[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011001641A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2011001641A1
WO2011001641A1 PCT/JP2010/004207 JP2010004207W WO2011001641A1 WO 2011001641 A1 WO2011001641 A1 WO 2011001641A1 JP 2010004207 W JP2010004207 W JP 2010004207W WO 2011001641 A1 WO2011001641 A1 WO 2011001641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
wavelength
optical element
film
Prior art date
Application number
PCT/JP2010/004207
Other languages
French (fr)
Japanese (ja)
Inventor
藤村佳代子
岡田真
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to KR1020117023532A priority Critical patent/KR101129902B1/en
Priority to JP2011502966A priority patent/JPWO2011001641A1/en
Publication of WO2011001641A1 publication Critical patent/WO2011001641A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings

Definitions

  • the present invention relates to an optical element that diffracts a plurality of types of light in a desired diffraction state.
  • Patent Document 1 discloses an optical element using two types of gratings including a subwavelength grating structure.
  • such an optical element has a complicated structure, takes time for manufacturing, and is expensive. Further, it has been difficult to improve the diffraction efficiency of a diffractive optical element that diffracts a plurality of types of light in a desired diffraction state without using a complicated structure.
  • Patent Document 2 discloses an optical element using an optically isotropic material and an optically anisotropic material.
  • Patent Document 3 discloses an optical element that uses a sub-wavelength grating, which is a grating having a period equal to or shorter than the wavelength to be used.
  • An optical element using such a subwavelength grating can be manufactured using, for example, plastic, and thus has an advantage of low material cost. Furthermore, by adjusting the shape of the sub-wavelength grating, it is possible to freely set characteristics including the effective refractive index of the sub-wavelength grating region. However, as will be described in detail later, in order not to diffract the light, it is necessary to make the optical path length difference between the grating convex part and the grating concave part of the sub-wavelength grating an integral multiple of the wavelength of the light passing through, It is necessary to increase the aspect ratio of the sub-wavelength grating, which is the ratio of the grating height to the grating period. Therefore, it is difficult to manufacture an optical element having such a subwavelength grating.
  • An optical element using a sub-wavelength grating that does not generate diffraction with respect to light in the first polarization state and generates diffraction with respect to light in the second polarization state.
  • optical elements that are relatively small in ratio and easy to manufacture.
  • the optical element according to the first aspect of the present invention includes a first belt-like region in which lattice convex portions are arranged in a first cycle and a second belt-like region in which no lattice convex portions are provided on the substrate in a second cycle.
  • the first period is such that the used light cannot cause diffraction
  • the second period is such that the used light can cause diffraction.
  • a first film having a refractive index higher than the refractive index of the material of the grating convex portion is provided on the region and the second belt-shaped region.
  • the first and second wavelength light is a ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-shaped regions.
  • the difference between the ratio and the first and second target values is set to a predetermined value or less, and the height from the substrate surface is set to be equal to or less than the larger one of the first and second wavelengths.
  • the height, the refractive index of the material of the lattice convex portion, the refractive index of the first film, the thickness of the lattice convex portion of the first strip region, the thickness of the concave portion of the first strip region, and the The film thickness of the second strip region is determined.
  • the first film having a refractive index higher than the refractive index of the material of the grating convex portions on the first band-shaped region provided with the sub-wavelength grating and the flat second band-shaped region.
  • the first and second target values are equal.
  • an optical element having high diffraction efficiency that diffracts light of two different wavelengths in the same manner can be obtained.
  • a step is provided between the substrate surface of the first belt-like region and the substrate surface of the second belt-like region, and the light of the first and second wavelengths is short.
  • the first ratio of the light having the longer wavelength is configured to be smaller than the first ratio of the light having the longer wavelength.
  • the first ratio of the light having the shorter wavelength among the light having the first and second wavelengths is configured to be smaller than the first ratio of the light having the longer wavelength.
  • An optical element can be obtained.
  • the first and second wavelengths are any of wavelengths for Blu-ray Disc (BD), Digital Versatile Disc (DVD), and Compact Disc (CD).
  • BD Blu-ray Disc
  • DVD Digital Versatile Disc
  • CD Compact Disc
  • an optical element having high diffraction efficiency that can be used in a device that is also used as a Blu-ray Disc (BD), a digital versatile disc (DVD), or a compact disc (CD) is obtained. .
  • BD Blu-ray Disc
  • DVD digital versatile disc
  • CD compact disc
  • the optical element according to the second aspect of the present invention includes a first belt-like region in which lattice convex portions are arranged in a first cycle and a second belt-like region in which no lattice convex portions are provided on the substrate in a second cycle.
  • the first period is such that the used light cannot cause diffraction
  • the second period is such that the used light can cause diffraction.
  • a first film having a refractive index higher than the refractive index of the material of the lattice convex portion is provided on the region and the second strip region, and the substrate surface of the first strip region and the substrate of the second strip region A step is provided between the surface.
  • the first to third wavelength light is a ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-shaped regions.
  • the difference between the ratio and the first to third target values is set to a predetermined value or less, and the height from the substrate surface is set to be equal to or less than the maximum wavelength of the first to third wavelengths.
  • the refractive index of the material of the lattice convex portion, the refractive index of the first film, the film thickness of the lattice convex portion of the first strip region, the film thickness of the concave portion of the first strip region, the second The thickness of the belt-like region and the size of the step are determined.
  • the first film having a refractive index higher than the refractive index of the material of the grating convex portions on the first band-shaped region provided with the sub-wavelength grating and the flat second band-shaped region.
  • the diffraction efficiency can diffract the light of the first to third wavelengths into a desired state with a structure that is easy to manufacture.
  • a high optical element can be obtained.
  • a structure that is easy to manufacture is, for example, a manufacturing method that uses plastic injection molding, which impedes the achievement of theoretical optical performance such as mold shape accuracy and mold-to-product transferability. A structure that does not cause any problems.
  • the first to third target values are equal.
  • an optical element with high diffraction efficiency that diffracts light of three different wavelengths in the same manner can be obtained.
  • the first ratio of the light having the longer wavelength is the first ratio of the light having the shorter wavelength with respect to the light having the two wavelengths among the light having the first to third wavelengths. It is comprised so that it may become smaller than a ratio.
  • the first ratio of light of the shorter wavelength is greater than the first ratio of light of the longer wavelength.
  • one of the first to third target values is zero.
  • an optical element that prevents any one of the first to third wavelengths of light from being diffracted as much as possible.
  • the first to third wavelengths are any of wavelengths for Blu-ray Disc (BD), Digital Versatile Disc (DVD), and Compact Disc (CD).
  • BD Blu-ray Disc
  • DVD Digital Versatile Disc
  • CD Compact Disc
  • an optical element with high diffraction efficiency that can be used in a device that is also used for a Blu-ray disc (BD), a digital versatile disc (DVD), and a compact disc (CD) is obtained.
  • BD Blu-ray disc
  • DVD digital versatile disc
  • CD compact disc
  • a second film having a refractive index lower than that of the first film is further provided on the first film.
  • the first film and the second film function to reduce the reflectance as compared with the case of only the first film, an optical element with higher diffraction efficiency can be obtained.
  • the first belt-shaped region in which the lattice convex portions are arranged at the first period and the second belt-shaped region in which the lattice convex portions are not provided are arranged on the substrate in the first direction. They are arranged in the second cycle.
  • the first period has such a magnitude that the used light cannot cause diffraction
  • the second period has such a magnitude that the used light can cause diffraction.
  • a film having a refractive index higher than the refractive index of the material of the grating convex portion is provided on the first belt-shaped region and the second belt-shaped region, and the light in the first polarization state passing through the substrate surface,
  • the phase difference between the light passing through the first belt-like region and the light passing through the second belt-like region becomes zero and does not cause diffraction
  • the second polarization state light passing through the substrate surface is the second polarization state.
  • the height of the grating protrusions of the first period and the first band region is such that the phase difference between the light passing through the first band region and the light passing through the second band region causes diffraction.
  • Duty ratio which is the ratio of the grid projections to the space, the height of the grid projections, the refractive index of the material of the grid projections, the refractive index of the film, and the grid projections of the first strip region.
  • the film having a refractive index higher than the refractive index of the material of the lattice convex portions is provided on the first belt-like region provided with the lattice convex portions and the second belt-like region not provided with the lattice convex portions.
  • the wavelength of the light in the first polarization state is different from the wavelength of the light in the second polarization state.
  • an optical element that diffracts only one of two wavelengths of light can be obtained.
  • the wavelength of the light in the first polarization state and the wavelength of the light in the second polarization state are the same.
  • an optical element that diffracts only one of light of one wavelength in two polarization states can be obtained.
  • the material of the lattice projections is plastic, and the material of the film is a metal oxide.
  • an inexpensive optical element that does not use an expensive material such as an optically anisotropic material can be obtained.
  • FIG. 1 is a perspective view of an optical element according to one embodiment of the present invention.
  • FIG. FIG. 2 is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element shown in FIG. 1. It is a graph which shows the relationship between a phase difference and the diffraction efficiency of the 0th-order light and primary light by a binary grating. It is a graph which shows the relationship of the ratio of phase difference, the diffraction efficiency of 1st-order light, and the diffraction efficiency of 0th-order light. It is a perspective view of the optical element by other embodiment of this invention. It is a perspective view of the optical element by other embodiment of this invention. FIG.
  • FIG. 5B is a cross-sectional view of the optical element shown in FIG. 5A in the X direction perpendicular to the substrate surface.
  • FIG. 5B is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element shown in FIG. 5B.
  • 3 is a flowchart illustrating a method for designing an optical element according to an embodiment of the present invention.
  • 1 is a diagram illustrating a configuration of an optical element according to Example 1.
  • FIG. 6 is a diagram illustrating a configuration of an optical element of Example 2.
  • FIG. 6 is a diagram showing a configuration of an optical element of Comparative Example 1.
  • FIG. 6 is a diagram illustrating a configuration of an optical element according to Example 3.
  • FIG. 6 is a diagram illustrating a configuration of an optical element according to Example 4.
  • FIG. 6 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 2.
  • FIG. 6 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 2.
  • FIG. 6 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 2.
  • FIG. 6 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 2.
  • FIG. It is a perspective view of the optical element by other embodiment of this invention.
  • FIG. 18 is a cross-sectional view of the optical element shown in FIG. 17 in the X direction perpendicular to the substrate surface.
  • FIG. 18 is a cross-sectional view of the optical element shown in FIG. 17 in the X direction perpendicular to the substrate surface.
  • FIG. 6 is a cross-sectional view in the X direction perpendicular to the substrate surface when the thickness of the optical element is different from the lattice height. It is a flowchart which shows the design method of the optical element of this embodiment. For example, it is a cross-sectional view in the X direction perpendicular to the substrate surface of a conventional optical element shown in Patent Document 2.
  • 10 is a perspective view of an optical element according to Example 6.
  • FIG. 10 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 5.
  • FIG. 10 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 5.
  • FIG. 10 is a diagram showing still another example of the configuration of an optical system including the optical element of Example 5.
  • FIG. 1 is a perspective view of an optical element 1100 according to one embodiment of the first aspect of the present invention.
  • a plurality of grid protrusions 1103 extending in the Y direction are arranged in the X direction at a first period in a first band-like region (referred to as A region in the figure) on the substrate 1101.
  • the first period is so small that the light passing through the first band-like region cannot cause diffraction.
  • a grating composed of grating convex portions arranged at the first period is referred to as a sub-wavelength grating.
  • a second belt-like region (referred to as “B” region in the figure) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region.
  • the first belt-like region and the second belt-like region are repeatedly arranged in the X direction at the second period.
  • a lattice formed by the first strip region and the second strip region is referred to as a macro lattice.
  • the first belt-like region functions as a convex portion of the macro lattice
  • the second belt-like region functions as a concave portion of the macro lattice.
  • the second period is so large that the light passing through the first band region and the second band region can cause diffraction.
  • FIG. 2 is a cross-sectional view of the optical element shown in FIG. 1 in the X direction perpendicular to the substrate surface.
  • a plurality of lattice convex portions 1103 are arranged on the substrate 1101 in the X direction at the first period.
  • the lattice convex portions are not arranged.
  • a film 1105, a film 1107, and a film 1109 are provided on the lattice convex portion 1103 in the first belt-shaped region, the substrate 1101 in the lattice concave portion in the first belt-shaped region, and the substrate 1101 in the second belt-shaped region, respectively.
  • the thickness of the film is made equal to the height h1 of the lattice projection 1103. Actually, the thickness of the film may be different from the height of the grating protrusion 1103.
  • the space between the substrate surface and the surface at the position of the lattice height h1 parallel to the substrate surface is referred to as S1.
  • the lattice convex portions 1103 and the film 1107 exist at a predetermined ratio in S1.
  • a film 1109 exists in S1.
  • the space between the plane parallel to the substrate surface and the height of the grid height h1 and the plane parallel to the substrate plane and the height of the film 1105 on the grid projection 1103 (h1 + h2) is referred to as S2.
  • the film 1105 on the lattice projection 1103 and the surrounding medium are present at a predetermined ratio in S2.
  • the surrounding medium is air.
  • the refractive indices of light of a certain wavelength ⁇ in S1 of the A region and S1 of the B region are n1A and n1B, respectively, and the refractive indexes of light of that wavelength in the S2 of the A region and S2 of the B region are respectively n2A and Let n2B. Assume that light passes through the A and B regions in a direction perpendicular to the substrate surface.
  • phase difference between the light passing through S1 in the A region and the light passing through S1 in the B region is The phase difference between the light passing through S2 in the A region and the light passing through S2 in the B region
  • total phase difference The phase difference between the light passing through S1 and S2 in the A region and the light passing through S1 and S2 in the B region
  • a predetermined wavelength is a first wavelength
  • a wavelength different from the predetermined wavelength is a second wavelength. It is assumed that light of the first and second wavelengths is used for the optical element.
  • the first wavelength is ⁇ 1
  • the phase difference and the refractive index of the light of the first wavelength are indicated by (1)
  • the second wavelength is ⁇ 2
  • the phase difference and the refractive index of the light of the second wavelength This is indicated by (2).
  • the total phase difference between the first and second wavelengths can be calculated using the equations (4) and (5).
  • N1A, n1B, n2A, n2B, h1 and h2 may be determined so that becomes a desired value.
  • the refractive index n1A of S1 in the A region and the refractive index n2A of S2 in the A region are obtained.
  • S1 and S2 in the A region two types of media are arranged in a lattice pattern with a period equal to or less than the wavelength.
  • the effective refractive index of a region in which two types of media are arranged in a lattice pattern with a period equal to or less than the wavelength is represented by n1 and n2, and the ratio of the volume occupied by n2 to the volume of the entire region If (duty ratio) is represented by f, it can be represented by the following equation.
  • f it is assumed that light is incident on the substrate surface perpendicularly.
  • the refractive index n1A of S1 in the A region is any value between the refractive index of the grating convex 1103 and the refractive index of the film 1107
  • the refractive index n2A of S2 in the A region is , Any value between the refractive index of the film 1105 and the refractive index of air.
  • the refractive index n1A of S1 in the A region can be adjusted by changing the first period, the duty ratio, and the grating height in addition to the material of the grating protrusions 1103 and the film 1107. Further, the refractive index n2A of S2 in the region A can be adjusted by changing the first period, the duty ratio, and the thickness of the film 1105 in addition to the material of the film 1105. Further, according to the equations (6) to (9), the refractive index can be greatly changed by changing the polarization state of the light.
  • phase difference between the light passing through the grating convex portion of the binary grating and the light passing through the grating concave portion can be expressed by the following equation.
  • is the wavelength of light
  • n is the refractive index of the grating protrusion
  • 1 is the refractive index of the medium around the grating
  • d is the height of the grating protrusion.
  • FIG. 3 is a graph showing the relationship between the phase difference and the diffraction efficiency of the zero-order light and the first-order light by the binary grating.
  • the horizontal axis of the graph represents the phase difference between the light that has passed through the grating convex portions and the light that has passed through the grating concave portions. The unit is radians.
  • the vertical axis of the graph represents the diffraction efficiency of the 0th order light and the 1st order light.
  • the diffraction efficiency is the ratio of the amount of diffracted light to the amount of incident light.
  • the diffraction efficiency of the first-order light is 0, and the diffraction efficiency of the 0th-order light has a maximum value of 1.0.
  • the phase difference is ⁇ radians
  • the diffraction efficiency of the first-order light is a maximum value of 0.4
  • the diffraction efficiency of the zero-order light is zero.
  • FIG. 4 is a graph showing the relationship between the phase difference and the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light.
  • the horizontal axis of the graph represents the phase difference between the light that has passed through the grating convex portions and the light that has passed through the grating concave portions.
  • the vertical axis of the graph represents the ratio between the diffraction efficiency of primary light and the diffraction efficiency of zero-order light.
  • the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light is 0 when the phase difference is 0 radians, increases as the phase difference increases, and becomes 1 when the phase difference is about 2 radians. Become. It is 1 when the phase difference is about 4.3 radians, decreases as the phase difference increases, and becomes 0 when the phase difference is 2 ⁇ radians.
  • the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light can be changed. it can.
  • the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light is changed by changing the phase difference between the light that has passed through the A region and the light that has passed through the B region. Can do.
  • FIG. 5A is a perspective view of an optical element 2100 according to one embodiment of the second aspect of the present invention.
  • a plurality of grid protrusions 2103 extending in the Y direction are arranged in the X direction in the first direction in a first band-like region (described as A region in the drawing) on the substrate 2101.
  • the first period is so small that the light passing through the first band-like region cannot cause diffraction.
  • a second belt-like region (referred to as “B” region in the figure) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region.
  • the A region and the B region are repeatedly arranged in the X direction at the second period.
  • a lattice formed by the A region and the B region is referred to as a macro lattice.
  • the second period is so large that the light passing through the first band region and the second band region can cause diffraction.
  • FIG. 6 is a cross-sectional view of the optical element 2100 shown in FIG. 5A in the X direction perpendicular to the substrate surface.
  • a plurality of grating protrusions 2103 are arranged on the substrate 2101 in the X direction at the first period to form a sub-wavelength grating.
  • the lattice convex portions are not arranged.
  • a film 2105, a film 2107, and a film 2109 are provided on the lattice convex portion 2103 in the A region, the substrate 2101 in the lattice concave portion in the A region, and the substrate 2111 in the B region, respectively.
  • the space between the substrate surface in the A region and the surface at the position of the lattice height h1 parallel to the substrate surface is referred to as S1.
  • the lattice convex portions 2103 and the film 2107 are present at a predetermined ratio in S1.
  • the convex portion 2111 of the substrate exists in S1.
  • the space between the surface parallel to the substrate surface and the height of the lattice height h1 and the surface parallel to the substrate surface and the height of the film 2105 on the lattice convex portion 2103 (h1 + h2) is referred to as S2.
  • the film 2105 on the lattice convex portion 2103 and the surrounding medium are present at a predetermined ratio in S2.
  • the surrounding medium is air.
  • the convex portion 2111 of the substrate exists in S2.
  • the space between the surface at the height (h1 + h2) parallel to the substrate surface and the surface at the height (h1 + h2 + h3) of the convex portion 2111 of the substrate parallel to the substrate surface is referred to as S3.
  • air exists in S3.
  • the convex portion 2111 of the substrate exists in S3.
  • a space between the surface at the height (h1 + h2 + h3) of the convex portion 2111 of the substrate parallel to the substrate surface and the surface at the height (h1 + h2 + h3 + h4) of the film 2109 on the convex portion 2111 of the substrate parallel to the substrate surface. Is referred to as S4.
  • air exists in S4.
  • the film 2109 exists in S4.
  • FIG. 5B is a perspective view of an optical element 3100 according to another embodiment of the second aspect of the present invention.
  • a plurality of grating convex portions 3103 extending in the Y direction are arranged in the X direction in the first direction in the first band-like region (A region) on the substrate 3101.
  • the first period is so small that the light passing through the first band-like region cannot cause diffraction.
  • a second belt-like region (B region) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region.
  • the A region and the B region are repeatedly arranged in the X direction at the second period.
  • a lattice formed by the A region and the B region is referred to as a macro lattice.
  • the second period is so large that the light passing through the A region and the B region can cause diffraction.
  • FIG. 7 is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element 3100 shown in FIG. 5B.
  • a plurality of grating convex portions 3103 are arranged in the X direction at the first period on the convex portion 3111 of the substrate to form a sub-wavelength grating.
  • the lattice convex portions are not arranged.
  • a film 3105, a film 3107, and a film 3109 are provided on the lattice convex portion 3103 in the A region, the substrate 3111 in the lattice concave portion in the A region, and the substrate 3101 in the B region, respectively.
  • the space between the substrate surface in the region B and the surface at the position of the thickness (height) h1 of the film 3109 parallel to the substrate surface is referred to as S1.
  • the convex portion 3111 of the substrate exists in S1.
  • the film 3109 exists in S1.
  • the space between the surface parallel to the substrate surface and at the height h1 and the surface parallel to the substrate surface and the height position (h1 + h2) of the convex portion 3111 of the substrate is referred to as S2.
  • the convex portion 3111 of the substrate exists in S2.
  • the region B air exists in S2.
  • the lattice convex portions 3103 and the film 3107 are present at a predetermined ratio in S3.
  • a space between the plane parallel to the substrate surface and the height (h1 + h2 + h3) of the lattice convex portion 3103 and the plane parallel to the substrate surface and the height of the film 3105 on the lattice convex portion 3103 (h1 + h2 + h3 + h4) is S4. Called. In the region A, the film 3105 and air are present at a predetermined ratio in S4. In the region B, air exists in S4.
  • the refractive indexes of light of a certain wavelength ⁇ in S1 of the A region and S1 of the B region are n1A and n1B, respectively, and the refraction of the light of that wavelength in S2 of the A region and S2 of the B region.
  • the refractive index is n2A and n2B, respectively, and the refractive index of light of that wavelength ⁇ in S3 of the A region and S3 of the B region is n3A and n3B, respectively.
  • the refractive indexes of light are n4A and n4B, respectively.
  • the predetermined wavelength is the first wavelength
  • the two wavelengths different from the predetermined wavelength are the second and third wavelengths. It is assumed that light having first to third wavelengths is used for the optical element.
  • the first wavelength is ⁇ 1
  • the phase difference and refractive index of the light of the first wavelength is indicated by (1)
  • the second wavelength is ⁇ 2
  • the phase difference of the light of the second wavelength is The refractive index
  • the third wavelength is ⁇ 3
  • the phase difference and refractive index of the third wavelength light is indicated by (3).
  • the total phase difference of the first to third wavelengths is obtained by the equations (10) to (12).
  • N1A, n1B, n2A, n2B, n3A, n3B, n4A, n4B, h1, h2, h3, and h4 may be determined so that becomes a desired value.
  • FIG. 8 is a flowchart showing a method for designing an optical element according to the first and second aspects of the present invention. It is assumed that materials such as the grating convex portions and the film of the optical element are predetermined.
  • a second period of the macro lattice is determined.
  • the second period of the macro grating is determined from the following equation so that the first-order diffracted light of the light having a predetermined wavelength generates a desired diffraction angle.
  • the predetermined wavelength may be any one of the first to third (first or second) wavelengths.
  • n 'sin ⁇ '-n sin ⁇ N ⁇ / ⁇ (13)
  • n Refractive index of the incident side medium (refractive index of air)
  • n ' refractive index of the output side medium (refractive index of air)
  • incident angle
  • ⁇ ′ diffraction angle
  • N diffraction order
  • wavelength of incident light
  • period of diffraction grating (second period)
  • the upper limit of the first period of the sub-wavelength grating is determined.
  • the upper limit of the first period of the sub-wavelength grating is determined so that diffraction does not occur when ⁇ in Equation (13) is the first period and the exit-side medium n ′ is the refractive index of the substrate.
  • step S1030 of FIG. 8 the duty ratio of the macro lattice is set.
  • 0.5 is set as the initial value.
  • the duty ratio of the macro grating is the ratio of the width in the X direction of the area where the sub-wavelength grating is not installed (B area) to the period of the macro grating (second period).
  • step S1040 of FIG. 8 the area A (sub-wavelength) necessary to obtain the first ratio (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) with respect to the set duty ratio of the macro grating.
  • the phase difference between the light passing through the grating portion) and the light passing through the B region (flat portion) is obtained, and this value is set as the target value of the phase difference.
  • step S1050 in FIG. 8 the polarization direction of the light of each wavelength is determined so that the target value of the phase difference of the light of each wavelength can be easily realized.
  • step S1060 of FIG. 8 the film thickness, the sub-wavelength grating height, the step, and the duty ratio in the sub-wavelength grating are determined, and according to equations (4) and (5) or equations (10) to (12), for example, The phase difference of light of each wavelength is obtained by a rigorous coupled wave analysis method.
  • step S1070 of FIG. 8 it is determined whether or not the difference between the phase difference of the light of each wavelength obtained in step S1060 and the target value of the phase difference is within a predetermined range. If it is within the predetermined range, the process proceeds to step S1080. If not within the predetermined range, the process returns to step S1030.
  • step S1080 of FIG. 8 it is determined whether the maximum height from the substrate surface (referred to as the height of the macro grating) is equal to or less than the maximum wavelength. If it is determined that the wavelength is equal to or less than the maximum wavelength, the process is terminated. If it is not determined that the wavelength is equal to or less than the maximum wavelength, the process returns to step S1030.
  • Example 1 corresponds to the embodiment shown in FIG.
  • the first wavelength is 660 nm
  • the second wavelength is 785 nm.
  • the target value of the first ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the light of the first and second wavelengths is set to 0.067 ⁇ 0.012.
  • the optical element of Example 1 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first and second wavelengths is the target value.
  • FIG. 9 is a diagram illustrating the configuration of the optical element according to the first embodiment.
  • a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film.
  • the refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion.
  • the lattice convex portion is formed by injection molding a polyolefin-based resin.
  • the first film is obtained by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method.
  • the second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) thereon by a vapor deposition method or a sputtering method.
  • the reason why the second film is provided on the first film is to make the reflection of incident light as small as possible and improve the diffraction efficiency.
  • Table 1 is a table showing dimensions of each part of the optical element of Example 1.
  • SWS Sub-Wavelength Structure
  • SWS indicates a sub-wavelength grating portion, that is, an A region.
  • the height of the macro lattice of Example 1 (distance from the substrate surface to the upper surface of the second film) is 306 nm as apparent from Table 1 and FIG. 9, and is below the maximum wavelength (785 nm). is there.
  • Table 2 is a table showing the refractive index of each part of the optical element of Example 1.
  • the light having the first wavelength and the light having the second wavelength are TE waves.
  • Table 3 shows the effective refractive index at each level shown in FIG. L1 is a portion corresponding to S1 of the embodiment shown in FIG. L2 is a portion corresponding to S2 of the embodiment shown in FIG.
  • Table 4 is a table showing the diffraction efficiency of the optical element of Example 1.
  • “0th order” and “1st order” indicate the diffraction efficiencies of 0th order diffracted light and 1 hour diffracted light
  • “1st order / 0th order” indicates the light quantity of the first order diffracted light and the light quantity of the 0th order diffracted light
  • “ ⁇ 1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the ⁇ 1st order diffracted light.
  • Table 5 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
  • the duty ratio of the macro lattice was set to 0.6.
  • the target value 0.067 of the first ratio corresponds to the target value 0.810 [radian] of the phase difference when the duty ratio of the macro grating is 0.6.
  • the second ratio which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light, is 0.907.
  • the second ratio for the second wavelength is 0.874.
  • a binary lattice having the same function as the embodiment (hereinafter referred to as a binary lattice corresponding to the embodiment) is obtained by the following procedure.
  • the range of the grating height of the binary grating is 0 to 2 ⁇ m
  • the range of the duty ratio is 0.1 to 0.9
  • the range in which the first ratio is a predetermined value for all wavelengths is searched
  • a shape that is the center of the range (the center of the allowable range with respect to the grid height and the duty ratio) is a representative shape.
  • the degree of freedom of the phase difference 2 ⁇ there are a plurality of ranges in which the first ratio is a predetermined value for all wavelengths, and the diffraction efficiency is maximized when a plurality of representative shapes are obtained. Choose one.
  • the phase difference between the light beams having the first and second wavelengths is 3.432 and 2.868.
  • the second ratio of the binary grating is 0.708 and 0.707.
  • the second ratio of the light of each wavelength in the first embodiment can be made higher than the second ratio of the corresponding light of the binary grating.
  • the reason is as follows.
  • the phase difference is ⁇ or more in order to make the ratio between the second wavelength having a relatively long wavelength and the diffraction efficiency equal.
  • the target value of the phase difference is reduced by appropriately determining n1A, n1B, n2A, n2B, h1 and h2 according to the equations (4) and (5). Can do.
  • the ratio of the light quantity of the first-order diffracted light and the light quantity of the 0th-order diffracted light of the light of the wavelength for digital versatile disc (DVD) and compact disc (CD) can be made uniform.
  • the sum of the diffraction efficiencies of the folded light, the first-order diffracted light, and the ⁇ 1st-order diffracted light can be maintained at a high value.
  • Example 2 corresponds to the embodiment shown in FIG. 5A.
  • the first wavelength is 405 nm
  • the second wavelength is 660 nm
  • the third wavelength is 785 nm.
  • the target value of the first ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the light of the first to third wavelengths is set to 0.067 ⁇ 0.012.
  • the optical element of Example 2 was designed so that the first ratio of light having the first to third wavelengths was set as the target value according to the flowchart of FIG.
  • FIG. 10 is a diagram illustrating a configuration of the optical element according to the second embodiment.
  • a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film.
  • the refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion.
  • the lattice convex portion is formed by injection molding a polyolefin-based resin.
  • the first film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method.
  • the second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) on the second film by a vapor deposition method or a sputtering method.
  • Table 6 is a table
  • SWS Sub-Wavelength Structure
  • the height of the macro grating of Example 2 (distance from the lower substrate surface to the highest upper surface of the second film) is 342 nm as apparent from Table 6 and FIG. (785 nm) or less.
  • Table 7 is a table
  • the light of the first wavelength is a TE wave
  • the light of the second wavelength and the light of the third wavelength are TM waves.
  • Table 8 is a diagram showing the effective refractive index at each level shown in FIG. L1 is a portion corresponding to S1 in the embodiment shown in FIG. L2 is a portion corresponding to S2 of the embodiment shown in FIG.
  • Table 9 is a table showing the diffraction efficiency of the optical element of Example 2.
  • “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and the 1st order diffracted light
  • “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light
