[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011024995A1 - 堆積膜形成装置および堆積膜形成方法 - Google Patents

堆積膜形成装置および堆積膜形成方法 Download PDF

Info

Publication number
WO2011024995A1
WO2011024995A1 PCT/JP2010/064692 JP2010064692W WO2011024995A1 WO 2011024995 A1 WO2011024995 A1 WO 2011024995A1 JP 2010064692 W JP2010064692 W JP 2010064692W WO 2011024995 A1 WO2011024995 A1 WO 2011024995A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply
deposited film
flow
film forming
Prior art date
Application number
PCT/JP2010/064692
Other languages
English (en)
French (fr)
Inventor
伊藤 憲和
稲葉 真一郎
宏史 松居
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2010800295648A priority Critical patent/CN102471886A/zh
Priority to US13/381,035 priority patent/US20120100311A1/en
Priority to EP10812041A priority patent/EP2471973A1/en
Priority to JP2011528891A priority patent/JP5430662B2/ja
Publication of WO2011024995A1 publication Critical patent/WO2011024995A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a deposited film forming apparatus and a deposited film forming method for forming a deposited film such as silicon on a substrate.
  • Patent Document 1 As an apparatus that can deposit a high-quality film on a substrate at high speed, the applicant has proposed a gas-separated plasma CVD apparatus that combines the advantages of plasma CVD (chemical vapor deposition) and thermal catalytic CVD (for example, see Patent Document 1 below).
  • a low raw material gas decomposition probability such as H 2 gas through a gas supply path mechanism is arranged to improve the degradation probabilities represented by a heating catalyst body, decomposition of H 2 gas activity Can be introduced into the chamber.
  • SiH 4 gas a source gas having a high decomposition probability, such as SiH 4 gas, is introduced into the chamber through another gas supply path in which no heating catalyst is disposed, SiH that causes film quality degradation in the thermal catalytic CVD method 2.
  • SiH 4 gas can contribute to the formation of a deposited film while suppressing the generation of SiH and Si.
  • the gas separation type plasma CVD apparatus can form a high quality film at high speed.
  • the gas separation type plasma CVD apparatus separates and supplies the source gas according to the gas decomposition probability. Therefore, when forming the deposited film, a sufficient source gas is uniformly supplied even at a small flow rate, and the film having a uniform film thickness distribution is provided. Whether it can be deposited becomes a problem.
  • the flow rate of SiH 4 gas is as low as 1/10 to 1/200 compared to the flow rate of H 2 gas. For this reason, SiH 4 gas is difficult to be supplied uniformly from a plurality of gas supply units, and in a large deposition film forming apparatus having a deposition area exceeding 1 m 2 , the film thickness distribution in the plane of the deposition film tends to be non-uniform.
  • the present invention has been made based on such a background, and an object thereof is to provide a deposited film forming apparatus and a deposited film forming method capable of forming a deposited film having a uniform film thickness distribution.
  • an object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method effective for forming a Si-based thin film used for a thin-film Si-based solar cell.
  • a deposited film forming apparatus is provided.
  • the second electrode includes a first supply unit that supplies a first source gas to a space between the first electrode and the second electrode, and a plurality of second supply units that supply a second source gas to the space. And a first supply path that is connected to the first supply section and into which the first source gas is introduced, and a second supply path that is connected to the second supply section and into which the second source gas is introduced.
  • a deposited film forming apparatus comprising:
  • the second supply path includes a main flow portion having a first inlet into which the second raw material gas is introduced, and a plurality of gas flows having a second inlet through which the second raw material gas is introduced from the main flow portion.
  • a plurality of the second supply sections are connected to each of the plurality of gas flow paths of the branch section,
  • the main flow section and the tributary section have a structure in which the second source gas does not flow as a straight flow from the first introduction port to the second supply section.
  • the deposited film forming method is a deposition in which a deposited film is formed on a substrate disposed between the first electrode and the second electrode using the deposited film forming apparatus.
  • a film forming method comprising: A plasma is generated by supplying the first source gas and the second source gas between the first electrode and the second electrode to form a deposited film on the base material. To do.
  • a raw material gas with a small flow rate can be uniformly supplied into the chamber from each supply unit, and a uniform film is formed on the substrate.
  • a deposited film having a thickness distribution can be formed.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a deposited film forming apparatus according to the present invention.
  • FIG. 2 is a diagram schematically showing the structure of the second supply path in the second electrode used in one embodiment of the deposited film forming apparatus according to the present invention, and is a cross-sectional view taken along the line II-II in FIG. .
  • FIG. 3A and FIG. 3B are enlarged cross-sectional views schematically showing the arrangement relationship between the main flow part and the tributary part respectively used in one embodiment of the deposited film forming apparatus according to one aspect of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a modification of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a modification of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a modification of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 7A and FIG. 7B are cross-sectional views schematically showing modifications of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 8A and FIG. 8B are enlarged perspective views schematically showing modifications of the second supply path used in the embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 9 is an enlarged perspective view schematically showing a modified example of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 10 is a cross-sectional view schematically showing one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a modification of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 12 is an enlarged cross-sectional view schematically showing a modification of the second supply path used in one embodiment of the deposited film forming apparatus according to the present invention.
  • FIG. 13 is a cross-sectional view schematically showing a second supply path used in the deposited film forming apparatus of the comparative example.
  • the deposited film forming apparatus S ⁇ b> 1 is located in the chamber 1, the first electrode 7 located in the chamber 1, and the first electrode 7 in the chamber 1 at a predetermined interval. And a second electrode 2 functioning as an electrode. Further, the base material 10 on which the deposited film is formed is disposed between the first electrode 7 and the second electrode 2. In addition, the base material 10 should just be located between the 1st electrode 7 and the 2nd electrode 2, and is not limited to the aspect by which the base material 10 is hold
  • the chamber 1 is a reaction vessel having a vacuum-tight reaction space constituted by at least a top wall, a peripheral wall, and a bottom wall.
  • the inside of the chamber 1 is evacuated by a vacuum pump 9. Further, the pressure inside the chamber 1 is adjusted by a pressure regulator (not shown).
  • the vacuum pump 9 is desirably a dry vacuum pump such as a turbo molecular pump.
  • the ultimate vacuum in the chamber 1 is 1 ⁇ 10 ⁇ 3 Pa or less, preferably 1 ⁇ 10 ⁇ 4 Pa or less.
  • the pressure in the chamber 1 during film formation is 50 to 7000 Pa, although it varies depending on the type of film to be formed.
  • the first electrode 6 has a function of an anode electrode and incorporates a heater for adjusting the temperature of the substrate 10. Since the first electrode 7 also functions as a temperature adjustment mechanism for the substrate 10, the substrate 10 is adjusted to, for example, 100 to 400 ° C, more preferably 150 to 350 ° C.
  • the base material 10 can be a flat plate made of a glass substrate or the like, or a film made of a metal material or a resin.
  • the second electrode 2 is disposed opposite to the first electrode 7 and functions as a shower electrode and a cathode electrode.
  • the second electrode 2 includes a first supply unit 4 and a second supply unit 6 that supply the gas introduced from the first supply path 3 and the second supply path 5 into the chamber 1.
  • the first supply unit 4 and the second supply unit 6 are open toward the base material 10.
  • the high frequency power supply 11 is connected to the second electrode 2 and can use a frequency of about 13.56 MHz to 100 MHz. When a film is formed in a large area of 1 m 2 or more, a frequency of about 60 MHz or less is preferably used.
  • plasma is formed between the second electrode 2 and the substrate 10 in a space 8 where plasma is generated.
  • a plurality of gas cylinders (not shown) for storing different gases are connected to the plurality of first supply sections 4 and the plurality of second supply sections 6 through the first supply path 3 and the second supply path 5, respectively.
  • the gases introduced from the first supply path 3 and the second supply path 5 are not basically mixed until reaching the space 8 where plasma is generated through the first supply section 4 and the second supply section 6, respectively.
  • the gas supplied to the plurality of first supply units 4 and the plurality of second supply units 6 includes a first source gas and a second source gas having a higher decomposition probability than the first source gas.
  • the total decomposition rate of gas is defined as exp ( ⁇ Ea / kTe) ⁇ Ng ⁇ Ne ⁇ ve ⁇ ⁇ g.
  • ⁇ Ea is the excitation activation energy (dissociation energy) of the source gas
  • k is the Boltzmann constant
  • Te is the electron temperature
  • Ng is the source gas concentration
  • Ne is the electron concentration
  • ve the electron velocity
  • ⁇ g is the source gas collision cross section.
  • exp ( ⁇ Ea / kTe) means the decomposition probability.
  • exp ( ⁇ Ea / kTe) ⁇ ⁇ g may be expressed as ⁇ (Ea).
  • the first source gas is supplied from the first supply unit 4 through the first supply path 3, and the second source gas is supplied from the second supply unit 6 through the second supply path 5.
  • the first source gas flowing through the first supply path 3 is divided and part of the first source gas flows into the second supply path 5 (mixed with the second source gas).
  • the first source gas and the second source gas are appropriately selected depending on the type of the deposited film.
  • a Si-based thin film such as a-Si: H (hydrogenated amorphous silicon) or ⁇ c-Si: H (hydrogenated microcrystalline silicon)
  • a non-Si based gas is used as the first source gas.
  • Si-based gas can be used as the source gas.
  • hydrogen (H 2 ) gas or the like is used as the non-Si gas.
  • Si-based gases include silane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrafluoride (SiF 4 ), silicon hexafluoride (Si 2 F 6 ), or dichlorosilane (SiH 2 Cl 2 ) gas. Used. In the case of introducing a doping gas, diborane (B 2 H 6 ) gas or the like is used as the p-type doping gas, and phosphine (PH 3 ) gas or the like is used as the n-type doping gas. As a supply path for the doping gas, either the first supply path 3 or the second supply path 5 can be selected as necessary. However, as will be described later, when the heating catalyst body 12 provided in the first supply path 3 is provided, the doping gas is desirably introduced through the second supply path 5.
  • a heating catalyst body 12 connected to a heating power source 13 can be provided in the first supply path 3, and the first source gas is heated and activated by the heating catalyst body 12 heated to about 500 to 2000 ° C. And is also activated in the space 8 where plasma is generated.
  • a heating means such as a resistance heating body may be used instead of the heating catalyst body 12.
  • the heated catalyst body 12 functions as a thermal catalyst body that excites and activates (decomposes) the gas in contact with the medium by passing an electric current through the medium and raising the temperature by heating.
  • At least the surface of the heating catalyst body 12 is made of a metal material.
  • This metal material is preferably made of a pure metal or alloy material containing at least one of Ta, W, Re, Os, Ir, Nb, Mo, Ru, and Pt, which are high melting point metal materials.
