[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011027398A1 - ブレーキ制御装置 - Google Patents

ブレーキ制御装置 Download PDF

Info

Publication number
WO2011027398A1
WO2011027398A1 PCT/JP2009/004365 JP2009004365W WO2011027398A1 WO 2011027398 A1 WO2011027398 A1 WO 2011027398A1 JP 2009004365 W JP2009004365 W JP 2009004365W WO 2011027398 A1 WO2011027398 A1 WO 2011027398A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
low temperature
pressure
temperature
vehicle
Prior art date
Application number
PCT/JP2009/004365
Other languages
English (en)
French (fr)
Inventor
中田大輔
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/004365 priority Critical patent/WO2011027398A1/ja
Priority to CN200980161266.1A priority patent/CN102481913B/zh
Priority to DE112009005203.7T priority patent/DE112009005203B4/de
Priority to JP2011529696A priority patent/JP5168409B2/ja
Priority to US13/394,228 priority patent/US8479850B2/en
Publication of WO2011027398A1 publication Critical patent/WO2011027398A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/246Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a braking technique in a hybrid vehicle including both a hydraulic brake unit and a regenerative brake unit.
  • Hybrid vehicles that run using an engine and motor as power sources are known.
  • a regenerative brake that is used as a braking force can be used by operating a motor as a generator when the vehicle is decelerated and collecting generated electric energy in a battery.
  • This battery has a characteristic that, when the temperature of the battery is lowered, for example, by leaving the vehicle for a long time in winter, the input / output amount of electric energy is greatly reduced. As a result, until the battery temperature rises, the driving force assistance by the motor and the energy recovery amount are reduced, and the fuel consumption is reduced.
  • the allowable temperature range is very narrow compared to a nickel battery or the like. Therefore, it is necessary to quickly increase the battery temperature to within an allowable range in order to improve fuel efficiency.
  • Patent Document 1 when the temperature of the battery is low, the motor driving force is increased by reducing the engine driving force and discharged to the battery, and the motor driving force is reduced by increasing the engine driving force to charge the battery. It is disclosed that the battery temperature is raised by repeating the control to increase the discharge current and the charge current of the battery.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for quickly raising a battery to an appropriate temperature when the battery temperature is low in a hybrid vehicle.
  • a certain aspect of the present invention is a brake control device.
  • This device includes an engine that drives wheels, friction braking means that generates a friction braking force by supplying hydraulic fluid to a wheel cylinder provided on each wheel of the vehicle and pressing the friction member against the wheels, and drives the wheels.
  • Regenerative braking means for generating regenerative braking force by power regeneration to the rotating electric machine, regenerative cooperative control means for controlling the distribution ratio of the braking force by the friction braking means and the regenerative braking means in response to a braking request from the driver, and rotation
  • a battery that collects electric power from the electric machine, a low temperature determination unit that determines that the battery is low when the temperature of the battery is below a predetermined temperature range, and a rotary electric machine or engine that is determined to be low by the low temperature determination unit
  • a braking force is generated on the vehicle by at least one of the friction braking means and the regenerative braking means to Comprises a battery temperature raising means for increasing the load, the.
  • a friction braking force and a regenerative braking force is generated during acceleration of the vehicle.
  • friction braking force the load on the rotating electrical machine increases, and a larger amount of electrical energy is released from the battery to the rotating electrical machine than when there is no friction braking force.
  • regenerative braking force electric energy is recovered from the rotating electrical machine to the battery, so that the temperature of the battery can be quickly raised. Therefore, the energy recovery performance of the battery is restored and the fuel consumption is improved.
  • the friction braking force when the friction braking force is generated, the temperature of the friction member also increases, so that the brake feeling can be improved.
  • the friction braking means may include an accumulator that pressurizes the hydraulic fluid supplied to the wheel cylinder by driving the pump, and an accumulator pressure measuring means that measures the pressure of the accumulator.
  • the low temperature determination means may determine that the battery temperature is low when the time required for boosting the accumulator to a predetermined pressure by the pump is longer than the boost time when the accumulator is in a predetermined temperature range. According to this, since the low temperature of the battery is determined using the accumulator pressure of the friction braking means, it is not necessary to provide a sensor or the like for detecting the battery temperature.
  • a low temperature determination cancellation unit that cancels the battery low temperature determination by the low temperature determination unit may be further provided.
  • the low temperature determination canceling means cancels the battery low temperature determination when the count reaches the first threshold when the acceleration / deceleration counting means for counting the number of times the vehicle has experienced acceleration and deceleration and the regenerative braking means are not operating.
  • the regenerative braking means when the regenerative braking means is operated, there may be provided count determination means for canceling the battery low temperature determination when the count number reaches a second threshold value smaller than the first threshold value. According to this, when it is determined that the battery temperature is low, the low temperature determination can be canceled based on the number of times of acceleration / deceleration of the vehicle.
  • the regenerative braking means when operated, that is, when regenerative coordination is performed, the low temperature determination can be canceled with a smaller number of acceleration / deceleration times than when the regenerative coordination is performed, considering that the charging / discharging of the battery increases.
  • a low temperature determination cancellation unit that cancels the battery low temperature determination by the low temperature determination unit may be further provided.
  • the low temperature determination canceling means includes a temperature measuring means for measuring the temperature in the vehicle interior, and a state where the temperature in the vehicle interior is equal to or higher than a predetermined value for a predetermined time estimated that the battery rises to a predetermined temperature range.
  • the amount of regenerative energy recovered by the battery can be increased by quickly raising the battery temperature to an appropriate temperature.
  • FIG. 1 is a schematic configuration diagram illustrating a hybrid vehicle to which a brake control device according to an embodiment of the present invention is applied. It is a figure which shows the structure of a hydraulic brake unit. It is a functional block diagram which shows the structure of the part which concerns in the temperature rise control at the time of the battery low temperature which concerns on this embodiment among brake ECU of FIG. It is a flowchart of the low temperature determination process of the battery by a low temperature determination part. It is a flowchart of the process which cancels
  • One embodiment of the present invention includes a hydraulic brake unit that supplies hydraulic fluid to a wheel cylinder provided on each wheel of a vehicle from a hydraulic pressure generation source and applies a braking force to the wheel, and a rotating electrical machine (hereinafter simply referred to as “motor”). It is related with the brake control apparatus applied to a hybrid vehicle provided with the regenerative brake unit which provides a driving force or a regenerative braking force to a wheel.
  • FIG. 1 is a schematic configuration diagram showing a vehicle 100 to which a brake control device according to this embodiment is applied.
  • the vehicle 100 is configured as a so-called hybrid vehicle, and can generate power connected to the engine 2, a three-shaft power split mechanism 3 connected to a crankshaft that is an output shaft of the engine 2, and the power split mechanism 3.
  • a generator 4 a front wheel motor 6 connected to the power split mechanism 3 via the transmission 5, and a hybrid electronic control unit (hereinafter referred to as “hybrid ECU”) that controls the entire drive system of the vehicle 100, electronic control All the units are referred to as “ECU”) 7.
  • a right front wheel 9FR and a left front wheel 9FL of the vehicle 100 are connected to the transmission 5 via a drive shaft 8.
  • the engine 2 is an internal combustion engine that is operated using a hydrocarbon-based fuel such as gasoline or light oil, and is controlled by the engine ECU 10.
  • the engine ECU 10 can communicate with the hybrid ECU 7, and performs fuel injection control, ignition control, intake control, etc. of the engine 2 based on control signals from the hybrid ECU 7 and signals from various sensors that detect the operating state of the engine 2. Execute. Further, the engine ECU 10 gives information about the operating state of the engine 2 to the hybrid ECU 7 as necessary.
  • the vehicle 100 also includes a rear wheel motor 16.
  • a right rear wheel 9RR and a left rear wheel 9RL of the vehicle 100 are connected to the transmission 15 via a drive shaft 18.
  • the output of the rear wheel motor 16 is transmitted to the left and right rear wheels 9RR and 9RL via the transmission 15.
  • the power split mechanism 3 transmits the output of the front wheel motor 6 to the left and right front wheels 9FR and 9FL via the transmission 5, distributes the output of the engine 2 to the generator 4 and the transmission 5, and the front wheel It plays the role of reducing or increasing the rotational speed of the motor 6 and the engine 2.
  • the generator 4, the front wheel motor 6 and the rear wheel motor 16 are each connected to a battery 12 via a power converter 11 including an inverter, and a motor ECU 14 is connected to the power converter 11.
  • the motor ECU 14 can also communicate with the hybrid ECU 7, and controls the generator 4, the front wheel motor 6, and the rear wheel motor 16 via the power conversion device 11 based on a control signal from the hybrid ECU 7.
  • the hybrid ECU 7, engine ECU 10, and motor ECU 14 described above are all configured as a microprocessor including a CPU.
  • a ROM that stores various programs
  • a RAM that temporarily stores data
  • an input / output port and a communication port.
  • the vehicle 100 is driven by the engine 2 in a driving region where the engine efficiency is good. At this time, by transmitting a part of the output of the engine 2 to the generator 4 via the power split mechanism 3, the front wheel motor 6 is driven using the electric power generated by the generator 4 or via the power converter 11. Thus, the battery 12 can be charged.
  • the front wheel motor 6 When the vehicle 100 is braked, the front wheel motor 6 is rotated by the power transmitted from the front wheels 9FR and 9FL under the control of the hybrid ECU 7 and the motor ECU 14, and the front wheel motor 6 is operated as a generator. . Further, the rear wheel motor 16 is rotated by the power transmitted from the rear wheels 9RR and 9RL, and the rear wheel motor 16 is operated as a generator. That is, the front wheel motor 6, the rear wheel motor 16, the power converter 11, the hybrid ECU 7, the motor ECU 14, and the like function as a regenerative brake unit that brakes the vehicle 100 by regenerating the kinetic energy of the vehicle 100 into electrical energy. .
  • the brake control device includes a hydraulic brake unit 20 in addition to such a regenerative brake unit, and brakes the vehicle 100 by executing brake regenerative cooperative control that coordinates both.
  • the cooperative control unit included in the hybrid ECU 7 normally determines a distribution ratio between the hydraulic braking force and the regenerative braking force in accordance with a braking request from the driver, and applies the braking force to the hydraulic brake unit 20 and the regenerative brake unit, respectively. Request.
  • FIG. 2 shows the configuration of the hydraulic brake unit 20.
  • the hydraulic brake unit 20 is used as a hydraulic fluid for the disc brake units 21FR, 21FL, 21RR and 21RL provided for the left and right front wheels 9FR and 9FL, the left and right rear wheels 9RR and 9RL, and the disc brake units 21FR to 21RL.
  • the power hydraulic pressure source 30 serving as the brake oil supply source and the hydraulic pressure of the brake oil from the power hydraulic pressure source 30 are appropriately adjusted and supplied to the disc brake units 21FR to 21RL.
  • a hydraulic actuator 40 capable of setting a braking force with respect to.
  • Each of the disc brake units 21FR to 21RL includes a brake disc 22 and a brake caliper 23, and each brake caliper 23 incorporates a wheel cylinder (not shown).
  • the wheel cylinder of each brake caliper 23 is connected to the hydraulic actuator 40 via an independent fluid passage.
  • the master cylinder unit 27 is a master cylinder with a hydraulic booster in this embodiment, and includes a hydraulic booster 31, a master cylinder 32, a regulator 33, and a reservoir.
  • the hydraulic booster 31 is connected to the brake pedal 24, amplifies the pedal effort applied to the brake pedal 24, and transmits it to the master cylinder 32.
  • the pedal effort is amplified.
  • the master cylinder 32 generates a master cylinder pressure having a predetermined boost ratio with respect to the pedal effort.
  • a reservoir 34 for storing brake fluid is disposed above the master cylinder 32 and the regulator 33.
  • the master cylinder 32 communicates with the reservoir 34 when the depression of the brake pedal 24 is released.
  • the regulator 33 is in communication with both the reservoir 34 and the accumulator 35 of the power hydraulic pressure source 30, and the reservoir 34 is used as a low pressure source, the accumulator 35 is used as a high pressure source, and the hydraulic pressure is approximately equal to the master cylinder pressure. Is generated.
