[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02205802A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH02205802A
JPH02205802A JP1025985A JP2598589A JPH02205802A JP H02205802 A JPH02205802 A JP H02205802A JP 1025985 A JP1025985 A JP 1025985A JP 2598589 A JP2598589 A JP 2598589A JP H02205802 A JPH02205802 A JP H02205802A
Authority
JP
Japan
Prior art keywords
areas
polarized light
region
polarizing element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025985A
Other languages
Japanese (ja)
Inventor
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1025985A priority Critical patent/JPH02205802A/en
Publication of JPH02205802A publication Critical patent/JPH02205802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To obtain the small-sized, thin, and low-price polarizing element which has superior mass-productivity by arranging 1st areas which have specific one- dimensional periodic structure and 2nd areas which have surface oxidized layers alternately in a lattice shape. CONSTITUTION:The 1st areas 1 which have surface irregular type one- dimensional periodic structure which has a pitch less than a half of the wavelength of a light wave and the 2nd areas 2 which have the surface oxidized layers are arranged on a substrate 3 alternately in a lattice shape. Namely, diffraction gratings are used to obtain 0-th order diffraction efficiency, i.e. transmissivity which is 100% to specific polarized light and 0% to polarized light perpendicular to said specific polarized light, thereby constituting the polarizing element which has a polarization beam splitter function. Consequently, birefringent crystal is not required, the element is composed of a material which is easily obtained at low cost like silicon, and many elements can easily be manufactured at the same time by photolithography while assembly is not required, so that cost is reducible. Further, the substrate is only thick enough to give strength to the element, so the thin, lightweight element can be constituted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光フアイバ通信や光デイスク用光ヘッドな
どのアイソレータや光サーキュレータを構成するために
偏光ビームスプリッタとして使われる偏光素子に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarizing element used as a polarizing beam splitter to configure isolators and optical circulators for optical fiber communications, optical heads for optical disks, and the like.

〔従来の技術〕[Conventional technology]

従来、光アイソレータや光サーキユレータ用の偏光ビー
ムスプリフタとしては、グラントムソンプリズムやロッ
ションプリズムが使われてきた。
Conventionally, Glan-Thompson prisms and Rochon prisms have been used as polarizing beam splitters for optical isolators and optical circulators.

これらのプリズムは、水晶や方解石などの複屈折性結晶
の結晶軸の異なる2つの三角プリズムをはり合わせたも
のである。これらのプリズムについては、吉原邦夫著「
物理光学」 (共立出版、昭和41年発行)の第213
〜216頁に詳細に説明されている。
These prisms are made by gluing two triangular prisms of birefringent crystals such as quartz or calcite with different crystal axes. Regarding these prisms, see Kunio Yoshiwara, “
No. 213 of “Physical Optics” (Kyoritsu Shuppan, published in 1966)
It is explained in detail on pages 1 to 216.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の偏光素子では、複屈折性結晶を用いてい
るので材料が高価なうえ、このような偏光素子は、4面
を研磨して、さらに接着するという工程を必要とするの
で製作工数がかかり高価で量産向きでないという問題が
あった。さらに2つの三角プリズムをはり合わせた構造
のため大型になり、光アイソレータや光サーキュレータ
の小型化の障害になっていた。
The conventional polarizing elements mentioned above use birefringent crystals, so the materials are expensive, and such polarizing elements require a process of polishing all four sides and then bonding them, which increases the number of manufacturing steps. The problem was that it was expensive and not suitable for mass production. Furthermore, since it has a structure of two triangular prisms glued together, it is large, which is an obstacle to miniaturizing optical isolators and optical circulators.

本発明の目的は、上記問題点を解消して、小型。An object of the present invention is to solve the above problems and to achieve a compact design.

薄型でかつ低価格で、量産性にすぐれた偏光素子を提供
することにある。
The object of the present invention is to provide a polarizing element that is thin, inexpensive, and excellent in mass production.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の偏光素子は、 基板上に、光の波長の172よりも小さいピッチを有す
る表面凹凸型の1次元周期構造を有する第1の領域と、
表面酸化層を有する第2の領域とを交互に格子状に配置
したことを特徴とする。
The polarizing element of the present invention includes, on a substrate, a first region having a one-dimensional periodic structure with a surface unevenness having a pitch smaller than 172 wavelengths of light;
The second region having a surface oxidized layer is alternately arranged in a grid pattern.

