[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011083798A1 - 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置 - Google Patents

波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置 Download PDF

Info

Publication number
WO2011083798A1
WO2011083798A1 PCT/JP2011/050040 JP2011050040W WO2011083798A1 WO 2011083798 A1 WO2011083798 A1 WO 2011083798A1 JP 2011050040 W JP2011050040 W JP 2011050040W WO 2011083798 A1 WO2011083798 A1 WO 2011083798A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
monitor
chromatic dispersion
dispersion
Prior art date
Application number
PCT/JP2011/050040
Other languages
English (en)
French (fr)
Inventor
タヤンディエ ドゥ ガボリ, エマニュエル ル
学 有川
清 福知
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/520,487 priority Critical patent/US8971702B2/en
Priority to JP2011549006A priority patent/JP5712935B2/ja
Publication of WO2011083798A1 publication Critical patent/WO2011083798A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal

Definitions

  • the present invention relates to chromatic dispersion measurement and compensation in optical communication, and more particularly to so-called in-service chromatic dispersion measurement in which chromatic dispersion is simultaneously measured while performing data transmission in an optical fiber communication system, and its The present invention relates to dispersion compensation using chromatic dispersion measurement results.
  • an optical fiber as a transmission line has chromatic dispersion as its characteristic, and waveform distortion generated in an optical signal due to the chromatic dispersion is a factor that limits a transmission speed and a transmission distance. . Therefore, there is a need for a technique for accurately measuring chromatic dispersion in an optical fiber that is a transmission line and adjusting the chromatic dispersion to be substantially zero according to the measurement result.
  • An adjustment technique for making chromatic dispersion substantially zero is, for example, known as equalization or dispersion compensation.
  • the wavelength dispersion is sometimes simply referred to as “dispersion”.
  • both ends of a transmission line are located away from each other, and the dispersion of the optical fiber changes according to temperature and external pressure. Need to be done during system operation.
  • the PM-AM conversion method is used as the far-end measurement method, and monitor light of a wavelength different from that of signal transmission is used to detect dispersion in the transmission line during system operation.
  • the PM-AM conversion method uses the principle that when phase-modulated monitor light is transmitted, the phase-modulated (PM) monitor light is converted into amplitude modulation (AM) due to the influence of dispersion.
  • the first related technology is, for example, Shoichiro Kuwahara et al., “Examination of adaptive dispersion equalization method by dispersion fluctuation detection using PM-AM conversion effect”, 1998 IEICE Communication Society Proceedings, p. 417, IEICE, 1998 (Non-Patent Document 1).
  • the first related technique will be described based on Kuwahara et al.
  • FIG. 1 shows the system shown by Kuwahara et al.
  • an optical coupler (CPL) 1412 combines the signal light from the optical transmitter (TX) 1400 to which a data signal having a large bit rate is applied and the monitor light, and the combined light is transmitted. It is sent to a transmission line 1404 such as an optical fiber.
  • a laser light source 1401 having a wavelength different from that of the signal light
  • a sine wave oscillator (SINE GEN) 1402 and a phase modulator (PHASE MOD) 1403 are provided.
  • the phase modulator 1403 the light from the laser light source 1401 is phase-modulated by the sine wave signal from the sine wave oscillator 1402, thereby generating monitor light.
  • the transmission path 1404 signal light and monitor light having a different wavelength from the signal light propagate. These two lights propagated through the transmission line 1404 enter a wavelength demultiplexer (CPL) 1405 at the receiving end.
  • the wavelength demultiplexer 1405 demultiplexes the received light into signal light and monitor light.
  • the signal light is incident on an optical receiver (RX) 1406, whereby a data signal is reproduced from the signal light.
  • RX optical receiver
  • the monitor light propagates through the dispersion compensator (CD COMP) 1407 and then enters the photodetector (PD) 1408. Since the photodetector 1408 performs square detection of the monitor light, the output of the photodetector 1408 is proportional to the amplitude modulation component in the monitor light.
  • the output of the photodetector 1408 is provided with an average value measurement circuit (AVG) 1411 and a band pass filter (band pass filter; BPF) 1410, and thereby, the average of detection signals at the photodetector 1408.
  • AVG average value measurement circuit
  • BPF band pass filter
  • the level and the intensity of the frequency component of the sine wave signal used for phase modulation on the transmission side are obtained.
  • the control circuit 1409 obtains a dispersion value in the transmission path 1404 from the ratio between the average level of the detection signal and the intensity of the frequency component of the sine wave signal, and generates a control signal to be fed back to the transmission side.
  • the control circuit 1409 determines whether or not the dispersion of the monitor light deviates from zero based on the ratio between the average level of the detection signal and the intensity of the frequency component of the sine wave signal.
  • control circuit 1409 When detecting that the dispersion has deviated from zero, the control circuit 1409 transmits a control signal to the transmission side, so that the dispersion of the monitor light detected by the photodetector 1408 becomes zero, so that the wavelength of the monitor light becomes zero. Control to change is started.
  • the transmission line dispersion in the monitor light becomes zero, so the wavelength control of the monitor light is performed here. Stop. Next, the wavelength of the signal light is shifted by the amount by which the wavelength of the monitor light at this time is shifted. Thereby, the dispersion can be made zero again for the signal light. In this way, according to the first related technique, it is possible to control the dispersion of the signal light wavelength to be zero by detecting that the dispersion of the monitor light is deviated from zero.
  • Patent Document 1 discloses an optical signal after multiplexing when transmitting a data signal by wavelength multiplexing using two different wavelengths. It is disclosed that a dispersion value is monitored by superimposing a dispersion measurement signal on the receiver and detecting the measurement signal at the receiving end.
  • the intensity modulation signal is wavelength-multiplexed using an intensity modulation signal as an in-service signal used for data transmission. Then, a sine wave signal phase-modulated with a pseudo-random code is used as the dispersion detection signal, and the signal is obtained by applying minute intensity modulation driven by the dispersion detection signal to the optical signal after wavelength multiplexing.
  • the arrival time of the dispersion detection signal at the reception side differs between the two wavelengths used for signal transmission. Therefore, the dispersion detection signal is transmitted at each of the two wavelengths on the reception side.
  • the variance can be detected by demodulating and detecting the time difference in the demodulated code. Further, since this technique uses a pseudo-random code, it has an advantage that the detection accuracy does not decrease even when the superimposition level of the dispersion detection signal cannot be increased.
  • Patent Document 2 discloses that a frame included in a data signal of each wavelength channel is always or with a short repetition time in an optical transmission system performing wavelength multiplexing. It is shown that the wavelength dependence of the transmission delay of the transmission path is measured and the chromatic dispersion is obtained by detecting and relatively comparing the frame phase for each wavelength channel.
  • the wavelength region for monitor light cannot be used for signal light transmission, and there arises a problem that the transmission band is reduced when viewed as the entire transmission line.
  • the main signal component is a signal component used for data transmission.
  • a high frequency as a signal for dispersion detection.
  • a low frequency signal it is necessary to use a low frequency signal.
  • the third related technique is based on the assumption that wavelength multiplexing is performed, there is a problem that it cannot be applied to an optical transmission system in which wavelength multiplexing is not performed. Even in a wavelength multiplexing system, dispersion cannot be measured in a system in which the frame phase of the data signal for each wavelength channel is not strictly aligned on the transmission side.
  • An exemplary object of the present invention is to provide a method and apparatus capable of detecting a wide range of chromatic dispersion that can occur in an optical transmission line, and thereby provide a method and apparatus for controlling chromatic dispersion. It is in.
  • Another object of the present invention is to provide a method and apparatus capable of detecting and controlling chromatic dispersion while performing actual data transmission.
  • a method for monitoring chromatic dispersion is a method for monitoring chromatic dispersion when transmitting an optical signal, wherein n is set to 2 for an optical signal having a symbol rate of f.
  • n is set to 2 for an optical signal having a symbol rate of f.
  • a dip is applied to the light intensity every n symbols by pseudo RZ modulation, an optical signal to which the dip is applied is sent to the transmission line, and an optical signal transmitted through the transmission line is received, k is an integer equal to or greater than 1, detecting the intensity of the frequency component of k ⁇ f / n from the received signal, and generating a monitor signal representing the amount of chromatic dispersion based on the detected intensity.
  • a method for equalizing chromatic dispersion is a method for equalizing chromatic dispersion when transmitting an optical signal, and for an optical signal having a symbol rate of f.
  • N is an integer of 2 or more
  • dip is applied to the light intensity every n symbols by pseudo RZ modulation
  • the optical signal to which the dip is applied is sent to the transmission line
  • K is an integer equal to or greater than 1
  • the intensity of the frequency component of k ⁇ f / n is detected from the received signal
  • a monitor signal representing the amount of chromatic dispersion is generated based on the detected intensity
  • controlling an equalizer for equalizing the optical signal so that the value represented by the monitor signal is minimized.
  • an apparatus for monitoring chromatic dispersion is an apparatus for monitoring chromatic dispersion when transmitting an optical signal, and for an optical signal having a symbol rate of f,
  • n being an integer of 2 or more
  • a dip is applied to the light intensity every n symbols
  • a transmitter that transmits the optical signal to which the dip has been applied to the transmission line
  • an optical signal transmitted through the transmission line Is a dispersion monitor that detects the intensity of the frequency component of k ⁇ f / n from the received signal, and generates a monitor signal representing the amount of chromatic dispersion based on the detected intensity. And having.
  • an apparatus for equalizing chromatic dispersion is an apparatus for equalizing chromatic dispersion when transmitting an optical signal, wherein the optical signal has a symbol rate of f.
  • n is an integer of 2 or more
  • a dip is applied to the light intensity every n symbols by pseudo RZ modulation, and the transmitter transmits the optical signal to which the dip has been applied to the transmission line.
  • the optical signal is received, k is an integer of 1 or more, the intensity of the frequency component of k ⁇ f / n is detected from the received signal, and a monitor signal indicating the chromatic dispersion amount is generated based on the detected intensity And a chromatic dispersion equalizer for equalizing the optical signal received from the transmission line so that the value represented by the monitor signal is minimized.
  • n is an integer equal to or larger than 2 for an optical signal whose symbol rate is f, and a pseudo RZ modulation or pseudo RZ format
  • a dip is applied to the light intensity every n symbols, and an optical signal to which the dip is applied is sent to the transmission line.
  • pseudo RZ modulation the length of time during which the intensity of the optical signal is minimal in the dip is extremely short, so even if such a dip is added to the optical signal, the data From the viewpoint of transmission, the quality of the optical signal is maintained.
  • the optical signal is transmitted so that the residual chromatic dispersion becomes zero.
  • Signal equalization can be performed. According to such a method, the bandwidth for data transmission is not narrowed in order to detect chromatic dispersion.
  • FIG. 2 and 3 illustrate an optical transmission system according to the first exemplary embodiment of the present invention.
  • FIG. 2 shows a configuration of a transmitter 100 used in the optical transmission system
  • FIG. The configuration of a distributed monitor (CD MON) 200 that can be used in a pair with the transmitter 100 is shown.
  • CD MON distributed monitor
  • the optical transmission system shown in FIG. 2 and FIG. 3 performs optical data transmission from the transmitter 100 to the receiving end via a transmission path composed of an optical fiber or the like, and performs optical data transmission.
  • chromatic dispersion in the transmission path can be detected at the receiving end.
  • a receiver that demodulates an optical signal and generates a data signal, and a dispersion monitor 200 that monitors the degree of chromatic dispersion in the received optical signal are provided.
  • the transmitter 100 sends a single-polarization pseudo RZ (return-to-zero) signal to the transmission line, and includes a laser 110 that is a light source of the optical carrier 150, and an optical carrier 150.
  • a modulator (MOD) 111 that modulates the optical signal 151, and a pseudo RZ carver that performs optical pulse carving on the modulated optical signal 151 and applies a dip every n symbols in the optical signal (carver) (PRZ (n)) 112, an encoder (coder) 120 that encodes an electrical signal indicating data to be transmitted, that is, a data signal 101 to generate digital data 160 for modulation, And a driver 121 that drives the modulator 111 based on the digital data 160.
  • n is an arbitrary integer of 2 or more, and is 4, 8, or 16, for example.
  • the driver 121 drives the modulator 111 by converting the digital data signal 160 into a signal 161 having an appropriate voltage and supplying it to the modulation input of the modulator 111. Accordingly, the modulator 111 modulates the optical carrier 150 based on the voltage signal 161.
  • a clock signal 170 having the same frequency f as the symbol rate (i.e., baud rate) of the signal is supplied from the encoder 120 to the pseudo RZ carver 112.
  • the pseudo RZ carver 112 applies a dip every n symbols to the modulated optical signal 151.
  • the dip is to minimize the intensity of the optical signal 151 for a very short time, for example, to reduce the intensity of the optical signal to zero.
  • the pseudo-RZ carver is, for example, E.
  • Non-Patent Document 1 a frequency divider that divides the clock signal f by n, a D-type flip-flop that uses the output of the frequency divider as the D input, and the clock signal f as the clock input, And a phase modulator (PSK) that phase-modulates the optical signal by the output of the D-type flip-flop.
  • PSK phase modulator
  • the optical output is minimized at the position of the dip, and this can be regarded as a return-to-zero in the optical signal.
  • the intensity or polarity of the signal is set to the intensity or polarity corresponding to the data value “0” over the half of the duration of one symbol.
  • a dip that is sufficiently short compared to the time is added. For this reason, applying such a narrow dip to the optical signal using the pulse carving technique is called pseudo RZ modulation here.
  • WO 2007/004338 Patent Document 3 discloses a technique that enables a clock signal to be easily extracted from an optical signal by using pseudo RZ modulation.
  • Patent Document 4 discloses a clock by converting an optical signal of NRZ (non-return-to-zero) modulation into an optical signal of pseudo RZ modulation. A technique is shown that allows the signal to be easily extracted.
  • the transmitter 100 outputs an optical signal 102 that is modulated by a modulator 111 by a data signal 101 that is an electrical signal, and is applied with a dip by pseudo RZ modulation every n symbols by a pseudo RZ carver 112. It is sent to the receiving end via the transmission line.
  • the transmitter 100 is, for example, a 55 gigabit / second (Gb / s) PRZ (8) -QPSK (quadrature phase shift keying) transmitter.
  • PRZ (8) indicates that a dip is applied every 8 symbols by the pseudo RZ (Pseudo-RZ) method.
  • PRZ Pseudo-RZ
  • the voltage signal 161 is a 27.5 GHz electrical signal corresponding to an I (in-phase) component and a Q (quadrature) component, respectively,
  • the Q component is supplied in parallel to the modulator 111.
  • the modulator 111 is a QPSK modulator, and in QPSK, one symbol is composed of 2 bits, and is supplied from the encoder 120 to the pseudo RZ carver 112.
  • the frequency of the clock signal is also 27.5 GHz
  • the intensity waveform of the QPSK-modulated optical signal 151 immediately after being output from the modulator 111 is shown in a graph 1110 in FIG. 12A.
  • the optical signal 151 is a signal in the form of NRZ. It is shown that the duration of each symbol is 36.36 ps.
  • the optical signal from the pseudo RZ carver 112 is shown by the graph 1130 in FIG. 12C.
  • the dip due to the pseudo RZ is indicated by reference numeral 1131 in the graph 1130.
  • the interval between dip 290.91 ps in the graph 1130 corresponds to a duration of 8 symbols.
  • the optical signal 102 is a 55 gigabit / second PRZ (8) -QPSK signal.
  • the 55 gigabits / second is described as “55G” in the graph.
  • the result of the simulation performed on the intensity spectrum of such an optical signal is shown in a graph 1201 in FIG. 13A. Due to the clock component of the symbol rate, an intensity peak is observed in the vicinity of 28 GHz, and the frequency component in the vicinity of 28 GHz is more than 30 dB stronger than the surrounding frequency region. Further, by adding a dip every 8 symbols by pseudo RZ, an intensity peak is also seen at a frequency of 1/8 of the symbol rate, that is, 3.44 GHz, and its harmonic (harmonic) frequency. These intensity peaks are more than 20 dB stronger than the surrounding frequency components.
  • a graph 1202 in FIG. 13B shows the result of a simulation performed on the intensity spectrum of a 56 Gbps / s NRZ-QPSK signal.
  • a peak in the vicinity of 28 GHz corresponding to the symbol rate is observed, there is no peak in a lower frequency region, so it is difficult to detect a frequency component lower than 28 GHz directly from this signal.
  • a simulation result for the intensity spectrum of the 56 Gbit / s RZ-QPSK signal in the normal RZ format is shown in a graph 1203 in FIG. 13C.
  • a peak in the vicinity of 28 GHz is observed here as well, since there is no peak in a lower frequency region, it is difficult to directly detect and detect a frequency component lower than 28 GHz from this signal.
  • a peak exists in the vicinity of 28 GHz the intensity is smaller in the frequency region near the peak than in other frequency regions.
  • the dispersion monitor 200 detects a frequency component applied by pseudo RZ modulation from an incident optical signal, and generates an electric signal 202 representing a chromatic dispersion value.
  • the dispersion monitor 200 receives two signals: a photodiode (PD) 210 that receives an input optical signal 201 and converts it into an electric signal 250, and an electric signal 250 output from the photodiode 210.
  • a chromatic dispersion value is calculated based on a branching device (DIV) 211 that branches to 251 and 261, a band-pass filter (BPF) 215 that receives the signal 251, and the signal 261 and the output signal 255 of the band-pass filter 215.
  • DIV branching device
  • BPF band-pass filter
  • An optical signal 201 incident on the photodiode 210 that is a light receiving element is an optical signal to which a dip is applied by pseudo RZ modulation on the transmission side.
  • the photodiode 210 outputs an electric signal 250 representing the intensity of the optical signal 201.
  • the electric signal 250 is supplied to the monitor circuit 230 as the signal 261 via the branching device 211 and supplied to the band-pass filter 215 as the signal 251. Is done.
  • the branching ratio between the two signals 251 and 261 in the branching device 211 is fixed to a constant value.
  • Other types of light receiving elements can be used instead of the photodiodes.
  • the band pass filter 215 uses k as a natural number equal to or greater than 1 and f as the frequency of the clock signal 170 in the transmitter 100, that is, the symbol rate in the optical signal 201.
  • a frequency component is extracted, and a signal 255 representing the intensity of the extracted frequency component is generated.
  • n corresponds to inserting a dip every n symbols by the pseudo RZ in the transmitter 100.
  • the intensity ratio of the dip frequency component to the entire optical signal 201 changes.
  • the change of the intensity ratio with respect to the chromatic dispersion amount can be calculated by simulation, for example. In other words, if the ratio of the intensity of the dip frequency component (or its harmonic component) to the overall intensity of the electrical signal 250 generated by receiving the optical signal 201 can be obtained, the amount of chromatic dispersion can be determined.
  • the monitor circuit 230 obtains the ratio of the intensity of the signal 255 corresponding to the dip frequency component to the intensity of the signal 261 corresponding to the entire band in the optical signal 201, and based on the value of the ratio, in the transmission of the optical signal 201 A chromatic dispersion value is calculated.
  • a chromatic dispersion value may be determined based on the calculated intensity ratio using a lookup table based on the simulation result.
  • the lookup table is stored in a storage medium such as a nonvolatile semiconductor memory built in the monitor circuit 230.
  • the intensity of the signal 261 is always constant, in other words, if it is known that the intensity of the optical signal 201 is always constant, the signal 255 is not used.
  • the monitor circuit 230 calculates the average power of the optical signal 201 using the signal 261 and calculates the chromatic dispersion value based on the average power. .
  • the optical signal 201 is a 56-Gigabit / second PRZ (4) -QPSK signal
  • n 4 and the symbol rate f is 28 GHz.
  • the dispersion monitor 200 obtains a dispersion value from the frequency component of 1 ⁇ 4 of the symbol rate, and the dispersion value is obtained.
  • a graph 1310 in FIG. 14A shows a simulation result for determining how the intensity ratio of the dip frequency component changes with respect to the value of the chromatic dispersion CD.
  • the intensity ratio changes monotonously when the chromatic dispersion is in the range of ⁇ 400 to 0 ps / nm, and also changes monotonously in the range of 0 to +400 ps / nm. Therefore, the monitor circuit 230 can monitor the chromatic dispersion over a wide range of ⁇ 400 ps / nm when the absolute value of the chromatic dispersion is not known but the code is known. In addition, if the chromatic dispersion is intentionally changed in the positive direction or the negative direction and the signal 202 is changed at that time, the sign of the chromatic dispersion can be known. Using this, the actual value of chromatic dispersion can be obtained.
  • FIG. 4 shows the configuration of a transmitter used in the second exemplary embodiment, which outputs a polarization multiplexed pseudo RZ optical signal
  • FIG. 5 shows the dispersion used in the second exemplary embodiment.
  • 1 shows a configuration of a dispersion monitor that receives a polarization multiplexed pseudo RZ optical signal, detects a plurality of frequency components applied in a pseudo RZ format, and generates a signal representing a chromatic dispersion value.
  • Transmitter 300 outputs a polarization multiplexed signal that has been subjected to pseudo RZ modulation and added with a dip.
  • the transmitter 300 includes a laser 310 that is a light source of a transmitting optical carrier 350, a polarization preserving coupler (PM CPL) 313 that branches the optical carrier 350 while preserving polarization, and one of the polarization preserving coupler 313.
  • PM CPL polarization preserving coupler
  • the transmitter 300 further includes an encoder 320 and drivers 321 and 322 for modulation.
  • the polarization preserving coupler 313 divides the optical carrier 350 into two to generate two optical carriers 353 and 354 having the same polarization state.