  • the hydraulic pressure in the regulator 33 is appropriately referred to as “regulator pressure”.
  • the master cylinder pressure and the regulator pressure do not need to be exactly the same pressure.
  • the master cylinder unit 27 can be designed so that the regulator pressure is slightly higher.
  • the power hydraulic pressure source 30 includes an accumulator 35 and a pump 36.
  • the accumulator 35 converts and stores the pressure energy of the brake fluid boosted by the pump 36 into the pressure energy of an enclosed gas such as nitrogen, for example, about 14 to 22 MPa.
  • the pump 36 has a motor 36 a as a drive source, and its suction port is connected to the reservoir 34, while its discharge port is connected to the accumulator 35.
  • the accumulator 35 is also connected to a relief valve 35 a provided in the master cylinder unit 27. When the pressure of the brake fluid in the accumulator 35 increases abnormally to about 25 MPa, for example, the relief valve 35 a is opened, and the high-pressure brake fluid is returned to the reservoir 34.
  • the hydraulic brake unit 20 includes the master cylinder 32, the regulator 33, and the accumulator 35 as a brake fluid supply source for the disc brake unit 21.
  • a master pipe 37 is connected to the master cylinder 32, a regulator pipe 38 is connected to the regulator 33, and an accumulator pipe 39 is connected to the accumulator 35.
  • These master pipe 37, regulator pipe 38 and accumulator pipe 39 are each connected to a hydraulic actuator 40.
  • the hydraulic actuator 40 includes an actuator block in which a plurality of fluid passages are formed and a plurality of electromagnetic control valves.
  • the fluid passage formed in the actuator block includes individual passages 41, 42, 43 and 44 and a main passage 45.
  • the individual passages 41 to 44 are respectively branched from the main passage 45 and connected to the corresponding disc brake units 21FR, 21FL, 21RR, 21RL. Thereby, each of the disc brake units 21FR to 21RL can communicate with the main passage 45.
  • pressure increase holding valves 51, 52, 53 and 54 are provided in the middle of the individual passages 41, 42, 43 and 44.
  • Each of the pressure increase holding valves 51 to 54 has a solenoid and a spring that are ON / OFF controlled, and each is a normally open electromagnetic control valve that is opened when the solenoid is in a non-energized state.
  • each of the disc brake units 21FR to 21RL is connected to the decompression passage 55 via decompression passages 46, 47, 48 and 49 connected to the individual passages 41 to 44, respectively.
  • decompression control valves 56, 57, 58 and 59 are provided in the middle of the decompression passages 46, 47, 48 and 49.
  • Each of the pressure reducing control valves 56 to 59 has a solenoid and a spring that are ON / OFF controlled, and is a normally closed electromagnetic control valve that is closed when the solenoid is in a non-energized state.
  • the main passage 45 has a communication valve 60 in the middle, and a first passage 45a connected to the individual passages 43 and 44 by the communication valve 60 and a second passage 45b connected to the individual passages 41 and 42. It is divided into. That is, the first passage 45a is connected to the rear wheel side disc brake units 21RR and 21RL via the individual passages 43 and 44, and the second passage 45b is connected to the front wheel side disc brake unit via the individual passages 41 and 42. Connected to 21FR and 21FL.
  • the communication valve 60 is a normally closed electromagnetic control valve that has a solenoid and a spring that are ON / OFF controlled and is closed when the solenoid is in a non-energized state.
  • the main passage 45 has a master passage 61 connected to a master pipe 37 communicating with the master cylinder 32, a regulator passage 62 connected to a regulator pipe 38 communicating with the regulator 33, and an accumulator pipe 39 communicating with the accumulator 35.
  • the accumulator passage 63 connected to the is connected. More specifically, the master passage 61 is connected to the second passage 45 b of the main passage 45, and the regulator passage 62 and the accumulator passage 63 are connected to the first passage 45 a of the main passage 45. Further, the decompression passage 55 is connected to the reservoir 34 of the power hydraulic pressure source 30.
  • the master passage 61 has a master pressure cut valve 64 in the middle.
  • the master pressure cut valve 64 has a solenoid and a spring that are ON / OFF controlled, and is a normally open electromagnetic control valve that is opened when the solenoid is in a non-energized state.
  • the regulator passage 62 has a regulator pressure cut valve 65 in the middle.
  • the regulator pressure cut valve 65 also has a solenoid and a spring that are ON / OFF controlled, and is a normally open electromagnetic control valve that is opened when the solenoid is in a non-energized state.
  • the accumulator passage 63 has a pressure-increasing linear control valve 66 in the middle, and the accumulator passage 63 and the first passage 45 a of the main passage 45 are connected to the pressure reduction passage 55 via the pressure reduction linear control valve 67.
  • the pressure-increasing linear control valve 66 and the pressure-decreasing linear control valve 67 each have a linear solenoid and a spring, and both are normally closed electromagnetic control valves that are closed when the solenoid is in a non-energized state.
  • the differential pressure between the inlet and outlet of the pressure-increasing linear control valve 66 corresponds to the differential pressure between the brake oil pressure in the accumulator 35 and the brake oil pressure in the main passage 45, and between the inlet and outlet of the pressure-reducing linear control valve 67.
  • the differential pressure corresponds to the differential pressure between the brake oil pressure in the main passage 45 and the brake oil pressure in the decompression passage 55.
  • the electromagnetic driving force according to the power supplied to the linear solenoid of the pressure increasing linear control valve 66 and the pressure reducing linear control valve 67 is F1
  • the spring biasing force is F2
  • the pressure-increasing linear control valve 66 is a normally closed electromagnetic control valve as described above, when the pressure-increasing linear control valve 66 is in a non-energized state, the main passage 45 has an accumulator as a high-pressure hydraulic pressure source. It will be cut off from 35. Since the pressure-reducing linear control valve 67 is also a normally closed electromagnetic control valve as described above, the main passage 45 is blocked from the reservoir 34 when the pressure-reducing linear control valve 67 is in a non-energized state. In this respect, it can be said that the main passage 45 is also connected to the reservoir 34 as a low pressure hydraulic pressure source.
  • a stroke simulator 69 is connected to the master passage 61 via a simulator cut valve 68 on the upstream side of the master pressure cut valve 64.
  • the simulator cut valve 68 is a normally closed electromagnetic control valve that has a solenoid and a spring that are ON / OFF controlled and is closed when the solenoid is in a non-energized state.
  • the stroke simulator 69 includes a plurality of pistons and springs, and creates a reaction force according to the depression force of the brake pedal 24 by the driver when the simulator cut valve 68 is opened.
  • the stroke simulator 69 one having multi-stage spring characteristics is preferably employed in order to improve the feeling of brake operation by the driver, and the stroke simulator 69 of this embodiment has four stages of spring characteristics.
  • the power hydraulic pressure source 30 and the hydraulic actuator 40 configured as described above are controlled by a brake ECU 70 as control means.
  • the brake ECU 70 is configured as a microprocessor including a CPU, and includes a ROM for storing various programs, a RAM for temporarily storing data, an input / output port, a communication port, and the like in addition to the CPU.
  • the brake ECU 70 is communicable with the hybrid ECU 7, and an electromagnetic control valve constituting the pump 36 of the hydraulic power source 30 and the hydraulic actuator 40 based on control signals from the hybrid ECU 7 and signals from various sensors. 51 to 54, 56 to 59, 60, and 64 to 68 are controlled.
  • Sensors connected to the brake ECU 70 include a regulator pressure sensor 71, an accumulator pressure sensor 72, and a control pressure sensor 73.
  • the regulator pressure sensor 71 detects the pressure of the brake oil (regulator pressure) in the regulator passage 62 on the upstream side of the regulator pressure cut valve 65, and gives a signal indicating the detected value to the brake ECU 70.
  • the accumulator pressure sensor 72 detects the pressure (accumulator pressure) of the brake oil in the accumulator passage 63 on the downstream side of the pressure-increasing linear control valve 66, and gives a signal indicating the detected value to the brake ECU 70.
  • the control pressure sensor 73 detects the pressure of the brake oil in the second passage 45b of the main passage 45, and gives a signal indicating the detected value to the brake ECU 70.
  • the detection values of the sensors 71 to 73 are sequentially given to the brake ECU 70 at predetermined time intervals, and stored in a predetermined storage area (buffer) of the brake ECU 70 by a predetermined amount.
  • the output value of the control pressure sensor 73 is the hydraulic pressure on the low pressure side of the pressure-increasing linear control valve 66. And the hydraulic pressure on the high pressure side of the pressure-reducing linear control valve 67 is indicated, so that this output value can be used for controlling the pressure-increasing linear control valve 66 and the pressure-reducing linear control valve 67. Further, the pressure increasing linear control valve 66 and the pressure reducing linear control valve 67 are closed, and the communication valve 60 is in a non-energized state, so that the first passage 45a and the second passage 45b of the main passage 45 are separated from each other.
  • the output value of the control pressure sensor 73 indicates the master cylinder pressure. Further, the communication valve 60 is opened so that the first passage 45a and the second passage 45b of the main passage 45 communicate with each other, and the pressure-increasing holding valves 51 to 54 are opened, while the pressure-reducing control valves 56 to 54 are opened. When 59 is closed, the output value of 73 of the control pressure sensor indicates the brake pressure (wheel cylinder pressure) of each of the disc brake units 21FR to 21RL.
  • the sensor connected to the brake ECU 70 includes the brake stroke sensor 25 described above.
  • the brake stroke sensor 25 detects the operation amount of the brake pedal 24 and gives a signal indicating the detected value to the brake ECU 70.
  • the detection value of the brake stroke sensor 25 is also sequentially given to the brake ECU 70 every predetermined time, and is stored and held by a predetermined amount in a predetermined storage area (buffer) of the brake ECU 70.
  • a pedal depression force sensor that detects an operation state of the brake pedal 24 and a brake switch that detects that the brake pedal 24 is depressed may be connected to the brake ECU 70.
  • the brake control device configured as described above can execute brake regeneration cooperative control.
  • the hydraulic brake unit 20 starts braking upon receiving a braking request.
  • the braking request is generated when a braking force should be applied to the vehicle, for example, when the driver operates the brake pedal 24.
  • the brake ECU 70 calculates a required braking force, and calculates a required hydraulic braking force that is a braking force to be generated by the hydraulic brake unit 20 by subtracting the braking force due to regeneration from the required braking force.
  • the braking force by regeneration is supplied from the hybrid ECU to the brake control device.
  • the brake ECU 70 calculates the target hydraulic pressure of each of the disc brake units 21FR to 21RL based on the calculated required hydraulic braking force.
  • the brake ECU 70 determines the value of the control current supplied to the pressure-increasing linear control valve 66 and the pressure-decreasing linear control valve 67 based on the feedback control law so that the wheel cylinder pressure becomes the target hydraulic pressure.
  • a wheel cylinder pressure control system is configured including the power hydraulic pressure source 30, the pressure-increasing linear control valve 66, the pressure-decreasing linear control valve 67, and the like. A so-called brake-by-wire braking force control is performed by the wheel cylinder pressure control system.
  • the wheel cylinder pressure control system is provided in parallel to the brake fluid supply path from the master cylinder unit 27 to the wheel cylinder of the disc brake unit 21.
  • the brake ECU 70 closes the regulator pressure cut valve 65 so that the brake fluid sent from the regulator 33 is not supplied to the wheel cylinder. Further, the brake ECU 70 closes the master pressure cut valve 64 and opens the simulator cut valve 68. This is because the brake fluid sent from the master cylinder 32 in accordance with the operation of the brake pedal 24 by the driver is supplied to the stroke simulator 69 instead of the wheel cylinder of the disc brake unit 21.
  • a differential pressure corresponding to the magnitude of the regenerative braking force acts between the upstream and downstream of the regulator pressure cut valve 65 and the master pressure cut valve 64.
  • the battery of the hybrid vehicle described above has a characteristic that the input / output amount of electric energy greatly decreases when the temperature of the battery decreases, such as by leaving the vehicle for a long time in winter. As a result, until the battery temperature rises, the driving force assistance by the motor and the energy recovery amount are reduced and the fuel consumption is lowered, so it is desirable to raise the battery temperature quickly.
  • control is performed to ensure the recovery performance of regenerative energy by quickly increasing the battery temperature. To do.
  • FIG. 3 is a functional block diagram showing a configuration of a part of the brake ECU 70 shown in FIG.
  • Each block shown here can be realized in hardware by an element and a mechanical device including a computer CPU and memory, and in software by a computer program or the like. It is drawn as a functional block to be realized. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the low temperature determination unit 120 sets the battery low temperature flag to ON when the temperature of the battery 12 is below a predetermined temperature range.