〔作用〕[Effect]

本発明の作用原理は次の通りである。本発明では、回折
格子を用い、そのO次回折効率すなわち透過率が特定の
偏光に対して100%で、これに直交する偏光に対して
0%となるようにすることで、偏光ビームスプリッタ機
能の偏光素子を構成している。
The working principle of the present invention is as follows. In the present invention, by using a diffraction grating, the O-th order diffraction efficiency, that is, the transmittance is 100% for a specific polarized light and 0% for polarized light orthogonal to this, thereby achieving a polarizing beam splitter function. It constitutes a polarizing element.

矩形断面の位相格子のO次回折光の回折効率は、ηo=
     (1+cosr)        (1)で
与えられる。ここにTは、格子部で光が受ける位相差で
あり、 γ=2πt・Δn/λ          (2)で表
される。(2)式で、Lは格子の厚さ、Δnは位相格子
を構成している2つの媒質の屈折率の差、λは光の波長
である。
The diffraction efficiency of the O-order diffracted light of a phase grating with a rectangular cross section is ηo=
(1+cosr) (1) is given. Here, T is the phase difference that light receives at the grating portion, and is expressed as γ=2πt·Δn/λ (2). In equation (2), L is the thickness of the grating, Δn is the difference in refractive index between the two media forming the phase grating, and λ is the wavelength of light.

上述のような0次回折効率の変化を得るためには、格子
の位相差γが偏光によってTl1=o。
In order to obtain the change in the zero-order diffraction efficiency as described above, the phase difference γ of the grating must be Tl1=o due to the polarization.

T□=π(ここでI+ 、  土は格子溝に平行および
垂直な偏光を各々表す。)の変化をする必要があり、(
2)式でΔnが偏光によって変化しなければならず、通
常は複屈折性の材料を必要とする。
It is necessary to change T□=π (where I+ and earth represent polarization parallel and perpendicular to the grating grooves, respectively), and (
In equation 2), Δn must change depending on the polarization, and usually requires a birefringent material.

本発明では、高価な複屈折性結晶を用いることなく、複
屈折性を得るために、稠密な周期構造を利用している。
The present invention utilizes a dense periodic structure in order to obtain birefringence without using expensive birefringent crystals.

ピッチが光の波長の1/2より小さい位相格子では、回
折光を生じず複屈折性を示す。
A phase grating with a pitch smaller than 1/2 of the wavelength of light does not generate diffracted light and exhibits birefringence.

表面凹凸格子の溝に平行な方向の実効屈折率をn、、溝
に垂直な方向の実効屈折率をnよとすると、 n、=(nt”q+nz”(1−q))””   (3
)”A −((1/ nl”) q + (1/nz”)  (1q) )−””  (4)
となる、ここで、n、は溝部の屈折率、n2はランド部
の屈折率、qは格子ピッチに対する溝部の幅の比である
。この複屈折を利用して、偏光によって回折効率を変化
させる。
Let n be the effective refractive index in the direction parallel to the grooves of the surface uneven grating, and n be the effective refractive index in the direction perpendicular to the grooves, then n, = (nt"q+nz"(1-q))"" (3
)”A −((1/nl”) q + (1/nz”) (1q) )−”” (4)
Here, n is the refractive index of the groove, n2 is the refractive index of the land, and q is the ratio of the width of the groove to the grating pitch. This birefringence is used to change the diffraction efficiency depending on the polarization.

第2図は稠密格子を用いた格子型偏光素子を示す。稠密
格子を第1の領域1に用いて、平坦な表面を有する第2
の領域2と交互に配置した格子を基板3上に構成する。
FIG. 2 shows a grating type polarizing element using a dense grating. A dense lattice is used in the first region 1 and the second region 1 has a flat surface.
A lattice is formed on the substrate 3 in which areas 2 of the lattice are alternately arranged.