  • the encoder 320 generates modulation digital data 360 and 362 for each polarization from an electric signal indicating data to be transmitted, that is, the data signal 301, and the drivers 321 and 322 are digital data 360 and 362. Are converted into voltage signals 361 and 363 having appropriate voltages, respectively.
  • the modulators 311 and 316 modulate the optical carriers 353 and 354 based on the voltage signals 361 and 363, respectively, and output them as optical signals 351 and 356.
  • the encoder 320 supplies clock signals 370 and 371 having the same frequency as the symbol rate to the pseudo RZ carvers 312 and 317, respectively.
  • the pseudo RZ carver 312 applies a dip every n symbols to the optical signal 351 by pseudo RZ modulation, and the pseudo RZ carver 317 A dip is applied to the signal 356 every m symbols.
  • the polarization rotator 315 rotates the polarization of the optical signal 357 so that the polarization of the optical signal 357 from the pseudo RZ carver 317 is orthogonal to the polarization of the optical signal 352 from the pseudo RZ carver 312. Control to output as 355 is performed. As a result, the optical signal 352 and the optical signal 355 are orthogonally polarized with each other, and these are polarization multiplexed by the polarization beam combiner 316 and output as the optical signal 302.
  • the optical signal 302 output from the transmitter 300 is modulated by the modulators 311 and 316 by the data signal 301, and a pseudo RZ dip is applied to each polarized wave by the pseudo RZ carvers 312 and 317 for every n and m symbols, respectively.
  • the signal is polarization multiplexed.
  • the transmitter 300 is a 110 gigabit / second PRZ (4,8) -QPSK transmitter.
  • the electrical signal 361 is a 27.5 GHz electrical signal composed of an I component signal and a Q component signal corresponding to one polarization
  • the electrical signal 363 is It is an electric signal of 27.5 GHz composed of an I component signal and a Q component signal corresponding to a wave.
  • Each of the modulators 311 and 316 is a QPSK modulator that receives an I component signal and a Q component signal.
  • Clock signals 370 and 371 each having a frequency of 27.5 GHz are supplied from the encoder 320 to the pseudo RZ carvers 312 and 317.
  • the pseudo RZ carver 312 applies a dip to the intensity of the optical signal 351 every 8 symbols
  • the pseudo RZ carver 317 applies a dip to the intensity of the optical signal 356 every 4 symbols.
  • the intensity waveforms of the optical signals 351 and 356 that have been QPSK-modulated by the modulators 311 and 316 are those shown in the graph 1110 of FIG. 12A described above.
  • the intensity waveform of the optical signal 352 from the pseudo RZ carver 312 is shown in a graph 1130 in FIG. 12C, and the dip here is indicated by reference numeral 1121.
  • the intensity waveform of the optical signal 355 from the pseudo RZ carver 317 is shown in the graph 1120 of FIG. 12B, and the dip here is indicated by reference numeral 1121.
  • a polarization multiplexed signal 302 is generated by polarization multiplexing two optical signals 351 and 356 whose intensity waveforms are shown in the graph 1120 of FIG. 12B and the graph 1130 of FIG. 12C, respectively.
  • the intensity waveform is as shown in the graph 1140 of FIG. 12D.
  • reference numeral 1141 indicates a deep dip resulting from the overlap of the dip every four symbols (PRZ (4)) and the dip every eight symbols (PRZ (8)), and reference numeral 1142 indicates a dip every four symbols. Is shown.
  • the dispersion monitor (CD MON) 400 detects a plurality of frequency components applied by pseudo RZ modulation from an incident optical signal 401 and generates an electric signal 402 representing a chromatic dispersion value.
  • the optical signal 401 is a signal to which a dip based on the pseudo RZ format is added.
  • the optical signal 401 is an optical signal generated by the transmitter 300 illustrated in FIG. 4 and transmitted through a transmission line such as an optical fiber.
  • the optical signal 401 may be generated by a transmitter other than that shown in FIG. 4 if the dip due to a plurality of frequency components is a signal applied by the pseudo RZ.
  • the dispersion monitor 400 includes a photodiode 410 that receives an optical signal 401 and converts the optical signal into an electric signal, k + 1 branching devices 420 to 42k, and k bandpass filters, where k is an integer of 2 or more. 451 to 45k and a monitor circuit 411 that actually generates an electric signal representing the dispersion measurement value. k indicates how many frequency components the optical signal 401 is applied with a dip.
  • the band pass filters 451 to 45k extract components having different frequencies f1 to fk, respectively.
  • the components of the frequencies f1 to fk are referred to as the f1 frequency component to the fk frequency component, respectively.
  • the electric signal 403 is input to the first-stage branching device (DIV) 420, and the signal 430 Branches to signal 431.
  • the signal 430 is directly supplied to the monitor circuit 411.
  • the signal 431 is input to the next branching device (DIV1) 421 and branched into a signal 441 and a signal 432.
  • the signal 441 is supplied to the band-pass filter 451.
  • the band-pass filter 451 extracts the f1 frequency component from the signal 441 and generates a signal 461 representing the intensity of the component.
  • the frequency f1 is the frequency of the dip applied by the pseudo RZ in the signal 401.
  • the signal 432 is input to the next branching unit (DIV2) 422 and branched into a signal 442 and a signal 433.
  • the signal 442 is supplied to the band pass filter 452, and the signal 433 is further input to the next branching device (DIV 3) 423.
  • the band pass filter 452 extracts the f2 frequency component from the signal 442 and generates a signal 462 representing the intensity of the component.
  • the frequency f2 is also the frequency of the dip applied by the pseudo RZ in the signal 401.
  • the final branching device 42k receives the signal 43k, outputs the signal 44k to the kth band-pass filter 45k that extracts the fk frequency component and generates the signal 46k representing the intensity of the component. To do. Since there is no longer any branching device after the branching device 42k, the signal 43k may be directly supplied to the band pass filter 45k as the signal 46k without providing the final branching device 42k.
  • the monitor circuit 411 calculates the chromatic dispersion value in the transmission of the optical signal 401 based on the ratio of the intensity of the signals 461 to 46k to the intensity of the signal 430. Actually, it is preferable to obtain the chromatic dispersion value by using, for example, a look-up table instead of performing the calculation. The principle for obtaining the chromatic dispersion value here is the same as in the case of the first exemplary embodiment.
  • the monitor circuit 411 uses the signal 430 to calculate the average power of the optical signal 401, and uses the calculated average power and the intensity of the signals 461 to 46k.
  • the chromatic dispersion value can be determined from the intensities of the signals 461 to 46k without using the signal 430.
  • the optical signal 401 is a polarization multiplexed 112 gigabit / second PRZ (4,8) -QPSK signal
  • 14A to 14E show simulation results of changes in the f1 frequency component and the f2 frequency component with respect to the chromatic dispersion in such a case.
  • the graph 1320 of FIG. 14B shows how the intensity ratio of the signal 461 of the f1 frequency component to the signal 430 changes with respect to the chromatic dispersion
  • the graph 1330 of FIG. 14C shows the signal 462 of the f2 frequency component relative to the signal 430. It shows how the intensity ratio changes with respect to chromatic dispersion.
  • the signal 462 is used to detect chromatic dispersion in a high range of ⁇ 1000 ps / nm. And chromatic dispersion can be monitored. Further, when the chromatic dispersion is within a range of ⁇ 400 ps / nm, the chromatic dispersion can be monitored with higher accuracy by using the graph 1320 showing a larger change amount with respect to the chromatic dispersion.
  • the monitor circuit 411 may generate the electrical signal 402 representing the highly accurate chromatic dispersion value.
  • f1 f / 8 as the f1 frequency component corresponding to the signal 461.
  • a graph 1350 in FIG. 14E shows a simulation result of the intensity of these signals 461 to 463 with respect to chromatic dispersion. Curve 1351 represents the result for signal 461, curve 1352 represents the result for signal 462, and curve 1353 represents the simulation result for signal 463.
  • the signal 461 When the sign of chromatic dispersion is known, if the signal 461 is used, the signal intensity changes monotonously with respect to the chromatic dispersion, so that the chromatic dispersion can be monitored over a wide range of ⁇ 1000 ps / nm. Also, when the chromatic dispersion is within the range of ⁇ 400 ps / nm, the signal 462 is used, and when the chromatic dispersion is within the range of ⁇ 100 ps / nm, the signal 463 is used to monitor the chromatic dispersion. You can also
  • FIG. 6 shows an optical transmission / reception system in the third exemplary embodiment.
  • the transponder 500 includes a transmission unit (TX PRZ) 501, a reception unit (RX) 502, a dispersion monitor (CD MON) 503, and a coupler (CPL) 504.
  • the transmission unit 501 modulates an optical carrier with an electric signal 511 indicating data to be transmitted, further applies a dip to the carrier intensity by pseudo RZ to the modulated optical carrier, and transmits an optical signal 512.
  • the transmitter 100 demonstrated using the transmitter 100 demonstrated using FIG. 2, or the transmitter 300 demonstrated using FIG. 4 can be used, for example.
  • the optical signal 516 received by the transponder 500 is branched into two by the coupler 504, one being distributed to the receiving unit 502 and the other being distributed to the dispersion monitor 503.
  • the receiving unit 502 receives an incoming optical signal, demodulates it, and converts it into an electrical signal 517.
  • the dispersion monitor 503 monitors the chromatic dispersion of the received optical signal, and generates an electrical signal indicating the value of chromatic dispersion, that is, a monitor signal 521.
  • the dispersion monitor 503 for example, the dispersion monitor 200 described with reference to FIG. 3 or the dispersion monitor 400 described with reference to FIG. 5 can be used.
  • this optical transmission / reception system is provided with a transponder 530 which is the same device as the transponder 500.
  • the transponder 530 outputs an optical signal 542 having a wavelength different from that of the optical signal 512 based on an electrical signal 541 indicating data to be transmitted.
  • the wavelength of the optical signal 546 received by the transponder 530 is also different from that of the optical signal 516.
  • the transponder 530 Based on the received optical signal 546, the transponder 530 generates an electrical signal 547 indicating received data and outputs a monitor signal 551 representing chromatic dispersion included in the optical signal 546.
  • An optical multiplexer (MUX) 560 that wavelength-multiplexes the optical signals 512 and 542 transmitted from the transponders 500 and 530, respectively, is provided, and the wavelength-multiplexed optical signal 513 is transmitted to the transmission line. Further, more transponders may be provided, and optical signals from these transponders may be wavelength-multiplexed by the optical multiplexer 560.
  • an optical signal 514 generated by a transponder similar to the transponders 500 and 530 and wavelength-multiplexed is sent.
  • An optical demultiplexer (DEMUX) 561 for separating the optical signal 514 for each wavelength is provided, and the optical signals 515 and 545 separated for each wavelength are respectively variable wavelength dispersion equalizers (VAR CD COMP) 520. , 550 and received by multiplexers 500 and 530 as optical signals 516 and 546.
  • VAR CD COMP variable wavelength dispersion equalizers
  • the variable chromatic dispersion equalizer 520 is controlled by a monitor signal 521 from the multiplexer 500
  • the variable chromatic dispersion equalizer 550 is controlled by a monitor signal 551 from the multiplexer 530.
  • the transmission unit 501 of the transponder 500 has the same configuration as the transmitter 100 using pseudo RZ modulation shown in FIG. 2, and generates a 56-Gigabit / second PRZ (8) -QPSK signal.
  • the transponder 530 may also consist of a similar transmitter and distributed monitor.
  • the variable chromatic dispersion equalizer 520 is controlled so that the monitor signal 521 indicating the chromatic dispersion is minimized. As shown in the graph 1330 of FIG. 14C, if the residual chromatic dispersion in the optical signal 515 from the demultiplexer 561 is within ⁇ 1000 ps / nm, the amount of dispersion can be accurately determined, and based on this, the variable wavelength can be determined. By controlling the dispersion equalizer 520, the residual chromatic dispersion in the optical signal received by the receiving unit 502 can be made zero. Therefore, the quality of the data signal 517 output from the receiving unit 502 is optimal.
  • the data signal 517 is an electric signal.
  • the residual chromatic dispersion in the optical signal 515 can be equalized.
  • the variable chromatic dispersion equalizer 550 By executing the same control on the variable chromatic dispersion equalizer 550, the residual chromatic dispersion in the optical signal 545 can be equalized.
  • the transmission unit 501 of the transponder 500 has the same configuration as the transmitter 100 using pseudo RZ modulation shown in FIG. 2, and generates a 56-Gigabit / second PRZ (8) -QPSK signal.
  • the transponder 530 may also consist of a similar transmitter and distributed monitor.
  • variable chromatic dispersion equalizer 520 is controlled so that the monitor signal 521 indicating the chromatic dispersion is minimized. As shown in the graph 1350 of FIG. 14E, if the residual chromatic dispersion in the optical signal 515 is within ⁇ 1000 ps / nm, the amount of dispersion can be accurately determined, and based on this, variable chromatic dispersion equalization is performed. By controlling the device 520, the residual chromatic dispersion in the optical signal received by the receiving unit 502 can be made zero, and the quality of the data signal 517 can be optimized.
  • the monitor signal 521 is generated using information from the f1 frequency component in the initial stage of control, and first, the residual chromatic dispersion is suppressed within ⁇ 400 ps / nm. Next, a monitor signal 521 is generated based on information from the f2 frequency component, and chromatic dispersion is suppressed to ⁇ 100 ps / nm. After that, if information such as the f3 frequency component is used to track a minute change in the residual chromatic dispersion, the chromatic dispersion can be compensated with high accuracy. By adopting such range switching, an optimum dynamic range for equalizing chromatic dispersion can be selected.
  • the residual chromatic dispersion in the optical signal 515 can be equalized.
  • the residual chromatic dispersion in the optical signal 545 can be equalized.
  • the transmission unit 501 of the transponder 500 has the same configuration as that of the polarization multiplexed pseudo RZ transmitter 300 shown in FIG. 4 and has a polarization multiplexed 112 gigabit / second PRZ (4,8) -QPSK. Generate a signal.
  • the transponder 530 may also consist of a similar transmitter and distributed monitor.
  • variable chromatic dispersion equalizer 520 is controlled so that the monitor signal 521 indicating the chromatic dispersion is minimized.
  • the monitor signal 521 is generated using information from the f1 frequency component in the initial stage of control, and first, the residual chromatic dispersion is suppressed within ⁇ 400 ps / nm.
  • the monitor signal 521 is generated based on the information from the f2 frequency component, and finer control is performed.
  • the optimum dynamic range can be selected.
  • the residual chromatic dispersion in the optical signal 515 can be equalized.
  • the residual chromatic dispersion in the optical signal 545 can be equalized.
  • FIG. 7 shows an optical transmission / reception system in the fourth exemplary embodiment.
  • the transponder 600 has the same configuration as that of the transponder 500 shown in FIG. 6, modulates an optical carrier with an electric signal 611 indicating data to be transmitted to the other party, and performs pseudo RZ on the modulated optical carrier.
  • a dip is applied to the carrier intensity to transmit an optical signal 512, and an optical signal 615 from the other party is received and a data signal 617 is output as an electrical signal.
  • the transponder 600 also outputs a monitor signal 660 indicating the measured dispersion value.
  • a transponder 630 that is the same device as the transponder 600 is also provided. However, the transponder 630 outputs an optical signal 642 having a wavelength different from that of the optical signal 612 based on an electrical signal 641 indicating data to be transmitted.
  • the transponder 630 receives an optical signal 645 having a wavelength different from that of the optical signal 615, generates an electric signal 647 indicating received data based on the optical signal 645, and generates a monitor signal 661 indicating chromatic dispersion included in the optical signal 645. Output.
  • An optical multiplexer (MUX) 660 for wavelength-multiplexing the optical signals 612 and 642 transmitted from the transponders 600 and 630, respectively, is provided, and the wavelength-multiplexed optical signal 613 is sent to the transmission line. Further, more transponders may be provided, and optical signals from these transponders may be wavelength-multiplexed by the optical multiplexer 660.
  • an optical signal 633 generated by a transponder similar to the transponders 600 and 630 and wavelength-multiplexed is sent.
  • An optical demultiplexer (DEMUX) 661 for separating the optical signal 633 for each wavelength is provided, and the optical signals 615 and 645 separated for each wavelength are received by the multiplexers 600 and 630, respectively.
  • variable wavelength dispersion equalizer (VAR CD COMP) 664 is provided between the demultiplexer 651 and the transmission line, and the optical signal 633 from the transmission line is a variable wavelength dispersion equalizer. By passing through 664, chromatic dispersion is compensated collectively for a plurality of wavelength channels.
  • a variable wavelength dispersion equalizer 664 for example, S.
  • a control circuit 662 is provided to control the variable wavelength dispersion equalizer 664. Based on the monitor signal 660 from the transponder 600 and the monitor signal 661 from the transponder 630, the control circuit 662 is a residual wavelength at both the wavelength of the received optical signal of the transponder 600 and the wavelength of the received optical signal of the transponder 630.
  • the variable chromatic dispersion equalizer 664 is controlled by the control signal 663 so that the dispersion becomes zero.
  • the transmission unit of the transponder 600 has the same configuration as the transmitter 100 using pseudo RZ modulation shown in FIG. 2, and generates a 56-Gigabit / second PRZ (16) -QPSK signal.
  • the transponder 630 may also consist of a similar transmitter and distributed monitor.
  • the control circuit 662 generates the control signal 663 and controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls the variable chromatic dispersion equalizer 664 so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the control circuit 662 controls
  • the transmission unit of the transponder 600 has the same configuration as the transmitter 100 using pseudo RZ modulation shown in FIG. 2, and generates a 56-Gigabit / second PRZ (8) -QPSK signal.
  • the transponder 630 may also consist of a similar transmitter and distributed monitor.
  • variable chromatic dispersion equalizer 664 is controlled so that the monitor signal 660 is minimized.
  • the monitor signal 660 is generated using information from the f1 frequency component in the initial stage of control, and first, the residual chromatic dispersion is suppressed within ⁇ 400 ps / nm.
  • a monitor signal 660 is generated based on information from the f2 frequency component, and chromatic dispersion is suppressed to ⁇ 100 ps / nm. After that, if information such as the f3 frequency component is used to track a minute change in the residual chromatic dispersion, the chromatic dispersion can be compensated with high accuracy. By adopting such range switching, an optimum dynamic range for equalizing chromatic dispersion can be selected. Further, even when the chromatic dispersion of the optical signal 633 received from the transmission path changes with time, the residual chromatic dispersion in the optical signal 615 can be equalized. By executing the same control, the residual chromatic dispersion in the optical signal 645 can be equalized.
  • the transmission unit of the transponder 600 has the same configuration as that of the polarization multiplexed pseudo RZ transmitter 300 shown in FIG. 4, and is a polarization multiplexed 112 gigabit / second PRZ (4,8) -QPSK signal. Is generated.
  • the transponder 630 may also consist of a similar transmitter and distributed monitor.
  • variable chromatic dispersion equalizer 664 is controlled so that the monitor signal 661 indicating the chromatic dispersion is minimized.
  • the monitor signal 660 is generated using information from the f1 frequency component in the initial stage of control, and first, the residual chromatic dispersion is suppressed within ⁇ 400 ps / nm.
  • the monitor signal 660 is generated based on the information from the f2 frequency component, and finer control is performed. By adopting such range switching, the optimum dynamic range can be selected. Even when the chromatic dispersion of the optical signal 633 received from the transmission path changes with time, the residual chromatic dispersion in the optical signal 615 can be equalized. By executing the same control for the variable chromatic dispersion equalizer 664, the residual chromatic dispersion in the optical signal 645 can be equalized.
  • FIG. 8 shows an example of the configuration of the transponder in this exemplary embodiment.
  • the transponder 700 roughly includes a transmission unit (TX PRZ) 701 and a reception unit 702.
  • the transmission unit 701 modulates an optical carrier with a data signal 711 that is an electrical signal indicating data to be transmitted, and uses a pseudo RZ modulation technique on the modulated optical carrier, thereby dipsing the intensity of the optical carrier.
  • the optical signal 712 is generated by application, and the optical signal 712 is transmitted.
  • the receiving unit 702 receives the optical signal 716, coherently detects and demodulates it, outputs an electric signal 717 as received data, monitors the chromatic dispersion in the optical signal 716, and based on the result, determines the chromatic dispersion. Equalization is performed.
  • Such a receiving unit includes a coherent receiving module (COH RX) 750, a laser 751 provided as a local oscillator (LO), and an analog / digital conversion that converts an analog electric signal output from the coherent receiving module 750 into a digital signal. And a digital signal processing unit 752 that performs signal processing on the digitized received signal.
  • a dip is applied to the intensity for every n symbols by using the pseudo RZ modulation method, as in the above-described exemplary embodiments.
  • the coherent reception module 750 includes a 90-degree hybrid and four balanced photodiodes, and the incident optical signal 716 is mixed with the local oscillation light from the laser 751 and subjected to coherent detection.
  • Four output analog signals from the coherent reception module 750, that is, reception signals are converted into digital signals by the analog / digital converter 752 and supplied to the digital signal processing unit 760.
  • the digital signal processing unit 760 includes a dispersion compensator (CD COMP) 720 that compensates for chromatic dispersion by FIR (finite impulse response) filter calculation, and a chromatic dispersion monitor that detects chromatic dispersion based on the output from the dispersion compensator 720.
  • Unit 703 a polarization separation calculation unit (CMA) 761 that performs polarization separation calculation on the output from the dispersion compensation unit 720, and an output from the polarization separation calculation unit 761 connected to the signal after polarization separation.
  • CMA polarization separation calculation unit
  • the output of the dispersion compensator 720 is branched and provided to the chromatic dispersion monitor 703 and the polarization separation calculator 761.
  • the polarization separation calculation unit 761 executes polarization separation calculation by CMA (Constant Modulus Algorithm).
  • the frequency difference compensation unit 763 performs compensation of the carrier frequency difference between the local oscillation light 751 and the received optical signal 716 by a CPE (Carrier Phase Estimation) algorithm.
  • the output from the demodulator 764 is a data signal 717 that is an electrical signal representing the received data.