  • “-1st order + 0th order + 1st order” indicates the sum of diffraction efficiencies of 0th order diffracted light, 1st order diffracted light, and ⁇ 1st order diffracted light.
  • Table 10 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
  • the duty ratio of the macro lattice was set to 0.7.
  • the target value 0.067 of the first ratio corresponds to the target value 0.949 [radian] of the phase difference when the duty ratio of the macro grating is 0.7.
  • the second ratio which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light, is 0.869.
  • the second ratio for the second wavelength is 0.830.
  • the second ratio for the third wavelength is 0.843.
  • the phase difference between the first wavelengths is 4.070, and the phase difference between the second and third wavelengths is 2.218.
  • the second ratio of the binary grating is 0.750, 0.727, and 0.777 for the first to third wavelengths of light.
  • the second ratio of the light of each wavelength in Example 2 can be higher than the second ratio of the corresponding light of the binary grating.
  • the reason is as follows.
  • the phase difference of the first wavelength is ⁇ That's it.
  • multi-order diffracted light is easily emitted, and the second ratio is lowered accordingly.
  • n1A, n1B, n2A, n2B, n3A, n3B, n4A, n4B, h1, h2, h3, and h4 are appropriately determined according to the equations (10) to (12).
  • the target value of the phase difference can be reduced.
  • the ratio of the light quantity of the first-order diffracted light and the light quantity of the zero-order diffracted light of the light of the wavelength for Blu-ray disc (BD), digital versatile disc (DVD), and compact disc (CD) is made uniform.
  • the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light can be maintained at a high value.
  • Comparative Example 1 corresponds to Example 2 and uses a binary lattice.
  • the first wavelength is 405 nm
  • the second wavelength is 660 nm
  • the third wavelength is 785 nm.
  • the target value of the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the first wavelength light is set to 0.067 ⁇ 012.
  • the calculation was performed based on the scalar theory.
  • FIG. 11 is a diagram showing the configuration of the optical element of Comparative Example 1.
  • Table 11 is a table showing dimensions and the like of each part of the optical element of Example 1.
  • Table 12 is a table showing the refractive index of each part of the optical element of Comparative Example 1.
  • Table 13 is a table showing the diffraction efficiency of the optical element of Comparative Example 1.
  • “1st order / 0th order” indicates the ratio of the light amount of the 1st order diffracted light and the light amount of 0th order diffracted light
  • “ ⁇ 1st order + 0th order + 1 order” indicates 0th order diffracted light, 1st order diffracted light
  • The sum of the diffraction efficiencies of the first-order diffracted light is shown.
  • the second ratio of light with a wavelength of 405 nm in Comparative Example 1 is about 14 percent lower than the second ratio of light with a wavelength of 405 nm in Example 2 shown in Table 7.
  • Table 14 is a table
  • the first-order / 0th-order diffraction efficiency ratio generated at a phase difference of 4.070 radians of light having a wavelength of 405 nm is equivalent to the first-order / 0th-order diffraction efficiency ratio generated at a phase difference of 2.213 radians.
  • the curve of the 1st / 0th diffraction efficiency ratio in FIG. 4 has a symmetrical shape with respect to the phase difference ⁇ radians, and the following equation is established.
  • the ratio of the light quantity of the first-order diffracted light and the light quantity of the 0th-order diffracted light of the light of the wavelength for Blu-ray disc (BD), digital versatile disc (DVD), and compact disc (CD) can be made uniform.
  • the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light is smaller than the value in Example 2.
  • Example 3 corresponds to the embodiment shown in FIG. 5B.
  • the first wavelength is 405 nm
  • the second wavelength is 660 nm
  • the third wavelength is 785 nm.
  • the target value of the first ratio (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) of the light of the first wavelength is set to 0.067 ⁇ 0.015.
  • the target value of the first ratio of the light of the second wavelength is set to 0 (0.042 or less).
  • the target value of the first ratio of the light of the third wavelength is 0.154 ⁇ 0.015.
  • the optical element of Example 3 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first to third wavelengths is the target value.
  • FIG. 12A is a diagram illustrating a configuration of an optical element according to Example 3.
  • a film is formed on the A region composed of the sub-wavelength grating and the B region composed of the flat portion.
  • the refractive index of the film is assumed to be larger than the refractive index of the grating convex portion.
  • the lattice convex portion is formed by injection molding a polyolefin-based resin.
  • the film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the film by an evaporation method or a sputtering method.
  • Table 15 is a table
  • FIG. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
  • the height of the macro grating of Example 3 (distance from the lower substrate surface to the highest upper surface of the film) is 390 nm, as is apparent from Table 15 and FIG. 12A, and the maximum wavelength (785 nm). It is as follows.
  • Table 16 is a table
  • the light of the first wavelength and the light of the second wavelength are TM waves, and the light of the third wavelength is a TE wave.
  • Table 17 shows the effective refractive index at each level shown in FIG. L3 is a portion corresponding to S3 in the embodiment shown in FIG. L4 is a portion corresponding to S4 of the embodiment shown in FIG.
  • Table 18 is a table showing the diffraction efficiency of the optical element of Example 3.
  • “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and 1 hour diffracted light
  • “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light
  • “ ⁇ 1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the ⁇ 1st order diffracted light.
  • Table 19 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
  • the duty ratio of the macro lattice was set to 0.5.
  • the target value 0.067 of the first ratio corresponds to the target value 0.771 [radian] of the phase difference when the duty ratio of the macro grating is 0.5.
  • the second ratio which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light, is 0.805.
  • the second ratio for the second wavelength is 0.890.
  • the second ratio for the third wavelength is 0.812.
  • the phase difference is 20.515, 12.148, and 10.150 for the first to third wavelengths of light.
  • the second ratio of the binary grating is 0.811, 0.985, and 0.697.
  • the grating height of the binary grating corresponding to Example 3 is 2520 nm, which is more than three times the maximum wavelength (785 nm).
  • Such gratings have manufacturing problems that hinder achievement of theoretical optical performance.
  • the manufacturing problems include, for example, mold shape accuracy and mold-to-product transferability in a manufacturing method using plastic injection molding. In other words, even if such a high grating height is manufactured, the above theoretical optical performance cannot be achieved due to the above manufacturing problems.
  • the second ratio can be set to a completely different value, and the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light can be maintained at a high value.
  • Example 4 uses a grid similar to the embodiment shown in FIG. 5A.
  • the first wavelength is 660 nm and the second wavelength is 785 nm.
  • the target values of the first ratios of the light amounts of the first and second wavelengths of the first-order diffracted light and zero-order diffracted light are 0 (0.042 or less) and 0.067 ⁇ 0.015, respectively.
  • the optical element of Example 4 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first and second wavelengths is the target value.
  • FIG. 12B is a diagram illustrating the configuration of the optical element of Example 4.
  • a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film.
  • the refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion.
  • the lattice convex portion is formed by injection molding a polyolefin-based resin.
  • the first film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method.
  • the second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) on the second film by a vapor deposition method or a sputtering method.
  • the reason why the second film is provided on the first film is to make the reflection of incident light as small as possible and improve the diffraction efficiency.
  • Table 20 is a table
  • FIG. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
  • the height of the macro grating of Example 4 (distance from the lower substrate surface to the highest upper surface of the film) is 440 nm, as is clear from Table 20 and FIG. 12B, and the maximum wavelength (785 nm). It is as follows.
  • Table 21 is a table
  • the light of the first wavelength is a TE wave
  • the light of the second wavelength is a TM wave.
  • Table 22 is a diagram showing the effective refractive index at each level shown in FIG. 12B.
  • L1 is a portion corresponding to S1 in the embodiment shown in FIG.
  • L2 is a portion corresponding to S2 of the embodiment shown in FIG.
  • Table 23 shows the diffraction efficiency of the optical element of Example 4.
  • “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and 1 hour diffracted light
  • “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light
  • “ ⁇ 1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the ⁇ 1st order diffracted light.
  • Table 24 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
  • Table 25 is a table showing the phase difference and the second ratio between the light passing through the A region and the light passing through the B region for the first and second wavelengths in the binary grating corresponding to the fourth embodiment. .
  • the grating height of the binary grating corresponding to Example 4 is 1250 nm, which is 1.5 times or more of the maximum wavelength (785 nm).
  • Such gratings have manufacturing problems that hinder achievement of theoretical optical performance.
  • the manufacturing problems include, for example, mold shape accuracy and mold-to-product transferability in a manufacturing method using plastic injection molding. In other words, even if such a high grating height is manufactured, the above theoretical optical performance cannot be achieved due to the above manufacturing problems.
  • the first ratio of the light of the wavelength for digital versatile disc (DVD) (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) is set for the compact disc (CD). It can be made smaller than the first ratio of the light of the wavelengths, and the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the ⁇ 1st-order diffracted light of both wavelengths can be maintained at a high value.
  • FIGS. 13 and 14 are diagrams illustrating an example of the configuration of an optical system including the optical element 2100 of Example 2.
  • the optical system is a pickup optical system that reads information recorded on the disk 1219 with light of three wavelengths.
  • FIG. 13 shows a light path from the light source to the disk 1219
  • FIG. 14 shows a light path after being reflected by the disk 1219.
  • the optical system includes a laser light source 1201, half-wave plates 1203 and 1205, an optical element 3100, a polarizing filter 1207, a beam splitter 1209 such as a half mirror, a quarter-wave plate 1211, a collimator lens 1213, a mirror 1215, and an objective lens 1217.
  • a laser light source 1201 is a light source of light having three wavelengths of 405 nm, 660 nm, and 785 nm.
  • a wavelength of 405 nm, a wavelength of 785 nm, and a wavelength of 660 nm are defined as a first wavelength to a third wavelength, respectively.
  • the laser light source 1201 selectively emits light having a first wavelength to a third wavelength. It is assumed that all the light with the first to third wavelengths is TE-polarized light.
  • the half-wave plate 1203 is configured to convert the light of the second wavelength and the third wavelength from TE polarized light to TM polarized light and transmit the light of the first wavelength as TE polarized light.
  • the optical element 2100 is, for example, as shown in the second embodiment, and the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light is set to 0.067 ⁇ 0.012 with respect to light of three wavelengths. It is configured.
  • the half-wave plate 1205 converts the light of the second wavelength and the third wavelength (0th order diffracted light and ⁇ 1st order diffracted light) from TM polarized light to TE polarized light, and the first wavelength light remains TE polarized light. It is configured to transmit.
  • the polarization filter 1207 is configured to remove noise by blocking light other than TE polarized light.
  • the beam splitter 1209 reflects light of any wavelength that is TE-polarized light (0th order diffracted light and ⁇ 1st order diffracted light).
  • the quarter-wave plate 1211 makes light of any wavelength that is TE-polarized light (zero-order diffracted light and ⁇ first-order diffracted light) circularly polarized light.
  • Light of any wavelength (0th order diffracted light and ⁇ 1st order diffracted light) is converted into parallel light by the collimator lens 1213, reflected by the mirror 1215, and then condensed on the disk 1219 by the objective lens 1217.
  • the 0th-order diffracted light and the ⁇ 1st-order diffracted light are condensed at different positions on the disk 1219, respectively.
  • the 0th-order diffracted light is mainly used for reading data recorded on the disk 1219, and the ⁇ 1st-order diffracted light is used for position control of the lens system with respect to the disk 1219.
  • light of any wavelength (0th order diffracted light and ⁇ 1st order diffracted light) reflected by the disk 1219 is transmitted through the objective lens 1217, the mirror 1215, and the collimator lens 1213, and then by the quarter wavelength plate 1211. Converted to TM polarized light.
  • the beam splitter 1209 transmits light of any wavelength that is TM polarized light (0th order diffracted light and ⁇ 1st order diffracted light).
  • FIG. 15 and 16 are diagrams showing another example of the configuration of the optical system including the optical element 2100 of the second embodiment.
  • the optical system is a pickup optical system that reads information recorded on the disk 1319 with light of three wavelengths.
  • FIG. 15 shows a light path from the light source to the disk 1319
  • FIG. 16 shows a light path after being reflected by the disk 1319.
  • the optical system includes a laser light source 1301, half-wave plates 1303 and 1305, an optical element 2100, a polarizing filter 1307, a beam splitter 1309 such as a half mirror, a quarter-wave plate 1311, a collimator lens 1313, a mirror 1315, and an objective lens 1317. , A condenser lens 1321 and a light receiving element 1323.
  • each optical element functions in the same manner as in the optical system of FIGS.
  • the beam splitter 1309 is configured to transmit light of any wavelength on the forward path and reflect light of any wavelength on the return path.
  • FIG. 17 is a perspective view of an optical element 100 according to one embodiment of the third aspect of the present invention.
  • a plurality of grid protrusions 103 extending in the Y direction are arranged in the X direction in the first direction in a first band-like region (referred to as the first region in the figure) on the substrate 101.
  • the first period is so small that the light passing through the first band-like region cannot cause diffraction.
  • a second belt-like region (described as the second region in the drawing) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region.
  • the first belt-like region and the second belt-like region are repeatedly arranged in the X direction at the second period.
  • the first belt-like region functions as a lattice convex portion
  • the second belt-like region functions as a lattice concave portion.
  • the second period is so large that the light passing through the first band region and the second band region can cause diffraction.
  • the thickness of the film is made equal to the height 103 of the lattice convex portion. Actually, as shown in FIG. 19, the thickness of the film may be different from the height of the grating protrusion 103.
  • the space between the substrate surface and the surface at the lattice height parallel to the substrate surface is referred to as L1.
  • L1 the lattice convex portion 103 and the film 107 are present at a predetermined ratio.
  • a space between a plane parallel to the substrate surface and at a lattice height and a plane parallel to the substrate surface and at a height position of the film 105 on the lattice projection 103 is referred to as U1.
  • the film 105 on the lattice convex portion 103 and the surrounding medium are present at a predetermined ratio.
  • the surrounding medium is air.
  • L2 the space between the substrate surface and the surface at the lattice height parallel to the substrate surface.
  • a film 109 exists in L2.
  • U2 the space between the plane at the lattice height parallel to the substrate surface and the plane at the height of the film 105 on the lattice protrusion 103 parallel to the substrate surface.
  • the height of the film 105 on the lattice convex portion 103 is also equal to the height of the lattice convex portion 103. Let this height be h. Therefore, the thicknesses (heights) of L1, U1, L2, and U2 are all h.
  • n L1 , n U1 , n L2 and n U2 of L1 , U1 , L2 and U2 will be considered. Since only the film 109 exists in L2 , nL2 is the refractive index of the film. Since only air exists in U2 , nU2 is the refractive index of air.
  • the effective refractive index of a region in which two types of media are arranged in a lattice pattern with a period equal to or shorter than the wavelength is expressed by n1 and n2, and n2 with respect to the volume of the entire region.
  • f volume ratio (duty ratio) occupied by
  • the refractive index n L1 of L1 is any value between the refractive index of the grating convex 103 and the refractive index of the film 107
  • the refractive index n U1 of U1 is Any value between the refractive index and the refractive index of air.
  • the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface can be expressed by the following equation.
  • d1 h (n U1 + n L1 ) (14)
  • the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface can be expressed by the following equation.
  • d2 h (n U2 + n L2 ) (15)
  • the optical path length of the light passing through U1 and L1 is the same as the optical path length of the light passing through U2 and L2, so the first Diffraction is not caused by the grating formed by the strip region and the second strip region.
  • n U1 + n L1 n U2 + n L2 (16)
  • the material of the film and the grating convex portion is selected so that the refractive index of the film is higher than the refractive index of the grating convex portion 103. Then, the following relationship is established. n U1 > n U2 (17) n L1 ⁇ n L2 (18)
  • the refractive index of the upper layer U1 of the first band region is larger than the refractive index of the upper layer U2 of the second band region, and the refractive index of the lower layer UL1 of the first band region is the second band shape. It is smaller than the refractive index of the lower layer UL2 of the region. Therefore, Expression (7) can be easily realized by appropriately selecting the material of the film and the lattice convex portion and adjusting the duty ratio of the first band-shaped region.
  • FIG. 20 is a flowchart showing a method for designing the optical element of the present embodiment.
  • a second cycle is determined.
  • the second period is determined from the following equation so that the light in the second polarization state generates a desired diffraction angle.
  • n 'sin ⁇ '-n sin ⁇ N ⁇ / ⁇ (13)
  • n Refractive index of the incident side medium (refractive index of air)
  • n ' refractive index of the output side medium (refractive index of air)
  • incident angle
  • ⁇ ′ diffraction angle
  • N diffraction order
  • wavelength of incident light
  • period of diffraction grating (second period)
  • the incident angle is zero, the diffraction angle is determined only by the second period.
  • step S020 in FIG. 20 the upper limit of the first cycle is determined.
  • the upper limit of the first period is determined to be less than 1/20 of the second period.
  • step S030 of FIG. 20 the first period, the duty ratio, the height of the grating convex portions, and the film thickness are adjusted so that the expression (16) is satisfied for the light in the first polarization state.
  • the lattice convex portions of the first belt-like region, the lattice concave portions of the first belt-like region, and the second In the case where a difference occurs in the film thickness of the belt-shaped region, the relationship between the coating amount of the film material and the film thickness of each part is measured in advance, and the design can be performed using the relationship. By designing in this way, for example, a complicated manufacturing process such as adjusting the coating amount of the film material so as to equalize the film thickness of each portion is not necessary.
  • Step S040 of FIG. 20 is the expression (16) satisfied, that is, whether the phase difference (optical path length difference) of the light passing through the first belt-like region and the second belt-like region is not more than a predetermined value? Judgment is made. If expression (16) is satisfied, the process ends. If expression (16) is not satisfied, the process returns to step S040.
  • FIG. 21 is a cross-sectional view in the X direction perpendicular to the substrate surface of a conventional optical element disclosed in Patent Document 2, for example.
  • the X direction is a direction perpendicular to the direction in which the lattice convex portions extend on the substrate surface.
  • a plurality of lattice convex portions 103 are arranged on the substrate 101 in the X direction with a predetermined period.
  • the predetermined period is such a magnitude that the used light cannot be diffracted by the grating.
  • the lattice convex portions are not arranged.
  • the optical path length dg when light passes through the grating region in the direction perpendicular to the substrate surface can be expressed by the following equation.
  • dg hg ⁇ ng (19)
  • hg is the grating height
  • ng is the effective refractive index of the grating region obtained from the equation (3) or the equation (4).
  • the optical path length of light passing through the grating region obtained from the equation (19) is always greater than the optical path length of light passing through the flat region corresponding to the grating region. growing. Therefore, in order to prevent diffraction from being generated by the grating formed by the grating region and the flat region, the following expression must be satisfied so that the phase difference between the grating region and the flat region is an integral multiple of 2 ⁇ . There is.
  • na the refractive index of air
  • the wavelength of light used
  • m an arbitrary integer.
  • the grating height needs to take a value equal to or larger than the reciprocal of the difference between the refractive index of the grating convex portion and the refractive index of air.
  • the aspect ratio which is the ratio of the grating height to the grating period, becomes large, and it becomes difficult to manufacture the sub-wavelength grating.
  • Example 5 The fifth embodiment has the configuration shown in FIG. 17, and the direction in which the lattice protrusions 103 are arranged is the X direction, which is the same as the direction in which the first belt-like region and the second belt-like region are arranged. .
  • This embodiment includes the X-direction cross section shown in FIG. In other words, the thickness of the film is equal to the height of the grid protrusion 103.
  • Table 26 is a table
  • the unit of length is micrometers.
  • the number on the left side of the refractive index column indicates the refractive index of light having a wavelength of 660 nanometers, and the number on the right side indicates the refractive index of light having a wavelength of 785 nanometers. In the present embodiment, the above-described two-wavelength light is used.
  • the optical element of this example is manufactured by the following method.
  • the lattice projection is formed by injection molding a polyolefin-based resin, and an evaporation material made of thallium oxide (Ta 3 O 5 ) is deposited thereon by an evaporation method or a sputtering method.
  • Table 27 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 785 nanometers.
  • light having a wavelength of 785 nanometers enters the optical element 100 as TM polarized light.
  • TM polarized light it is assumed that the TM-polarized surface is perpendicular to the substrate surface and is in the X direction, and the TE-polarized surface is perpendicular to the substrate surface and is in the Y direction.
  • the phase difference is 0.026 radians (1.50 degrees), which is almost zero, and the optical element of this example allows light of 785 nanometer wavelength (TM polarized light) to pass through without being diffracted.
  • Table 28 is a table showing the refractive indices and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 660 nanometers.
  • light having a wavelength of 660 nanometers enters the optical element 100 as TE polarized light.
  • the phase difference is 0.657 radians (37.6 degrees), and the optical element of this embodiment diffracts light having a wavelength of 660 nanometers (TE polarized light).
  • Table 29 is a table
  • “ratio” indicates the ratio of the first-order diffracted light amount to the zero-order diffracted light amount. The other numerical values indicate the ratio of the amount of diffracted light to the amount of incident light. “Total” indicates the total of the 0th-order diffracted light amount, the 1st-order diffracted light amount, and the ⁇ 1st-order diffracted light amount. In this embodiment, the “ratio” is set to the above numerical value based on the required specification. First-order diffracted light and ⁇ 1st-order diffracted light hardly occur with respect to light having a wavelength of 785 nanometers (TM polarized light).
  • TM polarized light 785 nanometers
  • the optical element of the present embodiment does not diffract the light in the first polarization state (light having a wavelength of 785 nanometers (TM polarization)), and the light in the second polarization state (light having a wavelength of 660 nanometers). (TE polarized light)) is diffracted.
  • FIG. 22 is a perspective view of the optical element according to the second embodiment.
  • the direction in which the lattice protrusions 103 are arranged is the Y direction, and is orthogonal to the direction in which the first and second belt regions are arranged (X direction).
  • the cross section in the Y direction of the first band-like region of the present example is the same as the cross section of the first band-like region of FIG.
  • the arrangement direction of the lattice projections 103 coincides with the arrangement direction of the first belt-like region and the second belt-like region.
  • the arrangement direction of the lattice projections 103 is orthogonal to the arrangement directions of the first belt-like region and the second belt-like region.
  • the thickness of the film is equal to the height of the lattice projection 103.
  • Table 30 is a table
  • the unit of length is micrometer.
  • the number on the left side of the refractive index column indicates the refractive index of light having a wavelength of 660 nanometers, and the number on the right side indicates the refractive index of light having a wavelength of 785 nanometers.
  • the above-described two-wavelength light is used.
  • the optical element of this example is manufactured by the following method.
  • the lattice projection is formed by injection molding a polyolefin-based resin, and an evaporation material made of thallium oxide (Ta 3 O 5 ) is deposited thereon by an evaporation method or a sputtering method.
  • Table 31 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 660 nanometers.
  • light having a wavelength of 660 nanometers enters the optical element 100 as TE polarized light.
  • TE polarized light it is assumed that the TM-polarized surface is perpendicular to the substrate surface and is in the X direction, and the TE-polarized surface is perpendicular to the substrate surface and is in the Y direction.
  • Table 32 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 785 nanometers.
  • light having a wavelength of 785 nanometers enters the optical element 100 as TM polarized light.
  • the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface and the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface Is calculated, the following formula is obtained.
  • the phase difference is 0.648 radians (37.2 degrees), and the optical element of this embodiment diffracts light having a wavelength of 785 nanometers (TM polarization).
  • Table 33 is a table
  • ratio indicates the ratio of the first-order diffracted light amount to the zero-order diffracted light amount.
  • the other numerical values indicate the ratio of the amount of diffracted light to the amount of incident light.
  • Total indicates the total of the 0th-order diffracted light amount, the 1st-order diffracted light amount, and the ⁇ 1st-order diffracted light amount.
  • the “ratio” is set to the above numerical value based on the required specification. First-order diffracted light and ⁇ 1st-order diffracted light hardly occur with respect to light having a wavelength of 660 nanometers (TE polarized light).
  • the optical element of the present embodiment does not diffract the light in the first polarization state (light having a wavelength of 660 nanometers (TE-polarized light)), and the light in the second polarization state (light having a wavelength of 785 nanometers). (TM polarized light)) is diffracted.
  • a one-dimensional grating is arranged in the first band-like region.
  • a two-dimensional grating may be arranged with a first period of a size that does not cause diffraction of light used in the first belt-like region.
  • the duty ratio of the grating in the first belt-shaped region is the ratio of the lattice convex portion to the space of the height of the lattice convex portion in the first belt-shaped region.
  • Comparative Example 2 includes a cross section in the X direction shown in FIG.
  • the lattice region and the flat region are repeatedly arranged in the X direction at the second period on the surface of the substrate.
  • the lattice convex portions 103 extending in the Y direction are arranged in the X direction at the first period.
  • the specification of the lattice is determined so as to satisfy the formula (13) for light having a wavelength of 785 nanometers (TM polarization).
  • Table 34 is a table
  • TM polarized light light having a wavelength of 785 nanometers
  • Table 35 is a table
  • Example 5 and Comparative Example 2 the specifications are determined so that the ratio of the first-order diffracted light amount to the zero-order diffracted light amount is the same.
  • the grating height of Example 4 is 0.097 micrometers, and the aspect ratio of the sub-wavelength grating is 0.334.
  • the grating height of the comparative example is 3.487 micrometers, and the aspect ratio of the sub-wavelength grating is 9.057.
  • the aspect ratio of the sub-wavelength grating of the example is 0.037 times (about 1/27) the aspect ratio of the sub-wavelength grating of the comparative example, so that the optical element can be manufactured very easily.
  • FIG. 23 is a diagram illustrating an example of the configuration of an optical system including the optical element of Example 5.
  • the optical system is a pickup optical system that reads information recorded on the disk 219 with light of two wavelengths.
  • the optical system includes a laser light source 201, half-wave plates 203 and 205, an optical element 100, a polarizing filter 207, a beam splitter 209 such as a half mirror, a quarter-wave plate 211, a collimator lens 213, a mirror 215, and an objective lens 217. , A condenser lens 221 and a light receiving element 223.
  • the laser light source 201 is a light source of two wavelengths, a wavelength of 660 nm and a wavelength of 785 nm.
  • the wavelength 785 nm and the wavelength 660 nm are defined as a first wavelength and a second wavelength, respectively. It is assumed that both the first wavelength light and the second wavelength light emitted from the laser light source 201 are TE polarized light.
  • the half-wave plate 203 converts the first wavelength light from the TE polarized light to the TM polarized light, and transmits the second wavelength light as the TE polarized light.
  • the optical element 100 is, for example, as shown in the first embodiment, and transmits the first wavelength light without diffracting it, and diffracts the second wavelength light.
  • the optical element 100 transmits the first wavelength light as it is to the position of the optical element 100 and diffracts the second wavelength light, and transmits the second wavelength light as it is, and diffracts the first wavelength light.
  • An optical element may be provided.
  • the half-wave plate 205 transmits light having the first wavelength as TM polarized light, and converts light having the second wavelength from TE polarized light to TM polarized light.
  • the polarizing filter 207 removes noise by blocking light other than TM polarized light.
  • the beam splitter 209 reflects light having the first wavelength and the second wavelength, which is TM-polarized light.
  • the quarter-wave plate 211 converts the light having the first wavelength and the second wavelength, which are TM polarized light, into circularly polarized light.
  • the lights having the first wavelength and the second wavelength are converted into parallel light by the collimator lens 213, reflected by the mirror 215, and then condensed on the disk 219 by the objective lens 217.
  • the condensing position of the light of the first wavelength and the condensing position of the light of the second wavelength can be configured differently.
  • the light having the first wavelength and the second wavelength reflected by the disk 219 passes through the objective lens 217, the mirror 215, and the collimator lens 213, and is then converted into TE change by the quarter wavelength plate 211.
  • the beam splitter 209 transmits light of the first wavelength and the second wavelength that are TE polarized light.
  • the light having the first wavelength and the second wavelength which are TE polarized light, is collected on the light collection surface of the light receiving element 223 by the condenser lens 221. Note that, when the TE-polarized light is partially reflected by the beam splitter 209 in the return path, this light is blocked by the polarization filter 207.
  • the half-wave plate 203 converts the first wavelength light from the TE polarized light to the TM polarized light, transmits the second wavelength light as the TE polarized light, and the half-wave plate 205. Is configured to transmit light having the first wavelength as TM polarized light and convert light having the second wavelength from TE polarized light to TM polarized light.
  • the half-wave plate 203 converts the first wavelength light from TE polarized light to TM polarized light and transmits the second wavelength light as TE polarized light.
  • the first wavelength light may be converted from TM polarized light to TE polarized light
  • the second wavelength light may be transmitted as TE polarized light.
  • the polarization filter 207 transmits light having the first wavelength and the second wavelength, which are TE polarized light, and blocks light having the first wavelength and the second wavelength, which are TM polarized light.
  • the beam splitter 209 reflects the light of the first wavelength and the second wavelength, which are TE-polarized light, in the forward path, and transmits the light of the first wavelength and the second wavelength, which are TM-polarized light, in the return path.
  • FIG. 24 is a diagram showing another example of the configuration of an optical system including an optical element according to an embodiment of the present invention.
  • the optical system is a pickup optical system that reads information recorded on the disk 319 with light of two wavelengths.
  • the optical system includes a laser light source 301, half-wave plates 303 and 305, an optical element 100, a polarizing filter 307, a beam splitter 309 such as a half mirror, a quarter-wave plate 311, a collimator lens 313, a mirror 315, and an objective lens 317. , A condenser lens 321 and a light receiving element 323.
  • the beam splitter 209 is configured to transmit light of the first wavelength and the second wavelength in the forward path and reflect light of the first wavelength and the second wavelength in the return path.
  • FIG. 25 is a diagram showing still another example of the configuration of an optical system including an optical element according to an embodiment of the present invention.
  • the optical system is a pickup optical system that reads information recorded on the disk 419 with light of one wavelength.
  • the optical system includes a laser light source 401, an optical element 100, a polarizing filter 407, a beam splitter 409 such as a half mirror, a quarter wavelength plate 411, a collimator lens 413, a mirror 415, an objective lens 417, a condenser lens 421, and a light receiving element 423. including.
  • the laser light source 401 is, for example, a light source of one wavelength having a wavelength of 408 nm.
  • the optical element 100 is configured to diffract TE polarized light and transmit TM polarized light without diffracting, for example, for light of one wavelength.
  • the duty ratio, the height of the grating protrusion, the refractive index of the material of the grating protrusion, the refractive index of the film, and the thickness of the film so that TM polarized light of the above wavelength satisfies the equation (16) Etc.
  • the TE-polarized light As shown in the equations (3) and (4), since the refractive index of the TE-polarized light and the refractive index of the TM-polarized light are different, when the TM-polarized light satisfies the equation (16), the TE-polarized light Of the light does not satisfy Expression (16), and diffraction occurs.
  • the diffracted TE-polarized light passes through the polarization filter 407, is reflected by the beam splitter 409, and reaches the disk 419 via the quarter-wave plate 411, the collimating lens 413, the mirror 415, and the objective lens 417.
  • the light reflected by the disk 419 reaches the light receiving element 423 via the objective lens 417, the mirror 415, the collimating lens 413, the quarter wavelength plate 411, the beam splitter 409 and the condenser lens 421.
  • the TM polarized light transmitted through the optical element 100 as it is is shielded by the polarizing filter 407.
  • TM polarized light since TM polarized light does not change its traveling direction due to diffraction, it is perpendicularly incident on the polarizing filter 407 and effectively shielded from light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

