[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011004862A1 - シリコン精製装置およびシリコン精製方法 - Google Patents

シリコン精製装置およびシリコン精製方法 Download PDF

Info

Publication number
WO2011004862A1
WO2011004862A1 PCT/JP2010/061612 JP2010061612W WO2011004862A1 WO 2011004862 A1 WO2011004862 A1 WO 2011004862A1 JP 2010061612 W JP2010061612 W JP 2010061612W WO 2011004862 A1 WO2011004862 A1 WO 2011004862A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
heat insulating
silicon
insulating lid
carbon composite
Prior art date
Application number
PCT/JP2010/061612
Other languages
English (en)
French (fr)
Inventor
将之 松本
隆二 南野
亮一 杉岡
美穂 北條
聡 山根
輝明 肥後
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CA2767507A priority Critical patent/CA2767507A1/en
Priority to US13/382,419 priority patent/US20120103020A1/en
Priority to EP10797173A priority patent/EP2452919A1/en
Priority to CN2010800307096A priority patent/CN102471072A/zh
Publication of WO2011004862A1 publication Critical patent/WO2011004862A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor

Definitions

  • the present invention relates to a silicon purification apparatus and a silicon purification method.
  • High-purity silicon used in semiconductor integrated circuits and the like is made from metal silicon having a purity of about 98% to 99% obtained by carbon reduction of silica, and trichlorosilane (SiHCl 3 ) is obtained by a chemical method. After being synthesized, purified by distillation, and then reduced, high-purity silicon of about 11N (Eleven-Nine) is obtained (Siemens method). However, this high-purity silicon inevitably becomes an expensive material because of the complicated manufacturing plant and the large amount of energy used for reduction.
  • the purity required for silicon used in the production of solar cells is about 6N. Therefore, non-standard products of high-purity silicon such as those for semiconductor integrated circuits become excessively high quality for solar cells.
  • impurities to be removed from metal silicon impurities such as phosphorus having a vapor pressure higher than that of silicon can be removed by holding in a vacuum in a molten state (hereinafter, sometimes referred to as a vacuum purification method). It is known that there is.
  • Patent Document 1 states that “a graphite crucible containing silicon in a vacuum container equipped with a vacuum pump, and a heating device for heating the crucible. There is disclosed a “silicon purification apparatus” installed at a position covering the side and bottom surfaces. Further, Patent Document 1 discloses that a heat retaining member is disposed on the upper surface of the crucible for the purpose of reducing the difference in temperature between the upper and lower sides of the molten silicon, and the material thereof is basically a heat insulating material such as graphite felt. And that it is preferable to have a structure in which the lower and side surfaces are covered with a dense graphite member (see FIG. 5).
  • the present inventors are examining a silicon purification (dephosphorization) process by a vacuum purification method using an experimental apparatus for silicon purification comprising a crucible 10, a heat retaining member 50 and a heating device 30 as shown in FIG.
  • an experimental apparatus for silicon purification comprising a crucible 10, a heat retaining member 50 and a heating device 30 as shown in FIG.
  • heat dissipation from the molten silicon cannot be effectively suppressed, and a temperature difference occurs in the vertical direction of the crucible.
  • FIG. 5 is a schematic cross-sectional view showing an example of the silicon purification apparatus 400 having the crucible 10 provided with the conventional heat retaining member 50.
  • molten silicon 20 is held in the crucible 10, and a state in which this is heated by the heating device 30 is shown.
  • the outer periphery of the side surface of the crucible 10 is covered with the side surface heat insulating material 40.
  • the heat retaining member 50 is disposed on the upper surface of the crucible 10.
  • the heat retaining member 50 is a flat plate member having a structure in which a part of the carbon felt 551 is covered with a carbon composite material 552.
  • the opening 60 penetrating the heat retaining member 50 is an opening provided for discharging silicon vapor containing molten silicon impurities (mainly phosphorus) to the outside of the crucible in the vacuum purification method.
  • Silicon vapor containing molten silicon impurities passes through a boundary portion (indicated by reference numeral A in FIG. 5) between the heat retaining member 50 and the crucible 10 and comes into contact with the heat insulating material 40 on the side surface, and agglomerates here to cause a side surface. Since the heat insulating property of the upper end portion of the heat insulating material 40 (near the boundary with the heat retaining member 50) is lowered, a temperature difference occurs in the vertical direction of the crucible.
  • the heat insulating material 40 on the side surface is made of carbon felt
  • the heat insulating material reacts with silicon vapor, so that the heat insulating property is significantly reduced.
  • Problem 2 Since the carbon composite has a higher thermal conductivity than the carbon felt, in the conventional structure in which the upper end surface of the crucible 10 is in contact with the carbon composite material 552, the crucible 10 is transferred by heat transfer from the crucible 10 to the heat retaining member 50. This causes a temperature difference in the vertical direction.
  • FIG. 5 the conceptual diagram of the generation
  • the heating device 30 is an induction heating device
  • the magnetic field generated from the high-frequency coil is weak at both ends of the coil, and the lower end of the crucible 10 is unlikely to become low temperature due to heat conduction from the molten silicon 20,
  • the temperature difference in the vertical direction of the crucible 10 becomes significant.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon refining apparatus and a silicon refining method that can suppress the temperature difference in the vertical direction of the crucible.
  • the silicon purification apparatus of the present invention is a silicon purification apparatus comprising a crucible capable of holding molten silicon, a heat insulating lid that can be installed above the crucible, and a heating device for heating the molten silicon in a vacuum container,
  • the crucible has a first heat insulating material on the outer peripheral portion of the crucible, and the heat insulating cover is a plate member made of carbon felt, and at least both main surfaces are provided with a carbon composite material, and the heat insulating cover penetrates between both main surfaces.
  • the carbon composite material of the main surface on the crucible side of the heat insulating lid is installed so as to cover the upper surface of the first heat insulating material in a state where the opening to be formed is formed and the heat insulating lid is installed on the upper surface of the crucible.
  • the silicon purification apparatus of the present invention is a silicon purification apparatus comprising a crucible capable of holding molten silicon, a heat insulating lid that can be installed above the crucible, and a heating device for heating the molten silicon in a vacuum vessel.
  • the crucible has a first heat insulating material on the outer peripheral portion of the crucible, the heat insulating lid is a plate member made of carbon felt, and at least both main surfaces are provided with a carbon composite material, and the heat insulating lid is between the two main surfaces.
  • the silicon refining apparatus is characterized in that the second heat insulating material is installed on the upper surface of the crucible so that the upper surface of the crucible and the heat insulating lid are not in direct contact with each other.
  • the silicon purification apparatus of the present invention includes a crucible that can hold molten silicon, a heat insulating lid that can be installed above the crucible, and a heating device that heats the molten silicon in a vacuum container.