  • the chromatic dispersion monitor unit 703 detects residual chromatic dispersion, generates a monitor signal 733 representing a residual dispersion value, and controls chromatic dispersion compensation in the dispersion compensator 720 by the monitor signal 733.
  • the tap coefficient of the FIR filter in the dispersion compensator 720 is set so that the residual dispersion value represented by the monitor signal 733 is minimized.
  • the same signal as the monitor signal 733 is supplied to the outside of the transponder 700 as the monitor signal 732.
  • the monitor signal 732 can be used to perform chromatic dispersion compensation outside the transponder 700, for example.
  • the chromatic dispersion monitor unit 703 performs an absolute value calculation unit (MODULUS) 730 that calculates an absolute value, and analyzes the output of the absolute value calculation unit 730 by fast Fourier transform (FFT (Fast Fourier Transform)). And an FFT analyzer (FFT) 731 for generating a monitor signal 733.
  • FFT Fast Fourier transform
  • FFT FFT analyzer
  • the FFT analysis unit 731 performs a Fourier transform on the output of the absolute value calculation unit 730 using an FFT algorithm, and the frequency component equal to the frequency of the dip by the pseudo RZ modulation applied to the optical signal 716 or a harmonic thereof.
  • the intensity of the frequency component is calculated, the value of chromatic dispersion is calculated by the same procedure as in the above exemplary embodiment, and the monitor signal 733 is generated.
  • the FFT analysis unit 731 holds a lookup table indicating the relationship between the magnitude of chromatic dispersion and the intensity of the selected frequency component, searches this lookup table from the intensity of the selected frequency component, and determines the value of residual chromatic dispersion. Should be requested.
  • the lookup table is stored in a storage medium such as a memory device attached to the digital signal processing unit 760, for example.
  • the tap coefficient of the FIR filter in the dispersion compensation unit 720 is set so that the value of the monitor signal 732 supplied from the chromatic dispersion monitor unit 703 to the dispersion compensation unit 720 is minimized, the signal to be demodulated As a result, the influence of residual chromatic dispersion becomes zero, and as a result, the quality of the data signal 717 output from the demodulator 764 becomes optimum.
  • Such a transponder 700 can be used as, for example, the transponders 500 and 530 in the optical transmission / reception system shown in FIG. 6, and can also be used as the transponders 600 and 630 in the optical transmission / reception system shown in FIG.
  • a transmitter, a distributed monitor, a transponder, and the like based on an exemplary embodiment of the present invention have been described. These transmitters or transponders are arranged on the transmitting side, distributed monitors or transponders are arranged on the receiving side, and the receiving side and the transmitting side are connected by a transmission line such as an optical fiber.
  • a transmission line such as an optical fiber.
  • An optical transmission system capable of detecting chromatic dispersion on the receiving side can be configured.
  • FIG. 9 shows an example of the configuration of an optical transmission system that can detect chromatic dispersion that can occur in the transmission path.
  • a transmitter (TX PRZ) 810 is provided on the transmission side.
  • the transmitter 810 modulates an optical carrier with an electric signal 801 representing data to be transmitted, and further applies a dip every n symbols by pseudo RZ modulation to the modulated optical carrier in the same manner as described above.
  • the optical signal 820 thus modulated and applied with a dip is transmitted to the receiving side via the transmission line 821.
  • the transmitter 810 is configured to change the transmission wavelength in the optical signal 820 to be transmitted, that is, the wavelength of the optical carrier.
  • the transmitter 100 shown in FIG. 2 or the transmitter 300 shown in FIG. 4 can be used.
  • the transmission path 821 includes one or a plurality of spans connected in series, and a symbol 83k is used as a representative of such spans.
  • Each span 83k includes an optical fiber 84k and an optical amplifier 85k that optically amplifies the optical signal transmitted through the optical fiber 84k and transmits the optical signal toward the receiving side.
  • a coupler (CPL) 811 that branches the optical signal 822 transmitted through the transmission line 821 into two optical signals 803 and 804, receives the optical signal 804, detects chromatic dispersion, and sets the detected value.
  • a distributed monitor (CD MON) 812 that outputs a corresponding monitor signal 802.
  • the optical signal 803 is supplied to a receiver (RX) 850 that receives the optical signal, demodulates it, and outputs a data signal 851. Since the receiver 850 is generally used in an optical communication system or an optical communication network, a detailed configuration thereof will not be described here. Alternatively, the optical signal 803 may be transmitted via another transmission line.
  • the dispersion monitor 812 the dispersion monitor 200 shown in FIG. 3 or the dispersion monitor 400 shown in FIG. 5 can be used.
  • An operator or system that monitors the transmission path 821 can use the monitor signal 802 to operate, optimize, or monitor the transmission path.
  • the transmitter 810 having a variable transmission wavelength information on chromatic dispersion at each wavelength can be obtained.
  • FIG. 10 shows another example of the configuration of the optical transmission system that can detect the chromatic dispersion that may occur in the transmission path.
  • the optical transmission system shown in FIG. 10 is obtained by changing only the configuration on the reception side in the optical transmission system shown in FIG. 9, and the configurations of the transmission side and the transmission path 821 are the same as those shown in FIG.
  • a coupler (CPL) 911 that branches the optical signal 822 transmitted through the transmission path 821 into two optical signals 903 and 904, and a variable chromatic dispersion equalizer (VAR) that compensates for chromatic dispersion in the optical signal 904.
  • CD COMP CD COMP
  • CD MON dispersion monitor
  • the optical signal 903 may be supplied to the receiver as in the case of FIG. 9 or may be sent to another transmission line.
  • the dispersion monitor 912 the dispersion monitor 200 shown in FIG.
  • the dispersion monitor 912 controls the variable chromatic dispersion equalizer 913 so that the monitor signal 906 indicating chromatic dispersion is minimized.
  • the set value in the variable chromatic dispersion equalizer 913 is output to the outside as a signal 902 indicating the chromatic dispersion value.
  • An operator or system that monitors the transmission line 821 can use the signal 902 to operate, optimize, or monitor the transmission line.
  • FIG. 11 shows an example of the configuration of an optical transmission system that can detect chromatic dispersion that can occur in a transmission line and equalize the chromatic dispersion.
  • the optical transmission system shown in FIG. 11 is obtained by changing only the configuration on the reception side in the optical transmission system shown in FIG. 9, and the configurations of the transmission side and the transmission path 821 are the same as those shown in FIG.
  • the optical signal 822 that has equalized the transmission line 821 is first sent to a chromatic dispersion equalizer (VAR CD COMP) 1013.
  • the output optical signal 1023 from the chromatic dispersion equalizer 1013 is then input to a coupler (CPL) 1011 and branched into an optical signal 1003 and an optical signal 1004.
  • the optical signal 1003 may be supplied to the receiver in the same manner as shown in FIG. 9 or may be sent to another transmission line.
  • the optical signal 1004 is transmitted to a dispersion monitor (CD MON) 1012 that receives the optical signal 1004, detects chromatic dispersion, and outputs a monitor signal 1002 corresponding to the detected value.
  • CD MON dispersion monitor
  • the dispersion monitor 1012 As the dispersion monitor 1012, the dispersion monitor 200 shown in FIG. 3 or the dispersion monitor 400 shown in FIG. 5 can be used.
  • the dispersion monitor 1012 controls the chromatic dispersion equalizer 1013 so that the monitor signal 1006 indicating chromatic dispersion is minimized.
  • the optical signal 823 transmitted through the transmission line 821 the residual chromatic dispersion at the output of the chromatic dispersion equalizer 1013 becomes zero.
  • the influence of the relay wavelength dispersion by the transmission line 821 becomes zero.
  • FIGS. 12A to 12A are diagrams showing the waveform of a 55 Gbit / s pseudo RZ-QPSK signal as well as a 55 Gbit / second NRZ-QPSK signal.
  • the graph 1110 in FIG. 12A shows a 55 Gbps / NRZ-QPSK signal.
  • a graph 1120 in FIG. 12B shows a 55 Gbit / s pseudo RZ (4) -QPSK signal, where a dip 1121 is applied to the light intensity by pseudo RZ modulation every four symbols.
  • a graph 1130 in FIG. 12C shows a 55-Gigabit pseudo RZ (8) -QPSK signal.
  • a dip 1131 is applied by pseudo RZ modulation every 8 symbols.
  • the graph 1140 shows the waveform of the pseudo RZ (4,8) -QPSK signal at 110 gigabits / second.
  • a deeper dip 1141 appears at a place where the dip in the pseudo RZ (4) format and the dip in the pseudo RZ (8) format are synchronized.
  • the relatively shallow dip 1142 is a dip based only on the pseudo RZ (4) format.
  • a dip narrow in time width is applied to the light intensity in the signal every n symbols.
  • the application of such a dip is based on a format different from that of a normal RZ driven by a 1 / n clock of the symbol rate, and a frequency component lower than the symbol rate is added to the optical signal.
  • the signal quality does not deteriorate when such a dip is applied.
  • FIGS. 13A to 13C each show a graph showing the result of simulating the intensity spectrum for the NRZ-QPSK signal, the PRZ-QPSK signal, and the RZ-QPSK signal, each of which has a data rate of 56 gigabits / second. .
  • the vertical axis represents the spectral power density (SPD).
  • a graph 1201 in FIG. 13A represents a simulation result of an intensity spectrum of an electric signal obtained by directly receiving a 56 Gbit / s pseudo RZ (8) -QPSK signal.
  • pseudo RZ (8) modulation the frequency component of 1/8 of the symbol rate is strengthened. This frequency is a frequency of occurrence of dip due to pseudo RZ modulation.
  • the harmonic component of the dip frequency also appears with high intensity.
  • the graph 1202 of FIG. 13B shows the simulation result of the intensity spectrum for the NRZ-QPSK signal of 56 gigabits / second as a comparison.
  • the frequency component of the symbol rate appears strongly, but there is no place where the spectrum is particularly strong on the lower frequency side.
  • Graph 1203 in FIG. 13C shows similar simulation results for a 56 Gbit / s RZ-QPSK signal.
  • the frequency component of the symbol rate also appears strong here, but there is no place where the spectrum is particularly strong on the lower frequency side.
  • FIG. 14A to FIG. 14E all show graphs showing the results of simulating how the intensity of the frequency component applied in the pseudo RZ format changes according to chromatic dispersion.
  • the vertical axis indicates the signal value by the normalized peak-to-peak voltage (Vpp) of the clock.
  • the graph 1310 in FIG. 14A shows that a 56-Gigabit / second pseudo RZ (4) -QPSK signal is affected by chromatic dispersion during transmission, and such an optical signal is received by the dispersion monitor 200 shown in FIG.
  • distribution monitor 200 in the case is shown.
  • the monitor signal 202 is generated using the intensity of the frequency component of 1 ⁇ 4 of the symbol rate.
  • the monitor signal 202 is generated using the intensity of the frequency component of 1 ⁇ 4 of the symbol rate.
  • the monitor signal 202 shows a symmetric change around the zero dispersion point with respect to chromatic dispersion.
  • the signal represented by the graph 1310 is controlled so as to minimize the signal, it is possible to perform the chromatic dispersion control so that the residual chromatic dispersion becomes zero dispersion. Also, the absolute value of chromatic dispersion can be obtained from the value of the monitor signal. If the sign of chromatic dispersion is known, the actual value of the chromatic dispersion value can be obtained from the value of the monitor signal.
  • the graph 1320 in FIG. 14B shows the change due to the chromatic dispersion of the monitor signal 202 output from the dispersion monitor 200 regarding the pseudo RZ (4) -QPSK signal of 56 gigabits / second as in the case of the graph 1310.
  • the range of chromatic dispersion is different from the graph 1310.
  • a graph 1320 shows the change of the monitor signal in a wider range with positive chromatic dispersion.
  • the graph 1330 of FIG. 14C shows that the 56-gigabit / second pseudo RZ (8) -QPSK signal is affected by chromatic dispersion during transmission, and such an optical signal is received by the dispersion monitor 200 shown in FIG.
  • the change of the monitor signal 202 in the case is shown.
  • the monitor signal 202 is generated using the intensity of the frequency component of 1/8 of the symbol rate.
  • the change in the intensity of the monitor signal is the same as that shown in the graph 1320.
  • the graph 1330 shows only a region where the chromatic dispersion is positive, but the change in the monitor signal with respect to the chromatic dispersion has a symmetrical shape across the zero dispersion point.
  • the chromatic dispersion can be controlled in a wider range such as ⁇ 1000 ps / nm by using the monitor signal 202.
  • the graph 1340 in FIG. 14D shows that a 56 gigabit / second pseudo RZ (16) -QPSK signal was affected by chromatic dispersion during transmission, and such an optical signal was received by the dispersion monitor 200 shown in FIG.
  • the change of the monitor signal 202 in the case is shown.
  • the monitor signal 202 is generated using the intensity of the frequency component that is 1/16 of the symbol rate.
  • the change in the intensity of the monitor signal is the same as that shown in the graph 1320.
  • the graph 1330 shows only a region where the chromatic dispersion is positive, but the change in the monitor signal with respect to the chromatic dispersion has a symmetrical shape across the zero dispersion point.
  • the chromatic dispersion can be controlled in a wider range such as ⁇ 2000 ps / nm using the monitor signal 202.
  • n may be made larger than 16 by adding a dip to the optical signal every n symbols by pseudo RZ modulation.
  • the intensity of the dip frequency component when n is large may be used.
  • the graph 1350 in FIG. 14E shows that a 56 gigabit / second pseudo RZ (8) -QPSK signal was affected by chromatic dispersion during transmission, and such an optical signal was received by the dispersion monitor 400 shown in FIG.
  • the change of the monitor signal 402 in the case is shown.
  • the dip frequency is 1/8 of the symbol rate. Since the dispersion monitor 400 can generate a monitor signal based on a plurality of frequency components, the dip frequency component (ie, 1/8 of the symbol rate) and its second and fourth harmonics are used here for the generation of the monitor signal. Three types of components (a quarter of the symbol rate and a half of the symbol rate) are used.
  • a graph 1350 shows a change in intensity of the monitor signal for each of these frequency components.
  • a signal having a frequency component of 1/8 of the symbol rate is indicated by a curve 1351
  • a signal having a frequency component of 1/4 of the symbol rate is indicated by a curve 1352
  • a signal having a frequency component of 1/2 the symbol rate is indicated by a curve 1353. It is shown in In any signal, the shape of the change is the same as that in the graph 1320 described above, and changes in a symmetric shape with respect to the zero dispersion point.
  • the chromatic dispersion control range can be set wide.
  • the change rate of the monitor signal is small in the vicinity of zero dispersion, it is difficult to perform fine control in the vicinity of zero dispersion.
  • a large change rate in the vicinity of zero dispersion is a monitor signal generated using the fourth harmonic of the dip frequency, as indicated by a waveform 1353. Therefore, by selecting which frequency component to use when generating the monitor signal, it is possible to set an appropriate dynamic range for each control range, and it is possible to control chromatic dispersion with a wide range and high accuracy become.
  • Appendix 1 A method for monitoring chromatic dispersion when transmitting an optical signal, An optical signal with a symbol rate of f is set to an integer of 2 or more, and a dip is applied to the light intensity every n symbols by pseudo RZ modulation, and the optical signal with the dip applied is sent to the transmission line.
  • Receiving the optical signal transmitted through the transmission path detecting k as an integer equal to or greater than 1, and detecting the intensity of a frequency component of k ⁇ f / n from the received signal; Generating a monitor signal representing the amount of chromatic dispersion based on the detected intensity; Having a method.
  • the received signal obtained by receiving the optical signal from the transmission path is converted into a digital signal, and the digital signal processing is performed on the digital signal to obtain the intensity of the frequency component of k ⁇ f / n.
  • a method of equalizing chromatic dispersion when transmitting an optical signal An optical signal with a symbol rate of f is set to an integer of 2 or more, and a dip is applied to the light intensity every n symbols by pseudo RZ modulation, and the optical signal with the dip applied is sent to the transmission line.
  • Receiving the optical signal transmitted through the transmission path detecting k as an integer equal to or greater than 1, and detecting the intensity of a frequency component of k ⁇ f / n from the received signal; Generating a monitor signal representing the amount of chromatic dispersion based on the detected intensity; Controlling an equalizer for equalizing the optical signal such that the value represented by the monitor signal is minimized; Having a method.
  • Appendix 6 Applying the dip to each of a plurality of optical signals having different wavelengths, Wavelength-multiplexing the plurality of optical signals to which the dip is applied, and sending them to the transmission line; The received optical signal is wavelength-separated to generate the monitor signal for each wavelength, and the optical signal is equalized for each wavelength.
  • Appendix 7 Applying the dip to each of a plurality of optical signals having different wavelengths, Wavelength-multiplexing the plurality of optical signals to which the dip is applied, and sending them to the transmission line; Generating the monitor signal for each wavelength; Equalize the optical signal received from the transmission path before performing the wavelength separation so that the value represented by the monitor signal for each wavelength is minimized by wavelength-separating the received optical signal; The method according to appendix 5.
  • Appendix 8 Applying a dip at different repetition frequencies to each of a plurality of optical signals having different polarization states, Polarizing multiplexing the plurality of optical signals to which the dip is applied and sending them to the transmission line, Generating the monitor signal for each different repetition frequency; The method according to appendix 5.
  • the received signal obtained by receiving the optical signal from the transmission path is converted into a digital signal, and the digital signal processing is performed on the digital signal to obtain the intensity of the frequency component of k ⁇ f / n.
  • a lookup table representing the relationship between the amount of chromatic dispersion and the intensity of the frequency component of k ⁇ f / n is prepared in advance, and by searching the lookup table based on the detected intensity, 14.
  • An apparatus for monitoring chromatic dispersion when transmitting an optical signal Transmission for an optical signal having a symbol rate of f, where n is an integer of 2 or more, and a dip is applied to the light intensity every n symbols by pseudo RZ modulation, and the optical signal to which the dip has been applied is sent to the transmission line Machine, The optical signal transmitted through the transmission path is received, k is an integer of 1 or more, the intensity of the frequency component of k ⁇ f / n is detected from the received signal, and the wavelength is determined based on the detected intensity.
  • a dispersion monitor that generates a monitor signal representing the amount of dispersion; Having a device.
  • the transmitter includes a modulator that modulates an optical carrier with a signal indicating data to be transmitted, and a pseudo RZ carver that applies the dip to the modulated optical signal.
  • a modulator that modulates an optical carrier with a signal indicating data to be transmitted
  • a pseudo RZ carver that applies the dip to the modulated optical signal.
  • the dispersion monitor is based on a light receiving element that receives the optical signal from the transmission path, a band-pass filter that detects the intensity of the frequency component of k ⁇ f / n, and the detected intensity.
  • the dispersion monitor converts a received signal obtained by receiving the optical signal from the transmission path into a digital signal, performs digital signal processing on the digital signal, and performs the k ⁇ f / n
  • An apparatus for equalizing chromatic dispersion when transmitting an optical signal Transmission for an optical signal with a symbol rate of f, where n is an integer equal to or greater than 2, and a dip is applied to the light intensity every n symbols by pseudo RZ modulation, and the optical signal with the dip applied is sent to the transmission line Machine, The optical signal transmitted through the transmission path is received, k is an integer of 1 or more, the intensity of the frequency component of k ⁇ f / n is detected from the received signal, and the wavelength is determined based on the detected intensity.
  • a dispersion monitor that generates a monitor signal representing the amount of dispersion;
  • a chromatic dispersion equalizer for equalizing an optical signal received from the transmission line so that a value represented by the monitor signal is minimized; Having a device.
  • the transmitter includes a modulator that modulates an optical carrier with a signal indicating data to be transmitted, and a pseudo RZ carver that applies the dip to the modulated optical signal.
  • a modulator that modulates an optical carrier with a signal indicating data to be transmitted
  • a pseudo RZ carver that applies the dip to the modulated optical signal.
  • the dispersion monitor is based on a light receiving element that receives the optical signal from the transmission path, a band-pass filter that detects the intensity of the frequency component of k ⁇ f / n, and the detected intensity.
  • the dispersion monitor includes an analog / digital converter that converts a received signal obtained by receiving the optical signal from the transmission path into a digital signal, and performs digital signal processing on the digital signal to perform the digital signal processing.
  • the dispersion monitor includes a lookup table that represents a relationship between the amount of chromatic dispersion and the intensity of the frequency component of k ⁇ f / n, and searches the lookup table based on the detected intensity.
  • the monitor signal is generated by:
  • a transmitter for sending an optical signal to a transmission line A modulator that modulates an optical carrier with a signal indicative of data to be transmitted; a pseudo RZ carver that applies a dip to the light intensity every n symbols by pseudo RZ modulation on the modulated optical signal, where n is an integer of 2 or more; Having transmitter.
  • a dispersion monitor for monitoring chromatic dispersion in an optical signal received through a transmission line A dip in light intensity is applied to the optical signal by pseudo RZ modulation every n symbols, A light receiving element that receives the optical signal and converts it into a received signal; A band-pass filter that detects the intensity of a frequency component of k ⁇ f / n, where k is an integer equal to or greater than 1, A monitor circuit that generates a monitor signal representing the amount of chromatic dispersion based on the detected intensity; A distributed monitor.
  • a dispersion monitor for monitoring chromatic dispersion in an optical signal received through a transmission line A dip in light intensity is applied to the optical signal by pseudo RZ modulation every n symbols, A light receiving element that receives the optical signal and converts it into a received signal; An analog / digital converter for converting the received signal into a digital signal; A digital signal processing unit that performs digital signal processing on the digital signal to detect the intensity of the frequency component of k ⁇ f / n, and generates a monitor signal representing a chromatic dispersion amount based on the detected intensity; , A distributed monitor.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