In the disclosed optical element, first belt regions (A regions), with grating protrusions (1103) disposed thereupon with a first period, and second band regions (B regions), which have no grating protrusions, are arranged at a second period on a substrate (1101). The first period is of a size such that light cannot diffract, and the second period is of a size such that light diffracts. Provided on the A and B regions is a first film that has a refraction index higher than that of the material constituting the aforementioned grating protrusions. In the optical element, the polarization state, the first period, the duty ratio of the A regions, the height and the refraction index of the grating protrusions, the refraction index of the first film, and the film thicknesses of the A and B regions are set such that the differences between a first ratio, being the ratio of the amount of first-order diffracted light and the amount of zero-order diffracted light generated by the A and B regions, and a first and a second target value do not exceed prescribed values for light of a first and second wavelength; and such that the greatest height from the substrate surface is less than or equal to the larger of the first and second wavelengths.

Description

[規則37.2に基づきISAが決定した発明の名称] 光学素子[Name of invention determined by ISA based on Rule 37.2] Optical element
 本発明は、複数の種類の光を所望の回折状態で回折させる光学素子に関する。 The present invention relates to an optical element that diffracts a plurality of types of light in a desired diffraction state.
 たとえば、CD用の波長の光とDVD用の波長の光など、複数の種類の光を所望の回折状態で回折させる光学素子が開発されている。たとえば、特許文献1は、サブ波長格子構造を含む2種類の格子を使用した光学素子を開示している。しかし、このような光学素子は、構造が複雑であり、製造の手間がかかりコストが高い。また、複雑な構造を使用せずに、複数の種類の光を所望の回折状態で回折させる回折光学素子の回折効率を向上させることは困難であった。 For example, optical elements that diffract a plurality of types of light in a desired diffraction state, such as light having a wavelength for CD and light having a wavelength for DVD, have been developed. For example, Patent Document 1 discloses an optical element using two types of gratings including a subwavelength grating structure. However, such an optical element has a complicated structure, takes time for manufacturing, and is expensive. Further, it has been difficult to improve the diffraction efficiency of a diffractive optical element that diffracts a plurality of types of light in a desired diffraction state without using a complicated structure.
 他方、CD用の波長の光とDVD用の波長の光など、異なる波長の光の一方を回折させ、他方を回折させないように構成された光学素子が開発されている。一例として、特許文献2は、光学的等方性物質と光学的異方性物質を使用した光学素子を開示している。しかし、このような光学素子には、光学的異方性物質の材料コストが高く、さらに回折構造の両面を保持するための基板が必要となるという問題点がある。特許文献3は、使用する波長以下の周期を備えた格子であるサブ波長格子を使用する光学素子を開示している。このようなサブ波長格子を使用する光学素子は、たとえば、プラスチックを使用して製造できるので、材料コストが低いという利点を有する。さらに、サブ波長格子の形状を調整することによって、サブ波長格子領域の有効屈折率を含む特性を自由に設定することができる。しかし、後で詳細に説明するように、光を回折させないためには、サブ波長格子の格子凸部と格子凹部の光路長差を、通過する光の波長の整数倍とする必要があるので、サブ波長格子の、格子周期に対する格子高さの比であるアスペクト比を大きくする必要がある。したがって、このようなサブ波長格子を備えた光学素子は、製造するのが困難であった。 On the other hand, an optical element has been developed that diffracts one of light of different wavelengths, such as light of a wavelength for CD and light of a wavelength for DVD, and does not diffract the other. As an example, Patent Document 2 discloses an optical element using an optically isotropic material and an optically anisotropic material. However, such an optical element has a problem that the material cost of the optically anisotropic substance is high and a substrate for holding both sides of the diffractive structure is required. Patent Document 3 discloses an optical element that uses a sub-wavelength grating, which is a grating having a period equal to or shorter than the wavelength to be used. An optical element using such a subwavelength grating can be manufactured using, for example, plastic, and thus has an advantage of low material cost. Furthermore, by adjusting the shape of the sub-wavelength grating, it is possible to freely set characteristics including the effective refractive index of the sub-wavelength grating region. However, as will be described in detail later, in order not to diffract the light, it is necessary to make the optical path length difference between the grating convex part and the grating concave part of the sub-wavelength grating an integral multiple of the wavelength of the light passing through, It is necessary to increase the aspect ratio of the sub-wavelength grating, which is the ratio of the grating height to the grating period. Therefore, it is difficult to manufacture an optical element having such a subwavelength grating.
特開2008-257771号公報JP 2008-257771 A 特開2005-141849号公報JP 2005-141849 A 特開2008-257771号公報JP 2008-257771 A
 したがって、複数の種類の光を所望の回折状態で回折させる光学素子であって、製造しやすい構造で回折効率の高い光学素子に対するニーズがある。 Therefore, there is a need for an optical element that diffracts a plurality of types of light in a desired diffraction state and has an easy-to-manufacture structure and high diffraction efficiency.
 また、第1の偏光状態の光に対して、回折を生じることがなく、第2の偏光状態の光に対して回折を生じるサブ波長格子を使用した光学素子であって、サブ波長格子のアスペクト比が比較的小さく、製造するのが容易な光学素子に対するニーズがある。 An optical element using a sub-wavelength grating that does not generate diffraction with respect to light in the first polarization state and generates diffraction with respect to light in the second polarization state. There is a need for optical elements that are relatively small in ratio and easy to manufacture.
 本発明の第1の態様による光学素子は、基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第2の周期で配置し、第1の周期は、使用される光が回折を生じ得ない大きさであり、第2の周期は、使用される光が回折を生じ得る大きさであり、前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設けている。本態様による光学素子において、第1及び第2の波長の光について、前記第1及び第2の帯状領域によって生じる回折の1次回折光の光量と0次回折光の光量との比率である第1の比率と第1及び第2の目標値との差を所定の値以下とし、基板面からの高さが第1及び第2の波長の大きな方の波長以下となるように、前記第1及び第2の波長の光の偏光状態、第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記第1の膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚及び前記第2の帯状領域の膜厚を定めている。 The optical element according to the first aspect of the present invention includes a first belt-like region in which lattice convex portions are arranged in a first cycle and a second belt-like region in which no lattice convex portions are provided on the substrate in a second cycle. The first period is such that the used light cannot cause diffraction, and the second period is such that the used light can cause diffraction. A first film having a refractive index higher than the refractive index of the material of the grating convex portion is provided on the region and the second belt-shaped region. In the optical element according to this aspect, the first and second wavelength light is a ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-shaped regions. The difference between the ratio and the first and second target values is set to a predetermined value or less, and the height from the substrate surface is set to be equal to or less than the larger one of the first and second wavelengths. A polarization state of light having a wavelength of 2; a first period; a duty ratio that is a ratio of the lattice convex portion to a space of the height of the lattice convex portion of the first band-shaped region; The height, the refractive index of the material of the lattice convex portion, the refractive index of the first film, the thickness of the lattice convex portion of the first strip region, the thickness of the concave portion of the first strip region, and the The film thickness of the second strip region is determined.
 本態様の光学素子によれば、サブ波長格子を設けた第1の帯状領域及び平坦な第2の帯状領域上に格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設けることにより、製造しやすい構造で、第1及び第2の波長の光を所望の状態に回折させることのできる、回折効率の高い光学素子が得られる。ここで、製造しやすい構造とは、たとえば、プラスチックの射出成形による製造方法において、金型の形状精度及び金型から製品への転写性など、理論上の光学性能の達成を阻害する、製造上の問題を生じない構造を言う。 According to the optical element of this aspect, the first film having a refractive index higher than the refractive index of the material of the grating convex portions on the first band-shaped region provided with the sub-wavelength grating and the flat second band-shaped region. By providing, an optical element with high diffraction efficiency that can diffract light of the first and second wavelengths to a desired state with a structure that is easy to manufacture can be obtained. Here, a structure that is easy to manufacture is, for example, a manufacturing method that uses plastic injection molding, which impedes the achievement of theoretical optical performance such as mold shape accuracy and mold-to-product transferability. A structure that does not cause any problems.
 本発明の実施形態によれば、前記第1及び第2の目標値が等しい。 According to an embodiment of the present invention, the first and second target values are equal.
 本実施形態によれば、異なる2波長の光を同様に回折させる、回折効率の高い光学素子が得られる。 According to this embodiment, an optical element having high diffraction efficiency that diffracts light of two different wavelengths in the same manner can be obtained.
 本発明の実施形態によれば、前記第1の帯状領域の基板面と前記第2の帯状領域の基板面との間に段差を設け、前記第1及び第2の波長の光のうち、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成されている。 According to an embodiment of the present invention, a step is provided between the substrate surface of the first belt-like region and the substrate surface of the second belt-like region, and the light of the first and second wavelengths is short. The first ratio of the light having the longer wavelength is configured to be smaller than the first ratio of the light having the longer wavelength.
 本実施形態によれば、第1及び第2の波長の光のうち、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成された光学素子が得られる。 According to the present embodiment, the first ratio of the light having the shorter wavelength among the light having the first and second wavelengths is configured to be smaller than the first ratio of the light having the longer wavelength. An optical element can be obtained.
 本発明の実施形態によれば、前記第1及び第2の波長が、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長のいずれかである。 According to an embodiment of the present invention, the first and second wavelengths are any of wavelengths for Blu-ray Disc (BD), Digital Versatile Disc (DVD), and Compact Disc (CD).
 本実施形態によれば、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)のいずれか二つに兼用の装置に使用することのできる、回折効率の高い光学素子が得られる。 According to the present embodiment, an optical element having high diffraction efficiency that can be used in a device that is also used as a Blu-ray Disc (BD), a digital versatile disc (DVD), or a compact disc (CD) is obtained. .
 本発明の第2の態様による光学素子は、基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第2の周期で配置し、第1の周期は、使用される光が回折を生じ得ない大きさであり、第2の周期は、使用される光が回折を生じ得る大きさであり、前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設け、前記第1の帯状領域の基板面と前記第2の帯状領域の基板面との間に段差を設けている。本態様による光学素子において、第1乃至第3の波長の光について、前記第1及び第2の帯状領域によって生じる回折の1次回折光の光量と0次回折光の光量との比率である第1の比率と第1乃至第3の目標値との差を所定の値以下とし、基板面からの高さが第1乃至第3の波長の最大波長以下となるように、前記第1乃至第3の波長の光の偏光状態、第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記第1の膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚、前記第2の帯状領域の膜厚及び前記段差の大きさを定めている。 The optical element according to the second aspect of the present invention includes a first belt-like region in which lattice convex portions are arranged in a first cycle and a second belt-like region in which no lattice convex portions are provided on the substrate in a second cycle. The first period is such that the used light cannot cause diffraction, and the second period is such that the used light can cause diffraction. A first film having a refractive index higher than the refractive index of the material of the lattice convex portion is provided on the region and the second strip region, and the substrate surface of the first strip region and the substrate of the second strip region A step is provided between the surface. In the optical element according to this aspect, the first to third wavelength light is a ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-shaped regions. The difference between the ratio and the first to third target values is set to a predetermined value or less, and the height from the substrate surface is set to be equal to or less than the maximum wavelength of the first to third wavelengths. The polarization state of the light of the wavelength, the first period, the duty ratio that is the ratio of the lattice convex portion to the space of the height of the lattice convex portion of the first band-shaped region, the height of the lattice convex portion , The refractive index of the material of the lattice convex portion, the refractive index of the first film, the film thickness of the lattice convex portion of the first strip region, the film thickness of the concave portion of the first strip region, the second The thickness of the belt-like region and the size of the step are determined.
 本態様の光学素子によれば、サブ波長格子を設けた第1の帯状領域及び平坦な第2の帯状領域上に格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設け、さらに第1及び第2の帯状領域の基板面間に段差を設けることにより、製造しやすい構造で、第1乃至第3の波長の光を所望の状態に回折させることのできる、回折効率の高い光学素子が得られる。ここで、製造しやすい構造とは、たとえば、プラスチックの射出成形による製造方法において、金型の形状精度及び金型から製品への転写性など、理論上の光学性能の達成を阻害する、製造上の問題を生じない構造を言う。 According to the optical element of this aspect, the first film having a refractive index higher than the refractive index of the material of the grating convex portions on the first band-shaped region provided with the sub-wavelength grating and the flat second band-shaped region. Further, by providing a step between the substrate surfaces of the first and second belt-like regions, the diffraction efficiency can diffract the light of the first to third wavelengths into a desired state with a structure that is easy to manufacture. A high optical element can be obtained. Here, a structure that is easy to manufacture is, for example, a manufacturing method that uses plastic injection molding, which impedes the achievement of theoretical optical performance such as mold shape accuracy and mold-to-product transferability. A structure that does not cause any problems.
 本発明の実施形態によれば、前記第1乃至第3の目標値が等しい。 According to an embodiment of the present invention, the first to third target values are equal.
 本実施形態によれば、異なる3波長の光を同様に回折させる、回折効率の高い光学素子が得られる。 According to this embodiment, an optical element with high diffraction efficiency that diffracts light of three different wavelengths in the same manner can be obtained.
 本発明の実施形態によれば、前記第1乃至第3の波長の光のうち2つの波長の光について、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成されている。 According to the embodiment of the present invention, the first ratio of the light having the longer wavelength is the first ratio of the light having the shorter wavelength with respect to the light having the two wavelengths among the light having the first to third wavelengths. It is comprised so that it may become smaller than a ratio.
 本実施形態によれば、前記第1乃至第3の波長の光のうち2つの波長の光について、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成された光学素子が得られる。 According to the present embodiment, for light of two wavelengths among the light of the first to third wavelengths, the first ratio of light of the shorter wavelength is greater than the first ratio of light of the longer wavelength. An optical element configured to be small can be obtained.
 本発明の実施形態によれば、第1乃至第3の目標値のうちの1つがゼロである。 According to the embodiment of the present invention, one of the first to third target values is zero.
 本実施形態によれば、第1乃至第3の波長の光のいずれかをできるだけ回折させないようにする光学素子が得られる。 According to the present embodiment, it is possible to obtain an optical element that prevents any one of the first to third wavelengths of light from being diffracted as much as possible.
 本発明の実施形態によれば、前記第1乃至第3の波長が、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長のいずれかである。 According to an embodiment of the present invention, the first to third wavelengths are any of wavelengths for Blu-ray Disc (BD), Digital Versatile Disc (DVD), and Compact Disc (CD).
 本実施形態によれば、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)に兼用の装置に使用することのできる、回折効率の高い光学素子が得られる。 According to this embodiment, an optical element with high diffraction efficiency that can be used in a device that is also used for a Blu-ray disc (BD), a digital versatile disc (DVD), and a compact disc (CD) is obtained.
 本発明の実施形態によれば、前記第1の膜上に前記第1の膜の屈折率よりも低い屈折率を有する第2の膜をさらに備えている。 According to an embodiment of the present invention, a second film having a refractive index lower than that of the first film is further provided on the first film.
 本実施形態によれば、第1の膜及び第2の膜が、第1の膜のみの場合に比べ反射率を低減するように機能するので、さらに回折効率の高い光学素子が得られる。 According to this embodiment, since the first film and the second film function to reduce the reflectance as compared with the case of only the first film, an optical element with higher diffraction efficiency can be obtained.
 本発明の第3の態様による光学素子は基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第1の方向に第2の周期で配置したものである。前記第1の周期は、使用される光が回折を生じ得ない大きさであり、前記第2の周期は、使用される光が回折を生じ得る大きさである。前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する膜を設け、前記基板面を通過する第1の偏光状態の光の内、前記第1の帯状領域を通過する光と前記第2の帯状領域を通過する光の位相差がゼロとなり回折を生じず、前記基板面を通過する第2の偏光状態の光の内、前記第1の帯状領域を通過する光と前記第2の帯状領域を通過する光の位相差が回折を生じるように、前記第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚及び前記第2の帯状領域の膜厚を定めている。 In the optical element according to the third aspect of the present invention, the first belt-shaped region in which the lattice convex portions are arranged at the first period and the second belt-shaped region in which the lattice convex portions are not provided are arranged on the substrate in the first direction. They are arranged in the second cycle. The first period has such a magnitude that the used light cannot cause diffraction, and the second period has such a magnitude that the used light can cause diffraction. A film having a refractive index higher than the refractive index of the material of the grating convex portion is provided on the first belt-shaped region and the second belt-shaped region, and the light in the first polarization state passing through the substrate surface, The phase difference between the light passing through the first belt-like region and the light passing through the second belt-like region becomes zero and does not cause diffraction, and the second polarization state light passing through the substrate surface is the second polarization state. The height of the grating protrusions of the first period and the first band region is such that the phase difference between the light passing through the first band region and the light passing through the second band region causes diffraction. Duty ratio, which is the ratio of the grid projections to the space, the height of the grid projections, the refractive index of the material of the grid projections, the refractive index of the film, and the grid projections of the first strip region The film thickness of the part, the film thickness of the recess in the first band-like region, and the film thickness of the second band-like region are determined.
 本態様によれば、格子凸部を設けた第1の帯状領域及び格子凸部を設けない第2の帯状領域上に、格子凸部の材料の屈折率よりも高い屈折率を有する膜を設けることにより、第1の偏光状態の光に対して、回折を生じることがなく、第2の偏光状態の光に対して回折を生じるサブ波長格子を使用した光学素子であって、サブ波長格子のアスペクト比が比較的小さく、製造するのが容易な光学素子が得られる。 According to this aspect, the film having a refractive index higher than the refractive index of the material of the lattice convex portions is provided on the first belt-like region provided with the lattice convex portions and the second belt-like region not provided with the lattice convex portions. Thus, an optical element using a sub-wavelength grating that does not generate diffraction with respect to light in the first polarization state and generates diffraction with respect to light in the second polarization state. An optical element having a relatively small aspect ratio and easy to manufacture can be obtained.
 本発明の実施形態による光学素子は、前記第1の偏光状態の光の波長と前記第2の偏光状態の光の波長とが異なる。 In the optical element according to the embodiment of the present invention, the wavelength of the light in the first polarization state is different from the wavelength of the light in the second polarization state.
 本実施形態によれば、2波長の光の一方のみを回折する光学素子が得られる。 According to the present embodiment, an optical element that diffracts only one of two wavelengths of light can be obtained.
 本発明の実施形態による光学素子は、前記第1の偏光状態の光の波長と前記第2の偏光状態の光の波長とが同じである。 In the optical element according to the embodiment of the present invention, the wavelength of the light in the first polarization state and the wavelength of the light in the second polarization state are the same.
 本実施形態によれば、2つの偏光状態の1波長の光のうち一方のみを回折する光学素子が得られる。 According to the present embodiment, an optical element that diffracts only one of light of one wavelength in two polarization states can be obtained.
 本発明の実施形態による光学素子は、前記格子凸部の材料がプラスチックであり、前記膜の材料が金属酸化物である。 In the optical element according to the embodiment of the present invention, the material of the lattice projections is plastic, and the material of the film is a metal oxide.
 本実施形態によれば、光学的異方性材料など高価な材料を使用しない安価な光学素子が得られる。 According to this embodiment, an inexpensive optical element that does not use an expensive material such as an optically anisotropic material can be obtained.
本発明の一つの実施形態による光学素子の透視図である。1 is a perspective view of an optical element according to one embodiment of the present invention. FIG. 図1に示した光学素子の、基板面に垂直なX方向断面図である。FIG. 2 is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element shown in FIG. 1. 位相差とバイナリ格子による0次光及び1次光の回折効率との関係を示すグラフである。It is a graph which shows the relationship between a phase difference and the diffraction efficiency of the 0th-order light and primary light by a binary grating. 位相差と、1次光の回折効率と0次光の回折効率との比の関係を示すグラフである。It is a graph which shows the relationship of the ratio of phase difference, the diffraction efficiency of 1st-order light, and the diffraction efficiency of 0th-order light. 本発明の他の実施形態による光学素子の透視図である。It is a perspective view of the optical element by other embodiment of this invention. 本発明の他の実施形態による光学素子の透視図である。It is a perspective view of the optical element by other embodiment of this invention. 図5Aに示した光学素子の、基板面に垂直なX方向断面図である。FIG. 5B is a cross-sectional view of the optical element shown in FIG. 5A in the X direction perpendicular to the substrate surface. 図5Bに示した光学素子の、基板面に垂直なX方向断面図である。FIG. 5B is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element shown in FIG. 5B. 本発明の実施形態による光学素子の設計方法を示す流れ図である。3 is a flowchart illustrating a method for designing an optical element according to an embodiment of the present invention. 実施例1の光学素子の構成を示す図である。1 is a diagram illustrating a configuration of an optical element according to Example 1. FIG. 実施例2の光学素子の構成を示す図である。6 is a diagram illustrating a configuration of an optical element of Example 2. FIG. 比較例1の光学素子の構成を示す図である。6 is a diagram showing a configuration of an optical element of Comparative Example 1. FIG. 実施例3の光学素子の構成を示す図である。6 is a diagram illustrating a configuration of an optical element according to Example 3. FIG. 実施例4の光学素子の構成を示す図である。6 is a diagram illustrating a configuration of an optical element according to Example 4. FIG. 実施例2の光学素子を含む光学系の構成の一例を示す図である。6 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 2. FIG. 実施例2の光学素子を含む光学系の構成の一例を示す図である。6 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 2. FIG. 実施例2の光学素子を含む光学系の構成の他の例を示す図である。6 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 2. FIG. 実施例2の光学素子を含む光学系の構成の他の例を示す図である。6 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 2. FIG. 本発明の他の実施形態による光学素子の透視図である。It is a perspective view of the optical element by other embodiment of this invention. 図17に示した光学素子の、基板面に垂直なX方向断面図である。FIG. 18 is a cross-sectional view of the optical element shown in FIG. 17 in the X direction perpendicular to the substrate surface. 光学素子の、膜の厚さが格子高さと異なる場合の基板面に垂直なX方向断面図である。FIG. 6 is a cross-sectional view in the X direction perpendicular to the substrate surface when the thickness of the optical element is different from the lattice height. 本実施形態の光学素子の設計方法を示す流れ図である。It is a flowchart which shows the design method of the optical element of this embodiment. たとえば特許文献2に示される、従来の光学素子の、基板面に垂直なX方向断面図である。For example, it is a cross-sectional view in the X direction perpendicular to the substrate surface of a conventional optical element shown in Patent Document 2. 実施例6の光学素子の透視図である。10 is a perspective view of an optical element according to Example 6. FIG. 実施例5の光学素子を含む光学系の構成の一例を示す図である。10 is a diagram illustrating an example of a configuration of an optical system including an optical element of Example 5. FIG. 実施例5の光学素子を含む光学系の構成の別の例を示す図である。FIG. 10 is a diagram illustrating another example of the configuration of an optical system including the optical element of Example 5. 実施例5の光学素子を含む光学系の構成のさらに別の例を示す図である。FIG. 10 is a diagram showing still another example of the configuration of an optical system including the optical element of Example 5.
第1の態様
 図1は、本発明の第1の態様の一実施形態による光学素子1100の透視図である。基板上1101の第1の帯状領域(図においてはA領域と記載する)にY方向に伸びる複数の格子凸部1103が第1の周期でX方向に配置されている。第1の周期は、第1の帯状領域を通過する光が回折を生じ得ない程度に小さい。以下において、第1の周期で配置された格子凸部からなる格子をサブ波長格子と呼称する。基板上には、格子凸部の配置されていない第2の帯状領域(図においてはB領域と記載する)が第1の帯状領域と隣接して配置されている。第1の帯状領域及び第2の帯状領域は、第2の周期でX方向に繰り返し配置されている。第1の帯状領域及び第2の帯状領域によって形成される格子をマクロ格子と呼称する。基板を通過する光に対して、第1の帯状領域は、マクロ格子の凸部として機能し、第2の帯状領域はマクロ格子の凹部として機能する。そして、第2の周期は、第1の帯状領域及び第2の帯状領域を通過する光が、回折を生じ得る程度に大きい。