  • a silicon refining device having a first heat insulating material on the outer peripheral portion of a side surface of a crucible, and a heat insulating lid being a plate member made of carbon felt, comprising a carbon composite material on at least both main surfaces, and a heat insulating lid Is formed with an opening penetrating between both main surfaces, and the carbon composite material of the main surface on the crucible side of the heat insulating lid is the upper surface of the first heat insulating material when the heat insulating cover is installed on the crucible upper surface. It is installed so that it may cover and the 2nd heat insulating material is installed in the upper surface of the crucible so that the peripheral upper surface of an opening part and a heat insulation lid may not contact directly.
  • the silicon purifying apparatus of the present invention in yet another aspect, includes a crucible capable of holding molten silicon, a heat insulating lid capable of being installed above the crucible, and a heating device for heating the molten silicon in a vacuum container.
  • a silicon refining device having a first heat insulating material on the outer peripheral portion of the side surface of the crucible, and the heat insulating lid is a plate member made of carbon felt, and at least both main surfaces are provided with a carbon composite material,
  • the lid is formed with an opening penetrating between both main surfaces, and the carbon composite material of the main surface on the crucible side of the heat insulating lid is the upper surface of the first heat insulating material when the heat insulating cover is installed on the upper surface of the crucible.
  • a second heat insulating material is installed on the upper surface of the crucible so that the upper surface of the peripheral edge of the opening and the heat insulating lid do not directly contact each other.
  • the silicon purifying apparatus of the present invention is the silicon purifying apparatus according to any one of the above aspects, that is, an aspect in which the carbon composite material provided on the molten silicon side is installed so as to cover the upper surface of the first heat insulating material. And / or in a mode in which the second heat insulating material is installed on the upper surface of the crucible so that the upper surface of the crucible and the heat insulating lid do not directly contact each other, as a heat insulating lid, Using a heat insulating lid having a protrusion at a position on the inner side of the inner wall, a carbon composite material is provided on the molten silicon side of the protrusion, and in the state where the heat insulating cover is installed on the upper surface of the crucible, the protrusion Is arranged so that the lowermost part of the upper part is located on the molten silicon side with respect to the upper edge of the opening of the crucible.
  • the silicon purification method of the present invention is a silicon purification method using any one of the above-described silicon purification apparatuses, and the inside of the crucible is decompressed by depressurizing the inside of the decompression vessel containing the crucible, the heat insulating lid and the heating device.
  • a method for purifying silicon comprising a step of purifying molten silicon held in a container.
  • the life (continuous usable time) of the crucible in the silicon purification apparatus can be improved.
  • FIG. 1 is a schematic cross-sectional view showing an example of a silicon purification apparatus according to a first embodiment. It is a schematic sectional drawing which shows an example of the silicon refinement
  • FIG. 6 is a schematic cross-sectional view showing an example of a silicon purification apparatus according to a third embodiment. It is a schematic sectional drawing which shows another example of the silicon refinement
  • FIG. 1 is a schematic cross-sectional view showing an example of the silicon purification apparatus of the first embodiment.
  • a crucible 1 capable of holding molten silicon
  • a heat insulating lid 5 that can be installed above the crucible 1
  • the molten silicon are heated in a decompression vessel (not shown).
  • a heating device 3 3.
  • the crucible 1 only needs to have heat resistance capable of holding molten silicon.
  • a crucible made of carbon can be used.
  • the crucible 1 is provided with a first heat insulating material 4 covering the outer periphery of the side surface.
  • the first heat insulating material 4 can be used without particular limitation as long as it is a material having heat insulating properties.
  • a heat insulating lid 5 is disposed above the crucible 1.
  • the heat insulating lid 5 includes a carbon composite material 501a and a carbon composite material 501b on at least both main surfaces of a plate member 502 made of carbon felt.
  • the carbon composite material 501 a is provided on one main surface of the plate-like member 502
  • the carbon composite material 501 b is provided on the other main surface, whereby the plate-like member 502 is sandwiched, and the plate-like member 502.
  • the carbon composite material 501c is provided on the side surface of the material, and the carbon composite material and the plate-like member form a structure (heat insulating lid).
  • the heat insulating lid 5 has an opening 6 penetrating between both main surfaces, through which the silicon vapor is dissipated out of the crucible.
  • the carbon composite material 501a on the lower surface side (the side facing the molten silicon 2) of the plate-like member 502 is placed on the upper surface and the side surface of the crucible when the heat insulating lid 5 is installed above the crucible 1. It installs so that the upper surface of the 1st heat insulating material 4 may be covered.
  • the progress of the phenomenon exemplified as the above-described problem 1 is that the silicon vapor contacts the side heat insulating material 4 through the gap between the heat insulating lid 5 and the crucible 1 and aggregates at the contacted location. Can be suppressed. That is, in the first embodiment, the carbon composite material 501a is installed so as to cover the upper surface of the first heat insulating material 4 on the side surface of the crucible, so that the carbon composite material 501a and the first heat insulating material 4 on the side surface are disposed. If the crucible side contact portion (in the vicinity indicated by symbol D in FIG.
  • the “main surface” means a surface (lower surface C 2 ) that faces the molten silicon 2 in a state where the heat insulating lid 5 is installed on the upper surface of the crucible 1 and an opposing surface ( It is the upper surface C 1 ).
  • the reason why the carbon composite material is arranged not only on the lower surface C 2 but also on the upper surface C 1 is that the silicon vapor coming out of the crucible 1 from the opening 6 through which the heat insulating lid 5 penetrates the upper surface C 1 . The influence cannot be ignored. For example, as such an effect, if the carbon felt plate-like member is not covered with the carbon composite material, the plate-like member may react with the silicon vapor, resulting in a decrease in heat insulation.
  • the carbon composite material of the lower surface C 2 is preferably thin in order to reduce the thermal conductivity, whereas the carbon composite material of the upper surface C 1 has a certain thickness (generally 1 mm to 5 mm so that the shape can be easily maintained and handled. This is because, below, preferably about 2 mm or more and 3 mm or less.
  • FIG. 2 is a schematic sectional view showing an example of the silicon purification apparatus of the second embodiment. Since the configuration other than the arrangement of the heat insulating lid is the same as that of the silicon purification apparatus 100 shown in FIG. 1, the description of the overlapping parts is omitted.
  • the silicon refining device 200 is a silicon refining device in which the second heat insulating material 7 is installed on the upper surface of the crucible 1 so that the upper surface of the crucible 1 and the heat insulating lid 5 are not in direct contact.
  • the carbon composite material 501 a on the main surface on the crucible side of the heat insulating lid 5 is installed so as to indirectly cover the upper surface of the first heat insulating material 4.
  • the second heat insulating material 7 By installing the second heat insulating material 7 on the upper surface portion of the crucible 1, the temperature difference in the vertical direction of the crucible due to the phenomenon illustrated in the above-mentioned problem 2, that is, the heat transfer from the crucible to the heat retaining lid 5 as the heat retaining member. Can be suppressed.
