[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011078372A1 - エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2011078372A1
WO2011078372A1 PCT/JP2010/073471 JP2010073471W WO2011078372A1 WO 2011078372 A1 WO2011078372 A1 WO 2011078372A1 JP 2010073471 W JP2010073471 W JP 2010073471W WO 2011078372 A1 WO2011078372 A1 WO 2011078372A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
phosphorus
formula
containing epoxy
general formula
Prior art date
Application number
PCT/JP2010/073471
Other languages
English (en)
French (fr)
Inventor
雅男 軍司
洋 佐藤
淳子 海東
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to JP2011547677A priority Critical patent/JP5793086B2/ja
Publication of WO2011078372A1 publication Critical patent/WO2011078372A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1488Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing phosphorus

Definitions

  • the present invention is excellent in low viscosity and as a cured product such as sealing of electrical and electronic parts typified by semiconductor elements that give excellent cured product having flame retardancy, coating material, laminated material, composite material, etc.
  • the present invention relates to a useful novel epoxy resin, an epoxy resin composition using the epoxy resin, and a cured product thereof, and is suitably used for an insulating material in the electric and electronic fields such as a printed wiring board and semiconductor encapsulation.
  • Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years.
  • a semiconductor sealing material in a typical field of a resin composition mainly composed of an epoxy resin, but in recent years, as the integration degree of semiconductor elements has improved, the package size has become larger and thinner, and mounting The system is also shifting to surface mounting, and the development of materials with higher solder heat resistance is desired.
  • liquid materials have a drawback that they are less reliable than solid materials used for transfer molding. This is because the liquid material has a limit in viscosity, and there are restrictions on the resin, curing agent, filler, and the like to be used. Furthermore, in response to the recent halogen-free flame retardant, there is an increasing demand for flame retardant in these uses that were not required when using halogen-based flame retardants. In the field of composite materials, there is an increasing demand for halogen-free materials. However, since it is essential to reduce the viscosity while ensuring flame retardancy, satisfactory products have not been obtained.
  • the epoxy resin and the curing agent that are the main components are desired to have low viscosity, low moisture absorption, high heat resistance, and flame resistance.
  • the low-viscosity epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin and the like are generally widely known, but they are not sufficient in terms of low viscosity and do not have flame retardancy.
  • Patent Document 1 proposes an epoxy resin having an oxymethylene chain, but there is room for improvement in heat resistance and moisture resistance, and flame retardancy is completely considered.
  • Patent Document 2 proposes an epoxy resin having a bicyclohexyl ring, but no consideration is given to flame retardancy.
  • Patent Document 3 proposes a phosphorus-containing epoxy resin having flame retardancy, but is a phosphorus-containing epoxy resin obtained from a bifunctional epoxy resin having an aromatic skeleton and a phosphorus-containing phenol resin, and having a low viscosity. Then there was a problem.
  • Patent Document 4 mentions flame retardancy in a phosphorus-containing epoxy resin composition and describes that an aliphatic epoxy resin can also be used as a raw material for a phosphorus-containing epoxy resin. There is no description about the effect to be used. Furthermore, there is no description about the characteristics as a phosphorus-containing epoxy resin, and no consideration is given to the viscosity.
  • Patent Document 5 proposes a composition containing a phosphorus-containing monoepoxy resin, but the combined use of an aliphatic diluent is essential and cannot be used alone.
  • JP-A-4-359909 JP 2006-188606 A JP 2001-288247 A JP 2002-249540 A JP 2001-106766 A JP 61-268691 A
  • an object of the present invention is to provide an epoxy resin, an epoxy resin composition, and a cured product thereof that give a cured product having excellent low viscosity and flame retardancy.
  • the epoxy equivalent is 200 to 600 g / eq
  • the phosphorus content is 1 to 5% by weight
  • the total chlorine content is 0.2% by weight or less
  • the melt viscosity at 100 ° C. is 1,000 mPa ⁇ s.
  • the phosphorus containing epoxy resin shown by General formula (1) which is the following.
  • X is a monocyclic or heterocyclic ring which has at least one cyclohexane ring or aromatic ring and may contain an oxygen atom, a nitrogen atom, or a sulfur atom and has 6 to 31 carbon atoms
  • Y is a formula 2
  • Z represents hydrogen or any one of formulas (3) and (4)
  • n represents an integer of 0 to 10.
  • R1 and R2 represent hydrogen or a hydrocarbon group, and may be different or the same, and may be linear, branched, or cyclic. R1 and R2 may be combined to form a ring structure.
  • k represents an integer of 0 or 1.
  • Ar represents any one of benzene, biphenyl, naphthalene, anthracene, phenanthrene, and hydrocarbon substitutes thereof.
  • R3 and R4 represent hydrogen or a hydrocarbon group, and may be different or the same, and may be linear, branched or cyclic. R3 and R4 may be combined to form a ring structure.
  • m represents an integer of 0 or 1.
  • the phosphorus-containing epoxy resin of the present invention can provide a liquid epoxy resin having excellent low viscosity and flame retardancy, and molding obtained by using the epoxy resin composition of the present invention containing the epoxy resin As a result of evaluating the product, it is possible to obtain a cured product having flame retardancy and a relatively low water absorption rate as compared with the conventional low viscosity resin composition.
  • the epoxy resin composition and the cured product thereof are a resin composition for producing a copper-clad laminate used for an electronic circuit board and a sealing material, a molding material, a casting material, an adhesive, a film material, an electric material used for an electronic component. It was found to be useful as a material for insulating paints.
  • FIG. 1 is an infrared absorption spectrum of the phosphorus-containing epoxy resin (E-1) according to Example 1 of the present invention. It measured by the liquid film method (KBr) using the Fourier-transform infrared spectrophotometer (SpeckinOne by Perkin-Elmer).
  • FIG. 2 is a GPC chart of the phosphorus-containing epoxy resin (E-1) according to Example 1 of the present invention. The horizontal axis represents the elution time (minutes), the left axis represents mV, and the right axis represents the logarithm of the molecular weight (M) of the standard polystyrene calibration curve.
  • FIG. 3 is an infrared absorption spectrum of the phosphorus-containing epoxy resin (E-2) according to Example 2 of the present invention. It measured by the liquid film method (KBr) using the Fourier-transform infrared spectrophotometer (SpeckinOne by Perkin-Elmer).
  • FIG. 4 is a phosphorus-containing epoxy resin (E-2) GPC chart according to Example 2 of the present invention.
  • the horizontal axis represents the elution time (minutes), the left axis represents mV, and the right axis represents the logarithm of the molecular weight (M) of the standard polystyrene calibration curve. It measured with the gel permeation chromatography apparatus (HLC-8220GPC by Tosoh Corporation, elution solvent: tetrahydrofuran).
  • the phosphorus-containing epoxy resin of the present invention is represented by the general formula (1), n represents an integer of 0 to 10, and the average polymerization degree, which is the average value, is an oligomer in the range of 0.1 to 3.
  • the epoxy equivalent of the phosphorus-containing epoxy resin of the present invention must be controlled to 200 g / eq to 600 g / eq. When the epoxy equivalent is less than 200 g / eq, the adhesiveness is inferior, and when it exceeds 600 g / eq, the viscosity increases and the heat resistance of the resulting cured product is greatly impaired.
  • the phosphorus content of the phosphorus-containing epoxy resin of the present invention needs to be controlled to 1 to 5% by weight. From the standpoint of flame retardancy, a higher phosphorus content is preferable, but as the phosphorus content increases, the viscosity of the phosphorus-containing epoxy resin and the epoxy equivalent increase, and the heat resistance of the resulting cured product is greatly impaired. It is.
  • the total chlorine content of the phosphorus-containing epoxy resin of the present invention correlates with a decrease in the electrical reliability of the obtained cured product. If it is increased, the electrical reliability of the cured product is lowered, and if it is less, the electrical reliability is improved. To do.
  • the total chlorine content of the phosphorus-containing epoxy resin of the present invention is preferably 0.2% by weight or less, and more preferably 0. It is 09 weight% or less, More preferably, it is 0.05 weight% or less.
  • the phosphorus-containing epoxy resin represented by the general formula (1) of the present invention includes a bifunctional epoxy resin (A) represented by the general formula (5) and an organophosphorus compound (B1) represented by the general formula (6).
  • X is a hydrocarbon group having 6 to 31 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom and which has at least one cyclohexane ring or aromatic ring which may be monocyclic or heterocyclic.
  • R1 and R2 represent hydrogen or a hydrocarbon group, and may be different or the same, and may be linear, branched, or cyclic. R1 and R2 may be combined to form a ring structure.
  • k represents an integer of 0 or 1.
  • Ar represents any one of benzene, biphenyl, naphthalene, anthracene, phenanthrene, and hydrocarbon substitutes thereof.
  • R3 and R4 represent hydrogen or a hydrocarbon group, and may be different or the same, and may be linear, branched or cyclic. R3 and R4 may be combined to form a ring structure.
  • m represents an integer of 0 or 1.
  • the bifunctional epoxy resins (A) to be reacted with the organophosphorus compounds contain at least one cyclohexane ring or aromatic ring.
  • a cyclohexane ring or an aromatic ring helps to improve the flame retardancy of a phosphorus-containing epoxy resin, and an aliphatic epoxy resin that does not contain a cyclohexane ring or an aromatic ring cannot ensure the flame retardancy. That is, this bifunctional epoxy resin (A) is a glycidyl etherified product of a bifunctional primary alcohol having 8 to 33 carbon atoms containing at least one cyclohexane ring or aromatic ring in the skeleton.
  • the —O—CH 2 —X—CH 2 —O— structure is essential.
  • Bifunctional epoxy resins not having this structure do not provide the phosphorus-containing epoxy resin represented by the general formula 1, and the resulting phosphorus-containing epoxy resin is not sufficiently low in viscosity.
  • a reactive diluent such as an aliphatic epoxy resin
  • flame retardancy cannot be ensured.
  • reducing the amount of aliphatic epoxy resin used to ensure flame retardancy increases the viscosity of the epoxy resin composition, which is disadvantageous for lowering the viscosity.
  • the target low-viscosity phosphorus-containing epoxy resin composition I can't get anything.
  • glycidyl etherification derived from an alcoholic hydroxyl group tends to have a large amount of unreacted residual hydroxyl group because of poor reactivity.