First Aspect FIG. 1 is a perspective view of an optical element 1100 according to one embodiment of the first aspect of the present invention. A plurality of grid protrusions 1103 extending in the Y direction are arranged in the X direction at a first period in a first band-like region (referred to as A region in the figure) on the substrate 1101. The first period is so small that the light passing through the first band-like region cannot cause diffraction. Hereinafter, a grating composed of grating convex portions arranged at the first period is referred to as a sub-wavelength grating. On the substrate, a second belt-like region (referred to as “B” region in the figure) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region. The first belt-like region and the second belt-like region are repeatedly arranged in the X direction at the second period. A lattice formed by the first strip region and the second strip region is referred to as a macro lattice. For light passing through the substrate, the first belt-like region functions as a convex portion of the macro lattice, and the second belt-like region functions as a concave portion of the macro lattice. The second period is so large that the light passing through the first band region and the second band region can cause diffraction.
 図2は、図1に示した光学素子の、基板面に垂直なX方向断面図である。A領域において、基板1101上に複数の格子凸部1103が第1の周期でX方向に配置されている。B領域において、格子凸部は配置されていない。第1の帯状領域の格子凸部1103、第1の帯状領域の格子凹部の基板1101及び第2の帯状領域の基板1101上には、それぞれ、膜1105、膜1107及び膜1109が設けられている。図2において、以下の説明を簡単にするために膜の厚さは格子凸部1103の高さh1と等しくしている。実際には、膜の厚さは格子凸部1103の高さと異なってもよい。 FIG. 2 is a cross-sectional view of the optical element shown in FIG. 1 in the X direction perpendicular to the substrate surface. In the A region, a plurality of lattice convex portions 1103 are arranged on the substrate 1101 in the X direction at the first period. In the region B, the lattice convex portions are not arranged. A film 1105, a film 1107, and a film 1109 are provided on the lattice convex portion 1103 in the first belt-shaped region, the substrate 1101 in the lattice concave portion in the first belt-shaped region, and the substrate 1101 in the second belt-shaped region, respectively. . In FIG. 2, in order to simplify the following description, the thickness of the film is made equal to the height h1 of the lattice projection 1103. Actually, the thickness of the film may be different from the height of the grating protrusion 1103.
 基板面と基板面に平行で格子高さh1の位置の面の間の空間をS1と呼称する。A領域において、S1には、格子凸部1103と膜1107とが所定の比率で存在する。B領域において、S1には、膜1109が存在する。 The space between the substrate surface and the surface at the position of the lattice height h1 parallel to the substrate surface is referred to as S1. In the A region, the lattice convex portions 1103 and the film 1107 exist at a predetermined ratio in S1. In the region B, a film 1109 exists in S1.
 基板面に平行で格子高さh1の位置の面と基板面に平行で格子凸部1103上の膜1105の高さの位置(h1+h2)の面との間の空間をS2と呼称する。A領域において、S2には、格子凸部1103上の膜1105と周囲の媒質とが所定の比率で存在する。ここで、光学素子1100は空気中に置かれているので、周囲の媒質は空気である。B領域において、S2には、空気が存在する。 The space between the plane parallel to the substrate surface and the height of the grid height h1 and the plane parallel to the substrate plane and the height of the film 1105 on the grid projection 1103 (h1 + h2) is referred to as S2. In the region A, the film 1105 on the lattice projection 1103 and the surrounding medium are present at a predetermined ratio in S2. Here, since the optical element 1100 is placed in the air, the surrounding medium is air. In the region B, air exists in S2.
 A領域のS1及びB領域のS1におけるある波長λの光の屈折率を、それぞれ、n1A及びn1Bとし、A領域のS2及びB領域のS2におけるその波長の光の屈折率を、それぞれ、n2A及びn2Bとする。光が、基板面に垂直な方向にA領域及びB領域を通過すると仮定する。その場合に、A領域のS1を通過する光とB領域のS1を通過する光の位相差を
Figure JPOXMLDOC01-appb-M000001
A領域のS2を通過する光とB領域のS2を通過する光の位相差を
Figure JPOXMLDOC01-appb-M000002
A領域のS1及びS2を通過する光とB領域のS1及びS2を通過する光の位相差(以下、全位相差と呼称する)を
Figure JPOXMLDOC01-appb-M000003
とすると以下の式が成立する。
Figure JPOXMLDOC01-appb-M000004
The refractive indices of light of a certain wavelength λ in S1 of the A region and S1 of the B region are n1A and n1B, respectively, and the refractive indexes of light of that wavelength in the S2 of the A region and S2 of the B region are respectively n2A and Let n2B. Assume that light passes through the A and B regions in a direction perpendicular to the substrate surface. In that case, the phase difference between the light passing through S1 in the A region and the light passing through S1 in the B region is
Figure JPOXMLDOC01-appb-M000001
The phase difference between the light passing through S2 in the A region and the light passing through S2 in the B region
Figure JPOXMLDOC01-appb-M000002
The phase difference between the light passing through S1 and S2 in the A region and the light passing through S1 and S2 in the B region (hereinafter referred to as total phase difference)
Figure JPOXMLDOC01-appb-M000003
Then, the following formula is established.
Figure JPOXMLDOC01-appb-M000004
 ここで、所定の波長を第1の波長とし、所定の波長と異なる波長を第2の波長とする。光学素子に、第1及び第2の波長の光を使用するものとする。 Here, a predetermined wavelength is a first wavelength, and a wavelength different from the predetermined wavelength is a second wavelength. It is assumed that light of the first and second wavelengths is used for the optical element.
 第1の波長をλ1とし、第1の波長の光の位相差及び屈折率であることを(1)で示し、第2の波長をλ2とし、第2の波長の光の位相差及び屈折率であることを(2)で示す。 The first wavelength is λ1, the phase difference and the refractive index of the light of the first wavelength are indicated by (1), the second wavelength is λ2, and the phase difference and the refractive index of the light of the second wavelength. This is indicated by (2).
 そうすると、式(1)乃至(3)から、以下の式が導かれる。
Figure JPOXMLDOC01-appb-M000005
ただし、iは、1または2をあらわすとして、
Figure JPOXMLDOC01-appb-M000006
である。
Then, the following expressions are derived from the expressions (1) to (3).
Figure JPOXMLDOC01-appb-M000005
However, i represents 1 or 2,
Figure JPOXMLDOC01-appb-M000006
It is.
 ここで、第1及び第2の波長の全位相差を所望の値とするには、式(4)及び式(5)により、第1及び第2の波長の全位相差
Figure JPOXMLDOC01-appb-M000007
が所望の値となるように、n1A、n1B、n2A、n2B、h1及びh2を定めればよい。
Here, in order to set the total phase difference between the first and second wavelengths to a desired value, the total phase difference between the first and second wavelengths can be calculated using the equations (4) and (5).
Figure JPOXMLDOC01-appb-M000007
N1A, n1B, n2A, n2B, h1 and h2 may be determined so that becomes a desired value.
 ここで、A領域におけるS1の屈折率n1A及びA領域におけるS2の屈折率n2Aを求める。A領域におけるS1及びS2は、2種類の媒質が波長以下の周期で格子状に配列されている。一般に、2種類の媒質が波長以下の周期で格子状に配列された領域の有効屈折率は、2種類の媒質の屈折率をn1及びn2で表し、全領域の体積に対するn2の占める体積の比率(デューティ比)をfで表すと、以下の式で表せる。ここで、簡単のために光は基板面に垂直に入射すると仮定する。
0次近似式
Figure JPOXMLDOC01-appb-M000008
2次近似式 
Figure JPOXMLDOC01-appb-M000009
Here, the refractive index n1A of S1 in the A region and the refractive index n2A of S2 in the A region are obtained. In S1 and S2 in the A region, two types of media are arranged in a lattice pattern with a period equal to or less than the wavelength. In general, the effective refractive index of a region in which two types of media are arranged in a lattice pattern with a period equal to or less than the wavelength is represented by n1 and n2, and the ratio of the volume occupied by n2 to the volume of the entire region If (duty ratio) is represented by f, it can be represented by the following equation. Here, for the sake of simplicity, it is assumed that light is incident on the substrate surface perpendicularly.
0th order approximation
Figure JPOXMLDOC01-appb-M000008
Second order approximation
Figure JPOXMLDOC01-appb-M000009
 上記の式によれば、A領域におけるS1の屈折率n1Aは、格子凸部1103の屈折率と膜1107の屈折率との間のいずれかの値であり、A領域におけるS2の屈折率n2Aは、膜1105の屈折率と空気の屈折率との間のいずれかの値である。 According to the above formula, the refractive index n1A of S1 in the A region is any value between the refractive index of the grating convex 1103 and the refractive index of the film 1107, and the refractive index n2A of S2 in the A region is , Any value between the refractive index of the film 1105 and the refractive index of air.
 したがって、A領域におけるS1の屈折率n1Aは、格子凸部1103及び膜1107の材質の他、第1の周期、デューティ比及び格子高さを変えることによって調整することができる。また、A領域におけるS2の屈折率n2Aは、膜1105の材質の他、第1の周期、デューティ比及び膜1105の厚さを変えることによって調整することができる。また、式(6)乃至式(9)によれば、光の偏光状態を変化させることにより屈折率を大きく変えることができる。 Therefore, the refractive index n1A of S1 in the A region can be adjusted by changing the first period, the duty ratio, and the grating height in addition to the material of the grating protrusions 1103 and the film 1107. Further, the refractive index n2A of S2 in the region A can be adjusted by changing the first period, the duty ratio, and the thickness of the film 1105 in addition to the material of the film 1105. Further, according to the equations (6) to (9), the refractive index can be greatly changed by changing the polarization state of the light.
 なお、A領域またはB領域のS1及びS2などの層がN種類(Nは3以上の整数)の異なる物質を含む場合には、式(6)及び式(7)の代わりに以下の0次近似式を使用する。
Figure JPOXMLDOC01-appb-M000010
In addition, when the layers such as S1 and S2 in the A region or the B region contain N kinds of different materials (N is an integer of 3 or more), the following zero order is used instead of the equations (6) and (7). Use approximate equations.
Figure JPOXMLDOC01-appb-M000010
 ここで、デューティ比が0.5であるバイナリ格子を例として、位相差と回折効率との関係について説明する。バイナリ格子の格子凸部を通過した光と格子凹部を通過した光との位相差は、以下の式で表せる。ただし、光の波長をλ、格子凸部の屈折率をn、格子の周囲の媒質の屈折率を1、格子凸部の高さをdとする。
Figure JPOXMLDOC01-appb-M000011
Here, the relationship between the phase difference and the diffraction efficiency will be described using a binary grating having a duty ratio of 0.5 as an example. The phase difference between the light passing through the grating convex portion of the binary grating and the light passing through the grating concave portion can be expressed by the following equation. Here, λ is the wavelength of light, n is the refractive index of the grating protrusion, 1 is the refractive index of the medium around the grating, and d is the height of the grating protrusion.
Figure JPOXMLDOC01-appb-M000011
 図3は、位相差とバイナリ格子による0次光及び1次光の回折効率との関係を示すグラフである。グラフの横軸は、格子凸部を通過した光と格子凹部を通過した光との位相差を表す。単位はラジアンである。グラフの縦軸は、0次光及び1次光の回折効率を表す。ここで、回折効率とは、入射光の光量に対する回折光の光量の比である。位相差が0及び2πラジアンのとき、1次光の回折効率は、0となり、0次光の回折効率は最大値1.0となる。位相差がπラジアンのとき、1次光の回折効率は、最大値0.4となり、0次光の回折効率は0となる。 FIG. 3 is a graph showing the relationship between the phase difference and the diffraction efficiency of the zero-order light and the first-order light by the binary grating. The horizontal axis of the graph represents the phase difference between the light that has passed through the grating convex portions and the light that has passed through the grating concave portions. The unit is radians. The vertical axis of the graph represents the diffraction efficiency of the 0th order light and the 1st order light. Here, the diffraction efficiency is the ratio of the amount of diffracted light to the amount of incident light. When the phase difference is 0 and 2π radians, the diffraction efficiency of the first-order light is 0, and the diffraction efficiency of the 0th-order light has a maximum value of 1.0. When the phase difference is π radians, the diffraction efficiency of the first-order light is a maximum value of 0.4, and the diffraction efficiency of the zero-order light is zero.
 図4は、位相差と、1次光の回折効率と0次光の回折効率との比の関係を示すグラフである。グラフの横軸は、図3と同様に、格子凸部を通過した光と格子凹部を通過した光との位相差を表す。グラフの縦軸は、1次光の回折効率と0次光の回折効率との比を表す。1次光の回折効率と0次光の回折効率との比は、位相差が0ラジアンのときに0であり、位相差が増加するに従って増加し、位相差が約2ラジアンのときに1となる。また、位相差が約4.3ラジアンのときに1であり、位相差が増加するに従って減少し、2πラジアンのときに0となる。 FIG. 4 is a graph showing the relationship between the phase difference and the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light. Similarly to FIG. 3, the horizontal axis of the graph represents the phase difference between the light that has passed through the grating convex portions and the light that has passed through the grating concave portions. The vertical axis of the graph represents the ratio between the diffraction efficiency of primary light and the diffraction efficiency of zero-order light. The ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light is 0 when the phase difference is 0 radians, increases as the phase difference increases, and becomes 1 when the phase difference is about 2 radians. Become. It is 1 when the phase difference is about 4.3 radians, decreases as the phase difference increases, and becomes 0 when the phase difference is 2π radians.
 このように、バイナリ格子の格子凸部を通過した光と格子凹部を通過した光との位相差を変えることによって、1次光の回折効率と0次光の回折効率との比を変えることができる。同様に、光学素子1100においても、A領域を通過した光とB領域を通過した光との位相差を変えることによって、1次光の回折効率と0次光の回折効率との比を変えることができる。 Thus, by changing the phase difference between the light that has passed through the grating convex portion of the binary grating and the light that has passed through the grating concave portion, the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light can be changed. it can. Similarly, in the optical element 1100, the ratio between the diffraction efficiency of the first-order light and the diffraction efficiency of the zero-order light is changed by changing the phase difference between the light that has passed through the A region and the light that has passed through the B region. Can do.
第2の態様
 図5Aは、本発明の第2の態様の一実施形態による光学素子2100の透視図である。基板上2101の第1の帯状領域(図においてはA領域と記載する)にY方向に伸びる複数の格子凸部2103が第1の周期でX方向に配置されている。第1の周期は、第1の帯状領域を通過する光が回折を生じ得ない程度に小さい。基板上には、格子凸部の配置されていない第2の帯状領域(図においてはB領域と記載する)が第1の帯状領域と隣接して配置されている。A領域及びB領域は、第2の周期でX方向に繰り返し配置されている。A領域及びB領域によって形成される格子をマクロ格子と呼称する。A領域の基板面とB領域の基板面との間には段差があり、A領域の基板面は、B領域の基板面より低くなっている。すなわち、A領域の基板はマクロ格子の凹部を形成し、B領域の基板はマクロ格子の凸部を形成する。そして、第2の周期は、第1の帯状領域及び第2の帯状領域を通過する光が、回折を生じ得る程度に大きい。
Second Aspect FIG. 5A is a perspective view of an optical element 2100 according to one embodiment of the second aspect of the present invention. A plurality of grid protrusions 2103 extending in the Y direction are arranged in the X direction in the first direction in a first band-like region (described as A region in the drawing) on the substrate 2101. The first period is so small that the light passing through the first band-like region cannot cause diffraction. On the substrate, a second belt-like region (referred to as “B” region in the figure) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region. The A region and the B region are repeatedly arranged in the X direction at the second period. A lattice formed by the A region and the B region is referred to as a macro lattice. There is a step between the substrate surface in the A region and the substrate surface in the B region, and the substrate surface in the A region is lower than the substrate surface in the B region. That is, the substrate in the A region forms a concave portion of the macro lattice, and the substrate in the B region forms a convex portion of the macro lattice. The second period is so large that the light passing through the first band region and the second band region can cause diffraction.
 図6は、図5Aに示した光学素子2100の、基板面に垂直なX方向断面図である。A領域において、基板2101上に複数の格子凸部2103が第1の周期でX方向に配置されサブ波長格子が形成されている。B領域において、格子凸部は配置されていない。A領域の格子凸部2103、A領域の格子凹部の基板2101及びB領域の基板2111上には、それぞれ、膜2105、膜2107及び膜2109が設けられている。 FIG. 6 is a cross-sectional view of the optical element 2100 shown in FIG. 5A in the X direction perpendicular to the substrate surface. In the A region, a plurality of grating protrusions 2103 are arranged on the substrate 2101 in the X direction at the first period to form a sub-wavelength grating. In the region B, the lattice convex portions are not arranged. A film 2105, a film 2107, and a film 2109 are provided on the lattice convex portion 2103 in the A region, the substrate 2101 in the lattice concave portion in the A region, and the substrate 2111 in the B region, respectively.
 A領域における基板面と基板面に平行で格子高さh1の位置の面の間の空間をS1と呼称する。A領域において、S1には、格子凸部2103と膜2107とが所定の比率で存在する。B領域において、S1には、基板の凸部2111が存在する。 The space between the substrate surface in the A region and the surface at the position of the lattice height h1 parallel to the substrate surface is referred to as S1. In the A region, the lattice convex portions 2103 and the film 2107 are present at a predetermined ratio in S1. In the region B, the convex portion 2111 of the substrate exists in S1.
 基板面に平行で格子高さh1の位置の面と基板面に平行で格子凸部2103上の膜2105の高さの位置(h1+h2)の面との間の空間をS2と呼称する。A領域において、S2には、格子凸部2103上の膜2105と周囲の媒質とが所定の比率で存在する。ここで、光学素子2100は空気中に置かれているので、周囲の媒質は空気である。B領域において、S2には、基板の凸部2111が存在する。 The space between the surface parallel to the substrate surface and the height of the lattice height h1 and the surface parallel to the substrate surface and the height of the film 2105 on the lattice convex portion 2103 (h1 + h2) is referred to as S2. In the region A, the film 2105 on the lattice convex portion 2103 and the surrounding medium are present at a predetermined ratio in S2. Here, since the optical element 2100 is placed in the air, the surrounding medium is air. In the region B, the convex portion 2111 of the substrate exists in S2.
 基板面に平行で高さ(h1+h2)の位置の面と基板面に平行で基板の凸部2111の高さ(h1+h2+h3)の位置の面との間の空間をS3と呼称する。A領域において、S3には、空気が存在する。B領域においてS3には、基板の凸部2111が存在する。 The space between the surface at the height (h1 + h2) parallel to the substrate surface and the surface at the height (h1 + h2 + h3) of the convex portion 2111 of the substrate parallel to the substrate surface is referred to as S3. In the A region, air exists in S3. In the region B, the convex portion 2111 of the substrate exists in S3.
 基板面に平行で基板の凸部2111の高さ(h1+h2+h3)の位置の面と基板面に平行で基板の凸部2111上の膜2109の高さ(h1+h2+h3+h4)の位置の面との間の空間をS4と呼称する。A領域において、S4には、空気が存在する。B領域においてS4には、膜2109が存在する。 A space between the surface at the height (h1 + h2 + h3) of the convex portion 2111 of the substrate parallel to the substrate surface and the surface at the height (h1 + h2 + h3 + h4) of the film 2109 on the convex portion 2111 of the substrate parallel to the substrate surface. Is referred to as S4. In the A region, air exists in S4. In the region B, the film 2109 exists in S4.
 図5Bは、本発明の第2の態様の他の実施形態による光学素子3100の透視図である。光学素子3100において、基板上3101の第1の帯状領域(A領域)にY方向に伸びる複数の格子凸部3103が第1の周期でX方向に配置されている。第1の周期は、第1の帯状領域を通過する光が回折を生じ得ない程度に小さい。基板上には、格子凸部の配置されていない第2の帯状領域(B領域)が第1の帯状領域と隣接して配置されている。A領域及びB領域は、第2の周期でX方向に繰り返し配置されている。A領域及びB領域によって形成される格子をマクロ格子と呼称する。A領域の基板面とB領域の基板面との間には段差があり、A領域の基板面は、B領域の基板面より高くなっている。すなわち、A領域の基板は、マクロ格子の凸部を形成し、B領域の基板はマクロ格子の凹部を形成する。そして、第2の周期は、A領域及びB領域を通過する光が、回折を生じ得る程度に大きい。 FIG. 5B is a perspective view of an optical element 3100 according to another embodiment of the second aspect of the present invention. In the optical element 3100, a plurality of grating convex portions 3103 extending in the Y direction are arranged in the X direction in the first direction in the first band-like region (A region) on the substrate 3101. The first period is so small that the light passing through the first band-like region cannot cause diffraction. On the substrate, a second belt-like region (B region) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region. The A region and the B region are repeatedly arranged in the X direction at the second period. A lattice formed by the A region and the B region is referred to as a macro lattice. There is a step between the substrate surface in the A region and the substrate surface in the B region, and the substrate surface in the A region is higher than the substrate surface in the B region. That is, the substrate in the region A forms a convex portion of the macro lattice, and the substrate in the region B forms a concave portion of the macro lattice. The second period is so large that the light passing through the A region and the B region can cause diffraction.
 図7は、図5Bに示した光学素子3100の、基板面に垂直なX方向断面図である。A領域において、基板の凸部3111上に複数の格子凸部3103が第1の周期でX方向に配置されサブ波長格子が形成されている。B領域において、格子凸部は配置されていない。A領域の格子凸部3103、A領域の格子凹部の基板3111及びB領域の基板3101上には、それぞれ、膜3105、膜3107及び膜3109が設けられている。 FIG. 7 is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element 3100 shown in FIG. 5B. In the region A, a plurality of grating convex portions 3103 are arranged in the X direction at the first period on the convex portion 3111 of the substrate to form a sub-wavelength grating. In the region B, the lattice convex portions are not arranged. A film 3105, a film 3107, and a film 3109 are provided on the lattice convex portion 3103 in the A region, the substrate 3111 in the lattice concave portion in the A region, and the substrate 3101 in the B region, respectively.
 B領域における基板面と基板面に平行で膜3109の厚さ(高さ)h1の位置の面の間の空間をS1と呼称する。A領域において、S1には、基板の凸部3111が存在する。B領域において、S1には、膜3109が存在する。 The space between the substrate surface in the region B and the surface at the position of the thickness (height) h1 of the film 3109 parallel to the substrate surface is referred to as S1. In the A region, the convex portion 3111 of the substrate exists in S1. In the region B, the film 3109 exists in S1.
 基板面に平行で高さh1の位置の面と基板面に平行で基板の凸部3111の高さの位置(h1+h2)の面との間の空間をS2と呼称する。A領域において、S2には、基板の凸部3111が存在する。B領域において、S2には、空気が存在する。 The space between the surface parallel to the substrate surface and at the height h1 and the surface parallel to the substrate surface and the height position (h1 + h2) of the convex portion 3111 of the substrate is referred to as S2. In the region A, the convex portion 3111 of the substrate exists in S2. In the region B, air exists in S2.
 基板面に平行で高さ(h1+h2)の位置の面と基板面に平行で格子凹部の膜107の高さ、または格子凸部3103の高さ(h1+h2+h3)の位置の面との間の空間をS3と呼称する。A領域において、S3には、格子凸部3103と膜3107が所定の比率で存在する。B領域においてS3には、空気が存在する。 A space between a plane parallel to the substrate surface and having a height (h1 + h2) and a plane parallel to the substrate surface and the height of the film 107 of the lattice concave portion or the height of the lattice convex portion 3103 (h1 + h2 + h3) This is called S3. In the region A, the lattice convex portions 3103 and the film 3107 are present at a predetermined ratio in S3. In the region B, air exists in S3.
 基板面に平行で格子凸部3103の高さ(h1+h2+h3)の位置の面と基板面に平行で格子凸部3103上の膜3105の高さ(h1+h2+h3+h4)の位置の面との間の空間をS4と呼称する。A領域において、S4には、膜3105と空気が所定の比率で存在する。B領域においてS4には、空気が存在する。 A space between the plane parallel to the substrate surface and the height (h1 + h2 + h3) of the lattice convex portion 3103 and the plane parallel to the substrate surface and the height of the film 3105 on the lattice convex portion 3103 (h1 + h2 + h3 + h4) is S4. Called. In the region A, the film 3105 and air are present at a predetermined ratio in S4. In the region B, air exists in S4.
 光学素子2100及び3100において、A領域のS1及びB領域のS1におけるある波長λの光の屈折率を、それぞれ、n1A及びn1Bとし、A領域のS2及びB領域のS2におけるその波長の光の屈折率を、それぞれ、n2A及びn2Bとし、A領域のS3及びB領域のS3におけるその波長λの光の屈折率を、それぞれ、n3A及びn3Bとし、A領域のS4及びB領域のS4におけるその波長の光の屈折率を、それぞれ、n4A及びn4Bとする。光が、基板面に垂直な方向にA領域及びB領域を通過すると仮定する。その場合に、A領域のS1乃至S4を通過する光とB領域のS1乃至S4を通過する光の位相差(以下、全位相差と呼称する)を
Figure JPOXMLDOC01-appb-M000012
とする。
In the optical elements 2100 and 3100, the refractive indexes of light of a certain wavelength λ in S1 of the A region and S1 of the B region are n1A and n1B, respectively, and the refraction of the light of that wavelength in S2 of the A region and S2 of the B region. The refractive index is n2A and n2B, respectively, and the refractive index of light of that wavelength λ in S3 of the A region and S3 of the B region is n3A and n3B, respectively. The refractive indexes of light are n4A and n4B, respectively. Assume that light passes through the A and B regions in a direction perpendicular to the substrate surface. In that case, the phase difference between the light passing through S1 to S4 in the A region and the light passing through S1 to S4 in the B region (hereinafter referred to as total phase difference).
Figure JPOXMLDOC01-appb-M000012
And
 ここで、所定の波長を第1の波長とし、所定の波長と異なる2波長を第2及び第3の波長とする。光学素子に、第1乃至第3の波長の光を使用するものとする。 Here, the predetermined wavelength is the first wavelength, and the two wavelengths different from the predetermined wavelength are the second and third wavelengths. It is assumed that light having first to third wavelengths is used for the optical element.
 ここで、第1の波長をλ1とし、第1の波長の光の位相差及び屈折率であることを(1)で示し、第2の波長をλ2とし、第2の波長の光の位相差及び屈折率であることを(2)で示し、第3の波長をλ3とし、第3の波長の光の位相差及び屈折率であることを(3)で示す。 Here, the first wavelength is λ1, the phase difference and refractive index of the light of the first wavelength is indicated by (1), the second wavelength is λ2, and the phase difference of the light of the second wavelength is The refractive index is indicated by (2), the third wavelength is λ3, and the phase difference and refractive index of the third wavelength light is indicated by (3).
 そうすると、式(4)及び(5)と同様に、以下の式が導かれる。
Figure JPOXMLDOC01-appb-M000013
ただし、iは、1から3のいずれかを表すとして、
Figure JPOXMLDOC01-appb-M000014
である。
Then, the following expressions are derived in the same manner as Expressions (4) and (5).
Figure JPOXMLDOC01-appb-M000013
However, i represents any one of 1 to 3,
Figure JPOXMLDOC01-appb-M000014
It is.
 ここで、第1の波長の全位相差を所望の値とするには、式(10)乃至 (12)により、第1乃至第3の波長の全位相差
Figure JPOXMLDOC01-appb-M000015
が所望の値となるように、n1A、n1B、n2A、n2B、n3A、n3B、n4A、n4B、h1、h2、h3及びh4を定めればよい。
Here, in order to set the total phase difference of the first wavelength to a desired value, the total phase difference of the first to third wavelengths is obtained by the equations (10) to (12).
Figure JPOXMLDOC01-appb-M000015
N1A, n1B, n2A, n2B, n3A, n3B, n4A, n4B, h1, h2, h3, and h4 may be determined so that becomes a desired value.
 図8は、本発明の第1及び第2の態様による光学素子の設計方法を示す流れ図である。光学素子の格子凸部及び膜などの材質は予め決まっているものとする。 FIG. 8 is a flowchart showing a method for designing an optical element according to the first and second aspects of the present invention. It is assumed that materials such as the grating convex portions and the film of the optical element are predetermined.
 図8のステップS1010において、マクロ格子の第2の周期を定める。ここで、マクロ格子の第2の周期は、所定の波長の光の1次回折光が所望の回折角を生じるように以下の式から定める。ここで、所定の波長とは、第1乃至第3(第1または第2)の波長のいずれかの波長であってもよい。

       n’ sinθ’-n sinθ=Nλ/Λ       (13)

       n:入射側媒質の屈折率(空気の屈折率)
       n’:出射側媒質の屈折率(空気の屈折率)
       θ:入射角
       θ’:回折角
       N:回折次数
       λ:入射光の波長
       Λ:回折格子の周期(第2の周期)