  • the shape of the heating catalyst body 12 is, for example, a metal material such as that described above formed into a wire shape, a plate shape, or a mesh shape.
  • the heating catalyst body 12 is preheated for several minutes at a temperature higher than the heating temperature at the time of film formation before being used for film formation. Thereby, it can reduce that the impurity in the metal material of the heating catalyst body 12 is doped in the film at the time of film formation.
  • the gas can be uniformly contacted with the heating catalyst body 12, and the gas is efficiently activated. be able to.
  • the first raw material gas that has not been decomposed or is recombined after being decomposed is promoted by heating the heating catalyst body 12 to promote the decomposition of the first raw material gas. Since the temperature of one source gas is also rising, gas decomposition is further promoted in the space 8 where plasma is generated. Furthermore, since the second source gas is supplied from the second supply unit 6 without being brought into contact with the heating catalyst body 12 and excited and activated in the space 8 where the plasma is generated, the second source gas is excessively decomposed. Therefore, the film can be formed at high speed, and a high-quality thin film can be formed.
  • the higher-order silane formation reaction is 1) SiH 4 + SiH 2 ⁇ Si 2 H 6 2) Si 2 H 6 + SiH 2 ⁇ Si 3 H 8 ...
  • the same SiH 2 insertion reaction continues ... That is, a reaction in which a high molecular polymer is generated by SiH 2 insertion reaction.
  • SiH 2 is generated together with SiH 3 which is a main component of film formation when SiH 4 collides with electrons in the plasma.
  • the higher the plasma excitation power is increased in order to increase the film forming speed the more SiH 2 is generated. As a result, more higher-order silane molecules are also generated.
  • this higher order silane formation reaction is an exothermic reaction. In other words, it is a three-body reaction that proceeds by exhausting heat generated by the reaction into the space.
  • a space where heat is to be discharged specifically, a space containing hydrogen gas as a main component
  • the second supply path 5 is connected to a main flow part 51 extending in the lateral direction in the upper part and the lower part in the figure and a main flow part 51 in the upper part and the lower part. And a tributary part 52 extending in the direction.
  • the tributary part 52 has a plurality of gas flow paths 52a.
  • the second supply unit 6 is not connected to the main flow unit 51, and the second supply unit 6 is connected only to the gas flow path 52 a of the branch unit 52.
  • the second supply path 5 has a first introduction port 53 through which the second source gas is introduced into the main flow part 51, and the main flow part 51 passes the second source gas through the first introduction port 53. It is connected to an introduction path 55 for introduction into the section 51.
  • the main flow part 51 is connected to the gas flow path 52 a of the branch part 52 through a second introduction port 54 that is a connection port through which the second source gas flows from the main flow part 51 to the branch part 52.
  • the second source gas passing through the cross section of the first introduction port 53 flows into the main flow part 51 while maintaining straightness with a gas flow having a certain spread angle determined by the gas flow velocity or the like.
  • the inner wall length AB between the gas flow paths in the first introduction port 53 is longer than the sectional opening length CD of the introduction path 55 (in this case, equal to the sectional opening length CE of the first introduction port 53). By doing so, the gas having straightness can be brought into contact with the main wall of the inner wall length AB.
  • the rectilinearity of the second source gas is reduced, and finally it flows laterally along the inner wall of the main flow part 51, so that the rectilinear component does not flow directly into the second supply part 6,
  • the two raw material gases are evenly distributed to the tributaries 52.
  • the inner wall of the main flow part 51 with which the second source gas is brought into contact may be, for example, the inner wall surface of the main flow part 51 that is not connected to the tributary part 52 and faces the second introduction port 54.
  • vertically with respect to the longitudinal direction of the main flow part 51 was demonstrated for simplicity, it is not limited to this.
  • the sectional opening length CD of the introduction path 55 at the first introduction port 53 is D1
  • the sectional opening length A ⁇ of the main flow section 51 is F is D2
  • the cross-sectional opening length BG of the tributary section 52 is D3.
  • the straight component of the gas flowing into the main flow part 51 from the first introduction port 53 may spread in the direction of the arrow shown in FIG.
  • the inflow depth BH of the straight component of the gas into the tributary section 52 equal to or less than the cross-sectional opening length D3 of the tributary section, the influence of the rectilinearity of the gas is reduced and the second source gas is evenly tributated.
  • the gas can be distributed to each gas flow path 52a of the section 52.
  • the position of the inlet of the second supply port 6 is provided in a region away from the second introduction port 54 by the sectional opening length D3 or more of the branch portion 52, so that the straight component does not directly flow into the second supply portion 6. .
  • the distance L between the first introduction port 53 and the second introduction port 54 (the gas flow path 52a of the tributary portion 52) is By being longer than the cross-sectional opening length D2 of the main flow portion 51, the inflow depth of the straight component of the gas into the tributary portion 52 is always equal to or smaller than the cross-sectional opening length D3 of the tributary portion 52, and the second raw material gas is evenly distributed. Can be distributed to the gas flow path 52a.
  • the structure of the main flow part 51 and the tributary part 52 in the second supply path 5 has been described by taking the simple structure shown in FIG. 3 as an example, but is not limited thereto.
  • a plurality of second supply sections 6 are connected to each of the plurality of gas flow paths 52 a of the branch section 52, and the main flow section 51 and the branch section 52 supply the second source gas from the first inlet 53 to the second supply. What is necessary is just to have a structure which does not flow into the part 6 as a straight flow.
  • the inlet of the second supply section 6 connected to the one gas flow path is on a straight line connecting the first inlet 53 and the second inlet 54. Any structure that is not located may be used.
  • the distance L between the first introduction port 53 and the second introduction port 54 in the direction along the longitudinal direction of the main flow portion 51 may be equal to or longer than the cross-sectional opening length D2 of the main flow portion 51.
  • the second supply path 5 includes a main flow portion 51 extending in the lateral direction at the upper and lower portions of the tributary portion 52, and a main flow portion at the upper and lower portions. 51 and a tributary section 52 having a plurality of gas flow paths 52a extending in the vertical direction.
  • the second supply part 6 is not connected to the main flow part 51, and the second supply part 6 is connected only to each gas flow path 52 a of the branch part 52.
  • the main flow part 51 is connected to the introduction path 55 for introducing the second source gas into the main flow part 51 via the first introduction port 53, and further, via the branch part 52 and the second introduction port 54.
  • the first introduction port 53 is provided further on the outer side than the gas channel 52 a located on the outermost side among the gas channels 52 a of the branch unit 52 connected to the main flow unit 51.
  • the second source gas introduced from the introduction path 55 comes into contact with the main stream side wall AB and the straightness of the gas is reduced. For this reason, inflow of a large amount of gas into the tributary part 52 in the vicinity of the first introduction port 53 is suppressed, and the gas is uniformly distributed to each gas flow path 52a of the tributary part. As a result, the second source gas can be uniformly supplied into the chamber, and a deposited film can be formed on the substrate 10 with a uniform film thickness.
  • the length D4 between the gas flow path 52a located at the endmost part connected to the main flow part 51 and the first introduction port 53 is set to be equal to or longer than the cross-sectional opening length D2 of the main flow part 51 described above.
  • the second source gas can be evenly distributed to the gas flow paths 52a of the branch section 52.
  • the second supply path 5 includes a main flow part 51 extending laterally in the upper and lower parts and a main flow part 51 in the upper and lower parts. And a tributary section 52 having a plurality of gas flow paths 52a extending in the illustrated vertical direction.
  • the main flow part 51 is not connected to the second supply part 6, and the second supply part 6 is connected only to each gas flow path 52 a of the branch part 52.
  • the main flow part 51 is connected to the introduction path 55 for introducing the second source gas into the main flow part 51 via the first introduction port 53, and further, via the branch part 52 and the second introduction port 54. Connected.
  • the first introduction port 53 is provided further on the outer side than the gas flow path 52 a located on the outermost side among the gas flow paths 52 a of the tributary section 52 connected to the main flow section 51.
  • the upper main flow part 51 has the first introduction port 53 and the second introduction port 54 on the lower surface side, and the gas passing through the cross section of the first introduction port 53 flows upward, and then the first introduction port. It contacts the side wall of the main flow part 51 facing 53, gas straightness is reduced, and then flows along the longitudinal direction of the main flow part 51. Then, the second source gas is uniformly distributed to each gas flow path 52a of the branch section 52.
  • the introduction path 55 is divided into two hands from one pipe and connected to the two main flow sections 51, but is not particularly limited to the above configuration.
  • the cross-sectional shapes of the first supply path 3 and the second supply path 5 are not limited, and may be circular or polygonal.
  • FIG. 6 which is shown in a sectional view similar to FIG. 2, the gas flow vertical cross-sectional area (flow-path cross-sectional area) of the gas flow path 52 a of the tributary section 52 is separated from the first introduction port 53.
  • the source gas can be supplied into the chamber more uniformly.
  • the tributary part 52 has one or more buffer spaces serving as a buffer part for the flow rate of the second source gas in the vertical direction, and a second supply part. It is preferable to have a multilayer structure combined with a supply space having 6.
  • the first branch 521 is a buffer space
  • the second branch 522 is a supply space.
  • the first branch portion 521 and the second branch portion 522 serve as buffer spaces
  • the third branch portion 523 serves as a supply space.
  • Each of these tributaries is connected by a tributary connection port 56 (an opening through which the second source gas passes). In this way, by making the tributary part 52 have a multilayer structure, it is possible to supply gas from the second supply part 6 evenly.
  • the number of branch connection ports 56 smaller than the number of the second supply units 6, and further, the opening cross-sectional area of the branch connection port 56 is set to the second supply unit. By making it smaller than the flow path cross-sectional area of 6, the gas can be further uniformly supplied from the second supply unit 6.
  • a plurality of branch port connection ports 56 are not provided in the branch channel 52 at equal intervals, but are provided more on the center side than on the end side of the branch channel 52. Further, the gas is supplied uniformly from the second supply unit 6 with the second supply unit 6 provided at equal intervals by increasing the opening cross-sectional area of the branch unit connection port 56 toward the center of the branch unit 52. can do. As a result, a deposited film having a uniform film thickness distribution can be formed.
  • the main flow part 51 may be connected to the introduction path 55 extending in the vertical direction.
  • the flow direction of the gas passing through the cross section of the first introduction port 53 is a vertical direction
  • the flow direction of the gas passing through the cross section of the second introduction port 54 is a horizontal direction.
  • the second introduction port 54 may be provided in the vertical direction of the main flow part 51.
  • the tributary part 52 extends downward from the main flow part 51 and then extends in the horizontal direction, so that the influence of the straightness of the gas is mitigated, and the gas is uniformly supplied to the plurality of gas flow paths 52a. It can flow.
  • the tributary portion 52 may extend upward from the main flow portion 51.