  • the second heat insulating material 7 on the upper surface serves as a barrier against the contact between the first heat insulating material 4 and the silicon vapor, the above-mentioned problem 1 as well as the above-mentioned problem 2 can be solved.
  • the second heat insulating material 7 for example, a heat insulating material formed into a desired shape can be used in addition to the carbon felt.
  • the shape of the second heat insulating material 7 is not particularly limited, but preferably has a width that can cover the upper surface of the crucible 1, and the thickness corresponds to the distance between the upper surface of the crucible 1 and the heat insulating lid 5. For example, it is preferably 5 mm or more and 10 mm or less. By setting it as such thickness, the influence on the heat resistance by silicon vapor
  • 3A and 3B are schematic sectional views showing an example of the silicon purification apparatus of the third embodiment. Since the configuration other than the arrangement of the heat insulating lid is the same as that of the silicon purification apparatus 200 shown in FIG. 2, the description of the overlapping parts is omitted.
  • the heat insulating lid 5 in the silicon purification apparatus 300 of the third embodiment has the protruding portion 8 at a position inside the inner wall of the opening 6 of the crucible 1 in the state where it is installed on the upper surface of the crucible 1.
  • a carbon composite material 801 is provided at least on the molten silicon side, and the lowermost portion of the protrusion 8 (the molten silicon 2 side of the carbon composite material 801 in FIGS. 3A and 3B) is the opening of the crucible 1 in a state where it is installed on the upper surface of the crucible 1.
  • 6 is a silicon refining device, which is arranged so as to be positioned on the molten silicon 2 side with respect to the upper edge.
  • the protrusion 8 includes a heat-resistant material fixture 802 provided to connect the heat insulating lid 5 and the carbon composite material 801.
  • a fixture 802 for example, a carbon composite product is used. Bolts and nuts are exemplified.
  • the above-mentioned problem 1 and problem 2 can be solved, the heat resistance characteristics of the first heat insulating material can be maintained, and variation in heat resistance in the crucible vertical direction can be suppressed.
  • the protrusion 8 functions to block the contact of the silicon vapor with the second heat insulating material 7 on the upper surface of the crucible, the solidification of the silicon vapor in the second heat insulating material 7 can be suppressed. The heat insulation property fall of the heat insulating material 7 can be prevented.
  • the protrusion 8 has a structure in which a third heat insulating material 803 different from the plate-like member 502 made of carbon felt constituting the heat retaining lid 5 is used as a carbon composite constituting the heat retaining lid 5.
  • the structure is formed by sandwiching the material 501a and the carbon composite material 801 provided on the molten silicon 2 side of the protrusion 8 and fixing the side surface with the carbon composite material 804 and the carbon composite material 501d. Also good.
  • the present invention relates to a silicon purification method using the silicon purification apparatus according to any one of the above embodiments.
  • the silicon purification apparatus is provided with a decompression vessel, and the silicon purification method of the present invention removes impurities from the molten silicon held in the crucible by decompressing the interior of the decompression vessel. And refining the raw material silicon.
  • the process include vacuum refining, that is, a method of removing impurities from a molten raw material in a vacuum atmosphere.
  • vacuum refining that is, a method of removing impurities from a molten raw material in a vacuum atmosphere.
  • the raw material is silicon
  • raw material silicon such as metal silicon, P, Al, Ca and the like having a vapor pressure higher than that of silicon
  • a vacuum purification method Specifically, raw material silicon is put into a crucible provided in the silicon refining apparatus and melted by heating using a heating apparatus. After that, for example, by setting the degree of vacuum in the decompression vessel to 100 Pa or less and holding it at a temperature of about 1412 ° C. to 1800 ° C. for a predetermined time, steam containing a relatively large amount of impurities relative to the molten silicon (hereinafter referred to as impurity-containing steam) Evaporate.
  • impurity-containing steam steam containing a relatively large amount of impurities relative to the molten silicon
  • the silicon refining apparatus of the present invention has improved heat resistance in the vertical direction of the crucible, it is thermally stable in such a silicon refining method, and deterioration over time is suppressed. Become. [Example] EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
  • Example 1 Silicon purification (phosphorus removal) was performed using an apparatus in which a crucible and an induction heating apparatus for heating the crucible were installed in a vacuum container whose inside could be decompressed by a vacuum pump.
  • the apparatus configuration was in accordance with FIG. 3A, and the test conditions were as follows.
  • the crucible used is a high-purity graphite crucible manufactured by Toyo Tanso Co., Ltd., and has a cylindrical shape with an outer diameter of 820 mm and a storage portion depth of 750 mm.
  • the side surface of the crucible was covered with a molded heat insulating material having a thickness of 100 mm as the first heat insulating material 4.
  • the heat insulating lid 5 sandwiches a plate-like member 502 made of a carbon felt material having a thickness of 50 mm and a diameter of 920 mm between a carbon composite material 501a and a carbon composite material 501b having a thickness of 1 to 2 mm, and further a carbon composite material 501c is provided on the side surface.
  • the disc was provided and used on the crucible 1.
  • the shape of the opening in the heat insulating lid 5 is shown in FIG. As shown in FIG. 4, the opening 6 was provided so as to include the central portion of the crucible, and the opening area was about 40% of the total area.
  • the carbon composite material 801 of the protruding portion 8 is a disk having an outer diameter of 680 mm and a thickness of 2 mm, and is set so as to enter about 20 mm below the upper surface of the crucible 1 from the heat insulating lid 5 by a graphite bolt and nut fixture 802. did.
  • a ring-shaped carbon felt material having an outer diameter of 820 mm, an inner diameter of 680 mm, and a thickness of 10 to 20 mm was prepared as the second heat insulating material 7 to keep the upper surface warm, and placed between the crucible 1 and the heat insulating lid 5.
  • the input amount was 400 kg.
  • the temperature of the molten silicon 2 was 1650 ° C., and the pressure reduction condition was 1.0 Pa. It was about 480 degreeC when the temperature difference of the upper end part of the crucible 1 and the center part of a height direction was measured in the pressure reduction container.
  • silicon purification metal silicon with an initial phosphorus concentration of 20 ppm by weight, purification to a final phosphorus concentration of 0.1 ppm by weight
  • silicon purification metal silicon with an initial phosphorus concentration of 20 ppm by weight, purification to a final phosphorus concentration of 0.1 ppm by weight
  • the refined molten silicon 2 is discharged from the crucible 1 to form a new metal
  • Example 1 Except for using the heat insulating lid having the shape shown in FIG. 5 as the heat insulating lid, the same apparatus as in the example was used and silicon was purified under the same conditions as in Example 1. The upper end of the crucible and the center in the height direction The temperature difference from the part was about 570 ° C., and the crucible was overheated at the point of use for 14 consecutive days, so the experiment was stopped. This is considered to be caused by the deterioration of the crucible (such as generation of fine cracks) due to the temperature difference in the vertical direction of the crucible.
  • the silicon purification apparatus and the silicon purification method of the present invention can be applied to silicon purification using a crucible.
  • the purification apparatus of the present invention is applicable to the purification of silicon for producing solar cell silicon from metal silicon by a vacuum purification method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