本実施形態において、入射角はゼロとすると、1次回折光の回折角は、入射光の波長及び第2の周期によって定まる。
In step S1010 of FIG. 8, a second period of the macro lattice is determined. Here, the second period of the macro grating is determined from the following equation so that the first-order diffracted light of the light having a predetermined wavelength generates a desired diffraction angle. Here, the predetermined wavelength may be any one of the first to third (first or second) wavelengths.

n 'sinθ'-n sinθ = Nλ / Λ (13)

n: Refractive index of the incident side medium (refractive index of air)
n ': refractive index of the output side medium (refractive index of air)
θ: incident angle θ ′: diffraction angle N: diffraction order λ: wavelength of incident light Λ: period of diffraction grating (second period)

In this embodiment, when the incident angle is zero, the diffraction angle of the first-order diffracted light is determined by the wavelength of the incident light and the second period.
 図8のステップS1020において、サブ波長格子の第1の周期の上限を定める。サブ波長格子の第1の周期の上限は、一例として、式(13)のΛを第一の周期、出射側媒質n’を基板の屈折率とした場合に回折が生じないように定める。 In step S1020 in FIG. 8, the upper limit of the first period of the sub-wavelength grating is determined. As an example, the upper limit of the first period of the sub-wavelength grating is determined so that diffraction does not occur when Λ in Equation (13) is the first period and the exit-side medium n ′ is the refractive index of the substrate.
 図8のステップS1030において、マクロ格子のデューティ比を設定する。一例として、初期値として0.5を設定する。ここで、マクロ格子のデューティ比は、マクロ格子の周期(第2の周期)に対する、サブ波長格子が設置されていない領域(B領域)のX方向の幅の比である。 In step S1030 of FIG. 8, the duty ratio of the macro lattice is set. As an example, 0.5 is set as the initial value. Here, the duty ratio of the macro grating is the ratio of the width in the X direction of the area where the sub-wavelength grating is not installed (B area) to the period of the macro grating (second period).
 図8のステップS1040において、設定したマクロ格子のデューティ比に対して、第1の比率(1次回折光の光量と0次回折光の光量との比率)を得るために必要な、A領域(サブ波長格子部分)を通過する光とB領域(平坦部分)を通過する光の位相差を求め、この値を位相差の目標値とする。 In step S1040 of FIG. 8, the area A (sub-wavelength) necessary to obtain the first ratio (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) with respect to the set duty ratio of the macro grating. The phase difference between the light passing through the grating portion) and the light passing through the B region (flat portion) is obtained, and this value is set as the target value of the phase difference.
 図8のステップS1050において、それぞれの波長の光の偏光方向を、それぞれの波長の光の位相差の目標値を実現しやすいように定める。 In step S1050 in FIG. 8, the polarization direction of the light of each wavelength is determined so that the target value of the phase difference of the light of each wavelength can be easily realized.
 図8のステップS1060において、膜厚・サブ波長格子高さ・段差・サブ波長格子内のデューティ比を定め、式(4)及び(5)あるいは式(10)乃至(12)にしたがって、たとえば、厳密結合波解析法によってそれぞれの波長の光の位相差を求める。 In step S1060 of FIG. 8, the film thickness, the sub-wavelength grating height, the step, and the duty ratio in the sub-wavelength grating are determined, and according to equations (4) and (5) or equations (10) to (12), for example, The phase difference of light of each wavelength is obtained by a rigorous coupled wave analysis method.
 図8のステップS1070において、ステップS1060で求めたそれぞれの波長の光の位相差と位相差の目標値との差が所定の範囲内であるかどうか判断する。所定の範囲内であれば、ステップS1080に進む。所定の範囲内でなければ、ステップS1030に戻る。 In step S1070 of FIG. 8, it is determined whether or not the difference between the phase difference of the light of each wavelength obtained in step S1060 and the target value of the phase difference is within a predetermined range. If it is within the predetermined range, the process proceeds to step S1080. If not within the predetermined range, the process returns to step S1030.
 図8のステップS1080において、基板面からの最大高さ(マクロ格子の高さと呼称する)が、最大波長以下であるかどうか判断する。最大波長以下であると判断されれば、処理を終了する。最大波長以下であると判断されなければ、ステップS1030に戻る。 In step S1080 of FIG. 8, it is determined whether the maximum height from the substrate surface (referred to as the height of the macro grating) is equal to or less than the maximum wavelength. If it is determined that the wavelength is equal to or less than the maximum wavelength, the process is terminated. If it is not determined that the wavelength is equal to or less than the maximum wavelength, the process returns to step S1030.
 以下において、本発明による光学素子の数値実施例について説明する。数値実施例は、厳密結合波解析法による計算によって求めた。 Hereinafter, numerical examples of the optical element according to the present invention will be described. Numerical examples were obtained by calculation using a strict coupled wave analysis method.
実施例1
 実施例1は、図1に示した実施形態に対応するものである。第1の波長は、660nmとし、第2の波長は785nmとする。第1及び第2の波長の光の、1次回折光の光量と0次回折光の光量との第1の比率の目標値を0.067±0.012とする。実施例1の光学素子は、図8の流れ図にしたがって、第1及び第2の波長の光の第1の比率を目標値とするように設計を行った。
Example 1
Example 1 corresponds to the embodiment shown in FIG. The first wavelength is 660 nm, and the second wavelength is 785 nm. The target value of the first ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the light of the first and second wavelengths is set to 0.067 ± 0.012. The optical element of Example 1 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first and second wavelengths is the target value.
 図9は、実施例1の光学素子の構成を示す図である。本実施例において、第1の膜の上に第2の膜を形成する。第1の膜の屈折率は、格子凸部及び第2の膜の屈折率よりも大きいものとする。第2の膜の屈折率は、格子凸部の屈折率よりも大きくても小さくてもよい。一例として、格子凸部は、ポリオレフィン系の樹脂を射出成形して形成したものである。第1の膜は、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。第2の膜は、さらにその上に、2酸化珪素(SiO)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。 FIG. 9 is a diagram illustrating the configuration of the optical element according to the first embodiment. In this embodiment, a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film. The refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion. As an example, the lattice convex portion is formed by injection molding a polyolefin-based resin. The first film is obtained by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method. The second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) thereon by a vapor deposition method or a sputtering method.
 第1の膜の上に第2の膜を設けるのは、入射光の反射をできるだけ小さくして、回折効率を向上させるためである。 The reason why the second film is provided on the first film is to make the reflection of incident light as small as possible and improve the diffraction efficiency.
 表1は、実施例1の光学素子の各部の寸法を示す表である。SWS(Sub-Wavelength Structure)は、サブ波長格子部、すなわち、A領域を指す。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing dimensions of each part of the optical element of Example 1. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
Figure JPOXMLDOC01-appb-T000001
 ここで、実施例1のマクロ格子の高さ(基板面から第2の膜の上面までの距離)は、表1及び図9から明らかなように、306nmであり、最大波長(785nm)以下である。 Here, the height of the macro lattice of Example 1 (distance from the substrate surface to the upper surface of the second film) is 306 nm as apparent from Table 1 and FIG. 9, and is below the maximum wavelength (785 nm). is there.
 表2は、実施例1の光学素子の各部の屈折率を示す表である。第1の波長の光及び第2の波長の光は、TE波である。
Figure JPOXMLDOC01-appb-T000002
Table 2 is a table showing the refractive index of each part of the optical element of Example 1. The light having the first wavelength and the light having the second wavelength are TE waves.
Figure JPOXMLDOC01-appb-T000002
 表3は、図9に示した各レベルの有効屈折率を示す図である。L1は、図2に示した実施形態のS1に相当する部分である。L2は、図2に示した実施形態のS2に相当する部分である。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the effective refractive index at each level shown in FIG. L1 is a portion corresponding to S1 of the embodiment shown in FIG. L2 is a portion corresponding to S2 of the embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000003
 表4は、実施例1の光学素子の回折効率を示す表である。表3において、「0次」及び「1次」は、0次回折光及び1時回折光の回折効率を示し、「1次/0次」は、1次回折光の光量と0次回折光の光量との比を示し、「-1次+0次+1次」は、0次回折光、1次回折光、-1次回折光の回折効率の和を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 is a table showing the diffraction efficiency of the optical element of Example 1. In Table 3, “0th order” and “1st order” indicate the diffraction efficiencies of 0th order diffracted light and 1 hour diffracted light, and “1st order / 0th order” indicates the light quantity of the first order diffracted light and the light quantity of the 0th order diffracted light. “−1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the −1st order diffracted light.
Figure JPOXMLDOC01-appb-T000004
 表5は、A領域を通過する光とB領域を通過する光との位相差を示す表である。
Figure JPOXMLDOC01-appb-T000005
Table 5 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
Figure JPOXMLDOC01-appb-T000005
 マクロ格子のデューティ比は、0.6と定めた。第1の比率の目標値である0.067は、マクロ格子のデューティ比が0.6であるときに、位相差の目標値0.810[ラジアン]に対応する。 The duty ratio of the macro lattice was set to 0.6. The target value 0.067 of the first ratio corresponds to the target value 0.810 [radian] of the phase difference when the duty ratio of the macro grating is 0.6.
 表3から、第1の波長について、0次回折光、1次回折光、-1次回折光の回折効率の和である第2の比率は、0.907である。第2の波長について第2の比率は、0.874である。 From Table 3, for the first wavelength, the second ratio, which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light, is 0.907. The second ratio for the second wavelength is 0.874.
 ここで、実施例と同様の機能を有するバイナリ格子(以下において、実施例に対応するバイナリ格子と呼称する)を、以下の手順により求める。実現可能な範囲としてバイナリ格子の格子高さの範囲を0~2um、デューティ比の範囲を0.1~0.9とし、この範囲内で全ての波長に関して第1の比率が所定の値となる範囲を探し、その範囲の中心(格子高さ・デューティ比に対する許容範囲の中心)となる形状を代表的形状とする。たとえば、位相差2πの自由度に対応して、全ての波長に関して第1の比率が所定の値となる範囲が複数あり、複数の代表的形状が得られる場合には、回折効率が最大となるものを選択する。 Here, a binary lattice having the same function as the embodiment (hereinafter referred to as a binary lattice corresponding to the embodiment) is obtained by the following procedure. As a feasible range, the range of the grating height of the binary grating is 0 to 2 μm, the range of the duty ratio is 0.1 to 0.9, and within this range, the range in which the first ratio is a predetermined value for all wavelengths is searched, A shape that is the center of the range (the center of the allowable range with respect to the grid height and the duty ratio) is a representative shape. For example, corresponding to the degree of freedom of the phase difference 2π, there are a plurality of ranges in which the first ratio is a predetermined value for all wavelengths, and the diffraction efficiency is maximized when a plurality of representative shapes are obtained. Choose one.
 実施例1に対応するバイナリ格子において、第1及び第2の波長の光の位相差は、3.432及び2.868である。また、第1及び第2の波長の光について、バイナリ格子の第2の比率は、0.708及び0.707である。 In the binary grating corresponding to Example 1, the phase difference between the light beams having the first and second wavelengths is 3.432 and 2.868. In addition, for the light of the first and second wavelengths, the second ratio of the binary grating is 0.708 and 0.707.
 このように、実施例1の各波長の光の第2の比率は、バイナリ格子の対応する光の第2の比率よりも高くすることができる。その理由は、以下のとおりである。バイナリ格子の場合、相対的に波長の短い第1の波長について、相対的に波長の長い第2の波長と回折効率の比率を等しくするには、位相差はπ以上となる。この場合、一般的に多次の回折光が出易くなり、第2の比率はその分低くなる。これに対して、実施例1においては、式(4)及び式(5)にしたがって、n1A、n1B、n2A、n2B、h1及びh2を適切に定めることにより、位相差の目標値を小さくすることができる。 Thus, the second ratio of the light of each wavelength in the first embodiment can be made higher than the second ratio of the corresponding light of the binary grating. The reason is as follows. In the case of a binary grating, for the first wavelength having a relatively short wavelength, the phase difference is π or more in order to make the ratio between the second wavelength having a relatively long wavelength and the diffraction efficiency equal. In this case, generally, multi-order diffracted light is easily emitted, and the second ratio is lowered accordingly. On the other hand, in the first embodiment, the target value of the phase difference is reduced by appropriately determining n1A, n1B, n2A, n2B, h1 and h2 according to the equations (4) and (5). Can do.
 また、本実施例においてマクロ格子の高さは最大波長以下であるので、理論上の光学性能の達成を阻害する、製造上の問題は生じにくい。したがって、本実施例によれば、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長の光の、1次回折光の光量と0次回折光の光量との比を揃えることができ、0次回折光、1次回折光、-1次回折光の回折効率の和を高い値に維持することができる。 In the present embodiment, since the height of the macro grating is not more than the maximum wavelength, it is difficult to cause manufacturing problems that impede achievement of theoretical optical performance. Therefore, according to the present embodiment, the ratio of the light quantity of the first-order diffracted light and the light quantity of the 0th-order diffracted light of the light of the wavelength for digital versatile disc (DVD) and compact disc (CD) can be made uniform. The sum of the diffraction efficiencies of the folded light, the first-order diffracted light, and the −1st-order diffracted light can be maintained at a high value.
実施例2
 実施例2は、図5Aに示した実施形態に対応するものである。第1の波長は、405nmとし、第2の波長は、660nmとし、第3の波長は785nmとする。第1乃至第3の波長の光の、1次回折光の光量と0次回折光の光量との第1の比率の目標値を0.067±0.012とする。実施例2の光学素子は、図8の流れ図にしたがって、第1乃至第3の波長の光の第1の比率を目標値とするように設計を行った。
Example 2
Example 2 corresponds to the embodiment shown in FIG. 5A. The first wavelength is 405 nm, the second wavelength is 660 nm, and the third wavelength is 785 nm. The target value of the first ratio between the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the light of the first to third wavelengths is set to 0.067 ± 0.012. The optical element of Example 2 was designed so that the first ratio of light having the first to third wavelengths was set as the target value according to the flowchart of FIG.
 図10は、実施例2の光学素子の構成を示す図である。本実施例において、第1の膜の上に第2の膜を形成する。第1の膜の屈折率は、格子凸部及び第2の膜の屈折率よりも大きいものとする。第2の膜の屈折率は、格子凸部の屈折率よりも大きくても小さくてもよい。一例として、格子凸部は、ポリオレフィン系の樹脂を射出成形して形成したものである。第1の膜は、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。第2の膜は、さらにその上に、2酸化珪素(SiO)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。 FIG. 10 is a diagram illustrating a configuration of the optical element according to the second embodiment. In this embodiment, a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film. The refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion. As an example, the lattice convex portion is formed by injection molding a polyolefin-based resin. The first film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method. The second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) on the second film by a vapor deposition method or a sputtering method.
 表6は、実施例2の光学素子の各部の寸法を示す表である。SWS(Sub-Wavelength Structure)は、サブ波長格子部、すなわち、A領域を指す。
Figure JPOXMLDOC01-appb-T000006
Table 6 is a table | surface which shows the dimension of each part of the optical element of Example 2. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
Figure JPOXMLDOC01-appb-T000006
 ここで、実施例2のマクロ格子の高さ(低い方の基板面から第2の膜の最も高い上面までの距離)は、表6及び図10から明らかなように、342nmであり、最大波長(785nm)以下である。 Here, the height of the macro grating of Example 2 (distance from the lower substrate surface to the highest upper surface of the second film) is 342 nm as apparent from Table 6 and FIG. (785 nm) or less.
 表7は、実施例2の光学素子の各部の屈折率を示す表である。第1の波長の光は、TE波であり、第2の波長の光及び第3の波長の光は、TM波である。
Figure JPOXMLDOC01-appb-T000007
Table 7 is a table | surface which shows the refractive index of each part of the optical element of Example 2. The light of the first wavelength is a TE wave, and the light of the second wavelength and the light of the third wavelength are TM waves.
Figure JPOXMLDOC01-appb-T000007
 表8は、図10に示した各レベルの有効屈折率を示す図である。L1は、図6に示した実施形態のS1に相当する部分である。L2は、図6に示した実施形態のS2に相当する部分である。
Figure JPOXMLDOC01-appb-T000008
Table 8 is a diagram showing the effective refractive index at each level shown in FIG. L1 is a portion corresponding to S1 in the embodiment shown in FIG. L2 is a portion corresponding to S2 of the embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000008
 表9は、実施例2の光学素子の回折効率を示す表である。表7において、「0次」及び「1次」は、0次回折光及び1次回折光の回折効率を示し、「1次/0次」は、1次回折光の光量と0次回折光の光量との比を示し、「-1次+0次+1次」は、0次回折光、1次回折光、-1次回折光の回折効率の和を示す。
Figure JPOXMLDOC01-appb-T000009
Table 9 is a table showing the diffraction efficiency of the optical element of Example 2. In Table 7, “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and the 1st order diffracted light, and “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light. “-1st order + 0th order + 1st order” indicates the sum of diffraction efficiencies of 0th order diffracted light, 1st order diffracted light, and −1st order diffracted light.
Figure JPOXMLDOC01-appb-T000009
 表10は、A領域を通過する光とB領域を通過する光との位相差を示す表である。
Figure JPOXMLDOC01-appb-T000010
Table 10 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
Figure JPOXMLDOC01-appb-T000010
 マクロ格子のデューティ比は、0.7と定めた。第1の比率の目標値である0.067は、マクロ格子のデューティ比が0.7であるときに、位相差の目標値0.949[ラジアン]に対応する。 The duty ratio of the macro lattice was set to 0.7. The target value 0.067 of the first ratio corresponds to the target value 0.949 [radian] of the phase difference when the duty ratio of the macro grating is 0.7.
 表7から、第1の波長について、0次回折光、1次回折光、-1次回折光の回折効率の和である第2の比率は、0.869である。第2の波長について第2の比率は、0.830である。第3の波長について第2の比率は、0.843である。 From Table 7, for the first wavelength, the second ratio, which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light, is 0.869. The second ratio for the second wavelength is 0.830. The second ratio for the third wavelength is 0.843.
 実施例2に対応する対応するバイナリ格子において、第1の波長の位相差は4.070、第2及び第3の波長の位相差は2.218である。また、第1乃至第3の波長の光について、バイナリ格子の第2の比率は、0.750、0.727及び0.777である。 In the corresponding binary grating corresponding to Example 2, the phase difference between the first wavelengths is 4.070, and the phase difference between the second and third wavelengths is 2.218. The second ratio of the binary grating is 0.750, 0.727, and 0.777 for the first to third wavelengths of light.
 このように、実施例2の各波長の光の第2の比率は、バイナリ格子の対応する光の第2の比率よりも高くすることができる。その理由は、以下のとおりである。バイナリ格子の場合、相対的に波長の短い第1の波長について、相対的に波長の長い第2、第3の波長と回折効率の比率を等しくするには、第1の波長の位相差はπ以上となる。この場合、一般的に多次の回折光が出易くなり、第2の比率はその分低くなる。これに対して、実施例2においては、式(10)乃至 (12)にしたがって、n1A、n1B、n2A、n2B、n3A、n3B、n4A、n4B、h1、h2、h3及びh4を適切に定めることにより、位相差の目標値を小さくすることができる。 Thus, the second ratio of the light of each wavelength in Example 2 can be higher than the second ratio of the corresponding light of the binary grating. The reason is as follows. In the case of a binary grating, in order to make the ratios of the second and third wavelengths having a relatively long wavelength and the diffraction efficiency equal for the first wavelength having a relatively short wavelength, the phase difference of the first wavelength is π That's it. In this case, generally, multi-order diffracted light is easily emitted, and the second ratio is lowered accordingly. On the other hand, in Example 2, n1A, n1B, n2A, n2B, n3A, n3B, n4A, n4B, h1, h2, h3, and h4 are appropriately determined according to the equations (10) to (12). Thus, the target value of the phase difference can be reduced.
 また、本実施例においてマクロ格子の高さは最大波長以下であるので、理論上の光学性能の達成を阻害する、製造上の問題は生じにくい。したがって、本実施例によれば、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長の光の、1次回折光の光量と0次回折光の光量との比を揃えることができ、0次回折光、1次回折光、-1次回折光の回折効率の和を高い値に維持することができる。 In the present embodiment, since the height of the macro grating is not more than the maximum wavelength, it is difficult to cause manufacturing problems that impede achievement of theoretical optical performance. Therefore, according to the present embodiment, the ratio of the light quantity of the first-order diffracted light and the light quantity of the zero-order diffracted light of the light of the wavelength for Blu-ray disc (BD), digital versatile disc (DVD), and compact disc (CD) is made uniform. The sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light can be maintained at a high value.
比較例1
 比較例1は、実施例2に対応し、バイナリ格子を使用するものである。第1の波長は、405nmとし、第2の波長は、660nmとし、第3の波長は785nmとする。第1の波長の光の、1次回折光の光量と0次回折光の光量との比の目標値を0.067±012とする。なお、比較例1においては、スカラー理論に基づいて計算を行なった。
Comparative Example 1
Comparative Example 1 corresponds to Example 2 and uses a binary lattice. The first wavelength is 405 nm, the second wavelength is 660 nm, and the third wavelength is 785 nm. The target value of the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the first wavelength light is set to 0.067 ± 012. In Comparative Example 1, the calculation was performed based on the scalar theory.
 図11は、比較例1の光学素子の構成を示す図である。 FIG. 11 is a diagram showing the configuration of the optical element of Comparative Example 1.
 表11は、実施例1の光学素子の各部の寸法などを示す表である。
Figure JPOXMLDOC01-appb-T000011
Table 11 is a table showing dimensions and the like of each part of the optical element of Example 1.
Figure JPOXMLDOC01-appb-T000011
 表12は、比較例1の光学素子の各部の屈折率を示す表である。
Figure JPOXMLDOC01-appb-T000012
Table 12 is a table showing the refractive index of each part of the optical element of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000012
 表13は、比較例1の光学素子の回折効率を示す表である。表11において、「1次/0次」は、1次回折光の光量と0次回折光の光量との比を示し、「-1次+0次+1次」は、0次回折光、1次回折光、-1次回折光の回折効率の和を示す。比較例1の波長405nmの光の第2の比率は、表7に示した、実施例2の波長405nmの光の第2の比率に対して、約14パーセント低下している。
Figure JPOXMLDOC01-appb-T000013
Table 13 is a table showing the diffraction efficiency of the optical element of Comparative Example 1. In Table 11, “1st order / 0th order” indicates the ratio of the light amount of the 1st order diffracted light and the light amount of 0th order diffracted light, and “−1st order + 0th order + 1 order” indicates 0th order diffracted light, 1st order diffracted light, − The sum of the diffraction efficiencies of the first-order diffracted light is shown. The second ratio of light with a wavelength of 405 nm in Comparative Example 1 is about 14 percent lower than the second ratio of light with a wavelength of 405 nm in Example 2 shown in Table 7.
Figure JPOXMLDOC01-appb-T000013
 表14は、格子凸部と格子凹部との位相差を示す表である。ここで、波長405nmの光の位相差4.070ラジアンで生じる1次/0次回折効率比は、位相差2.213ラジアンで生じる1次/0次回折効率比と同等である。その理由は、図4の1次/0次回折効率比の曲線が、位相差πラジアンに関して対称な形状であり、かつ、以下の式が成立するからである。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-T000014
Table 14 is a table | surface which shows the phase difference of a grating | lattice convex part and a grating | lattice recessed part. Here, the first-order / 0th-order diffraction efficiency ratio generated at a phase difference of 4.070 radians of light having a wavelength of 405 nm is equivalent to the first-order / 0th-order diffraction efficiency ratio generated at a phase difference of 2.213 radians. This is because the curve of the 1st / 0th diffraction efficiency ratio in FIG. 4 has a symmetrical shape with respect to the phase difference π radians, and the following equation is established.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-T000014
 本比較例によれば、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長の光の、1次回折光の光量と0次回折光の光量との比を揃えることができるが、0次回折光、1次回折光、-1次回折光の回折効率の和の値は実施例2の値よりも小さくなる。 According to this comparative example, the ratio of the light quantity of the first-order diffracted light and the light quantity of the 0th-order diffracted light of the light of the wavelength for Blu-ray disc (BD), digital versatile disc (DVD), and compact disc (CD) can be made uniform. However, the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light is smaller than the value in Example 2.
実施例3
 実施例3は、図5Bに示した実施形態に対応するものである。第1の波長は、405nmとし、第2の波長は、660nmとし、第3の波長は785nmとする。第1の波長の光の、第1の比率(1次回折光の光量と0次回折光の光量との比)の目標値を0.067±0.015とする。第2の波長の光の、第1の比率の目標値を0(0.042以下)とする。第3の波長の光の、第1の比率の目標値を0.154±0.015とする。実施例3の光学素子は、図8の流れ図にしたがって、第1乃至第3の波長の光の第1の比率を目標値とするように設計を行った。
Example 3
Example 3 corresponds to the embodiment shown in FIG. 5B. The first wavelength is 405 nm, the second wavelength is 660 nm, and the third wavelength is 785 nm. The target value of the first ratio (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) of the light of the first wavelength is set to 0.067 ± 0.015. The target value of the first ratio of the light of the second wavelength is set to 0 (0.042 or less). The target value of the first ratio of the light of the third wavelength is 0.154 ± 0.015. The optical element of Example 3 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first to third wavelengths is the target value.
 図12Aは、実施例3の光学素子の構成を示す図である。本実施例において、サブ波長格子からなるA領域及び平坦部からなるB領域上に膜を形成する。膜の屈折率は、格子凸部の屈折率よりも大きいものとする。一例として、格子凸部は、ポリオレフィン系の樹脂を射出成形して形成したものである。膜は、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。 FIG. 12A is a diagram illustrating a configuration of an optical element according to Example 3. In this embodiment, a film is formed on the A region composed of the sub-wavelength grating and the B region composed of the flat portion. The refractive index of the film is assumed to be larger than the refractive index of the grating convex portion. As an example, the lattice convex portion is formed by injection molding a polyolefin-based resin. The film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the film by an evaporation method or a sputtering method.
 表15は、実施例3の光学素子の各部の寸法を示す表である。SWS(Sub-Wavelength Structure)は、サブ波長格子部、すなわち、A領域を指す。
Figure JPOXMLDOC01-appb-T000015
Table 15 is a table | surface which shows the dimension of each part of the optical element of Example 3. FIG. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
Figure JPOXMLDOC01-appb-T000015
 ここで、実施例3のマクロ格子の高さ(低い方の基板面から膜の最も高い上面までの距離)は、表15及び図12Aから明らかなように、390nmであり、最大波長(785nm)以下である。 Here, the height of the macro grating of Example 3 (distance from the lower substrate surface to the highest upper surface of the film) is 390 nm, as is apparent from Table 15 and FIG. 12A, and the maximum wavelength (785 nm). It is as follows.
 表16は、実施例3の光学素子の各部の屈折率を示す表である。第1の波長の光及び第2の波長の光は、TM波であり、第3の波長の光は、TE波である。
Figure JPOXMLDOC01-appb-T000016
Table 16 is a table | surface which shows the refractive index of each part of the optical element of Example 3. The light of the first wavelength and the light of the second wavelength are TM waves, and the light of the third wavelength is a TE wave.
Figure JPOXMLDOC01-appb-T000016
 表17は、図12に示した各レベルの有効屈折率を示す図である。L3は、図7に示した実施形態のS3に相当する部分である。L4は、図7に示した実施形態のS4に相当する部分である。
Figure JPOXMLDOC01-appb-T000017