  • the predetermined temperature range is, for example, a temperature range in which the battery performance in which recovery of regenerative energy can be continued for a predetermined time or more during regenerative braking can be exhibited, and is determined by experiment or based on battery specifications.
  • the low temperature temperature determination of the battery 12 may be performed based on a detection value of a temperature sensor provided in the vicinity of the battery, but in this embodiment, the low temperature determination is performed by the accumulator pressure measurement unit 122 based on the pressure change of the accumulator 35.
  • the accumulator employs a spool valve. Since this spool valve is vulnerable to holding pressure for a long time, if the vehicle is left unmoved for a long time, a phenomenon (hereinafter referred to as “zero down”) in which the accumulator pressure decreases to near 0 MPa occurs. When this zero-down occurs, it can be estimated that the vehicle has been left until the battery temperature and the power hydraulic pressure source 30 having the accumulator reach similar temperatures. Utilizing this, the accumulator pressure measurement unit 122 determines the low temperature of the battery when the accumulator pressure is lower than a predetermined pressure P1 near 0 MPa.
  • the accumulator pressure measurement unit 122 starts accumulator pressure accumulation after the vehicle is started, and the accumulator pressure reaches a second predetermined pressure P2 from P1 (for example, 19.88 MPa at which the motor 36a that drives the pump 36 is turned off). The time t until the measurement is measured.
  • P1 for example, 19.88 MPa at which the motor 36a that drives the pump 36 is turned off.
  • the time t until the measurement is measured.
  • the pressure accumulation time t is longer than the predetermined time T1
  • an intelligent battery that can manage the charge / discharge state of the battery itself may be used to determine whether the battery has a desired performance regardless of the temperature. .
  • the low temperature determination canceling unit 130 sets the battery low temperature flag to OFF when the predetermined condition is met.
  • the low temperature determination cancellation unit 130 includes a room temperature monitoring unit 132 and an acceleration / deceleration monitoring unit 134.
  • the room temperature monitoring unit 132 acquires the measurement value X (° C.) of the room temperature sensor 82 that measures the vehicle interior temperature shown in FIG.
  • the battery low temperature flag is set to OFF.
  • the battery of a hybrid vehicle is mounted below the rear seat and is connected to the vehicle interior through a heat exhaust groove. Therefore, it can be determined that the battery temperature also increases if the vehicle interior temperature is kept at room temperature for a long time. Therefore, the predetermined temperature X1 is set to normal temperature, for example, 20 ° C., and the predetermined time T2 is obtained by experimentally obtaining a time estimated to increase the battery to the predetermined temperature range when the vehicle interior temperature is X1. Set.
  • the acceleration / deceleration monitoring unit 134 sets the battery low temperature flag to OFF based on the number of times of acceleration / deceleration of the vehicle.
  • the acceleration / deceleration monitoring unit 134 includes an acceleration / deceleration count unit 136 and a count determination unit 138.
  • the acceleration / deceleration counting unit 136 counts the number of times that the vehicle has accelerated to a predetermined speed S1 (km / h) or higher and decelerated to a predetermined speed S2 (km / h) or lower (however, S2 ⁇ S1).
  • the count determination unit 138 sets the battery low temperature flag to OFF when the count number by the acceleration / deceleration count unit 136 reaches the first threshold value N1. This is because when the vehicle performs acceleration / deceleration, the battery 12 repeatedly increases its battery temperature in order to repeatedly release energy for driving the motor or recover energy for regenerative braking. It is what.
  • the predetermined speeds S1, S2 and the threshold value N1 are preferably determined by experiments or simulations in consideration of the amount of energy released and the amount of recovery required for the battery to rise to a predetermined temperature range.
  • the count determination unit 138 determines whether the regenerative brake unit is activated or deactivated based on information from the hybrid ECU 7.
  • the count number by the acceleration / deceleration count unit 136 is a second threshold value N2 (however, , N2 ⁇ N1), the battery low temperature flag may be set to OFF.
  • N2 is also preferably determined by experiment or simulation. Note that the above determination may always be performed based on the first threshold value N1 without determining whether to implement the regenerative cooperative control.
  • the battery temperature riser 140 is a hydraulic brake unit during vehicle acceleration when the battery low temperature flag is ON for a predetermined time T3 or more from the start of the vehicle or when it is determined that the temperature is extremely low.
  • the friction braking force is generated by 20 to increase the load on the motor. Thereby, discharge from the battery to the motor occurs, and the temperature of the battery rises.
  • FIG. 4 is a flowchart of battery low temperature determination processing by the low temperature determination unit 120.
  • the accumulator pressure measuring unit 122 determines whether or not it is within a predetermined time T0 after the vehicle is started, for example, after the brake ECU 70 is started (S10). If it is within T0 (Y in S10), it is determined whether or not the accumulator pressure is equal to or lower than a predetermined pressure P1 near 0 MPa (S12). If the accumulator pressure is greater than P1 (N in S12), the low temperature determination based on the accumulator pressure cannot be made, so the battery low temperature flag is turned OFF (S24). If the accumulator pressure is P1 or less (Y in S12), a timer is started (S14).
  • Time is measured until the accumulator pressure reaches the predetermined motor off pressure P2, and when it reaches P2 (Y in S16), the timer is stopped (S18).
  • the accumulator pressure measurement unit 122 determines whether or not the timer time t is greater than the predetermined time T1 (S20). If it is greater than T1 (Y in S20), the battery low temperature flag is set to ON based on the fact that the accumulator boost time is longer than normal (S22). If it is T1 or less (N in S20), the battery low temperature flag is set to OFF.
  • FIG. 5 illustrates a process for releasing the battery low temperature flag. This process is repeatedly performed at predetermined intervals while the vehicle is traveling.
  • the room temperature monitoring unit 132 determines whether or not the battery low temperature flag is ON (S30). When the flag is ON, it is determined based on the measured value of the room temperature sensor 82 whether or not the state in which the vehicle interior temperature is equal to or higher than X1 continues for a predetermined time T2 (S32). If it continues for the predetermined time T2 or more (Y in S32), it is estimated that the temperature of the battery is rising, and the battery low temperature flag is set to OFF.
  • the low temperature determination process shown in FIG. 4 cannot make an accurate determination, and the battery may not actually be at a low temperature. Therefore, the battery low temperature flag can be turned OFF by the process of FIG. 5 when it is estimated that the battery temperature is rising based on the monitoring of the room temperature.
  • FIG. 6 is a flowchart of another process for releasing the battery low temperature flag. This process is repeatedly performed at predetermined intervals while the vehicle is traveling.
  • the acceleration / deceleration monitoring unit 134 determines whether or not the battery low temperature flag is ON (S40). If the flag is ON (Y in S40), it is determined based on information from the hybrid ECU 7 whether the regenerative brake unit is operating, that is, whether regenerative coordination is being performed (S42). If regenerative cooperation is not implemented (N of S42), it progresses to S44. If regeneration coordination is being performed (Y in S42), the regeneration flag is set to ON (S60).
  • the acceleration / deceleration monitoring unit 134 determines whether or not the vehicle speed is equal to or higher than the predetermined speed S1 based on the measured value of the vehicle speed sensor 81 (S44). If S1 or more (Y in S44), the acceleration / deceleration experience flag is set to ON (S62). If it is less than S1 (N in S44), it is determined whether or not the acceleration / deceleration experience flag is ON (S46). If the flag is ON (Y of S46), it is further determined whether or not the vehicle speed is equal to or lower than a predetermined speed S2 (S48). If S2 or less (Y in S48), the acceleration / deceleration experience flag is set to OFF (S50).
  • the acceleration / deceleration experience flag has been switched from ON to OFF. That is, it means that the vehicle repeats acceleration of S1 or more and deceleration of S2 or less once. Therefore, the acceleration / deceleration monitoring unit 134 increments the acceleration / deceleration counter by 1 (S52).
  • the count determination unit 138 determines whether or not the regeneration flag is ON (S54). If the flag is OFF (N in S54), it is determined whether or not the value of the acceleration / deceleration counter is greater than or equal to the threshold value N1 (S56). If the counter is equal to or greater than N1 (Y in S56), it is determined that the battery has experienced acceleration / deceleration a sufficient number of times to rise to a predetermined temperature range, and the battery low temperature flag is set to OFF (S58). If the flag is ON in S54 (Y in S54), it is determined whether or not the value of the acceleration / deceleration counter is greater than or equal to a threshold value N2 (N2 ⁇ N1) (S64).
  • the battery 12 When the regenerative cooperative control of the brake is performed, the battery 12 operates to collect more energy than when the cooperative control is not performed, so the battery rises to a predetermined temperature range with a smaller number of accelerations / decelerations. Therefore, if the counter is greater than or equal to N2 (Y in S64), the battery low temperature flag is set to OFF (S58).
  • FIG. 7 is a flowchart of a process for increasing the battery temperature. This process is repeatedly performed at predetermined intervals while the vehicle is traveling.
  • the battery temperature increasing unit 140 determines whether or not the battery low temperature flag is ON for a predetermined time T3 or longer (S82). If it continues for more than T3 (Y in S82), it is determined that the battery temperature has not risen to a predetermined temperature range depending on the acceleration / deceleration of the vehicle and the vehicle interior temperature, and the following batteries are forcibly raised in temperature. Proceed to control. Alternatively, the control may proceed to the following control when the vehicle is in a very low temperature environment.
  • the battery temperature increasing unit 140 determines whether or not the vehicle is accelerating based on the measured value of the vehicle speed sensor 81 (S84). When not accelerating (N in S84), the following processing is not executed. When accelerating (Y in S84), the hydraulic brake unit 20 is instructed to close the master pressure cut valve 64 and the regulator pressure cut valve 65 (S86). Then, the wheel cylinder of the disc brake unit is increased by the pressure-increasing linear control valve 66 (S88). Thereby, although the vehicle is accelerating, dragging of the brake pad occurs and the rotational load of the motor increases.
  • Battery temperature increasing unit 140 increments the counter (S90). And it is determined whether a counter is more than threshold value N3 (S92). If it is less than N3 (N in S92), this routine is terminated. If the counter is greater than or equal to N3 (Y in S92), it is determined that the amount of discharge from the battery has increased and the battery temperature has increased due to an increase in the motor load due to dragging, and the master pressure is applied to the hydraulic brake unit 20. The cut valve 64 and the regulator pressure cut valve 65 are opened (S94), and an instruction is given to stop the pressure increase by the pressure increase linear control valve. Then, the battery low temperature flag is set to OFF (S96). As a result, the energy recovery performance of the battery is restored, fuel efficiency is improved, and the brake pad temperature is also increased, so that the brake feeling is also improved.
  • dragging occurs during acceleration of the vehicle, so that a desired acceleration may not be obtained. Therefore, when executing the processing of FIG. 7, the command of the driving force of the vehicle may be slightly increased in anticipation of the decrease due to dragging.
  • the hydraulic brake unit 20 generates a friction braking force to apply a load to the motor and raise the battery temperature.
  • This control may always be performed, but is more effective when performed when the vehicle is driven by a motor. Therefore, the battery temperature increasing unit 140 may perform a step of determining whether the vehicle is driven by a motor or an engine before S82 in FIG. When the vehicle is driven using only the motor or both the engine and the motor, the processing from S82 is executed. When the vehicle is driven only by the engine, the regenerative braking unit generates regenerative braking force and applies regenerative energy to the battery, thereby increasing the temperature of the battery.
  • the load on the motor is increased by generating a friction braking force during acceleration of the vehicle.
  • a larger amount of electric energy is released from the battery to the motor than when there is no friction braking force, so that the temperature of the battery can be quickly raised.
  • the present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art.
  • the configuration shown in each drawing is for explaining an example, and can be appropriately changed as long as the configuration can achieve the same function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】ハイブリッド車両においてバッテリ温度が低温であるとき、速やかに適正温度まで上昇させてバッテリによる回生エネルギー回収量を増大させる。 【解決手段】液圧ブレーキユニット20は、車両の各車輪にそれぞれ設けられるホイールシリンダに作動液を供給してブレーキパッドを車輪に押し付けることで摩擦制動力を発生させる。回生ブレーキユニットは、車輪を駆動するモータへの電力回生によって回生制動力を発生させる。バッテリは、モータからの電力を回収する。低温判定部120は、バッテリの温度が所定の温度範囲を下回っているとき、バッテリ低温と判定する。バッテリ温度上昇部140は、バッテリ低温と判定されたとき、モータまたはエンジンによる車両の加速中に液圧ブレーキユニット20および回生ブレーキユニットの少なくとも一方により車両に制動力を発生させてモータの負荷を増大させる。この結果、モータの温度が上昇する。