  • the gas can be uniformly supplied into the chamber by providing the first introduction ports 53 at both ends of the main flow part 51.
  • the flow rate of gas supplied to each first introduction port 53 is controlled.
  • the gas can be supplied into the chamber more uniformly.
  • the flow rate control mechanism it is preferable to adjust the conductance of the introduction path 55 located upstream of the first introduction port 53, and the cross-sectional area of the introduction path 55 may be adjusted by a valve or a mass flow meter.
  • the flow rate control mechanism is also made by adjusting the flow direction of the gas to the first introduction port 53, thereby mitigating the influence of the straight traveling property of the gas, and the tributary near the first introduction port 53. It is possible to reduce the flow of a large amount of gas through the gas flow path 52a of the part 52.
  • the opening cross-sectional area of the second supply unit 6 may be widened toward the space 8 where plasma is generated. Accordingly, since the gas is supplied into the chamber 1 so as to diffuse around the second supply unit 6, the gas is uniformly supplied onto the base material 10 provided facing the second supply unit 6. Can do.
  • the other main components are the same as those in FIG.
  • a plurality of branch portions 52 having a plurality of gas flow paths are arranged side by side, and different main streams are respectively provided at both ends of the plurality of branch portions 52.
  • the unit 51 may be connected.
  • the plurality of first introduction ports 53 for introducing the raw material gas into the main flow part 51 are located further on the end side than the branch part 52 connected to the main flow part end side. Furthermore, at least two first introduction ports 53 may be provided to face each other. Even with such a configuration, the straightness of the gas is lost, and the gas can flow uniformly to the plurality of branch portions 52.
  • the rectifying member 57 for changing the direction of the gas flow from the main flow portion 51 of the second source gas to the tributary portion 52 inside the main flow portion 51, the gas flow is further increased. Straightness is lost, and the gas can flow uniformly to the plurality of branch portions 52. Even if such a structure is employed, the second source gas can be prevented from flowing as a straight flow from the first inlet 53 to the second supply unit 6. At this time, the rectifying member 57 may be provided only in the vicinity of the first introduction port 53.
  • the first supply unit 4 and the second supply unit 6 may be arranged in various patterns such as a lattice pattern or a staggered pattern. Further, the numbers of the first supply unit 4 and the second supply unit 6 may be different. When the gas flow rate of the first source gas is different from the gas flow rate of the second source gas, for example, when the gas flow rate of the first source gas is larger than the second source gas, the first supply unit 4 is more than the second supply unit 6. By increasing the number, the supply balance is maintained and the deposited film can be formed uniformly.
  • the first supply path 3 and the second supply unit 5 may be connected to a gas adjusting unit that adjusts the flow rate, flow rate, temperature, and the like of the gas. Moreover, after providing the buffer space and mixing the gas supplied from each cylinder in the mixing region, the mixed gas is supplied from the first supply unit 4 and the second supply unit 6 via the first supply path 3 and the second supply path 5. You may make it supply.
  • the deposited film forming apparatus may have a structure in which a plurality of film forming chambers are provided.
  • a film forming chamber for forming a p-type film for example, a film forming chamber for forming an i-type film, and a film forming chamber for forming an n-type film are included.
  • productivity can be improved, and furthermore, a thin film solar with high conversion efficiency A battery can be manufactured.
  • the deposited film forming method of the present embodiment is a method of forming a deposited film on the base material 10 disposed between the first electrode 7 and the second electrode 2 using the above-described deposited film forming apparatus.
  • the first source gas and the second source gas are supplied between the first electrode 7 and the second electrode 2 to generate plasma, thereby forming a deposited film on the substrate 10. .
  • the step of holding the substrate 10 on the first electrode 7, the step of applying high-frequency power to the second electrode 2, and the first source gas activated in the heated catalyst body 12 In the space 8 where plasma is generated between the first electrode 7 and the second electrode 2 by supplying the second source gas from the first supply unit 4 and from the second supply unit 6 toward the base material 10. And the step of activating.
  • the first source gas and the second source gas activated through such a process are mixed in the space 8 where plasma is generated, and components in the source gas are deposited on the substrate 10. As a result, a deposited film with good quality is rapidly formed on the substrate 10.
  • the base material 10 is transported by a base material transport mechanism (not shown) or the like and held on the first electrode 7. Then, it is fixed on the first electrode 7.
  • the first source gas heated by the heating catalyst body 12 in the first supply path 3 and supplied only from the first supply unit 4 causes the first source gas whose temperature has been raised by the heating catalyst body 12 to generate plasma. Since it is supplied to the space 8, the higher-order silane generation reaction in the space 8 where plasma is generated by the gas heating effect is suppressed.
  • the hydrogenated amorphous silicon film When the hydrogenated amorphous silicon film is formed, H 2 gas is supplied to the first supply path 3 and SiH 4 gas is supplied to the second supply path 5. Further, the gas pressure may be set to 50 to 700 Pa, the gas flow ratio of H 2 / SiH 4 may be set to 2/1 to 40/1, and the high frequency power density may be set to 0.02 to 0.2 W / cm 2 . In a pin junction thin film solar cell having an i-type amorphous silicon film, the film thickness of the i-type amorphous silicon film may be 0.1 to 0.5 ⁇ m, preferably 0.15 to 0.3 ⁇ m.
  • H 2 gas is supplied to the first supply path 3 and SiH 4 gas is supplied to the second supply path 5.
  • the gas pressure may be set to 100 to 7000 Pa
  • the gas flow ratio of H 2 / SiH 4 may be set to 10/1 to 200/1
  • the high frequency power density may be set to 0.1 to 1 W / cm 2 .
  • the film thickness of the i-type microcrystalline silicon film is 1 to 4 ⁇ m, preferably 1.5 to 3 ⁇ m, and the crystallization rate is about 70%. What is necessary is just to form.
  • hydrogen gas first source gas
  • first source gas hydrogen gas
  • the flow rate of SiH 4 gas is much smaller than that of H 2 gas. For this reason, the gas pressure balance between the first supply unit 4 and the second supply unit 6 is not achieved, and it becomes difficult to uniformly supply the SiH 4 gas from each second supply unit 6, and the film thickness distribution is not good. Although there is a possibility of being uniform, such non-uniform film thickness distribution can be reduced by performing deposition using the deposited film forming apparatus of the embodiment.
  • the gas pressure in the second supply path 5 is increased, SiH 4 gas can be uniformly ejected from the plurality of second supply units 6.
  • the gas pressure in the second supply passage 5 (total pressure) is increased, can be uniformly ejected SiH 4 gas from the plurality of the second supply unit 6.
  • the opening cross-sectional area of the second supply unit 6 may be increased toward the center of each gas flow path 52a of the tributary unit 52. As a result, the gas can be uniformly supplied from the second supply unit 6.
  • the deposited film forming apparatus provided with the electrode and the base material 10 in the horizontal direction has been described. However, even if the deposited film forming apparatus provided with the electrode and the base material 10 in the vertical direction is used, a uniform film is formed. A deposited film having a thickness distribution can be formed.
  • a plurality of source gases are divided into the first supply path 3 and the second supply path 5 without using the heating catalyst body 12. It may be a case of introducing.
  • the plurality of supply parts among the first supply part 4 and the second supply part 6 provided in the second electrode 2 are configured such that, for example, the cross-sectional area of the flow path is wide at the outlet of these gases.
  • the first supply unit 4 having a space for generating a hollow cathode discharge and the second supply unit 6 that does not generate a hollow cathode discharge or generates a small amount of discharge are included. May be.
  • the hollow cathode discharge is a kind of glow discharge, in which electrons reciprocate due to electrostatic confinement, and the energy of the electrons is used for plasma generation, and the plasma density becomes extremely high. .
  • the first supply unit 4 of the second electrode 2 has a cross-sectional area perpendicular to the axis in the depth direction as the depth increases, that is, from the first electrode 7. For example, it is formed in a taper shape or a step shape so that the cross-sectional area decreases as the distance increases. For this reason, a hollow cathode discharge is generated at a position at an arbitrary depth in the recess according to the atmospheric pressure in the discharge space. Further, the first source gas can further promote the decomposition of the first source gas by the high density plasma of the hollow cathode discharge in the first supply unit 4.
  • the activation of the first source gas can be further promoted, and excessive decomposition of the second source gas can be reduced.
  • the decomposition of the first source gas can be further promoted by the heating by the medium 12 and the high density plasma of the hollow cathode discharge. As a result, a high-quality deposited film can be formed on the substrate 10 at a sufficiently high speed.
  • a SiC-based wide gap film such as a-SiC (amorphous silicon carbide)
  • the first supply section having a space for generating a hollow cathode discharge is provided.
  • H 2 gas is supplied to the first supply path 3
  • silane (SiH 4 ) gas and CH 4 gas are supplied to the second supply path 5.
  • H 2 gas and CH 4 gas are supplied to the first supply path 3.
  • Silane (SiH 4 ) gas is supplied to the second supply path 5.
  • the deposition film forming conditions may be set such that the gas pressure is set to 100 to 700 Pa and the high frequency power density is set to 0.01 to 0.1 W / cm 2 .
  • the SiC-based wide gap film is used as a light incident side window layer of a solar cell.
  • the thickness of the p-type amorphous silicon carbide film is 0.005 to 0.03 ⁇ m, preferably 0.01 to 0.02 ⁇ m. do it.
  • the SiC wide gap film can also be used as a photoactive layer (i-type layer).
  • the heating catalyst body 12 is provided in the first supply path 3 in forming the SiGe narrow gap film such as a-SiGe (amorphous silicon germanium), the first supply unit 4 having a space for generating a hollow cathode discharge.
  • H 2 gas is supplied to the first supply path 3 and Ge-based gas such as silane (SiH 4 ) gas and germane (GeH 4 ) gas is supplied to the second supply path 5 regardless of the presence or absence.
  • H 2 gas and SiH 4 gas are supplied to the first supply path 3.
  • a Ge-based gas is supplied to the second supply path 5.
  • the deposition film forming conditions may be that the gas pressure is set to 100 to 700 Pa and the high frequency power density is set to 0.01 to 0.2 W / cm 2 .
  • the SiGe narrow gap film is used to absorb light having a long wavelength that cannot be absorbed by the Si film.
  • the film thickness of the i-type amorphous silicon germanium film is preferably 0.1 to 0.5 ⁇ m. May be formed to 0.15 to 0.3 ⁇ m.
  • the film thickness of the i-type microcrystalline silicon germanium film is 1 to 4 ⁇ m, preferably 1 It may be formed to 5 to 3 ⁇ m.
  • the thin-film solar cell formed using the above-described manufacturing method is formed with a high-quality film at high speed, it is possible to produce a solar cell with high productivity and high conversion efficiency.