 本発明のシリコン精製装置の第1の態様は、減圧容器内に、溶融シリコン(2)を保持可能な坩堝(1)と、坩堝(1)上方に設置可能な保温蓋(5)と、溶融シリコン(2)を加熱する加熱装置(3)とを具備するシリコン精製装置であって、坩堝(1)の側面外周部に第1の断熱材(4)を有し、保温蓋(5)は、カーボンフェルト製の板状部材(502)であって、少なくとも両主面にカーボンコンポジット材(501a,501b)を備え、保温蓋(5)は両主面間を貫通する開口部(6)が形成されており、保温蓋(5)を坩堝(1)上面に設置した状態において、保温蓋(5)の坩堝(1)側となる主面のカーボンコンポジット材(501a)は、第1の断熱材(4)の上面を覆うように設置されることを特徴とする。

Description

シリコン精製装置およびシリコン精製方法
 本発明はシリコン精製装置およびシリコン精製方法に関する。
 環境問題から石油などの代替として自然エネルギーの利用が注目されている。中でもシリコン半導体の光電変換原理を用いる太陽電池は、太陽エネルギーの電気への変換が容易に行なえる特徴を有する。しかし、太陽電池の普及拡大にはコスト低減、とりわけ、半導体シリコンのコストダウンが必要である。
 半導体集積回路などに用いる高純度シリコンは、珪石を炭素還元して得られる純度98%~99%程度の金属シリコンを原料とするものであって、化学的な方法でトリクロルシラン(SiHCl3)を合成し、これを蒸留法で純化した後、還元することにより、いわゆる11N(イレブン-ナイン)程度の高純度シリコンを得ている(シーメンス法)。しかし、この高純度シリコンは、複雑な製造プラントおよび還元に要するエネルギー使用量が多くなるため、必然的に高価な素材となる。
 一方、太陽電池の製造に用いられるシリコンに要求される純度は約6N程度である。したがって、このような半導体集積回路用などの高純度シリコンの規格外品は、太陽電池用としては過剰な高品質となる。
 そのため、太陽電池の低コスト化に向けて、金属シリコンからの直接的な冶金的精製が試みられている。
 金属シリコンから除去すべき不純物のうち、リンのようにシリコンよりも蒸気圧の高い不純物は、溶融状態で真空中に保持すること(以下、真空精製法と記載する場合がある)によって除去可能であることが知られている。
 一例を挙げると特開2006-232658号公報(特許文献1)には「真空ポンプを具備した減圧容器内に、シリコンを収容する黒鉛製のるつぼと、該るつぼを加熱する加熱装置を該るつぼの側面と底面を覆う位置に設置してなるシリコン精製装置」が開示されている。さらに特許文献1には、シリコン溶湯の上下温度差を減らすことを目的として、坩堝の上面に保温用の部材を配することも開示されており、その材質が基本的に黒鉛フェルト等の断熱材であること、および下側および側面を緻密な黒鉛製部材で覆った構造とすることが好ましいことが記載されている(図5参照)。
特開2006-232658号公報
 本発明者らは図5に示すような坩堝10、保温部材50および加熱装置30からなるシリコン精製用の実験装置を使用して真空精製法によるシリコン精製(脱リン)工程の検討を行なう中で、このような従来型の保温部材構造および配置においては、溶融シリコンからの放熱を効果的に抑制することができず、坩堝の上下方向に温度差が生じるという問題を見出した。
 従来のシリコン精製装置において坩堝の上下方向の温度差が起こる理由について詳細に説明する。上述のように図5は従来の保温部材50を配した坩堝10を有するシリコン精製装置400の一例を示す概略断面図である。図5において、坩堝10に溶融シリコン20が保持されており、これを加熱装置30によって加熱している状態を示している。なお、坩堝10の側面外周は側面断熱材40により覆われている。
 さらに坩堝10の上面には、保温部材50が配されている。保温部材50はカーボンフェルト551の一部をカーボンコンポジット材552で覆った構造を持つ、平板状の部材である。
 なお、保温部材50を貫通する開口部60は、真空精製法において溶融シリコン不純物(主にリン)を含むシリコン蒸気を坩堝外部へ排出するために設けられる開口である。
 本発明者らの検討によれば、図5に示すようなシリコン精製装置400において、以下の2つの問題点が存在することが分かった。
・問題点1:溶融シリコン不純物を含むシリコン蒸気が保温部材50と坩堝10との境界部(図5において符号Aで示す)をつたって側面の断熱材40に接し、ここで凝集することで側面の断熱材40の上端部分(保温部材50との境界付近)の断熱性を低下させるので、坩堝の上下方向において温度差が起こる。特に側面の断熱材40がカーボンフェルト製である場合、該断熱材がシリコン蒸気と反応するので断熱性低下が顕著になる。
・問題点2:カーボンコンポジットはカーボンフェルトに比べて熱伝導率が高いので、坩堝10の上端面とカーボンコンポジット材552が接した従来構造では、坩堝10から保温部材50への熱移動により坩堝10の上下方向の温度差が起こる。図5中に、加熱装置30が誘導加熱装置である場合の磁場の発生範囲Bの概念図を示す。このように、加熱装置30が誘導加熱装置である場合、高周波コイルから発生する磁場はコイル両端部で弱く、また、坩堝10の下端部は溶融シリコン20からの熱伝導により低温になり難いため、坩堝10の上下方向の温度差は顕著になる。
 このように坩堝の上下方向に温度差が生じるとシリコン精製工程中の破損が起こりやすくなり、坩堝の寿命(連続使用期間)が短くなるおそれがある。
 本発明は、上記課題に鑑みてなされたものであり、坩堝の上下方向の温度差を抑制できるシリコン精製装置およびシリコン精製方法を提供することを目的とする。
 本発明のシリコン精製装置は、減圧容器内に、溶融シリコンを保持可能な坩堝と、坩堝上方に設置可能な保温蓋と、溶融シリコンを加熱する加熱装置とを具備するシリコン精製装置であって、坩堝の側面外周部に第1の断熱材を有し、保温蓋は、カーボンフェルト製の板状部材であって、少なくとも両主面にカーボンコンポジット材を備え、保温蓋は両主面間を貫通する開口部が形成されており、保温蓋を坩堝上面に設置した状態において、保温蓋の坩堝側となる主面のカーボンコンポジット材は、第1の断熱材の上面を覆うように設置されることを特徴とするシリコン精製装置である。
 また、本発明のシリコン精製装置は、減圧容器内に、溶融シリコンを保持可能な坩堝と、坩堝上方に設置可能な保温蓋と、溶融シリコンを加熱する加熱装置とを具備するシリコン精製装置であって、坩堝の側面外周部に第1の断熱材を有し、保温蓋は、カーボンフェルト製の板状部材であって、少なくとも両主面にカーボンコンポジット材を備え、保温蓋は両主面間を貫通する開口部が形成されており、坩堝の上面と保温蓋とが直接接触しないように、坩堝の上面に第2の断熱材が設置されることを特徴とするシリコン精製装置である。
 また、本発明のシリコン精製装置は、別の態様において、減圧容器内に、溶融シリコンを保持可能な坩堝と、坩堝上方に設置可能な保温蓋と、溶融シリコンを加熱する加熱装置とを具備するシリコン精製装置であって、坩堝の側面外周部に第1の断熱材を有し、保温蓋は、カーボンフェルト製の板状部材であって、少なくとも両主面にカーボンコンポジット材を備え、保温蓋は両主面間を貫通する開口部が形成されており、保温蓋を坩堝上面に設置した状態において、保温蓋の坩堝側となる主面のカーボンコンポジット材は、第1の断熱材の上面を覆うように設置され、かつ、坩堝の上面に、開口部の周縁上面と保温蓋とが直接接触しないように第2の断熱材が設置されていることを特徴とする。