Description

ブレーキ制御装置
 本発明は、液圧ブレーキユニットと回生ブレーキユニットの両方を備えるハイブリッド車両における制動技術に関する。
 エンジンとモータを動力源として走行するハイブリッド車両が知られている。ハイブリッド車両では、車両の減速時にモータを発電機として作動させ、発生した電気エネルギーをバッテリに回収することで制動力として利用する回生ブレーキを使用することができる。このバッテリには、冬季に車両を長時間放置しておくなどしてバッテリの温度が低下すると、電気エネルギーの入出力量が大きく低下するという特性がある。その結果、バッテリ温度が上昇するまでの間、モータによる駆動力補助やエネルギー回収量が少なくなり、燃費が低下してしまう。特に、リチウムバッテリの場合は、ニッケルバッテリ等と比較して温度の許容範囲が非常に狭い。したがって、燃費向上のためにバッテリ温度を素早く許容範囲内まで上昇させることが必要である。
 特許文献1には、バッテリの低温時、エンジン駆動力を減らした分だけモータ駆動力を増やしてバッテリに放電させる制御、およびエンジン駆動力を増やした分だけモータ駆動力を減らしてバッテリに充電させる制御を繰り返すことで、バッテリの放電電流および充電電流を増大させて、バッテリの温度を昇温させることが開示されている。
特開2001-268715号公報 特開2006-278045号公報 特開2007-151216号公報
 しかしながら、特許文献1に記載の技術では、車両の駆動力が小さい状態が続くと、バッテリ温度を速やかに上昇させることができない可能性がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、ハイブリッド車両においてバッテリ温度が低温であるとき、バッテリを速やかに適正温度まで上昇させる技術を提供することにある。
 本発明のある態様は、ブレーキ制御装置である。この装置は、車輪を駆動するエンジンと、車両の各車輪にそれぞれ設けられるホイールシリンダに作動液を供給して摩擦部材を車輪に押し付けることで摩擦制動力を発生させる摩擦制動手段と、車輪を駆動する回転電機への電力回生によって回生制動力を発生させる回生制動手段と、ドライバーからの制動要求に応じて摩擦制動手段と回生制動手段による制動力の配分比率を制御する回生協調制御手段と、回転電機からの電力を回収するバッテリと、バッテリの温度が所定の温度範囲を下回っているとき、バッテリ低温と判定する低温判定手段と、低温判定手段によりバッテリ低温と判定されたとき、回転電機またはエンジンによる車両の加速中に摩擦制動手段および回生制動手段の少なくとも一方により車両に制動力を発生させて回転電機の負荷を増大させるバッテリ温度上昇手段と、を備える。
 この態様によると、バッテリが低温であるとき、車両の加速中に摩擦制動力および回生制動力の少なくとも一方を発生させる。摩擦制動力を発生させた場合、回転電機の負荷が増大し、摩擦制動力のない場合よりも大きな電気エネルギーがバッテリから回転電機に対して放出されるので、バッテリの温度を速やかに上昇させることができる。また、回生制動力を発生させた場合、回転電機からバッテリに電気エネルギーが回収されるので、バッテリの温度を速やかに上昇させることができる。したがって、バッテリのエネルギー回収性能が回復し燃費も向上する。さらに、摩擦制動力を発生させた場合には摩擦部材の温度も上昇するので、ブレーキフィーリングも改善することができる。
 摩擦制動手段は、ポンプ駆動によってホイールシリンダに供給される作動液を昇圧するアキュムレータと、アキュムレータの圧力を測定するアキュムレータ圧測定手段と、を含んでもよい。低温判定手段は、ポンプによって所定圧までアキュムレータが昇圧されるために要した時間が、このアキュムレータが所定の温度範囲にあるときの昇圧時間よりも長い場合に、バッテリ低温と判定してもよい。これによると、摩擦制動手段のアキュムレータ圧を利用してバッテリの低温を判定するので、バッテリ温度を検出するセンサ等を備える必要がない。
 低温判定手段によるバッテリ低温の判定を解除する低温判定解除手段をさらに備えてもよい。低温判定解除手段は、車両が加速および減速を経験した回数をカウントする加減速カウント手段と、回生制動手段の非作動時には、カウント数が第1の閾値に達したときバッテリ低温の判定を解除し、回生制動手段の作動時には、カウント数が第1の閾値よりも小さい第2の閾値に達したときバッテリ低温の判定を解除するカウント判定手段と、を有してもよい。これによると、バッテリ低温と判定されたときに、車両の加減速回数に基づき低温判定を解除することができる。また、回生制動手段の作動時、すなわち回生協調の実施時には、バッテリの充放電が多くなることを考慮して、非作動時よりも少ない加減速回数で低温判定を解除することができる。
 低温判定手段によるバッテリ低温の判定を解除する低温判定解除手段をさらに備えてもよい。低温判定解除手段は、車室内温度を測定する温度測定手段と、車室内温度が所定値以上である状態が、バッテリが所定の温度範囲にまで上昇すると推定される所定の時間以上継続したときにバッテリ低温の判定を解除する室温監視手段と、を有してもよい。これによると、車室内温度を利用してバッテリの低温判定を解除することができる。
 本発明によれば、ハイブリッド車両においてバッテリ温度が低温であるとき、速やかに適正温度まで上昇させてバッテリによる回生エネルギーの回収量を増大させることができる。
本発明の一実施形態に係るブレーキ制御装置が適用されたハイブリッド車両を示す概略構成図である。 液圧ブレーキユニットの構成を示す図である。 図2のブレーキECUのうち、本実施形態に係るバッテリ低温時の温度上昇制御に関与する部分の構成を示す機能ブロック図である。 低温判定部によるバッテリの低温判定処理のフローチャートである。 バッテリ低温フラグを解除する処理のフローチャートである。 バッテリ低温フラグを解除する別の処理のフローチャートである。 バッテリ温度を上昇させる処理のフローチャートである。
 本発明の一実施形態は、液圧発生源から車両の各車輪に設けられるホイールシリンダに作動液を供給し車輪に制動力を付与する液圧ブレーキユニットと、回転電機(以下、単に「モータ」と呼ぶ)により車輪に駆動力または回生制動力を付与する回生ブレーキユニットとを備えるハイブリッド車両に適用されるブレーキ制御装置に関する。
 以下では、まず本実施形態に係るハイブリッド車両の構成を述べ、続いてハイブリッド車両に搭載される液圧ブレーキユニットの構成について述べる。その後、本実施形態に係るバッテリ低温時の温度上昇制御について詳細に説明する。
 図1は、本実施形態に係るブレーキ制御装置が適用された車両100を示す概略構成図である。車両100はいわゆるハイブリッド車両として構成されており、エンジン2と、エンジン2の出力軸であるクランクシャフトに接続された3軸式の動力分割機構3と、動力分割機構3に接続された発電可能なジェネレータ4と、変速機5を介して動力分割機構3に接続された前輪用モータ6と、車両100の駆動系全体を制御するハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」といい、電子制御ユニットは、すべて「ECU」と称する。)7とを備える。変速機5には、ドライブシャフト8を介して車両100の右前輪9FRおよび左前輪9FLが連結される。
 エンジン2は、例えばガソリンや軽油等の炭化水素系燃料を用いて運転される内燃機関であり、エンジンECU10により制御される。エンジンECU10は、ハイブリッドECU7と通信可能であり、ハイブリッドECU7からの制御信号や、エンジン2の作動状態を検出する各種センサからの信号に基づいてエンジン2の燃料噴射制御や点火制御、吸気制御等を実行する。また、エンジンECU10は、必要に応じてエンジン2の作動状態に関する情報をハイブリッドECU7に与える。
 車両100は後輪用モータ16も備えている。変速機15には、ドライブシャフト18を介して車両100の右後輪9RRおよび左後輪9RLが連結される。後輪用モータ16の出力は、変速機15を介して左右の後輪9RR、9RLに伝達される。
 動力分割機構3は、変速機5を介して前輪用モータ6の出力を左右の前輪9FR、9FLに伝達する役割と、エンジン2の出力をジェネレータ4と変速機5とに振り分ける役割と、前輪用モータ6やエンジン2の回転速度を減速あるいは増速する役割とを果たす。ジェネレータ4、前輪用モータ6および後輪用モータ16は、それぞれインバータを含む電力変換装置11を介してバッテリ12に接続されており、電力変換装置11には、モータECU14が接続されている。モータECU14も、ハイブリッドECU7と通信可能であり、ハイブリッドECU7からの制御信号等に基づいて電力変換装置11を介してジェネレータ4、前輪用モータ6および後輪用モータ16を制御する。なお、上述のハイブリッドECU7やエンジンECU10、モータECU14は、いずれもCPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。
 ハイブリッドECU7やモータECU14による制御のもと、電力変換装置11を介してバッテリ12から電力を前輪用モータ6、後輪用モータ16に供給することで、前輪用モータ6の出力により左右の前輪9FR、9FLを駆動し、また後輪用モータ16の出力により左右の後輪9RR、9RLを駆動することができる。また、エンジン効率のよい運転領域では、車両100はエンジン2によって駆動される。この際、動力分割機構3を介してエンジン2の出力の一部をジェネレータ4に伝えることにより、ジェネレータ4が発生する電力を用いて、前輪用モータ6を駆動したり、電力変換装置11を介してバッテリ12を充電したりすることが可能となる。
 また、車両100を制動する際には、ハイブリッドECU7やモータECU14による制御のもと、前輪9FR、9FLから伝わる動力によって前輪用モータ6が回転させられ、前輪用モータ6が発電機として作動させられる。また、後輪9RR、9RLから伝わる動力によって後輪用モータ16が回転させられ、後輪用モータ16が発電機として作動させられる。すなわち、前輪用モータ6、後輪用モータ16、電力変換装置11、ハイブリッドECU7およびモータECU14等は、車両100の運動エネルギを電気エネルギに回生することによって車両100を制動する回生ブレーキユニットとして機能する。