 光信号を伝送する際に波長分散をモニタする方法は、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、伝送路を伝送してきた光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、を有する。

Description

波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置
 本発明は、光通信における波長分散の測定と補償とに関し、特に、光ファイバ通信システムでデータ伝送を行いながら同時に波長分散を測定するいわゆるインサービス(in-service)での波長分散測定と、その波長分散測定結果を利用した分散補償とに関する。
 光ファイバを用いて信号を伝送する光ファイバ通信システムでのデータ伝送速度はさらに向上しつつある。光ファイバ通信システムにおいては、伝送路である光ファイバはその特性として波長分散を有しており、その波長分散によって光信号に生じる波形歪が、伝送速度や伝送距離を制限する要因となっている。したがって、伝送路である光ファイバでの波長分散を精度よく測定し、その測定結果に応じ、波長分散を実質的に零とするように調整を行う技術が必要となる。波長分散を実質的に零にする調整技術は、例えば、等化あるいは分散補償として知られるものである。以下の説明においては、波長分散のことを単に「分散」とよぶこともある。
 一般に光ファイバ通信システムでは伝送路の両端が離れた場所にあり、また、光ファイバの分散は温度や外圧に応じて変化するため、分散の測定および調整は、遠端すなわち光信号の受信端において、システム運用中に行われる必要がある。
 これらの要求を満たす第1の関連技術として、遠端での測定法としてPM-AM変換法を用い、システム運用中に伝送路の分散を検出するために、信号伝送と異なる波長のモニタ光を用いるものがある。PM-AM変換法は、位相変調されたモニタ光を送信すると、分散の影響によって、位相変調(PM)されたモニタ光が振幅変調(AM)に変換されるという原理を利用するものである。第1の関連技術は、例えば、桑原 昭一郎ほか,“PM-AM変換効果を用いた分散変動検出による適応分散等化方式の検討”,1998年電子情報通信学会通信ソサイエティ大会予稿集,p.417,電子情報通信学会、1998年(非特許文献1)に示されている。ここでは、桑原らの文献に基づいて、第1の関連技術を説明する。
 図1は、桑原らによって示されたシステムを示している。このシステムの送信端においては、ビットレートの大きなデータ信号を印加した光送信機(TX)1400からの信号光とモニタ光とを光カプラ(CPL)1412が合波され、合波された光が光ファイバなどの伝送路1404に送出される。モニタ光を発生するために、信号光とは異なる波長のレーザ光源1401と正弦波発振器(SINE GEN)1402と位相変調器(PHASE MOD)1403が設けられている。位相変調器1403において、レーザ光源1401からの光を正弦波発振器1402からの正弦波信号によって位相変調することにより、モニタ光が生成される。
 伝送路1404では、信号光と信号光とは異なる波長のモニタ光とが伝搬する。伝送路1404を伝搬したこれら2つの光は、受信端において波長分波器(CPL)1405に入射する。波長分波器1405は、受信した光を信号光とモニタ光とに分波する。このうち信号光は光受信機(RX)1406に入射し、これによって信号光からデータ信号が再生される。一方、モニタ光は、分散補償器(CD COMP)1407を伝搬した後、光検出器(PD)1408に入射する。光検出器1408はモニタ光の自乗検波を行うので、光検出器1408の出力は、モニタ光における振幅変調成分に比例することになる。光検出器1408の出力には、平均値測定回路(AVG)1411及び帯域通過フィルタ(バンド・パス・フィルタ;BPF)1410が設けられており、これらにより、光検出器1408での検出信号の平均レベルと、送信側で位相変調に用いた正弦波信号の周波数成分の強度とが求められる。制御回路1409は、検出信号の平均レベルと正弦波信号の周波数成分の強度との比から、伝送路1404における分散の値を求め、送信側にフィードバックされることとなる制御信号を発生する。
 このシステムでは、その運用前に、信号光の波長での分散が零となるように公知の手法によって調整が行われる。このとき、分散の波長依存性により、信号光の波長とは異なるモニタ光波長での分散は一般には零とはならない。そこで、モニタ光波長での分散も零とするために、信号光から分離されたモニタ光に関し、分散補償器1407における補償量を調節する。
 運用前にこのように信号光とモニタ光とに関してそれぞれ分散が零となるように調整を行ったとして、運用時に、伝送路1404の分散が零からずれると、位相変調されているモニタ信号が分散によって強度変調に変換されるので、受信側の光検出器1408の自乗検波出力に、位相変調に用いた正弦波信号の周波数成分が現れる。そこで制御回路1409は、検出信号の平均レベルと正弦波信号の周波数成分の強度との比に基いて、モニタ光に関して分散が零からずれたかどうかを判断する。分散が零からずれたことを検出すると、制御回路1409は、送信側に制御信号を送信することによって、モニタ光に関して光検出器1408で検出される分散が零となるように、モニタ光の波長を変化させる制御を開始する。
 モニタ光の波長を変化させて光検出器1408での検出信号の中の正弦波信号周波数成分が零となると、そこでモニタ光における伝送路分散が零となるので、ここでモニタ光の波長制御を停止する。次に、このときのモニタ光の波長をずらした量だけ、信号光の波長をずらす。これにより、信号光に関しても分散を再び零にすることができる。このようにして、第1の関連技術によれば、モニタ光の分散が零からずれたことを検出することにより、信号光波長の分散を零とするように制御することが可能になる。
 また、本発明に関する第2の関連技術として、特開2000-346748号公報(特許文献1)には、異なる2つの波長を用いて波長多重によりデータ信号を伝送する際に、多重後の光信号に対して分散測定用の信号を重畳させ、受信端で、その測定用の信号を検出することにより、分散値を監視することが開示されている。この第2の関連技術では、データ伝送に用いるインサービス信号として強度変調信号を用いてこの強度変調信号を波長多重している。そして分散検出用信号として、擬似ランダム符号で位相変調された正弦波信号を用いており、波長多重後の光信号に対し、分散検出信号で駆動される微小な強度変調を印加することによって、信号の重畳を行っている。波長分散がある場合には、信号伝送に用いる2つの波長の間で分散検出用信号の受信側への到着時刻が異なることになるので、受信側において2つの波長のそれぞれで分散検出用信号を復調し、復調された符号における時間差を検出することにより、分散を検出することができる。またこの技術は、擬似ランダム符号を用いているので、分散検出用の信号の重畳レベルを大きくできない場合においても、検出精度が低下しない、という利点を有する。
 本発明の第3の関連技術として、特開2003-134047号公報(特許文献2)には、波長多重を行う光伝送システムにおいて、各波長チャネルのデータ信号が有するフレームを常時あるいは短い繰り返し時間で検出し、波長チャネルごとのフレーム位相を相対的に比較することによって、伝送路の伝送遅延の波長依存性を測定し、波長分散を求めることが示されている。
特開2000-346748号公報 特開2003-134047号公報 WO2007/004338 特開2006-345541号公報
桑原 昭一郎ほか,"PM-AM変換効果を用いた分散変動検出による適応分散等化方式の検討",1998年電子情報通信学会通信ソサイエティ大会予稿集,p.417,電子情報通信学会、1998年 E. Le Taillandier de Gabory, et al., "Pseudo-Return-to-Zero Modulation Scheme: Application to Compensation of Intra-Polarization Skew for PolMux Signals," ECOC 2009, paper 3.4.4 (2009) S. Sohma, et al., "40λ WDM Channel-by-Channel and Flexible Dispersion Compensation at 40 Gb/s Using Multi-channel and Flexible Dispersion Compensation at 40 Gb/s Using Multi-channel Tunable Optical Dispersion Compensator," ECOC 2009, paper 3.3.1 (2009)
 しかしながら、上述した関連技術のうち第1の関連技術では、分散測定に用いるモニタ光のために特定の波長領域を用いており、また、測定精度を上げるためには、モニタ光の光強度が比較的大きなことが必要である。その結果、モニタ光用の波長領域を信号光伝送に使用することができなくなり、伝送路全体として見たときに伝送帯域が減少するという問題が生じる。
 また第2の関連技術では、分散検出用の信号が強度変調によりデータ伝送に対して無条件で重畳されてしまうため、分散検出用の信号の重畳による主信号成分への劣化を避けることが難しい。主信号成分とは、データ伝送に用いられる信号成分のことである。また、分散の測定精度を上げるためには、分散検出用の信号として高周波を用いる必要があるが、その一方で、分散の検出範囲を広げる場合には低周波の信号を用いる必要があり、第2の関連技術を用いる場合には、広範囲かつ精度の高い測定が困難である。
 第3の関連技術では、波長多重が行われていることを前提とするものであるので、波長多重が行われない光伝送システムには適用することができないという課題がある。また、波長多重システムであっても、送信側において波長チャネルごとのデータ信号のフレーム位相が厳密に揃っていないシステムにおいては、分散を測定することができない。
 本発明の例示的な目的は、光伝送路において起こり得る広範囲の波長分散を検出することができる方法と装置とを提供し、これにより、波長分散を制御するための方法と装置を提供することにある。本発明の他の目的は、実際のデータ伝送を行いつつ波長分散を検出して制御できる方法と装置を提供することにある。
 本発明の例示的な態様によれば、波長分散をモニタする方法は、光信号を伝送する際に波長分散をモニタする方法であって、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、伝送路を伝送してきた光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、を有する。
 本発明の別の例示的な態様によれば、波長分散を等化する方法は、光信号を伝送する際に波長分散を等化する方法であって、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、伝送路を伝送してきた光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、モニタ信号によって表される値が最小となるように、光信号を等化する等化器を制御することと、を有する。
 本発明のさらに別の例示的な態様によれば、波長分散をモニタする装置は、光信号を伝送する際に波長分散をモニタする装置であって、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、伝送路を伝送してきた光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、を有する。
 本発明のまたさらに別の例示的な態様によれば、波長分散を等化する装置は、光信号を伝送する際に波長分散を等化する装置であって、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、伝送路を伝送してきた光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、モニタ信号が表す値が最小となるように、伝送路から受信される光信号を等化する波長分散等化器と、を有する。
 本発明では、受信側において波長分散を検出できるようにするために、例えば、送信側において、シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調あるいは擬似RZフォーマットにより、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する。通常のRZ変調を行う場合に比べ、擬似RZ変調では、ディップにおいて光信号の強度が極小となっている時間の長さが極めて短いので、このようなディップを光信号に加えたとしても、データ伝送の観点からは光信号の品質は維持される。したがって、現にデータ伝送を行いながら、しかもそのデータ伝送に用いている波長を用いて、受信側において波長分散の検出が可能となり、この検出結果に基づいて、残留波長分散がゼロになるように光信号の等化を行うことが可能になる。このような方法によれば、波長分散の検出のために、データ伝送用の帯域幅が狭くなることはない。
PM-AM変換法により波長分散が測定される光伝送システムの構成例を示すブロック図である。 本発明の第1の例示実施形態における送信機の構成を示すブロック図である。 本発明の第1の例示実施形態における分散モニタの構成を示すブロック図である。 本発明の第2の例示実施形態における送信機の構成を示すブロック図である。 本発明の第2の例示実施形態における分散モニタの構成を示すブロック図である。 本発明の第3の例示実施形態における、波長チャネルごとに自動波長分散等化を行うようにした光送受信システムの構成の一例を示すブロック図である。 本発明の第4の例示実施形態における、複数の波長チャネルに対して一括して自動波長分散等化を行うようにした光送受信システムの構成の一例を示すブロック図である。 本発明の第5の例示実施形態における、自動波長分散等化機能を備えるトランスポンダの構成の一例を示すブロック図である。 波長分散を検出できる光伝送システムの構成の一例を示すブロック図である。 波長分散を検出できる光伝送システムの構成の別の例を示すブロック図である。 波長分散を検出して等化することができる光伝送システムの構成の一例を示すブロック図である。 55ギガビット/秒(Gb/s)のNRZ-QPSK信号を示す波形図である。 55ギガビット/秒の擬似RZ-QPSK信号の波形を示す波形図である。 55ギガビット/秒の擬似RZ-QPSK信号の波形を示す波形図である。 110ギガビット/秒の擬似RZ-QPSK信号の波形を示す波形図である。 56ギガビット/秒のデータレートであるNRZ-QPSK信号の強度スペクトルをシミュレーションした結果を示すグラフである。 56ギガビット/秒のデータレートであるPRZ-QPSK信号の強度スペクトルをシミュレーションした結果を示すグラフである。 56ギガビット/秒のデータレートであるRZ-QPSK信号の強度スペクトルをシミュレーションした結果を示すグラフである。 擬似RZ変調で印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフである。 擬似RZ変調で印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフである。 擬似RZ変調で印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフである。 擬似RZ変調で印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフである。 擬似RZ変調で印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフである。
 図2及び図3は本発明の第1の例示実施形態に基づく光伝送システムを説明するものであり、図2は、この光伝送システムにおいて用いられる送信機100の構成を示し、図3は、送信機100と対をなして用いることができる分散モニタ(CD MON)200の構成を示している。
 図2及び図3に示される光伝送システムは、光ファイバなどからなる伝送路を介して、送信機100から受信端に対して光データ伝送を行うものであり、光データ伝送を行っている際に伝送路での波長分散を受信端で検出できるようにしたものである。受信端には、光信号の復調などを行ってデータ信号を生成する受信機と、受信した光信号における波長分散の程度をモニタする分散モニタ200とが設けられる。
 図2に示すように、送信機100は、単一偏波擬似RZ(return-to-zero)信号を伝送路に送出するものであり、光キャリア150の光源であるレーザ110と、光キャリア150に対して変調を行う変調器(MOD)111と、変調後の光信号151に対し、光パルス・カービング(pulse carving)を行ってその光信号でのnシンボルごとにディップを印加する擬似RZカーバー(carver)(PRZ(n))112と、伝送されるべきデータを示す電気信号すなわちデータ信号101を符号化して変調用のデジタルデータ160を生成する符号化器(コーダー(coder))120と、デジタルデータ160に基づいて変調器111を駆動するドライバ121と、を備えている。nは、2以上の任意の整数であり、例えば、4、8あるいは16である。ドライバ121は、デジタルデータ信号160を適切な電圧の信号161に変換して変調器111の変調入力に供給することにより、変調器111を駆動する。これにより変調器111は、電圧信号161に基づいて、光キャリア150を変調する。
 この送信機100の構成では、符号化器120から、信号のシンボルレート(すなわちボーレート)と同じ周波数fのクロック信号170が擬似RZカーバー112に与えられており、このクロック信号170を用いることによって、擬似RZカーバー112は、変調後の光信号151に対し、nシンボルごとにディップを印加する。ディップは、ごく短時間の間、光信号151の強度を極小にする、例えば光信号の強度をゼロにするものである。擬似RZカーバーは、例えばE. Le Taillandier de Gabory, et al., "Pseudo-Return-to-Zero Modulation Scheme: Application to Compensation of Intra-Polarization Skew for PolMux Signals," ECOC 2009, paper 3.4.4 (2009)(非特許文献1)に説明されているように、クロック信号fをn分周する分周器と、分周器の出力をD入力としクロック信号fをクロック入力とするD型フリップフロップと、D型フリップフロップの出力によって光信号を位相変調する位相変調器(PSK)と、によって構成することができる。
 パルス・カービングの技術によってnシンボルごとにディップを加えることにより、そのディップの位置において光出力を極小となるので、これは、光信号におけるゼロ復帰(return-to-zero)とみなすことができる。一般的なRZ信号では、1シンボルの継続時間の半分の長さにわたって、信号の強度または極性をデータ値“0”に対応する強度または極性とするが、本例示実施形態では、1シンボルの継続時間に比べて十分に時間長の短いディップを加えることとしている。このため、パルスカービング技術を用いこのような幅の狭いディップを光信号に印加することをここでは擬似RZ変調と呼んでいる。なお、WO2007/004338(特許文献3)には、擬似RZ変調を用いることにより、光信号からクロック信号を容易に抽出できるようにした技術が示されている。同様に、特開2006-345541号公報(特許文献4)には、NRZ(非ゼロ復帰;non-return-to-zero)変調の光信号を擬似RZ変調の光信号に変換することによって、クロック信号を容易に抽出できるようにした技術が示されている。
 送信機100からは、電気信号であるデータ信号101により変調器111によって変調され、擬似RZカーバー112によりnシンボルごとに擬似RZ変調によるディップが印加された光信号102が出力され、この光信号が伝送路を介して受信端に送られる。
 図2に示すものにおいて、送信機100は、例えば、55ギガビット/秒(Gb/s)のPRZ(8)-QPSK(直交位相変調(quadrature phase shift keying))送信機である。ここで「PRZ(8)」は、擬似RZ(Pseudo-RZ)方式により、8シンボルごとにディップが印加されていることを示している。以下、データ信号101のビットレートが55GHzであるとして、送信機100の具体的な構成例を説明する。
 データ信号101がパラレル信号であるとして、電圧信号161は、それぞれ、I(同相:(in-phase)成分とQ(直交:quadrature)成分に対応する27.5GHzの電気信号であり、I成分及びQ成分が並列に変調器111に供給されることになる。変調器111はQPSK変調器であり、QPSKでは2ビットで1シンボルが構成されるので、符号化器120から擬似RZカーバー112に供給されるクロック信号の周波数も27.5GHzとなる。擬似RZカーバー112は、8シンボルごとに信号の強度にディップを印加する。すなわちこの例では、n=8である。
 変調器111から出力された直後の、QPSK変調された光信号151の強度波形が、図12Aのグラフ1110に示されている。この段階では、光信号151はNRZの形態の信号である。各シンボルの継続時間が36.36psであることが示されている。これに対し、擬似RZカーバー112からの光信号は、図12Cにおいてグラフ1130により示されている。擬似RZによるディップは、グラフ1130において符号1131で示されている。グラフ1130におけるディップ間の間隔の290.91psは、8シンボル分の継続時間に相当する。
 ここで述べる例では、光信号102は、55ギガビット/秒のPRZ(8)-QPSK信号である。55ギガビット/秒のことは、グラフでは、“55G”と表記されている。このような光信号の強度スペクトルについてシミュレーションを行った結果が、図13Aのグラフ1201に示されている。シンボルレートのクロック成分により、28GHz付近に強度ピークが見られ、28GHz付近の周波数成分は、周りの周波数領域に比べ、30dB以上強勢である。また、擬似RZにより8シンボルごとにディップを加えたことによって、シンボルレートの8分の1の周波数すなわち3.44GHzと、そのハーモニック(高調波)周波数とにおいても強度ピークが見られる。これらの強度ピークは、周りの周波数成分より20dB以上強勢である。
 これに対し、56ギガビット/秒のNRZ-QPSK信号の強度スペクトルについてシミュレーションを行った結果が図13Bのグラフ1202である。ここでは、シンボルレートに対応する28GHz付近のピークは観察されるが、それより低い周波数領域にはピークが存在しないので、28GHzより低い周波数成分をこの信号から直接取り出して検出することは難しい。
 また、通常のRZフォーマットによる56ギガビット/秒のRZ-QPSK信号の強度スぺクトルについてのシミュレーション結果が図13Cのグラフ1203に示されている。ここでも28GHz付近のピークは観察されるが、それより低い周波数領域にはピークが存在しないので、28GHzより低い周波数成分をこの信号から直接取り出して検出することは難しい。また、28GHz付近にはピークが存在するものの、このピークの近傍の周波数領域では、他の周波数領域に比べて強度が小さくなっている。
 次に、受信端に設けられる分散モニタ200について説明する。分散モニタ200は、入射した光信号から、擬似RZ変調により印加された周波数成分を検出して、波長分散値を表す電気信号202を生成するものである。
 図3に示すように、分散モニタ200は、入力した光信号201を受光して電気信号250に変換するフォトダイオード(PD)210と、フォトダイオード210からの出力される電気信号250を2つの信号251,261に分岐させる分岐器(DIV)211と、信号251を入力とする帯域通過フィルタ(BPF)215と、信号261と帯域通過フィルタ215の出力信号255とに基づいて波長分散値を算出するモニタ回路230と、を備えている。受光素子であるフォトダイオード210に入射する光信号201は、送信側での擬似RZ変調によりディップを印加された光信号である。フォトダイオード210は、光信号201の強度を表す電気信号250を出力し、この電気信号250は、分岐器211を経て信号261としてモニタ回路230に与えられるとともに、信号251として帯域通過フィルタ215に供給される。分岐器211における2信号251,261間の分岐比率は、一定値に固定されている。フォトダイオードの代わりに他種類の受光素子を用いることもできる。
 帯域通過フィルタ215は、kを1以上の自然数とし、fを送信機100でのクロック信号170の周波数すなわち光信号201におけるシンボルレートとして、信号251から、周波数がk×f/nで表される周波数成分を取り出し、その取り出した周波数成分の強度を表す信号255を生成する。ここでnは、送信機100において擬似RZによりnシンボルごとにディップを挿入していることに対応している。光信号201の強度スペクトルには、上述したように、シンボルレートfの1/nの周波数をディップ周波数と呼ぶことにすると、ディップ周波数とその高調波周波数においてピークがあるから、帯域通過フィルタ215は、光信号201における、ディップ周波数(k=1の場合)またはそのk次の高調波成分(k>1の場合)を取り出すことになる。
 ところで、波長分散量が変化すると、光信号201の全体に対するディップ周波数成分の強度比が変化する。この強度比の波長分散量に対する変化は、例えば、シミュレーションによって算出することができる。逆に言えば、光信号201を受光して発生した電気信号250の全体の強度に対するディップ周波数成分(あるいはそのハーモニック成分)の強度の比を求めることができれば、波長分散量を決定できることになる。
 そこでモニタ回路230は、光信号201における全帯域に相当する信号261の強度に対する、ディップ周波数成分に対応する信号255の強度の比を求め、その比の値に基づいて、光信号201の伝送における波長分散値を算出する。実際には、シミュレーション結果に基づくルックアップテーブルを使用して、計算された強度比に基づいて波長分散値を決定するようにすればよい。ルックアップテーブルは、モニタ回路230に内蔵された、不揮発性半導体メモリなどの記憶媒体内に格納される。もちろん、信号261の強度が常に一定値であることがわかっているならば、言いかえれば光信号201の強度が常に一定であることがわかっているならば、信号261を用いずに、信号255だけから波長分散値を算出することもできる。なお、光信号201の平均パワーが一定でないような場合には、モニタ回路230は、信号261を使用して光信号201の平均パワーを計算し、その平均パワーに基づいて波長分散値を算出する。
 例えば、光信号201が、56ギガビット/秒のPRZ(4)-QPSK信号であるとすれば、n=4であって、シンボルレートfは28GHzとなる。ここでk=1の場合、すなわちディップ周波数の基本波成分を帯域通過フィルタ215が抽出するとすると、分散モニタ200は、シンボルレートの1/4の周波数の成分により、分散値を求めてその分散値を表す信号202を出力する。図14Aのグラフ1310は、波長分散CDの値に対して、ディップ周波数成分の強度比がどのように変化するかを求めたシミュレーション結果を示している。
 波長分散が-400~0ps/nmの範囲において強度比は単調に変化し、また、0~+400ps/nmの範囲でも単調に変化する。したがって、波長分散の絶対値は分からなくても符号なら分かっている場合であれば、モニタ回路230は、±400ps/nmという広範囲で波長分散をモニタすることができる。また、波長分散を意図的に正方向あるいは負方向に変化させてそのときに信号202がどのように変化するかを見れば、波長分散の符号を知ることができるから、結局、モニタ回路230を用いて波長分散の実際の値を求めることができるようになる。
 次に、本発明の第2の例示実施形態を説明する。上述した第1の例示実施形態は、単一偏波の光信号を伝送する場合に関するものであるが、第2の例示実施形態では、偏波多重を用いて光信号を伝送する場合を説明する。図4は、第2の例示実施形態において用いられる送信機であって、偏波多重擬似RZ光信号を出力する送信機の構成を示し、図5は、第2の例示実施形態において用いられる分散モニタであって、偏波多重擬似RZ光信号を受光し、擬似RZフォーマットで印加された複数の周波数成分を検出して、波長分散値を表す信号を生成する分散モニタの構成を示している。
 まず、図4を用いて、第2の例示実施形態における送信機300の構成を説明する。
 送信機300は、擬似RZ変調されてディップが付加されたの偏波多重信号を出力するものである。送信機300は、発信する光キャリア350の光源であるレーザ310と、偏波を保存しながら光キャリア350を分岐する偏波保存カプラ(PM CPL)313と、偏波保存カプラ313からの一方の分岐に設けられた変調器(MOD)311と、変調器311によって変調された光信号351に対してディップを印加する擬似RZカーバー(PRZ(n))312と、偏波保存カプラ313からの他方の分岐に設けられた変調器(MOD)316と、変調器316によって変調された光信号356に対してディップを印加する擬似RZカーバー317と、擬似RZカーバー317から出力される信号光357の偏波面を回転させる偏光回転子(Pol Rot)315と、擬似RZカーバー312からの光信号352と偏光回転子315からの光信号355とを、偏波を保ったまま合成する偏波合成器(Pol CMB)316と、を備えている。さらにこの送信機300は、変調のために、符号化器320とドライバ321,322を備えている。
 この構成では、偏波保存カプラ313が光キャリア350を2分岐して、同じ偏波状態である2つの光キャリア353,354を生成する。符号化器320は、伝送されるべきデータを示す電気信号すなわちデータ信号301から、各偏波のための変調用のデジタルデータ360,362を生成し、ドライバ321,322は、デジタルデータ360,362をそれぞれ適切な電圧の電圧信号361,363に変換する。変調器311,316は、それぞれ、電圧信号361,363に基づいて光キャリア353,354を変調して光信号351,356として出力する。符号化器320は、シンボルレートと同じ周波数のクロック信号370,371をぞれぞれ擬似RZカーバー312,317に供給する。
 n,mをいずれも2以上の相互に異なる整数であるとして、擬似RZカーバー312は、擬似RZ変調により、光信号351に対してnシンボルごとにディップを印加し、擬似RZカーバー317は、光信号356に対してmシンボルごとにディップを印加する。
 偏波回転子315は、擬似RZカーバー317からの光信号357の偏波が擬似RZカーバー312からの光信号352の偏波と直交するように、光信号357の偏波を回転させて光信号355として出力する制御を行う。その結果、光信号352と光信号355とは相互に直交偏波状態にあり、これらは、偏波合成器316により偏波多重されて光信号302として出力される。したがって、送信機300が出力する光信号302は、データ信号301により変調器311,316によって変調され、擬似RZカーバー312,317により各偏波にそれぞれn、mシンボルごとに擬似RZのディップが印加され、偏波多重された信号である。
 図4に示すものにおいて、送信機300は、110ギガビット/秒のPRZ(4,8)-QPSK送信機である。以下、データ信号301のデータレートが110GHzであり、n=8、m=4であるとして、送信機300の具体的な構成例を説明する。
 データ信号301がパラレル信号であるとして、電気信号361は、一方の偏波に対応したI成分信号とQ成分信号からなる27.5GHzの電気信号であり、同様に電気信号363は、他方の偏波に対応したI成分信号とQ成分信号からなる27.5GHzの電気信号である。変調器311,316は、いずれもI成分信号とQ成分信号とを入力とするQPSK変調器である。符号化器320から擬似RZカーバー312,317に対し、いずれも周波数が27.5GHzであるクロック信号370,371が供給されている。
 擬似RZカーバー312は、8シンボルごとに、光信号351の強度にディップを印加し、擬似RZカーバー317は、4シンボルごとに、光信号356の強度にディップを印加する。変調器311,316によりQPSK変調された光信号351,356の強度波形は、上述の図12Aのグラフ1110に示したものである。また、擬似RZカーバー312からの光信号352の強度波形は図12Cのグラフ1130に示されており、ここでのディップは、符号1121で示されている。擬似RZカーバー317からの光信号355の強度波形は図12Bのグラフ1120に示されており、ここでのディップは符号1121で示されている。
 図12Bのグラフ1120と図12Cのグラフ1130にそれぞれ強度波形が示されている2つの光信号351,356を偏波多重して偏波多重信号302を生成することにより、偏波多重信号302の強度波形は、図12Dのグラフ1140に示すようになる。グラフ1140において、符号1141は、4シンボルごとのディップ(PRZ(4))と8シンボルごとのディップ(PRZ(8))が重なった結果の深いディップを示し、符号1142は、4シンボルごとのディップを示している。
 次に、図5を用いて、第2の例示実施形態における分散モニタの構成を説明する。
 分散モニタ(CD MON)400は、入射する光信号401から、擬似RZ変調によって印加された複数の周波数成分を検出して、波長分散値を表す電気信号402を生成するものである。光信号401は、擬似RZフォーマットに基づくディップが付加された信号であり、例えば、図4に示した送信機300によって生成され、光ファイバなどの伝送路を伝送してきた光信号である。もっとも、複数の周波数成分によるディップが擬似RZにより印加された信号であれば、光信号401は、図4に示すもの以外の送信機によって生成されたものであってもよい。
 分散モニタ400は、kを2以上の整数として、光信号401が入射してこの光信号を電気信号に変換するフォトダイオード410と、k+1個の分岐器420~42kと、k個の帯域通過フィルタ451~45kと、分散測定値を表す電気信号を実際に生成するモニタ回路411とを備えている。kは、光信号401が何種類の周波数成分によってディップを印加されているかを示している。帯域通過フィルタ451~45kは、それぞれ、相互に異なる周波数f1~fkの成分を抽出するものである。以下、周波数f1~fkの成分を、それぞれ、f1周波数成分~fk周波数成分と呼ぶことにする。
 光信号401を受信して受光素子であるフォトダイオード410が光信号401の強度を表す電気信号403を発生すると、この電気信号403は、初段の分岐器(DIV)420に入力し、信号430と信号431とに分岐される。信号430は、モニタ回路411に直接与えられる。これに対し信号431は、次の分岐器(DIV1)421に入力し、信号441と信号432とに分岐される。
 信号441は、帯域通過フィルタ451に供給され、帯域通過フィルタ451は、信号441からf1周波数成分を取り出し、その成分の強度を表す信号461を生成する。周波数f1は、信号401において擬似RZにより印加されているディップの周波数である。一方、信号432は、次の分岐器(DIV2)422に入力し、信号442と信号433とに分岐される。このうち信号442は帯域通過フィルタ452に供給され、信号433はさらに次の分岐器(DIV3)423に入力する。帯域通過フィルタ452は、信号442からf2周波数成分を取り出し、その成分の強度を表す信号462を生成する。周波数f2も、信号401において擬似RZにより印加されているディップの周波数である。
 以下同様にして、最終段の分岐器42kは、信号43kを入力とし、fk周波数成分を取り出してその成分の強度を表す信号46kを生成するk番目の帯域通過フィルタ45kに対し、信号44kを出力する。なお、分岐器42kの次にはもはや分岐器がないので、最終段の分岐器42kを設けずに、信号43kが信号46kとして帯域通過フィルタ45kに直接供給されるようにしてもよい。
 以上のような構成により、それぞれf1周波数成分~fk周波数成分の強度を示す電気信号461~46kが生成され、これらの電気信号は、信号430とともにモニタ回路411に供給される。
 モニタ回路411は、信号430の強度に対する、信号461~46kの強度の比に基づいて、光信号401の伝送における波長分散値を計算する。実際には計算を行うのではなく、例えば、ルックアップテーブルを用いることにより波長分散値を求めることが好ましい。ここでの波長分散値を求めるための原理は、第1の例示実施形態の場合と同様である。なお、光信号401の平均パワーが一定でない場合には、モニタ回路411は信号430を使用して、光信号401の平均パワーを計算し、計算された平均パワーと信号461~46kの強度とにより、波長分散値の計算における受信パワー依存性をなくすことができる。もちろん、光信号401の受信パワーが常に一定であることが分かっているならば、信号430を用いることなく信号461~46kの強度から波長分散値を決定することができる。
 例えば、光信号401が偏波多重112ギガビット/秒のPRZ(4,8)-QPSK信号であるとすると、シンボルレートfはf=28GHzになり、f1=f/4と選び、f2=f/8を選ぶことができる。すなわち、図4に示した送信機によって達成されるように、4シンボルごとにディップが挿入し、さらに8シンボルごとにディップが挿入されているとすることができる。このような場合におけるf1周波数成分及びf2周波数成分の波長分散に対する変化をシミュレーションした結果が図14A~図14Eに示されている。
 図14Bのグラフ1320は、信号430に対するf1周波数成分の信号461の強度比が波長分散に対してどのように変化するかを示し、図14Cのグラフ1330は、信号430に対するf2周波数成分の信号462の強度比が波長分散に対してどのように変化するかを示している。
 波長分散量の符号が正負のいずれかであるかが分かっている場合、信号462の強度比の変化が単調であるので、±1000ps/nmといった高範囲の波長分散の検出に信号462を使用することができ、波長分散をモニタすることができる。また、波長分散が±400ps/nmの範囲内にある場合には、波長分散に対してより大きな変化量を示すグラフ1320を使用して、さらに高精度に波長分散のモニタを行うことができる。
 また、波長分散が±400ps/nmの範囲内にあるときは、f1周波数成分に関するグラフ1320に示される結果とf2周波数成分に関するグラフ1330による結果の両方を用い、これら2つの結果を使用するルックアップテーブルに基づいて、モニタ回路411が高精度な波長分散値を表す電気信号402を生成するようにしてもよい。
 ±2000ps/nmといったさらに広い範囲で波長分散をモニタする場合は、シミュレーション結果を示す図14Dのグラフ1340から分かるように、擬似RZ(16)を適用した光信号401を用いて、すなわち、16シンボルごとにもディップが適用された光信号401を用いて、f3=f/16として、f3周波数成分の強度から波長分散を求めるようにすればよい。その場合には、モニタ回路411から出力される信号402は、±2000ps/nmまでの波長分散を表すことができる。
 別の例として、光信号401が56ギガビット/秒のPRZ(8)-QPSKであれば、シンボルレートはf=28GHzになり、このとき、信号461に対応するf1周波数成分としてf1=f/8、信号462に対応してf2=f/4、信号463に対応してf3=f/2と選ぶことができる。図14Eのグラフ1350は、波長分散に対するこれら信号461~463の強度についてのシミュレーション結果を示したものである。曲線1351は信号461についての結果を表し、曲線1352は信号462についての結果を表し、曲線1353は信号463についてのシミュレーション結果を示す。
 波長分散の符号が分かる場合、信号461を用いると、波長分散に対して信号強度が単調に変化するので、±1000ps/nmの広い範囲で波長分散をモニタすることができる。また、波長分散が±400ps/nmの範囲内にあるときは信号462を使用して、また、波長分散が±100ps/nmの範囲内にあるときは信号463を使用して、波長分散をモニタすることもできる。
 次に本発明の第3の例示実施形態について説明する。ここでは、上述したようなモニタ方法によって波長分散を検出し、その検出結果に基づいて、波長チャネルごとに自動波長分散等化を実行できるようにした光送受信システムを説明する。図6は、第3の例示実施形態における光送受信システムを示している。
 トランスポンダ500は、送信部(TX PRZ)501と受信部(RX)502と分散モニタ(CD MON)503とカプラ(CPL)504とを含んでいる。送信部501は、送信すべきデータを示す電気信号511によって光キャリアを変調し、さらに変調後の光キャリアに対し、擬似RZによりキャリアの強度にディップを印加して、光信号512を送信する。このような送信部501としては、例えば、図2を用いて説明した送信機100を用いて説明した送信機100、あるいは図4を用いて説明した送信機300を使用することができる。
 トランスポンダ500が受信した光信号516は、カプラ504によって2つに分岐され、一方は受信部502に分配され、他方は分散モニタ503に分配される。ここで光信号516には、擬似RZ変調により、nシンボルごとにディップが印加されているものとする。受信部502は、入射した光信号を受信し、復調して電気信号517に変換する。分散モニタ503は、受信した光信号の波長分散をモニタし、波長分散の値を示す電気信号すなわちモニタ信号521を生成する。分散モニタ503としては、例えば、図3を用いて説明した分散モニタ200、あるいは図5を用いて説明した分散モニタ400を用いることができる。