光の進行方向を矢印4の方向とすると、基板屈折率はn
2であるから、格子溝に平行な方向の偏光に対する第1
の領域と第2の領域の屈折率差は、(Δfi ) 、 
−fi、 −fill、格子溝に垂直な方向の偏光に対
しては(Δn)。
If the traveling direction of light is the direction of arrow 4, the substrate refractive index is n
2, the first polarization in the direction parallel to the grating grooves is
The refractive index difference between the region and the second region is (Δfi),
-fi, -fill, (Δn) for polarized light in the direction perpendicular to the grating grooves.

=nz、−n、となる。しかし、このΔnの変化だけで
は、格子厚さtを選んでも(2)式のTを両偏光に対し
てγm=0=rh”πの両方を満たせない。
=nz, -n. However, with only this change in Δn, even if the grating thickness t is selected, T in equation (2) cannot satisfy both of γm=0=rh''π for both polarized lights.

そこで、本発明では第2図に示す格子の第2の領域の表
面屈折率を位相調整用に変えた第1図の構造をとってい
る。第1図において、第1の領域1の凹凸溝深さをLl
、第2の領域2の異なる屈折率n、を有する表面層の厚
さをt2とすると、各偏光に対する両頭域の位相差は、 ル +n3tz   n、、j+ ) + ns t z   n、t r>        
  (6)で与えられる。(5)、 (6)式で、γ、
=0.r、=πの両条件を満たすt+、Lxが存在する
Therefore, the present invention adopts the structure shown in FIG. 1 in which the surface refractive index of the second region of the grating shown in FIG. 2 is changed for phase adjustment. In FIG. 1, the depth of the uneven groove in the first region 1 is Ll.
, the thickness of the surface layer having a different refractive index n in the second region 2 is t2, then the phase difference of the bihead region for each polarized light is:
It is given by (6). In equations (5) and (6), γ,
=0. There exists t+, Lx that satisfies both conditions r, = π.

以上が本発明の原理である。溝深さt、および表面層厚
さt2を浅く、すなわち容易に製作するためには、n、
l−n、が大きいことが必要であり、そのためには屈折
率n2の大きい材料を用いることが得策である。
The above is the principle of the present invention. In order to make the groove depth t and the surface layer thickness t2 shallow, that is, to easily manufacture them, n,
It is necessary that l−n be large, and for this purpose it is a good idea to use a material with a large refractive index n2.

そこで、本発明では基板材料としてたとえばシリコン(
Si)を用い、表面層として酸化層、たとえばシリコン
を熱酸化したSin、を用いている。
Therefore, in the present invention, for example, silicon (
The surface layer is made of an oxide layer, for example, Si obtained by thermally oxidizing silicon.

〔実施例〕 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の基本構成を示す部分斜視図で
ある。上述したように基板3の材料としては屈折率が大
きい方が好ましいので、光波長1.3μmの長波光通信
用にシリコン(Si)結晶を用いた。この波長ではシリ
コンは透明で、屈折率はn、=3.5である。稠密格子
のピッチに対する溝幅比q=0.5とすると、(3)、
 (4)式からn1I=2.5739゜n  =1.3
598となる。稠密格子のピッチとしては、λ/2より
小さければよいので0.6μmとした。
FIG. 1 is a partial perspective view showing the basic configuration of an embodiment of the present invention. As mentioned above, since it is preferable for the material of the substrate 3 to have a large refractive index, silicon (Si) crystal was used for long-wave optical communication with an optical wavelength of 1.3 μm. At this wavelength, silicon is transparent and has a refractive index of n,=3.5. If the groove width ratio to the pitch of the dense lattice is q = 0.5, (3),
From formula (4), n1I=2.5739゜n=1.3
It becomes 598. Since the pitch of the dense lattice should be smaller than λ/2, it was set to 0.6 μm.

また、第1の領域1と第2の領域2とからなる格子構造
の周期は、所望の0次回折光と他次回折光の分離がとれ
ることが設計条件となり、本実施例では50amとした
Further, the period of the grating structure consisting of the first region 1 and the second region 2 was set to 50 am in this example, since the design condition was that the desired zero-order diffraction light and other-order diffraction light could be separated.