Table 17 shows the effective refractive index at each level shown in FIG. L3 is a portion corresponding to S3 in the embodiment shown in FIG. L4 is a portion corresponding to S4 of the embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000017
 表18は、実施例3の光学素子の回折効率を示す表である。表15において、「0次」及び「1次」は、0次回折光及び1時回折光の回折効率を示し、「1次/0次」は、1次回折光の光量と0次回折光の光量との比を示し、「-1次+0次+1次」は、0次回折光、1次回折光、-1次回折光の回折効率の和を示す。
Figure JPOXMLDOC01-appb-T000018
Table 18 is a table showing the diffraction efficiency of the optical element of Example 3. In Table 15, “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and 1 hour diffracted light, and “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light. “−1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the −1st order diffracted light.
Figure JPOXMLDOC01-appb-T000018
 表19は、A領域を通過する光とB領域を通過する光との位相差を示す表である。
Figure JPOXMLDOC01-appb-T000019
Table 19 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
Figure JPOXMLDOC01-appb-T000019
 マクロ格子のデューティ比は、0.5と定めた。第1の比率の目標値である0.067は、マクロ格子のデューティ比が0.5であるときに、位相差の目標値0.771[ラジアン]に対応する。 The duty ratio of the macro lattice was set to 0.5. The target value 0.067 of the first ratio corresponds to the target value 0.771 [radian] of the phase difference when the duty ratio of the macro grating is 0.5.
 表15から、第1の波長について、0次回折光、1次回折光、-1次回折光の回折効率の和である第2の比率は、0.805である。第2の波長について第2の比率は、0.890である。第3の波長について第2の比率は、0.812である。 From Table 15, for the first wavelength, the second ratio, which is the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light, is 0.805. The second ratio for the second wavelength is 0.890. The second ratio for the third wavelength is 0.812.
 実施例3に対応するバイナリ格子において、位相差は、第1乃至第3の波長の光について、20.515、12.148、10.150である。また、第1乃至第3の波長の光について、バイナリ格子の第2の比率は、0.811、0.985、及び0.697である。 In the binary grating corresponding to Example 3, the phase difference is 20.515, 12.148, and 10.150 for the first to third wavelengths of light. In addition, for light of the first to third wavelengths, the second ratio of the binary grating is 0.811, 0.985, and 0.697.
 ここで、実施例3に対応するバイナリ格子の格子高さは、2520nmであり、最大波長(785nm)の3倍以上である。このような格子は、理論上の光学性能の達成を阻害する、製造上の問題を有する。製造上の問題とは、たとえば、プラスチックの射出成形による製造方法において、金型の形状精度及び金型から製品への転写性などである。換言すると、仮にこのような格子高さの高い格子を製造したとしても、上記の製造上の問題から、上記の理論上の光学性能を達成することはできない。 Here, the grating height of the binary grating corresponding to Example 3 is 2520 nm, which is more than three times the maximum wavelength (785 nm). Such gratings have manufacturing problems that hinder achievement of theoretical optical performance. The manufacturing problems include, for example, mold shape accuracy and mold-to-product transferability in a manufacturing method using plastic injection molding. In other words, even if such a high grating height is manufactured, the above theoretical optical performance cannot be achieved due to the above manufacturing problems.
 他方、実施例3においてマクロ格子の高さが最大波長以下であるので、製造上の問題は生じにくく、理論上の光学性能を達成することができる。したがって、本実施例によれば、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長の光の、1次回折光の光量と0次回折光の光量との比である第2の比率を全く異なる値とすることができ、0次回折光、1次回折光、-1次回折光の回折効率の和を高い値に維持することができる。 On the other hand, since the height of the macro grating is less than or equal to the maximum wavelength in Example 3, problems in manufacturing are unlikely to occur, and theoretical optical performance can be achieved. Therefore, according to the present embodiment, the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light of the light of the wavelength for Blu-ray disc (BD), digital versatile disc (DVD), and compact disc (CD). The second ratio can be set to a completely different value, and the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light can be maintained at a high value.
実施例4
 実施例4は、図5Aに示した実施形態と同様の格子を使用する。実施例4において、第1の波長は、660nmとし、第2の波長は785nmとする。第1及び第2の波長の光の、1次回折光の光量と0次回折光の光量との第1の比率の目標値を、それぞれ0(0.042以下)及び0.067±0.015とする。実施例4の光学素子は、図8の流れ図にしたがって、第1及び第2の波長の光の第1の比率を目標値とするように設計を行った。
Example 4
Example 4 uses a grid similar to the embodiment shown in FIG. 5A. In Example 4, the first wavelength is 660 nm and the second wavelength is 785 nm. The target values of the first ratios of the light amounts of the first and second wavelengths of the first-order diffracted light and zero-order diffracted light are 0 (0.042 or less) and 0.067 ± 0.015, respectively. To do. The optical element of Example 4 was designed according to the flowchart of FIG. 8 so that the first ratio of the light of the first and second wavelengths is the target value.
 図12Bは、実施例4の光学素子の構成を示す図である。本実施例において、第1の膜の上に第2の膜を形成する。第1の膜の屈折率は、格子凸部及び第2の膜の屈折率よりも大きいものとする。第2の膜の屈折率は、格子凸部の屈折率よりも大きくても小さくてもよい。一例として、格子凸部は、ポリオレフィン系の樹脂を射出成形して形成したものである。第1の膜は、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。第2の膜は、さらにその上に、2酸化珪素(SiO)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させたものである。 FIG. 12B is a diagram illustrating the configuration of the optical element of Example 4. In this embodiment, a second film is formed on the first film. It is assumed that the refractive index of the first film is larger than the refractive indexes of the grating convex portions and the second film. The refractive index of the second film may be larger or smaller than the refractive index of the grating convex portion. As an example, the lattice convex portion is formed by injection molding a polyolefin-based resin. The first film is formed by depositing an evaporation material made of thallium oxide (Ta 3 O 5 ) on the first film by an evaporation method or a sputtering method. The second film is obtained by further depositing a vapor deposition material made of silicon dioxide (SiO 2 ) on the second film by a vapor deposition method or a sputtering method.
 第1の膜の上に第2の膜を設けるのは、入射光の反射をできるだけ小さくして、回折効率を向上させるためである。 The reason why the second film is provided on the first film is to make the reflection of incident light as small as possible and improve the diffraction efficiency.
 表20は、実施例1の光学素子の各部の寸法を示す表である。SWS(Sub-Wavelength Structure)は、サブ波長格子部、すなわち、A領域を指す。
Figure JPOXMLDOC01-appb-T000020
Table 20 is a table | surface which shows the dimension of each part of the optical element of Example 1. FIG. SWS (Sub-Wavelength Structure) indicates a sub-wavelength grating portion, that is, an A region.
Figure JPOXMLDOC01-appb-T000020
 ここで、実施例4のマクロ格子の高さ(低い方の基板面から膜の最も高い上面までの距離)は、表20及び図12Bから明らかなように、440nmであり、最大波長(785nm)以下である。 Here, the height of the macro grating of Example 4 (distance from the lower substrate surface to the highest upper surface of the film) is 440 nm, as is clear from Table 20 and FIG. 12B, and the maximum wavelength (785 nm). It is as follows.
 表21は、実施例4の光学素子の各部の屈折率を示す表である。第1の波長の光は、TE波であり第2の波長の光は、TM波である。
Figure JPOXMLDOC01-appb-T000021
Table 21 is a table | surface which shows the refractive index of each part of the optical element of Example 4. The light of the first wavelength is a TE wave, and the light of the second wavelength is a TM wave.
Figure JPOXMLDOC01-appb-T000021
 表22は、図12Bに示した各レベルの有効屈折率を示す図である。L1は、図6に示した実施形態のS1に相当する部分である。L2は、図2に示した実施形態のS2に相当する部分である。
Figure JPOXMLDOC01-appb-T000022
Table 22 is a diagram showing the effective refractive index at each level shown in FIG. 12B. L1 is a portion corresponding to S1 in the embodiment shown in FIG. L2 is a portion corresponding to S2 of the embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000022
 表23は、実施例4の光学素子の回折効率を示す表である。表20において、「0次」及び「1次」は、0次回折光及び1時回折光の回折効率を示し、「1次/0次」は、1次回折光の光量と0次回折光の光量との比を示し、「-1次+0次+1次」は、0次回折光、1次回折光、-1次回折光の回折効率の和を示す。
Figure JPOXMLDOC01-appb-T000023
Table 23 shows the diffraction efficiency of the optical element of Example 4. In Table 20, “0th order” and “1st order” indicate the diffraction efficiencies of the 0th order diffracted light and 1 hour diffracted light, and “1st order / 0th order” indicates the light quantity of the 1st order diffracted light and the light quantity of the 0th order diffracted light. “−1st order + 0th order + 1st order” indicates the sum of the diffraction efficiencies of the 0th order diffracted light, the 1st order diffracted light, and the −1st order diffracted light.
Figure JPOXMLDOC01-appb-T000023
 表24は、A領域を通過する光とB領域を通過する光との位相差を示す表である。
Figure JPOXMLDOC01-appb-T000024
Table 24 is a table showing the phase difference between the light passing through the A region and the light passing through the B region.
Figure JPOXMLDOC01-appb-T000024
 表25は、実施例4に対応するバイナリ格子において、第1及び第2の波長について、A領域を通過する光とB領域を通過する光との位相差及び第2の比率を示す表である。
Figure JPOXMLDOC01-appb-T000025
Table 25 is a table showing the phase difference and the second ratio between the light passing through the A region and the light passing through the B region for the first and second wavelengths in the binary grating corresponding to the fourth embodiment. .
Figure JPOXMLDOC01-appb-T000025
 ここで、実施例4に対応するバイナリ格子の格子高さは、1250nmであり、最大波長(785nm)の1.5倍以上である。このような格子は、理論上の光学性能の達成を阻害する、製造上の問題を有する。製造上の問題とは、たとえば、プラスチックの射出成形による製造方法において、金型の形状精度及び金型から製品への転写性などである。換言すると、仮にこのような格子高さの高い格子を製造したとしても、上記の製造上の問題から、上記の理論上の光学性能を達成することはできない。 Here, the grating height of the binary grating corresponding to Example 4 is 1250 nm, which is 1.5 times or more of the maximum wavelength (785 nm). Such gratings have manufacturing problems that hinder achievement of theoretical optical performance. The manufacturing problems include, for example, mold shape accuracy and mold-to-product transferability in a manufacturing method using plastic injection molding. In other words, even if such a high grating height is manufactured, the above theoretical optical performance cannot be achieved due to the above manufacturing problems.
 他方、実施例4においてマクロ格子の高さが最大波長以下であるので、製造上の問題は生じにくく、理論上の光学性能に近い値を達成することができる。したがって、本実施例によれば、デジタルバーサタイルディク(DVD)用の波長の光の第1の比率(1次回折光の光量と0次回折光の光量との比)を、コンパクトディスク(CD)用の波長の光の第1の比率よりも小さくすることができ、両波長の光の0次回折光、1次回折光、-1次回折光の回折効率の和を高い値に維持することができる。 On the other hand, since the height of the macro grating is less than or equal to the maximum wavelength in Example 4, a problem in manufacturing hardly occurs, and a value close to the theoretical optical performance can be achieved. Therefore, according to the present embodiment, the first ratio of the light of the wavelength for digital versatile disc (DVD) (the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light) is set for the compact disc (CD). It can be made smaller than the first ratio of the light of the wavelengths, and the sum of the diffraction efficiencies of the 0th-order diffracted light, the 1st-order diffracted light, and the −1st-order diffracted light of both wavelengths can be maintained at a high value.
実施例2の光学素子を含む光学系の構成例
 図13及び図14は、実施例2の光学素子2100を含む光学系の構成の一例を示す図である。光学系は、3波長の光によりディスク1219上に記録された情報を読み取るピックアップ光学系である。図13は、光源からディスク1219に至る光の経路を示し、図14は、ディスク1219に反射された後の光の経路を示す。
Configuration Example of Optical System Including Optical Element of Example 2 FIGS. 13 and 14 are diagrams illustrating an example of the configuration of an optical system including the optical element 2100 of Example 2. FIG. The optical system is a pickup optical system that reads information recorded on the disk 1219 with light of three wavelengths. FIG. 13 shows a light path from the light source to the disk 1219, and FIG. 14 shows a light path after being reflected by the disk 1219.
 光学系は、レーザ光源1201、1/2波長板1203、1205、光学素子3100、偏光フィルタ1207、ハーフミラーなどのビームスプリッタ1209、1/4波長板1211、コリメートレンズ1213、ミラー1215、対物レンズ1217、集光レンズ1221及び受光素子1223を含む。 The optical system includes a laser light source 1201, half- wave plates 1203 and 1205, an optical element 3100, a polarizing filter 1207, a beam splitter 1209 such as a half mirror, a quarter-wave plate 1211, a collimator lens 1213, a mirror 1215, and an objective lens 1217. A condenser lens 1221 and a light receiving element 1223.
 図13において、レーザ光源1201は、波長405nmと波長660nmと波長785nmの3波長の光の光源である。ここで、波長405nm、波長785nm及び波長660nmをそれぞれ第1の波長乃至第3の波長とする。レーザ光源1201は、第1の波長乃至第3の波長の光のいずれかを選択的に射出する。第1の波長乃至第3の波長の光は、全てTE偏光であるとする。1/2波長板1203は、第2の波長及び第3の波長の光をTE偏光からTM偏光に変換し、第1の波長の光をTE偏光のまま透過させるように構成されている。光学素子2100は、たとえば、実施例2に示したものであり、3波長の光に対して、1次回折光の光量と0次回折光の光量との比を0.067±0.012とするように構成されている。1/2波長板1205は、第2の波長及び第3の波長の光(0次回折光及び±1次回折光)をTM偏光からTE偏光に変換し、第1の波長の光をTE偏光のまま透過させるように構成されている。偏光フィルタ1207は、TE偏光以外の光を遮光することによってノイズを除去するように構成されている。ビームスプリッタ1209は、TE偏光であるいずれかの波長の光(0次回折光及び±1次回折光)を反射する。1/4波長板1211は、TE偏光であるいずれかの波長の光(0次回折光及び±1次回折光)を円偏光とする。いずれかの波長の光(0次回折光及び±1次回折光)は、コリメートレンズ1213によって平行光とされ、ミラー1215によって反射された後、対物レンズ1217によってディスク1219上に集光される。ここで、0次回折光、±1次回折光は、それぞれディスク1219上の異なる位置に集光される。0次回折光は、主にディスク1219上に記録されたデータの読み取りに使用され、±1次回折光は、ディスク1219に対するレンズ系の位置制御に使用される。 In FIG. 13, a laser light source 1201 is a light source of light having three wavelengths of 405 nm, 660 nm, and 785 nm. Here, a wavelength of 405 nm, a wavelength of 785 nm, and a wavelength of 660 nm are defined as a first wavelength to a third wavelength, respectively. The laser light source 1201 selectively emits light having a first wavelength to a third wavelength. It is assumed that all the light with the first to third wavelengths is TE-polarized light. The half-wave plate 1203 is configured to convert the light of the second wavelength and the third wavelength from TE polarized light to TM polarized light and transmit the light of the first wavelength as TE polarized light. The optical element 2100 is, for example, as shown in the second embodiment, and the ratio of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light is set to 0.067 ± 0.012 with respect to light of three wavelengths. It is configured. The half-wave plate 1205 converts the light of the second wavelength and the third wavelength (0th order diffracted light and ± 1st order diffracted light) from TM polarized light to TE polarized light, and the first wavelength light remains TE polarized light. It is configured to transmit. The polarization filter 1207 is configured to remove noise by blocking light other than TE polarized light. The beam splitter 1209 reflects light of any wavelength that is TE-polarized light (0th order diffracted light and ± 1st order diffracted light). The quarter-wave plate 1211 makes light of any wavelength that is TE-polarized light (zero-order diffracted light and ± first-order diffracted light) circularly polarized light. Light of any wavelength (0th order diffracted light and ± 1st order diffracted light) is converted into parallel light by the collimator lens 1213, reflected by the mirror 1215, and then condensed on the disk 1219 by the objective lens 1217. Here, the 0th-order diffracted light and the ± 1st-order diffracted light are condensed at different positions on the disk 1219, respectively. The 0th-order diffracted light is mainly used for reading data recorded on the disk 1219, and the ± 1st-order diffracted light is used for position control of the lens system with respect to the disk 1219.
 図14において、ディスク1219で反射されたいずれかの波長の光(0次回折光及び±1次回折光)は、対物レンズ1217、ミラー1215、コリメートレンズ1213を透過した後、1/4波長板1211によってTM偏光に変換される。ビームスプリッタ1209は、TM偏光であるいずれかの波長の光(0次回折光及び±1次回折光)を透過させる。TM偏光であるいずれかの波長の光(0次回折光及び±1次回折光)は、集光レンズ1221によって0次回折光及び±1次回折光用の3個の受光素子1223の集光面上に集光される。なお復路においてビームスプリッタ1209でTE偏光の光が一部反射される場合には、この光は偏光フィルタ1207によって遮光される。 In FIG. 14, light of any wavelength (0th order diffracted light and ± 1st order diffracted light) reflected by the disk 1219 is transmitted through the objective lens 1217, the mirror 1215, and the collimator lens 1213, and then by the quarter wavelength plate 1211. Converted to TM polarized light. The beam splitter 1209 transmits light of any wavelength that is TM polarized light (0th order diffracted light and ± 1st order diffracted light). Light of any wavelength (0th order diffracted light and ± 1st order diffracted light) that is TM-polarized light is collected on the condensing surface of the three light receiving elements 1223 for 0th order diffracted light and ± 1st order diffracted light by the condenser lens 1221. Lighted. Note that when the TE-polarized light is partially reflected by the beam splitter 1209 in the return path, this light is blocked by the polarizing filter 1207.
 図15及び図16は、実施例2の光学素子2100を含む光学系の構成の他の例を示す図である。光学系は、3波長の光によりディスク1319上に記録された情報を読み取るピックアップ光学系である。図15は、光源からディスク1319に至る光の経路を示し、図16は、ディスク1319に反射された後の光の経路を示す。 15 and 16 are diagrams showing another example of the configuration of the optical system including the optical element 2100 of the second embodiment. The optical system is a pickup optical system that reads information recorded on the disk 1319 with light of three wavelengths. FIG. 15 shows a light path from the light source to the disk 1319, and FIG. 16 shows a light path after being reflected by the disk 1319.
 光学系は、レーザ光源1301、1/2波長板1303、1305、光学素子2100、偏光フィルタ1307、ハーフミラーなどのビームスプリッタ1309、1/4波長板1311、コリメートレンズ1313、ミラー1315、対物レンズ1317、集光レンズ1321及び受光素子1323を含む。 The optical system includes a laser light source 1301, half- wave plates 1303 and 1305, an optical element 2100, a polarizing filter 1307, a beam splitter 1309 such as a half mirror, a quarter-wave plate 1311, a collimator lens 1313, a mirror 1315, and an objective lens 1317. , A condenser lens 1321 and a light receiving element 1323.
 ビームスプリッタ1309を除き、それぞれの光学素子は、図13及び図14の光学系の場合と同様に機能する。ビームスプリッタ1309は、往路において、いずれかの波長の光を透過させ、復路において、いずれかの波長の光を反射するように構成されている。 Except for the beam splitter 1309, each optical element functions in the same manner as in the optical system of FIGS. The beam splitter 1309 is configured to transmit light of any wavelength on the forward path and reflect light of any wavelength on the return path.
第3の態様
 図17は、本発明の第3の態様の一実施形態による光学素子100の透視図である。基板上101の第1の帯状領域(図においては第1の領域と記載する)にY方向に伸びる複数の格子凸部103が第1の周期でX方向に配置されている。第1の周期は、第1の帯状領域を通過する光が回折を生じ得ない程度に小さい。基板上には、格子凸部の配置されていない第2の帯状領域(図においては第2の領域と記載する)が第1の帯状領域と隣接して配置されている。第1の帯状領域及び第2の帯状領域は、第2の周期でX方向に繰り返し配置されている。基板を通過する光に対して、第1の帯状領域は、格子凸部として機能し、第2の帯状領域は格子凹部として機能する。そして、第2の周期は、第1の帯状領域及び第2の帯状領域を通過する光が、回折を生じ得る程度に大きい。
Third Aspect FIG. 17 is a perspective view of an optical element 100 according to one embodiment of the third aspect of the present invention. A plurality of grid protrusions 103 extending in the Y direction are arranged in the X direction in the first direction in a first band-like region (referred to as the first region in the figure) on the substrate 101. The first period is so small that the light passing through the first band-like region cannot cause diffraction. On the substrate, a second belt-like region (described as the second region in the drawing) in which no grid convex portions are arranged is arranged adjacent to the first belt-like region. The first belt-like region and the second belt-like region are repeatedly arranged in the X direction at the second period. For light passing through the substrate, the first belt-like region functions as a lattice convex portion, and the second belt-like region functions as a lattice concave portion. The second period is so large that the light passing through the first band region and the second band region can cause diffraction.
 図18は、図17に示した光学素子の、基板面に垂直なX方向断面図である。第1の帯状領域において、基板101上に複数の格子凸部103が第1の周期でX方向に配置されている。第2の帯状領域において、格子凸部は配置されていない。第1の帯状領域の格子凸部103、第1の帯状領域の格子凹部の基板101及び第2の帯状領域の基板101上には、それぞれ、膜105、膜107及び膜109が設けられている。図18において、以下の説明を簡単にするために膜の厚さは格子凸部の高さ103と等しくしている。実際には、図19に示すように膜の厚さは格子凸部103の高さと異なってもよい。 18 is a cross-sectional view in the X direction perpendicular to the substrate surface of the optical element shown in FIG. In the first belt-like region, a plurality of grid protrusions 103 are arranged on the substrate 101 in the X direction at the first period. In the second band-shaped region, the lattice convex portions are not arranged. A film 105, a film 107, and a film 109 are provided on the lattice convex portion 103 of the first belt-shaped region, the substrate 101 of the lattice concave portion of the first belt-shaped region, and the substrate 101 of the second belt-shaped region, respectively. . In FIG. 18, in order to simplify the following description, the thickness of the film is made equal to the height 103 of the lattice convex portion. Actually, as shown in FIG. 19, the thickness of the film may be different from the height of the grating protrusion 103.
 第1の帯状領域において、基板面と基板面に平行で格子高さの位置の面の間の空間をL1と呼称する。L1には、格子凸部103と膜107とが所定の比率で存在する。 In the first belt-like region, the space between the substrate surface and the surface at the lattice height parallel to the substrate surface is referred to as L1. In L1, the lattice convex portion 103 and the film 107 are present at a predetermined ratio.
 第1の帯状領域において、基板面に平行で格子高さの位置の面と基板面に平行で格子凸部103上の膜105の高さの位置の面との間の空間をU1と呼称する。U1には、格子凸部103上の膜105と周囲の媒質とが所定の比率で存在する。ここで、光学素子100は空気中に置かれているので、周囲の媒質は空気である。 In the first band-like region, a space between a plane parallel to the substrate surface and at a lattice height and a plane parallel to the substrate surface and at a height position of the film 105 on the lattice projection 103 is referred to as U1. . In U1, the film 105 on the lattice convex portion 103 and the surrounding medium are present at a predetermined ratio. Here, since the optical element 100 is placed in the air, the surrounding medium is air.
 第2の帯状領域において、基板面と基板面に平行で格子高さの位置の面の間の空間をL2と呼称する。L2には、膜109が存在する。 In the second band-like region, the space between the substrate surface and the surface at the lattice height parallel to the substrate surface is referred to as L2. A film 109 exists in L2.
 第2の帯状領域において、基板面に平行で格子高さの位置の面と基板面に平行で格子凸部103上の膜105の高さの位置の面との間の空間をU2と呼称する。U2には、空気が存在する。 In the second band-like region, the space between the plane at the lattice height parallel to the substrate surface and the plane at the height of the film 105 on the lattice protrusion 103 parallel to the substrate surface is referred to as U2. . Air exists in U2.
 ここで、説明を簡単にするために、格子凸部103上の膜105の高さも格子凸部103の高さと等しいとする。この高さをhとする。したがって、L1、U1、L2及びU2の厚さ(高さ)は全てhとなる。 Here, in order to simplify the explanation, it is assumed that the height of the film 105 on the lattice convex portion 103 is also equal to the height of the lattice convex portion 103. Let this height be h. Therefore, the thicknesses (heights) of L1, U1, L2, and U2 are all h.
 つぎに、L1、U1、L2及びU2の屈折率nL1、nU1、nL2及びnU2について考察する。L2には、膜109のみが存在するので、nL2は膜の屈折率である。U2には、空気のみが存在するので、nU2は空気の屈折率である。 Next, the refractive indexes n L1 , n U1 , n L2 and n U2 of L1 , U1 , L2 and U2 will be considered. Since only the film 109 exists in L2 , nL2 is the refractive index of the film. Since only air exists in U2 , nU2 is the refractive index of air.
 L1及びU1のように、2種類の媒質が波長以下の周期で格子状に配列された領域の有効屈折率は、2種類の媒質の屈折率をn1及びn2で表し、全領域の体積に対するn2の占める体積の比率(デューティ比)をfで表すと、以下の式で表せる。ここで、簡単のために光は基板面に垂直に入射すると仮定する。
 0次近似式
Figure JPOXMLDOC01-appb-M000017
 2次近似式 
Figure JPOXMLDOC01-appb-M000018
Like L1 and U1, the effective refractive index of a region in which two types of media are arranged in a lattice pattern with a period equal to or shorter than the wavelength is expressed by n1 and n2, and n2 with respect to the volume of the entire region. When the volume ratio (duty ratio) occupied by is represented by f, it can be represented by the following equation. Here, for the sake of simplicity, it is assumed that light is incident on the substrate surface perpendicularly.
0th order approximation
Figure JPOXMLDOC01-appb-M000017
Second order approximation
Figure JPOXMLDOC01-appb-M000018
 上記の式によれば、L1の屈折率nL1は、格子凸部103の屈折率と膜107の屈折率との間のいずれかの値であり、U1の屈折率nU1は、膜105の屈折率と空気の屈折率との間のいずれかの値である。 According to the above equation, the refractive index n L1 of L1 is any value between the refractive index of the grating convex 103 and the refractive index of the film 107, and the refractive index n U1 of U1 is Any value between the refractive index and the refractive index of air.
 ここで、基板面に垂直方向に光がU1及びL1を通過する場合の光路長d1は、以下の式で表せる。
 d1=h(nU1+nL1)               (14)
また、基板面に垂直方向に光がU2及びL2を通過する場合の光路長d2は、以下の式で表せる。
 d2=h(nU2+nL2)              (15)
Here, the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface can be expressed by the following equation.
d1 = h (n U1 + n L1 ) (14)
Further, the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface can be expressed by the following equation.
d2 = h (n U2 + n L2 ) (15)
 式(5)及び(6)から、以下の式が満足されれば、U1及びL1を通過する光の光路長とU2及びL2を通過する光の光路長とが同じになるので、第1の帯状領域及び第2の帯状領域によって形成される格子によって回折が生じることはない。
 nU1+nL1=nU2+nL2              (16)
From the equations (5) and (6), if the following equation is satisfied, the optical path length of the light passing through U1 and L1 is the same as the optical path length of the light passing through U2 and L2, so the first Diffraction is not caused by the grating formed by the strip region and the second strip region.
n U1 + n L1 = n U2 + n L2 (16)
 ここで、膜の屈折率が格子凸部103の屈折率よりも高くなるように膜及び格子凸部の材料を選択する。そうすると、以下の関係が成立する。
 nU1 >nU2                  (17)
 nL1<nL2                   (18)
Here, the material of the film and the grating convex portion is selected so that the refractive index of the film is higher than the refractive index of the grating convex portion 103. Then, the following relationship is established.
n U1 > n U2 (17)
n L1 <n L2 (18)
 すなわち、第1の帯状領域の上部層U1の屈折率は、第2の帯状領域の上部層U2の屈折率よりも大きく、第1の帯状領域の下部層UL1の屈折率は、第2の帯状領域の下部層UL2の屈折率よりも小さい。したがって、膜及び格子凸部の材料を適切に選択し、第1の帯状領域のデューティ比を調整することにより、式(7)を容易に実現することができる。 That is, the refractive index of the upper layer U1 of the first band region is larger than the refractive index of the upper layer U2 of the second band region, and the refractive index of the lower layer UL1 of the first band region is the second band shape. It is smaller than the refractive index of the lower layer UL2 of the region. Therefore, Expression (7) can be easily realized by appropriately selecting the material of the film and the lattice convex portion and adjusting the duty ratio of the first band-shaped region.
 図20は、本実施形態の光学素子の設計方法を示す流れ図である。 FIG. 20 is a flowchart showing a method for designing the optical element of the present embodiment.
 図20のステップS010において、第2の周期を定める。ここで、第2の周期は、第2の偏光状態の光が所望の回折角を生じるように以下の式から定める。