 また、本発明のシリコン精製装置は、さらに別の態様において、減圧容器内に、溶融シリコンを保持可能な坩堝と、坩堝上方に設置可能な保温蓋と、溶融シリコンを加熱する加熱装置とを具備するシリコン精製装置であって、坩堝の側面外周部に第1の断熱材を有し、保温蓋は、カーボンフェルト製の板状部材であって、少なくとも両主面にカーボンコンポジット材を備え、保温蓋は両主面間を貫通する開口部が形成されており、保温蓋を坩堝上面に設置した状態において、保温蓋の坩堝側となる主面のカーボンコンポジット材は、第1の断熱材の上面を覆うように設置され、かつ、坩堝の上面に、開口部の周縁上面と保温蓋とが直接接触しないように第2の断熱材が設置されているシリコン精製装置である。
 また、本発明のシリコン精製装置は、上記いずれかの態様のシリコン精製装置において、すなわち、溶融シリコン側に備えられるカーボンコンポジット材が、上記第1の断熱材の上面を覆うように設置される態様、および/または坩堝の上面と保温蓋とが直接接触しないように、坩堝の上面に第2の断熱材が設置される態様において、保温蓋として、坩堝上面に設置した状態で坩堝の開口部の内壁よりも内側となる位置に突出部を有しする保温蓋を用い、この突出部の溶融シリコン側にはカーボンコンポジット材が備えられており、保温蓋を坩堝上面に設置した状態において、突出部の最下部が坩堝の開口部の上縁よりも溶融シリコン側に位置するように配置される。
 さらに、本発明のシリコン精製方法は、上記のいずれかのシリコン精製装置を用いたシリコン精製方法であって、坩堝、保温蓋および加熱装置を収納した減圧容器の内部を減圧することにより、坩堝内に保持した溶融シリコンを精製する工程を含む、シリコン精製方法である。
 本発明によれば、坩堝の上下方向の温度差を低減できるので、シリコン精製装置における坩堝の寿命(連続使用可能時間)を向上させることができる。
実施の形態1のシリコン精製装置の一例を示す概略断面図である。 実施の形態2のシリコン精製装置の一例を示す概略断面図である。 実施の形態3のシリコン精製装置の一例を示す概略断面図である。 実施の形態3のシリコン精製装置の他の一例を示す概略断面図である。 実施例における保温蓋の概略平面図である。 従来のシリコン精製装置の一例を示す概略断面図である。
 本発明は上記知見に基づくものであり、以下にその実施の形態について説明する。なお、以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。
 <実施の形態1>
 図1は本実施の形態1のシリコン精製装置の一例を示す概略断面図である。本実施の形態1のシリコン精製装置100には、減圧容器(図示せず)内に、溶融シリコンを保持可能な坩堝1と、坩堝1上方に設置可能な保温蓋5と、溶融シリコンを加熱する加熱装置3とを具備する。
 上記坩堝1は、溶融シリコンを保持することができる耐熱性を備えていればよく、たとえばカーボン製の坩堝を用いることができる。本発明において坩堝1には、図1に示されるように、その側面外周部を覆う第1の断熱材4が設けられる。第1の断熱材4は、断熱性を有する材料であれば特に限定なく用いることができる。
 この坩堝1の上方には保温蓋5が配置される。該保温蓋5は、カーボンフェルト製の板状部材502の少なくとも両主面にカーボンコンポジット材501aおよびカーボンコンポジット材501bを備える。図1においては、板状部材502の一方の主面にカーボンコンポジット材501aが備えられ、他方の主面にカーボンコンポジット材501bが備えられることにより板状部材502が挟持され、また板状部材502の側面にカーボンコンポジット材501cが設けられて、これらのカーボンコンポジット材と板状部材とが構造物(保温蓋)をなす。
 上記保温蓋5には、両主面間を貫通する開口部6が形成されており、この開口部6を通して、シリコン蒸気が坩堝外へ散逸する。
 本実施の形態1において、保温蓋5を坩堝1の上方に設置した状態において、板状部材502の下面側(溶融シリコン2に面する側)となるカーボンコンポジット材501aが、坩堝の上面と側面の第1の断熱材4の上面とを覆うように設置される。
 上記のような構成により、上述の問題点1として例示した、シリコン蒸気が保温蓋5と坩堝1との隙間を伝って側面断熱材4に接し、その接した箇所で凝集するという現象の進行を抑制できる。すなわち、本実施の形態1においては、カーボンコンポジット材501aが坩堝側面の第1の断熱材4の上面までを覆うように設置されているので、カーボンコンポジット材501aと側面の第1の断熱材4の坩堝側接触部分(図1中に符号Dで示す付近)で最初にシリコンが凝固し、この凝固したシリコンが障害となって、また、第1の断熱材4がカーボンフェルト製であれば、シリコンとカーボンの反応も起こることによって、以後のシリコン蒸気の拡散を妨げるので、それ以上の凝固や反応が進みにくいためと考えられる。これに対して図5に例示する従来構造の場合、保温部材50と坩堝10との隙間を通ったシリコン蒸気は一旦開放空間に出るので、側面断熱材40のいろいろな場所から凝固や反応が進むと考えられる。
 なお、本発明において「主面」とは図1に示すように、保温蓋5を坩堝1の上面に設置した状態で、溶融シリコン2に正対する面(下面C2)および、その対向面(上面C1)である。また、下面C2だけではなく上面C1にもカーボンコンポジット材を配置する理由としては、保温蓋5の貫通した開口部6から坩堝1外に出たシリコン蒸気による保温蓋5上面C1への影響が無視できないことが挙げられる。たとえば、このような影響としては、カーボンフェルト製の板状部材がカーボンコンポジット材で被覆されていないと、板状部材がシリコン蒸気と反応して、断熱性が低下する場合がある。また、上面C1にもカーボンコンポジット材を配置することによって、保温蓋5の形状維持や取り扱いが容易になることが挙げられる。このような意味からは、下面C2を被覆するカーボンコンポジット材よりも上面C1を被覆するカーボンコンポジット材の厚さを厚くすることが好ましい。下面C2のカーボンコンポジット材は熱伝導率を減らすために薄い方が好ましいのに対し、上面C1のカーボンコンポジット材は形状維持や取り扱いが容易となるように、ある程度の厚み(一般に1mm以上5mm以下、好ましくは2mm以上3mm以下程度)が必要であるからである。
 <実施の形態2>
 図2に本実施の形態2のシリコン精製装置の一例を示す概略断面図を示す。保温蓋の配置以外の構成は、図1に示すシリコン精製装置100と同様であるため、重複する部分の説明は省略する。
 本実施の形態2のシリコン精製装置200は、坩堝1の上面と保温蓋5とが直接接触しないように、坩堝1の上面に第2の断熱材7が設置されるシリコン精製装置である。保温蓋5の坩堝側となる主面の前記カーボンコンポジット材501aは、第1の断熱材4の上面を間接的に覆うように設置されている。
 坩堝1の上面部分に第2の断熱材7を設置することにより、上述の問題点2に例示した現象、すなわち坩堝から保温部材である保温蓋5への熱移動により坩堝の上下方向の温度差が起こることを抑制できる。
 また、上面の第2の断熱材7は第1の断熱材4とシリコン蒸気とが接することに対する防壁となるので、上記問題点2と同時に上述の問題点1も解決できる。