 さらにこの光送受信システムには、トランスポンダ500と同様の装置であるトランスポンダ530が設けられている。ただし、トランスポンダ530は、送信すべきデータを示す電気信号541に基づいて、光信号512とは異なる波長の光信号542を出力する。また、このトランスポンダ530が受信する光信号546の波長も光信号516とは異なっている。トランスポンダ530は、受信した光信号546に基づいて、受信データを示す電気信号547を生成するとともに、光信号546に含まれる波長分散を表すモニタ信号551を出力する。
 トランスポンダ500,530からそれぞれ送信された光信号512,542を波長多重する光マルチプレクサ(MUX)560が設けられており、波長多重された光信号513が伝送路に送出される。さらに多くのトランスポンダを設けてそれらのトランスポンダからの光信号を光マルチプレクサ560において波長多重してもよい。
 伝送路からは、トランスポンダ500,530と同様のトランスポンダで発生して波長多重された光信号514が送られてくる。光信号514を波長ごとに分離する光デマルチプレクサ(DEMUX)561が設けられており、各波長ごとに分離された光信号515,545は、それぞれ、可変波長分散等化器(VAR CD COMP)520,550を通って等化され、光信号516,546としてマルチプレクサ500,530によって受信される。ここで可変波長分散等化器520は、マルチプレクサ500からのモニタ信号521によって制御され、可変波長分散等化器550は、マルチプレクサ530からのモニタ信号551によって制御される。
 以下、図6に示した光送受信システムの具体例について説明する。
 第1の例において、トランスポンダ500の送信部501は、図2に示した擬似RZ変調による送信機100と同一構成であって、56ギガビット/秒のPRZ(8)-QPSK信号を発生する。また、分散モニタ503は、図3に示した分散モニタ200と同一構成であって、シンボルレートの周波数をfとして、f/n=f/8と設定されている。トランスポンダ530も、同様の送信機及び分散モニタから構成されていてよい。
 可変波長分散等化器520は、波長分散を示すモニタ信号521が最小になるように制御される。図14Cのグラフ1330に示されるように、デマルチプレクサ561からの光信号515における残留波長分散が±1000ps/nm以内にあれば、分散量を正確に決定することができ、これに基づいて可変波長分散等化器520を制御することにより、受信部502が受信する光信号における残留波長分散をゼロにすることができる。したがって、受信部502から出力されるデータ信号517の品質は最適になる。ここでデータ信号517は電気信号である。また、伝送路からの光信号514において、伝送中にその波長分散が変化しても、光信号515における残留波長分散の等化が可能である。同様の制御を可変波長分散等化器550に対して実行することにより、光信号545における残留波長分散も等化できる。
 第2の例において、トランスポンダ500の送信部501は、図2に示した擬似RZ変調による送信機100と同一構成であって、56ギガビット/秒のPRZ(8)-QPSK信号を発生する。分散モニタ503は、図5に示した分散モニタ400と同一構成であって、f1=f/8、f2=f/4及びf3=f/2と設定されている。トランスポンダ530も、同様の送信機及び分散モニタから構成されていてよい。
 この場合も、波長分散を示すモニタ信号521が最小になるように、可変波長分散等化器520が制御される。図14Eのグラフ1350に示されるように、光信号515における残留波長分散が±1000ps/nm以内にあれば、分散量を正確に決定することができ、これに基づいて基づいて可変波長分散等化器520を制御することにより、受信部502が受信する光信号における残留波長分散をゼロにすることができ、データ信号517の品質を最適なものとすることができる。このような制御を実行するために、制御の初期段階においてf1周波数成分からの情報を使用してモニタ信号521を生成し、まず、残留波長分散を±400ps/nm以内に抑えるようにする。次に、f2周波数成分からの情報を基にしてモニタ信号521を生成して、波長分散を±100ps/nmに抑える。その後、f3周波数成分の情報を用いて、残留波長分散における微小な変化のトラッキングなどを行えば、高精度に波長分散を補償することができるようになる。このようなレンジ切り替えを採用することによって、波長分散の等化のための最適なダイナミックレンジを選ぶことができる。また伝送路から受信した光信号514において、経時的に波長分散が変化する場合においても、光信号515における残留波長分散の等化が可能である。同様の制御を可変波長分散等化器550に対して実行することにより、光信号545における残留波長分散も等化できる。
 第3の例において、トランスポンダ500の送信部501は、図4に示した偏波多重擬似RZ送信機300と同一構成であって、偏波多重112ギガビット/秒のPRZ(4,8)-QPSK信号を発生する。分散モニタ503は、図5に示した分散モニタ400と同一構成であって、f1=f/8,f2=f/4と設定されている。トランスポンダ530も、同様の送信機及び分散モニタから構成されていてよい。
 この場合も、波長分散を示すモニタ信号521が最小になるように、可変波長分散等化器520が制御される。図14Eのグラフ1350に示されるように、光信号515での残留波長分散が±1000ps/nm以内にあれば、分散量を正確に決定できて残留波長分散をゼロにすることができ、データ信号517の品質を最適なものとすることができる。このような制御の実行のために、制御の初期段階にはf1周波数成分からの情報を使用してモニタ信号521を生成し、まず、残留波長分散を±400ps/nm以内に抑えるようにする。そして、f2周波数成分からの情報を基にしてモニタ信号521を生成し、より細かな制御を行う。このようなレンジ切り替えを採用することによって、最適なダイナミックレンジを選ぶことができる。伝送路から受信した光信号514において、経時的に波長分散が変化する場合においても、光信号515における残留波長分散の等化が可能である。同様の制御を可変波長分散等化器550に対して実行することにより、光信号545における残留波長分散も等化できる。
 次に本発明の第4の例示実施形態について説明する。ここでは、上述したようなモニタ方法によって波長分散を検出し、その検出結果に基づいて、複数の波長チャネルに対して一括して自動波長分散等化を実行できるようにした光送受信システムを説明する。図7は、第4の例示実施形態における光送受信システムを示している。
 トランスポンタ600は、図6に示したトランスポンダ500と同様の構成のものであり、相手方に送信すべきデータを示す電気信号611によって光キャリアを変調し、変調後の光キャリアに対し、擬似RZによりキャリアの強度にディップを印加して、光信号512を送信し、さらに、相手側からの光信号615を受信して電気信号としてデータ信号617を出力する。トランスポンダ600からは、測定された分散値を示すモニタ信号660も出力している。また、トランスポンダ600と同様の装置であるトランスポンダ630も設けられている。ただしトランスポンダ630は、送信すべきデータを示す電気信号641に基づいて、光信号612とは異なる波長の光信号642を出力する。またトランスポンダ630は、光信号615とは波長が異なる光信号645を受信し、これに基づいて受信データを示す電気信号647を生成するとともに、光信号645に含まれる波長分散を表すモニタ信号661を出力する。
 トランスポンダ600,630からそれぞれ送信された光信号612,642を波長多重する光マルチプレクサ(MUX)660が設けられており、波長多重された光信号613が伝送路に送出される。さらに多くのトランスポンダを設けてそれらのトランスポンダからの光信号を光マルチプレクサ660において波長多重してもよい。
 伝送路からは、トランスポンダ600,630と同様のトランスポンダで発生して波長多重された光信号633が送られてくる。光信号633を波長ごとに分離する光デマルチプレクサ(DEMUX)661が設けられており、各波長ごとに分離された光信号615,645は、それぞれ、マルチプレクサ600,630によって受信される。
 この例示実施形態では、デマルチプレクサ651と伝送路との間に、可変波長分散等化器(VAR CD COMP)664が設けられており、伝送路からの光信号633は、可変波長分散等化器664を通ることにより、複数の波長チャネルに関して一括して波長分散の補償がなされる。このような可変波長分散等化器664としては、例えば、S. Sohma, et al., "40λ WDM Channel-by-Channel and Flexible Dispersion Compensation at 40 Gb/s Using Multi-channel and Flexible Dispersion Compensation at 40 Gb/s Using Multi-channel Tunable Optical Dispersion Compensator," ECOC 2009, paper 3.3.1 (2009)(非特許文献2)に開示されたものを使用することができる。
 可変波長分散等化器664を制御するために制御回路662が設けられている。制御回路662は、トランスポンダ600からのモニタ信号660とトランスポンタ630からのモニタ信号661とに基づき、トランスポンダ600の受信光信号の波長とトランスポンダ630の受信光信号の波長との両方の波長で残留波長分散がゼロになるように、制御信号663によって可変波長分散等化器664を制御する。
 以下、図7に示した光送受信システムの具体例について説明する。
 第1の例において、トランスポンダ600の送信部は、図2に示した擬似RZ変調による送信機100と同一構成であって、56ギガビット/秒のPRZ(16)-QPSK信号を発生する。トランスポンダ600の分散モニタは、図3に示した分散モニタ200と同一構成であって、シンボルレートの周波数をfとして、f/n=f/16と設定されている。トランスポンダ630も、同様の送信機及び分散モニタから構成されていてよい。
 この場合、波長分散を示すモニタ信号661が最小になるように、制御回路662は制御信号663を生成して、可変波長分散等化器664を制御する。図14Dのグラフ1340により、光信号615における残留波長分散が±2000ps/nm以内にあれば、分散量を正確に決定することができ、これに基づいて可変波長分散等化器664を制御することにより、残留波長分散をゼロをすることができて、データ信号617の品質を最適なものとすることができる。また、伝送路からの光信号633において、伝送中にその波長分散が変化しても、光信号615における残留波長分散の等化が可能である。同様の制御を実行することにより、光信号645における残留波長分散も等化できる。
 第2の例において、トランスポンダ600の送信部は、図2に示した擬似RZ変調による送信機100と同一構成であって、56ギガビット/秒のPRZ(8)-QPSK信号を発生する。トランスポンダ600の分散モニタは、図5に示した分散モニタ400と同一構成であって、f1=f/8、f2=f/4及びf3=f/2と設定されている。トランスポンダ630も、同様の送信機及び分散モニタから構成されていてよい。
 この場合も、モニタ信号660が最小になるように、可変波長分散等化器664を制御する。図14Eのグラフ1350に示されるように、光信号615での残留波長分散が±1000ps/nm以内にあれば、分散量を正確に決定できて残留波長分散をゼロにすることができ、データ信号617の品質を最適なものとすることができる。このような制御を実行するために、制御の初期段階においてf1周波数成分からの情報を使用してモニタ信号660を生成し、まず、残留波長分散が±400ps/nm以内に抑えるようにする。次に、f2周波数成分からの情報を基にしてモニタ信号660を生成して、波長分散を±100ps/nmに抑える。その後、f3周波数成分の情報を用いて、残留波長分散における微小な変化のトラッキングなどを行えば、高精度に波長分散を補償することができるようになる。このようなレンジ切り替えを採用することによって、波長分散の等化のための最適なダイナミックレンジを選ぶことができる。また伝送路から受信した光信号633において、経時的に波長分散が変化する場合においても、光信号615における残留波長分散の等化が可能である。同様の制御を実行することにより、光信号645における残留波長分散も等化できる。
 第3の例において、トランスポンダ600の送信部は、図4に示した偏波多重擬似RZ送信機300と同一構成であって、偏波多重112ギガビット/秒のPRZ(4,8)-QPSK信号を発生する。トランスポンダ600の分散モニタは、図5に示した分散モニタ400と同一構成であって、f1=f/8及びf2=f/4と設定されている。トランスポンダ630も、同様の送信機及び分散モニタから構成されていてよい。
 この場合も、波長分散を示すモニタ信号661が最小になるように、可変波長分散等化器664は制御される。図14Eのグラフ1350に示されるように、光信号615での残留波長分散が±1000ps/nm以内にあれば、分散量を正確に決定できて残留波長分散をゼロにすることができ、データ信号617の品質を最適なものとすることができる。このような制御の実行のために、制御の初期段階にはf1周波数成分からの情報を使用してモニタ信号660を生成し、まず、残留波長分散を±400ps/nm以内に抑えるようにする。そして、f2周波数成分からの情報を基にしてモニタ信号660を生成し、より細かな制御を行う。このようなレンジ切り替えを採用することによって、最適なダイナミックレンジを選ぶことができる。伝送路から受信した光信号633において、経時的に波長分散が変化する場合においても、光信号615における残留波長分散の等化が可能である。同様の制御を可変波長分散等化器664に対して実行することにより、光信号645における残留波長分散も等化できる。
 次に、本発明の第5の例示実施形態として、自動波長分散等化機能を備えるトランスポンダの構成の一例を説明する。図8は、この例示実施形態におけるトランスポンダの構成の一例を示している。
 トランスポンダ700は、大別すると、送信部(TX PRZ)701と受信部702とを含んでいる。送信部701は、送信すべきデータを示す電気信号であるデータ信号711によって光キャリアを変調し、変調後の光キャリアに対し、擬似RZ変調の手法を用いることにより、光キャリアの強度にディップを印加して光信号712を生成し、光信号712を送信するものである。受信部702は、光信号716を受信してこれをコヒーレント検波し、復調し、受信データとして電気信号717を出力するとともに、光信号716における波長分散をモニタしてその結果に基づいて波長分散の等化を行うものである。このような受信部は、コヒーレント受信モジュール(COH RX)750と、局部発振器(LO)として設けられるレーザ751と、コヒーレント受信モジュール750から出力されるアナログ電気信号をデジタル信号に変換するアナログ/デジタル変換器(ADC)752と、デジタル化された受信信号に対して信号処理を御子なるデジタル信号処理ユニット752と、を備えている。受信部702が受信する光信号716には、上述の各例示実施形態の場合と同様に、擬似RZ変調の手法を用いることによって、nシンボルごとに、強度にディップが印加されている。
 コヒーレント受信モジュール750は、90度ハイブリッドと4個のバランスド・フォトダイオードと備えており、入射した光信号716は、レーザ751からの局部発振光と混合されて、コヒーレント検波される。コヒーレント受信モジュール750からの4本の出力アナログ信号すなわち受信信号は、アナログ/デジタル変換器752によってデジタル信号に変換されて、デジタル信号処理ユニット760に供給される。
 デジタル信号処理ユニット760は、FIR(有限インパルス応答)フィルタ計算によって波長分散の補償を行う分散補償部(CD COMP)720と、分散補償部720からの出力に基づいて波長分散を検出する波長分散モニタ部703と、分散補償部720からの出力に対して偏波分離計算を行う偏波分離計算部(CMA)761と、偏波分離計算部761の出力に接続して偏波分離後の信号からクロック抽出を行うクロック抽出部(CR)762と、クロック抽出後の信号に対してキャリア周波数差の補償を行う周波数差補償部(CPE)763と、キャリア周波数差の補償が行われた信号の復調を行う復調部(DEC)764と、を備えている。分散補償部720の出力は分岐して波長分散モニタ部703と偏波分離計算部761とに与えられている。偏波分離計算部761は、CMA(コンスタント・モジュラス・アルゴリズム(Constant Modulus Algorithm))により、偏波分離計算を実行する。周波数差補償部763は、CPE(キャリア位相推定(Carrier Phase Estimation))アルゴリズムにより、局部発振光751と受信した光信号716とのキャリア周波数差の補償を実行する。復調部764からの出力が、受信したデータを表す電気信号であるデータ信号717である。
 ここで、波長分散モニタ部703について詳しく説明する。波長分散モニタ部703は、残留波長分散を検出し、残留分散値を表すモニタ信号733を生成し、このモニタ信号733によって分散補償部720における波長分散補償を制御するものである。モニタ信号733によって表される残留分散値が最小になるように、分散補償部720内のFIRフィルタのタップ係数が設定される。また、モニタ信号733と同じ信号が、モニタ信号732として、トランスポンダ700の外部に供給されている。モニタ信号732は、例えば、トランスポンダ700の外部で波長分散補償を行ったりするために用いることができる。この構成において波長分散モニタ部703は、絶対値を計算する絶対値計算部(MODULUS)730と、絶対値計算部730の出力に対して高速フーリエ変換(FFT(Fast Fourier Transform))による解析を行い、モニタ信号733を生成するFFT解析部(FFT)731とを備えている。まず絶対値計算部730が、波長分散モニタ部703に入力した信号の絶対値を計算する。この計算された値は、入力した光信号716の振幅を表す。その後、FFT解析部731は、絶対値計算部730の出力に対してFFTアルゴリズムによりフーリエ変換を施し、光信号716に印加されている擬似RZ変調によるディップの周波数と同じ周波数成分あるいはその高調波の周波数成分の強度を計算し、上述の例示実施形態と同様の手順により、波長分散の値を算出し、モニタ信号733を生成する。FFT解析部731は、波長分散の大きさと選択した周波数成分の強度との関係を示すルックアップテーブルを保持し、選択した周波数成分の強度からこのルックアップテーブルを検索して、残留波長分散の値を求めるようにすればよい。ルックアップテーブルは、例えば、デジタル信号処理ユニット760に付属するメモリ装置などの記憶媒体内に格納されている。
 波長分散モニタ部703から分散補償部720に供給されるモニタ信号732の値が最小になるように、分散補償部720内のFIRフィルタのタップ係数の設定を行うと、復調の対象となる信号において、残留波長分散の影響がゼロになり、その結果、復調部764から出力されるデータ信号717の品質が最適なものとなる。
 このようなトランスポンダ700は、例えば、図6に示す光送受信システムでのトランスポンダ500,530として用いることができ、また、図7に示す光送受信システムでのトランスポンダ600,630として用いることもできる。
 以上、本発明の例示実施形態に基づく送信機、分散モニタ及びトラスポンダなどを説明した。送信側においてこれらの送信機またはトランスポンダを配置し、受信側において分散モニタあるいはトランスポンダを配置し、受信側と送信側との間を光ファイバなどの伝送路で接続することにより、伝送路で発生する波長分散を受信側で検出できる光伝送システムを構成することができる。
 図9は、このように伝送路で発生し得る波長分散を検出できる光伝送システムの構成の一例を示している。
 送信側には、送信機(TX PRZ)810が設けられている。送信機810は、送信すべきデータを表す電気信号801によって光キャリアを変調し、さらに、変調後の光キャリアに対し、上述と同様に擬似RZ変調によりnシンボルごとにディップを印加する。そのように変調されディップが印加された光信号820が、伝送路821を介して受信側に送信される。なお、送信機810は、その送出する光信号820における送信波長すなわち光キャリアの波長を変化させることができるように構成されている。このような送信機810としては、例えば、図2に示した送信機100あるいは図4に示した送信機300などを使用することができる。
 伝送路821は直列に接続された1または複数のスパンを含み、そのようなスパンを代表するものとして、符号83kが用いられている。各スパン83kは、光ファイバ84kと、光ファイバ84kを伝送してきた光信号を光増幅して受信側に向けて伝送させる光増幅器85kとを含んでいる。
 受信側には、伝送路821を伝送してきた光信号822を2つの光信号803,804に分岐するカプラ(CPL)811と、光信号804を受光して波長分散を検出し、検出した値に応じたモニタ信号802を出力する分散モニタ(CD MON)812と、を備えている。光信号803は、光信号を受光して復調しデータ信号851を出力する受信機(RX)850などに供給される。受信機850は、光通信システムあるいは光通信ネットワークにおいて一般的に用いられるものであるので、ここではその詳細な構成については説明しない。あるいは光信号803は、さらに別の伝送路を介して伝送されてもよい。分散モニタ812としては、図3に示した分散モニタ200あるいは図5に示した分散モニタ400などを使用することができる。
 伝送路821を監視するオペレータあるいはシステムは、モニタ信号802を使用して、伝送路の運用、最適化あるいは監視を行うことができる。送信機810として送信波長は可変であるものを使用することにより、各波長での波長分散に関する情報を得ることができる。
 図10は、伝送路で発生し得る波長分散を検出できる光伝送システムの構成の別の例を示している。図10に示す光伝送システムは、図9に光伝送システムにおいて、受信側の構成のみを変更したものであり、送信側及び伝送路821の構成は、図9に示すものと同一である。
 受信側には、伝送路821を伝送してきた光信号822を2つの光信号903,904に分岐するカプラ(CPL)911と、光信号904における波長分散を補償する可変波長分散等化器(VAR CD COMP)913と、可変波長分散等化器913からの出力光信号905を受光して波長分散を検出し、検出した値に応じたモニタ信号906を出力する分散モニタ(CD MON)912と、を備えている。光信号903は、図9の場合と同様に、受信機に供給されてもよいし、あるいは、他の伝送路に送出されてもよい。分散モニタ912としては、図3に示した分散モニタ200あるいは図5に示した分散モニタ400などを使用することができる。分散モニタ912は、波長分散を示すモニタ信号906が最小になるように、可変波長分散等化器913を制御する。可変波長分散等化器913における設定値は、波長分散値を示す信号902として外部に出力される。伝送路821を監視するオペレータあるいはシステムは、信号902を使用して、伝送路の運用、最適化あるいは監視を行うことができる。
 図11は、伝送路で発生し得る波長分散を検出し、この波長分散を等化することができる光伝送システムの構成の一例を示している。図11に示す光伝送システムは、図9に示す光伝送システムにおいて、受信側の構成のみを変更したものであり、送信側及び伝送路821の構成は、図9に示すものと同一である。
 受信側において、伝送路821を等化してきた光信号822には、まず、波長分散等化器(VAR CD COMP)1013に送られる。波長分散等化器1013からの出力光信号1023は、次に、カプラ(CPL)1011に入力して、光信号1003と光信号1004とに分岐される。光信号1003は、図9に示したものと同様に、受信機に供給されてもよいし、あるいは、他の伝送路に送出されてもよい。一方、光信号1004は、光信号1004を受光して波長分散を検出し、検出した値に応じたモニタ信号1002を出力する分散モニタ(CD MON)1012に送られる。分散モニタ1012としては、図3に示した分散モニタ200あるいは図5に示した分散モニタ400などを使用することができる。分散モニタ1012は、波長分散を示すモニタ信号1006が最小になるように、波長分散等化器1013を制御する。その結果は、伝送路821を伝送してきた光信号823に関し、波長分散等化器1013の出力での残留波長分散はゼロになる。その結果、カプラ1011から出力される光信号1003においても、伝送路821による中継波長分散の影響がゼロになることを保証することができる。
 次に、上記の例示実施形態を説明する際に用いた図12A~図12D、図13A~図13C及び図14A~図14Eに示すグラフについて、さらに詳しく説明する。
 図12A~図12Aは、55ギガビット/秒のNRZ-QPSK信号と同じく55ギガビット/秒の擬似RZ-QPSK信号の波形を示すためのものである。図12Aのグラフ1110は、55ギガビット/秒のNRZ-QPSK信号を示している。図12Bのグラフ1120は、55ギガビット/秒の擬似RZ(4)-QPSK信号を示しており、ここでは、4シンボルごとに、擬似RZ変調により光強度にディップ1121が印加されている。図12Cのグラフ1130は、55ギガビットの擬似RZ(8)-QPSK信号を示しており、ここでは、8シンボルごとに、擬似RZ変調によりディップ1131が印加されている。図12Dは、グラフ1140は、グラフ1120に示す波形の信号とグラフ1130に示す波形の信号とを偏波多重して得られる信号の波形を示している。したがってグラフ1140は、110ギガビット/秒の擬似RZ(4,8)-QPSK信号の波形を示していることになる。グラフ1140において、より深いディップ1141は、擬似RZ(4)フォーマットによるディップと擬似RZ(8)フォーマットによるディップとが同期した場所に現れている。これに対し、相対的に浅いディップ1142は、擬似RZ(4)フォーマットのみによるディップである。
 擬似RZ変調により、nシンボルごとに、信号での光強度に対し、時間幅に狭いディップが印加される。このようなディップの印加は、シンボルレートの1/nのクロックで駆動された通常のRZとは異なるフォーマットによるものである上に、シンボルレートよりも低い周波数成分を光信号に加えることになる。その一方で、低周波数で光信号の強度変調を行う場合とは異なって、このようなディップの印加では、信号の品質劣化は発生しない。
 図13A~図13Cは、それぞれ、いずれも56ギガビット/秒のデータレートである、NRZ-QPSK信号、PRZ-QPSK信号及びRZ-QPSK信号に関し、強度スペクトルをシミュレーションした結果を示すグラフを表している。いずれのグラフにおいても、縦軸はスペクトルパワー密度(SPD)で表されている。図13Aのグラフ1201は56ギガビット/秒の擬似RZ(8)-QPSKの信号を直接受信して得られる電気信号の強度スペクトルのシミュレーション結果を表している。擬似RZ(8)変調を行ったことにより、シンボルレートの1/8の周波数成分が強くなっている。この周波数は、擬似RZ変調によるディップの発生周波数である。なお、ディップとして時間幅の狭いものを用いていることにより、ディップ周波数の高調波成分も大きな強度で現れている。
 図13Bのグラフ1202は、比較として、56ギガビット/秒のNRZ-QPSK信号についての強度スペクトルのシミュレーション結果を示している。シンボルレートの周波数成分は強く現れているが、それより低周波数側では、特にスペクトルが強くなっているところはない。図13Cのグラフ1203は56ギガビット/秒のRZ-QPSK信号についての同様のシミュレーション結果を示している。ここでもシンボルレートの周波数成分は強く現れているが、それより低周波数側では、特にスペクトルが強くなっているところはない。
 図14A~図14Eは、いずれも、擬似RZフォーマットで印加された周波数成分の強度が波長分散に応じてどのように変化するかをシミュレーションした結果を示すグラフを表している。これらのグラフにおいて縦軸は、信号の値を、正規化されたクロックのピーク間電圧(Vpp)によって示している。
 図14Aのグラフ1310は、56ギガビット/秒の擬似RZ(4)-QPSK信号が伝送中に波長分散の影響を受けたとして、そのような光信号を図3に示した分散モニタ200で受信した場合の、分散モニタ200から出力されるモニタ信号202の変化を示している。ここでは、シンボルレートの1/4の周波数の成分の強度を用いてモニタ信号202を発生させている。波長分散が±400ps/nm以内である場合には、モニタ信号202における唯一の最小点は、波長分散がゼロのときである。モニタ信号202は、波長分散に関し、ゼロ分散点を中心にして対称な変化を示している。したがって、グラフ1310に表される信号に関し、その信号が最小となるような制御を行えば、残留波長分散がゼロ分散となるような波長分散制御を行うことが可能である。また、モニタ信号の値から波長分散の絶対値を求めることもできる。波長分散の符号が既知であれば、モニタ信号の値から波長分散値の実際の値を求めることもできる。
 図14Bのグラフ1320は、グラフ1310の場合と同じく、56ギガビット/秒の擬似RZ(4)-QPSK信号に関し、分散モニタ200から出力されるモニタ信号202の波長分散による変化を示しているが、波長分散の範囲がグラフ1310とは異なっている。グラフ1320では、正の波長分散でのより広い範囲でのモニタ信号の変化が示されている。
 グラフ1310,1320の結果からわかるように、分散モニタ200からのモニタ信号202を用いることにより、±400ps/nmといった広範囲での波長分散の制御が可能となる。
 図14Cのグラフ1330は、56ギガビット/秒の擬似RZ(8)-QPSK信号が伝送中に波長分散の影響を受けたとして、そのような光信号を図3に示した分散モニタ200で受信した場合の、モニタ信号202の変化を示している。シンボルレートの1/8の周波数の成分の強度を用いてモニタ信号202を発生させている。モニタ信号の強度の変化は、グラフ1320に示すものと同様である。グラフ1330には、波長分散が正の領域しか示されていないが、波長分散に対するモニタ信号の変化は、ゼロ分散点をはさんで対称な形状であった。グラフ1330から分かるように、擬似RZ(8)-QPSK信号であれば、モニタ信号202を用いて、±1000ps/nmといったさらに広い範囲で波長分散の制御を行うことが可能になる。
 図14Dのグラフ1340は、56ギガビット/秒の擬似RZ(16)-QPSK信号が伝送中に波長分散の影響を受けたとして、そのような光信号を図3に示した分散モニタ200で受信した場合の、モニタ信号202の変化を示している。シンボルレートの1/16の周波数の成分の強度を用いてモニタ信号202を発生させている。モニタ信号の強度の変化は、グラフ1320に示すものと同様である。グラフ1330には、波長分散が正の領域しか示されていないが、波長分散に対するモニタ信号の変化は、ゼロ分散点をはさんで対称な形状であった。グラフ1340から分かるように、擬似RZ(16)-QPSK信号であれば、モニタ信号202を用いて、±2000ps/nmといったさらに広い範囲で波長分散の制御を行うことが可能になる。
 またさらに広い範囲で波長分散の検出を行いたい場合には、擬似RZ変調によりnシンボルごとに光信号にディップを加えるとして、nの値を16よりもさらに大きくすればよい。モニタ信号の発生には、そのようなnの大きな場合のディップ周波数の成分の強度を用いればよい。
 図14Eのグラフ1350は、56ギガビット/秒の擬似RZ(8)-QPSK信号が伝送中に波長分散の影響を受けたとして、そのような光信号を図5に示した分散モニタ400で受信した場合の、モニタ信号402の変化を示している。この場合のディップ周波数はシンボルレートの1/8である。分散モニタ400では複数の周波数成分に基づいてモニタ信号を生成できることにより、ここでは、モニタ信号の生成に、ディップ周波数成分(すなわちシンボルレートの1/8)と、その2次及び4次の高調波成分(シンボルレートの1/4の成分とシンボルレートの1/2の成分)との3種類を用いるものとする。グラフ1350では、これらの周波数成分ごとにモニタ信号の強度の変化が示されている。シンボルレートの1/8の周波数成分による信号は曲線1351で示され、シンボルレートの1/4の周波数成分による信号は曲線1352で示され、シンボルレートの1/2の周波数成分による信号は曲線1353で示されている。いずれの信号も、その変化の形状は上述したグラフ1320における形状と同じであり、また、ゼロ分散点に対して対称な形状で変化する。
 グラフ1350に示されるように、曲線1351を用いて、すなわち、ディップ周波数成分を用いてモニタ信号を生成すれば、波長分散の制御範囲を広く設定することができる。しかしながらこの場合、ゼロ分散の近傍でモニタ信号の変化率が小さいため、ゼロ分散の近傍で細かい制御を行うことが難しい。ゼロ分散の近傍での変化率が大きいのは、波形1353に示されるように、ディップ周波数の4次の高調波を用いて生成されるモニタ信号である。そこで、モニタ信号を生成するときにどの周波数成分を用いるかを選択することにより、制御範囲ごとに適切なダイナミックレンジを設定することでき、広範囲かつ高精度での波長分散の制御を行うことが可能になる。
 以上、例示実施形態を説明した。以下、本発明の例示的な技術的な特徴を付記する。
 [付記1] 光信号を伝送する際に波長分散をモニタする方法であって、
 シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、
 前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、
 前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、
 を有する方法。
 [付記2] 帯域通過フィルタを用いて前記k×f/nの周波数成分の強度を検出する、付記1に記載の方法。
 [付記3] 前記伝送路から前記光信号を受信して得られる受信信号をデジタル信号に変換し、前記デジタル信号に対してデジタル信号処理を行って前記k×f/nの周波数成分の強度を検出する、付記1に記載の方法。
 [付記4] 前記k×f/nの周波数成分の強度を検出する際に相異なる複数個の整数kを用いて複数の周波数成分のそれぞれごとに強度を検出し、
 前記複数の周波数成分のそれぞれごとに前記モニタ信号を生成する、付記1乃至3のいずれか1項に記載の方法。
 [付記5] 光信号を伝送する際に波長分散を等化する方法であって、
 シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、
 前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、
 前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、
 前記モニタ信号によって表される値が最小となるように、前記光信号を等化する等化器を制御することと、
 を有する方法。
 [付記6] 波長の異なる複数の光信号のそれぞれに対して前記ディップを印加し、
 前記ディップが印加された前記複数の光信号を波長多重して前記伝送路に送出し、
 受信した光信号を波長分離して波長ごとに前記モニタ信号を生成し、波長ごとに前記光信号を等化する、
 付記5に記載の方法。
 [付記7] 波長の異なる複数の光信号のそれぞれに対して前記ディップを印加し、
 前記ディップが印加された前記複数の光信号を波長多重して前記伝送路に送出し、
 波長ごとに前記モニタ信号を生成し、
 受信した光信号を波長分離して波長ごとの前記モニタ信号が表す値が最小となるように、前記波長分離を行う前の前記伝送路から受信した光信号を等化する、
 付記5に記載の方法。
 [付記8] 偏波状態が異なる複数の光信号のそれぞれに対して、異なる繰り返し周波数でディップを印加し、
 前記ディップが印加された前記複数の光信号を偏波多重して前記伝送路に送出し、
 前記異なる繰り返し周波数ごとに前記モニタ信号を生成する、
 付記5に記載の方法。
 [付記9] 帯域通過フィルタを用いて前記k×f/nの周波数成分の強度を検出する、付記5乃至8のいずれか1項に記載の方法。
 [付記10] 前記伝送路から前記光信号を受信して得られる受信信号をデジタル信号に変換し、前記デジタル信号に対してデジタル信号処理を行って前記k×f/nの周波数成分の強度を検出する、付記5乃至8のいずれか1項に記載の方法。
 [付記11] 前記k×f/nの周波数成分の強度を検出する際に相異なる複数個の整数kを用いて複数の周波数成分のそれぞれごとに強度を検出し、
 前記複数の周波数成分のそれぞれごとに前記モニタ信号を生成する、付記5乃至10のいずれか1項に記載の方法。
 [付記12] 前記複数の周波数成分のそれぞれごとの前記モニタ信号のうちのいずれか1つのモニタ信号を用いて前記等化器を制御する、付記11に記載の方法。
 [付記13] 波長分散量に応じ、前記複数の周波数成分のそれぞれごとの前記モニタ信号を切り替えて前記等化器を制御する、付記11に記載の方法。
 [付記14] 波長分散量と前記k×f/nの周波数成分の強度との関係を表すルックアップテーブルを予め用意し、検出された強度に基づいて前記ルックアップテーブルを検索することにより、前記モニタ信号を生成する、付記1乃至13のいずれか1項に記載の方法。
 [付記15] 光信号を伝送する際に波長分散をモニタする装置であって、
 シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、
 前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、
 を有する装置。
 [付記16] 前記送信機は、伝送すべきデータを示す信号によって光キャリアを変調する変調器と、変調後の光信号に対して前記ディップを印加する擬似RZカーバーと、を備える、付記15に記載の装置。
 [付記17] 前記分散モニタは、前記伝送路から前記光信号を受信する受光素子と、前記k×f/nの周波数成分の強度を検出する帯域通過フィルタと、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成するモニタ回路と、を備える、付記15または16に記載の装置。
 [付記18] 前記分散モニタは、前記伝送路から前記光信号を受信して得られる受信信号をデジタル信号に変換し、前記デジタル信号に対してデジタル信号処理を行って前記k×f/nの周波数成分の強度を検出し、前記モニタ信号を生成するデジタル信号処理ユニットを備える、付記15または16に記載の装置。
 [付記19] 光信号を伝送する際に波長分散を等化する装置であって、
 シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、
 前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、
 前記モニタ信号が表す値が最小となるように、前記伝送路から受信される光信号を等化する波長分散等化器と、
 を有する装置。
 [付記20] 前記送信機は、伝送すべきデータを示す信号によって光キャリアを変調する変調器と、変調後の光信号に対して前記ディップを印加する擬似RZカーバーと、を備える、付記19に記載の装置。
 [付記21] 前記分散モニタは、前記伝送路から前記光信号を受信する受光素子と、前記k×f/nの周波数成分の強度を検出する帯域通過フィルタと、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成するモニタ回路と、を備える、付記19または20に記載の装置。
 [付記22] 前記分散モニタは、前記伝送路から前記光信号を受信して得られる受信信号をデジタル信号に変換するアナログ/デジタル変換器と、前記デジタル信号に対してデジタル信号処理を行って前記k×f/nの周波数成分の強度を検出し、前記モニタ信号を生成するデジタル信号処理ユニットを備える、付記19または20に記載の装置。
 [付記23] 前記分散モニタは、波長分散量と前記k×f/nの周波数成分の強度との関係を表すルックアップテーブルを備え、検出された強度に基づいて前記ルックアップテーブルを検索することにより、前記モニタ信号を生成する、付記19乃至22のいずれか1項に記載の装置。
 [付記24] 光信号を伝送路に送出する送信機であって、
 伝送すべきデータを示す信号によって光キャリアを変調する変調器と、
 nを2以上の整数として、前記変調後の光信号に対し、擬似RZ変調により、nシンボルごとに光強度にディップを印加する擬似RZカーバーと、
 を有する送信機。
 [付記25] 伝送路を受信してきた光信号における波長分散をモニタする分散モニタであって、
 前記光信号にはnシンボルごとに擬似RZ変調により光強度におけるディップが印加されており、
 前記光信号を受光して受信信号に変換する受光素子と、
 前記受信信号から、kを1以上の整数として、k×f/nの周波数成分の強度を検出する帯域通過フィルタと、
 前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成するモニタ回路と、
 を有する分散モニタ。
 [付記26] 伝送路を受信してきた光信号における波長分散をモニタする分散モニタであって、
 前記光信号にはnシンボルごとに擬似RZ変調により光強度におけるディップが印加されており、
 前記光信号を受光して受信信号に変換する受光素子と、
 前記受信信号をデジタル信号に変換するアナログ/デジタル変換器と、
 前記デジタル信号に対してデジタル信号処理を行って前記k×f/nの周波数成分の強度を検出し、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成するデジタル信号処理ユニットと、
 を有する分散モニタ。
 以上、例示実施形態を参照して本発明を説明したが、本発明は上記の例示実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年1月5日に出願された日本国特許出願:特願2010-000497を基礎とする優先権を主張し、その開示の全てを参照によりここに取り込む。

Claims (10)

  1.  光信号を伝送する際に波長分散をモニタする方法であって、
     シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、
     前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、
     前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、
     を有する方法。
  2.  光信号を伝送する際に波長分散を等化する方法であって、
     シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出することと、
     前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出することと、
     前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成することと、
     前記モニタ信号によって表される値が最小となるように、前記光信号を等化する等化器を制御することと、
     を有する方法。
  3.  前記k×f/nの周波数成分の強度を検出する際に相異なる複数個の整数kを用いて複数の周波数成分のそれぞれごとに強度を検出し、
     前記複数の周波数成分のそれぞれごとに前記モニタ信号を生成する、請求項1または2に記載の方法。
  4.  波長の異なる複数の光信号のそれぞれに対して前記ディップを印加し、
     前記ディップが印加された前記複数の光信号を波長多重して前記伝送路に送出し、
     受信した光信号を波長分離して波長ごとに前記モニタ信号を生成し、波長ごとに前記光信号を等化する、
     請求項2または3に記載の方法。
  5.  波長の異なる複数の光信号のそれぞれに対して前記ディップを印加し、
     前記ディップが印加された前記複数の光信号を波長多重して前記伝送路に送出し、
     波長ごとに前記モニタ信号を生成し、
     受信した光信号を波長分離して波長ごとの前記モニタ信号が表す値が最小となるように、前記波長分離を行う前の前記伝送路から受信した光信号を等化する、
     請求項2または3に記載の方法。
  6.  偏波状態が異なる複数の光信号のそれぞれに対して、異なる繰り返し周波数でディップを印加し、
     前記ディップが印加された前記複数の光信号を偏波多重して前記伝送路に送出し、
     前記異なる繰り返し周波数ごとに前記モニタ信号を生成する、
     請求項2または3に記載の方法。
  7.  波長分散量と前記k×f/nの周波数成分の強度との関係を表すルックアップテーブルを予め用意し、検出された強度に基づいて前記ルックアップテーブルを検索することにより、前記モニタ信号を生成する、請求項1乃至6のいずれか1項に記載の方法。
  8.  光信号を伝送する際に波長分散をモニタする装置であって、
     シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、
     前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、
     を有する装置。
  9.  光信号を伝送する際に波長分散を等化する装置であって、
     シンボルレートがfである光信号に対し、nを2以上の整数として、擬似RZ変調により、nシンボルごとに光強度にディップを印加し、ディップが印加された光信号を伝送路に送出する送信機と、
     前記伝送路を伝送してきた前記光信号を受信し、kを1以上の整数として、受信した信号から、k×f/nの周波数成分の強度を検出し、前記検出した強度に基づいて、波長分散量を表すモニタ信号を生成する分散モニタと、
     前記モニタ信号が表す値が最小となるように、前記伝送路から受信される光信号を等化する波長分散等化器と、
     を有する装置。
  10.  前記分離モニタは、波長分散量と前記k×f/nの周波数成分の強度との関係を表すルックアップテーブルを備え、検出された強度に基づいて前記ルックアップテーブルを検索することにより前記モニタ信号を生成する、請求項9または10に記載の装置。
PCT/JP2011/050040 2010-01-05 2011-01-05 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置 WO2011083798A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/520,487 US8971702B2 (en) 2010-01-05 2011-01-05 Method and apparatus for detecting chromatic dispersion, and method and apparatus for compensating chromatic dispersion
JP2011549006A JP5712935B2 (ja) 2010-01-05 2011-01-05 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010000497 2010-01-05
JP2010-000497 2010-01-05

Publications (1)

Publication Number Publication Date
WO2011083798A1 true WO2011083798A1 (ja) 2011-07-14

Family

ID=44305534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050040 WO2011083798A1 (ja) 2010-01-05 2011-01-05 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置

Country Status (3)

Country Link
US (1) US8971702B2 (ja)
JP (1) JP5712935B2 (ja)
WO (1) WO2011083798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078637A (ja) * 2017-10-25 2019-05-23 日本電信電話株式会社 Otdr装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011125964A1 (ja) * 2010-04-06 2013-07-11 日本電気株式会社 光送受信システムおよび光送受信システムにおけるタイミング抽出方法
WO2012102264A1 (ja) * 2011-01-24 2012-08-02 日本電信電話株式会社 波長分散量推定方法、波長分散補償回路、及び受信装置
JP2014511578A (ja) * 2011-02-28 2014-05-15 日本電気株式会社 モニタ機能を備えた光通信システム及びそのためのモニタ方法
CN103023570B (zh) * 2011-09-26 2016-03-30 富士通株式会社 非线性补偿装置、方法和发射机
EP2996264A1 (en) 2014-09-12 2016-03-16 Xieon Networks S.à r.l. Data-aided chromatic dispersion estimation
JP6543939B2 (ja) * 2015-01-23 2019-07-17 富士通株式会社 光受信器、光送信器、マルチキャリア光伝送システム、及び、分散補償制御方法
JP6540090B2 (ja) * 2015-02-25 2019-07-10 富士通株式会社 受信装置及び送信装置
US10404397B2 (en) 2015-12-23 2019-09-03 Adva Optical Networking Se Wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion
US10122460B2 (en) * 2017-01-13 2018-11-06 Adva Optical Networking Se Method and apparatus for automatic compensation of chromatic dispersion
WO2018173032A1 (en) * 2017-03-24 2018-09-27 Ariel Scientific Innovations Ltd. System and method for mitigating optical dispersion
US11240048B2 (en) * 2019-03-06 2022-02-01 Marvell Asia Pte, Ltd. Systems and methods for waking a network interface device in a low power mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346748A (ja) * 1999-06-04 2000-12-15 Nec Corp 波長分散測定装置
JP2003134047A (ja) * 2001-10-26 2003-05-09 Nippon Telegr & Teleph Corp <Ntt> 自動分散補償回路付き光波長多重伝送システム
JP2009284104A (ja) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 波長分散測定装置、及び光信号受信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002211461A1 (en) 2000-10-06 2002-04-15 Alphion Corporation Bit-rate and format insensitive all-optical circuit for reshaping, regeneration and retiming of optical pulse streams
KR100414456B1 (ko) * 2001-03-07 2004-01-07 테라링크 커뮤니케이션스(주) 광통신망에서 편광모드분산 및 색분산 감시장치 및 방법
IL149324A (en) * 2002-04-24 2007-06-03 Eci Telecom Ltd Technique for determining sign of optical dispersion in optical communication lines
JP4516389B2 (ja) * 2004-09-08 2010-08-04 関西電力株式会社 波長多重伝送システム
US20090129789A1 (en) * 2005-07-01 2009-05-21 Masanori Hanawa Method and Apparatus for Extracting Clock Signal From Optical Signal
JP2008010971A (ja) * 2006-06-27 2008-01-17 Fujitsu Ltd 高速分散補償制御装置
US8014668B2 (en) * 2007-01-21 2011-09-06 Alcatel Lucent Method and system for distributed measurement and compensation of chromatic dispersion in an optical network
EP2497203A1 (en) * 2009-11-03 2012-09-12 Nokia Siemens Networks OY Measurement of accumulated chromatic dispersion in an optical data transmission network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346748A (ja) * 1999-06-04 2000-12-15 Nec Corp 波長分散測定装置
JP2003134047A (ja) * 2001-10-26 2003-05-09 Nippon Telegr & Teleph Corp <Ntt> 自動分散補償回路付き光波長多重伝送システム
JP2009284104A (ja) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 波長分散測定装置、及び光信号受信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078637A (ja) * 2017-10-25 2019-05-23 日本電信電話株式会社 Otdr装置

Also Published As

Publication number Publication date
JP5712935B2 (ja) 2015-05-07
US8971702B2 (en) 2015-03-03
US20120281981A1 (en) 2012-11-08
JPWO2011083798A1 (ja) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5712935B2 (ja) 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置
JP5476697B2 (ja) 光信号送信装置
JP4583840B2 (ja) 遅延干渉計を微調整するための自動フィードバック制御方法および装置
Raybon et al. Single-carrier 400G interface and 10-channel WDM transmission over 4,800 km using all-ETDM 107-Gbaud PDM-QPSK
US20120219285A1 (en) In-band optical signal to noise ratio monitoring technique
CN112583492A (zh) 用于检测和补偿针对相干光发射器的功率不平衡和调制不完美的方法和装置
JP4675796B2 (ja) 自動分散補償型光伝送システム
JP2009200915A (ja) 光dqpsk受信機、および光dqpsk受信機において使用される光位相モニタ装置
US9838117B2 (en) Bias error correction in an optical coherent transponder
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
Chen et al. Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval
JP6107815B2 (ja) 光送信装置、光通信システム、光受信装置、光送信装置の調整方法、光送信方法、及び光受信方法
EP2733879B1 (en) Method and device for transmitting an optical digital WDM signal over an optical transmission link or a passive optical network
JP5891099B2 (ja) 光位相モニタ回路、光受信機、光送受信システム
JP4893776B2 (ja) 光変調装置
Bertran-Pardo et al. Submarine transmissions with spectral efficiency higher than 3 b/s/Hz using Nyquist pulse-shaped channels
Koch et al. 40-krad/s polarization tracking in 200-Gb/s PDM-RZ-DQPSK transmission over 430 km
JP6211202B2 (ja) 光伝送方法および光伝送システム
WO2014119270A1 (ja) 光受信装置、光通信システム、光受信方法及び光受信装置の制御プログラムの記録媒体
JP5635923B2 (ja) 光信号品質監視装置及び方法
JP5316593B2 (ja) 光送信装置
Zhu et al. Experimental comparison of terabit Nyquist superchannel transmissions based on high and low baud rates
Ferreira et al. Real-time flexible heterogeneous UDWDM system for coherent PON
Schmidt-Langhorst et al. Terabit/s single-carrier transmission systems based on coherent time-division demultiplexing
Freund et al. 80 Gbit/s/λ̣ polarization multiplexed star-16QAM WDM transmission over 720 km SSMF with electronic distortion equalization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520487

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011549006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731796

Country of ref document: EP

Kind code of ref document: A1