       n’ sinθ’-n sinθ=Nλ/Λ       (13)

       n:入射側媒質の屈折率(空気の屈折率)
       n’:出射側媒質の屈折率(空気の屈折率)
       θ:入射角
       θ’:回折角
       N:回折次数
       λ:入射光の波長
       Λ:回折格子の周期(第2の周期)

本実施形態において、入射角はゼロとすると、回折角は、第2の周期のみによって定まる。
In step S010 in FIG. 20, a second cycle is determined. Here, the second period is determined from the following equation so that the light in the second polarization state generates a desired diffraction angle.

n 'sinθ'-n sinθ = Nλ / Λ (13)

n: Refractive index of the incident side medium (refractive index of air)
n ': refractive index of the output side medium (refractive index of air)
θ: incident angle θ ′: diffraction angle N: diffraction order λ: wavelength of incident light Λ: period of diffraction grating (second period)

In the present embodiment, when the incident angle is zero, the diffraction angle is determined only by the second period.
 図20のステップS020において、第1の周期の上限を定める。第1の周期の上限は、一例として、第2の周期の20分の1未満となるように定める。 In step S020 in FIG. 20, the upper limit of the first cycle is determined. As an example, the upper limit of the first period is determined to be less than 1/20 of the second period.
 図20のステップS030において、第1の偏光状態の光について、式(16)が満足されるように、第1の周期、デューティ比、格子凸部の高さ、膜厚を調整する。 In step S030 of FIG. 20, the first period, the duty ratio, the height of the grating convex portions, and the film thickness are adjusted so that the expression (16) is satisfied for the light in the first polarization state.
 ここで、膜の材料を、第1の帯状領域及び第2の帯状領域を区別することなく塗布した場合に、第1の帯状領域の格子凸部、第1の帯状領域の格子凹部及び第2の帯状領域の膜厚に差が生じる場合には、膜の材料の塗布量と各部分ごとの膜厚との関係を予め測定しておき、その関係を利用して設計を行うことができる。このように設計を行うことにより、たとえば、各部分の膜厚を均等にするように膜の材料の塗布量を調節することなどの煩雑な製造プロセスが必要なくなる。 Here, when the material of the film is applied without distinguishing the first belt-like region and the second belt-like region, the lattice convex portions of the first belt-like region, the lattice concave portions of the first belt-like region, and the second In the case where a difference occurs in the film thickness of the belt-shaped region, the relationship between the coating amount of the film material and the film thickness of each part is measured in advance, and the design can be performed using the relationship. By designing in this way, for example, a complicated manufacturing process such as adjusting the coating amount of the film material so as to equalize the film thickness of each portion is not necessary.
 図20のステップS040において、式(16)が満足されるか、すなわち、第1の帯状領域および第2の帯状領域を通過する光の位相差(光路長差)が所定の値以下となるかどうか判断される。式(16)が満足されれば処理は終了する。式(16)が満足されなければ、ステップS040に戻る。 In Step S040 of FIG. 20, is the expression (16) satisfied, that is, whether the phase difference (optical path length difference) of the light passing through the first belt-like region and the second belt-like region is not more than a predetermined value? Judgment is made. If expression (16) is satisfied, the process ends. If expression (16) is not satisfied, the process returns to step S040.
 図21は、たとえば特許文献2に示される、従来の光学素子の、基板面に垂直なX方向断面図である。X方向は、基板面上において格子凸部の伸びる方向に垂直な方向である。格子領域において、基板101上に複数の格子凸部103が所定の周期でX方向に配置されている。上記所定の周期は、使用される光が格子によって回折を生じ得ない大きさである。平坦領域において、格子凸部は配置されていない。 FIG. 21 is a cross-sectional view in the X direction perpendicular to the substrate surface of a conventional optical element disclosed in Patent Document 2, for example. The X direction is a direction perpendicular to the direction in which the lattice convex portions extend on the substrate surface. In the lattice region, a plurality of lattice convex portions 103 are arranged on the substrate 101 in the X direction with a predetermined period. The predetermined period is such a magnitude that the used light cannot be diffracted by the grating. In the flat region, the lattice convex portions are not arranged.
 ここで、基板面に垂直方向に光が格子領域を通過する場合の光路長dgは、以下の式で表せる。
 dg=hg・ng                 (19)
ここで、hgは、格子高さであり、ngは、式(3)又は式(4)から求めた格子領域の有効屈折率である。
Here, the optical path length dg when light passes through the grating region in the direction perpendicular to the substrate surface can be expressed by the following equation.
dg = hg · ng (19)
Here, hg is the grating height, and ng is the effective refractive index of the grating region obtained from the equation (3) or the equation (4).
 格子領域の有効屈折率は、空気の屈折率より大きいので、式(19)から求めた格子領域を通過する光の光路長は、格子領域に対応する平坦領域を通過する光の光路長より必ず大きくなる。したがって、格子領域及び平坦領域によって形成される格子によって回折が生じないようにするには、格子領域と平坦領域との位相差が、2πの整数倍となるように以下の式が満足される必要がある。
(2π/λ)・hg・ng=(2π/λ)・hg・na+(2π・m)/λ
                            (20)
ここで、naは空気の屈折率、λは使用される光の波長であり、mは任意の整数である。式(20)を整理すると以下の式が得られる。
  hg=m/(ng-na)             (21)
Since the effective refractive index of the grating region is larger than the refractive index of air, the optical path length of light passing through the grating region obtained from the equation (19) is always greater than the optical path length of light passing through the flat region corresponding to the grating region. growing. Therefore, in order to prevent diffraction from being generated by the grating formed by the grating region and the flat region, the following expression must be satisfied so that the phase difference between the grating region and the flat region is an integral multiple of 2π. There is.
(2π / λ) · hg · ng = (2π / λ) · hg · na + (2π · m) / λ
(20)
Here, na is the refractive index of air, λ is the wavelength of light used, and m is an arbitrary integer. By rearranging the equation (20), the following equation is obtained.
hg = m / (ng−na) (21)
 すなわち、格子高さは、格子凸部の屈折率と空気の屈折率との差の逆数以上の値をとる必要がある。後で実施例に関して説明するように、格子凸部に加工しやすいプラスチックを使用すると、格子周期に対する格子高さの比であるアスペクト比が大きくなり、サブ波長格子を製造するのが困難になる。 That is, the grating height needs to take a value equal to or larger than the reciprocal of the difference between the refractive index of the grating convex portion and the refractive index of air. As will be described later with respect to the embodiments, when plastic that is easily processed is used for the grating convex portion, the aspect ratio, which is the ratio of the grating height to the grating period, becomes large, and it becomes difficult to manufacture the sub-wavelength grating.
 上記において、従来の光学素子の格子が膜を備えていない場合について説明したが、従来の光学素子の格子が膜を備えている場合も同様である。 In the above description, the case where the grating of the conventional optical element does not include a film has been described, but the same applies to the case where the grating of the conventional optical element includes a film.
 以下に本発明の実施例について説明する。 Examples of the present invention will be described below.
実施例5
 実施例5は、図17に示した構成を備え、格子突起部103の配列される方向は、X方向であり、第1の帯状領域及び第2の帯状領域が配列される方向と同じである。本実施例は、図18に示したX方向断面を備える。すなわち、膜の厚さは格子凸部103の高さに等しい。
Example 5
The fifth embodiment has the configuration shown in FIG. 17, and the direction in which the lattice protrusions 103 are arranged is the X direction, which is the same as the direction in which the first belt-like region and the second belt-like region are arranged. . This embodiment includes the X-direction cross section shown in FIG. In other words, the thickness of the film is equal to the height of the grid protrusion 103.
 表26は、本実施例の光学素子の仕様を示す表である。
Figure JPOXMLDOC01-appb-T000026
表26において、長さの単位はマイクロメータである。また、屈折率の欄の左側の数字は、660ナノメータの波長の光の屈折率を示し、右側の数字は、785ナノメータの波長の光の屈折率を示す。本実施例においては、上記の2波長の光が使用される。
Table 26 is a table | surface which shows the specification of the optical element of a present Example.
Figure JPOXMLDOC01-appb-T000026
In Table 26, the unit of length is micrometers. The number on the left side of the refractive index column indicates the refractive index of light having a wavelength of 660 nanometers, and the number on the right side indicates the refractive index of light having a wavelength of 785 nanometers. In the present embodiment, the above-described two-wavelength light is used.
 本実施例の光学素子は、以下の方法により製造される。格子凸部は、ポリオレフィン系の樹脂を射出成形により形成し、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させる。 The optical element of this example is manufactured by the following method. The lattice projection is formed by injection molding a polyolefin-based resin, and an evaporation material made of thallium oxide (Ta 3 O 5 ) is deposited thereon by an evaporation method or a sputtering method.
 表27は、785ナノメータの波長の光の、L1、U1、L2及びU2の屈折率及び層の厚さを示す表である。本実施例において、785ナノメータの波長の光は、TM偏光として光学素子100に入射される。ここで、TM偏光の面が基板面に垂直でX方向の面であり、TE偏光の面が基板面に垂直でY方向の面であると仮定する。
Figure JPOXMLDOC01-appb-T000027
Table 27 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 785 nanometers. In this embodiment, light having a wavelength of 785 nanometers enters the optical element 100 as TM polarized light. Here, it is assumed that the TM-polarized surface is perpendicular to the substrate surface and is in the X direction, and the TE-polarized surface is perpendicular to the substrate surface and is in the Y direction.
Figure JPOXMLDOC01-appb-T000027
 式(14)及び式(15)から、基板面に垂直方向に光がU1及びL1を通過する場合の光路長d1及び基板面に垂直方向に光がU2及びL2を通過する場合の光路長d2を計算すると、以下の式が得られる。
  d1=0.3158
  d2=0.3191
したがって、光路長差は、0.0033マイクロメータとなる。位相差は、0.026ラジアン(1.50度)であり、ほぼゼロとなり、本実施例の光学素子は、785ナノメータの波長の光(TM偏光)を回折させることなくそのまま通過させる。
From equations (14) and (15), the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface and the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface. Is calculated, the following formula is obtained.
d1 = 0.3158
d2 = 0.3191
Therefore, the optical path length difference is 0.0033 micrometers. The phase difference is 0.026 radians (1.50 degrees), which is almost zero, and the optical element of this example allows light of 785 nanometer wavelength (TM polarized light) to pass through without being diffracted.
 表28は、660ナノメータの波長の光の、L1、U1、L2及びU2の屈折率及び層の厚さを示す表である。本実施例において、660ナノメータの波長の光は、TE偏光として光学素子100に入射される。
Figure JPOXMLDOC01-appb-T000028
Table 28 is a table showing the refractive indices and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 660 nanometers. In this embodiment, light having a wavelength of 660 nanometers enters the optical element 100 as TE polarized light.
Figure JPOXMLDOC01-appb-T000028
 式(14)及び式(15)から、基板面に垂直方向に光がU1及びL1を通過する場合の光路長d1及び基板面に垂直方向に光がU2及びL2を通過する場合の光路長d2を計算すると、以下の式が得られる。
  d1=0.3891
  d2=0.3201
したがって、光路長差は、0.069マイクロメータとなる。位相差は、0.657ラジアン(37.6度)となり、本実施例の光学素子は、660ナノメータの波長(TE偏光)の光を回折させる。
From equations (14) and (15), the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface and the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface. Is calculated, the following formula is obtained.
d1 = 0.3891
d2 = 0.3201
Therefore, the optical path length difference is 0.069 micrometers. The phase difference is 0.657 radians (37.6 degrees), and the optical element of this embodiment diffracts light having a wavelength of 660 nanometers (TE polarized light).
 表29は、本実施例の光学素子による回折の状態を示す表である。
Figure JPOXMLDOC01-appb-T000029
表29において、「比率」は、0次回折光量に対する1次回折光量の比率を示す。それ以外の数値は、入射光量に対する回折光量の比を示す。「合計」は、0次回折光量、1次回折光量及び-1次回折光量の合計を示す。本実施例では、要求仕様に基づいて「比率」を上記の数値としている。785ナノメータの波長の光(TM偏光)に対して1次回折光及び-1次回折光はほとんど生じない。
Table 29 is a table | surface which shows the state of the diffraction by the optical element of a present Example.
Figure JPOXMLDOC01-appb-T000029
In Table 29, “ratio” indicates the ratio of the first-order diffracted light amount to the zero-order diffracted light amount. The other numerical values indicate the ratio of the amount of diffracted light to the amount of incident light. “Total” indicates the total of the 0th-order diffracted light amount, the 1st-order diffracted light amount, and the −1st-order diffracted light amount. In this embodiment, the “ratio” is set to the above numerical value based on the required specification. First-order diffracted light and −1st-order diffracted light hardly occur with respect to light having a wavelength of 785 nanometers (TM polarized light).
 このように本実施例の光学素子は、第1の偏光状態の光(785ナノメータの波長の光(TM偏光))を回折させることなく、第2の偏光状態の光(660ナノメータの波長の光(TE偏光))を回折させる。 As described above, the optical element of the present embodiment does not diffract the light in the first polarization state (light having a wavelength of 785 nanometers (TM polarization)), and the light in the second polarization state (light having a wavelength of 660 nanometers). (TE polarized light)) is diffracted.
実施例6
 図22は、実施例2の光学素子の透視図である。図22に示すように、実施例2において、格子突起部103の配列される方向は、Y方向であり、第1の帯状領域及び第2の帯状領域が配列される方向(X方向)と直交する。本実施例の第1の帯状領域のY方向断面は、図18の第1の帯状領域の断面と同じである。第1実施例では、図18に示すように、格子凸部103の配列方向が、第1の帯状領域及び第2の帯状領域の配列方向と一致する。これに対して、第2の実施例では、格子凸部103の配列方向が、第1の帯状領域及び第2の帯状領域の配列方向と直交する。本実施例において、膜の厚さは格子凸部103の高さに等しい。
Example 6
FIG. 22 is a perspective view of the optical element according to the second embodiment. As shown in FIG. 22, in Example 2, the direction in which the lattice protrusions 103 are arranged is the Y direction, and is orthogonal to the direction in which the first and second belt regions are arranged (X direction). To do. The cross section in the Y direction of the first band-like region of the present example is the same as the cross section of the first band-like region of FIG. In the first embodiment, as shown in FIG. 18, the arrangement direction of the lattice projections 103 coincides with the arrangement direction of the first belt-like region and the second belt-like region. On the other hand, in the second embodiment, the arrangement direction of the lattice projections 103 is orthogonal to the arrangement directions of the first belt-like region and the second belt-like region. In the present embodiment, the thickness of the film is equal to the height of the lattice projection 103.
 表30は、本実施例の光学素子の仕様を示す表である。
Figure JPOXMLDOC01-appb-T000030
Table 30 is a table | surface which shows the specification of the optical element of a present Example.
Figure JPOXMLDOC01-appb-T000030
 表30において、長さの単位はマイクロメータである。また、屈折率の欄の左側の数字は、660ナノメータの波長の光の屈折率を示し、右側の数字は、785ナノメータの波長の光の屈折率を示す。本実施例においては、上記の2波長の光が使用される。 In Table 30, the unit of length is micrometer. The number on the left side of the refractive index column indicates the refractive index of light having a wavelength of 660 nanometers, and the number on the right side indicates the refractive index of light having a wavelength of 785 nanometers. In the present embodiment, the above-described two-wavelength light is used.
 本実施例の光学素子は、以下の方法により製造される。格子凸部は、ポリオレフィン系の樹脂を射出成形により形成し、その上に、酸化タリウム(Ta)からなる蒸着材料を、蒸着法またはスパッタ法によって堆積させる。 The optical element of this example is manufactured by the following method. The lattice projection is formed by injection molding a polyolefin-based resin, and an evaporation material made of thallium oxide (Ta 3 O 5 ) is deposited thereon by an evaporation method or a sputtering method.
 表31は、660ナノメータの波長の光の、L1、U1、L2及びU2の屈折率及び層の厚さを示す表である。本実施例において、660ナノメータの波長の光は、TE偏光として光学素子100に入射される。ここで、TM偏光の面が基板面に垂直でX方向の面であり、TE偏光の面が基板面に垂直でY方向の面であると仮定する。
Figure JPOXMLDOC01-appb-T000031
Table 31 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 660 nanometers. In this embodiment, light having a wavelength of 660 nanometers enters the optical element 100 as TE polarized light. Here, it is assumed that the TM-polarized surface is perpendicular to the substrate surface and is in the X direction, and the TE-polarized surface is perpendicular to the substrate surface and is in the Y direction.
Figure JPOXMLDOC01-appb-T000031
 式(14)及び式(15)から、基板面に垂直方向に光がU1及びL1を通過する場合の光路長d1及び基板面に垂直方向に光がU2及びL2を通過する場合の光路長d2を計算すると、以下の式が得られる。
  d1=0.4322
  d2=0.4320
したがって、光路長差は、ほぼゼロとなり、本実施例の光学素子は、660ナノメータの波長の光(TE偏光)を回折させることなくそのまま通過させる。
From equations (14) and (15), the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface and the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface. Is calculated, the following formula is obtained.
d1 = 0.4322
d2 = 0.4320
Therefore, the optical path length difference is almost zero, and the optical element of this embodiment allows light having a wavelength of 660 nanometers (TE polarized light) to pass through without being diffracted.
 表32は、785ナノメータの波長の光の、L1、U1、L2及びU2の屈折率及び層の厚さを示す表である。本実施例において、785ナノメータの波長の光は、TM偏光として光学素子100に入射される。
Figure JPOXMLDOC01-appb-T000032
Table 32 is a table showing the refractive indexes and layer thicknesses of L1, U1, L2, and U2 of light having a wavelength of 785 nanometers. In this embodiment, light having a wavelength of 785 nanometers enters the optical element 100 as TM polarized light.
Figure JPOXMLDOC01-appb-T000032
 式(14)及び式(15)から、基板面に垂直方向に光がU1及びL1を通過する場合の光路長d1及び基板面に垂直方向に光がU2及びL2を通過する場合の光路長d2を計算すると、以下の式が得られる。
  d1=0.5045
  d2=0.4235
したがって、光路長差は、0.081マイクロメータとなる。位相差は、0.648ラジアン(37.2度)となり、本実施例の光学素子は、785ナノメータの波長(TM偏光)の光を回折させる。
From equations (14) and (15), the optical path length d1 when light passes through U1 and L1 in the direction perpendicular to the substrate surface and the optical path length d2 when light passes through U2 and L2 in the direction perpendicular to the substrate surface. Is calculated, the following formula is obtained.
d1 = 0.05045
d2 = 0.4235
Therefore, the optical path length difference is 0.081 micrometers. The phase difference is 0.648 radians (37.2 degrees), and the optical element of this embodiment diffracts light having a wavelength of 785 nanometers (TM polarization).
 表33は、本実施例の光学素子による回折の状態を示す表である。
Figure JPOXMLDOC01-appb-T000033
Table 33 is a table | surface which shows the state of the diffraction by the optical element of a present Example.
Figure JPOXMLDOC01-appb-T000033
 表33において、「比率」は、0次回折光量に対する1次回折光量の比率を示す。それ以外の数値は、入射光量に対する回折光量の比を示す。「合計」は、0次回折光量、1次回折光量及び-1次回折光量の合計を示す。本実施例では、要求仕様に基づいて「比率」を上記の数値としている。660ナノメータの波長の光(TE偏光)に対して1次回折光及び-1次回折光はほとんど生じない。 In Table 33, “ratio” indicates the ratio of the first-order diffracted light amount to the zero-order diffracted light amount. The other numerical values indicate the ratio of the amount of diffracted light to the amount of incident light. “Total” indicates the total of the 0th-order diffracted light amount, the 1st-order diffracted light amount, and the −1st-order diffracted light amount. In this embodiment, the “ratio” is set to the above numerical value based on the required specification. First-order diffracted light and −1st-order diffracted light hardly occur with respect to light having a wavelength of 660 nanometers (TE polarized light).
 このように本実施例の光学素子は、第1の偏光状態の光(660ナノメータの波長の光(TE偏光))を回折させることなく、第2の偏光状態の光(785ナノメータの波長の光(TM偏光))を回折させる。 As described above, the optical element of the present embodiment does not diffract the light in the first polarization state (light having a wavelength of 660 nanometers (TE-polarized light)), and the light in the second polarization state (light having a wavelength of 785 nanometers). (TM polarized light)) is diffracted.
他の実施形態について
 実施例4及び5の光学素子においては、第1の帯状領域に1次元格子を配置している。他の実施形態として、第1の帯状領域に使用される光の回折を生じない大きさの第1の周期で2次元格子を配置してもよい。一般的に第1の帯状領域の格子のデューティ比は、第1の帯状領域の格子凸部の高さの空間に対して格子凸部の占める比率である。
Other Embodiments In the optical elements of Examples 4 and 5, a one-dimensional grating is arranged in the first band-like region. As another embodiment, a two-dimensional grating may be arranged with a first period of a size that does not cause diffraction of light used in the first belt-like region. In general, the duty ratio of the grating in the first belt-shaped region is the ratio of the lattice convex portion to the space of the height of the lattice convex portion in the first belt-shaped region.
比較例2
 比較例2は、図21に示したX方向断面を備える。
Comparative Example 2
Comparative Example 2 includes a cross section in the X direction shown in FIG.
 比較例2の光学素子において、基板の面上に格子領域及び平坦領域が、第2の周期でX方向に繰り返し配置されている。第1の帯状領域において、Y方向に伸びる格子凸部103が第1の周期でX方向に配置されている。 In the optical element of Comparative Example 2, the lattice region and the flat region are repeatedly arranged in the X direction at the second period on the surface of the substrate. In the first belt-like region, the lattice convex portions 103 extending in the Y direction are arranged in the X direction at the first period.
 格子の仕様は、785ナノメータの波長の光(TM偏光)に対して式(13)を満足するように定められる。 The specification of the lattice is determined so as to satisfy the formula (13) for light having a wavelength of 785 nanometers (TM polarization).
 表34は、比較例の光学素子の格子領域の格子の仕様を示す表である。
Figure JPOXMLDOC01-appb-T000034
この結果、785ナノメータの波長の光(TM偏光)は、格子領域及び平坦領域によって回折されない。
Table 34 is a table | surface which shows the specification of the grating | lattice of the grating | lattice area | region of the optical element of a comparative example.
Figure JPOXMLDOC01-appb-T000034
As a result, light having a wavelength of 785 nanometers (TM polarized light) is not diffracted by the grating region and the flat region.
 比較例2において、第2の周期は、22.7マイクロメータである。 In Comparative Example 2, the second period is 22.7 micrometers.
 表35は、本実施例の光学素子による回折の状態を示す表である。
Figure JPOXMLDOC01-appb-T000035
Table 35 is a table | surface which shows the state of the diffraction by the optical element of a present Example.
Figure JPOXMLDOC01-appb-T000035
実施例5と比較例2との対比
 実施例5及び比較例2において、0次回折光量に対する1次回折光量の比率が同じになるように仕様を定めている。
Comparison between Example 5 and Comparative Example 2 In Example 5 and Comparative Example 2, the specifications are determined so that the ratio of the first-order diffracted light amount to the zero-order diffracted light amount is the same.
 実施例4の格子高さは、0.097マイクロメータであり、サブ波長格子のアスペクト比は、0.334である。これに対し、比較例の格子高さは、3.487マイクロメータであり、サブ波長格子のアスペクト比は、9.057である。このように、実施例のサブ波長格子のアスペクト比は、比較例のサブ波長格子のアスペクト比の0.037倍(約27分の1)となり、光学素子の製造が極めて容易になる。 The grating height of Example 4 is 0.097 micrometers, and the aspect ratio of the sub-wavelength grating is 0.334. In contrast, the grating height of the comparative example is 3.487 micrometers, and the aspect ratio of the sub-wavelength grating is 9.057. As described above, the aspect ratio of the sub-wavelength grating of the example is 0.037 times (about 1/27) the aspect ratio of the sub-wavelength grating of the comparative example, so that the optical element can be manufactured very easily.
実施例5の光学素子を含む光学系の構成例
 図23は、実施例5の光学素子を含む光学系の構成の一例を示す図である。光学系は、2波長の光によりディスク219上に記録された情報を読み取るピックアップ光学系である。
Example of Configuration of Optical System Including Optical Element of Example 5 FIG. 23 is a diagram illustrating an example of the configuration of an optical system including the optical element of Example 5. The optical system is a pickup optical system that reads information recorded on the disk 219 with light of two wavelengths.
 光学系は、レーザ光源201、1/2波長板203、205、光学素子100、偏光フィルタ207、ハーフミラーなどのビームスプリッタ209、1/4波長板211、コリメートレンズ213、ミラー215、対物レンズ217、集光レンズ221及び受光素子223を含む。 The optical system includes a laser light source 201, half- wave plates 203 and 205, an optical element 100, a polarizing filter 207, a beam splitter 209 such as a half mirror, a quarter-wave plate 211, a collimator lens 213, a mirror 215, and an objective lens 217. , A condenser lens 221 and a light receiving element 223.
 レーザ光源201は、波長660nmと波長785nmの2波長の光の光源である。ここで、波長785nm及び波長660nmをそれぞれ第1の波長及び第2の波長とする。レーザ光源201から発せられた、第1の波長及び第2の波長の光は、ともにTE偏光であるとする。1/2波長板203は、第1の波長の光をTE偏光からTM偏光に変換し、第2の波長の光をTE偏光のまま透過させる。光学素子100は、たとえば、実施例1に示したものであり、第1の波長の光を回折させることなく透過させ、第2の波長の光を回折する。光学素子100の位置に第1の波長の光をそのまま透過させ、第2の波長の光を回折する光学素子と、第2の波長の光をそのまま透過させ、第1の波長の光を回折する光学素子とを設けてもよい。1/2波長板205は、第1の波長の光をTM偏光のまま透過させ、第2の波長の光をTE偏光からTM偏光に変換する。偏光フィルタ207は、TM偏光以外の光を遮光することによってノイズを除去する。ビームスプリッタ209は、TM偏光である第1の波長及び第2の波長の光を反射する。1/4波長板211は、TM偏光である第1の波長及び第2の波長の光を円偏光とする。第1の波長及び第2の波長の光は、コリメートレンズ213によって平行光とされ、ミラー215によって反射された後、対物レンズ217によってディスク219上に集光される。ここで、第2の波長の光のみが回折されているので、第1の波長の光の集光位置と第2の波長の光の集光位置が異なるように構成することができる。ディスク219で反射された第1の波長及び第2の波長の光は、対物レンズ217、ミラー215、コリメートレンズ213を透過した後、1/4波長板211によってTE変更に変換される。ビームスプリッタ209は、TE偏光である第1の波長及び第2の波長の光を透過させる。TE偏光である第1の波長及び第2の波長の光は、集光レンズ221によって受光素子223の集光面上に集光される。なお、復路においてビームスプリッタ209でTE偏光の光が一部反射される場合には、この光は偏光フィルタ207によって遮光される。 The laser light source 201 is a light source of two wavelengths, a wavelength of 660 nm and a wavelength of 785 nm. Here, the wavelength 785 nm and the wavelength 660 nm are defined as a first wavelength and a second wavelength, respectively. It is assumed that both the first wavelength light and the second wavelength light emitted from the laser light source 201 are TE polarized light. The half-wave plate 203 converts the first wavelength light from the TE polarized light to the TM polarized light, and transmits the second wavelength light as the TE polarized light. The optical element 100 is, for example, as shown in the first embodiment, and transmits the first wavelength light without diffracting it, and diffracts the second wavelength light. The optical element 100 transmits the first wavelength light as it is to the position of the optical element 100 and diffracts the second wavelength light, and transmits the second wavelength light as it is, and diffracts the first wavelength light. An optical element may be provided. The half-wave plate 205 transmits light having the first wavelength as TM polarized light, and converts light having the second wavelength from TE polarized light to TM polarized light. The polarizing filter 207 removes noise by blocking light other than TM polarized light. The beam splitter 209 reflects light having the first wavelength and the second wavelength, which is TM-polarized light. The quarter-wave plate 211 converts the light having the first wavelength and the second wavelength, which are TM polarized light, into circularly polarized light. The lights having the first wavelength and the second wavelength are converted into parallel light by the collimator lens 213, reflected by the mirror 215, and then condensed on the disk 219 by the objective lens 217. Here, since only the light of the second wavelength is diffracted, the condensing position of the light of the first wavelength and the condensing position of the light of the second wavelength can be configured differently. The light having the first wavelength and the second wavelength reflected by the disk 219 passes through the objective lens 217, the mirror 215, and the collimator lens 213, and is then converted into TE change by the quarter wavelength plate 211. The beam splitter 209 transmits light of the first wavelength and the second wavelength that are TE polarized light. The light having the first wavelength and the second wavelength, which are TE polarized light, is collected on the light collection surface of the light receiving element 223 by the condenser lens 221. Note that, when the TE-polarized light is partially reflected by the beam splitter 209 in the return path, this light is blocked by the polarization filter 207.
 上記の例においては、1/2波長板203は、第1の波長の光をTE偏光からTM偏光に変換し、第2の波長の光をTE偏光のまま透過させ、1/2波長板205は、第1の波長の光をTM偏光のまま透過させ、第2の波長の光をTE偏光からTM偏光に変換するように構成した。代替的に、1/2波長板203は、第1の波長の光をTE偏光からTM偏光に変換し、第2の波長の光をTE偏光のまま透過させ、1/2波長板205は、第1の波長の光をTM偏光からTE偏光に変換し、第2の波長の光をTE偏光のまま透過させるように構成してもよい。この場合に、偏光フィルタ207はTE偏光である第1の波長及び第2の波長の光を透過させ、TM偏光である第1の波長及び第2の波長の光を遮光する。ビームスプリッタ209は、往路において、TE偏光である第1の波長及び第2の波長の光を反射し、復路において、TM偏光である第1の波長及び第2の波長の光を透過させるように構成する。 In the above example, the half-wave plate 203 converts the first wavelength light from the TE polarized light to the TM polarized light, transmits the second wavelength light as the TE polarized light, and the half-wave plate 205. Is configured to transmit light having the first wavelength as TM polarized light and convert light having the second wavelength from TE polarized light to TM polarized light. Alternatively, the half-wave plate 203 converts the first wavelength light from TE polarized light to TM polarized light and transmits the second wavelength light as TE polarized light. The first wavelength light may be converted from TM polarized light to TE polarized light, and the second wavelength light may be transmitted as TE polarized light. In this case, the polarization filter 207 transmits light having the first wavelength and the second wavelength, which are TE polarized light, and blocks light having the first wavelength and the second wavelength, which are TM polarized light. The beam splitter 209 reflects the light of the first wavelength and the second wavelength, which are TE-polarized light, in the forward path, and transmits the light of the first wavelength and the second wavelength, which are TM-polarized light, in the return path. Constitute.
 図24は、本発明の一実施形態による光学素子を含む光学系の構成の別の例を示す図である。光学系は、2波長の光によりディスク319上に記録された情報を読み取るピックアップ光学系である。 FIG. 24 is a diagram showing another example of the configuration of an optical system including an optical element according to an embodiment of the present invention. The optical system is a pickup optical system that reads information recorded on the disk 319 with light of two wavelengths.
 光学系は、レーザ光源301、1/2波長板303、305、光学素子100、偏光フィルタ307、ハーフミラーなどのビームスプリッタ309、1/4波長板311、コリメートレンズ313、ミラー315、対物レンズ317、集光レンズ321及び受光素子323を含む。 The optical system includes a laser light source 301, half- wave plates 303 and 305, an optical element 100, a polarizing filter 307, a beam splitter 309 such as a half mirror, a quarter-wave plate 311, a collimator lens 313, a mirror 315, and an objective lens 317. , A condenser lens 321 and a light receiving element 323.
 ビームスプリッタ309を除き、それぞれの光学素子の機能は、図23の光学系の場合と同様に機能する。ビームスプリッタ209は、往路において、第1の波長及び第2の波長の光を透過させ、復路において、第1の波長及び第2の波長の光を反射するように構成する。 Except for the beam splitter 309, the function of each optical element functions in the same manner as in the optical system of FIG. The beam splitter 209 is configured to transmit light of the first wavelength and the second wavelength in the forward path and reflect light of the first wavelength and the second wavelength in the return path.
 図25は、本発明の一実施形態による光学素子を含む光学系の構成のさらに別の例を示す図である。光学系は、1波長の光によりディスク419上に記録された情報を読み取るピックアップ光学系である。 FIG. 25 is a diagram showing still another example of the configuration of an optical system including an optical element according to an embodiment of the present invention. The optical system is a pickup optical system that reads information recorded on the disk 419 with light of one wavelength.
 光学系は、レーザ光源401、光学素子100、偏光フィルタ407、ハーフミラーなどのビームスプリッタ409、1/4波長板411、コリメートレンズ413、ミラー415、対物レンズ417、集光レンズ421及び受光素子423を含む。 The optical system includes a laser light source 401, an optical element 100, a polarizing filter 407, a beam splitter 409 such as a half mirror, a quarter wavelength plate 411, a collimator lens 413, a mirror 415, an objective lens 417, a condenser lens 421, and a light receiving element 423. including.
 レーザ光源401は、たとえば、波長408nmの1波長の光の光源である。光学素子100は、1波長の光に対して、たとえば、TE偏光を回折させ、TM偏光を回折させずに透過させるように構成する。この場合に、上記波長のTM偏光の光が式(16)を満足するように、デューティ比、格子凸部の高さ、格子凸部の材料の屈折率、膜の屈折率及び膜の厚さなどを定める。式(3)及び(4)に示すように、TE偏光の光の屈折率とTM偏光の光の屈折率とは異なるので、TM偏光の光が式(16)を満足するときに、TE偏光の光は、式(16)を満足せず、回折が生じる。回折されたTE偏光の光は、偏光フィルタ407を透過して、ビームスプリッタ409で反射され、1/4波長板411、コリメートレンズ413、ミラー415、対物レンズ417を経てディスク419に到達する。ディスク419で反射された光は、対物レンズ417、ミラー415、コリメートレンズ413、1/4波長板411を経て、ビームスプリッタ409及び集光レンズ421を経て受光素子423に到達する。他方、光学素子100をそのまま透過したTM偏光は、偏光フィルタ407によって遮光される。この際、TM偏光は、回折による進行方向の変化がないので、偏光フィルタ407に垂直に入射し効果的に遮光される。 The laser light source 401 is, for example, a light source of one wavelength having a wavelength of 408 nm. The optical element 100 is configured to diffract TE polarized light and transmit TM polarized light without diffracting, for example, for light of one wavelength. In this case, the duty ratio, the height of the grating protrusion, the refractive index of the material of the grating protrusion, the refractive index of the film, and the thickness of the film so that TM polarized light of the above wavelength satisfies the equation (16) Etc. As shown in the equations (3) and (4), since the refractive index of the TE-polarized light and the refractive index of the TM-polarized light are different, when the TM-polarized light satisfies the equation (16), the TE-polarized light Of the light does not satisfy Expression (16), and diffraction occurs. The diffracted TE-polarized light passes through the polarization filter 407, is reflected by the beam splitter 409, and reaches the disk 419 via the quarter-wave plate 411, the collimating lens 413, the mirror 415, and the objective lens 417. The light reflected by the disk 419 reaches the light receiving element 423 via the objective lens 417, the mirror 415, the collimating lens 413, the quarter wavelength plate 411, the beam splitter 409 and the condenser lens 421. On the other hand, the TM polarized light transmitted through the optical element 100 as it is is shielded by the polarizing filter 407. At this time, since TM polarized light does not change its traveling direction due to diffraction, it is perpendicularly incident on the polarizing filter 407 and effectively shielded from light.