上述のn z =3−5 、n 3 =1.446 +
 I’l m ” 2.5739 。
The above n z =3-5, n 3 =1.446 +
I'l m ” 2.5739.

n  =1.3598を用いて(5)、 (6)式を解
くと、t、−〇、535μm、tz =0.241μm
となるので、各々t+ =0.54μm、tz =0.
21μmの格子を製作した。
Solving equations (5) and (6) using n = 1.3598, t, -〇, 535 μm, tz = 0.241 μm
Therefore, t+ = 0.54 μm, tz = 0.
A 21 μm grid was fabricated.

まず、基板3の第1の領域1になる部分にマスキングし
て、第2の領域2を熱酸化して、厚さtz=0.21μ
mのSiO□層を形成した。次にマスキングを除去した
後、ホログラフィ−干渉で第1の領域のレジストをパタ
ーニングし、反応性イオンエツチングにより基板3へ0
.6μmの稠密格子を形成した。
First, a portion of the substrate 3 that will become the first region 1 is masked, and the second region 2 is thermally oxidized to a thickness tz = 0.21μ.
A SiO□ layer of m was formed. Next, after removing the masking, the resist in the first region is patterned by holographic interference, and the substrate 3 is etched by reactive ion etching.
.. A dense lattice of 6 μm was formed.

本実施例の偏光素子によれば、格子溝に平行な偏光と直
交する偏光との間の消光比は20dBがとれた。
According to the polarizing element of this example, the extinction ratio between polarized light parallel to the grating grooves and polarized light perpendicular to the grating grooves was 20 dB.

なお、本実施例では格子型偏光素子の第1の領域と第2
の領域の境界面に対して、第1の領域内の稠密格子の周
期方向が垂直な場合を示したが、第1の領域内の稠密格
子の周期方向は第1の領域と第2の領域の境界面に対し
て任意の角度で良いことは上述の作用の項での説明から
明らかである。
Note that in this example, the first region and the second region of the grating polarizing element are
The periodic direction of the dense lattice in the first region is perpendicular to the boundary surface of the region, but the periodic direction of the dense lattice in the first region is It is clear from the explanation in the operation section above that any angle with respect to the boundary surface may be used.

〔発明の効果〕〔Effect of the invention〕

本発明の偏光素子は複屈折性結晶を必要とせず、シリコ
ンなどの容易に、しかも安価に入手できる材料で構成さ
れているうえに、フォトリングラフィの手法で簡単に多
数個同時に製作でき、しかも組立てを必要としないので
極めて安価である。
The polarizing element of the present invention does not require a birefringent crystal, is made of an easily and inexpensively available material such as silicon, and can be easily manufactured in large numbers at the same time using photolithography. It is extremely inexpensive as no assembly is required.

また、本発明の偏光素子は、第1の領域、第2の領域と
もに表面層の屈折率が基板屈折率よりも小さくなってお
り、反射防止膜の作用をしているため、シリコンのよう
な高屈折率材料を用いているにもかかわらず、コーティ
ング無しでも反射損が小さいという効果もある。
In addition, in the polarizing element of the present invention, the refractive index of the surface layer in both the first region and the second region is smaller than the refractive index of the substrate, and acts as an antireflection film. Despite using a high refractive index material, there is also the effect of low reflection loss even without coating.

また、本発明の偏光素子は、本質的に薄膜素子であり、
素子の強度を持たせるだけの基板厚さがあればよいので
、100μm程度と極めて薄く、軽量な素子を構成する
ことができる。
Further, the polarizing element of the present invention is essentially a thin film element,
Since the substrate only needs to have a thickness sufficient to provide the strength of the element, it is possible to construct an extremely thin and lightweight element of approximately 100 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の部分斜視図、第2図は本発明
の詳細な説明するための格子の部分斜視図である。 1・・・・・第1の領域 2・・・・・第2の領域 3・・・・・基板 4・・・・・光の進行方向を示す矢印 第1図 代理人 弁理士  岩 佐  義 幸 第2図
FIG. 1 is a partial perspective view of an embodiment of the invention, and FIG. 2 is a partial perspective view of a grid for explaining the invention in detail. 1...First area 2...Second area 3...Substrate 4...Arrow indicating the direction of travel of light Figure 1 Agent: Yoshi Iwasa, patent attorney Happy Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に、光の波長の1/2よりも小さいピッチ
を有する表面凹凸型の1次元周期構造を有する第1の領
域と、表面酸化層を有する第2の領域とを交互に格子状
に配置したことを特徴とする偏光素子。
(1) On a substrate, a first region having a one-dimensional periodic structure of a surface unevenness type with a pitch smaller than 1/2 of the wavelength of light and a second region having a surface oxide layer are alternately arranged in a lattice. A polarizing element characterized by being arranged in a shape.
JP1025985A 1989-02-03 1989-02-03 Polarizing element Pending JPH02205802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025985A JPH02205802A (en) 1989-02-03 1989-02-03 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025985A JPH02205802A (en) 1989-02-03 1989-02-03 Polarizing element