 本実施形態のブレーキ制御装置は、このような回生ブレーキユニットに加えて、液圧ブレーキユニット20を備えており、両者を協調させるブレーキ回生協調制御を実行することにより車両100を制動する。ハイブリッドECU7に含まれる協調制御部は、通常時はドライバーからの制動要求に応じて液圧制動力と回生制動力との配分比率を決定し、液圧ブレーキユニット20と回生ブレーキユニットに対しそれぞれ制動力を要求する。
 図2は、液圧ブレーキユニット20の構成を示す。液圧ブレーキユニット20は、左右の前輪9FR、9FL、左右の後輪9RR、9RLに対して設けられたディスクブレーキユニット21FR、21FL、21RRおよび21RLと、各ディスクブレーキユニット21FR~21RLに対する作動液としてのブレーキオイルの供給源となる動力液圧源30と、動力液圧源30からのブレーキオイルの液圧を適宜調整して各ディスクブレーキユニット21FR~21RLに供給することにより、車両100の各車輪に対する制動力を設定可能な液圧アクチュエータ40とを含む。
 各ディスクブレーキユニット21FR~21RLは、それぞれブレーキディスク22およびブレーキキャリパ23を含み、各ブレーキキャリパ23には、図示されないホイールシリンダが内蔵されている。そして、各ブレーキキャリパ23のホイールシリンダは、それぞれ独立の流体通路を介して液圧アクチュエータ40に接続されている。ブレーキキャリパ23のホイールシリンダに液圧アクチュエータ40からブレーキオイルが供給されると、車輪と共に回転するブレーキディスク22に摩擦部材としてのブレーキパッドが押し付けられ、各車輪に液圧制動トルクが加えられる。
 マスタシリンダユニット27は、本実施形態では液圧ブースタ付きマスタシリンダであり、液圧ブースタ31、マスタシリンダ32、レギュレータ33、およびリザーバ34を含む。液圧ブースタ31は、ブレーキペダル24に連結されており、ブレーキペダル24に加えられたペダル踏力を増幅してマスタシリンダ32に伝達する。動力液圧源30からレギュレータ33を介して液圧ブースタ31にブレーキフルードが供給されることにより、ペダル踏力は増幅される。そして、マスタシリンダ32は、ペダル踏力に対して所定の倍力比を有するマスタシリンダ圧を発生する。
 マスタシリンダ32とレギュレータ33との上部には、ブレーキフルードを貯留するリザーバ34が配置されている。マスタシリンダ32は、ブレーキペダル24の踏み込みが解除されているときにリザーバ34と連通する。一方、レギュレータ33は、リザーバ34と動力液圧源30のアキュムレータ35との双方と連通しており、リザーバ34を低圧源とすると共に、アキュムレータ35を高圧源とし、マスタシリンダ圧とほぼ等しい液圧を発生する。レギュレータ33における液圧を以下では適宜、「レギュレータ圧」という。なお、マスタシリンダ圧とレギュレータ圧とは厳密に同一圧にされる必要はなく、例えばレギュレータ圧のほうが若干高圧となるようにマスタシリンダユニット27を設計することも可能である。
 動力液圧源30は、アキュムレータ35およびポンプ36を含む。アキュムレータ35は、ポンプ36により昇圧されたブレーキフルードの圧力エネルギを窒素等の封入ガスの圧力エネルギ、例えば14~22MPa程度に変換して蓄えるものである。ポンプ36は、駆動源としてモータ36aを有し、その吸込口がリザーバ34に接続される一方、その吐出口がアキュムレータ35に接続される。また、アキュムレータ35は、マスタシリンダユニット27に設けられたリリーフバルブ35aにも接続されている。アキュムレータ35におけるブレーキフルードの圧力が異常に高まって例えば25MPa程度になると、リリーフバルブ35aが開弁し、高圧のブレーキフルードはリザーバ34へと戻される。
 上述のように、液圧ブレーキユニット20は、ディスクブレーキユニット21に対するブレーキフルードの供給源として、マスタシリンダ32、レギュレータ33およびアキュムレータ35を有している。そして、マスタシリンダ32にはマスタ配管37が、レギュレータ33にはレギュレータ配管38が、アキュムレータ35にはアキュムレータ配管39が接続されている。これらのマスタ配管37、レギュレータ配管38およびアキュムレータ配管39は、それぞれ液圧アクチュエータ40に接続される。
 液圧アクチュエータ40は、複数の流体通路が形成されるアクチュエータブロックと、複数の電磁制御弁を含む。アクチュエータブロックに形成された流体通路には、個別通路41、42、43および44と、主通路45とが含まれる。個別通路41~44は、それぞれ主通路45から分岐されて対応するディスクブレーキユニット21FR、21FL、21RR、21RLに接続されている。これにより、各ディスクブレーキユニット21FR~21RLは、主通路45と連通可能となる。また、個別通路41、42、43および44の中途には、増圧保持弁51、52、53および54が設けられている。各増圧保持弁51~54は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、いずれもソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。
 さらに、各ディスクブレーキユニット21FR~21RLは、個別通路41~44にそれぞれ接続された減圧通路46、47、48および49を介して減圧通路55に接続されている。減圧通路46、47、48および49の中途には、減圧制御弁56、57、58および59が設けられている。各減圧制御弁56~59は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、いずれもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。
 主通路45は、中途に連通弁60を有しており、この連通弁60により個別通路43および44と接続される第1通路45aと、個別通路41および42と接続される第2通路45bとに区分けされている。すなわち、第1通路45aは、個別通路43および44を介して後輪側のディスクブレーキユニット21RRおよび21RLに接続され、第2通路45bは、個別通路41および42を介して前輪側のディスクブレーキユニット21FRおよび21FLに接続される。連通弁60は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。
 また、主通路45には、マスタシリンダ32と連通するマスタ配管37に接続されるマスタ通路61、レギュレータ33と連通するレギュレータ配管38に接続されるレギュレータ通路62、およびアキュムレータ35と連通するアキュムレータ配管39に接続されるアキュムレータ通路63が接続されている。より詳細には、マスタ通路61は、主通路45の第2通路45bに接続されており、レギュレータ通路62およびアキュムレータ通路63は、主通路45の第1通路45aに接続されている。さらに、減圧通路55は、動力液圧源30のリザーバ34に接続される。
 マスタ通路61は、中途にマスタ圧カット弁64を有する。マスタ圧カット弁64は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。レギュレータ通路62は、中途にレギュレータ圧カット弁65を有する。レギュレータ圧カット弁65も、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。また、アキュムレータ通路63は、中途に増圧リニア制御弁66を有し、アキュムレータ通路63および主通路45の第1通路45aは、減圧リニア制御弁67を介して減圧通路55に接続されている。
 増圧リニア制御弁66と減圧リニア制御弁67とは、それぞれリニアソレノイドおよびスプリングを有しており、いずれもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。ここで、増圧リニア制御弁66の出入口間の差圧は、アキュムレータ35におけるブレーキオイルの圧力と主通路45におけるブレーキオイルの圧力との差圧に対応し、減圧リニア制御弁67の出入口間の差圧は、主通路45におけるブレーキオイルの圧力と減圧通路55におけるブレーキオイルの圧力との差圧に対応する。また、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力に応じた電磁駆動力をF1とし、スプリングの付勢力をF2とし、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧に応じた差圧作用力をF3とすると、F1+F3=F2という関係が成立する。したがって、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力を連続的に制御することにより、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧を制御することができる。
 なお、増圧リニア制御弁66は上述のように常閉型電磁制御弁であることから、増圧リニア制御弁66が非通電状態にある場合、主通路45は、高圧液圧源としてのアキュムレータ35から遮断されることになる。また、減圧リニア制御弁67も上述のように常閉型電磁制御弁であることから、減圧リニア制御弁67が非通電状態にある場合、主通路45はリザーバ34から遮断されることになる。この点で、主通路45は、低圧液圧源としてのリザーバ34にも接続されているともいえる。
 一方、マスタ通路61には、マスタ圧カット弁64よりも上流側において、シミュレータカット弁68を介してストロークシミュレータ69が接続されている。シミュレータカット弁68は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。ストロークシミュレータ69は、複数のピストンやスプリングを含むものであり、シミュレータカット弁68の開放時にドライバーによるブレーキペダル24の踏力に応じた反力を創出する。ストロークシミュレータ69としては、ドライバーによるブレーキ操作のフィーリングを向上させるために、多段のバネ特性を有するものが採用されると好ましく、本実施形態のストロークシミュレータ69は4段階のバネ特性を有する。