Claims (14)

  1.  基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第2の周期で配置し、第1の周期は、使用される光が回折を生じ得ない大きさであり、第2の周期は、使用される光が回折を生じ得る大きさであり、前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設け、
     第1及び第2の波長の光について、前記第1及び第2の帯状領域によって生じる回折の1次回折光の光量と0次回折光の光量との比率である第1の比率と第1及び第2の目標値との差を所定の値以下とし、基板面からの最大高さが第1及び第2の波長の大きな方の波長以下となるように、前記第1及び第2の波長の光の偏光状態、第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記第1の膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚及び前記第2の帯状領域の膜厚を定めた光学素子。
    On the substrate, the first belt-like region in which the lattice convex portions are arranged in the first cycle and the second belt-like region in which the lattice convex portions are not provided are arranged in the second cycle, and the first cycle is used. The second period is a size that allows the light to be used to generate diffraction, and the grating convexity is formed on the first and second band regions. Providing a first film having a refractive index higher than the refractive index of the material of the portion;
    For the light of the first and second wavelengths, the first ratio and the first and second ratios, which are the ratios of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-like regions. Of the light having the first and second wavelengths so that the maximum height from the substrate surface is equal to or smaller than the larger one of the first and second wavelengths. Polarization state, first period, duty ratio that is the ratio of the grid convex portion to the space of the height of the grid convex portion of the first band-like region, the height of the grid convex portion, the grid convexity The refractive index of the material of the portion, the refractive index of the first film, the film thickness of the lattice convex portion of the first strip region, the film thickness of the concave portion of the first strip region, and the thickness of the second strip region An optical element with a fixed film thickness.
  2.  前記第1及び第2の目標値が等しい請求項1に記載の光学素子。 The optical element according to claim 1, wherein the first and second target values are equal.
  3.  前記第1の帯状領域の基板面と前記第2の帯状領域の基板面との間に段差を設け、前記第1及び第2の波長の光のうち、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成された、請求項1に記載の光学素子。 A step is provided between the substrate surface of the first belt-like region and the substrate surface of the second belt-like region, and the first of the light having the shorter wavelength among the light of the first and second wavelengths. The optical element according to claim 1, wherein the optical element is configured to be smaller than a first ratio of light having a longer wavelength.
  4.  前記第1及び第2の波長が、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長のいずれかである請求項1から3のいずれかに記載の光学素子。 The optical element according to any one of claims 1 to 3, wherein the first and second wavelengths are any of wavelengths for a Blu-ray disc (BD), a digital versatile disc (DVD), and a compact disc (CD).
  5.  基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第2の周期で配置し、第1の周期は、使用される光が回折を生じ得ない大きさであり、第2の周期は、使用される光が回折を生じ得る大きさであり、前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する第1の膜を設け、前記第1の帯状領域の基板面と前記第2の帯状領域の基板面との間に段差を設け、
     第1乃至第3の波長の光について、前記第1及び第2の帯状領域によって生じる回折の1次回折光の光量と0次回折光の光量との比率である第1の比率と第1乃至第3の目標値との差を所定の値以下とし、基板面からの最大高さが第1乃至第3の波長の最大波長以下となるように、前記第1乃至第3の波長の光の偏光状態、第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記第1の膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚、前記第2の帯状領域の膜厚及び前記段差の大きさを定めた光学素子。
    On the substrate, the first belt-like region in which the lattice convex portions are arranged in the first cycle and the second belt-like region in which the lattice convex portions are not provided are arranged in the second cycle, and the first cycle is used. The second period is a size that allows the light to be used to generate diffraction, and the grating convexity is formed on the first and second band regions. Providing a first film having a refractive index higher than the refractive index of the material of the part, and providing a step between the substrate surface of the first strip region and the substrate surface of the second strip region,
    For the light of the first to third wavelengths, the first ratio and the first to third ratios, which are the ratios of the light amount of the first-order diffracted light and the light amount of the zero-order diffracted light generated by the first and second band-like regions. The polarization state of the light of the first to third wavelengths is set so that the difference from the target value is equal to or less than a predetermined value and the maximum height from the substrate surface is equal to or less than the maximum wavelength of the first to third wavelengths. , The first period, the duty ratio that is the ratio of the grid convex portion to the space of the height of the grid convex portion of the first band-shaped region, the height of the grid convex portion, the height of the grid convex portion, The refractive index of the material, the refractive index of the first film, the film thickness of the lattice convex part of the first band-shaped area, the film thickness of the concave part of the first band-shaped area, the film thickness of the second band-shaped area And an optical element that defines the size of the step.
  6.  前記第1乃至第3の目標値が等しい請求項5に記載の光学素子。 The optical element according to claim 5, wherein the first to third target values are equal.
  7.  前記第1乃至第3の波長の光のうち2つの波長の光について、短い方の波長の光の第1の比率が長い方の波長の光の第1の比率よりも小さくなるように構成された、請求項5に記載の光学素子。 Of the first to third wavelengths of light, two wavelengths of light are configured such that the first ratio of light of the shorter wavelength is smaller than the first ratio of light of the longer wavelength. The optical element according to claim 5.
  8.  第1乃至第3の目標値のうちの1つがゼロである請求項5に記載の光学素子。 6. The optical element according to claim 5, wherein one of the first to third target values is zero.
  9.  前記第1乃至第3の波長が、ブルーレイディスク(BD)、デジタルバーサタイルディク(DVD)、コンパクトディスク(CD)用の波長のいずれかである請求項5から8のいずれかに記載の光学素子。 The optical element according to any one of claims 5 to 8, wherein the first to third wavelengths are any one of wavelengths for a Blu-ray disc (BD), a digital versatile disc (DVD), and a compact disc (CD).
  10.  前記第1の膜上に前記第1の膜の屈折率よりも低い屈折率を有する第2の膜をさらに備えた請求項1から9のいずれかに記載の光学素子。 The optical element according to claim 1, further comprising a second film having a refractive index lower than that of the first film on the first film.
  11.  基板上に、格子凸部を第1の周期で配置した第1の帯状領域及び格子凸部を設けない第2の帯状領域を、第2の周期で配置し、前記第1の周期は、使用される光が回折を生じ得ない大きさであり、前記第2の周期は、使用される光が回折を生じ得る大きさであり、前記第1の帯状領域及び第2の帯状領域上に前記格子凸部の材料の屈折率よりも高い屈折率を有する膜を設け、前記基板面を通過する第1の偏光状態の光の内、前記第1の帯状領域を通過する光と前記第2の帯状領域を通過する光の位相差がゼロとなり回折を生じず、前記基板面を通過する第2の偏光状態の光の内、前記第1の帯状領域を通過する光と前記第2の帯状領域を通過する光の位相差が回折を生じるように、前記第1の周期、前記第1の帯状領域の前記格子凸部の高さの空間に対して前記格子凸部の占める比率であるデューティ比、前記格子凸部の高さ、前記格子凸部の材料の屈折率、前記膜の屈折率、前記第1の帯状領域の前記格子凸部の膜厚、前記第1の帯状領域の凹部の膜厚及び前記第2の帯状領域の膜厚を定めた光学素子。 On the substrate, the first belt-like region in which the lattice convex portions are arranged in the first cycle and the second belt-like region in which the lattice convex portions are not provided are arranged in the second cycle, and the first cycle is used. The second period is a magnitude that allows the used light to be diffracted, and the second period is on the first and second strip regions. A film having a refractive index higher than the refractive index of the material of the grating convex portion is provided, and among the light in the first polarization state that passes through the substrate surface, the light that passes through the first band-like region and the second The phase difference between the light passing through the belt-like region becomes zero and diffraction does not occur, and the light passing through the first belt-like region and the second belt-like region out of the second polarization state light passing through the substrate surface The first period, the height of the grating convex portion of the first band-like region so that the phase difference of the light passing through The duty ratio, which is the ratio of the grating protrusions to the space, the height of the grating protrusions, the refractive index of the material of the grating protrusions, the refractive index of the film, and the grating of the first strip region An optical element in which a film thickness of a convex part, a film thickness of a concave part of the first belt-like region, and a film thickness of the second belt-like region are determined.
  12.  前記第1の偏光状態の光の波長と前記第2の偏光状態の光の波長とが異なる請求項11に記載の光学素子。 The optical element according to claim 11, wherein the wavelength of the light in the first polarization state is different from the wavelength of the light in the second polarization state.
  13.  前記第1の偏光状態の光の波長と前記第2の偏光状態の光の波長とが同じである請求項11に記載の光学素子。 The optical element according to claim 11, wherein the wavelength of the light in the first polarization state is the same as the wavelength of the light in the second polarization state.
  14.  前記格子凸部の材料がプラスチックであり、前記膜の材料が金属酸化物である請求項1から13のいずれかに記載の光学素子。 The optical element according to any one of claims 1 to 13, wherein a material of the lattice convex portion is plastic, and a material of the film is a metal oxide.
PCT/JP2010/004207 2009-06-29 2010-06-24 Optical element WO2011001641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117023532A KR101129902B1 (en) 2009-06-29 2010-06-24 Optical element
JP2011502966A JPWO2011001641A1 (en) 2009-06-29 2010-06-24 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/002983 2009-06-29
PCT/JP2009/002983 WO2011001459A1 (en) 2009-06-29 2009-06-29 Optical element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011001641A1 true WO2011001641A1 (en) 2011-01-06

Family

ID=42351960

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/002983 WO2011001459A1 (en) 2009-06-29 2009-06-29 Optical element and manufacturing method thereof
PCT/JP2010/004207 WO2011001641A1 (en) 2009-06-29 2010-06-24 Optical element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002983 WO2011001459A1 (en) 2009-06-29 2009-06-29 Optical element and manufacturing method thereof

Country Status (3)

Country Link
JP (2) JP4491555B1 (en)
KR (1) KR101129902B1 (en)
WO (2) WO2011001459A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833743B2 (en) * 2011-12-19 2017-12-05 Hitachi, Ltd. Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
EP3371633A4 (en) * 2015-11-06 2019-09-18 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476175B (en) 2016-05-06 2021-07-30 奇跃公司 Supersurface with asymmetric grating for redirecting light and method of making same
AU2018212570B2 (en) 2017-01-27 2023-03-16 Magic Leap, Inc. Antireflection coatings for metasurfaces
EP3574348B1 (en) 2017-01-27 2023-02-22 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028802A (en) * 1988-06-28 1990-01-12 Nec Corp Polarizing element
JPH02205802A (en) * 1989-02-03 1990-08-15 Nec Corp Polarizing element
JP2000292617A (en) * 1999-04-06 2000-10-20 Nec Corp Hologram element
JP2007219006A (en) * 2006-02-14 2007-08-30 Ricoh Co Ltd Pattern forming method and optical device
JP2008107394A (en) * 2006-10-23 2008-05-08 Ricoh Co Ltd Optical element and optical device
JP2008257771A (en) * 2007-04-02 2008-10-23 Ricoh Co Ltd Optical pickup
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799402B2 (en) * 1986-05-16 1995-10-25 日本電気株式会社 Wave plate
JP2005099099A (en) * 2003-09-22 2005-04-14 Sanyo Electric Co Ltd Wavelength plate
JP4451268B2 (en) * 2004-03-04 2010-04-14 株式会社リコー Optical element and manufacturing method thereof, optical product using the same, optical pickup, and optical information processing apparatus
JP4338558B2 (en) * 2004-03-11 2009-10-07 三洋電機株式会社 Optical pickup
JP2006106726A (en) * 2004-09-13 2006-04-20 Hitachi Maxell Ltd Polarized light diffracting element
JP2006114201A (en) * 2004-09-14 2006-04-27 Hitachi Maxell Ltd Polarization diffraction element and optical head apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028802A (en) * 1988-06-28 1990-01-12 Nec Corp Polarizing element
JPH02205802A (en) * 1989-02-03 1990-08-15 Nec Corp Polarizing element
JP2000292617A (en) * 1999-04-06 2000-10-20 Nec Corp Hologram element
JP2007219006A (en) * 2006-02-14 2007-08-30 Ricoh Co Ltd Pattern forming method and optical device
JP2008107394A (en) * 2006-10-23 2008-05-08 Ricoh Co Ltd Optical element and optical device
JP2008257771A (en) * 2007-04-02 2008-10-23 Ricoh Co Ltd Optical pickup
JP2008299084A (en) * 2007-05-31 2008-12-11 Ricoh Opt Ind Co Ltd Method of manufacturing optical element having fine irregular shape on the surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833743B2 (en) * 2011-12-19 2017-12-05 Hitachi, Ltd. Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
EP3371633A4 (en) * 2015-11-06 2019-09-18 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating

Also Published As

Publication number Publication date
JPWO2011001459A1 (en) 2012-12-10
JPWO2011001641A1 (en) 2012-12-10
KR101129902B1 (en) 2012-03-28
WO2011001459A1 (en) 2011-01-06
KR20110116258A (en) 2011-10-25
JP4491555B1 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4310080B2 (en) Diffractive optical element and optical system and optical apparatus provided with the same
JP4341332B2 (en) Optical head device
US8320226B2 (en) Optical element having three or more sub-wavelength convexo-concave structures
WO2011001641A1 (en) Optical element
WO2010016559A1 (en) Diffraction grating, aberration correction element and optical head device
JP5146317B2 (en) Diffraction element and optical head device provided with the same
JP5218050B2 (en) Quarter wave plate and optical pickup device
JP4843819B2 (en) Polarizing element and optical system including polarizing element
JP5417815B2 (en) Diffraction element, optical head device, and projection display device
JP3817438B2 (en) Optical member and optical device using the same
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP4218240B2 (en) Optical head device
JP2009085974A (en) Polarizing element and method for fabricating the same
JP4416917B2 (en) Optical element and optical apparatus using the same
JP5313725B2 (en) 1/4 wave plate
JP4336665B2 (en) Optical element and optical pickup apparatus having the same
JP5234151B2 (en) Diffraction element and optical head device
JP5082792B2 (en) Optical head device
JP2000193812A (en) Diffraction element and optical head device
JP4404189B2 (en) Diffraction element and optical head device
JP4660666B2 (en) Polarizing element and optical system including polarizing element
JP2010153039A (en) Diffraction element for three wavelengths, diffraction element for three wavelengths with topology plate and optical head apparatus
JP2013077374A (en) Diffraction element and optical head unit
JP5444149B2 (en) 1/4 wave plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011502966

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117023532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793815

Country of ref document: EP

Kind code of ref document: A1