 ただし、第2の断熱材7としてカーボンフェルトを使用した場合、上述の側面の第1の断熱材4と同様に、時間経過と共にシリコン蒸気と反応して断熱性が低下する。しかしながら、発明者らの検討の範囲においては、側面の第1の断熱材4の断熱性低下が起きると、状況によっては坩堝自体の破損に至る場合があったのに対して、上面の第2の断熱材7の断熱性低下は(好ましくないことであるとはいえ)坩堝の破損原因になることはなかった。
 上記第2の断熱材7は、カーボンフェルト以外に、たとえば所望の形状に成形した断熱材を用いることができる。また、上記第2の断熱材7の形状は特に限定されないが、坩堝1の上面を覆うことができる幅を有することが好ましく、その厚みは、坩堝1上面と保温蓋5までの距離に相当し、たとえば、5mm以上10mm以下とすることが好ましい。このような厚みとすることによって、シリコン蒸気による耐熱性への影響を抑制し、また、第2の断熱材7上に保温蓋5を安定的に配置することがきる。
 <実施の形態3>
 図3Aおよび図3Bに本実施の形態3のシリコン精製装置の一例を示す概略断面図を示す。保温蓋の配置以外の構成は、図2に示すシリコン精製装置200と同様であるため、重複する部分の説明は省略する。
 本実施の形態3のシリコン精製装置300における保温蓋5は、坩堝1上面に設置した状態において坩堝1の開口部6の内壁よりも内側となる位置に突出部8を有し、突出部8の少なくとも溶融シリコン側にはカーボンコンポジット材801を備え、坩堝1上面に設置した状態において突出部8の最下部(図3Aおよび図3Bのカーボンコンポジット材801の溶融シリコン2側)が坩堝1の開口部6上縁よりも溶融シリコン2側に位置するように配置されることを特徴とするシリコン精製装置である。
 なお、図3Aにおいて、突出部8は、保温蓋5とカーボンコンポジット材801とをつなぐために設けられる耐熱性材料の固定具802を含み、このような固定具802としては、たとえばカーボンコンポジット製のボルトおよびナットなどが例示される。
 このような突出部8を設けることにより、上述の問題点1および問題点2が解決され、第1の断熱材の耐熱特性を維持し、坩堝上下方向の耐熱性のばらつきを抑制することができ、かつ、突出部8が坩堝上面の第2の断熱材7に対するシリコン蒸気の接触を遮る働きをするので、第2の断熱材7におけるシリコン蒸気の凝固などが抑制でき、このことにより第2の断熱材7の断熱性低下を防止できる。
 なお、突出部8の構造は、図3Bに例示するように、保温蓋5を構成するカーボンフェルトからなる板状部材502とは異なる第3の断熱材803を、保温蓋5を構成するカーボンコンポジット材501aと突出部8の溶融シリコン2側に設けられたカーボンコンポジット材801にて挟持して、その側面をカーボンコンポジット材804とカーボンコンポジット材501dとにより固定して構造体とする構成であっても良い。
 (シリコン精製方法)
 本発明は、上記いずれかの実施の形態のシリコン精製装置を用いたシリコン精製方法に関する。
 上記シリコン精製装置には上述のように減圧容器が備えられており、本発明のシリコン精製方法には、この減圧容器の内部を減圧することによって、坩堝内に保持した溶融シリコンから不純物を除去して原料シリコンを精製する工程を含む。
 具体的な工程としては、真空精錬、すなわち溶融した原料から真空雰囲気下で不純物を除去する方法を例示することができる。以下、原料がシリコンである場合について述べる。
 一般に、金属シリコンなどの原料シリコンに含まれる不純物のうち、シリコンよりも蒸気圧の高いP、Al、Caなどが真空精製法により除去される。具体的には原料シリコンを上記シリコン精製装置内に設けられた坩堝に投入して、加熱装置を用いた加熱により溶融させる。その後たとえば、減圧容器内の真空度を100Pa以下とし、1412℃~1800℃程度の温度で所定時間保持することによって、不純物を溶融シリコンに対して比較的多く含む蒸気(以下、不純物含有蒸気)の蒸発を行なう。
 本発明のシリコン精製装置は、坩堝の上下方向の耐熱性が改善されたものであるため、このようなシリコンの精製方法において、熱的に安定したものであり、経時劣化が抑制されたものとなる。
[実施例]
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 真空ポンプによって内部を減圧可能とした減圧容器中に坩堝と、坩堝加熱用の誘導加熱装置を設置した装置を用い、シリコン精製(リン除去)を行った。装置構成は図3Aに準じ、試験条件は以下の通りとした。
 使用した坩堝は東洋炭素(株)製の高純度黒鉛坩堝で、外径820mm、収納部深さ750mmの円筒形である。坩堝の側面を第1の断熱材4として、厚さ100mmの成形断熱材で覆った。
 保温蓋5は、厚さ50mm、直径920mmのカーボンフェルト材からなる板状部材502を厚さ1~2mmのカーボンコンポジット材501aとカーボンコンポジット材501bで挟持し、その側面にさらにカーボンコンポジット材501cを備えた円板であり、これを坩堝1上に載置して使用した。保温蓋5における開口部形状を図4に示す。図4にしめすように、開口部6は、坩堝の中心部分を含むように設け、開口面積は全面積のおよそ40%とした。
 突出部8のカーボンコンポジット材801は、外径680mm、厚さ2mmの円板であり、保温蓋5から黒鉛製ボルトとナットの固定具802により、坩堝1上面から約20mm下方に入り込むように設置した。
 また、上面保温のために第2の断熱材7として外径820mm、内径680mm、厚さ10~20mmのリング状カーボンフェルト材を準備し、坩堝1と保温蓋5の間に配置した。
 溶融対象としては、市販の金属シリコンを用い、投入量は400kgとした。
 溶融シリコン2の温度を1650℃、減圧条件を1.0Paとした。減圧容器内において坩堝1の上端部と高さ方向の中央部との温度差を測ると、約480℃であった。
 この温度および減圧条件でシリコン精製(初期リン濃度20重量ppmの金属シリコンを、最終リン濃度0.1重量ppmまで精製)を行ない、精製終了した溶融シリコン2を坩堝1から排出し、新たな金属シリコンを加えるという工程を繰り返したところ、連続25日間使用において坩堝1の全体に問題が見られなかった。
 (比較例1)
 保温蓋として図5に示す形状の保温蓋を用いた以外、実施例と同様の装置を用い、実施例1と同様の条件によりシリコン精製を行ったところ、坩堝の上端部と高さ方向の中央部との温度差が約570℃であり、連続14日間使用時点において、坩堝の過熱が発生したため、実験を中断した。坩堝の上下方向の温度差による坩堝の劣化(細かなクラック生成など)が原因であると考えられる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明のシリコン精製装置およびシリコン精製方法は、坩堝を用いたシリコン精製に適用可能である。特に、本発明の精製装置は金属シリコンから真空精製法により太陽電池用シリコンを製造するシリコンの精製に適用可能である。
 1 坩堝、2 溶融シリコン、3 加熱装置、4 第1の断熱材、5 保温蓋、501a,501b,501c カーボンコンポジット材、502 板状部材、6 開口部、7 第2の断熱材、8 突出部、801 カーボンコンポジット材、802 固定具。