 上述のように構成された動力液圧源30や液圧アクチュエータ40は、制御手段としてのブレーキECU70により制御される。ブレーキECU70はCPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。そして、ブレーキECU70は、ハイブリッドECU7と通信可能であり、ハイブリッドECU7からの制御信号や、各種センサからの信号に基づいて動力液圧源30のポンプ36や、液圧アクチュエータ40を構成する電磁制御弁51~54、56~59、60、64~68を制御する。
 ブレーキECU70に接続されるセンサには、レギュレータ圧センサ71、アキュムレータ圧センサ72、および制御圧センサ73が含まれる。レギュレータ圧センサ71は、レギュレータ圧カット弁65の上流側でレギュレータ通路62内のブレーキオイルの圧力(レギュレータ圧)を検知し、検知した値を示す信号をブレーキECU70に与える。アキュムレータ圧センサ72は、増圧リニア制御弁66の下流側でアキュムレータ通路63内のブレーキオイルの圧力(アキュムレータ圧)を検知し、検知した値を示す信号をブレーキECU70に与える。制御圧センサ73は、主通路45の第2通路45b内のブレーキオイルの圧力を検知し、検知した値を示す信号をブレーキECU70に与える。各センサ71~73の検出値は、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域(バッファ)に所定量ずつ格納保持される。
 連通弁60が開放されて主通路45の第1通路45aと第2通路45bとが互いに連通している場合、制御圧センサ73の出力値は、増圧リニア制御弁66の低圧側の液圧を示すと共に減圧リニア制御弁67の高圧側の液圧を示すので、この出力値を増圧リニア制御弁66および減圧リニア制御弁67の制御に利用することができる。また、増圧リニア制御弁66および減圧リニア制御弁67が閉鎖されていると共に、連通弁60が非通電状態にあって主通路45の第1通路45aと第2通路45bとが互いに分離されている場合、制御圧センサ73の出力値は、マスタシリンダ圧を示す。さらに、連通弁60が開放されて主通路45の第1通路45aと第2通路45bとが互いに連通しており、各増圧保持弁51~54が開放される一方、各減圧制御弁56~59が閉鎖されている場合、制御圧センサの73の出力値は、各ディスクブレーキユニット21FR~21RLのブレーキ圧(ホイールシリンダ圧)を示す。
 さらに、ブレーキECU70に接続されるセンサには、上述のブレーキストロークセンサ25も含まれる。ブレーキストロークセンサ25は、ブレーキペダル24の操作量を検知し、検知した値を示す信号をブレーキECU70に与える。ブレーキストロークセンサ25の検出値も、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域(バッファ)に所定量ずつ格納保持される。なお、ブレーキストロークセンサ25に加えて、ブレーキペダル24の操作状態を検出するペダル踏力センサや、ブレーキペダル24が踏み込まれたことを検出するブレーキスイッチがブレーキECU70に接続されてもよい。
 上述のように構成されたブレーキ制御装置は、ブレーキ回生協調制御を実行することができる。液圧ブレーキユニット20は制動要求を受けて制動を開始する。制動要求は、例えば運転者がブレーキペダル24を操作した場合など、車両に制動力を付与すべきときに生起される。制動要求を受けてブレーキECU70は要求制動力を演算し、要求制動力から回生による制動力を減じることにより液圧ブレーキユニット20により発生させるべき制動力である要求液圧制動力を算出する。ここで、回生による制動力は、ハイブリッドECUからブレーキ制御装置に供給される。そして、ブレーキECU70は、算出した要求液圧制動力に基づいて各ディスクブレーキユニット21FR~21RLの目標液圧を算出する。ブレーキECU70は、ホイールシリンダ圧が目標液圧となるように、フィードバック制御則により増圧リニア制御弁66や減圧リニア制御弁67に供給する制御電流の値を決定する。
 その結果、液圧ブレーキユニット20においては、ブレーキフルードが動力液圧源30から増圧リニア制御弁66を介して各ディスクブレーキユニット21のホイールシリンダに供給され、車輪に制動力が付与される。また、各ホイールシリンダからブレーキフルードが減圧リニア制御弁67を介して必要に応じて排出され、車輪に付与される制動力が調整される。本実施形態においては、動力液圧源30、増圧リニア制御弁66および減圧リニア制御弁67等を含んでホイールシリンダ圧制御系統が構成されている。ホイールシリンダ圧制御系統によりいわゆるブレーキバイワイヤ方式の制動力制御が行われる。ホイールシリンダ圧制御系統は、マスタシリンダユニット27からディスクブレーキユニット21のホイールシリンダへのブレーキフルードの供給経路に並列に設けられている。
 このとき、ブレーキECU70は、レギュレータ圧カット弁65を閉状態とし、レギュレータ33から送出されるブレーキフルードがホイールシリンダへ供給されないようにする。さらにブレーキECU70は、マスタ圧カット弁64を閉状態とするとともにシミュレータカット弁68を開状態とする。これは、運転者によるブレーキペダル24の操作に伴ってマスタシリンダ32から送出されるブレーキフルードがディスクブレーキユニット21のホイールシリンダではなくストロークシミュレータ69へと供給されるようにするためである。ブレーキ回生協調制御中は、レギュレータ圧カット弁65およびマスタ圧カット弁64の上下流間には、回生制動力の大きさに対応する差圧が作用する。
 ところで、上述のハイブリッド車両のバッテリには、冬季に車両を長時間放置しておくなどしてバッテリの温度が低下すると、電気エネルギーの入出力量が大きく低下するという特性がある。この結果、バッテリ温度が上昇するまでの間、モータによる駆動力補助やエネルギー回収量が少なくなり燃費が低下してしまうので、バッテリ温度を速やかに上昇させることが望ましい。
 そこで、本実施形態では、バッテリが低温であるか否かを判定し、バッテリ低温状態が長時間継続する場合などに、バッテリ温度を速やかに上昇させて回生エネルギーの回収性能を確保する制御を実施する。
 図3は、図2のブレーキECU70のうち、本実施形態に係るバッテリ低温時の温度上昇制御に関与する部分の構成を示す機能ブロック図である。ここに示す各ブロックは、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックとして描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 低温判定部120は、バッテリ12の温度が所定の温度範囲を下回っているとき、バッテリ低温フラグをONに設定する。所定の温度範囲は、例えば、回生制動時に回生エネルギーの回収を一定時間以上続けられるバッテリ性能を発揮できる温度範囲であり、実験によりまたはバッテリの仕様に基づき決定される。バッテリ12の低温温度判定は、バッテリ付近に設けた温度センサの検出値により行ってもよいが、本実施形態では、アキュムレータ圧測定部122によってアキュムレータ35の圧力変化に基づき低温判定を行う。
 一般に、アキュムレータはスプール弁を採用している。このスプール弁は、長時間の圧力保持に弱いため、車両を動かさないまま長時間放置しておくと、アキュムレータ圧が0MPa付近にまで低下する現象(以下、「ゼロダウン」という)が発生する。このゼロダウンが生じているときは、バッテリ温度と、アキュムレータを有する動力液圧源30とが同程度の温度となるまで車両が放置されていたと推定できる。これを利用して、アキュムレータ圧測定部122は、アキュムレータ圧が0MPa付近の所定圧P1よりも低いときに、バッテリの低温判定を行う。
 アキュムレータ圧測定部122は、車両の起動後にアキュムレータへの蓄圧が開始され、アキュムレータ圧がP1から第2の所定圧P2(例えば、ポンプ36を駆動するモータ36aがオフになる19.88MPa)に到達するまでの時間tを計測する。この蓄圧時間tが所定時間T1よりも大きい場合、バッテリが低温であると判定する。これは、アキュムレータがバッテリ同様に低温である場合には、アキュムレータ内の窒素の圧力が低く、また作動液の粘度が高いのでポンプの汲み上げ能力が低下するために、アキュムレータ圧が所定圧P2に到達するまでの時間が、アキュムレータが通常温度範囲(例えば、バッテリが正常動作する所定の温度範囲)にある場合よりも時間がかかることを利用したものである。
 なお、低温判定部120を設ける代わりに、バッテリ自身の充放電状態を管理できるインテリジェントバッテリを採用することで、温度によらずバッテリが所望の性能を有しているか否かを判定してもよい。
 低温判定解除部130は、所定の条件に合致する場合に、バッテリ低温フラグをOFFに設定する。低温判定解除部130は、室温監視部132と加減速監視部134とを含む。
 室温監視部132は、図1に示す車室内温度を測定する室温センサ82の測定値X(℃)を取得する。そして、測定値Xが所定温度X1以上である状態が、所定時間T2以上継続したときに、バッテリ低温フラグをOFFに設定する。
 一般に、ハイブリッド車のバッテリは後部座席の下方に搭載されており、排熱溝を通して車室内とつながっている。そのため、車室内温度が長時間常温を保っていればバッテリ温度も上昇すると判断できる。したがって、上記所定温度X1は常温、例えば20℃に設定され、所定時間T2は車室内温度がX1であるときにバッテリが上記所定の温度範囲にまで上昇すると推定される時間を実験的に求めて設定する。
 加減速監視部134は、車両の加減速回数に基づきバッテリ低温フラグをOFFに設定する。加減速監視部134は、加減速カウント部136とカウント判定部138を含む。
 加減速カウント部136は、車両が所定速度S1(km/h)以上への加速と所定速度S2(km/h)以下への減速(但し、S2<S1)を経験した回数をカウントする。
 カウント判定部138は、加減速カウント部136によるカウント数が第1の閾値N1に達したとき、バッテリ低温フラグをOFFに設定する。これは、車両が加減速を行うときに、バッテリ12はモータ駆動のためにエネルギーを放出したり、または回生制動のためにエネルギーを回収したりを繰り返すために、バッテリ温度が上昇することを利用したものである。所定速度S1、S2および閾値N1は、バッテリが所定の温度範囲にまで上昇するのに要するエネルギーの放出量および回収量を考慮して、実験またはシミュレーションによって定められるのが好ましい。
