値を示す。図14から、比較例に比べて実施例は、比率β/αが非常に小さいことが分かる。特に、実施例における4回目及び5回目のブランク試料では未検出であり、本実施例のオートサンプラでは従来のオートサンプラに比べてクロスコンタミネーション量が非常に低減したことが分かる。
 なお、本発明は上記の実施例に限定されるものではなく、本発明の趣旨の範囲内で適宜の変更が許容される。
 上記実施例では、ニードルシール面の洗浄動作時では、洗浄液のニードル11の位置を順次低くして洗浄液の吐出、吸引を複数回繰り返したが、同じ位置で吐出、吸引を複数回繰り返しても良い。
 ニードルシール面の洗浄動作時におけるニードル11の高さ位置は、ニードル11の先端がニードルシール面に接触しない位置であれば良く、例えば、ニードル11の先端がインジェクションポート13の貫通孔17の開口端よりも上に位置していても良い。インジェクションポート13に洗浄液を満杯に貯留した場合、表面張力によって洗浄液の液面が貫通孔17の開口端よりも上に位置することがあるため、ニードル11の先端がインジェクションポート13の貫通孔17の開口端よりも上に位置していても、ニードル11により洗浄液の吸引が可能だからである。
 上記実施例では、計量した試料の全量を注入することができる流路構造のオートサンプラを例に挙げて説明したが、洗浄ポートを有するオートサンプラであれば、計量した試料の一部を注入する流路構造のオートサンプラにも本発明は適用可能である。
1…高圧バルブ
2…低圧バルブ
6…移動機構
7…制御部
11…ニードル
12…電磁弁
13…インジェクションポート
14…計量ポンプ
15…洗浄ポート
16…サンプルループ
17…貫通孔
18…ニードルシール面
19…接触点

Claims (4)

  1.  先端部がテーパ状に形成されたニードルと、該ニードルを通して液体を吸引・吐出するための計量ポンプと、前記ニードルを水平方向及び垂直方向に移動させる移動機構と、ニードルシール面を有するインジェクションポートとを備え、試料容器内に貯留された試料液を前記ニードルを通して吸引した後に、前記ニードルシール面に前記ニードルの先端部を押し当てて前記試料液を吐出することにより、該インジェクションポートに連通するバルブを介して分析流路に前記試料液を導入するように構成されたオートサンプラにおいて、
     前記インジェクションポート内に貯留可能な量の洗浄液を前記計量ポンプで前記ニードルに吸引した後、前記ニードルを該ニードルの先端部が前記ニードルシール面と接触しない位置に移動させ、前記計量ポンプにより前記ニードルを通して前記インジェクションポートに前記洗浄液を吐出・吸引することにより前記ニードルシール面を洗浄する制御部を有することを特徴とするオートサンプラ。
  2.  前記制御部は、前記計量ポンプに前記洗浄液の吐出・吸引動作を複数回行わせて前記ニードルシール面を洗浄することを特徴とする請求項1に記載のオートサンプラ。
  3.  前記制御部は、前記ニードルを徐々に降下させて前記計量ポンプに洗浄液の吐出・吸引動作を複数回行わせることを特徴とする請求項2に記載のオートサンプラ。
  4.  前記制御部は、前記計量ポンプで前記ニードルに洗浄液を吸引した後、前記ニードルの先端部を前記ニードルシール面に押し当て、前記計量ポンプにより前記インジェクションポートに前記ニードルを通して前記洗浄液を吐出・吸引することにより分析流路内の洗浄を行うことを特徴とする請求項1~3のいずれかに記載のオートサンプラ。
PCT/JP2009/004408 2009-09-07 2009-09-07 オートサンプラ WO2011027410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/004408 WO2011027410A1 (ja) 2009-09-07 2009-09-07 オートサンプラ
PCT/JP2010/064935 WO2011027784A1 (ja) 2009-09-07 2010-09-01 オートサンプラ
CN201080035914.1A CN102549421B (zh) 2009-09-07 2010-09-01 自动取样器
JP2011529918A JP5310861B2 (ja) 2009-09-07 2010-09-01 オートサンプラ
US13/382,499 US8770046B2 (en) 2009-09-07 2010-09-01 Autosampler with control unit for performing a cleaning operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004408 WO2011027410A1 (ja) 2009-09-07 2009-09-07 オートサンプラ