  • a thin film solar cell for example, a tandem structure in which a semiconductor made of an amorphous silicon film and a semiconductor made of a microcrystalline silicon film are laminated from the light receiving surface side, a semiconductor made of an amorphous silicon film and an amorphous silicon germanium film are used. And a triple structure in which a semiconductor made of a microcrystalline silicon film, a semiconductor made of an amorphous silicon film, a semiconductor made of a microcrystalline silicon film, and a semiconductor made of a microcrystalline silicon germanium film are stacked. In addition, it is only necessary that at least one of the semiconductors can be formed by the above manufacturing method.
  • the deposited film forming apparatus S ⁇ b> 1 includes a chamber 1, a first electrode 7 disposed below the chamber 1, a base material 10 disposed on the first electrode 7, and a first electrode 7. And a second electrode 2 disposed to face each other.
  • the second electrode 2 is provided with a plurality of first supply sections 4 and second supply sections, which are connected to the first supply path 3 and the second supply path 5, respectively.
  • a medium 12 is provided.
  • the second supply path 5 has two main flow portions 51 extending in the horizontal direction and a plurality of gases extending in the vertical direction by connecting the two main flow portions 51 to each other when viewed in plan.
  • the flow direction of the gas passing through the cross section of the first introduction port 53 and the flow direction of the gas passing through the cross section of the second introduction port 54 are 180 degrees opposite to each other.
  • the straightness of the gas flow is reduced on the inner wall surface of the main flow portion 51 on the side facing the second introduction port 54.
  • the second supply path 5 of the deposited film forming apparatus of the comparative example connects the two main flow portions 51 extending in the horizontal direction and the two main flow portions 51 when viewed in plan.
  • the source gas introduced from the first introduction port 53 flows into the gas flow path 52a of the tributary part 52 while maintaining its straightness. It has a structure to do.
  • an i-type microcrystalline silicon film was formed on the base material 10 using the deposited film forming apparatus S1.
  • various setting conditions for forming the i-type microcrystalline silicon film were such that the gas pressure in the chamber was 800 Pa and the heating temperature of the base material was 190 ° C.
  • the supply amount of SiH 4 gas introduced into the chamber is 3.94 ⁇ 10 ⁇ 2 Pa ⁇ m 3 / s (25 sccm), and the supply amount of H 2 gas is 1.57 Pa ⁇ m 3 / s (1000 sccm). ).
  • the film thickness non-uniformity of the i-type microcrystalline silicon film formed on a 25 cm ⁇ 25 cm glass substrate was evaluated.
  • the film thickness distribution non-uniformity when the deposited film forming apparatus of the comparative example is used is ⁇ 20.47%, whereas the film thickness distribution non-uniformity when the deposited film forming apparatus of the present embodiment is used is ⁇ 7. It was greatly improved to 79%.
  • the i-type microcrystalline silicon film is thicker on the central branch line located near the first introduction port 53, and the film thickness is thinner toward the left and right ends. It was.
  • the i-type microcrystalline silicon film had a uniform film thickness almost entirely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明の一形態に係る堆積膜形成装置は、チャンバーと、チャンバー内に位置している第1電極と、チャンバー内に第1電極と所定間隔を隔てて位置している第2電極とを備え、第2電極は、第1電極と第2電極との間の空間に第1原料ガスを供給する第1供給部と、空間に第2原料ガスを供給する複数の第2供給部と、第1供給部に接続されて第1原料ガスが導入される第1供給経路と、第2供給部に接続されて第2原料ガスが導入される第2供給経路とを有する堆積膜形成装置であって、第2供給経路は、第2原料ガスが導入される第1導入口を有する本流部と、本流部から第2原料ガスが導入される第2導入口を有した複数のガス流路を有する支流部とを備えており、支流部の複数のガス流路のそれぞれには複数の第2供給部が接続されており、本流部および支流部は、第2原料ガスが第1導入口から第2供給部にまで直進流として流入しない構造を有していることを特徴とする。

Description

堆積膜形成装置および堆積膜形成方法
 本発明は、基材上に例えばシリコン等の堆積膜を形成するための堆積膜形成装置および堆積膜形成方法に関する。
 基材上に高品質な膜を高速に堆積できる装置として、出願人はプラズマCVD(Chemical Vapor Deposition)法と熱触媒CVD法のそれぞれの長所を融合した、ガス分離型プラズマCVD装置を提案した(例えば、下記の特許文献1を参照)。
 この装置によれば、例えばHガスのような分解確率の低い原料ガスは、加熱触媒体に代表される分解確率を向上させる機構が配設されたガス供給経路を通して、Hガスを分解活性化させながらチャンバー内に導入できる。
 このため、プラズマCVD法において膜品質の低下をもたらす荷電粒子を増大させることなく、Hガスを微結晶シリコン膜の形成に寄与させることができる。
 また、例えばSiHガスのような分解確率の高い原料ガスは、加熱触媒体の配設されない別のガス供給経路を通してチャンバー内に導入されるため、熱触媒CVD法において膜品質の低下をもたらすSiH、SiHおよびSiの生成を抑制させながらSiHガスを堆積膜形成に寄与させることができる。
 そして、これらの結果として、前記ガス分離型プラズマCVD装置は高品質膜の高速形成が可能となる。
特開2003-173980号公報
 ガス分離型プラズマCVD装置は、ガス分解確率に応じて原料ガスを分離供給するので、堆積膜形成の際に、小流量でも十分な原料ガスを均一に供給して、膜厚分布が均一の膜を堆積できるかどうかが課題となる。
 例えば、微結晶シリコン膜の形成においては、SiHガスの流量はHガスの流量に比べ1/10~1/200と少ない。このため、SiHガスは複数のガス供給部から均一に供給されにくく、堆積面積が1mを超える大型の堆積膜形成装置においては、堆積膜の面内における膜厚分布が不均一となりやすい。
 本発明は、このような背景のもとになされたものであり、均一な膜厚分布を有する堆積膜を形成可能な堆積膜形成装置および堆積膜形成方法を提供することを目的とする。特に、薄膜Si系太陽電池に用いられるSi系薄膜の形成に有効な堆積膜形成装置および堆積膜形成方法を提供することを目的とする。
 本発明の一形態に係る堆積膜形成装置は、
チャンバーと、
前記チャンバー内に位置している第1電極と、
前記チャンバー内に前記第1電極と所定間隔を隔てて位置している第2電極とを備え、
該第2電極は、前記第1電極と前記第2電極との間の空間に第1原料ガスを供給する第1供給部と、前記空間に第2原料ガスを供給する複数の第2供給部と、前記第1供給部に接続されて前記第1原料ガスが導入される第1供給経路と、前記第2供給部に接続されて前記第2原料ガスが導入される第2供給経路とを有する堆積膜形成装置であって、
前記第2供給経路は、前記第2原料ガスが導入される第1導入口を有する本流部と、該本流部から前記第2原料ガスが導入される第2導入口を有した複数のガス流路を有する支流部とを備えており、
該支流部の複数の前記ガス流路のそれぞれには複数の前記第2供給部が接続されており、
前記本流部および前記支流部は、前記第2原料ガスが前記第1導入口から前記第2供給部にまで直進流として流入しない構造を有していることを特徴とする。
 また、本発明の一形態に係る堆積膜形成方法は、上記堆積膜形成装置を用いて、前記第1電極と前記第2電極との間に配置した基材の上に堆積膜を形成する堆積膜形成方法であって、
前記第1電極と前記第2電極との間に、前記第1原料ガスおよび前記第2原料ガスを供給してプラズマを発生させて、前記基材の上に堆積膜を形成することを特徴とする。
 上述の堆積膜形成装置および堆積膜形成方法によれば、上述の構成を有することから、流量の少ない原料ガスを各供給部からチャンバー内に均一に供給することができ、基材に均一な膜厚分布を有した堆積膜を形成させることができる。