Claims (6)

  1.  減圧容器内に、溶融シリコン(2)を保持可能な坩堝(1)と、前記坩堝(1)上方に設置可能な保温蓋(5)と、溶融シリコン(2)を加熱する加熱装置(3)とを具備するシリコン精製装置であって、
     前記坩堝(1)の側面外周部に第1の断熱材(4)を有し、
     前記保温蓋(5)は、カーボンフェルト製の板状部材(502)であって、少なくとも両主面にカーボンコンポジット材(501a,501b)を備え、
     前記保温蓋(5)は両主面間を貫通する開口部(6)が形成されており、
     前記保温蓋(5)を前記坩堝(1)上面に設置した状態において、前記保温蓋(5)の坩堝(1)側となる主面の前記カーボンコンポジット材(501a)は、前記第1の断熱材(4)の上面を覆うように設置されるシリコン精製装置。
  2.  減圧容器内に、溶融シリコン(2)を保持可能な坩堝(1)と、前記坩堝(1)上方に設置可能な保温蓋(5)と、溶融シリコン(2)を加熱する加熱装置(3)とを具備するシリコン精製装置であって、
     前記坩堝(1)の側面外周部に第1の断熱材(4)を有し、
     前記保温蓋(5)は、カーボンフェルト製の板状部材(502)であって、少なくとも両主面にカーボンコンポジット材(501a,501b)を備え、
     前記保温蓋(5)は両主面間を貫通する開口部(6)が形成されており、
     前記坩堝(1)の上面と前記保温蓋(5)とが直接接触しないように、前記坩堝(1)の上面に第2の断熱材(7)が設置されるシリコン精製装置。
  3.  前記保温蓋(5)を前記坩堝(1)上面に設置した状態において、前記保温蓋(5)の坩堝(1)側となる主面の前記カーボンコンポジット材(501a)は、前記第1の断熱材(4)の上面を覆うように設置されている請求の範囲2に記載のシリコン精製装置。
  4.  減圧容器内に、溶融シリコン(2)を保持可能な坩堝(1)と、前記坩堝(1)上方に設置可能な保温蓋(5)と、溶融シリコン(2)を加熱する加熱装置(3)とを具備するシリコン精製装置であって、
     前記坩堝(1)の側面外周部に第1の断熱材(4)を有し、
     前記保温蓋(5)は、カーボンフェルト製の板状部材(502)であって、少なくとも両主面にカーボンコンポジット材(501a,501b)を備え、
     前記保温蓋(5)は、前記坩堝(1)上面に設置した状態において前記坩堝(1)の開口部の内壁よりも内側となる位置に突出部(8)を有し、
     前記突出部(8)の少なくとも溶融シリコン(2)側にはカーボンコンポジット材(801)を備え、
     前記坩堝(1)上面に設置した状態において前記突出部(8)の最下部が前記坩堝(1)開口部の上縁よりも溶融シリコン(2)側に位置するように配置されるシリコン精製装置。
  5.  前記保温蓋(5)は、前記坩堝(1)上面に設置した状態において前記坩堝(1)の開口部の内壁よりも内側となる位置に突出部(8)を有し、
     前記突出部(8)の少なくとも溶融シリコン(2)側にはカーボンコンポジット材(801)を備え、
     前記坩堝(1)上面に設置した状態において前記突出部(8)の最下部が前記坩堝(1)開口部よりも溶融シリコン(2)側に位置するように配置される、請求の範囲1から3のいずれか記載のシリコン精製装置。
  6.  請求の範囲1から5のいずれかに記載のシリコン精製装置を用いたシリコン精製方法であって、
     前記減圧容器の内部を減圧することにより、前記坩堝(1)内に保持した溶融シリコン(2)を精製する工程を含む、シリコン精製方法。
PCT/JP2010/061612 2009-07-09 2010-07-08 シリコン精製装置およびシリコン精製方法 WO2011004862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2767507A CA2767507A1 (en) 2009-07-09 2010-07-08 Apparatus and method for refining silicon
US13/382,419 US20120103020A1 (en) 2009-07-09 2010-07-08 Apparatus for refining silicon and method for refining silicon
EP10797173A EP2452919A1 (en) 2009-07-09 2010-07-08 Silicon refining device and method
CN2010800307096A CN102471072A (zh) 2009-07-09 2010-07-08 硅纯化装置及硅纯化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009162947A JP5178651B2 (ja) 2009-07-09 2009-07-09 シリコン精製装置およびシリコン精製方法
JP2009-162947 2009-07-09