Publications (1)

Publication Number Publication Date
JPH02205802A true JPH02205802A (en) 1990-08-15

Family

ID=12181009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025985A Pending JPH02205802A (en) 1989-02-03 1989-02-03 Polarizing element

Country Status (1)

Country Link
JP (1) JPH02205802A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042824A1 (en) * 1999-12-08 2001-06-14 Otm Technologies, Ltd. Improved motion detector and components suitable for use therein
JP2006106726A (en) * 2004-09-13 2006-04-20 Hitachi Maxell Ltd Polarized light diffracting element
US7348650B2 (en) 2002-03-25 2008-03-25 Sanyo Electric Co., Ltd. Element having microstructure and manufacturing method thereof
WO2011001641A1 (en) * 2009-06-29 2011-01-06 ナルックス株式会社 Optical element
US7969850B2 (en) 2005-05-12 2011-06-28 Enplas Corporation Optical element, optical pickup device comprising the same, and unnecessary light elimination method
JP2011227991A (en) * 2011-08-03 2011-11-10 Ricoh Co Ltd Diffraction element, optical pickup, and optical information processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042824A1 (en) * 1999-12-08 2001-06-14 Otm Technologies, Ltd. Improved motion detector and components suitable for use therein
US7348650B2 (en) 2002-03-25 2008-03-25 Sanyo Electric Co., Ltd. Element having microstructure and manufacturing method thereof
JP2006106726A (en) * 2004-09-13 2006-04-20 Hitachi Maxell Ltd Polarized light diffracting element
US7969850B2 (en) 2005-05-12 2011-06-28 Enplas Corporation Optical element, optical pickup device comprising the same, and unnecessary light elimination method
WO2011001641A1 (en) * 2009-06-29 2011-01-06 ナルックス株式会社 Optical element
JPWO2011001641A1 (en) * 2009-06-29 2012-12-10 ナルックス株式会社 Optical element
JP2011227991A (en) * 2011-08-03 2011-11-10 Ricoh Co Ltd Diffraction element, optical pickup, and optical information processing apparatus

Similar Documents

Publication Publication Date Title
US5029988A (en) Birefringence diffraction grating type polarizer
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US20040051947A1 (en) Polarizing beam splitter and polarizer using this
JP2003315552A (en) Integrated optical element
US6046851A (en) Polarization beam splitter and method for making the same
JPH02205802A (en) Polarizing element
JPH028802A (en) Polarizing element
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPH05289027A (en) Polarizer, optical element with polarizer and its production
JPH0296103A (en) Polarizing element and optical isolator
JPH0616121B2 (en) Fresnel lens and manufacturing method thereof
JPH05107412A (en) Birefringence structure
JPH075316A (en) Diffraction grating type polarizer and its production
JP3228773B2 (en) Optical isolator
JPS61289305A (en) Variable wavelength filter
JP3879246B2 (en) Polarizing optical element
JPH0830767B2 (en) Hologram element
JPH0210311A (en) Optical isolator
JPH0627322A (en) Optical element and optical information processor using the element and production of optical element
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP2003344808A (en) Polarization independent optical isolator and optical circulator
JPS63254404A (en) Optical multiplexer/demultiplexer
JP2848137B2 (en) Birefringent diffraction grating polarizer
JPS61193106A (en) Functional optical element
JPH02230203A (en) Polarizer