図1は、本発明に係る堆積膜形成装置の一実施形態を模式的に示す断面図である。 図2は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2電極における第2供給経路の構造を模式的に示す図であり、図1のII-II線における断面図である。 図3(a)および図3(b)は、それぞれ本発明の一形態に係る堆積膜形成装置の一実施形態に用いられる本流部と支流部の配置関係を模式的に示す拡大断面図である。 図4は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す断面図である。 図5は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す断面図である。 図6は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す断面図である。 図7(a)および図7(b)は、それぞれ本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す断面図である。 図8(a)および図8(b)は、それぞれ本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す拡大斜視図である。 図9は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す拡大斜視図である。 図10は、本発明に係る堆積膜形成装置の一実施形態を模式的に示す断面図である。 図11は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す断面図である。 図12は、本発明に係る堆積膜形成装置の一実施形態に用いられる第2供給経路の変形例を模式的に示す拡大断面図である。 図13は、比較例の堆積膜形成装置に用いられる第2供給経路を模式的に示す断面図である。
 以下、本発明に係る堆積膜形成装置の実施の形態について図面を参照しながら説明する。
 <堆積膜形成装置>
 図1に示すように、堆積膜形成装置S1は、チャンバー1と、チャンバー1内に位置する第1電極7と、チャンバー1内に第1電極7と所定間隔を隔てて位置しており、シャワー電極として機能する第2電極2とを有する。また、堆積膜が形成される基材10が第1電極7と第2電極2との間に配置されている。なお、基材10は、第1電極7と第2電極2との間に位置させるようにすればよく、基材10が第1電極7で保持される態様に限定されない。
 チャンバー1は、少なくとも上壁、周囲壁および底壁によって構成される真空気密可能な反応空間を有する反応容器である。このようなチャンバー1の内部は、真空ポンプ9により真空排気される。また、圧力調整器(不図示)によりチャンバー1の内部の圧力が調整される。基材10上に形成される膜中へ排気系からの不純物混入を抑制するために、真空ポンプ9はターボ分子ポンプ等のドライ系の真空ポンプを用いることが望ましい。チャンバー1内の到達真空度は1×10-3Pa以下、好適には1×10-4Pa以下とする。また、製膜する膜種によって異なるが、製膜時のチャンバー1内の圧力は50~7000Paとする。
 第1電極6は、アノード電極の機能を有しており、基材10の温度を調整するヒーターを内蔵している。第1電極7は基材10の温度調整機構としても機能するので、基材10は、例えば100~400℃、より好ましくは150~350℃に調整される。
 基材10は、ガラス基板等からなる平板状のもの、または、金属材料もしくは樹脂等からなるフィルム状のものを用いることができる。
 第2電極2は、第1電極7と対向して配置されており、シャワー電極およびカソード電極として機能する。第2電極2は、第1供給経路3および第2供給経路5から導入されたガスをチャンバー1内に供給する第1供給部4および第2供給部6を有する。これら第1供給部4および第2供給部6は基材10に向かって開口している。
 高周波電源11は第2電極2に接続されており、13.56MHz~100MHz程度までの周波数を用いることができる。1m以上の大面積に製膜する場合には60MHz程度以下の周波数が好適に用いられる。高周波電源11から第2電極2に電力を印加することにより、第2電極2と基材10の間には、プラズマが発生する空間8においてプラズマが形成される。
 複数の第1供給部4および複数の第2供給部6には、第1供給経路3および第2供給経路5を通じて、それぞれ異なるガスを貯留する複数のガスボンベ(不図示)が連結されている。第1供給経路3および第2供給経路5から導入されたガスは、それぞれ第1供給部4および第2供給部6を通してプラズマが発生する空間8に達するまで基本的に混合しない。
 複数の第1供給部4および複数の第2供給部6に供給されるガスは、第1原料ガスと、第1原料ガスより分解確率が高い第2原料ガスとを含む。ガスのTotalの分解速度はexp(-ΔEa/kTe)×Ng×Ne×ve×σgで定義される。なお、ΔEaは原料ガスの励起活性化エネルギー(解離エネルギー)、kはボルツマン定数、Teは電子温度、Ngは原料ガス濃度、Neは電子濃度、veは電子速度、σgは原料ガスの衝突断面積をそれぞれ示す。このときexp(-ΔEa/kTe)が分解確率を意味する。なお、exp(-ΔEa/kTe)×σgはσ(Ea)として表す場合もある。
 第1原料ガスは、第1供給経路3を通じて第1供給部4から供給され、第2原料ガスは第2供給経路5を通じて第2供給部6から供給される。ただし、後述するように第1供給経路3を流れる第1原料ガスを分割して一部を第2供給経路5に流す(第2原料ガスと混合させる)場合もある。
 第1原料ガスおよび第2原料ガスは堆積膜の種類によって適宜選択される。例えば、a-Si:H(水素化アモルファスシリコン)またはμc-Si:H(水素化微結晶シリコン)等のSi系薄膜を形成する場合、第1原料ガスとしては非Si系ガスを、第2原料ガスとしてはSi系ガスをそれぞれ用いることができる。非Si系ガスとしては水素(H)ガス等が用いられる。Si系ガスとしてはシラン(SiH)、ジシラン(Si)、四フッ化ケイ素(SiF)、六フッ化ケイ素(Si)またはジクロロシラン(SiHCl)ガス等が用いられる。なお、ドーピングガスを導入する場合は、p型ドーピングガスにはジボラン(B)ガス等を用い、n型ドーピングガスにはホスフィン(PH)ガス等を用いる。ドーピングガスの供給経路としては、第1供給経路3または第2供給経路5のいずれかを必要に応じて選択することができる。ただし、後述するように、第1供給経路3内に設けられる加熱触媒体12を有する場合、ドーピングガスは第2供給経路5を通して導入することが望ましい。
 第1供給経路3内には、加熱用電源13に接続された加熱触媒体12を設けることができ、第1原料ガスは、500~2000℃程度に加熱された加熱触媒体12によって加熱され活性化されるとともに、プラズマが発生する空間8においても活性化される。なお、加熱触媒体12の代わりに抵抗加熱体等の加熱手段を用いてもよい。
 加熱触媒体(heated catalyzer)12は、媒体に電流を流して加熱高温化することで接触するガスを励起活性化(分解)させる熱触媒体として機能する。加熱触媒体12は、少なくともその表面が金属材料からなる。この金属材料は好ましくは高融点金属材料であるTa、W、Re、Os、Ir、Nb、Mo、RuおよびPtのうちの少なくとも1種を含む純金属や合金材料からなることが望ましい。また、加熱触媒体12の形状は、例えば、上記のような金属材料をワイヤ状にしたもの、板状またはメッシュ状にしたものである。
 また、加熱触媒体12は、膜形成に使用される前に、予め膜形成時の加熱温度以上の温度で数分間以上予備加熱される。これにより、膜形成の際に、膜中に加熱触媒体12の金属材料中の不純物がドープされるのを低減できる。
 また、加熱触媒体12の上流側に、例えばステンレスからなり多数の孔を有する分散板14を設けることにより、加熱触媒体12にガスを均一に接触させることができ、効率よくガスを活性化させることができる。
 堆積膜形成装置S1は、上述の構成を備えることから、加熱触媒体12による加熱により第1原料ガスの分解を促進させるとともに、分解しなかった第1原料ガスあるいは、分解後、再度結合した第1原料ガスも温度上昇をしているため、プラズマが発生する空間8にてガス分解がより促進される。さらに、第2原料ガスを加熱触媒体12に接触させずに第2供給部6より供給して、プラズマが発生する空間8にて励起活性化させることから、第2原料ガスを過剰に分解することなく、高速に製膜することができ、高品質な薄膜を形成することができる。
 特に、加熱触媒体12によって温度の上昇した水素ガス(第1原料ガス)が空間8に供給されるため、ガスヒーティング効果によって空間8で高次シラン生成反応が抑制される。
 ここで、高次シラン生成反応とは、
1) SiH+SiH→Si
2) Si+SiH→Si
・・・以下、同様なSiH挿入反応が続く・・・
といった、SiH挿入反応によって高分子重合体が生成していく反応である。
 SiHはSiHがプラズマ中の電子と衝突することにより、製膜主成分となるSiHとともに生成される。SiHは特に製膜速度を上げるためにプラズマの励起電力を高めるほど、より多く生成するようになり、その結果、高次シラン分子もより多く生成するようになる。
 以上によって生じた高次シラン分子は、製膜表面に付着すると製膜表面での堆積反応(膜成長反応)を乱して膜質を悪化させ、また膜中に取り込まれることでも膜構造を乱して膜質を悪化させる。
 この高次シラン生成反応は発熱反応であることが既に知られている。すなわち反応によって生じる熱を空間に排出することで進む三体反応である。ところが上記ガスヒーティング効果によって、熱が排出されるべき空間(具体的には水素ガスが主成分の空間)が既にあたためられていると、この空間に反応熱が排出されにくくなる。すなわち発熱反応である高次シラン生成反応が進みにくくなる。よって、プラズマの励起電力が大きい高速製膜条件下でも高品質のシリコン膜を製膜することができる。
 例えば図2に示すように、第2供給経路5は、図示の上部と下部に横方向に延びている本流部51と、上部と下部にある本流部51に接続されており、図示の縦方向に伸びる支流部52とを備えている。支流部52は複数のガス流路52aを有している。本流部51には第2供給部6は接続されず、支流部52のガス流路52aにのみ第2供給部6が接続されている。また、第2供給経路5は、本流部51に第2原料ガスが導入される第1導入口53を有しており、本流部51は第1導入口53を介して第2原料ガスを本流部51に導入するための導入経路55と接続されている。さらに、本流部51は、本流部51から支流部52へ第2原料ガスが流入する接続口である第2導入口54を介して支流部52のガス流路52aと接続されている。
 ここで、第1導入口53の断面を通過する第2原料ガスは、ガスの流速等で決定される、ある広がり角度をもったガス流れで直進性を保ちながら本流部51に流入する。この第1導入口53におけるガス流路間の内壁長A-Bを導入経路55の断面開口長C-D(この場合は第1導入口53の断面開口長C-Eと等しい)よりも長くすることで、直進性を持ったガスを内壁長A-Bの本流部内壁に接触させることができる。これによって、第2原料ガスの直進性が減ぜられることになり、ついには本流部51の内壁に沿って横方向に流れて、直進成分が第2供給部6に直接流入せずに、第2原料ガスは均等に各支流部52に分配される。
 なお、ここでは本流部51の内壁であるA-B部の内壁で第2原料ガスをいったん接触させ、ガスの直進性を減ずる方法を述べたが、これに限定されない。例えば、後に述べるように、第2原料ガスを接触させる本流部51の内壁は、例えば支流部52が接続されていない、第2導入口54と対向した本流部51の内壁面を用いてもよい。また、簡単のため第2原料ガスが本流部51の長手方向に対して垂直に導入される場合を説明したが、これに限定されない。
 以下に、図3を用いて、導入経路55と支流部52との位置関係について説明する。
 図3(a)に示すように、第2供給経路5を平面視した際に、第1導入口53における導入経路55の断面開口長C-DをD1、本流部51の断面開口長A-FをD2、支流部52の断面開口長B-GをD3とする。
 第1導入口53から本流部51へ流入するガスの直進成分は、例えば、図3(a)に示す矢印の方向に広がる可能性がある。しかしながら、ガスの直進成分の支流部52への流入深さB-Hを支流部の断面開口長D3以下とすることにより、ガスの直進性の影響が低減し、第2原料ガスを均等に支流部52の各ガス流路52aに分配させることができる。このとき、第2供給口6の入口の位置は第2導入口54から支流部52の断面開口長D3以上離れた領域に設けられているので、直進成分が第2供給部6に直接流入しない。
 また、図3(b)に示すように、本流部51の長手方向に沿った方向において、第1導入口53と第2導入口54(支流部52のガス流路52a)との距離Lが本流部51の断面開口長D2以上であることにより、常にガスの直進成分の支流部52への流入深さが支流部52の断面開口長D3以下となり、第2原料ガスを均等に支流部52のガス流路52aに分配させることができる。
 以上述べたように、第2供給経路5における本流部51および支流部52の構造について、図3に示す単純な構造を例にとり説明したが、これに限定されない。支流部52の複数のガス流路52aのそれぞれには複数の第2供給部6が接続されており、本流部51および支流部52は、第2原料ガスが第1導入口53から第2供給部6にまで直進流として流入しない構造を有していればよい。