Publications (1)

Publication Number Publication Date
WO2011004862A1 true WO2011004862A1 (ja) 2011-01-13

Family

ID=43429287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061612 WO2011004862A1 (ja) 2009-07-09 2010-07-08 シリコン精製装置およびシリコン精製方法

Country Status (7)

Country Link
US (1) US20120103020A1 (ja)
EP (1) EP2452919A1 (ja)
JP (1) JP5178651B2 (ja)
KR (1) KR20120041213A (ja)
CN (1) CN102471072A (ja)
CA (1) CA2767507A1 (ja)
WO (1) WO2011004862A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108373A1 (ja) * 2012-01-18 2013-07-25 新日鉄マテリアルズ株式会社 シリコン精製装置及びシリコン精製方法
CN104245580A (zh) * 2012-03-09 2014-12-24 菲罗索拉硅太阳能公司 硅精制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277040A (ja) * 2002-03-19 2003-10-02 Sharp Corp シリコンの精製方法および該方法により精製したシリコンを用いて製造する太陽電池
JP2004217473A (ja) * 2003-01-15 2004-08-05 Sharp Corp シリコンの精製装置、精製方法及びそれらを用いて精製したシリコン
JP2006232658A (ja) 2005-01-26 2006-09-07 Nippon Steel Corp シリコン精製装置及びシリコン精製方法
JP2007191342A (ja) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd シリコンの精製装置及び精製方法
JP2007326749A (ja) * 2006-06-08 2007-12-20 Sharp Corp シリコン精製装置およびシリコン精製方法
JP2008303113A (ja) * 2007-06-08 2008-12-18 Shin Etsu Chem Co Ltd 珪素の一方向凝固方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100570021C (zh) * 2007-07-17 2009-12-16 佳科太阳能硅(厦门)有限公司 一种多晶硅的提纯方法及其凝固装置
CN201201903Y (zh) * 2008-09-11 2009-03-04 上海普罗新能源有限公司 多温区硅料提纯与铸锭真空炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277040A (ja) * 2002-03-19 2003-10-02 Sharp Corp シリコンの精製方法および該方法により精製したシリコンを用いて製造する太陽電池
JP2004217473A (ja) * 2003-01-15 2004-08-05 Sharp Corp シリコンの精製装置、精製方法及びそれらを用いて精製したシリコン
JP2006232658A (ja) 2005-01-26 2006-09-07 Nippon Steel Corp シリコン精製装置及びシリコン精製方法
JP2007191342A (ja) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd シリコンの精製装置及び精製方法
JP2007326749A (ja) * 2006-06-08 2007-12-20 Sharp Corp シリコン精製装置およびシリコン精製方法
JP2008303113A (ja) * 2007-06-08 2008-12-18 Shin Etsu Chem Co Ltd 珪素の一方向凝固方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108373A1 (ja) * 2012-01-18 2013-07-25 新日鉄マテリアルズ株式会社 シリコン精製装置及びシリコン精製方法
CN104245581A (zh) * 2012-01-18 2014-12-24 菲罗索拉硅太阳能公司 硅提纯装置和硅提纯方法
JPWO2013108373A1 (ja) * 2012-01-18 2015-05-11 シリシオ フェロソラール ソシエダーダ リミターダ シリコン精製装置及びシリコン精製方法
EP2805915A4 (en) * 2012-01-18 2015-10-07 Silicio Ferrosolar S L U SILICONE CLEANING DEVICE AND SILICONE CLEANING PROCESS
CN104245580A (zh) * 2012-03-09 2014-12-24 菲罗索拉硅太阳能公司 硅精制装置

Also Published As

Publication number Publication date
CA2767507A1 (en) 2012-01-06
JP2011016691A (ja) 2011-01-27
KR20120041213A (ko) 2012-04-30
US20120103020A1 (en) 2012-05-03
JP5178651B2 (ja) 2013-04-10
EP2452919A1 (en) 2012-05-16
CN102471072A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US8900508B2 (en) Method and apparatus for fabricating high purity silicon compacts using silicon powders, and binder-free silicon compact fabricated by the same
US9663872B2 (en) Directional solidification system and method
CN103813983A (zh) 定向凝固系统和方法
CN113755944A (zh) 一种单晶炉热场结构、单晶炉及晶棒
WO2011004862A1 (ja) シリコン精製装置およびシリコン精製方法
KR20130057424A (ko) 열복사 차폐체를 포함하는 지멘스 반응기용 벨 자
JP4328161B2 (ja) シリコン鋳造用鋳型
US10267564B2 (en) Heat treatment container for vacuum heat treatment apparatus
EP2644755B1 (en) Single crystal pulling device and low heat conductive member to be used in single crystal pulling device
US8236066B2 (en) Method and configuration for melting silicon
JP5155708B2 (ja) クロロシラン類含有ガスの水素還元方法およびクロロシラン類の水素還元用装置
JP2010254534A (ja) 坩堝、該坩堝を用いた精製装置および精製方法
JP4545505B2 (ja) シリコンの製造方法
US9617160B2 (en) Cover flux and method for silicon purification
EP2824071B1 (en) Silicon refining device
JP5979664B2 (ja) シリコン結晶鋳造炉
JP4766882B2 (ja) シリコン凝固精製装置及び凝固精製方法
US20120248286A1 (en) Systems For Insulating Directional Solidification Furnaces
JP2013129578A (ja) シリコン製造装置、シリコン精製方法および多結晶シリコンインゴット製造方法
JP2004071172A (ja) 加熱装置およびその製造方法並びに被膜形成装置
WO2013035498A1 (ja) 多結晶シリコンインゴットの製造方法
JP5290931B2 (ja) シリコン結晶体成形装置
TWI413713B (zh) Silicon crystal forming method and forming device thereof
JP5148783B1 (ja) 複合材の製造方法およびシリコンの精製装置
JP2004351489A (ja) 鋳造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030709.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13382419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2767507

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127003296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010797173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201001281

Country of ref document: TH