 カウント判定部138は、ハイブリッドECU7からの情報に基づき回生ブレーキユニットの作動/非作動を判定し、回生ブレーキユニットが非作動のときには、加減速カウント部136によるカウント数が第2の閾値N2(但し、N2<N1)に達したとき、バッテリ低温フラグをOFFに設定するように動作してもよい。これは、ブレーキの回生協調制御が実施されている場合には、バッテリ12は協調制御未実施時よりも多くのエネルギーを回収しようと動作するので、より少ない加減速回数でバッテリが所定の温度範囲にまで上昇すると考えられるからである。閾値N2も、実験またはシミュレーションによって定められるのが好ましい。なお、回生協調制御の実施を判定せず、常に第1の閾値N1に基づき上記判定を行ってもよい。
 バッテリ温度上昇部140は、バッテリ低温フラグがONの状態が車両始動時から所定時間T3以上継続しているとき、または極めて低温であると判断されるときに、車両の加速中に液圧ブレーキユニット20により摩擦制動力を発生させて、モータの負荷を増大させる。これにより、バッテリからモータへの放電が発生しバッテリの温度が上昇する。
 図4は、低温判定部120によるバッテリの低温判定処理のフローチャートである。
 まず、アキュムレータ圧測定部122は、車両の起動後、例えばブレーキECU70の起動後から所定時間T0以内か否かを判定する(S10)。T0以内の場合(S10のY)、アキュムレータ圧が0MPa付近の所定圧P1以下であるか否かを判定する(S12)。アキュムレータ圧がP1よりも大きい場合(S12のN)、アキュムレータ圧に基づく低温判定はできないので、バッテリ低温フラグをOFFにする(S24)。アキュムレータ圧がP1以下の場合(S12のY)、タイマを開始する(S14)。アキュムレータ圧が所定モータオフ圧P2に達するまで時間を計測し、P2に達したら(S16のY)、タイマを停止する(S18)。アキュムレータ圧測定部122は、タイマの時間tが所定時間T1よりも大きいか否かを判定する(S20)。T1より大きい場合(S20のY)、アキュムレータの昇圧時間が通常時よりも長いことに基づき、バッテリ低温フラグをONに設定する(S22)。T1以下の場合、(S20のN)、バッテリ低温フラグをOFFに設定する。
 図4の処理によると、バッテリ温度を検出するセンサを備えなくても、アキュムレータ圧に基づきバッテリの低温判定をすることができる。また、ブレーキECU内の通信のみで完結する処理であるため、CAN(Car
Area Network)を経由しなくて済み、ブレーキECUのROMやRAMを削減可能である。
 図5は、バッテリ低温フラグを解除する処理について説明する。この処理は、車両の走行中に所定の間隔で繰り返し実施される。
 室温監視部132は、バッテリ低温フラグがONであるか否かを判定する(S30)。フラグがONの場合、室温センサ82の測定値に基づき、車室内温度がX1以上の状態が所定時間T2以上継続しているか否かを判定する(S32)。所定時間T2以上継続していれば(S32のY)、バッテリの温度が上昇していると推定し、バッテリ低温フラグをOFFに設定する。
 車両におけるバッテリとアキュムレータの搭載箇所は離れているため、図4に示した低温判定処理では正確な判定ができず、実際にはバッテリが低温ではない場合があり得る。そこで、図5の処理によって、室温の監視に基づきバッテリ温度が上昇していると推定されるときに、バッテリ低温フラグをOFFにすることができる。
 図6は、バッテリ低温フラグを解除する別の処理のフローチャートである。この処理は、車両の走行中に所定の間隔で繰り返し実施される。
 加減速監視部134は、バッテリ低温フラグがONであるか否かを判定する(S40)。フラグがONであれば(S40のY)、ハイブリッドECU7からの情報に基づき、回生ブレーキユニットが作動中か、すなわち回生協調の実施中か否かを判定する(S42)。回生協調を実施していなければ(S42のN)、S44に進む。回生協調の実施中であれば(S42のY)、回生中フラグをONに設定する(S60)。
 続いて、加減速監視部134は、車速センサ81の測定値に基づき、車速が所定速度S1以上であるか否かを判定する(S44)。S1以上であれば(S44のY)、加減速経験フラグをONに設定する(S62)。S1未満であれば(S44のN)、加減速経験フラグがONになっているか否かを判定する(S46)。フラグがONであれば(S46のY)、さらに車速が所定速度S2以下であるか否かを判定する(S48)。S2以下であれば(S48のY)、加減速経験フラグをOFFに設定する(S50)。ここまでの処理で、加減速経験フラグはONからOFFに切りかわっている。つまり、車両はS1以上の加速とS2以下の減速とを一回ずつ繰り返したことを意味する。したがって、加減速監視部134は、加減速カウンタを1だけインクリメントする(S52)。
 カウント判定部138は、回生中フラグがONであるか否かを判定する(S54)。フラグがOFFであれば(S54のN)、加減速カウンタの値が閾値N1以上であるか否かを判定する(S56)。カウンタがN1以上であれば(S56のY)、バッテリ温度が所定の温度範囲まで上昇するのに十分な回数の加減速を経験したと判断し、バッテリ低温フラグをOFFに設定する(S58)。S54でフラグがONであれば(S54のY)、加減速カウンタの値が閾値N2以上(N2<N1)であるか否かを判定する(S64)。ブレーキの回生協調制御が実施されている場合には、バッテリ12は協調制御未実施時よりも多くのエネルギーを回収しようと動作するので、より少ない加減速回数でバッテリが所定の温度範囲にまで上昇すると考えられるので、カウンタがN2以上であれば(S64のY)、バッテリ低温フラグをOFFに設定する(S58)。
 図7は、バッテリ温度を上昇させる処理のフローチャートである。この処理は、車両の走行中に所定の間隔で繰り返し実施される。
 バッテリ温度上昇部140は、バッテリ低温フラグがONの状態が所定時間T3以上継続しているか否かを判定する(S82)。T3以上継続している場合(S82のY)、車両の加減速や車室内温度によってはバッテリ温度が所定の温度範囲にまで上昇していないと判断し、以下のバッテリを強制的に昇温させる制御に進む。別法として、車両が極めて低温の環境下にある場合に、以下の制御に進むようにしてもよい。
 バッテリ温度上昇部140は、車両が加速中であるか否かを車速センサ81の測定値に基づき判定する(S84)。加速中でない場合(S84のN)、以下の処理を実行しない。加速中である場合(S84のY)、液圧ブレーキユニット20に対し、マスタ圧カット弁64およびレギュレータ圧カット弁65を閉弁するよう指示する(S86)。そして、増圧リニア制御弁66により、ディスクブレーキユニットのホイールシリンダを増圧する(S88)。これにより、車両が加速中であるにもかかわらず、ブレーキパッドの引き摺りが発生し、モータの回転負荷が増大する。
 バッテリ温度上昇部140は、カウンタをインクリメントする(S90)。そして、カウンタが閾値N3以上であるか否かを判定する(S92)。N3未満の場合(S92のN)、このルーチンを終了する。カウンタがN3以上の場合(S92のY)、引き摺りによるモータ負荷の増大のために、バッテリからの放電量が増大してバッテリ温度が上昇したと判断し、液圧ブレーキユニット20に対し、マスタ圧カット弁64およびレギュレータ圧カット弁65を開弁し(S94)、増圧リニア制御弁による増圧を停止するように指示する。そして、バッテリ低温フラグをOFFに設定する(S96)。これにより、バッテリのエネルギー回収性能が回復し燃費が向上するとともに、ブレーキパッドの温度も上昇するためブレーキフィーリングも改善される。
 なお、図7の処理では、車両の加速中に引き摺りが発生するために所望の加速度が得られないおそれがある。そこで、図7の処理を実行する際には、車両の駆動力の指令を引き摺りによる低下分を見越して若干量増大させるようにしてもよい。
 図7では、液圧ブレーキユニット20により摩擦制動力を発生させることで、モータに負荷を与えてバッテリ温度を上昇させることを述べた。この制御は常に行ってもよいが、車両がモータにより駆動されているときに行うとより効果的である。そこで、バッテリ温度上昇部140は、図7のS82の前に、車両がモータで駆動されているかまたはエンジンで駆動されているかを判定するステップを実施してもよい。車両がモータのみ、若しくはエンジンとモータの両方を使って駆動されている場合は、S82以下の処理を実施する。車両がエンジンのみで駆動されている場合には、回生ブレーキユニットで回生制動力を発生させ、バッテリへ回生エネルギーを付与することで、バッテリの温度を上昇させる。
 以上説明したように、本実施形態によれば、バッテリが低温であるとき、車両の加速中に摩擦制動力を発生させることで、モータの負荷を増大させる。その結果、バッテリからモータに対して、摩擦制動力のない場合よりも大きな電気エネルギーが放出されるので、バッテリの温度を速やかに上昇させることができる。
 以上、本発明をいくつかの実施の形態をもとに説明した。これらの実施の形態はあくまで例示であり、実施の形態どうしの任意の組合せ、実施の形態の各構成要素や各処理プロセスの任意の組合せなどの変形例もまた、本発明の範囲にあることは当業者に理解されるところである。
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能である。各図に示す構成は、一例を説明するためのもので、同様な機能を達成できる構成であれば、適宜変更可能である。
 2 エンジン、 7 ハイブリッドECU、 12 バッテリ、 20 液圧ブレーキユニット、 21 ディスクブレーキユニット、 35 アキュムレータ、 64 マスタ圧カット弁、 65 レギュレータ圧カット弁、 66 増圧リニア制御弁、 72 アキュムレータ圧センサ、 81 車速センサ、 82 室温センサ、 100 車両、 120 低温判定部、 122 アキュムレータ圧測定部、 130 低温判定解除部、 132 室温監視部、 134 加減速監視部、 136 加減速カウント部、 138 カウント判定部、 140 バッテリ温度上昇部。