 例えば、支流部52の1つのガス流路において、第1導入口53と第2導入口54とを結ぶ直線上に、前記1つのガス流路に接続されている第2供給部6の入口が位置していない構造であればよい。または、本流部51の長手方向に沿った方向において、第1導入口53と第2導入口54との距離Lが本流部51の断面開口長D2以上とすればよい。
 次に、本流部51および支流部52の構造の変形例について説明する。
 図2と同様な断面図にて示した図4の変形例においては、第2供給経路5は、支流部52の上部と下部において横方向に延びる本流部51と、上部と下部にある本流部51に接続され、縦方向に伸びる複数のガス流路52aを有する支流部52とを備えている。この場合、本流部51には第2供給部6は接続されず、支流部52の各ガス流路52aにのみ第2供給部6が接続される構造となっている。また、本流部51は、第2原料ガスを本流部51に導入するための導入経路55と第1導入口53を介して接続されており、さらに、支流部52と第2導入口54を介して接続されている。このとき第1導入口53は、この本流部51に接続された支流部52のガス流路52aの内、最も外側に位置するガス流路52aよりさらに外側に設けられる。
 第2の供給経路5が上記構成を有することにより、導入経路55から導入された第2原料ガスは、本流部側壁A-Bに接触し、ガスの直進性が減じられる。このため、第1導入口53の近傍における支流部52への多くのガスの流入が抑えられ、支流部の各ガス流路52aに均一にガスが分配される。その結果として、第2原料ガスは均一にチャンバー内に供給することができ、基材10上に均一な膜厚で堆積膜を形成することができる。
 この変形例においても、本流部51に接続された最端部に位置するガス流路52aと第1導入口53との長さD4を、前述の本流部51の断面開口長D2以上とすることによって、第2原料ガスを均等に支流部52の各ガス流路52aに分配させることができる。
 図2と同様な断面図にて示した図5に示す変形例においては、第2供給経路5は、図示の上部と下部に横方向に延びる本流部51と、上部と下部にある本流部51に接続され、図示の縦方向に伸びる複数のガス流路52aを有する支流部52とを備えている。本流部51には第2供給部6は接続されず、支流部52の各ガス流路52aにのみ第2供給部6が接続される構造となっている。また、本流部51は、第2原料ガスを本流部51に導入するための導入経路55と第1導入口53を介して接続されており、さらに、支流部52と第2導入口54を介して接続されている。このとき第1導入口53は、本流部51に接続された支流部52のガス流路52aの内、最も外側に位置するガス流路52aよりさらに外側に設けられている。上部の本流部51においては、下面側に第1導入口53と第2導入口54とを有するとともに、第1導入口53の断面を通過するガスは上方向に流れた後、第1導入口53に対向する本流部51の側壁に接触し、ガス直進性が減じられ、その後、本流部51の長手方向に沿って流れる。そして第2原料ガスは、支流部52の各ガス流路52aに均一に分配される。
 なお、図5の変形例においては、本流部51が2本設けられた場合を示したが、特にこれに限定されず、本流部51を1本にしても構わない。また、導入経路55は一つの管から二手に分かれて2本の本流部51に接続されているが、特に上記構成に限定されない。また、第1供給経路3および第2供給経路5の断面形状には制限はなく、円形あるいは多角形等でも構わない。
 また、図2と同様な断面図にて示した図6に示すように、支流部52のガス流路52aのガス流れ垂直方向断面積(流路断面積)を第1導入口53から離れるとともに次第に広くすることにより、原料ガスをより均一にチャンバー内に供給することができる。
 また、図7(a)および図7(b)に示すように、支流部52はその垂直方向に、第2原料ガスの流速に対する緩衝部となる、1以上の緩衝空間と、第2供給部6を有する供給空間とを組み合わせた多層構造を有することが好ましい。例えば、図7(a)に示す構造では、第1支流部521が緩衝空間となり、第2支流部522が供給空間となる。また、図7(b)に示す構造では、第1支流部521および第2支流部522が緩衝空間となり、第3支流部523が供給空間となる。これらの各支流部は、支流部接続口56(第2原料ガスが通過する開口)によって接続される。このように支流部52を多層構造とすることによって、さらに第2供給部6から均一にガスを供給することができる。
 また、図7(a)に示すように、支流部接続口56の個数を第2供給部6の個数よりも少なく設けることが好ましく、さらに支流部接続口56の開口断面積を第2供給部6の流路断面積よりも小さくすることによって、さらに第2供給部6から均一にガスを供給することができる。
 また、図7(b)に示すように、複数の支流部接続口56は支流部52に等間隔で設けずに、支流部52の端部側よりも中央側に多く設けることが好ましい。さらに、支流部接続口56の開口断面積を支流部52の中央に向かうに従って広くすることによって、第2供給部6を等間隔に設けた状態で、第2供給部6から均一にガスを供給することができる。その結果として、均一な膜厚分布を有する堆積膜を形成することが可能となる。
 また、図8(a)に示すように、垂直方向に延びる導入経路55に本流部51を接続するようにしても構わない。このとき第1導入口53の断面を通過するガスの流れ方向は垂直方向となり、第2導入口54の断面を通過するガスの流れ方向は水平方向となる。このため、ガスの直進性の支流部52に対する影響をさらに緩和し、複数のガス流路52aにガスを均一に流すことができる。
 また、図8(b)に示すように、第2導入口54を本流部51の垂直方向に設けても構わない。例えば、支流部52は本流部51から下方向に延びた後、水平方向に延びるように形成されることにより、ガスの直進性の影響を緩和し、複数のガス流路52aに均一にガスを流すことができる。なお、支流部52は本流部51から上方向に延びても構わない。
 また、複数の第1導入口53を設ける場合は、本流部51の両端に第1導入口53を設けることで、ガスを均一にチャンバー内に供給することができる。
 また、複数設けた第1導入口53の上流に位置する導入経路55に、ガス流量を制御する流量制御機構を設けることによって、それぞれの第1導入口53に供給されるガス流量を制御することが可能となり、ガスをより均一にチャンバー内に供給することができる。
 流量制御機構としては、第1導入口53の上流に位置する導入経路55のコンダクタンスを調節することが好ましく、バルブやマスフローメーターにより導入経路55の断面積を調節すればよい。
 また、図9に示すように、流量制御機構は、第1導入口53へのガスの流れ方向を調整することでもなされ、ガスの直進性の影響を緩和し、第1導入口53に近い支流部52のガス流路52aに多くのガスが流れるのを低減することができる。
 また、図10に示すように、堆積膜形成装置S2において、第2供給部6の開口断面積をプラズマが発生する空間8に向かって広くしてもよい。これにより、ガスが第2供給部6の周囲に拡散するようにチャンバー1内に供給されるため、第2供給部6に対向して設けられた基材10上に均一にガスを供給することができる。なお、図10の堆積膜形成装置S2において他の主な構成については図1と同様であるので説明を省略する。
 また、図2と同様な断面図にて示した図11に示すように、複数のガス流路を備えた支流部52が複数並んで配置され、複数の支流部52の両端のそれぞれに異なる本流部51が接続されていてもよい。また、本流部51に原料ガスを導入する複数の第1導入口53が、本流部端部側に接続された支流部52よりもさらに端部側に位置している。さらに、少なくとも2つの第1導入口53が対向して設けられていてもよい。このような構成によっても、ガスの直進性が失われて複数の支流部52にガスを均一に流すことができる。
 さらに、図12に示すように、本流部51の内部に、第2原料ガスの本流部51から支流部52へのガス流の向きを変えるための整流部材57を設置することにより、さらにガスの直進性が失われて複数の支流部52にガスを均一に流すことができる。このような構造を採用しても、第2原料ガスが第1導入口53から第2供給部6にまで直進流として流入しないようにすることができる。このとき、整流部材57は第1導入口53近傍のみに設けられてもよい。
 また、第1供給部4および第2供給部6は、例えば格子パターンまたは千鳥パターン等、種々のパターンで配列しても構わない。また、第1供給部4と第2供給部6のそれぞれの数が異なってもよい。第1原料ガスのガス流量と第2原料ガスのガス流量が異なる場合、例えば、第2原料ガスより第1原料ガスのガス流量が多い場合には、第2供給部6より第1供給部4の数を多くすることによって、供給バランスが保たれ均一に堆積膜を形成することができる。
 また、第1供給経路3および第2供給部5はガスの流量や流速、温度などを調整するガス調整部と連結されていても構わない。また、緩衝空間を設け、各ボンベより供給されたガスを混合領域で混合した後、第1供給経路3および第2供給経路5を経て、第1供給部4および第2供給部6から混合ガスを供給させるようにしても構わない。
 また、堆積膜形成装置は複数の製膜室を設けた構造であってもよい。例えば薄膜太陽電池素子を形成する場合、例えばp型膜形成用製膜室、i型膜形成用製膜室およびn型膜形成用製膜室が含まれ、少なくとも1つの製膜室が上記構造を有していればよい。例えば、膜厚が厚く、高品質な膜が要求されるi型膜形成用製膜室に上記構造を適用することにより、生産性を向上させることができ、その上、変換効率の高い薄膜太陽電池を製造することができる。
 <堆積膜形成方法>
 本実施形態の堆積膜の形成方法は、上述の堆積膜形成装置を用いて、第1電極7と第2電極2との間に配置した基材10の上に堆積膜を形成する方法であり、第1電極7と第2電極2との間に、第1原料ガスおよび第2原料ガスを供給してプラズマを発生させて、基材10の上に堆積膜を形成することを特徴とする。
 具体的には、例えば、第1電極7に基材10を保持させる工程と、第2電極2に高周波電力を印加する工程と、第1原料ガスを加熱触媒体12により活性化した状態で第1供給部4から、また、第2原料ガスを第2供給部6から基材10に向かって供給し、第2原料ガスを第1電極7と第2電極2間にプラズマが生じる空間8において活性化する工程と、を順次行なう。このような工程を経ることによって活性化された第1原料ガスと第2原料ガスとは、プラズマが発生する空間8で混ざり、原料ガス中の成分が基材10上に堆積する。これにより、品質の良好な堆積膜が基材10上に迅速に形成される。
 上述の工程において、基材10は、基材搬送機構(不図示)等により搬送され、第1電極7上に保持される。そして、第1電極7上に固定される。
 第1原料ガスを第1供給経路3内の加熱触媒体12で加熱し、第1供給部4のみから供給することにより、加熱触媒体12によって温度の上昇した第1原料ガスがプラズマが発生する空間8に供給されるため、ガスヒーティング効果によってプラズマが発生する空間8での高次シラン生成反応が抑制される。
 水素化アモルファスシリコン膜を形成する場合は、Hガスを第1供給経路3に、SiHガスを第2供給経路5にそれぞれ供給する。また、ガス圧力を50~700Paに設定し、H/SiHのガス流量比を2/1~40/1とし、高周波電力密度を0.02~0.2W/cmとすればよい。i型アモルファスシリコン膜を有するpin接合の薄膜太陽電池においては、i型アモルファスシリコン膜の膜厚を0.1~0.5μm、好ましくは0.15~0.3μmに形成すればよい。
 水素化微結晶シリコン膜を形成する場合は、Hガスを第1供給経路3に、SiHガスを第2供給経路5にそれぞれ供給する。また、ガス圧力を100~7000Paに設定し、H/SiHのガス流量比を10/1~200/1とし、高周波電力密度を0.1~1W/cmとすればよい。i型微結晶シリコン膜を有するpin接合の薄膜太陽電池においては、i型微結晶シリコン膜の膜厚を1~4μm、好ましくは1.5~3μmにして、結晶化率が70%前後になるように形成すればよい。
 本実施形態の形成方法では、加熱触媒体12によって温度の上昇した水素ガス(第1原料ガス)がプラズマが発生する空間8に供給されるため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制され、微結晶シリコン膜の結晶化を促進することができ、高速に製膜することができる。
 また、水素化アモルファスシリコン膜に比べ水素化微結晶シリコン膜の形成は、SiHガスの流量がHガスに比べ非常に少ない。このため、第1供給部4と第2供給部6との間でのガス圧バランスが取れずに、SiHガスを各第2供給部6から均一に供給しにくくなり、膜厚分布が不均一となる可能性があるが、実施形態の堆積膜形成装置を用いて堆積させることにより、このような不均一な膜厚分布を低減することができる。
 また、第2供給部6の数を第1供給部4より少なくする、または、第2供給部6の開口断面積を小さくすることにより、第2供給経路5内のガス圧力を大きくして、SiHガスを複数の第2供給部6から均一に噴出させることができる。