Publications (1)

Publication Number Publication Date
WO2011027410A1 true WO2011027410A1 (ja) 2011-03-10

Family

ID=43648972

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/004408 WO2011027410A1 (ja) 2009-09-07 2009-09-07 オートサンプラ
PCT/JP2010/064935 WO2011027784A1 (ja) 2009-09-07 2010-09-01 オートサンプラ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064935 WO2011027784A1 (ja) 2009-09-07 2010-09-01 オートサンプラ

Country Status (3)

Country Link
US (1) US8770046B2 (ja)
CN (1) CN102549421B (ja)
WO (2) WO2011027410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238468A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp ニードルポート

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117945A (ja) * 2010-12-02 2012-06-21 Hitachi High-Technologies Corp 液体クロマトグラフ,液体クロマトグラフ用試料導入装置、および液体クロマトグラフ用試料導入装置の洗浄方法
US9638674B2 (en) * 2013-02-27 2017-05-02 Shimadzu Corporation Autosampler
CH709354A1 (de) * 2014-03-12 2015-09-15 Werner Döbelin HPLC Injektionseinheit und Probentransferverfahren.
JP6269829B2 (ja) * 2014-06-11 2018-01-31 株式会社島津製作所 液体試料導入装置
US9945762B2 (en) * 2014-12-30 2018-04-17 Agilent Technologies, Inc. Apparatus and method for introducing sample into a separation unit of a chromatography system without disrupting a mobile phase
CN105806672B (zh) * 2014-12-31 2018-12-11 亚申科技研发中心(上海)有限公司 一种在线采样系统
JP6428414B2 (ja) * 2015-03-19 2018-11-28 株式会社島津製作所 オートサンプラ
GB201505421D0 (en) * 2015-03-30 2015-05-13 Ge Healthcare Bio Sciences Ab A rotary valve and a chromatography system
JP6398867B2 (ja) * 2015-05-20 2018-10-03 株式会社島津製作所 オートサンプラ
JP6319516B2 (ja) * 2015-05-28 2018-05-09 株式会社島津製作所 オートサンプラ
WO2016210420A1 (en) 2015-06-26 2016-12-29 Abbott Laboratories Reaction vessel exchanger device for a diagnostic analyzer
EP3252464B1 (en) * 2016-05-30 2024-03-27 Agilent Technologies, Inc. (A Delaware Corporation) Injector and method for sample injection with fludic connection between fluid drive unit and sample accomodation volume
US11275062B2 (en) 2016-05-30 2022-03-15 Agilent Technologies, Inc Sample injection with fluidic connection between fluid drive unit and sample accommodation volume
US11774462B2 (en) * 2017-02-03 2023-10-03 Shimadzu Corporation Pre-processing system
CN110869760B (zh) * 2017-09-01 2022-07-22 株式会社岛津制作所 自动取样器以及液相色谱仪
CN112470008B (zh) * 2017-10-17 2024-08-13 株式会社日立高新技术 自动分析装置及探针的清洗方法
CN109115545B (zh) * 2018-08-03 2021-04-02 邹城兖矿泰德工贸有限公司 地质套管
CN112384799B (zh) * 2018-08-06 2023-06-20 株式会社岛津制作所 试样注入装置
US12105063B2 (en) * 2018-12-12 2024-10-01 Shimadzu Corporation Auto-sampler for chromatographs
WO2020198115A1 (en) * 2019-03-25 2020-10-01 Waters Technologies Corporation Dual mode sample manager
CN110420071B (zh) * 2019-06-10 2021-06-25 义乌市宏博机械科技有限公司 一种注射针头移动装置
US11774327B2 (en) * 2020-12-29 2023-10-03 Dionex Corporation Bioinert sampling needle
CN116893131B (zh) * 2023-09-11 2024-02-20 深圳市帝迈生物技术有限公司 一种流式样本分析仪以及流动室清洗方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203459U (ja) * 1986-06-17 1987-12-25
JP2004317213A (ja) * 2003-04-14 2004-11-11 Aloka Co Ltd 液体吸入吐出装置
JP2006038809A (ja) * 2004-07-30 2006-02-09 Shimadzu Corp オートサンプラ
JP3129218U (ja) * 2006-11-28 2007-02-08 株式会社島津製作所 オートサンプラ
JP2008164498A (ja) * 2006-12-28 2008-07-17 Shiseido Co Ltd 試料注入装置及び液体クロマトグラフィー装置
JP2009036723A (ja) * 2007-08-03 2009-02-19 Olympus Corp 自動分析装置および動作環境設定方法
WO2009041441A1 (ja) * 2007-09-28 2009-04-02 Shimadzu Corporation 試料導入方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021343B2 (ja) * 1979-02-06 1985-05-27 株式会社東芝 酸素計
JPS55104761A (en) 1979-02-07 1980-08-11 Olympus Optical Co Ltd Fractionally filling apparatus
JPS62203459A (ja) 1986-03-03 1987-09-08 Canon Inc フアクシミリ装置
JPH03129218A (ja) 1989-10-12 1991-06-03 Matsushita Electric Ind Co Ltd 空気調和機用エアフィルタ
JP3129218B2 (ja) 1996-12-27 2001-01-29 ソニーケミカル株式会社 ファインピッチコネクタ部材
CN2483709Y (zh) * 2001-07-10 2002-03-27 重庆大学 微量试样快速定位进样装置
JP3826891B2 (ja) 2003-03-05 2006-09-27 株式会社島津製作所 オートサンプラ
JP4992401B2 (ja) * 2006-12-06 2012-08-08 株式会社島津製作所 オートサンプラ洗浄機構
CN101688873B (zh) * 2007-06-28 2013-04-24 贝克曼考尔特公司 清洗装置、吸入喷嘴的堵塞检测方法以及自动分析装置
JP2009041441A (ja) * 2007-08-08 2009-02-26 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203459U (ja) * 1986-06-17 1987-12-25
JP2004317213A (ja) * 2003-04-14 2004-11-11 Aloka Co Ltd 液体吸入吐出装置
JP2006038809A (ja) * 2004-07-30 2006-02-09 Shimadzu Corp オートサンプラ
JP3129218U (ja) * 2006-11-28 2007-02-08 株式会社島津製作所 オートサンプラ
JP2008164498A (ja) * 2006-12-28 2008-07-17 Shiseido Co Ltd 試料注入装置及び液体クロマトグラフィー装置
JP2009036723A (ja) * 2007-08-03 2009-02-19 Olympus Corp 自動分析装置および動作環境設定方法
WO2009041441A1 (ja) * 2007-09-28 2009-04-02 Shimadzu Corporation 試料導入方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238468A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp ニードルポート