  • the residual hydroxyl group in the raw material bifunctional epoxy resin (A) remains as it is without participating in the reaction with the phosphorus compound, and the purity of the terminal group of the phosphorus-containing epoxy resin is lowered, so that the raw material bifunctional epoxy resin (A)
  • the increase in the residual hydroxyl group in the same increases the hygroscopicity of the phosphorus-containing epoxy resin composition as it is, and causes a decrease in storage stability with respect to the acid anhydride curing agent and the microcapsule type latent curing agent.
  • the residual hydroxyl group concentration of the bifunctional epoxy resins (A) is preferably 200 meq / 100 g or less, more preferably 100 meq / 100 g or less, still more preferably 50 meq / 100 g or less. Further, when the reactivity is increased by adding a catalyst or the like in order to reduce the residual hydroxyl group concentration, the side reaction is increased in parallel to increase the total chlorine content.
  • the total chlorine content of the raw material bifunctional epoxy resins (A) is preferably 0.4% by weight or less, more preferably 0.2% by weight or less, and further preferably 0.1% by weight or less.
  • the total chlorine amount is 1% by weight or more in most cases, so it is necessary to reduce the total chlorine amount by an advanced purification reaction, distillation operation or extraction operation. Those methods are not particularly defined, and various methods devised at present can be used.
  • X in the formula of the bifunctional epoxy resins (A) represented by the general formula (5) are shown in the formula (8) group.
  • X may be an isomer of the general formula (8) group or may have a substituent.
  • X may be single or two or more.
  • each j independently represents an integer of 0 or 1.
  • each j independently represents an integer of 0 or 1.
  • each j independently represents an integer of 0 or 1.
  • the bifunctional epoxy resins (A) represented by the general formula (5) a glycidyl etherified product of cyclohexanedimethanol represented by the general formula (9) and a glycidyl paraxylene glycol represented by the general formula (10) Etherified products and glycidyl etherified products of oxymethylene biphenyl represented by the general formula (11) are preferred.
  • the organophosphorus compounds to be reacted with the bifunctional epoxy resins (A) are the organophosphorus compound (B1) represented by the general formula 6 or the organophosphorus compound (B2) represented by the general formula (7). May be used in combination.
  • the organophosphorus compound (B1) represented by the general formula (6) is an organophosphorus compound having two active hydrogens, and R1 and R2 in the formula represent hydrogen or a hydrocarbon group, which may be different or the same. It may be linear, branched or cyclic, and R1 and R2 may be combined to form a cyclic structure.
  • R1 and R2 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, Examples include tert-pentyl group, 1-methylbutyl group, 1-methylheptyl group, octyl group, nonyl group, dodecyl group, undecyl group, dodecyl group, benzyl group, phenyl group, toluyl group, xylyl group and the like.
  • R1 and R2 are bonded to form a cyclic structure
  • examples of those in which R1 and R2 are bonded to form a cyclic structure include, for example, tetramethylene, cyclopentylene, cyclohexylene, cyclohexylene, cyclooctylene, cyclodecylene, norbornylene, biphenylene, and the like.
  • Ar is an arylene group, and specific examples include a phenylene group, a toluylene group, a xylylene group, a naphthylene group, a biphenylene group, and the like.
  • the number of k is 0 or 1.
  • organophosphorus compounds (B1) can be easily obtained by reacting the organophosphorus compound (B2) of the general formula (7) with a monocyclic or polycyclic quinone compound (Patent Document 6).
  • a preferred organophosphorus compound used in the present invention is 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide (hereinafter referred to as DOPO) which is an organophosphorus compound represented by the general formula (12).
  • DOPO-HQ 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide
  • a phosphorus-containing compound represented by the general formula (13) which is an addition reaction product of 1,4-benzoquinone (hereinafter abbreviated as DOPO-HQ) or an addition reaction product of DOPO and 1,4-naphthoquinone.
  • DOPO-NQ An organic phosphorus compound represented by a general formula (14) (hereinafter abbreviated as DOPO-NQ) can be given.
  • DOPO can be obtained under the trade name “HCA” (manufactured by Sanko Co., Ltd.), and DOPO-HQ can be obtained under the trade name “HCA-HQ” (manufactured by Sanko Co., Ltd.).
  • the organophosphorus compound (B2) represented by the general formula (7) is an organophosphorus compound having one active hydrogen, and R3 and R4 in the formula represent hydrogen or a hydrocarbon group, which are the same even if they are different. Alternatively, it may be linear, branched, or cyclic, and R3 and R4 may be bonded to form a cyclic structure.
  • R3 and R4 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, Examples include tert-pentyl group, 1-methylbutyl group, 1-methylheptyl group, octyl group, nonyl group, dodecyl group, undecyl group, dodecyl group, benzyl group, phenyl group, toluyl group, xylyl group and the like.
  • R3 and R4 are bonded to form a cyclic structure
  • examples of those in which R3 and R4 are bonded to form a cyclic structure include, for example, tetramethylene, cyclopentylene, cyclohexylene, cyclohexylene, cyclooctylene, cyclodecylene, norbornylene, biphenylene, and the like. Can be mentioned.
  • the number m is 0 or 1.
  • DOPO represented by the general formula (12) is preferable.
  • the organophosphorus compounds may be used by mixing the organophosphorus compound (B1) represented by the general formula (6) and the organophosphorus compound (B2) represented by the general formula (7) which are synthesized in advance.
  • the organophosphorus compound (B2) represented by the general formula (7) may be reacted with quinones before the reaction with the bifunctional epoxy resins (A). In that case, it is preferable that quinones react with less than 1 mol with respect to 1 mol of organophosphorus compound (B2) shown by General formula (7).
  • the reaction between the organophosphorus compounds used in the present invention and the bifunctional epoxy resins (A) can be carried out by a known method.
  • the reaction can be carried out with stirring at a temperature of 100 ° C. to 200 ° C., more preferably 120 ° C. to 180 ° C.
  • the reaction time can be determined by measuring the epoxy equivalent. Measurement can be performed by the method of JIS K-7236.
  • the epoxy equivalent is increased by the reaction between the bifunctional epoxy resins (A) and the organophosphorus compound, and the end point of the reaction can be determined by comparison with the theoretical epoxy equivalent. Further, when the reaction rate is slow, productivity can be improved by using a catalyst as necessary.
  • tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, ethyltriphenylphosphonium
  • phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine
  • catalysts such as phosphonium salts such as bromide and imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be used. You may mix
  • a higher phosphorus content is preferable from the viewpoint of flame retardancy, and a phosphorus content from the viewpoint of lowering the viscosity A lower rate is preferred. Therefore, in order to satisfy both, it is preferably 0.5 to 5% by weight, more preferably 1 to 4% by weight, and further preferably 2 to 3% by weight.
  • various polyhydric phenol resins and acid anhydrides typified by phenol novolac resins, amines typified by dicyandiamine and diethyldiaminodiphenylmethane, hydrazides, acidic polyesters, etc.
  • the epoxy resin curing agent used can be used, and these curing agents may be used alone or in combination of two or more.
  • a hardening accelerator can be used for this invention epoxy resin composition as needed.
  • curing accelerator examples include phosphines, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, imidazole compounds, boron trifluoride complexes, 3- (3,4-dichlorodiphenyl) -1,1- Examples include, but are not limited to, dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, and 3-phenyl-1,1-dimethylurea.
  • These curing accelerators depend on the epoxy resin used together, the type of epoxy resin curing agent used, the molding method, the curing temperature, and the required characteristics, but are preferably in the range of 0.01 to 20 parts by weight with respect to 100 parts of the epoxy resin.
  • the epoxy resin composition of this invention can mix
  • fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, boron nitride, carbon , Carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber and the like. These fillers are preferably 1 to 95% by weight in the epoxy resin composition.
  • the epoxy resin composition of the present invention further includes various additives such as a silane coupling agent, an antioxidant, a release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment as necessary. Can be blended. These additives are preferably in the range of 0.01 to 20% by weight based on the total amount of the epoxy resin composition.
  • the epoxy resin composition of the present invention can be molded and cured by the same method as known epoxy resin compositions to obtain a cured product.
  • the molding method and the curing method can be the same methods as known epoxy resin compositions, and the method unique to the epoxy resin composition of the present invention is unnecessary.
  • the cured epoxy resin of the present invention can take the form of a coating film, an adhesive layer, a molded product, a laminate, a film and the like.
  • Epoxy equivalent The method described in JIS K-7236. That is, dissolve a sample in 10 mL of chloroform, add 20 mL of acetic anhydride and 10 mL of 20% tetraethylammonium bromide solution, and perform titration with a 0.1 mol / L perchloric acid acetic acid standard solution using a potentiometric titrator.
  • the epoxy equivalent contained in the epoxy resin was measured from the concentration and addition amount of each reagent and the titration amount.
  • Total chlorine content The method described in JIS K-7243-3. That is, a sample is dissolved in 25 mL of diethylene glycol monobutyl ether, 25 mL of a 1-mol / L potassium hydroxide 1,2-propanediol solution is added, and the mixture is reacted on a hot plate for 10 minutes under heating and reflux. After cooling to room temperature, 50 mL of acetic anhydride is added, and titration is performed with a 0.01 mol / L silver nitrate solution using a potentiometric titrator.
  • Viscosity The method described in JIS K-7233. That is, 400 g of resin was weighed in a 500 mL cylindrical can, left in a constant temperature water bath at 25 ⁇ 0.2 ° C. for 5 hours, and the temperature was measured by immersing the rotor of a rotational viscometer in the resin.
  • Softening point The method described in JIS K-7234.
  • a sample was filled in a specified ring, supported horizontally in a glycerin bath, a specified ball was placed at the center of the sample, and the temperature was increased at 5 ° C./min.
  • Hydroxyl concentration To the amount of hydroxyl group contained in the epoxy resin, more than equivalent amount of phenyl isocyanate and dibutyltin maleate as a catalyst were added, and after sufficient reaction between the hydroxyl group and isocyanate, the equivalent of phenyl isocyanate used More dibutylamine was added to consume excess phenyl isocyanate, and finally titration was performed with perchloric acid, and the concentration of hydroxyl group contained in the epoxy resin was measured from the concentration and addition amount of each reagent and titration amount. .