 さらに、第1供給経路3に供給していたHガス(第1原料ガス)の一部を第2供給経路5に分割供給することにより、第2供給部6から供給されるガスの総流量を大きくすることもできる。これにより、第2供給経路5内のガス圧力(全圧)が大きくなるので、SiHガスを複数の第2供給部6から均一に噴出させることができる。
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。
 例えば、第2供給部6を支流部52の各ガス流路52aにおける端部側よりも中央側に多く設けてもよい。または、第2供給部6の開口断面積が支流部52の各ガス流路52aにおける中央部に向かうに従って広くしてもよい。これらにより、第2供給部6から均一にガスを供給させることができる。
 また、上記実施形態においては、水平方向に電極と基材10を設けた堆積膜形成装置ついて説明したが、垂直方向に電極と基材10を設けた堆積膜形成装置を用いても均一な膜厚分布を有する堆積膜を形成することができる。
 また、上記実施形態において、加熱触媒体12を利用した例について説明したが、加熱触媒体12を用いずに、複数の原料ガスを第1供給経路3と第2供給経路5のそれぞれに分けて導入する場合であってもよい。
 また、第2電極2に設けられた第1供給部4および第2供給部6のうち複数の供給部においては、これらのガスの出口において、例えば流路断面積が広くなっているように構成して、ホローカソード(Hollow Cathode)放電を生じる空間を有する第1供給部4と、ホローカソード放電を生じないか、またはその放電の発生の程度が小さい第2供給部6とを含ませるようにしてもよい。ここで、ホローカソード放電とは、グロー放電の一種であり、静電的な閉じ込めにより電子が往復運動し、このときの電子のエネルギーがプラズマ生成に使われ、プラズマ密度が極めて高くなる放電をいう。
 このような第2電極2の第1供給部4は、その深さが深くなるにつれて、深さ方向の軸に対して垂直な面の断面積が小さくなるように、つまり、第1電極7から遠ざかるにつれて断面積が小さくなるように、例えばテーパー状または階段状に形成されている。このため、放電空間の雰囲気圧力の大きさに従って、当該凹部内の任意の深さの位置でホローカソード放電が生じる。また、第1原料ガスは、第1供給部4におけるホローカソード放電の高密度プラズマによって第1原料ガスの分解をより促進させることができる。
 これにより、第1原料ガスの活性化をより促進するとともに、第2原料ガスの過剰な分解を低減することができる。また、第1供給経路3に供給していた第1原料ガスの一部を第2供給経路5に分割供給する場合、第1供給経路3を通過する第1原料ガスが少なくても、加熱触媒体12による加熱と、ホローカソード放電の高密度プラズマによって第1原料ガスの分解をさらに促進させることができる。ひいては、十分高速に高品質な堆積膜を基材10上に形成することができる。
 また、a-SiC(アモルファスシリコンカーバイト)等のSiC系ワイドギャップ膜の形成において、第1供給経路3に加熱触媒体12を設ける場合には、ホローカソード放電を生じる空間を有する第1供給部4の有無に関わらず、Hガスを第1供給経路3に、シラン(SiH)ガスおよびCHガスを第2供給経路5に供給する。また、第1供給経路3に加熱触媒体12を設けず、ホローカソード放電を生じる空間を有する第1供給部4を設ける場合には、HガスおよびCHガスを第1供給経路3に、シラン(SiH)ガスを第2供給経路5に供給する。
 この場合の堆積膜形成条件としては、ガス圧力を100~700Paに設定し、高周波電力密度を0.01~0.1W/cmとすればよい。なお、SiC系ワイドギャップ膜は太陽電池の光入射側窓層として利用される。例えば、p型アモルファスシリコンカーバイト膜を有するpin接合の薄膜太陽電池においては、p型アモルファスシリコンカーバイト膜の膜厚を0.005~0.03μm、好ましくは0.01~0.02μmに形成すればよい。なお、SiC系ワイドギャップ膜は光活性層(i型層)として利用することも可能である。
 また、a-SiGe(アモルファスシリコンゲルマニウム)等のSiGe系ナローギャップ膜を形成において、第1供給経路3に加熱触媒体12を設ける場合には、ホローカソード放電を生じる空間を有する第1供給部4の有無に関わらず、Hガスを第1供給経路3に、シラン(SiH)ガス、ゲルマン(GeH)ガス等のGe系ガスを第2供給経路5に供給する。
 また、第1供給経路3に加熱触媒体12を設けず、ホローカソード放電を生じる空間を有する第1供給部4を設ける場合には、Hガス、SiHガスを第1供給経路3に、Ge系ガスを第2供給経路5に供給する。
 この場合の堆積膜形成条件としては、ガス圧力を100~700Paに設定し、高周波電力密度を0.01~0.2W/cmとすればよい。なお、SiGe系ナローギャップ膜はSi膜では吸収できない長波長の光を吸収するのに利用される。i型アモルファスシリコンゲルマニウム膜を有する[a-Si/a-SiGe/μc-Si]型のトリプル接合薄膜太陽電池においては、i型アモルファスシリコンゲルマニウム膜の膜厚を0.1~0.5μm、好ましくは0.15~0.3μmに形成すればよい。i型微結晶シリコンゲルマニウム膜を有する[a-Si/μc-Si/μc-SiGe]型のトリプル接合薄膜太陽電池においては、i型微結晶シリコンゲルマニウム膜の膜厚を1~4μm、好ましくは1.5~3μmに形成すればよい。
 上記製法を用いて形成される薄膜太陽電池は、高速にかつ高品質な膜により形成されるため、生産性を高め変換効率の高い太陽電池を作製することができる。このような薄膜太陽電池としては、例えば、受光面側からアモルファスシリコン膜からなる半導体と微結晶シリコン膜からなる半導体とが積層されてなるタンデム構造、アモルファスシリコン膜からなる半導体とアモルファスシリコンゲルマニウム膜からなる半導体と微結晶シリコン膜からなる半導体、またはアモルファスシリコン膜からなる半導体と微結晶シリコン膜からなる半導体と微結晶シリコンゲルマニウム膜からなる半導体とが積層されてなるトリプル構造等が挙げられる。また、上記半導体のうち少なくとも一つの半導体を上記製法にて形成できればよい。
 以下に、本発明をより具体化した実施例について説明する。
 図1に示すように、堆積膜形成装置S1は、チャンバー1と、チャンバー1の下方に配置された第1電極7と、第1電極7上に配置された基材10と、第1電極7と対向して配置された第2電極2と、を有する。第2電極2には複数の第1供給部4と第2供給部が設けられ、それぞれ第1供給経路3と第2供給経路5とに接続され、第1供給経路3の内部には加熱触媒体12が設けられている。
 第2供給経路5は、図5に示すように、平面視した際に、横方向に延びる2本の本流部51と、2本の本流部51同士を接続し、縦方向に延びる複数のガス流路52aを有する支流部52とを備え、第1導入口53の断面を通過するガスの流れ方向と、第2導入口54の断面を通過するガスの流れ方向とは180度逆方向とし、第2導入口54に対向する側の本流部51の内壁面でガス流の直進性を減じている。
 比較例の堆積膜形成装置の第2供給経路5は、図13に示すように、平面視した際に、横方向に延びる2本の本流部51と、2本の本流部51同士を接続し、縦方向に延びる複数のガス流路52aを有する支流部52とを備え、第1導入口53より導入された原料ガスは、その直進性を保ったまま支流部52のガス流路52aに流入する構造となっている。
 そして、この堆積膜形成装置S1を用いて、基材10上にi型微結晶シリコン膜を製膜した。この場合の、i型微結晶シリコン膜を製膜する各種設定条件は、チャンバー内のガス圧力は800Pa、基材の加熱温度は190℃とした。また、チャンバー内に導入するSiHガスの供給量は、3.94×10-2Pa・m/s(25sccm)、Hガスの供給量は、1.57Pa・m/s(1000sccm)とした。
 そして、25cm×25cmのガラス基板上に製膜したi型微結晶シリコン膜の膜厚不均一性について評価した。なお、堆積膜の面内膜厚分布は、最大膜厚をTMaxとし、最小膜厚をTMinとして膜厚分布不均一性=±(TMax-TMin)/(TMax+TMin)×100(%)で表す。
 比較例の堆積膜形成装置を使用した場合の膜厚分布不均一性は±20.47%に対し、本実施例の堆積膜形成装置を使用した場合の膜厚分布不均一性は±7.79%と大きく改善された。
 また、比較例の膜厚分布を確認すると、i型微結晶シリコン膜は第1導入口53近傍に位置する中央支流部ライン上で膜厚が厚く、左右端部方向に向かうに従って膜厚が薄かった。一方、本実施形態の堆積膜形成装置を使用した場合の膜厚分布を確認すると、i型微結晶シリコン膜はほぼ全体に均一な膜厚を有していた。
1  :チャンバー
2  :第2電極
3  :第1供給経路
4  :第1供給部
5  :第2供給経路
51 :本流部
52 :支流部
53 :第1導入口
54 :第2導入口
55 :導入経路
56 :支流部接続口
57 :整流部材
6  :第2供給部
7  :第1電極
8  :空間
10 :基材
12 :加熱触媒体

Claims (14)

  1.  チャンバーと、
    前記チャンバー内に位置している第1電極と、
    前記チャンバー内に前記第1電極と所定間隔を隔てて位置している第2電極とを備え、
    該第2電極は、前記第1電極と前記第2電極との間の空間に第1原料ガスを供給する第1供給部と、前記空間に第2原料ガスを供給する複数の第2供給部と、前記第1供給部に接続されて前記第1原料ガスが導入される第1供給経路と、前記第2供給部に接続されて前記第2原料ガスが導入される第2供給経路とを有する堆積膜形成装置であって、
    前記第2供給経路は、前記第2原料ガスが導入される第1導入口を有する本流部と、該本流部から前記第2原料ガスが導入される第2導入口を有した複数のガス流路を有する支流部とを備えており、
    該支流部の複数の前記ガス流路のそれぞれには複数の前記第2供給部が接続されており、
    前記本流部および前記支流部は、前記第2原料ガスが前記第1導入口から前記第2供給部にまで直進流として流入しない構造を有していることを特徴とする堆積膜形成装置。
  2.  前記第2原料ガスが前記第1導入口から前記第2供給部にまで直進流として流入しない構造は、前記支流部の1つのガス流路において、前記第1導入口と前記第2導入口とを結ぶ直線上に、前記1つのガス流路に接続されている前記第2供給部の入口が位置していない構造であることを特徴とする請求項1に記載の堆積膜形成装置。
  3.  前記第2原料ガスが前記第1導入口から前記第2供給部にまで直進流として流入しない構造は、前記本流部の長手方向において、前記第1導入口と前記第2導入口との距離が本流部の断面開口長以上としている構造であることを特徴とする請求項1に記載の堆積膜形成装置。
  4.  前記第2原料ガスが前記第1導入口から前記第2供給部にまで直進流として流入しない構造は、前記本流部内に前記第2原料ガスの前記本流部から前記支流部へのガス流の向きを変える整流部材が設けられている構造であることを特徴とする請求項1に記載の堆積膜形成装置。
  5.  前記支流部が複数並んで配置され、複数の該支流部の両端のそれぞれに異なる前記本流部が接続されていることを特徴とする請求項1乃至4のいずれかに記載の堆積膜形成装置。
  6.  前記第1供給経路に加熱触媒体が設けられていることを特徴とする請求項1乃至5のいずれかに記載の堆積膜形成装置。
  7.  前記第1供給部は、ホローカソード放電が生じうるように、前記第1供給部の出口において流路断面積が広くなっていることを特徴とする請求項1乃至6のいずれかに記載の堆積膜形成装置。
  8.  前記支流部の前記ガス流路は、前記第1導入口から離れるに従って流路断面積が広くなっていることを特徴とする請求項1乃至7のいずれかに記載の堆積膜形成装置。
  9.  前記支流部は、前記第2原料ガスの流速に対する緩衝部となる、前記第2原料ガスが通過する開口を複数有した緩衝空間を備えていることを特徴とする請求項1乃至8のいずれかに記載の堆積膜形成装置。
  10.  前記緩衝空間の前記開口の個数は、前記第2供給部の数よりも少ないことを特徴とする請求項9に記載の堆積膜形成装置。
  11.  前記緩衝空間の前記開口の断面積は、前記第2供給部の流路断面積よりも小さいことを特徴とする請求項9または10に記載の堆積膜形成装置。
  12.  前記支流部を平面視したときに、前記緩衝空間の前記開口が前記支流部の両端側よりも中央側に多く設けられていることを特徴とする請求項9乃至11のいずれかに記載の堆積膜形成装置。
  13.  前記支流部を平面視したときに、前記ガス流路の開口断面積が前記支流部の中央に位置しているガス流路に向かうに従って広くなっていることを特徴とする請求項1乃至12のいずれかに記載の堆積膜形成装置。
  14.  請求項1乃至13のいずれかに記載の堆積膜形成装置を用いて、前記第1電極と前記第2電極との間に配置した基材の上に堆積膜を形成する堆積膜形成方法であって、
    前記第1電極と前記第2電極との間に、前記第1原料ガスおよび前記第2原料ガスを供給してプラズマを発生させて、前記基材の上に堆積膜を形成することを特徴とする堆積膜形成方法。