Also Published As

Publication number Publication date
CN102549421A (zh) 2012-07-04
CN102549421B (zh) 2015-02-11
WO2011027784A1 (ja) 2011-03-10
US8770046B2 (en) 2014-07-08
US20120111127A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2011027410A1 (ja) オートサンプラ
EP0800073B1 (en) Pretreatment apparatus
US7621282B2 (en) Probe washing cups and methods
WO2011052445A1 (ja) 液体試料分析装置及び液体試料導入装置
EP3287793B1 (en) Autoanalyzer and method
JP5471846B2 (ja) 液体試料導入装置及び液体試料導入方法
KR20120082810A (ko) 시료주입장치, 시료주입방법, 및 액체크로마토그래피장치
JP4144993B2 (ja) 自動分析装置
JP2011033426A (ja) 自動分析装置および自動分析装置の制御方法
JP2001255315A (ja) 液体クロマトグラフ
JP2001305148A (ja) 試料注入装置
JP2014106213A (ja) 液体クロマトグラフ用オートサンプラ
JP5310861B2 (ja) オートサンプラ
JP2012021926A (ja) 自動分析装置
JP4500081B2 (ja) ノズル洗浄方法とノズル洗浄装置
JP4422658B2 (ja) 液体分注装置
JP5039456B2 (ja) 液体クロマトグラフ分析装置
JP6610127B2 (ja) 液体分注装置及び液体分注方法
JP4385935B2 (ja) 自動試料注入装置
JP3341716B2 (ja) 液体クロマトグラフ
JP2007093220A (ja) 自動分析装置
JP2007064922A (ja) オートサンプラ
JP2012247440A (ja) 液体試料分析装置及び液体試料導入装置
WO2022224521A1 (ja) 自動分析装置とその制御方法
CN219201483U (zh) 一种无样品损失自动进样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP