[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011018361A1 - Scheibe mit elektrisch leitfähigen strukturen - Google Patents

Scheibe mit elektrisch leitfähigen strukturen Download PDF

Info

Publication number
WO2011018361A1
WO2011018361A1 PCT/EP2010/061105 EP2010061105W WO2011018361A1 WO 2011018361 A1 WO2011018361 A1 WO 2011018361A1 EP 2010061105 W EP2010061105 W EP 2010061105W WO 2011018361 A1 WO2011018361 A1 WO 2011018361A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive structures
electrical conductor
layer
galvanic
Prior art date
Application number
PCT/EP2010/061105
Other languages
English (en)
French (fr)
Inventor
Stefan Droste
Bernhard Reul
Andreas Schlarb
Gunther Vortmeier
Christoph Degen
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to KR1020167029567A priority Critical patent/KR101744467B1/ko
Priority to PL10739601T priority patent/PL2465164T3/pl
Priority to CN201080035986.6A priority patent/CN102473995B/zh
Priority to EA201270276A priority patent/EA026919B1/ru
Priority to US13/377,806 priority patent/US9196949B2/en
Priority to ES10739601T priority patent/ES2773013T3/es
Priority to JP2012524186A priority patent/JP2013502122A/ja
Priority to BR112012002988-6A priority patent/BR112012002988B1/pt
Priority to EP10739601.2A priority patent/EP2465164B1/de
Publication of WO2011018361A1 publication Critical patent/WO2011018361A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1278Supports; Mounting means for mounting on windscreens in association with heating wires or layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to a new disk with particular antenna and heating function, method for their preparation and their use.
  • a pane made of laminated glass which is provided with a broadcast antenna and window heating.
  • a heat conductor On the first and / or another surface of the laminated glass are parts of an antenna conductor.
  • the antenna conductors and the heating conductor are capacitively coupled.
  • the electrically conductive structures for capacitive coupling must each be directly opposite the individual heating elements on the glass surfaces. This results in particular restrictions in the arrangements of the antennas and heating elements on the glass surface.
  • the capacitive coupling is connected across the thickness of the glass plate of several millimeters with high signal losses.
  • the present invention has for its object to provide an improved disk, which has an efficient and simple capacitive coupling of antenna and heating conductors and at the same time a high degree of freedom in the arrangement of antenna and heating conductors.
  • the present invention has for its object to provide a method for producing the new disc.
  • a construction of a pane with electrically conductive structures which comprises a pane with at least two electrically conductive structures which are galvanically separated from each other and which comprises an electrically conductive layer on at least one of the electrically conductive structures and an electrical conductor on the galvanic separation layer, the galvanic separating layer separates the electrical conductor of at least one of the electrically conductive structures.
  • the characteristic "electrically isolated” means that two electrically conductive structures have no electrical conductive connection and are decoupled for DC voltages.
  • a pane contains in particular slices of clear or colored soda lime glass.
  • the panes may be thermally or chemically hardened or laminated, in particular to comply with the uniform requirements for the approval of safety glazing materials and their installation in vehicles according to ECE-R 43: 2004.
  • the discs may also contain plastics such as polystyrene, polyamide, polyester, polyvinyl chloride, polycarbonate or polymethylmethacrylate.
  • the panes may have wholly or partially surface coatings with radiation-absorbing, reflective and / or low-emitting properties. If the pane is designed as a laminated glass pane, two soda lime glasses are preferably permanently connected to a plastic layer containing polyvinyl butyral.
  • the disc may have the usual size in the vehicle for windshields, side windows, roof windows or rear windows of motor vehicles, preferably from 100 cm 2 to 4 m 2 . Usual thicknesses of the discs are in the range of 1 mm to 6 mm.
  • the electrically conductive structures have different shapes. Washers with heating and / or antenna functions have at the same time macroscopic transparency preferably linear structures.
  • Electrically conductive structures with a heating function as a heating conductor are preferably designed from a number of lines running in parallel, which serve as busbars at least at the opposite edges of the disc are connected in parallel. When an electrical voltage is applied between the bus bars, Joule heat is generated on the disc surface. The elevated temperature of the disc prevents or removes moisture and icing on the disc surface.
  • the electrically conductive structure preferably extends linearly approximately over the entire disk surface. Electrically conductive structures with heating function may have different shapes, arrangements and interconnections and be designed, for example, round, spiral or meandering. The electrically conductive structures stretch in particular over the inner surfaces of vehicle glazing.
  • Electrically conductive structures with antenna function are preferably designed as a line antenna linear.
  • the length of the antenna conductor is determined by the antenna characteristic to be achieved.
  • Antenna conductors may be designed as open or closed-ended lines, or have different shapes, arrangements, and interconnections, and may be round, spiral, or meander, for example.
  • the antenna characteristic is determined by the frequencies received or to be transmitted.
  • the received and / or emitted electromagnetic radiation is preferably LF, MF, HF, VHF, UHF and / or SHF signals in the frequency range from 30 kHz to 10 GHz, particularly preferably radio signals, in particular VHF (30 MHz to 300 MHz, corresponding to a wavelength of 1 m to 10 m), shortwave (3 kHz to 30 MHz, corresponding to a wavelength of 10 m to 100 m) or medium wave (300 kHz to 3000 kHz, corresponding to a wavelength of 100 m to 1000 m), as well as signals of the toll collection, the mobile radio, digital radio, television signals or navigation signals.
  • the length of the electrically conductive structures with antenna function is preferably a multiple or a fraction of the wavelength of the frequencies to be transmitted, in particular half or a quarter of the wavelength.
  • the electrically conductive structures may be curved, meander-shaped or spiral-shaped.
  • Typical line widths of the electrically conductive structures according to the invention are 0.1 mm to 5 mm, typical widths of current busbars or Contact areas are 3 mm to 30 mm. Typical distances between the electrically conductive structures in the area of the capacitive coupling are between 1 mm and 20 mm.
  • the electrically conductive structures can be opaque in their own right, but in macroscopic view the disk appears transparent.
  • the electrically conductive structures may be metal wires, preferably a copper, tungsten, gold, silver or aluminum wire.
  • the wire may be equipped with an electrically insulating coating.
  • the electrically conductive structure can also be designed as a printed conductive layer.
  • the electrical conductivity is preferably realized via metal particles contained in the layer, particularly preferably via silver particles.
  • the metal particles may be in an organic and / or inorganic matrix, such as pastes or inks, preferably as fired screen printing paste with glass frits.
  • the heating conductors are connected in whole or in part via at least one capacitive coupling element to the antenna conductor.
  • the heating conductor thus becomes part of the antenna conductor for AC signals.
  • the heating conductor remains galvanically isolated from the antenna conductor.
  • antenna conductor and heating conductor spatially close together, preferably in parallel and particularly preferably with a distance of 0.5 mm to 10 mm.
  • the antenna conductor and the heating conductor can also intermesh in arbitrary form, such as, for example, in a comb-like or meandering manner.
  • the capacitive coupling is realized according to the invention by electrical conductors which bridge the electrically conductive structures spatially, but without producing a galvanic contact.
  • the galvanic isolation is realized via a galvanic separating layer between the electrically conductive structures and the electrical conductor in the coupling element.
  • an additional intermediate layer preferably in the form of a frame, is applied to the pane between the pane and the electrically conductive structures, preferably for decorative purposes.
  • the intermediate layer contains as black printing preferably glass frits and black pigments.
  • the capacitive coupling of at least one coupling element is realized.
  • the capacitive coupling of at least two coupling elements is realized, which are arranged spatially separated on the disc.
  • the capacitive coupling elements of the pane according to the invention cover partial areas of electrically conductive structures and extend over at least two partial areas of electrically conductive structures.
  • the coupling elements may be partially extended beyond the electrically conductive structures and glued directly to the pane. This allows a strong mechanical connection and reduces the adhesion requirements to the electrically conductive structures.
  • the coupling elements can also be aligned flush with the outer contour of the electrically conductive structures.
  • the advantage here is the reduced area and material requirements and improved appearance.
  • the coupling elements are preferably applied to the electrically conductive structures as film and / or printed layer systems.
  • the films can be self-adhesive.
  • the film and printed layer systems may have any outline, but in particular be adapted strip-shaped and / or flush to the outline of the electrically conductive structures.
  • the impedance of the coupling element is essentially determined by the capacitance between the electrical conductor of the coupling element and the electrically conductive structures.
  • the capacitance here is a function of the dielectric constant of the galvanic separation layer, the area of the coverings of the electrical conductor and the electrically conductive structures and the distances between the electrical conductor and the electrically conductive structures.
  • the highest possible capacity and thus the lowest possible impedance are obtained with the smallest possible distance, a large covered area and a high dielectric constant.
  • the capacity can be chosen so that by the coupling element interfering frequencies or frequencies that are not for the application be required, not transmitted and a high pass or low pass is obtained.
  • the galvanic separating layer comprises polyacrylate, cyanoacrylate, methyl methacrylate, silane and siloxane-crosslinking polymers, epoxy resin, polyurethane, polychloroprene, polyamide, acetate, silicone adhesive, polyethylene, polypropylene, polyvinyl chloride, polyamide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, Polyimides, polyethylene terephthalate and their copolymers and / or mixtures thereof.
  • the galvanic separation layer can be composed of several layers. Advantages of multiple layers are increased degrees of freedom in optimizing the mechanical and electrical properties of the release layer.
  • the galvanic separating layer contains a black printing with a high dielectric strength.
  • the release layers contain organic and inorganic constituents, in particular glass frits and color pigments.
  • the electrical conductor of the printed coupling element is preferably a conductive paste, a conductive adhesive, and more preferably a conductive primer included.
  • the electrical resistivity of the printed electrical conductors is less than 1 k ⁇ hm * cm, preferably less than 100 ohm * cm, and more preferably less than 10 ohm * cm.
  • the layer thickness of the galvanic separation layer is preferably 1 .mu.m to 200 .mu.m, and more preferably 5 .mu.m to 80 .mu.m.
  • the dielectric constant of the galvanic separating layer is preferably in the range of 1.5 to 10 and particularly preferably 2 to 6.
  • the dielectric strength for avoiding short circuits in the galvanic separating layer is preferably greater than 1 kV / mm and particularly preferably greater than 10 kV / mm.
  • the electrical conductor of the coupling element preferably contains conductive carbon, conjugated polymers, conductive primers, tungsten, copper, silver, gold, aluminum and / or mixtures thereof.
  • the coupling element has an additional protective layer on the electrical conductor comprising polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate, polyamide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyimides, polyethylene terephthalates, ethylene vinyl acetate, polyvinyl butyral and copolymers thereof and / or Mixtures of it, up.
  • the electrical conductor is protected by the protective layer of the environment.
  • the chemical and mechanical stability of the disc according to the invention with antenna function and in particular the coupling element are increased by the protective layer.
  • the object of the invention is further achieved by a method for producing a pane according to the invention with electrically conductive structures, wherein in a first step a pane is coated with at least two galvanically separated electrically conductive structures. In a second step, a galvanic separating layer is applied to at least one of the electrically conductive structures. In a third step, an electrical conductor is applied to the galvanic separating layer.
  • the galvanic separating layer and the electrical conductor are printed in at least one capacitive coupling element and particularly preferably in at least two capacitive coupling elements on at least one electrically conductive structure or glued as a film composite.
  • an additional intermediate layer is applied to the pane, preferably by screen printing, before the application of the electrically conductive structures.
  • the galvanic separating layer and the electrical conductor are bonded as a coupling element in a film composite on the electrically conductive structures.
  • the film composite is particularly preferably self-adhesive. Self-adhesive here means that the coupling element is permanently connected to the electrically conductive structures and / or the substrate glass via an adhesive effect of the galvanic separation layer.
  • the galvanic separation layer is printed on the electrically conductive structures by screen printing. The electrical conductor is then applied to the galvanic release layer, preferably by screen printing.
  • FIG. 1 shows a cross section through a disc according to the invention in the field of capacitive coupling
  • FIG. 8 is a plan view of an alternative embodiment of the disc according to the invention.
  • FIG. 9 is a plan view of an alternative embodiment of the disc according to the invention.
  • Fig. 1 1 an alternative embodiment of the invention
  • FIG. 1 shows a cross-section according to the invention in the area of the capacitive coupling of two electrically conductive structures (2a, 2b) on a pane (1).
  • the galvanic separation layer (5) separates the electrical conductor (4) from the electrically conductive structures (2a, 2b).
  • the electrical conductor (4) consisted of a 100 microns thick, electrically conductive primer layer and was applied with a width of 30 mm and a length of 100 mm on the galvanic separation layer (5) so that it covered the Strommasischienen the electrically conductive structures (2a) and (2b) over the entire width ,
  • a galvanic release layer (5) a 100 micron thick Emailtik was used with glass frits and black pigments, the permanent electrical connection of the electrical conductors (2a) and (2b) and the electrical conductor (4), without producing a direct electrical contact.
  • the galvanic separating layer (5) had a dielectric strength of at least 10 kV / mm.
  • the distance (D) between the electrical conductor (4) and the electrically conductive structure (2a, 2b) was about 70 ⁇ m.
  • the dielectric constant of the galvanic separation layer (5) was about 6.
  • a further improved capacitive coupling between the electrically conductive structures (2a, 2b) could be achieved.
  • the reception performance of the electrical structures (2a), (2b) as an antenna with simultaneously optimized heating properties could be improved.
  • FIG. 2 shows a further cross-section according to the invention in the region of the capacitive coupling element (3) of two electrically conductive structures (2a, 2b), the embodiment of FIG. 1 having been extended by an additional intermediate layer (7) for decorative purposes.
  • the intermediate layer (7) was applied frame-shaped on the disc (1) in the edge region and contained a 100 ⁇ m enamel print with glass frits and black pigments.
  • FIG. 3 shows an alternative cross-section according to the invention in the region of the capacitive coupling element (3) of two electrically conductive structures (2 a, 2 b).
  • the coupling element (3) contained an approximately 45 micron thick copper strip as an electrical conductor (4).
  • the width of the copper strip was 25 mm.
  • the electrical conductor (4) ended flush with the electrically conductive structures (2a, 2b) in width.
  • the distance (D) between the electrically conductive structures (2a) and (2b) and the electrical conductor (4) was about 60 microns.
  • the dielectric strength was at least 10kV / mm.
  • a protective layer (6) for the electrical conductor (4) against environmental influences and in particular moisture was on the electrical conductor (4) in addition to a About 0.1 ⁇ m thick polyethylene naphthalate layer is applied.
  • the width of the galvanic separation layer (5) and the protective layer (6) were 40 mm.
  • the protective layer (6) completely sheathed the electrical conductor (4) with the galvanic separating layer (5).
  • FIG. 4 shows a further construction according to the invention in the capacitive coupling element (3) of two electrically conductive structures (2a, 2b) on a pane (1).
  • the galvanic separating layer (5) was constructed from two layers.
  • the lower separating layer (5-1) adjoining the electrically conductive structures (2a, 2b) contained a silicone adhesive having a layer thickness of 30 ⁇ m and a dielectric constant of 3.
  • the upper galvanic separating layer (5) adjoining the electrical conductor (4) 2) contained a polyacrylate adhesive having a dielectric constant of 4 and a layer thickness of 30 microns.
  • FIG. 5 shows an alternative construction in the area of the capacitive coupling of two electrically conductive structures (2a, 2b) on a pane (1).
  • the electrical conductor (4) was galvanically connected to the electrically conductive structure (2b).
  • the electrical conductor (4) was galvanically isolated, so that overall the electrically conductive structures (2a, 2b) were furthermore galvanically separated from one another.
  • an improved capacitive coupling between the electrically conductive structures (2a, 2b) could be obtained.
  • the reception performance of the electrical structure (2a, 2b) as an antenna with simultaneously optimized heating properties over the prior art could be substantially improved.
  • FIG. 6 shows a further embodiment of the invention in cross section.
  • the length and width of the coupling element (3) was exactly adapted to the outer contour of the electrically conductive structures (2a, 2b) in the region of the coupling element (3).
  • the coupling element (3) has a width of 25 mm and could be flush with the outer contour of the electrically conductive structures (2a, 2b). With this configuration, a reduced material requirement and space requirements for the capacitive coupling could be achieved.
  • FIG 7 an embodiment of the invention is shown in plan view.
  • a first electrically conductive structure (2a) with heating and antenna function and a second electrically conductive structure (2b) with antenna function in the forms of a meander and a capacitive coupling element (3) was applied.
  • the electrically conductive structures (2a, 2b) were formed by a silver-containing screen printing with layer thicknesses of about 30 ⁇ m.
  • the line width of the screen printing was 0.5 mm.
  • the first electrically conductive structure (2a) contained parallel heating conductors with a line width of 0.5 mm, which were electrically connected in parallel in 10 mm wide bus bars.
  • the capacitive coupling to the electrically conductive structure (2b) of the antenna conductor has been established.
  • the signal was forwarded via an antenna connection (A) for further processing.
  • the width of the antenna conductor (2b) was 0.5 mm and in the region of the coupling element (3) 10 mm.
  • the coupling element (3) had a length of 100 mm and a width of 30 mm and covered the electrically conductive structures (2a, 2b) over a length of 100 mm.
  • the current busbars of the electrically conductive structures (2a, 2b) were printed parallel to the edge of the disc (1) in the region of the coupling element (3).
  • the distance of the electrically conductive structures (2a) and (2b) in the region of the coupling element (3) was 5 mm. In terms of width, the coupling element projects beyond the electrically conductive structures (2a, 2b) by 2.5 mm on both sides.
  • FIG. 8 shows an alternative embodiment according to the invention of electrically conductive structures (2a, 2b) and coupling elements which have been applied to a single-pane safety glass (1).
  • the first electrically conductive structure (2a) contained a meandering heating conductor with a line width of 0.5 mm and 10 mm wide contact areas at the ends.
  • a second electrically conductive structure (2b) contained two line-shaped conductors with a line width of 0.5 mm, which were capacitively coupled to an antenna conductor via two coupling elements (3) with the electrically conductive structure (2a).
  • At one end of the heating conductor (2a) was the signal for further processing in a receiving device via an antenna connection (A) forwarded.
  • the line widths of the electrically conductive structures (2a, 2b) were 0.5 mm in the region of the coupling element.
  • the distance of the electrically conductive structures (2a, 2b) was 5 mm.
  • FIG. 9 shows a further embodiment according to the invention of electrically conductive structures (2a, 2b) and coupling elements which have been applied to single-pane safety glass (1).
  • the first electrically conductive structure (2a) contained parallel heating conductors with a line width of 0.5 mm, which were electrically connected in parallel in 10 mm wide bus bars.
  • a second electrically conductive structure (2b) also contained heating elements connected in parallel.
  • the structures were coupled on one side capacitively with a coupling element (3) via the extended current busbars of the electrically conductive structures (2a, 2b). At one end of the heating conductor (2b), the signal was forwarded via an antenna connection (A) for further processing.
  • the line widths of the electrically conductive structures (2a, 2b) were 0.5 mm in the region of the coupling element (3).
  • the distance of the electrically conductive structures (2a, 2b) was 5 mm.
  • FIGS. 10 and 11 show in detail the method steps according to the invention for producing a pane (10) with electrically conductive structures (2a, 2b) and coupling elements (3).
  • Embodiments of the invention described in FIGS. 1 to 9 have achieved an improved capacitive coupling between the electrically conductive structures (2 a) and (2 b) compared with the prior art.
  • the electrically conductive structures (2a) and (2b) were galvanically isolated with respect to the heating voltage (DC voltage) and capacitively coupled with respect to the antenna signals (high-frequency AC voltage).
  • the reception performance of the antenna with simultaneously optimized heating properties were improved significantly compared to the prior art.

Landscapes

  • Details Of Aerials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Scheibe mit elektrisch leitfähigen Strukturen, umfassend eine Scheibe (1) mit mindestens zwei galvanisch voneinander getrennten elektrisch leitfähigen Strukturen (2a, 2b), mindestens auf einer der elektrisch leitfähigen Strukturen (2a, 2b) eine galvanische Trennschicht (5) und auf der galvanischen Trennschicht (5) einen elektrischen Leiter (4), wobei die galvanische Trennschicht (5) den elektrischen Leiter (4) von mindestens einer der elektrisch leitfähigen Strukturen (2a, 2b) galvanisch trennt. Die Erfindung betrifft weiter ein Verfahren zur Herstellung und neue Verwendung der Scheibe.

Description

Scheibe mit elektrisch leitfähigen Strukturen
Die vorliegende Erfindung betrifft eine neue Scheibe mit insbesondere Antennen- und Heizfunktion, Verfahren zu deren Herstellung und deren Verwendung.
Aus DE 39 10 031 A1 ist eine Scheibe aus Verbundglas bekannt, die mit einer Rundfunkantenne und Scheibenheizung versehen ist. Zur optimalen Ausnutzung der Fläche befindet sich auf einer ersten Oberfläche des Verbundglases ein Heizleiter. Auf der ersten und / oder einer weiteren Oberfläche des Verbundglases befinden sich Teile eines Antennenleiters. Durch die Nutzung mehrerer Oberflächen steht immer eine relativ große Fläche für die Antennen- und Heizfunktion zur Verfügung. Zur Verbesserung des Antennengewinns sind die Antennenleiter und der Heizleiter kapazitiv gekoppelt.
Dabei müssen sich die elektrisch leitfähigen Strukturen zur kapazitiven Kopplung jeweils direkt gegenüber den einzelnen Heizelementen auf den Glasoberflächen befinden. Dadurch ergeben sich insbesondere Einschränkungen in den Anordnungen der Antennen und Heizelementen auf der Glasoberfläche. Die kapazitive Kopplung ist über die Dicke der Glasscheibe von mehreren Millimetern mit hohen Signalverlusten verbunden.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine verbesserte Scheibe bereitzustellen, die eine effiziente und einfache kapazitive Kopplung von Antennen- und Heizleitern und gleichzeitig einen hohen Freiheitsgrad in der Anordnung von Antennen- und Heizleitern aufweist.
Außerdem liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung der neuen Scheibe bereitzustellen.
Die Aufgabe der Erfindung wird mit den Merkmalen der unabhängigen Patentansprüche 1 , 20 und 29 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind durch die Merkmale der Unteransprüche gegeben. Erfindungsgemäß ist ein Aufbau einer Scheibe mit elektrisch leitfähigen Strukturen gezeigt, der eine Scheibe mit mindestens zwei galvanisch voneinander getrennte elektrisch leitfähige Strukturen, das mindestens auf einer der elektrisch leitfähigen Strukturen eine galvanische Trennschicht und auf der galvanischen Trennschicht einen elektrischen Leiter umfasst, wobei die galvanische Trennschicht den elektrischen Leiter von mindestens einer der elektrisch leitfähigen Strukturen trennt.
Die Eigenschaft „galvanisch getrennt" bedeutet, dass zwei elektrisch leitfähige Strukturen keine elektrische leitfähige Verbindung aufweisen und für Gleichspannungen entkoppelt sind.
Eine Scheibe enthält insbesondere Scheiben aus klarem oder gefärbtem Natron-Kalk- Glas. Die Scheiben können thermisch oder chemisch gehärtet sein oder als Verbundglas ausgeführt sein, insbesondere um die einheitlichen Vorschriften für die Genehmigung der Sicherheitsverglasungswerkstoffe und ihren Einbau in Fahrzeugen nach ECE-R 43: 2004 zu erfüllen. Die Scheiben können auch Kunststoffe wie Polystyrol, Polyamid, Polyester, Polyvinylchlorid, Polycarbonat oder Polymethylmethacrylat enthalten. Zur Einstellung der Energietransmission können die Scheiben ganz oder teilweise Oberflächenbeschichtungen mit Strahlung absorbierenden, reflektierenden und / oder niedrig emittierenden Eigenschaften aufweisen. Ist die Scheibe als Verbundglasscheibe ausgeführt, sind bevorzugt zwei Natron-Kalk-Gläser mit einer Polyvinylbutyral enthaltenden Kunststoffschicht dauerhaft verbunden.
Die Scheibe kann die im Fahrzeugbau übliche Größe für Windschutzscheiben, Seitenscheiben, Dachscheiben oder Heckscheiben von Kraftfahrzeugen aufweisen, bevorzugt von 100 cm2 bis zu 4 m2. Übliche Dicken der Scheiben liegen im Bereich von 1 mm bis 6 mm.
Die elektrisch leitfähigen Strukturen weisen unterschiedliche Formen auf. Scheiben mit Heiz- und / oder Antennenfunktionen weisen bei gleichzeitiger makroskopischer Transparenz bevorzugt linienförmige Strukturen auf.
Elektrisch leitfähige Strukturen mit Heizfunktion als Heizleiter sind bevorzugt aus einer Anzahl von parallel laufenden Linien ausgestaltet, die über Stromsammeischienen mindestens an den gegenüberliegenden Rändern der Scheibe parallel geschaltet sind. Bei Anlegen einer elektrischen Spannung zwischen den Stromsammeischienen wird Joulsche Wärme auf der Scheibenfläche erzeugt. Die erhöhte Temperatur der Scheibe verhindert oder entfernt Feuchtigkeit und Vereisung auf der Scheibenoberfläche. Die elektrisch leitfähige Struktur erstreckt sich bevorzugt linienförmig annährend über die ganze Scheibenfläche. Elektrisch leitfähige Strukturen mit Heizfunktion können unterschiedliche Formen, Anordnungen und Zwischenverbindungen aufweisen und beispielsweise rund, spiralförmig oder mäanderförmig ausgestaltet sein. Die elektrisch leitfähigen Strukturen dehnen sich insbesondere über die innen liegenden Oberflächen von Fahrzeugverglasungen.
Elektrisch leitfähige Strukturen mit Antennenfunktion sind als Antennenleiter bevorzugt linienförmig ausgestaltet. Die Länge der Antennenleiter wird durch die zu erzielende Antennencharakteristik bestimmt. Antennenleiter können als Linien mit offenem oder geschlossenem Ende ausgeführt sein, oder unterschiedliche Formen, Anordnungen und Zwischenverbindungen aufweisen und beispielsweise rund, spiralförmig oder mäanderförmig ausgestaltet sein.
Die Antennencharakteristik wird durch die empfangenen oder zu sendenden Frequenzen bestimmt. Es handelt sich bei der empfangenen und / oder ausgesendeten elektromagnetischen Strahlung bevorzugt um LF-, MF-, HF-, VHF-, UHF- und / oder SHF-Signale im Frequenzbereich von 30 kHz bis 10 GHz, besonders bevorzugt um Radiosignale, insbesondere UKW (30 MHz bis 300 MHz, entsprechend einer Wellenlänge von 1 m bis 10 m), Kurzwelle (3 kHz bis 30 MHz, entsprechend einer Wellenlänge von 10 m bis 100 m) oder Mittelwelle (300 kHz bis 3000 kHz, entsprechend einer Wellenlänge von 100 m bis 1000 m), sowie Signale der Mauterfassung, des Mobilfunks, Digitalradios, Fernsehsignale oder Navigationssignale. Die Länge der elektrisch leitfähigen Strukturen mit Antennenfunktion beträgt bevorzugt ein Vielfaches oder einen Bruchteil der Wellenlänge der zu übertragenden Frequenzen, insbesondere die Hälfte oder ein Viertel der Wellenlänge. Zur besseren Ausnutzung der Scheibenoberfläche können die elektrisch leitfähigen Strukturen gekrümmt, mäanderförmig oder spiralförmig ausgestaltet sein.
Typische Linienbreiten der erfindungsgemäßen elektrisch leitfähigen Strukturen betragen 0,1 mm bis 5 mm, typische Breiten von Stromsammeischienen oder Kontaktbereichen betragen 3 mm bis 30 mm. Typische Abstände der elektrisch leitfähigen Strukturen im Bereich der kapazitiven Kopplung betragen zwischen 1 mm bis 20 mm. Die elektrisch leitfähigen Strukturen können für sich genommen opak sein, in der makroskopischen Betrachtung erscheint die Scheibe jedoch transparent.
Die elektrisch leitfähigen Strukturen können Metall drahte sein, bevorzugt ein Kupfer-, Wolfram-, Gold-, Silber- oder Aluminiumdraht. Der Draht kann mit einer elektrisch isolierenden Beschichtung ausgerüstet sein. Die elektrisch leitfähige Struktur kann aber auch als aufgedruckte leitfähige Schicht ausgeführt sein. Die elektrische Leitfähigkeit wird bevorzugt über Metallpartikel, enthalten in der Schicht, besonders bevorzugt über Silberpartikel, realisiert. Die Metallpartikel können sich in einer organischen und / oder anorganischen Matrix, wie Pasten oder Tinten befinden, bevorzugt als gebrannte Siebdruckpaste mit Glasfritten.
Zur Verbesserung der Antennencharakteristik und insbesondere zur Erhöhung der Länge der Antennenleiter werden die Heizleiter ganz oder teilsweise über mindestens ein kapazitives Koppelelement mit dem Antennenleiter verbunden. Der Heizleiter wird damit für Wechselspannungssignale ein Teil des Antennenleiters. Für Gleichspannungen zum Heizen der Scheibe bleibt der Heizleiter jedoch galvanisch von dem Antennenleiter getrennt. Im Bereich des Koppelelementes liegen bevorzugt Antennenleiter und Heizleiter räumlich dicht zusammen, bevorzugt parallel und besonders bevorzugt mit einem Abstand von 0,5 mm bis 10 mm. Der Antennenleiter und der Heizleiter können im Bereich der kapazitiven Kopplung auch in beliebiger Form wie beispielsweise kammartig oder mäanderartig ineinandergreifen.
Die kapazitive Kopplung wird erfindungsgemäß durch elektrische Leiter realisiert, die die elektrisch leitfähigen Strukturen räumlich überbrücken, ohne jedoch einen galvanischen Kontakt herzustellen. Die galvanische Trennung wird über eine galvanische Trennschicht zwischen den elektrisch leitfähigen Strukturen und dem elektrischen Leiter im Koppelelement realisiert.
In einer weiteren bevorzugten Ausgestaltung der Erfindung ist zwischen der Scheibe und den elektrisch leitfähigen Strukturen eine zusätzliche Zwischenschicht, bevorzugt zu Dekorzwecken rahmenförmig auf der Scheibe aufgebracht. Die Zwischenschicht enthält als Schwarzdruck bevorzugt Glasfritten und schwarze Pigmente. In einer bevorzugten Ausgestaltung der Erfindung wird die kapazitive Kopplung von mindestens einem Koppelelement realisiert.
In einer bevorzugten Ausgestaltung der Erfindung wird die kapazitive Kopplung von mindestens zwei Koppelelementen realisiert, die räumlich getrennt auf der Scheibe angeordnet sind.
Die kapazitiven Koppelelemente der erfindungsgemäßen Scheibe bedecken Teilbereiche von elektrisch leitfähigen Strukturen und dehnen sich über mindestens zwei Teilbereiche von elektrisch leitfähigen Strukturen aus. Die Koppelelemente können teilweise über die elektrisch leitfähigen Strukturen hinaus ausgedehnt sein und direkt mit der Scheibe verklebt sein. Dies erlaubt eine feste mechanische Verbindung und verringert die Haftungsanforderungen an die elektrisch leitfähigen Strukturen.
Die Koppelelemente können in einer Ausgestaltung der Erfindung aber auch bündig dem äußeren Umriss der elektrisch leitfähigen Strukturen angepasst sein. Vorteilhaft ist dabei der verringerte Flächen- und Materialbedarf sowie eine verbesserte Optik.
Die Koppelelemente werden bevorzugt als Folien- und / oder aufgedruckte Schichtsysteme auf die elektrisch leitfähigen Strukturen aufgetragen. Die Folien können insbesondere selbstklebend sein. Die Folien- und gedruckten Schichtsysteme können einen beliebigen Umriss haben, insbesondere aber streifenförmig und / oder bündig dem Umriss der elektrisch leitfähigen Strukturen angepasst sein.
Die Impedanz des Koppelelements wird wesentlich von der Kapazität zwischen dem elektrischem Leiter des Koppelelements und den elektrisch leitfähigen Strukturen bestimmt. Die Kapazität ist hier eine Funktion der Dielektrizitätskonstante der galvanischen Trennschicht, der Fläche der Überdeckungen vom elektrischen Leiter und den elektrisch leitfähigen Strukturen sowie den Abständen zwischen dem elektrischen Leiter und den elektrisch leitfähigen Strukturen. Eine möglichst hohe Kapazität und damit eine möglichst geringe Impedanz ergeben sich bei einem möglichst geringem Abstand, einer großen überdeckten Fläche und einer hohen Dielektrizitätskonstante. Die Kapazität kann so gewählt werden, dass durch das Koppelelement störende Frequenzen oder Frequenzen, die für die Anwendung nicht benötigt werden, nicht übertragen werden und ein Hochpass- oder Tiefpass erhalten wird.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Scheibe enthält die galvanische Trennschicht Polyacrylat, Cyanacrylat, Methylmethacrylat, Silan und Siloxan-vernetzende Polymere, Epoxidharz, Polyurethan, Polychloropren, Polyamid, Acetat, Silikonkleber, Polyethylen, Polypropylen, Polyvinylchlorid, Polyamid, Polycarbonat, Polyethylenterephthalat, Polyethylennaphthalat, Polyimide, Polyethylen Terephtalat sowie deren Copolymere und / oder Gemische davon.
Die galvanische Trennschicht kann aus mehreren Schichten aufgebaut sein. Vorteile von mehreren Schichten sind erhöhte Freiheitsgrade bei der Optimierung der mechanischen und elektrischen Eigenschaften der Trennschicht.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Scheibe mit einem aufgedruckten Koppelelement enthält die galvanische Trennschicht einen Schwarzdruck mit einer hohen elektrischen Durchschlagfestigkeit. Die Trennschichten enthalten organische und anorganische Bestandteile, insbesondere Glasfritten und Farbpigmente. Im elektrischen Leiter des aufgedruckten Koppelelements ist bevorzugt eine leitfähige Paste, ein leitfähiger Kleber und besonders bevorzugt ein leitfähiger Primer enthalten. Der spezifische elektrische Widerstand der gedruckten elektrischen Leiter beträgt weniger als 1 kθhm*cm, bevorzugt weniger als 100 Ohm*cm und besonders bevorzugt weniger als 10 Ohm*cm.
Die Schichtdicke der galvanischen Trennschicht beträgt bevorzugt 1 μm bis 200 μm und besonders bevorzugt 5 μm bis 80 μm. Die Dielektrizitätskonstante der galvanischen Trennschicht liegt bevorzugt im Bereich von 1 ,5 bis 10 und besonders bevorzugt von 2 bis 6. Die Durchschlagsfestigkeit zur Vermeidung von Kurzschlüssen in der galvanischen Trennschicht ist bevorzugt größer als 1 kV/mm und besonders bevorzugt größer als 10kV/mm.
Der elektrische Leiter des Koppelelements enthält bevorzugt leitfähigen Kohlenstoff, konjugierte Polymere, leitfähigen Primer, Wolfram, Kupfer, Silber, Gold, Aluminium und / oder Gemische davon. In einer weiteren bevorzugten Ausführungsform der Erfindung weist das Koppelelement eine zusätzliche Schutzschicht auf dem elektrischen Leiter auf, enthaltend Polyethylen, Polypropylen, Polyvinylchlorid, Polymethylmethacrylat, Polyamid, Polycarbonat, Polyethylenterephthalat, Polyethylennaphthalat, Polyimide, Polyethylen Terephtalate, Ethylenvinylacetat, Polyvinylbutyral sowie deren Copolymere und / oder Gemische davon, auf. Der elektrische Leiter wird durch die Schutzschicht von der Umwelt geschützt. Die chemische und mechanische Stabilität der erfindungsgemäßen Scheibe mit Antennenfunktion und insbesondere das Koppelelement werden durch die Schutzschicht erhöht.
Die Aufgabe der Erfindung wird weiter durch ein Verfahren zur Herstellung einer erfindungsgemäßen Scheibe mit elektrisch leitfähigen Strukturen gelöst, wobei in einem ersten Schritt eine Scheibe mit mindestens zwei galvanisch voneinander getrennten elektrisch leitfähigen Strukturen beschichtet wird. In einem zweiten Schritt wird mindestens auf eine der elektrisch leitfähigen Strukturen eine galvanische Trennschicht aufgebracht. In einem dritten Schritt wird auf der galvanischen Trennschicht ein elektrischer Leiter aufgebracht.
In weiteren bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden die galvanische Trennschicht und der elektrische Leiter in mindestens einem kapazitiven Koppelelement und besonders bevorzugt in mindestens zwei kapazitiven Koppelelementen auf mindestens eine elektrisch leitfähige Struktur aufgedruckt oder als Folienverbund aufgeklebt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird vor dem Aufbringen der elektrisch leitfähigen Strukturen eine zusätzliche Zwischenschicht auf die Scheibe, bevorzugt im Siebdruckverfahren, aufgebracht.
In einer bevorzugten Ausführungsform des Verfahrens werden die galvanische Trennschicht und der elektrische Leiter als Koppelelement in einem Folienverbund auf die elektrisch leitfähigen Strukturen aufgeklebt. Der Folienverbund ist besonders bevorzugt selbstklebend. Selbstklebend bedeutet hierbei, dass das Koppelelement über eine Klebewirkung der galvanischen Trennschicht dauerhaft mit den elektrisch leitfähigen Strukturen und / oder dem Substratglas verbunden ist. In einer weiteren bevorzugten Ausführungsform des Verfahrens wird die galvanische Trennschicht im Siebdruckverfahren auf die elektrisch leitfähigen Strukturen aufgedruckt. Der elektrische Leiter wird anschließend auf die galvanische Trennschicht aufgebracht, bevorzugt im Siebdruckverfahren.
Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert, wobei Bezug auf die beigefügten Figuren genommen wird.
Es zeigen:
Fig. 1 einen Querschnitt durch eine erfindungsgemäße Scheibe im Bereich der kapazitiven Kopplung,
Fig. 2 eine alternative Ausgestaltung im Querschnitt im Bereich der kapazitiven Kopplung,
Fig. 3 eine weitere alternative Ausgestaltung im Querschnitt im Bereich der kapazitiven Kopplung,
Fig. 4 eine weitere alternative Ausgestaltung im Querschnitt im Bereich der kapazitiven Kopplung,
Fig. 5 eine weitere alternative Ausgestaltung im Querschnitt im Bereich der kapazitiven Kopplung,
Fig. 6 eine weitere alternative Ausgestaltung im Querschnitt im Bereich der kapazitiven Kopplung,
Fig. 7 eine Draufsicht auf die erfindungsgemäße Scheibe,
Fig. 8 eine Draufsicht auf eine alternative Ausgestaltung der erfindungsgemäßen Scheibe,
Fig. 9 eine Draufsicht auf eine alternative Ausgestaltung der erfindungsgemäßen Scheibe,
Fig. 10 ein Ausführungsbeispiel von erfindungsgemäßen Verfahrensschritten im Flussdiagramm und
Fig. 1 1 ein alternatives Ausführungsbeispiel von erfindungsgemäßen
Verfahrensschritten im Flussdiagramm.
Figur 1 zeigt einen erfindungsgemäßen Querschnitt im Bereich der kapazitiven Kopplung von zwei elektrisch leitfähigen Strukturen (2a, 2b) auf einer Scheibe (1 ). Die galvanische Trennschicht (5) trennt den elektrischen Leiter (4) von den elektrisch leitfähigen Strukturen (2a, 2b). Der elektrische Leiter (4) bestand aus einer 100 μm dicken, elektrisch leitfähigen Primerschicht und war mit einer Breite von 30 mm und einer Länge von 100 mm derart auf die galvanische Trennschicht (5) aufgebracht worden, dass er die Stromsammeischienen der elektrisch leitfähigen Strukturen (2a) und (2b) über die gesamte Breite abdeckte. Als galvanische Trennschicht (5) wurde ein 100 μm dicker Emaildruck mit Glasfritten und schwarzen Pigmenten verwendet, der die elektrischen Leiter (2a) und (2b) und den elektrischen Leiter (4) dauerhaft verband, ohne einen direkten elektrischen Kontakt herzustellen. Die galvanische Trennschicht (5) wies eine Durchschlagfestigkeit von mindestens 10kV/mm auf. Der Abstand (D) zwischen dem elektrischen Leiter (4) und der elektrisch leitfähigen Struktur (2a, 2b) betrug etwa 70 μm. Die Dielektrizitätskonstante der galvanischen Trennschicht (5) betrug etwa 6. In dieser Ausgestaltung konnte eine weiter verbesserte kapazitive Kopplung zwischen den elektrisch leitfähigen Strukturen (2a, 2b) erzielt werden. Auf gleicher zur Verfügung stehender Fläche konnten die Empfangsleistungen der elektrischen Strukturen (2a), (2b) als Antenne bei gleichzeitig optimierten Heizeigenschaften verbessert werden.
Figur 2 zeigt einen weiteren erfindungsgemäßen Querschnitt im Bereich des kapazitiven Koppelelementes (3) von zwei elektrisch leitfähigen Strukturen (2a, 2b) wobei die Ausgestaltung der Figur 1 um eine zusätzliche Zwischenschicht (7) zu Dekorzwecken erweitert wurde. Die Zwischenschicht (7) war im Randbereich rahmenförmig auf der Scheibe (1) aufgebracht und enthielt einen 100 μm Emaildruck mit Glasfritten und schwarzen Pigmenten.
Figur 3 zeigt einen alternativen erfindungsgemäßen Querschnitt im Bereich des kapazitiven Koppelelementes (3) von zwei elektrisch leitfähigen Strukturen (2a, 2b). Das Koppelelement (3) enthielt einen etwa 45 μm dicken Kupferstreifen als elektrischen Leiter (4). Die Breite des Kupferstreifens betrug 25 mm. Der elektrische Leiter (4) schloss mit den elektrisch leitfähigen Strukturen (2a, 2b) in der Breite bündig ab. Als galvanische Trennschicht (5) zwischen dem elektrischen Leiter (4) und den elektrisch leitfähigen Strukturen (2a, 2b) wurde eine etwa 60 μm dicke Kleberschicht auf Silikonbasis mit einer Dielektrizitätskonstanten von 3 aufgebracht. Der Abstand (D) zwischen den elektrisch leitfähigen Strukturen (2a) und (2b) und dem elektrischen Leiter (4) betrug etwa 60 μm. Die Durchschlagsfestigkeit betrug mindestens 10kV/mm. Als Schutzschicht (6) für den elektrischen Leiter (4) vor Umwelteinflüssen und insbesondere Feuchtigkeit wurde auf den elektrischen Leiter (4) zusätzlich eine etwal OO μm dicke Polyethylen-Naphthalat-Schicht aufgebracht. Die Breite der galvanischen Trennschicht (5) und der Schutzschicht (6) betrugen 40 mm. Die Schutzschicht (6) ummantelte mit der galvanischen Trennschicht (5) den elektrischen Leiter (4) vollständig.
In Figur 4 ist ein weiterer erfindungsgemäßer Aufbau im kapazitiven Koppelelement (3) von zwei elektrisch leitfähigen Strukturen (2a, 2b) auf einer Scheibe (1 ) gezeigt. Zur Verringerung der Anforderungen an die Zusammensetzung der Klebeschicht wurde die galvanische Trennschicht (5) aus zwei Schichten aufgebaut. Die an die elektrisch leitfähigen Strukturen (2a, 2b) angrenzende untere Trennschicht (5-1 ) enthielt einen Silikonkleber mit einer Schichtdicke von 30 μm und einer Dielektrizitätskonstanten von 3. Die obere, an den elektrischen Leiter (4) angrenzende galvanische Trennschicht (5- 2) enthielt einen Polyacrylatkleber mit einer Dielektrizitätskonstanten von 4 und einer Schichtdicke von 30 μm. Durch den Zweischichtenaufbau (5-1 ,5-2) konnte die Kapazität zwischen Koppelelement (3) und den elektrisch leitfähigen Strukturen (2a, 2b) bei gleichbleibendem Abstand (D) und vergleichbarer Klebewirkung gegenüber dem Ausführungsbeispiel der Figur 3 erhöht werden.
In Figur 5 ist ein alternativer Aufbau im Bereich der kapazitiven Kopplung von zwei elektrisch leitfähigen Strukturen (2a, 2b) auf einer Scheibe (1 ) gezeigt. Auf die elektrisch leitfähige Struktur (2b) war keine galvanische Trennschicht (5) aufgebracht. Der elektrische Leiter (4) war mit der elektrisch leitfähigen Struktur (2b) galvanisch verbunden. Von der weiteren elektrisch leitfähigen Struktur (2a) war der elektrische Leiter (4) galvanisch getrennt, sodass auch insgesamt die elektrisch leitfähigen Strukturen (2a, 2b) weiterhin galvanisch voneinander getrennt waren. In dieser Ausgestaltung konnte eine verbesserte kapazitive Kopplung zwischen den elektrisch leitfähigen Strukturen (2a, 2b) erhalten werden. Auf derselben Fläche konnten die Empfangsleistungen der elektrischen Struktur (2a, 2b) als Antenne bei gleichzeitig optimierten Heizeigenschaften gegenüber dem Stand der Technik wesentlich verbessert werden.
Figur 6 zeigt eine weitere Ausgestaltung der Erfindung im Querschnitt. Die Länge und Breite des Koppelelements (3) war genau dem äußeren Umriss der elektrisch leitfähigen Strukturen (2a, 2b) im Bereich des Koppelelementes (3) angepasst. Im Ausführungsbeispiel wies das Koppelelement (3) eine Breite von 25 mm auf und konnte bündig mit dem äußeren Umriss der elektrisch leitfähigen Strukturen (2a, 2b) abschließen. Mit dieser Ausgestaltung konnte ein verringerter Materialbedarf und Platzbedarf für die kapazitive Kopplung erzielt werden.
In Figur 7 ist ein erfindungsgemäßes Ausführungsbeispiel in Draufsicht gezeigt. Auf eine innere Oberfläche der Scheibe (1 ) wurde eine erste elektrisch leitfähige Struktur (2a) mit Heiz- und Antennenfunktion und eine zweite elektrisch leitfähige Struktur (2b) mit Antennenfunktion in den Formen eines Mäanders sowie ein kapazitives Koppelelement (3) aufgebracht. Die elektrisch leitfähigen Strukturen (2a, 2b) wurden von einem silberhaltigen Siebdruck mit Schichtdicken von etwa 30 μm gebildet. Die Linienbreite des Siebdrucks betrug 0,5 mm. Die erste elektrisch leitfähige Struktur (2a) enthielt parallel laufende Heizleiter mit einer Linienbreite von 0,5 mm, die in 10 mm breiten Stromsammeischienen elektrisch parallel geschaltet waren. In einem Randbereich der Struktur (2a) wurde die kapazitive Kopplung zur elektrisch leitfähigen Struktur (2b) des Antennenleiters hergestellt. An einem Ende des Antennenleiters (2b) wurde über einen Antennenschluss (A) das Signal zur weiteren Verarbeitung weitergeleitet. Die Breite des Antennenleiters (2b) betrug 0,5 mm und im Bereich des Koppelelementes (3) 10 mm. Das Koppelelement (3) hatte eine Länge von 100 mm und eine Breite von 30 mm und überdeckte die elektrisch leitfähigen Strukturen (2a, 2b) auf einer Länge von 100 mm. Die Stromsammeischienen der elektrisch leitfähigen Strukturen (2a, 2b) waren im Bereich des Koppelelementes (3) parallel laufend am Rand der Scheibe (1 ) aufgedruckt. Der Abstand der elektrisch leitfähigen Strukturen (2a) und (2b) im Bereich des Koppelelementes (3) betrug 5 mm. In der Breite überragte das Koppelelement die elektrisch leitfähigen Strukturen (2a, 2b) beidseitig um jeweils 2,5 mm.
Figur 8 zeigt eine alternative erfindungsgemäße Ausgestaltung von elektrisch leitfähigen Strukturen (2a, 2b) und Koppelelementen, die auf ein Einscheiben- Sicherheitsglas (1) aufgebracht wurden. Die erste elektrisch leitfähige Struktur (2a) enthielt einen mäanderförmigen Heizleiter mit einer Linienbreite von 0,5 mm und 10 mm breiten Kontaktbereichen an den Enden. Eine zweite elektrisch leitfähige Struktur (2b) enthielt zwei linienförmige Leiter mit einer Linienbreite von 0,5 mm, die über zwei Koppelemente (3) mit der elektrisch leitfähigen Struktur (2a) zu einem Antennenleiter kapazitiv gekoppelt waren. An einem Ende des Heizleiters (2a) wurde über einen Antennenanschluss (A) das Signal zur weiteren Verarbeitung in ein Empfangsgerät weitergeleitet. Die Linienbreiten der elektrisch leitfähigen Strukturen (2a, 2b) betrugen im Bereich des Koppelelements 0,5 mm. Der Abstand der elektrisch leitfähigen Strukturen (2a, 2b) betrug 5 mm.
Figur 9 zeigt eine weitere erfindungsgemäße Ausgestaltung von elektrisch leitfähigen Strukturen (2a, 2b) und Koppelelementen, die auf Einscheiben-Sicherheitsglas (1) aufgebracht wurden. Die erste elektrisch leitfähige Struktur (2a) enthielt parallel laufende Heizleiter mit einer Linienbreite von 0,5 mm, die in 10 mm breiten Stromsammeischienen elektrisch parallel geschaltet waren. Eine zweite elektrisch leitfähige Struktur (2b) enthielt auch parallel geschaltete Heizleiter. Über die verlängerten Stromsammeischienen der elektrisch leitfähigen Strukturen (2a, 2b) wurden die Strukturen einseitig kapazitiv mit einem Koppelelement (3) gekoppelt. An einem Ende des Heizleiters (2b) wurde über einen Antennenschluss (A) das Signal zur weiteren Verarbeitung weitergeleitet. Die Linienbreiten der elektrisch leitfähigen Strukturen (2a, 2b) betrugen im Bereich des Koppelelements (3) 0,5 mm. Der Abstand der elektrisch leitfähigen Strukturen (2a, 2b) betrug 5 mm.
Die Figuren 10 und 11 zeigen detailliert die erfindungsgemäßen Verfahrensschritte zur Herstellung einer Scheibe (10) mit elektrisch leitfähigen Strukturen (2a, 2b) und Koppelelementen (3).
In den Figuren 1 bis 9 beschriebenen Ausführungsbeispielen der Erfindung wurde eine gegenüber dem Stand der Technik verbesserte kapazitive Kopplung zwischen den elektrisch leitfähigen Strukturen (2a) und (2b) erzielt. Über kapazitive Koppelelemente (3) waren die elektrisch leitfähigen Strukturen (2a) und (2b) hinsichtlich der Heizspannung (Gleichspannung) galvanisch getrennt und hinsichtlich der Antennensignale (hochfrequente Wechselspannung) kapazitiv gekoppelt. Auf einer Oberfläche der Scheibe wurden die Empfangsleistungen der Antenne bei gleichzeitig optimierten Heizeigenschaften deutlich gegenüber dem Stand der Technik verbessert. Bezugszeichen:
(1) Scheibe,
(2a), (2b) Elektrisch leitfähige Struktur,
(3) Kapazitives Koppelelement,
(4) Elektrischer Leiter,
(5), (5-1), (5-2) Galvanische Trennschicht,
(6) Schutzschicht,
(7) Zwischenschicht,
(A) Anschlusspunkt für Empfangsgerät,
(D) Abstand zwischen dem elektrischen Leiter und der elektrisch leitfähigen Struktur.

Claims

Patentansprüche
1. Scheibe mit elektrisch leitfähigen Strukturen, umfassend
eine Scheibe (1) mit mindestens zwei galvanisch voneinander getrennten elektrisch leitfähigen Strukturen (2a, 2b),
mindestens auf einer der elektrisch leitfähigen Strukturen (2a, 2b) eine galvanische Trennschicht (5) und
auf der galvanischen Trennschicht (5) einen elektrischen Leiter (4), wobei die galvanische Trennschicht (5) den elektrischen Leiter (4) von mindestens einer der elektrisch leitfähigen Strukturen (2a, 2b) galvanisch trennt.
2. Scheibe nach Anspruch 1 , wobei der elektrische Leiter (4) durch die galvanische Trennschicht (5) von den elektrisch leitfähigen Strukturen (2a, 2b) galvanisch getrennt ist.
3. Scheibe nach Anspruch 1 oder 2, wobei der elektrische Leiter (4) und die galvanische Trennschicht (5) ein kapazitives Koppelelement (3) zwischen elektrisch leitfähigen Strukturen (2a, 2b) ist.
4. Scheibe nach einem der Ansprüche 1 bis 3, wobei auf mindestens einer elektrisch leitfähigen Struktur (2a, 2b) mindestens ein kapazitives Koppelelement (3) aufgebracht ist.
5. Scheibe nach einem der Ansprüche 1 bis 4, wobei die galvanische Trennschicht (5) eine Dielektrizitätskonstante von 2 bis 6 aufweist.
6. Scheibe nach einem der Ansprüche 1 bis 5 wobei die galvanische Trennschicht (5) mindestens zwei Schichten (5-1 , 5-2) enthält.
7. Scheibe nach einem der Ansprüche 1 bis 6, wobei der elektrische Leiter (4) eine Schichtdicke von 10 μm bis 200 μm aufweist.
8. Scheibe nach einem der Ansprüche 1 bis 7, wobei die elektrisch leitfähigen Strukturen (2a, 2b) im Bereich des kapazitiven Koppelelementes als Kamm ausgebildet sind oder als Mäander ineinandergreifen.
9. Scheibe nach einem der Ansprüche 1 bis 8, wobei die elektrisch leitfähigen Strukturen (2a, 2b) eine Schichtdicke von 10 μm bis 100 μm aufweisen.
10. Verfahren zur Herstellung einer Scheibe mit elektrisch leitfähigen Schichten, wobei,
a. eine Scheibe (1) mit mindestens zwei galvanisch voneinander getrennten elektrisch leitfähigen Strukturen (2a, 2b) beschichtet wird, b. mindestens auf eine der elektrisch leitfähigen Strukturen (2a, 2b) mindestens eine galvanische Trennschicht (5) aufgebracht wird und c. auf der galvanischen Trennschicht (5) mindestens ein elektrischer Leiter (4) aufgebracht wird.
11. Verfahren nach Anspruch 10, wobei zusätzlich auf die Scheibe (1) eine Zwischenschicht (7) aufgebracht wird.
12. Verfahren nach Anspruch 10 oder 1 1 , wobei die galvanische Trennschicht (5) und der elektrische Leiter (4) in einem kapazitiven Koppelelement (3) auf mindestens eine elektrisch leitfähige Struktur (2a, 2b) aufgebracht werden.
13. Verfahren nach einem der Ansprüche 10 bis 12, wobei mindestens ein kapazitives Koppelelement (3) im Folienverbund auf mindestens eine elektrisch leitfähige Struktur (2a, 2b) aufgeklebt wird.
14. Verfahren nach einem der Ansprüche 10 bis 13, wobei die galvanische Trennschicht (5) und / oder der elektrische Leiter (4) im Siebdruck, Hochdruck, Tiefdruck, Flexodruck oder durch Rakeln aufgebracht werden.
15. Verwendung einer Scheibe mit Antennenfunktion nach einem der Ansprüche 1 bis 9 als Kraftfahrzeug-Fahrzeugscheibe mit Antennen und Heizfunktion.
PCT/EP2010/061105 2009-08-14 2010-07-30 Scheibe mit elektrisch leitfähigen strukturen WO2011018361A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020167029567A KR101744467B1 (ko) 2009-08-14 2010-07-30 전기 전도성 구조체를 구비한 패널
PL10739601T PL2465164T3 (pl) 2009-08-14 2010-07-30 Szyba ze strukturami elektroprzewodzącymi
CN201080035986.6A CN102473995B (zh) 2009-08-14 2010-07-30 具有导电结构的板
EA201270276A EA026919B1 (ru) 2009-08-14 2010-07-30 Прозрачная панель с антенной и обогревателем
US13/377,806 US9196949B2 (en) 2009-08-14 2010-07-30 Panel having electrically conductive structures
ES10739601T ES2773013T3 (es) 2009-08-14 2010-07-30 Panel con estructuras conductoras de electricidad
JP2012524186A JP2013502122A (ja) 2009-08-14 2010-07-30 導電性構造体を有するガラス板
BR112012002988-6A BR112012002988B1 (pt) 2009-08-14 2010-07-30 Painel com estruturas eletricamente condutivas e método para produzir o referido painel
EP10739601.2A EP2465164B1 (de) 2009-08-14 2010-07-30 Scheibe mit elektrisch leitfähigen strukturen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026378A DE102009026378A1 (de) 2009-08-14 2009-08-14 Scheibe mit elektrisch leitfähigen Strukturen
DE102009026378.0 2009-08-14

Publications (1)

Publication Number Publication Date
WO2011018361A1 true WO2011018361A1 (de) 2011-02-17

Family

ID=42629448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/061105 WO2011018361A1 (de) 2009-08-14 2010-07-30 Scheibe mit elektrisch leitfähigen strukturen

Country Status (12)

Country Link
US (1) US9196949B2 (de)
EP (1) EP2465164B1 (de)
JP (2) JP2013502122A (de)
KR (2) KR101744467B1 (de)
CN (1) CN102473995B (de)
BR (1) BR112012002988B1 (de)
DE (2) DE102009026378A1 (de)
EA (1) EA026919B1 (de)
ES (1) ES2773013T3 (de)
PL (1) PL2465164T3 (de)
PT (1) PT2465164T (de)
WO (1) WO2011018361A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010658A1 (de) 2012-05-30 2012-12-13 Daimler Ag Fahrzeug mit einer Antennenanordnung
KR101821465B1 (ko) * 2012-11-21 2018-01-23 쌩-고벵 글래스 프랑스 전기 연결 소자 및 연결 다리를 포함하는 디스크
GB201309549D0 (en) 2013-05-29 2013-07-10 Pilkington Group Ltd Glazing
JP5979085B2 (ja) * 2013-06-06 2016-08-24 株式会社豊田自動織機 ウィンドウ用配線部材およびそれを備える車両用ウィンドウ
DE102014116283B4 (de) 2014-11-07 2016-05-19 Webasto SE Verfahren zum Bearbeiten eines ersten Bauelements und eines zweiten Bauelements sowie Vorrichtung
DE102015119252B4 (de) * 2015-11-09 2024-02-01 Webasto SE Vorrichtung für ein Heizgerät für ein Fahrzeug
JP6743486B2 (ja) * 2016-05-24 2020-08-19 Agc株式会社 車両用窓ガラス
JP7292616B2 (ja) * 2018-06-05 2023-06-19 Agc株式会社 端子付き車両用窓ガラス
US11387541B2 (en) * 2019-03-18 2022-07-12 Ask Industries Societa' Per Azioni Manufacturing method of a rear window for vehicles provided with a heater-integrated antenna
US11889596B2 (en) * 2020-07-30 2024-01-30 Min Hsiang Corporation Electrical connecting portion for a device with a heating function
CA3212838C (en) 2021-08-30 2024-03-12 Anton YERKEYEV Busbar anchoring system and method for pdlc films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910031A1 (de) 1988-03-31 1989-10-19 Nippon Sheet Glass Co Ltd Fahrzeug-scheibenantenne
EP0542473A1 (de) * 1991-11-05 1993-05-19 Nippon Sheet Glass Co., Ltd. Scheibenantennenvorrichtung
EP0720249A2 (de) * 1994-12-27 1996-07-03 Ppg Industries, Inc. Glasantenne für Fahrzeugscheibe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066582Y2 (ja) * 1988-03-31 1994-02-16 日本板硝子株式会社 自動車用窓ガラスアンテナ
DE3914424A1 (de) * 1989-05-01 1990-12-13 Lindenmeier Heinz Antenne mit vertikaler struktur zur ausbildung einer ausgedehnten flaechenhaften kapazitaet
JPH08186404A (ja) * 1994-12-27 1996-07-16 Kyocera Corp 誘電体フィルタ
JP2000022420A (ja) * 1998-06-30 2000-01-21 Asahi Glass Co Ltd 自動車用ガラスアンテナ装置
JP2002204116A (ja) * 2000-06-22 2002-07-19 Asahi Glass Co Ltd 自動車用ガラスアンテナ
TW508865B (en) * 2000-06-22 2002-11-01 Asahi Glass Co Ltd Glass antenna for an automobile
JP2004015534A (ja) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd クロストーク抑制部材及びデジタル信号伝送線路
JP2004193680A (ja) 2002-12-06 2004-07-08 Fujitsu Ten Ltd 車載用アンテナおよびダイバシティ受信装置
US20080089012A1 (en) * 2004-12-21 2008-04-17 Teijin Limited Electric Double Layer Capacitor
DE102005039914A1 (de) 2005-08-24 2007-03-08 Robert Bosch Gmbh Mehrbereichs-Antennenanordnung
US8634988B2 (en) * 2006-01-10 2014-01-21 Guardian Industries Corp. Time, space, and/or wavelength multiplexed capacitive light sensor, and related methods
JP2008054032A (ja) * 2006-08-24 2008-03-06 Fujitsu Ten Ltd アンテナ装置
JP4888126B2 (ja) 2007-01-12 2012-02-29 マツダ株式会社 Am/fm受信用アンテナ
US7463210B2 (en) * 2007-04-05 2008-12-09 Harris Corporation Phased array antenna formed as coupled dipole array segments
WO2008136244A1 (ja) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. アンテナ構造およびそれを備えた無線通信装置
CN201174421Y (zh) 2008-03-17 2008-12-31 蒋小平 汽车后窗玻璃印制天线
CN101345334B (zh) 2008-08-25 2012-09-05 蒋小平 汽车后窗玻璃印制天线系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910031A1 (de) 1988-03-31 1989-10-19 Nippon Sheet Glass Co Ltd Fahrzeug-scheibenantenne
EP0542473A1 (de) * 1991-11-05 1993-05-19 Nippon Sheet Glass Co., Ltd. Scheibenantennenvorrichtung
EP0720249A2 (de) * 1994-12-27 1996-07-03 Ppg Industries, Inc. Glasantenne für Fahrzeugscheibe

Also Published As

Publication number Publication date
DE102009026378A1 (de) 2011-02-17
JP2015173447A (ja) 2015-10-01
BR112012002988B1 (pt) 2021-08-17
EP2465164B1 (de) 2020-01-01
PL2465164T3 (pl) 2020-06-01
JP6007272B2 (ja) 2016-10-12
EP2465164A1 (de) 2012-06-20
US20120086614A1 (en) 2012-04-12
KR20160128421A (ko) 2016-11-07
JP2013502122A (ja) 2013-01-17
EA201270276A1 (ru) 2012-07-30
US9196949B2 (en) 2015-11-24
KR101744467B1 (ko) 2017-06-07
CN102473995B (zh) 2017-03-22
KR20120042970A (ko) 2012-05-03
PT2465164T (pt) 2020-02-04
BR112012002988A2 (pt) 2016-04-19
ES2773013T3 (es) 2020-07-09
CN102473995A (zh) 2012-05-23
DE202009018455U1 (de) 2011-12-06
EA026919B1 (ru) 2017-05-31

Similar Documents

Publication Publication Date Title
EP2465164B1 (de) Scheibe mit elektrisch leitfähigen strukturen
EP2695233B1 (de) Flachleiter-anschlusselement für eine antennenstruktur
DE69932930T2 (de) Scheibenantenne
DE69503595T2 (de) Glasantenne für Fahrzeugscheibe
DE69307365T2 (de) Transparente Scheibenantenne
DE19832228C2 (de) Antennenscheibe für Kraftfahrzeuge
EP3235339B1 (de) Elektrisch beheizbare antennenscheibe sowie herstellungsverfahren hierfür
EP2580807B1 (de) Antennenanordnung mit verbessertem signal/rauschverhältnis
WO2016162251A1 (de) Fahrzeugantennenscheibe
EP3189706B1 (de) Scheibe mit elektrischem heizbereich
EP2936925A1 (de) Scheibe mit elektrischer heizschicht
EP2380234A1 (de) Transparente, flächenhaft ausgeführte antenne, geeignet für das senden und empfangen elektromagnetischer wellen, verfahren zu ihrer herstellung und ihre verwendung
EP3132656B2 (de) Transparente scheibe mit heizbeschichtung
EP2795720B1 (de) Verbundscheibe mit antennenstruktur und integrierter schaltfläche
DE112014006587T5 (de) Windschutzscheibenantenne
EP2572403B1 (de) Bandbreitenoptimierte antenne durch hybriden aufbau aus flächen- und linienstrahler
EP3949007A1 (de) Antennenscheibe
DE4237818C3 (de) Scheibenantenne für Kraftfahrzeuge
DE202018006266U1 (de) Fahrzeugscheibe mit einem Transponder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035986.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13377806

Country of ref document: US

Ref document number: 4980/KOLNP/2011

Country of ref document: IN

Ref document number: 2010739601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012524186

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003731

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201270276

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012002988

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012002988

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120209