Claims (4)

  1.  車輪を駆動するエンジンと、
     車両の各車輪にそれぞれ設けられるホイールシリンダに作動液を供給して摩擦部材を車輪に押し付けることで摩擦制動力を発生させる摩擦制動手段と、
     車輪を駆動する回転電機への電力回生によって回生制動力を発生させる回生制動手段と、
     ドライバーからの制動要求に応じて前記摩擦制動手段と前記回生制動手段による制動力の配分比率を制御する回生協調制御手段と、
     前記回転電機からの電力を回収するバッテリと、
     前記バッテリの温度が所定の温度範囲を下回っているとき、バッテリ低温と判定する低温判定手段と、
     前記低温判定手段によりバッテリ低温と判定されたとき、前記回転電機または前記エンジンによる車両の加速中に前記摩擦制動手段および前記回生制動手段の少なくとも一方により車両に制動力を発生させて前記回転電機の負荷を増大させるバッテリ温度上昇手段と、
     を備えることを特徴とするブレーキ制御装置。
  2.  前記摩擦制動手段は、ポンプ駆動によって前記ホイールシリンダに供給される作動液を昇圧するアキュムレータと、前記アキュムレータの圧力を測定するアキュムレータ圧測定手段と、を含み、
     前記低温判定手段は、前記ポンプによって所定圧まで前記アキュムレータが昇圧されるために要した時間が、該アキュムレータが前記所定の温度範囲にあるときの昇圧時間よりも長い場合に、バッテリ低温と判定することを特徴とする請求項1に記載のブレーキ制御装置。
  3.  前記低温判定手段によるバッテリ低温の判定を解除する低温判定解除手段をさらに備え、
     前記低温判定解除手段は、
     車両が加速および減速を経験した回数をカウントする加減速カウント手段と、
     前記回生制動手段の非作動時には、カウント数が第1の閾値に達したときバッテリ低温の判定を解除し、前記回生制動手段の作動時には、前記カウント数が前記第1の閾値よりも小さい第2の閾値に達したときバッテリ低温の判定を解除するカウント判定手段と、
     を有することを特徴とする請求項1または2に記載のブレーキ制御装置。
  4.  前記低温判定手段によるバッテリ低温の判定を解除する低温判定解除手段をさらに備え、
     前記低温判定解除手段は、
     車室内温度を測定する温度測定手段と、
     前記車室内温度が所定値以上である状態が、前記バッテリが前記所定の温度範囲にまで上昇すると推定される所定の時間以上継続したときにバッテリ低温の判定を解除する室温監視手段と、
     を有することを特徴とする請求項1乃至3のいずれかに記載のブレーキ制御装置
PCT/JP2009/004365 2009-09-03 2009-09-03 ブレーキ制御装置 WO2011027398A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/004365 WO2011027398A1 (ja) 2009-09-03 2009-09-03 ブレーキ制御装置
CN200980161266.1A CN102481913B (zh) 2009-09-03 2009-09-03 制动控制装置
DE112009005203.7T DE112009005203B4 (de) 2009-09-03 2009-09-03 Bremssteuervorrichtung
JP2011529696A JP5168409B2 (ja) 2009-09-03 2009-09-03 ブレーキ制御装置
US13/394,228 US8479850B2 (en) 2009-09-03 2009-09-03 Brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004365 WO2011027398A1 (ja) 2009-09-03 2009-09-03 ブレーキ制御装置

Publications (1)

Publication Number Publication Date
WO2011027398A1 true WO2011027398A1 (ja) 2011-03-10

Family

ID=43648960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004365 WO2011027398A1 (ja) 2009-09-03 2009-09-03 ブレーキ制御装置

Country Status (5)

Country Link
US (1) US8479850B2 (ja)
JP (1) JP5168409B2 (ja)
CN (1) CN102481913B (ja)
DE (1) DE112009005203B4 (ja)
WO (1) WO2011027398A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756728A (zh) * 2011-04-29 2012-10-31 台达电子工业股份有限公司 油电混合动力车及其启动方法
JP2016068762A (ja) * 2014-09-30 2016-05-09 近畿車輌株式会社 ハイブリッド車両の蓄電池加熱システム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022021A1 (de) * 2010-05-29 2011-12-01 Audi Ag Verfahren zum Betreiben einer elektrischen Batterie eines Kraftfahrzeugs sowie Kraftfahrzeug
US9403527B2 (en) * 2010-12-09 2016-08-02 Volvo Truck Corporation Method for controlling a hybrid automotive vehicle and hybrid vehicle adapted to such a method
JP5370391B2 (ja) * 2011-02-23 2013-12-18 トヨタ自動車株式会社 車両用制動装置
JP5396428B2 (ja) * 2011-05-16 2014-01-22 三菱電機株式会社 車載バッテリの満充電制御装置
WO2013016538A2 (en) * 2011-07-26 2013-01-31 Gogoro, Inc. Thermal management of components in electric motor drive vehicles
KR101405754B1 (ko) * 2012-09-07 2014-06-10 성균관대학교산학협력단 노면 조건을 고려한 차량의 제동 제어 방법
CN105730258B (zh) 2014-12-10 2019-07-26 比亚迪股份有限公司 汽车的点火控制系统及汽车
CN105736211A (zh) * 2014-12-10 2016-07-06 上海比亚迪有限公司 汽车的点火控制系统及汽车
US9738162B2 (en) * 2015-03-16 2017-08-22 Viatec, Inc. Electro-hydraulic hybrid system
JP2017077753A (ja) * 2015-10-19 2017-04-27 トヨタ自動車株式会社 車両制御装置
US10239531B2 (en) * 2017-01-10 2019-03-26 GM Global Technology Operations LLC Fault-tolerant automotive braking system
IT201700038501A1 (it) * 2017-04-07 2018-10-07 Freni Brembo Spa Metodo e sistema per il controllo della coppia frenante rigenerativa di un veicolo
CN107554307B (zh) * 2017-08-01 2019-11-22 北京新能源汽车股份有限公司 汽车制动控制方法、装置及系统
CN107618495A (zh) * 2017-09-20 2018-01-23 中国重汽集团济南动力有限公司 一种多轴驱动车辆机电复合制动系统及制动方法
JP6939340B2 (ja) * 2017-09-28 2021-09-22 株式会社アドヴィックス 車両用制動装置
KR102684920B1 (ko) * 2019-07-02 2024-07-15 현대모비스 주식회사 Esc 통합형 제동 시스템의 제어 방법
SE546058C2 (en) * 2021-02-18 2024-04-30 Scania Cv Ab Method and control device for regenerative braking in a vehicle
CN113721154B (zh) * 2021-08-31 2024-08-16 潍柴动力股份有限公司 一种燃料电池工况点选取方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092614A (ja) * 1998-09-07 2000-03-31 Toyota Motor Corp ハイブリッド車の充放電状態制御装置
JP2001268715A (ja) * 2000-03-22 2001-09-28 Hitachi Ltd ハイブリッド電気自動車およびその暖機制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189981B2 (ja) * 1991-12-05 2001-07-16 本田技研工業株式会社 電動車両の制動装置
JP4308408B2 (ja) * 2000-04-28 2009-08-05 パナソニック株式会社 二次電池の入出力制御装置
US7234552B2 (en) * 2003-09-19 2007-06-26 Ford Global Technologies, Llc Method for heating a battery in a hybrid electric vehicle
JP2006278045A (ja) 2005-03-28 2006-10-12 Nissan Motor Co Ltd バッテリ温度推定装置
JP4271682B2 (ja) 2005-11-24 2009-06-03 本田技研工業株式会社 モータ駆動車両の制御装置
JP4321668B2 (ja) * 2006-02-28 2009-08-26 トヨタ自動車株式会社 車両駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092614A (ja) * 1998-09-07 2000-03-31 Toyota Motor Corp ハイブリッド車の充放電状態制御装置
JP2001268715A (ja) * 2000-03-22 2001-09-28 Hitachi Ltd ハイブリッド電気自動車およびその暖機制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756728A (zh) * 2011-04-29 2012-10-31 台达电子工业股份有限公司 油电混合动力车及其启动方法
JP2016068762A (ja) * 2014-09-30 2016-05-09 近畿車輌株式会社 ハイブリッド車両の蓄電池加熱システム

Also Published As

Publication number Publication date
JP5168409B2 (ja) 2013-03-21
JPWO2011027398A1 (ja) 2013-01-31
DE112009005203B4 (de) 2015-11-05
US20120160580A1 (en) 2012-06-28
DE112009005203T5 (de) 2012-06-28
CN102481913A (zh) 2012-05-30
US8479850B2 (en) 2013-07-09
CN102481913B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5168409B2 (ja) ブレーキ制御装置
JP5229393B2 (ja) ブレーキ制御装置
JP4466696B2 (ja) ブレーキ装置、ブレーキ制御装置およびブレーキ制御方法
JP4623090B2 (ja) ブレーキ制御装置
JP4222382B2 (ja) 車両制動装置
EP3038869B1 (en) Vehicle
US9475475B2 (en) Hydraulic brake system
JP5402578B2 (ja) ブレーキ制御装置
JP5263091B2 (ja) ブレーキ制御装置
EP3038849B1 (en) Vehicle
JP2012224332A (ja) ブレーキ制御装置
JP5347689B2 (ja) ブレーキ制御装置
JP2012153266A (ja) ブレーキ制御装置
JP5287672B2 (ja) 制動制御装置
JP2010206992A (ja) ブレーキ制御装置
JP2007230419A (ja) ブレーキ制御装置
JP2007153206A (ja) ブレーキ制御装置
JP4779768B2 (ja) 車両制動装置
JP2009227092A (ja) ブレーキ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161266.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848929

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011529696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13394228

Country of ref document: US

Ref document number: 112009005203

Country of ref document: DE

Ref document number: 1120090052037

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848929

Country of ref document: EP

Kind code of ref document: A1