  • Phosphorus content Sulfuric acid, hydrochloric acid and perchloric acid were added to the sample and heated to wet ash to convert all phosphorus atoms into normal phosphoric acid. Reaction of metavanadate and molybdate in a sulfuric acid acidic solution, the absorbance at 420 nm of the resulting limpavandemolybdate complex was measured, and the phosphorus atom content determined by a pre-prepared calibration curve was expressed in weight%. The phosphorus content contained in the resin was measured. Melt viscosity: Measurement at 100 ° C.
  • Moisture absorption A method according to JIS C-6481 5.13. That is, using a test piece cut to 50 mm ⁇ 50 mm, the dry weight after drying in an oven at 50 ° C. for 24 hours was measured, and subsequently stored in a treatment tank adjusted to 85 ° C./85% RH for 72 hours. The subsequent weight was measured, and the moisture absorption rate was measured based on the increase from the dry weight.
  • Heat resistance A method according to IPC-TM-650, 24.24.1. That is, the delamination time is measured by the TMA device.
  • TMA device is held at a constant temperature of 260 ° C. and the time until the test piece is repelled is 10 minutes or longer, the result is ⁇ , and the time is less than 10 minutes. X was marked.
  • the TMA apparatus used was TMA / SS120U manufactured by SII Nano Technology. Chlorine ion: After crushing the cured product and performing a pressure cooker test for 150 and 20 hours on a sample with a particle size of 2 mm pass and 1 mm on, the chlorine ion of the extracted water is measured by ion chromatography. It calculated
  • Example 1 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, and a cooling tube, Epototo ZX-1658 (Toto Kasei Co., Ltd.) as a bifunctional epoxy resin (A) of the general formula 5 Made by cyclohexanedimethanol diglycidyl ether resin, epoxy equivalent: 140 g / eq, total chlorine: 0.075 wt%, viscosity: 45 mPa ⁇ s, hydroxyl group concentration: 19 meq / 100 g) 632.0 g, DOPO-HQ as the organophosphorus compound (Sanko Co., Ltd., trade name: HCA-HQ, hydroxyl equivalent: 162 g / eq, phosphorus content: 9.5% by weight) 168.0 g was charged and heated to 130 ° C.
  • Epototo ZX-1658 Toto Kasei Co., Ltd.
  • A bifunctional epoxy
  • Example 2 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, and a cooling tube, Epototo TX-0929 (Toto Kasei Co., Ltd.) as a bifunctional epoxy resin (A) of the general formula 5 Made by para-alkylene glycol diglycidyl ether resin, epoxy equivalent: 144 g / eq, total chlorine: 0.11 wt%, viscosity: 50 mPa ⁇ s, hydroxyl group concentration: 39 meq / 100 g) 547.4 g, DOPO- as the organophosphorus compound 252.6 g of HQ (previously described) was charged and heated with stirring to 130 ° C.
  • Epototo TX-0929 Toto Kasei Co., Ltd.
  • A bifunctional epoxy resin (A) of the general formula 5 Made by para-alkylene glycol diglycidyl ether resin, epoxy equivalent: 144
  • Example 3 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, and a cooling tube, Epototo TX-0929 (described above) as a bifunctional epoxy resin (A) of the general formula (5) 602.5 g, DOPO-NQ (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 1,4-naphthoquinone adduct, hydroxyl equivalent: 187 g / eq, phosphorus content as an organic phosphorus compound : 8.1 wt%) 197.5 g was charged and heated to 130 ° C. with stirring with a mantle heater.
  • Epototo TX-0929 described above
  • DOPO-NQ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 1,4-naphthoquinone adduct, hydroxyl equivalent:
  • Example 4 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device and a cooling tube, Epototo TX-0934 (Toto Kasei Co., Ltd.) as a bifunctional epoxy resin (A) of the general formula 5 Manufactured by oxymethylene biphenyl diglycidyl ether resin, epoxy equivalent: 184 g / eq, total chlorine: 0.11% by weight, viscosity: 200 mPa ⁇ s, hydroxyl group concentration: 63 meq / 100 g) 608.7 g, DOPO-NQ as organophosphorus compound (Previously described) 116.3 g and DOPO (manufactured by Sanko Co., Ltd., trade name: HCA, phosphorus content: 14.2% by weight) 75.0 g were charged and heated to 130 ° C.
  • Epototo TX-0934 Toto Kasei Co., Ltd.
  • Example 5 Into a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device, 168.0 g of DOPO (described above) and 400 g of toluene as an organophosphorus compound were charged and stirred in a nitrogen atmosphere.
  • Epototo TX-0917 manufactured by Tohto Kasei Co., Ltd., X of general formula 5 is a compound of formula 8-10, epoxy equivalent: 173 g / eq, total chlorine : 0.10 wt%, viscosity: 46 mPa ⁇ s, hydroxyl group concentration: 72 meq / 100 g) was charged with 563.0 g, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. .
  • E-9 a phosphorus-containing epoxy resin
  • Table 2 shows the properties of the obtained phosphorus-containing epoxy resin (E-9).
  • Comparative Example 5 As an epoxy resin, Epototo ST-3000 (manufactured by Toto Kasei Co., Ltd., hydrogenated bisphenol A type diglycidyl) was added to a four-necked glass separable flask equipped with a stirrer, a thermometer, a nitrogen gas introducing device, and a cooling tube.
  • Ether resin epoxy equivalent: 230 g / eq, total chlorine: 5.0 wt%, viscosity: 3,200 mPa ⁇ s) 632.0 g
  • DOPO-NQ previously described 168.0 g as an organophosphorus compound
  • the mixture was heated to 130 ° C. with stirring, and when it reached 130 ° C., 0.17 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C.
  • Resin (E-10) 795g was obtained.
  • Table 2 shows properties of the obtained phosphorus-containing epoxy resin (E-10).
  • Epototo ZX-1658Z manufactured by Toto Kasei Co., Ltd., cyclohexanedimethanol diglycidyl ether resin, epoxy equivalent: 145 g / eq, total chlorine: 0.45 wt%, viscosity: 85 mPa ⁇ s, hydroxyl group Concentration: 150 meq / 100 g
  • 595.0 g stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system.
  • 0.21 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C.
  • a phosphorus-containing epoxy resin is dissolved in methyl ethyl ketone, and dicyandiamide (DICY, active hydrogen equivalent: 21.0 g / eq) as a curing agent previously dissolved in methyl cellosolve and dimethylformamide, and 2-ethyl 4-methylimidazole (as a curing accelerator)
  • the resin composition varnish was prepared so that the nonvolatile content was 50% by weight.
  • the obtained resin varnish was used to impregnate a glass cloth as a base material (WEA 116E 106S 136, thickness 100 ⁇ m, manufactured by Nitto Boseki Co., Ltd.), and the impregnated glass cloth was subjected to 8 in a hot air circulation oven at 150 ° C. Drying was performed for a minute to obtain a prepreg.
  • the obtained four prepregs were stacked and heated and pressurized under the conditions of 130 ° C. ⁇ 15 minutes and 170 ° C. ⁇ 2.0 MPa ⁇ 70 minutes to obtain a 0.5 mm thick laminate.
  • each physical property of a flame retardance, adhesiveness, and a hygroscopic rate was tested.
  • Comparative Example 8 uses an aliphatic phosphorus-containing epoxy resin, the adhesiveness is good, but the flame retardancy is poor and the moisture absorption resistance is also poor.
  • Comparative Example 9 is a phosphorus-containing epoxy resin of the general formula 1, but the flame retardancy is poor because the phosphorus content is as low as 0.5% by weight, and the adhesiveness is also poor because the epoxy equivalent is as small as 196 g / eq.
  • Comparative Example 10 is a phosphorus-containing epoxy resin of the general formula 1. However, since the phosphorus content is too large, 5.2% by weight, the epoxy equivalent is increased to 705 g / eq and the flame retardancy is good, but the adhesiveness is poor and the heat resistance is high. Is also bad.
  • Comparative Example 11 is a phosphorus-containing epoxy resin of the general formula 1, but the epoxy equivalent is as large as 880 g / eq and the melt viscosity is as large as 1,300 mPa ⁇ s. Therefore, the adhesiveness is good, but the heat resistance is poor. On the other hand, all the examples have good adhesiveness, moisture absorption resistance and heat resistance while ensuring sufficient flame retardancy. Examples 9-12, Comparative Examples 12-14 A phosphorus-containing epoxy resin, a curing agent, a curing accelerator, and the like were blended according to the blending formulation shown in Table 5.
  • Diethyldiaminodiphenylmethane (manufactured by Nippon Kayaku Co., Ltd., trade name: Kayahard AA, active hydrogen equivalent: 63 g / eq, viscosity: 2,500 mPa ⁇ s) as a curing agent, and 2-ethyl 4-methylimidazole (as described above) as a curing accelerator.
  • the mixture was stirred and homogenized while heating to 50 ° C. to obtain an epoxy resin composition.
  • the obtained epoxy resin composition was defoamed and poured into a mold, and cured under a temperature condition of 150 ° C. ⁇ 120 minutes to obtain a cured product test piece having a thickness of 2 mm.
  • Comparative Example 12 uses an aliphatic phosphorus-containing epoxy resin having a very high total chlorine content of 3.8% by weight, the amount of chlorine ions is about 100 times that of the Examples. This indicates that the reliability is very poor.
  • Comparative Example 13 is a phosphorus-containing epoxy resin of the general formula (1), but the total chlorine is as high as 0.33% by weight, so the chlorine ion is about 5 to 7 times higher than in the examples. This indicates that the reliability becomes worse.
  • Comparative Example 14 is an epoxy resin composition in which a flame retardant is blended with a low-chlorine liquid resin that is generally used. However, even when the phosphorus content is combined with the examples, flame retardancy is poor and moisture absorption resistance is also poor. In contrast, all the examples have low chlorine ions and good moisture absorption resistance while ensuring sufficient flame retardancy. This indicates that the reliability is good.
  • Examples 13-14, Comparative Examples 15-17 A phosphorus-containing epoxy resin, a curing agent, a curing accelerator, and the like were blended according to the blending formulation shown in Table 7.
  • a curing agent triphenylmethane type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name: TMP-100, hydroxyl group equivalent: 97.5 g / eq, softening point: 107 ° C.) is used while heating to 120 ° C. The mixture was stirred and homogenized to obtain an epoxy resin composition.
  • the obtained epoxy resin composition was defoamed and poured into a mold and cured under a temperature condition of 150 ° C. ⁇ 120 minutes + 180 ° C.
  • Example 13 Epototo ZX-1059 (described above) was used in combination as an epoxy resin other than the phosphorus-containing epoxy resin.
  • Example 17 Epototo ZX-1542 (Toto Kasei Co., Ltd.) was used as an epoxy resin other than the phosphorus-containing epoxy resin.
  • Comparative Example 15 uses an aliphatic phosphorus-containing epoxy resin, flame retardancy is poor and moisture absorption resistance is also poor.
  • Comparative Example 16 is a phosphorus-containing epoxy resin obtained by the manufacturing method disclosed in Patent Document 4, but is not a phosphorus-containing epoxy resin of the general formula 1, so that the viscosity of the epoxy resin composition is too high and mold molding is difficult. Therefore, a test piece necessary for the test could not be prepared.
  • Comparative Example 17 is an epoxy resin composition in which the viscosity is reduced by using a phosphorus-containing epoxy resin obtained by the production method disclosed in Patent Document 4 in combination with a diluent.
  • the moldability is improved, but the flame retardancy is improved. It deteriorates and the moisture resistance also deteriorates.
  • all the examples have good moldability and moisture absorption resistance while ensuring sufficient flame retardancy.
  • the present invention can be used as a flame retardant epoxy resin for electronic materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

 エポキシ当量が200~600g/eqであり、リン含有率が1~5重量%であり、全塩素量が0.2重量%以下であり、100℃における溶融粘度が1,000mPa・s以下である一般式(1)で示されるリン含有エポキシ樹脂であって、低粘度性に優れると共に難燃性を有するリン含有エポキシ樹脂の提供する。 式(1)中Xは単環でも複素環でも良い少なくとも1つのシクロヘキサン環または芳香環を有する、酸素原子、窒素原子、硫黄原子を含んでも良い、炭素数6~31の炭化水素基であり、Yは式(2)を示し、Zは水素または式(3)または式(4)のいずれかを示し、nは0~10の整数を示す。 式(2)中R1、R2は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R1とR2が結合して環状構造となっても良い。kは0または1の整数を示す。Arはベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン及びこれらの炭化水素置換体のいずれかを示す。 式(3)中R3、R4は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R3とR4が結合して環状構造となっても良い。mは0または1の整数を示す。

Description

エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
 本発明は低粘度性に優れるとともに、難燃性を有した優れた硬化物を与える半導体素子に代表される電気・電子部品等の封止、コーティング材料、積層材料、複合材料等の硬化物として有用な新規エポキシ樹脂、更にそれを用いたエポキシ樹脂組成物並びにその硬化物に関するものであり、プリント配線板、半導体封止等の電気電子分野の絶縁材料等に好適に使用される。
 エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。例えば、エポキシ樹脂を主剤とする樹脂組成物の代表的分野に半導体封止材料があるが、近年、半導体素子の集積度の向上に伴い、パッケージサイズが大面積化、薄型化に向かうとともに、実装方式も表面実装化への移行が進展しており、より半田耐熱性に優れた材料の開発が望まれている。
 また最近では、高集積化、高密度実装化の技術動向により、従来の金型を利用したトランスファー成形によるパッケージに変わり、ハイブリッドIC、チップオンボード、テープキャリアパッケージ、プラスチックピングリッドアレイ、プラスチックボールグリッドアレイ等の金型を使用しないで液状材料を用いて封止し、実装する方式が増えてきている。しかし、一般に液状材料はトランスファー成形に用いる固形材料に比べて信頼性が低い欠点がある。これは、液状材料に粘度上の限界があり、用いる樹脂、硬化剤、充填剤等に制約があるからである。さらに、近年のハロゲンフリー難燃化を受け、ハロゲン系難燃剤を使用している時では必要とされていなかったこれらの用途でも難燃化の要求が高まっている。
 また、複合材分野でもハロゲンフリー化の要求が高まってきているが、難燃性を確保しながら低粘度化が必須のため、満足できるものは得られていない。
 これらの問題点を克服するため、主剤となるエポキシ樹脂及び硬化剤には、低粘度化、低吸湿化、高耐熱化とともに難燃化が望まれている。低粘度エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が一般に広く知られているが、低粘度性の点で充分ではないし、難燃性を有していない。低粘度性に優れたエポキシ樹脂として、特許文献1には、オキシメチレン鎖を有するエポキシ樹脂が提案されているが、耐熱性、耐湿性に改良の余地があり、難燃性に関してはまったく考慮されていない。特許文献2には、ビシクロヘキシル環を有するエポキシ樹脂が提案されているが、難燃性に関してはまったく考慮されていない。特許文献3では、難燃性を有するリン含有エポキシ樹脂が提案されているが、芳香族骨格を有する2官能エポキシ樹脂とリン含有フェノール樹脂から得られるリン含有エポキシ樹脂であって低粘度化という点では問題があった。特許文献4では、リン含有エポキシ樹脂組成物で難燃性について言及しているし、脂肪族エポキシ樹脂もリン含有エポキシ樹脂の原料として使用可能なことが記載されているが、脂肪族エポキシ樹脂を使用する効果についての記載はなく、さらには、リン含有エポキシ樹脂としての特徴についての記載もなく、粘度に関してはまったく考慮されていない。特許文献5ではリン含有モノエポキシ樹脂を含有した組成物を提案されているが、脂肪族系の希釈剤の併用が必須で単独での使用はできなかった。
特開平4−359009号公報 特開2006−188606号公報 特開2001−288247号公報 特開2002−249540号公報 特開2001−106766号公報 特開昭61−268691号公報
 このように難燃性のある液状エポキシ樹脂を得ることは難しかった。従って、本発明の目的は低粘度性に優れ、かつ難燃性を有する硬化物を与えるエポキシ樹脂、エポキシ樹脂組成物ならびにその硬化物を提供することにある。
 本発明者は前記の課題を解決するため鋭意研究を重ねた結果、硬化物物性が著しく損なわれることなく、有効な難燃性を有する低粘度エポキシ樹脂に必須な骨格を見出し、本願発明のリン含有エポキシ樹脂を完成したものであり、前記の課題を解決するための手段はその特許請求の範囲に記載した下記のようなものである。
(1)エポキシ当量が200~600g/eqであり、リン含有率が1~5重量%であり、全塩素量が0.2重量%以下であり、100℃における溶融粘度が1,000mPa・s以下である一般式(1)で示されるリン含有エポキシ樹脂。
Figure JPOXMLDOC01-appb-I000008
式中Xは単環でも複素環でも良い少なくとも1つのシクロヘキサン環または芳香環を有する、酸素原子、窒素原子、硫黄原子を含んでも良い、炭素数6~31の炭化水素基であり、Yは式2を示し、Zは水素または式(3)または式(4)のいずれかを示し、nは0~10の整数を示す。
Figure JPOXMLDOC01-appb-I000009
式中R1、R2は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R1とR2が結合して環状構造となっても良い。kは0または1の整数を示す。Arはベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン及びこれらの炭化水素置換体のいずれかを示す。
Figure JPOXMLDOC01-appb-I000010
式中R3、R4は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R3とR4が結合して環状構造となっても良い。mは0または1の整数を示す。
Figure JPOXMLDOC01-appb-I000011
(2)(1)に記載のリン含有エポキシ樹脂と硬化剤を必須成分として含有することを特徴としたエポキシ樹脂組成物。
(3)(2)に記載のエポキシ樹脂組成物を硬化して得られる硬化物。
 本発明のリン含有エポキシ樹脂は低粘度に優れ、かつ難燃性を有する液状エポキシ樹脂を提供することができ、該エポキシ樹脂を含有した本発明のエポキシ樹脂組成物を使用して得られた成形物の評価を行った結果、従来の低粘度樹脂組成物に比べ、難燃性を有しかつ比較的低吸水率である硬化物を得ることが可能である。該エポキシ樹脂組成物及びその硬化物は、電子回路基板に用いられる銅張積層板の製造用樹脂組成物や電子部品に用いられる封止材、成形材、注型材、接着剤、フィルム材、電気絶縁塗料用材料などとして有用であることがわかった。
 図1は本発明の実施例1に係るリン含有エポキシ樹脂(E−1)の赤外吸収スペクトルである。フーリエ変換赤外分光光度計(パーキンエルマー社製 SpectumOne)を用い、液膜法(KBr)により測定した。
 図2は本発明の実施例1に係るリン含有エポキシ樹脂(E−1)のGPCチャートである。横軸は溶離時間(分)を、左軸はmVを、右軸は標準ポリスチレン検量線の分子量(M)の対数をそれぞれ表している。ゲルパーミエーションクロマトグラフィー装置(東ソー株式会社製 HLC−8220GPC、溶出溶剤:テトラヒドロフラン)で測定した。
 図3は本発明の実施例2に係るリン含有エポキシ樹脂(E−2)の赤外吸収スペクトルである。フーリエ変換赤外分光光度計(パーキンエルマー社製 SpectumOne)を用い、液膜法(KBr)により測定した。
 図4は本発明の実施例2に係るリン含有エポキシ樹脂(E−2)GPCチャートである。横軸は溶離時間(分)を、左軸はmVを、右軸は標準ポリスチレン検量線の分子量(M)の対数をそれぞれ表している。ゲルパーミエーションクロマトグラフィー装置(東ソー株式会社製 HLC−8220GPC、溶出溶剤:テトラヒドロフラン)で測定した。
 本発明について更に詳細に述べる。
 本発明のリン含有エポキシ樹脂は一般式(1)で表され、nは0~10の整数を示していて、その平均値である平均重合度は0.1~3の範囲のオリゴマーである。
 本発明のリン含有エポキシ樹脂のエポキシ当量は200g/eq~600g/eqに制御する必要がある。エポキシ当量が200g/eq未満の場合は接着性に劣り、600g/eqを越えると粘度が増大し、得られる硬化物の耐熱性が大きく損なわれる。
そのために200g/eq~600g/eqに調整することが好ましく、より好ましくは230g/eq~550g/eq、さらに好ましくは250g/eq~500g/eqである。
 本発明のリン含有エポキシ樹脂のリン含有率は、1重量%~5重量%に制御する必要がある。難燃性の観点からはリン含有率が高い方が好ましいが、リン含有率が高くなるにつれてリン含有エポキシ樹脂の粘度の増大やエポキシ当量の増加が起こり、得られる硬化物の耐熱性が大きく損なわれる。そのために1重量%~5重量%に調整することが好ましく、より好ましくは1重量%~4重量%であり、さらに好ましくは2重量%~3重量%である。
 本発明のリン含有エポキシ樹脂の全塩素量は得られる硬化物の電気的信頼性の低下と相関があり、増加すれば硬化物の電気的信頼性は低下し、少なければ電気的信頼性は向上する。許容できる硬化物の電気的信頼性から考えて、本発明のリン含有エポキシ樹脂の全塩素量は0.2重量%以下が好ましく、より好ましくは一般的な封止材用エポキシ樹脂と等しく0.09重量%以下であり、さらに好ましくは0.05重量%以下である。
 本発明のリン含有エポキシ樹脂の100℃における溶融粘度は好ましくは1,000mPa・s以下、より好ましくは600mPa・s以下、さらに好ましくは300mPa・s以下である。100℃における溶融粘度が1,000mPa・sを越えると比較的粘度の低い硬化剤を使用してもエポキシ樹脂組成物の粘度が上がり、実作業が困難になり、正常な成型物を得ることが難しい。
 本発明の一般式(1)で示されるリン含有エポキシ樹脂は、一般式(5)で示される2官能エポキシ樹脂類(A)と一般式(6)で示される有機リン化合物類(B1)と必要により一般式(7)で示される有機リン化合物類(B2)とを反応させて得られる。
Figure JPOXMLDOC01-appb-I000012
式中Xは単環でも複素環でも良い少なくとも1つのシクロヘキサン環または芳香環を有する、酸素原子、窒素原子、硫黄原子を含んでも良い、炭素数6~31の炭化水素基である。
Figure JPOXMLDOC01-appb-I000013
式中R1、R2は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R1とR2が結合して環状構造となっても良い。kは0または1の整数を示す。Arはベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン及びこれらの炭化水素置換体のいずれかを示す。
Figure JPOXMLDOC01-appb-I000014
式中R3、R4は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R3とR4が結合して環状構造となっても良い。mは0または1の整数を示す。
 一般的に、エポキシ樹脂類とフェノール樹脂類とを反応させて新たなエポキシ樹脂を合成する場合、得られたエポキシ樹脂中に原料となるエポキシ樹脂類が残存することはさけられない。そのため、得られるリン含有エポキシ樹脂では原料となる2官能エポキシ樹脂類(A)の影響も考慮する必要がある。
 有機リン化合物類と反応させる2官能エポキシ樹脂類(A)は、シクロヘキサン環または芳香環を少なくとも1つ含有することが必須である。シクロヘキサン環や芳香環はリン含有エポキシ樹脂の難燃性の向上に役立ち、シクロヘキサン環や芳香環を含有しない脂肪族系エポキシ樹脂では難燃性を確保できない。即ち、この2官能エポキシ樹脂類(A)は、骨格内にシクロヘキサン環または芳香環を少なくとも1つ含有する炭素数8~33の2官能の1級アルコールのグリシジルエーテル化物である。
 また、2官能エポキシ樹脂類(A)の構造において、−O−CH2−X−CH2−O−構造は必須である。この構造を持たない2官能エポキシ樹脂類では、一般式1で示されるリン含有エポキシ樹脂が得られないし、得られたリン含有エポキシ樹脂は低粘度化が十分ではないため、エポキシ樹脂組成物の低粘度化のために、脂肪族系エポキシ樹脂などの反応性希釈剤を多用する必要があり、難燃性を確保できない。また、難燃性を確保しようと脂肪族系エポキシ樹脂の使用量を減らすと、エポキシ樹脂組成物の粘度が著しく上がるため、低粘度化に不利であり、目的とする低粘度リン含有エポキシ樹脂組成物が得られない。
 一般的に、アルコール性水酸基由来のグリシジルエーテル化は反応性が劣ることから未反応の残存水酸基量が多い傾向となる。原料2官能エポキシ樹脂類(A)中の残存水酸基はリン化合物との反応に関与せずにそのまま残存し、リン含有エポキシ樹脂の末端基純度を低下させるので、原料2官能エポキシ樹脂類(A)中の残存水酸基の増加はそのままリン含有エポキシ樹脂組成物の吸湿性を増大させ、酸無水物硬化剤やマイクロカプセル型潜在硬化剤に対して貯蔵安定性低下の原因となる。さらに、硬化物の強度や耐熱性の低下などの硬化物の物性の悪化の要因となるため、原料2官能エポキシ樹脂類(A)の残存水酸基の高純度化が必要となる。2官能エポキシ樹脂類(A)の残存水酸基濃度は200meq/100g以下が好ましく、より好ましくは100meq/100g以下であり、さらに好ましくは50meq/100g以下である。
 また、残存水酸基濃度を低減するために、触媒添加等で反応性を上げると平行して副反応が増加して含有する全塩素量の高濃度化が起こる。原料2官能エポキシ樹脂類(A)中の全塩素量はそのままリン含有エポキシ樹脂に残存するため硬化物の電気的信頼性を著しく低下させるので、全塩素量についても高純度化が必要となる。原料2官能エポキシ樹脂類(A)の全塩素量は0.4重量%以下が好ましく、より好ましくは0.2重量%以下であり、さらに好ましくは0.1重量%以下である。アルコール性水酸基由来のグリシジルエーテル化では、全塩素量が1重量%以上の場合がほとんどであるため、高度な精製反応や蒸留操作または抽出操作によって全塩素量を減らす必要がある。それらの方法は特に規定されるものではなく、現在考案されている様々の方法を使用することができる。
 一般式(5)で表される2官能エポキシ樹脂類(A)の式中のXの具体的な例を式(8)群に示した。また、Xは一般式(8)群の異性体でもいいし、置換基を有しても良い。さらに、Xはこれらが単一でも良いし、2種類以上であっても良い。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
式中jはそれぞれ独立に、0または1の整数を示す。
Figure JPOXMLDOC01-appb-I000017
式中jはそれぞれ独立に、0または1の整数を示す。
Figure JPOXMLDOC01-appb-I000018
式中jはそれぞれ独立に、0または1の整数を示す。
Figure JPOXMLDOC01-appb-I000019
 一般式(5)で表される2官能エポキシ樹脂類(A)の中では、一般式(9)で示されるシクロヘキサンジメタノールのグリシジルエーテル化物や一般式(10)で示されるパラキシレングリコールのグリシジルエーテル化物や一般式(11)で示されるオキシメチレンビフェニルのグリシジルエーテル化物が好ましい。
Figure JPOXMLDOC01-appb-I000020
 また、2官能エポキシ樹脂類(A)と反応させる有機リン化合物類は、一般式6で示される有機リン化合物(B1)とまたは一般式(7)で示される有機リン化合物(B2)で、これらを併用しても良い。
 一般式(6)で示される有機リン化合物(B1)は活性水素を2個もつ有機リン化合物であり、式中のR1、R2は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良く、また、R1とR2が結合して環状構造となっても良いものである。R1、R2の具体的な例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、1−メチルヘプチル基、オクチル基、ノニル基、ドデシル基、ウンデシル基、ドデシル基、ベンジル基、フェニル基、トルイル基、キシリル基等が挙げられる。また、R1とR2が結合して環状構造を形成しているものの例としては、例えば、テトラメチレン、シクロペントレン、シクロヘキシレン、シクロヘブチレン、シクロオクチレン、シクロデシレン、ノルボルニレン基、ビフェニレン基等が挙げられる。Arはアリーレン基であり、具体例な例としては、フェニレン基、トルイレン基、キシリレン基、ナフチレン基、ビフェニレン基等が挙げられる。また、kの数は0または1である。
 これらの有機リン化合物(B1)は一般式(7)の有機リン化合物(B2)と単環又は多環キノン化合物との反応によって容易に得られる(特許文献6)。本発明に使用される好ましい有機リン化合物としては、一般式(12)で表される有機リン化合物である9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイド(以下、DOPOと略記する)と1,4−ベンゾキノンの付加反応物である一般式(13)で示されるリン含有化合物(以下、DOPO−HQ略記する)または、DOPOと1,4−ナフトキノンの付加反応物である一般式(14)で示される有機リン化合物(以下、DOPO−NQ略記する)が挙げられる。
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
 DOPOは、商品名「HCA」(三光株式会社製)として入手することができるし、DOPO−HQは、商品名「HCA−HQ」(三光株式会社製)として入手することができる。
 一般式(7)で表される有機リン化合物(B2)は活性水素を1個もつ有機リン化合物であり、式中のR3、R4は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良く、また、R3とR4が結合して環状構造となっても良いものである。R3、R4の具体的な例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、1−メチルヘプチル基、オクチル基、ノニル基、ドデシル基、ウンデシル基、ドデシル基、ベンジル基、フェニル基、トルイル基、キシリル基等が挙げられる。また、R3とR4が結合して環状構造を形成しているものの例としては、例えば、テトラメチレン、シクロペントレン、シクロヘキシレン、シクロヘブチレン、シクロオクチレン、シクロデシレン、ノルボルニレン基、ビフェニレン基等が挙げられる。また、mの数は0または1である。これらの中では、一般式(12)で表されるDOPOが好ましい。
 本発明のリン含有エポキシ樹脂を得るために使用する有機リン化合物類中において、一般式6で示される有機リン化合物(B1)と一般式(7)で示される有機リン化合物(B2)との(B1)/(B2)の重量比は、50/50~100/0であり、好ましくは65/35~100/0であり、より好ましくは80/20~100/0であり、さらに好ましくは90/10~100/0である。(B1)/(B2)の重量比=0/100~50/50未満だとリン含有率の調整が容易なため難燃性の向上や粘度低下に効果があるが、一般式(7)で示される1官能の有機リン化合物(B2)とエポキシ基の反応が多く起こり、1官能以下エポキシ樹脂が多く生成し全体のエポキシ基数が低下するため、反応性が大きく低下する。さらに、得られる硬化物の接着性の低下や耐熱性の低下や耐湿性の低下が起こり、電気絶縁信頼性が著しく低下する。(B1)/(B2)の重量比=50/50~100/0の範囲であれば、十分な反応性を確保できるため硬化物の物性低下はない。一般式(6)で示される有機リン化合物(B1)を多用すると分子量が増加し接着性を大幅に向上できるし、一般式(7)で示される有機リン化合物(B2)を多用するとのリン含有率の調整が容易になるので、目的とする特性によって使用量を調整する必要がある。(B1)/(B2)の重量比=50/50~100/0の範囲内で、より難燃性を求める場合は有機リン化合物(B2)の使用比率を増やし、より接着性の必要とする場合は有機リン化合物(B1)の使用比率を増やせばよい。
 有機リン化合物類は、あらかじめ合成しておいた一般式(6)で示される有機リン化合物(B1)と一般式(7)で示される有機リン化合物(B2)を混合して用いても良いし、2官能エポキシ樹脂類(A)との反応前に一般式(7)で示される有機リン化合物(B2)とキノン類を反応させても良い。その場合、キノン類は一般式(7)で示される有機リン化合物(B2)1モルに対し、1モル未満で反応することが好ましい。一般式(7)で示される化合物(B2)1モルに対し、キノン類を1モル以上使用すると、得られるリン含有エポキシ樹脂中に、原料のキノン類が残存し、硬化物の耐湿性が悪化するため好ましくない。
 本発明に用いる有機リン化合物類と2官能エポキシ樹脂類(A)との反応は公知の方法で行うことが可能である。反応温度として100℃~200℃、より好ましくは120℃~180℃で攪拌下行うことができる。反応時間はエポキシ当量の測定を行って決定することができる。測定にはJIS K−7236の方法により測定可能である。2官能エポキシ樹脂類(A)と有機リン化合物類との反応によりエポキシ当量は大きくなっていき、理論エポキシ当量との比較により反応終点を決定できる。
 また、反応の速度が遅い場合、必要に応じて触媒を使用して生産性の改善を計ることができる。具体的にはベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類等各種触媒が使用可能である。
 本発明組成物には特性を損ねない範囲で本発明のリン含有エポキシ樹脂以外のエポキシ樹脂類を配合してもよい。
 本発明のエポキシ樹脂組成物中の全エポキシ樹脂成分に対するリン含有率を特に規定する必要はないが、難燃性の観点からはリン含有率が高い方が好ましく、低粘度化の観点からリン含有率が低い方が好ましい。従って両方を満足させるには、好ましくは0.5重量%から5重量%であり、より好ましくは1重量%から4重量%であり、さらに好ましくは2重量%から3重量%である。
 本発明の硬化剤としては、フェノールノボラック樹脂を代表とする各種多価フェノール樹脂類や酸無水物類、ジシアンジアミンやジエチルジアミノジフェニルメタンを代表とするアミン類、ヒドラジッド類、酸性ポリエステル類等の通常使用されるエポキシ樹脂用硬化剤を使用することができ、これらの硬化剤は1種類だけ使用しても2種類以上使用しても良い。
 また、本発明エポキシ樹脂組成物は必要に応じて硬化促進剤を使用することができる。硬化促進剤としては、ホスフィン類、四級ホスホニウム塩類、三級アミン類、四級アンモニウム塩類、イミダゾール化合物類、三フッ化ホウ素錯体類、3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、3−フェニル−1,1−ジメチルウレア等が挙げられるがこれらに限定されるものではない。
 これら硬化促進剤は併用するエポキシ樹脂、使用するエポキシ樹脂硬化剤の種類、成型方法、硬化温度、要求特性によるが、エポキシ樹脂100部に対して0.01~20重量部の範囲が好ましく、さらには0.1~10重量部が好ましい。
 本発明のエポキシ樹脂組成物は、必要に応じて無機充填剤、有機充填剤を配合することができる。充填剤の例としては、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミニウム、タルク、マイカ、炭酸カルシウム、ケイ酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、炭素、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維等が挙げられる。これら充填剤はエポキシ樹脂組成物中の1~95重量%が好ましい。
 本発明のエポキシ樹脂組成物は、さらに必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の各種添加剤を配合することができる。これら添加剤はエポキシ樹脂組成物全量中の0.01~20重量%の範囲が好ましい。
 本発明のエポキシ樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法により成型、硬化して硬化物とすることができる。成型方法、硬化方法は公知のエポキシ樹脂組成物と同様の方法をとることができ、本発明エポキシ樹脂組成物固有の方法は不要である。
 本発明のエポキシ樹脂硬化物は塗膜、接着層、成型物、積層物、フィルム等の形態をとることができる。
 以下、合成例、実施例及び比較例に基づき、本発明を具体的に説明するが、本発明の技術的範囲は実施例のみに制限されるものではない。なお、実施例と比較例における各成分の配合部数は、特に断らない限り重量部を示すものである。
また、本発明では以下の分析方法を使用した。
 エポキシ当量:JIS K−7236に記載の方法。即ち、試料をクロロホルム10mLに溶解し、無水酢酸20mL、20%の臭化テトラエチルアンモニウム酢酸溶液10mLをそれぞれ加えて、電位差滴定装置を用いて0.1mol/L過塩素酸酢酸標準液で滴定を行い、各試薬の濃度と添加量ならびに滴定量から、エポキシ樹脂に含まれるエポキシ当量を測定した。
全塩素量:JIS K−7243−3に記載の方法。即ち、試料をジエチレングリコールモノブチルエーテル25mLに溶解し、1mol/L水酸化カリウムの1,2−プロパンジオール溶液25mLを加えて、ホットプレート上にて10分間加熱還流下で反応させる。室温まで冷却後、50mLの無水酢酸を加えて、電位差滴定装置を用いて0.01mol/L硝酸銀溶液で滴定を行い、各試薬の濃度と添加量ならびに滴定量から、エポキシ樹脂に含まれる全塩素量を測定した。
粘度:JIS K−7233に記載の方法。即ち、500mLの円筒缶に樹脂400gをはかりとって、25±0.2℃の恒温水槽で5時間放置して恒温にし、回転粘度計のローターを樹脂に浸漬して測定した。
軟化点:JIS K−7234に記載の方法。即ち、環球法で、規定の環に試料を充填し、グリセリン浴中に水平に支え、試料中央に規定の球を置き、5℃/minで昇温して測定した。
水酸基濃度:エポキシ樹脂に含まれる水酸基量に対して、当量以上のフェニルイソシアネートと、触媒としてジブチル錫マレーアートを加え、水酸基とイソシアネートを十分に反応させた後、用いたフェニルイソシアネートの当量に対してそれ以上のジブチルアミンを添加して余剰のフェニルイソシアネートを消費させ、最後に過塩素酸にて滴定を行い、各試薬の濃度と添加量ならびに滴定量から、エポキシ樹脂に含まれる水酸基濃度を測定した。
リン含有率:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子を正リン酸とした。硫酸酸性溶液中でメタバナジン酸塩およびモリブデン酸塩を反応させ、生じたリンバナードモリブデン酸錯体の420nmにおける吸光度を測定し、予め作成した検量線により求めたリン原子含有量を重量%で表し、エポキシ樹脂に含まれるリン含有率を測定した。
溶融粘度:コーンプレート型粘度計(東亜工業株式会社製、MOEDL CV−1S)を用い、ローターは10ポアズコーン(Φ:19.5mm、θ:0.5°)を使用して、100℃の測定温度で測定した。
難燃性:UL(Underwriters Laboratories Inc.)規格、UL94垂直試験法に準じて測定を行い、同規格の判定基準である、V−0、V−1、V−2、NG(難燃性なし)の4水準で判定した(後になるほど難燃性が悪い)。
接着性:JIS C−6481 5.7に準じた方法。即ち、プリプレグ1枚と残りの3枚の間で直角方向に50mm/minの速度で剥離を行い測定した。
吸湿率:JIS C−6481 5.13に準じた方法。即ち、50mm×50mmにカットした試験片を用いて、50℃のオーブン中で24時間乾燥した後の乾燥重量を測定し、引き続き85℃/85%RHに調整した処理槽内に72時間保管した後の重量を測定し、乾燥重量からの増加分に基づいて吸湿率を測定した。
耐熱性:IPC−TM−650、2.4.24.1に準じた方法。即ち、TMA装置によるデラミネーション時間の測定であり、TMA装置で260℃の一定温度に保持し、試験片がはじけ変位が生じるまでの時間が10分以上だった場合、○とし、10分未満だった場合、×とした。なお、TMA装置はエスアイアイ・ナノテクノロジー株式会社製TMA/SS120Uを使用した。
塩素イオン:硬化物を粉砕し、2mmパス、1mmオンの粒径に揃えた試料を、150、20時間のプレッシャークッカーテストを行った後、イオンクロマトグラフィーにて、抽出水の塩素イオンを測定し、硬化物中の濃度に換算して求めた。
実施例1
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、一般式5の2官能エポキシ樹脂(A)として、エポトートZX−1658(東都化成株式会社製、シクロヘキサンジメタノールジグリシジルエーテル樹脂、エポキシ当量:140g/eq、全塩素:0.075重量%、粘度:45mPa・s、水酸基濃度:19meq/100g)632.0g、有機リン化合物としてDOPO−HQ(三光株式会社製、商品名:HCA−HQ、水酸基当量:162g/eq、リン含有率:9.5重量%)168.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで1時間温度を保った後、触媒としてトリフェニルホスフィン(北興化学株式会社製、製品名:TPP)0.17gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−1)795gを得た。得られたリン含有エポキシ樹脂(E−1)の性状を表1に示す。
実施例2
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、一般式5の2官能エポキシ樹脂(A)として、エポトートTX−0929(東都化成株式会社製、パラキリレングリコールジグリシジルエーテル樹脂、エポキシ当量:144g/eq、全塩素:0.11重量%、粘度:50mPa・s、水酸基濃度:39meq/100g)547.4g、有機リン化合物としてDOPO−HQ(前述)252.6gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.25gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−2)795gを得た。得られたリン含有エポキシ樹脂(E−2)の性状を表1に示す。
実施例3
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、一般式(5)の2官能エポキシ樹脂(A)として、エポトートTX−0929(前述)602.5g、有機リン化合物としてDOPO−NQ(9,10−ジハイドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドの1,4−ナフトキノン付加物、水酸基当量:187g/eq、リン含有量:8.1重量%)197.5gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒として2エチル4メチルイミダゾール(四国化成株式会社製、製品名:2E4MZ)0.05gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−3)795gを得た。得られたリン含有エポキシ樹脂(E−3)の性状を表1に示す。
実施例4
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、一般式5の2官能エポキシ樹脂(A)として、エポトートTX−0934(東都化成株式会社製、オキシメチレンビフェニルジグリシジルエーテル樹脂、エポキシ当量:184g/eq、全塩素:0.11重量%、粘度:200mPa・s、水酸基濃度:63meq/100g)608.7g、有機リン化合物としてDOPO−NQ(前述)116.3gとDOPO(三光株式会社製、商品名:HCA、リン含有率:14.2重量%)75.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.19gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−4)795gを得た。得られたリン含有エポキシ樹脂(E−4)の性状を表1に示す。
実施例5
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、有機リン化合物としてDOPO(前述)168.0gとトルエン400gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(川崎化成株式会社製、3%含水品)70.0gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとDOPOのモル比は1,4−ナフトキノン/DOPO=0.52であった。加熱反応後、一般式5の2官能エポキシ樹脂(A)として、エポトートTX−0917(東都化成株式会社製、一般式5のXが式8−10の化合物、エポキシ当量:173g/eq、全塩素:0.10重量%、粘度:46mPa・s、水酸基濃度:72meq/100g)563.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.24g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−5)790gを得た。得られたリン含有エポキシ樹脂(E−5)の性状を表1に示す。
Figure JPOXMLDOC01-appb-T000023
比較例1
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂としてエポトートPG−207GS(東都化成株式会社製、ポリプロピレングリコールジグリシジルエーテル樹脂、エポキシ当量:319g/eq、全塩素:0.10重量%、粘度:45mPa・s)632.0g、有機リン化合物としてDOPO−HQ(前述)168.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.17gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−6)795gを得た。得られたリン含有エポキシ樹脂(E−6)の性状を表2に示す。
比較例2
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂としてエポトートTX−0917(前述)757.9g、有機リン化合物としてDOPO−HQ(前述)42.1gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.05gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−7)795gを得た。得られたリン含有エポキシ樹脂(E−7)の性状を表2に示す。
比較例3
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂としてエポトートTX−0917(前述)480.0g、有機リン化合物としてDOPO(前述)220.0gとDOPO−HQ(前述)100.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.32gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−8)795gを得た。得られたリン含有エポキシ樹脂(E−8)の性状を表2に示す。
比較例4
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂としてエポトートTX−0934(前述)505.0g、有機リン化合物としてDOPO−HQ(前述)295.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.30gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−9)795gを得た。得られたリン含有エポキシ樹脂(E−9)の性状を表2に示す。
比較例5
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂として、エポトートST−3000(東都化成株式会社製、水添ビスフェノールA型ジグリシジルエーテル樹脂、エポキシ当量:230g/eq、全塩素:5.0重量%、粘度:3,200mPa・s)632.0g、有機リン化合物としてDOPO−NQ(前述)168.0gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.17gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−10)795gを得た。得られたリン含有エポキシ樹脂(E−10)の性状を表2に示す。
比較例6
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、有機リン化合物としてDOPO(前述)169.7gとトルエン400gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)36.4gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとDOPOのモル比は1,4−ナフトキノン/DOPO=0.28であった。加熱反応後、エポキシ樹脂として、エポトートZX−1658Z(東都化成株式会社製、シクロヘキサンジメタノールジグリシジルエーテル樹脂、エポキシ当量:145g/eq、全塩素:0.45重量%、粘度:85mPa・s、水酸基濃度:150meq/100g)595.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.21g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂(E−11)790gを得た。得られたリン含有エポキシ樹脂(E−11)の性状を表2に示す。
比較例7
 攪拌装置、温度計、窒素ガス導入装置、及び冷却管を備えた4つ口のガラス製セパラブルフラスコに、エポキシ樹脂として、エポトートYDF−170(東都化成株式会社製、ビスフェノールFジグリシジルエーテル樹脂、エポキシ当量:168g/eq、全塩素:0.15重量%、粘度:3,000mPa・s)547.4g、有機リン化合物としてDOPO−HQ(前述)252.6gを仕込み、マントルヒーターで130℃まで撹拌しながら加熱して、130℃に達したところで触媒としてトリフェニルホスフィン(前述)0.25gを加え、反応温度を160℃~165℃に保ちながら4時間反応して、軟化点96℃のリン含有エポキシ樹脂(E−12)795gを得た。得られたリン含有エポキシ樹脂(E−12)の性状を表2に示す。
Figure JPOXMLDOC01-appb-T000024
実施例6~8、比較例8~11
 表3に示す配合処方によりリン含有エポキシ樹脂、硬化剤、硬化促進剤等を配合した。リン含有エポキシ樹脂をメチルエチルケトンで溶解させ、あらかじめメチルセロソルブ、ジメチルホルムアミドに溶解させておいた硬化剤としてジシアンジアミド(DICY、活性水素当量:21.0g/eq)と硬化促進剤として2エチル4メチルイミダゾール(前述)を加えて、不揮発分が50重量%になるように樹脂組成物ワニスを調製した。その後、得られた樹脂ワニスを用い、基材であるガラスクロス(日東紡績株式会社製、WEA 116E 106S 136、厚み100μm)に含浸させ、含浸させたガラスクロスを150℃の熱風循環式オーブンで8分間乾燥を行い、プリプレグを得た。次いで、得られたプリプレグ4枚を重ね、130℃×15分及び170℃×2.0MPa×70分間の条件で加熱と加圧を行い0.5mm厚の積層板を得た。得られた各々の積層板について、難燃性、接着性、吸湿率の各物性を試験した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 比較例8は脂肪族系リン含有エポキシ樹脂を使用しているため、接着性は良いが難燃性が悪いし耐吸湿性も悪い。比較例9は一般式1のリン含有エポキシ樹脂だが、リン含有率が0.5重量%と低いため難燃性が悪く、エポキシ当量も196g/eqと小さいため接着性も悪い。比較例10は一般式1のリン含有エポキシ樹脂だが、リン含有率が5.2重量%と大きすぎるためエポキシ当量が705g/eqと大きくなり難燃性は良いが、接着性が悪く、耐熱性も悪い。比較例11は一般式1のリン含有エポキシ樹脂だが、エポキシ当量が880g/eqと大きく、溶融粘度も1,300mPa・sと大きいため、接着性は良いが、耐熱性は悪い。それに対し実施例は全て、十分な難燃性を確保しながら、接着性は良く、耐吸湿性や耐熱性も良い。
実施例9~12、比較例12~14
 表5に示す配合処方によりリン含有エポキシ樹脂、硬化剤、硬化促進剤等を配合した。硬化剤として、ジエチルジアミノジフェニルメタン(日本化薬株式会社製、商品名:カヤハードAA、活性水素当量:63g/eq、粘度:2,500mPa・s)を、硬化促進剤として2エチル4メチルイミダゾール(前述)を用いて、50℃に加熱しながら、撹拌し均一化してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を脱泡して金型に注型し、150℃×120分の温度条件で硬化させて2mm厚の硬化物試験片を得た。得られた硬化物試験片について、塩素イオン、難燃性、吸湿率の各物性を試験した。その結果を表6に示す。なお、比較例14では、エポキシ樹脂として、エポトートZX−1059(東都化成株式会社製、ビスフェノールFジグリシジルエーテル樹脂とビスフェノールAジグリシジルエーテル樹脂の混合物、エポキシ当量:165g/eq、全塩素:0.08重量%、粘度:2,300mPa・s)を使用し、添加型難燃剤として、1,3−フェニレンビス−ジ−2,6−キシレニルホスフェート(大八化学工業株式会社製、商品名:PX−200、リン含有量:9.0重量%)を、エポキシ樹脂組成物中のリン含有率が2.0重量%になるように添加した。
Figure JPOXMLDOC01-appb-T000027
 比較例12は全塩素が3.8重量%と非常に多い脂肪族系リン含有エポキシ樹脂を使用しているため、塩素イオンが実施例より100倍程度多い。これは信頼性が非常に悪くなることを示している。さらに、一般式(1)のリン含有エポキシ樹脂ではないため、難燃性も悪く、耐吸湿性も悪い。比較例13は一般式(1)のリン含有エポキシ樹脂だが、全塩素が0.33重量%と高いため、塩素イオンが実施例より5~7倍程度多い。これは信頼性が悪くなることを示している。比較例14は一般的に使用されている低塩素液状樹脂に難燃剤を配合したエポキシ樹脂組成物だが、リン含有率を実施例と合わせても難燃性は悪く、耐吸湿性も悪い。それに対し実施例は全て、十分な難燃性を確保しながら、塩素イオンは低いし耐吸湿性も良い。これは信頼性が良いことを示している。
実施例13~14、比較例15~17
 表7に示す配合処方によりリン含有エポキシ樹脂、硬化剤、硬化促進剤等を配合した。硬化剤として、トリフェニルメタン型フェノール樹脂(群栄化学工業株式会社製、商品名:TMP−100、水酸基当量:97.5g/eq、軟化点:107℃)を用い、120℃に加熱しながら、撹拌し均一化してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を脱泡して金型に注型し、150℃×120分+180℃×60分の温度条件で硬化させて2mm厚の硬化物試験片を得た。得られた硬化物試験片について、成形性、難燃性、吸湿率の各物性を試験した。その結果を表8に示す。なお、実施例13ではリン含有エポキシ樹脂以外のエポキシ樹脂として、エポトートZX−1059(前述)を併用し、比較例17ではリン含有エポキシ樹脂以外のエポキシ樹脂として、エポトートZX−1542(東都化成株式会社製、トリメチロールプロパンポリグリシジルエーテル樹脂、エポキシ当量:122g/eq、全塩素:0.065重量%、粘度:80mPa・s)を併用した。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 比較例15は脂肪族系リン含有エポキシ樹脂を使用しているため、難燃性が悪いし耐吸湿性も悪い。比較例16は特許文献4で開示された製法で得られたリン含有エポキシ樹脂だが、一般式1のリン含有エポキシ樹脂ではないため、エポキシ樹脂組成物の粘度が高すぎて、金型成型が困難なため、試験に必要な試験片が作成できなかった。比較例17は特許文献4で開示された製法で得られたリン含有エポキシ樹脂に、希釈剤を併用して粘度を下げたエポキシ樹脂組成物で、成形性は改良されるが、難燃性が悪化し、耐湿性も悪化する。それに対し実施例は全て、十分な難燃性を確保しながら、成形性も良く耐吸湿性も良い
 本発明は、電子材料用途の難燃性エポキシ樹脂として利用することが出来る。

Claims (6)

  1. エポキシ当量が200~600g/eqであり、リン含有率が1~5重量%であり、全塩素量が0.2重量%以下であり、100℃における溶融粘度が1,000mPa・s以下である一般式(1)で示されるリン含有エポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000001
     式中Xは単環でも複素環でも良い少なくとも1つのシクロヘキサン環または芳香環を有する、酸素原子、窒素原子、硫黄原子を含んでも良い、炭素数6~31の炭化水素基であり、Yは式(2)を示し、Zは水素または式(3)または式(4)のいずれかを示し、nは0~10の整数を示す。
    Figure JPOXMLDOC01-appb-I000002
     式中R1、R2は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R1とR2が結合して環状構造となっても良い。kは0または1の整数を示す。Arはベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン及びこれらの炭化水素置換体のいずれかを示す。
    Figure JPOXMLDOC01-appb-I000003
     式中R3、R4は水素または炭化水素基を示し、それぞれは異なっていても同一でも良く、直鎖状、分岐鎖状、環状であっても良い。また、R3とR4が結合して環状構造となっても良い。mは0または1の整数を示す。
    Figure JPOXMLDOC01-appb-I000004
  2. 一般式(1)のXが式(5)または式(6)または式(7)のうち少なくとの1つであることを特徴とする請求項1に記載のリン含有エポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000005
  3. 一般式(1)のYが式(8)または式(9)いずれかであることを特徴とする請求項1または請求項2のいずれかに記載のリン含有エポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000006
  4. 一般式(1)のZが水素または式(4)または式(10)のいずれかであることを特徴とする請求項1から請求項3のいずれかに記載のリン含有エポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000007
  5. 請求項1から請求項4のいずれかに記載のリン含有エポキシ樹脂と硬化剤を必須成分として含有することを特徴としたエポキシ樹脂組成物。
  6. 請求項5に記載のエポキシ樹脂組成物を硬化して得られる硬化物。
PCT/JP2010/073471 2009-12-25 2010-12-17 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 WO2011078372A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547677A JP5793086B2 (ja) 2009-12-25 2010-12-17 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295112 2009-12-25
JP2009295112 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078372A1 true WO2011078372A1 (ja) 2011-06-30

Family

ID=44195896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073471 WO2011078372A1 (ja) 2009-12-25 2010-12-17 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Country Status (3)

Country Link
JP (1) JP5793086B2 (ja)
TW (1) TW201122014A (ja)
WO (1) WO2011078372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162621A (ja) * 2010-02-08 2011-08-25 Nippon Steel Chem Co Ltd リン含有エポキシ樹脂の製造方法、エポキシ樹脂組成物及びその硬化物
WO2019065552A1 (ja) * 2017-09-26 2019-04-04 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917227B2 (ja) * 2012-03-28 2016-05-11 新日鉄住金化学株式会社 リン含有エポキシ樹脂の製造方法
JP6452335B2 (ja) * 2013-08-09 2019-01-16 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物及びその硬化物
TWI641628B (zh) * 2014-10-24 2018-11-21 新日鐵住金化學股份有限公司 環氧樹脂組成物及其硬化物
CN113801552B (zh) * 2021-10-18 2022-08-19 成都托展新材料股份有限公司 改性聚脲组合物及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199645A (ja) * 1998-01-16 1999-07-27 Mitsubishi Chemical Corp エポキシ樹脂組成物
JP2000309624A (ja) * 1999-02-23 2000-11-07 Dainippon Ink & Chem Inc 難燃性エポキシ樹脂組成物及び難燃性エポキシ樹脂の製造方法
JP2005097352A (ja) * 2003-09-22 2005-04-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP2006036936A (ja) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、多層プリント配線板
JP2006160855A (ja) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2007177054A (ja) * 2005-12-27 2007-07-12 Toto Kasei Co Ltd 新規熱可塑性ポリヒドロキシポリエーテル樹脂、及び、それを配合した樹脂組成物
WO2008066101A1 (fr) * 2006-12-01 2008-06-05 Kyocera Chemical Corporation Composition de resine de type thermodurcissable photosensible et tableau de connexions imprime flexible
JP2008533236A (ja) * 2005-03-11 2008-08-21 株式会社 国都化▲学▼ ノンハロゲン系難燃性高耐熱リン変性エポキシ樹脂組成物
WO2008133246A1 (ja) * 2007-04-24 2008-11-06 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、樹脂フィルム、プリプレグ、及び多層プリント配線板
WO2009060987A1 (ja) * 2007-11-09 2009-05-14 Tohto Kasei Co., Ltd. リン含有エポキシ樹脂及びリン含有エポキシ樹脂組成物、その製造方法と該樹脂及び該樹脂組成物を用いた硬化性樹脂組成物及び硬化物
WO2009096235A1 (ja) * 2008-02-01 2009-08-06 Tohto Kasei Co., Ltd. リン含有エポキシ樹脂およびリン含有エポキシ樹脂組成物、その製造方法と該樹脂および該樹脂組成物を用いた硬化性樹脂組成物および硬化物
JP2010189466A (ja) * 2009-02-16 2010-09-02 Nippon Steel Chem Co Ltd 難燃性リン含有エポキシ樹脂組成物及びその硬化物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199645A (ja) * 1998-01-16 1999-07-27 Mitsubishi Chemical Corp エポキシ樹脂組成物
JP2000309624A (ja) * 1999-02-23 2000-11-07 Dainippon Ink & Chem Inc 難燃性エポキシ樹脂組成物及び難燃性エポキシ樹脂の製造方法
JP2005097352A (ja) * 2003-09-22 2005-04-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP2006036936A (ja) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、多層プリント配線板
JP2006160855A (ja) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2008533236A (ja) * 2005-03-11 2008-08-21 株式会社 国都化▲学▼ ノンハロゲン系難燃性高耐熱リン変性エポキシ樹脂組成物
JP2007177054A (ja) * 2005-12-27 2007-07-12 Toto Kasei Co Ltd 新規熱可塑性ポリヒドロキシポリエーテル樹脂、及び、それを配合した樹脂組成物
WO2008066101A1 (fr) * 2006-12-01 2008-06-05 Kyocera Chemical Corporation Composition de resine de type thermodurcissable photosensible et tableau de connexions imprime flexible
WO2008133246A1 (ja) * 2007-04-24 2008-11-06 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、樹脂フィルム、プリプレグ、及び多層プリント配線板
WO2009060987A1 (ja) * 2007-11-09 2009-05-14 Tohto Kasei Co., Ltd. リン含有エポキシ樹脂及びリン含有エポキシ樹脂組成物、その製造方法と該樹脂及び該樹脂組成物を用いた硬化性樹脂組成物及び硬化物
WO2009096235A1 (ja) * 2008-02-01 2009-08-06 Tohto Kasei Co., Ltd. リン含有エポキシ樹脂およびリン含有エポキシ樹脂組成物、その製造方法と該樹脂および該樹脂組成物を用いた硬化性樹脂組成物および硬化物
JP2010189466A (ja) * 2009-02-16 2010-09-02 Nippon Steel Chem Co Ltd 難燃性リン含有エポキシ樹脂組成物及びその硬化物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162621A (ja) * 2010-02-08 2011-08-25 Nippon Steel Chem Co Ltd リン含有エポキシ樹脂の製造方法、エポキシ樹脂組成物及びその硬化物
WO2019065552A1 (ja) * 2017-09-26 2019-04-04 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物
JPWO2019065552A1 (ja) * 2017-09-26 2020-10-15 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物
JP7244427B2 (ja) 2017-09-26 2023-03-22 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物

Also Published As

Publication number Publication date
JPWO2011078372A1 (ja) 2013-05-09
TW201122014A (en) 2011-07-01
JP5793086B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5544184B2 (ja) リン含有エポキシ樹脂の製造方法、エポキシ樹脂組成物及びその硬化物
JP3642403B2 (ja) 難燃性エポキシ樹脂組成物及び難燃性エポキシ樹脂の製造方法
JP5783413B2 (ja) 新規リン原子を有するエポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN110194843B (zh) 含磷的苯氧基树脂、树脂组合物、电路基板用材料及硬化物
WO2007046316A1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
KR102603395B1 (ko) 인 함유 페놀 화합물, 인 함유 에폭시 수지, 그 경화성 수지 조성물 또는 에폭시 수지 조성물 및 그 경화물
JP5793086B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
TW201835136A (zh) 含有噁唑烷酮環的環氧樹脂組成物、其製造方法、硬化性樹脂組成物、及硬化物
JP5334373B2 (ja) 新規なリン含有エポキシ樹脂、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及びその硬化物
JP5153000B2 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP6596751B2 (ja) リン含有エポキシ樹脂組成物および硬化物
JP5441477B2 (ja) 難燃性リン含有エポキシ樹脂組成物及びその硬化物
JP5399733B2 (ja) 難燃性リン含有エポキシ樹脂組成物及びその硬化物
TWI422609B (zh) A novel flame retardant epoxy resin, an epoxy resin composition containing the epoxy resin as an essential component and a cured product thereof
JP2018070564A (ja) ビニルベンジル化フェノール化合物、当該ビニルベンジル化フェノール化合物の製造方法、活性エステル樹脂、当該活性エステル樹脂の製造方法、熱硬化性樹脂組成物、当該熱硬化性樹脂組成物の硬化物、層間絶縁材料、プリプレグ、およびプリプレグの製造方法
JP5653374B2 (ja) リン含有エポキシ樹脂、該樹脂を含有するエポキシ樹脂組成物、該樹脂を含有する硬化性エポキシ樹脂組成物、及びそれらから得られる硬化物
KR101954455B1 (ko) 인 함유 페놀 수지와 그 제조 방법, 그 수지 조성물, 경화물
JP2001214037A (ja) エポキシ樹脂組成物
JP5214658B2 (ja) エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP5917227B2 (ja) リン含有エポキシ樹脂の製造方法
JP6113454B2 (ja) エポキシ樹脂組成物及び硬化物
KR101844073B1 (ko) 인 함유 페놀 수지, 그 수지 조성물 및 경화물
TWI487725B (zh) 難燃性含磷環氧樹脂組成物及其硬化物
JP2001310989A (ja) エポキシ樹脂組成物及び電気積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547677

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839600

Country of ref document: EP

Kind code of ref document: A1