PCT/JP2010/064692 2009-08-28 2010-08-30 堆積膜形成装置および堆積膜形成方法 WO2011024995A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800295648A CN102471886A (zh) 2009-08-28 2010-08-30 沉积膜形成装置及沉积膜形成方法
US13/381,035 US20120100311A1 (en) 2009-08-28 2010-08-30 Apparatus for forming deposited film and method for forming deposited film
EP10812041A EP2471973A1 (en) 2009-08-28 2010-08-30 Apparatus for forming deposited film and method for forming deposited film
JP2011528891A JP5430662B2 (ja) 2009-08-28 2010-08-30 堆積膜形成装置および堆積膜形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-198434 2009-08-28
JP2009198434 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024995A1 true WO2011024995A1 (ja) 2011-03-03

Family

ID=43628086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064692 WO2011024995A1 (ja) 2009-08-28 2010-08-30 堆積膜形成装置および堆積膜形成方法

Country Status (5)

Country Link
US (1) US20120100311A1 (ja)
EP (1) EP2471973A1 (ja)
JP (1) JP5430662B2 (ja)
CN (1) CN102471886A (ja)
WO (1) WO2011024995A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145873A (ja) * 2011-12-15 2013-07-25 Nuflare Technology Inc 成膜装置および成膜方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309023A1 (en) * 2008-07-30 2011-04-13 Kyocera Corporation Deposition film forming apparatus and deposition film forming method
KR20120002795A (ko) * 2010-07-01 2012-01-09 주성엔지니어링(주) 피딩라인의 차폐수단을 가지는 전원공급수단 및 이를 포함한 기판처리장치
CN109576669A (zh) * 2018-12-19 2019-04-05 北京建筑大学 一种空心阴极放电系统及制备类金刚石薄膜的方法
KR102704235B1 (ko) * 2019-04-17 2024-09-09 가부시키가이샤 웰콘 기화기 및 그 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158633A (ja) * 1997-09-30 1999-06-15 Tokyo Electron Arizona Inc Cvd反応及びpecvd反応で反応物ガスの早期混合を防止するための装置並びに方法
JP2001345280A (ja) * 2000-03-28 2001-12-14 Hideki Matsumura 化学蒸着方法及び化学蒸着装置
JP2002080968A (ja) * 2000-06-23 2002-03-22 Anelva Corp Cvd装置
JP2003077897A (ja) * 2001-08-31 2003-03-14 Tokyo Electron Ltd 処理装置及びその運転方法
JP2003173980A (ja) 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2003229369A (ja) * 2002-02-06 2003-08-15 Mitsubishi Heavy Ind Ltd 真空処理装置におけるプラズマ安定化方法及びダミー基板
JP2004149857A (ja) * 2002-10-30 2004-05-27 Kyocera Corp Cat−PECVD装置およびそれを用いた膜処理システム
JP2005123339A (ja) * 2003-10-15 2005-05-12 Mitsubishi Heavy Ind Ltd プラズマcvd装置とプラズマcvd装置用電極
JP2005260186A (ja) * 2004-03-15 2005-09-22 Sharp Corp プラズマプロセス装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302964B1 (en) * 1998-06-16 2001-10-16 Applied Materials, Inc. One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system
US6148761A (en) * 1998-06-16 2000-11-21 Applied Materials, Inc. Dual channel gas distribution plate
KR100331544B1 (ko) * 1999-01-18 2002-04-06 윤종용 반응챔버에 가스를 유입하는 방법 및 이에 사용되는 샤워헤드
JP2002280377A (ja) * 2001-03-19 2002-09-27 Hitachi Kokusai Electric Inc 基板処理装置
CN1302152C (zh) * 2001-03-19 2007-02-28 株式会社Ips 化学气相沉积设备
US6998014B2 (en) * 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
JP3991315B2 (ja) * 2002-09-17 2007-10-17 キヤノンアネルバ株式会社 薄膜形成装置及び方法
CN101090998B (zh) * 2004-08-02 2013-10-16 维高仪器股份有限公司 用于化学气相沉积反应器的多气体分配喷射器
JP2007191792A (ja) * 2006-01-19 2007-08-02 Atto Co Ltd ガス分離型シャワーヘッド
KR100752622B1 (ko) * 2006-02-17 2007-08-30 한양대학교 산학협력단 원거리 플라즈마 발생장치
US7976631B2 (en) * 2007-10-16 2011-07-12 Applied Materials, Inc. Multi-gas straight channel showerhead
EP2309023A1 (en) * 2008-07-30 2011-04-13 Kyocera Corporation Deposition film forming apparatus and deposition film forming method
EP2481831A1 (en) * 2009-09-25 2012-08-01 Kyocera Corporation Deposited film formation device and deposited film formation method
CN102668032A (zh) * 2009-11-20 2012-09-12 京瓷株式会社 沉积膜形成装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158633A (ja) * 1997-09-30 1999-06-15 Tokyo Electron Arizona Inc Cvd反応及びpecvd反応で反応物ガスの早期混合を防止するための装置並びに方法
JP2001345280A (ja) * 2000-03-28 2001-12-14 Hideki Matsumura 化学蒸着方法及び化学蒸着装置
JP2002080968A (ja) * 2000-06-23 2002-03-22 Anelva Corp Cvd装置
JP2003077897A (ja) * 2001-08-31 2003-03-14 Tokyo Electron Ltd 処理装置及びその運転方法
JP2003173980A (ja) 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2003229369A (ja) * 2002-02-06 2003-08-15 Mitsubishi Heavy Ind Ltd 真空処理装置におけるプラズマ安定化方法及びダミー基板
JP2004149857A (ja) * 2002-10-30 2004-05-27 Kyocera Corp Cat−PECVD装置およびそれを用いた膜処理システム
JP2005123339A (ja) * 2003-10-15 2005-05-12 Mitsubishi Heavy Ind Ltd プラズマcvd装置とプラズマcvd装置用電極
JP2005260186A (ja) * 2004-03-15 2005-09-22 Sharp Corp プラズマプロセス装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145873A (ja) * 2011-12-15 2013-07-25 Nuflare Technology Inc 成膜装置および成膜方法

Also Published As

Publication number Publication date
JPWO2011024995A1 (ja) 2013-01-31
US20120100311A1 (en) 2012-04-26
JP5430662B2 (ja) 2014-03-05
EP2471973A1 (en) 2012-07-04
CN102471886A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4727000B2 (ja) 堆積膜形成装置および堆積膜形成方法
US9206513B2 (en) Apparatus for forming deposited film
JP3872363B2 (ja) Cat−PECVD法
JP5566389B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP5430662B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP3872357B2 (ja) 熱触媒体内蔵カソード型pecvd装置、熱触媒体内蔵カソード型pecvd法およびそれを用いるcvd装置
JP5378416B2 (ja) プラズマ処理装置
JP5562413B2 (ja) 薄膜太陽電池の製造方法
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
US7160809B2 (en) Process and device for the deposition of an at least partially crystalline silicium layer on a substrate
AU2002253725A1 (en) Process and device for the deposition of an at least partially crystalline silicium layer on a substrate
WO2011099205A1 (ja) 成膜装置
JP3904883B2 (ja) ガス分離型触媒cvd装置
JP4084635B2 (ja) Cat−PECVD装置およびそれを用いた膜処理システム
JP3759076B2 (ja) Cat−PECVD法及び膜処理システム
JP4413154B2 (ja) プラズマ処理装置
JP2004056062A (ja) Cat−PECVD法、それを用いて形成した膜、およびその膜を備えた薄膜デバイス
JP5460080B2 (ja) 薄膜形成装置のクリーニング方法
JP2004031700A (ja) Cat−PECVD法、それを用いて形成した膜、その膜を備えた薄膜デバイス、および膜処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029564.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528891

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010812041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE