[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011072553A1 - 一种多用户复用方法及发射装置 - Google Patents

一种多用户复用方法及发射装置 Download PDF

Info

Publication number
WO2011072553A1
WO2011072553A1 PCT/CN2010/077925 CN2010077925W WO2011072553A1 WO 2011072553 A1 WO2011072553 A1 WO 2011072553A1 CN 2010077925 W CN2010077925 W CN 2010077925W WO 2011072553 A1 WO2011072553 A1 WO 2011072553A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop user
closed
user
matrix
open
Prior art date
Application number
PCT/CN2010/077925
Other languages
English (en)
French (fr)
Inventor
郭森宝
彭爱华
魏民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/258,600 priority Critical patent/US8649251B2/en
Publication of WO2011072553A1 publication Critical patent/WO2011072553A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • the downlink mode is defined as SFBC (space-frequency coding) when the transmit antenna is 2 antennas, and the coding matrix is as shown in Equation 1; 4
  • the diversity mode of the antenna is SFBC+FSTD (frequency switching)
  • the diversity) coding matrix is shown in Equation 2.
  • the invention provides a multi-user multiplexing method and a transmitting device, which can effectively improve the frequency utilization rate.
  • the present invention provides a multi-user multiplexing method, the method comprising: The transmitting device performs layer mapping on the to-be-transmitted data streams of the open-loop user and the closed-loop user respectively; the transmitting device performs pre-coding processing on the layer data matrix of the open-loop user and the closed-loop user obtained by the layer mapping;
  • the transmitting device maps the pre-coded layer data matrix onto a plurality of transmitting antennas and transmits.
  • the step of performing the precoding process may include: calculating a precoding matrix and 2 , where is a closed space user's channel matrix H; a zero space space vector, W! guarantees a closed-loop user's signal to interference and noise ratio
  • the transmit matrix can be: ⁇ M S S2II
  • M are the data to be transmitted for the closed-loop user and the open-loop user, respectively, for the conjugate of &, the opposite of the conjugate of &.
  • the transmit matrix can be: w 2
  • M are the data to be transmitted of the closed-loop user and the open-loop user, respectively, for the conjugate of &, the opposite of the conjugate of &.
  • the emission matrix can be: S, S 2 0 0
  • the transmit matrix can be:
  • the transmit matrix can be:
  • Mi is the data to be transmitted of the closed-loop user and the open-loop user respectively, which is the conjugate of &
  • -S- is the opposite of the conjugate of &.
  • the transmit matrix can be:
  • the transmit matrix can be: M 4 u 7 11 ⁇ 0
  • M are the data to be transmitted of the closed-loop user and the open-loop user, respectively, for the conjugate of &, the opposite of the conjugate of &.
  • the transmit matrix can be:
  • the transmit matrix can be:
  • the data to be transmitted of the closed-loop user and the open-loop user are the conjugate of &, and the opposite of the conjugate of &.
  • the method of using any of the above 4 transmitting antennas or 8 transmitting antennas may be employed, or the following transmitting matrix may be used for precoding processing: u
  • the invention also provides a transmitting device, the device comprising:
  • a data stream processing module configured to perform layer mapping on the to-be-transmitted data streams of the open-loop user and the closed-loop user respectively; f ⁇ transmitting a pre-coding module, which is connected to the data stream processing module, and is configured to be mapped in pairs The layer data matrix of the open loop user and the closed loop user is precoded;
  • a transmit antenna mapping module coupled to the precoding module, and configured to map the precoded layer data matrix to the plurality of transmit antennas
  • a transmit antenna is coupled to the transmit antenna mapping module and configured to transmit data.
  • the transmit precoding module may include: a precoding matrix acquisition submodule, which may be configured to obtain a precoding matrix and ⁇ , where ⁇ is a zero space space vector of a closed matrix user's channel matrix / ⁇ , to ensure a closed-loop user's signal to interference and noise ratio ( SINR) is a maximum value; a precoding matrix processing sub-module, which can be connected to the precoding matrix acquisition submodule, and can be set to complete the precoding matrix ⁇ and W2 and the layer data matrix of the closed loop user and the open loop user according to the emission matrix. Precoding processing.
  • SINR signal to interference and noise ratio
  • the open loop high-speed user and the closed-loop low-speed user are multiplexed together by the method of the invention, which can improve the frequency utilization utilization, and the precoding process is performed by using the transmitting matrix of the present invention, at the transmitting end. Interference between multiple users can be better reduced, and its performance is better than multiplexing between two closed-loop users that are completely unsuitable for pairing. Therefore, the method of the present invention is in a specific scenario. A sub-optimal solution. BRIEF abstract
  • FIG. 1 is a schematic diagram of a multi-user multiplexing method of the present invention.
  • FIG. 2 is a block diagram showing the structure of a transmitting device of the present invention. Preferred embodiment of the invention
  • the main idea of the multi-user multiplexing method and the transmitting device of the present invention is to multiplex the open-loop user and the closed-loop user data, thereby obtaining better under the condition that the cell load is large (frequency resource is tight or saturated) or other scenarios. Spectrum utilization.
  • the open-loop diversity transmission method is adopted for obtaining good reception performance, and all resources are exclusive.
  • the pairing multiplexing between the closed-loop user and the open-loop user using the method of the present invention can also be effective when the cell load is large. Improve spectrum utilization.
  • the invented precoding technology should be used to avoid the open-loop users will cause closed-loop users.
  • Open-loop users can use transmit diversity gain to reduce the interference of closed-loop users, and because of the fast-changing of high-speed user channels, the long-term statistics have no impact on the performance of high-speed open-loop users, and the performance impact on closed-loop users is not guaranteed. Big.
  • antenna and frequency switching techniques can further avoid this performance degradation, and open-loop users can use the long-term statistics to calculate the angle of arrival (AOA) to find the most Excellent low-speed users are paired for better performance.
  • AOA angle of arrival
  • the present invention further enhances diversity performance by selecting the best precoding vector.
  • the diversity and beamforming multi-user multiplexing methods of the LTE-Advanced system are designed in combination with precoding open-loop transmit diversity and closed-loop multiplexing.
  • the multi-user multiplexing method of the present invention includes:
  • Step 101 The transmitting device separately performs layer mapping on the to-be-transmitted data streams of the open-loop user and the closed-loop user.
  • M1 and M2 streams for each user at the base station end are transmitted by M1+M2 streams in total, and Ml streams are high-speed.
  • Open-loop user flow M2 flows are low-speed closed-loop user flows, and open-loop high-speed user flows become symbol-level user flows through channel coding, rate matching, modulation, etc., and then map data streams to different layers through layer mapping.
  • the flow of the high-speed open-loop user can be mapped separately by 2 layers and 4 layers.
  • the closed-loop low-speed user stream becomes a symbol-level user stream through channel coding, rate matching, modulation, etc., and then maps the data stream to different layers through layer mapping.
  • the flow of the low-speed closed-loop user can be performed separately. , 3, 4 layer mapping.
  • Step 102 The transmitting device performs precoding processing on the layer data matrix of the open loop user and the closed loop user obtained by the layer mapping.
  • the process of performing precoding processing includes:
  • A Calculate the precoding matrices ⁇ and ⁇ , where ⁇ is the zero space space vector of the closed channel user's channel matrix ⁇ , and W guarantees that the closed-end user's SINR is the maximum value;
  • the precoding matrix can be calculated according to the eigenvalue decomposition method, but the signal to interference ratio (SINR, Signal to Interferenc Noise Ratio) is guaranteed to be the maximum value.
  • SINR Signal to Interferenc Noise Ratio
  • the precoding matrix ⁇ has various calculation methods, such as algorithms based on block diagonalization (BD, Block Diagnolization), and the precoding matrix W 2 can also be calculated according to the following formula:
  • W 2 ⁇ I -HH,
  • D ( 1 ) is the channel matrix of the base station to the closed-loop user, that is, the fading matrix of the channel from the base station to the closed-loop user. It can be fed back to the base station by the closed-loop user, or the base station can use the reciprocity of the uplink and the downlink to obtain B: Precoding processing is performed by the precoding matrices W and W2 and the layer data matrix of the closed loop user and the open loop user in accordance with the transmission matrix.
  • Step 103 The transmitting device maps the pre-coded layer data matrix to multiple transmit antennas and transmits.
  • Resource mapping and antenna mapping of pre-coded different layers of data maps multi-user data to antennas for transmission.
  • the method of the invention multiplexes the open-loop high-speed user and the closed-loop low-speed user together, and can improve the frequency usage, and the pre-coding process is performed by using the transmitting matrix of the invention, so that the multi-user can be better reduced at the transmitting end.
  • the performance of the interference is better than the multiplexing between two closed-loop users that are completely unsuitable for pairing. Therefore, the method of the present invention is a sub-optimal scheme adopted in a specific scenario.
  • the closed-loop user data stream is mapped to layer 1
  • the open-loop user data stream is mapped to layer 2, and the pre-coded transmission moment is performed.
  • household 1 2.
  • Application example 2 4 transmit antenna, the data stream of the closed-loop user is mapped to layer 2, and the data stream of the open-loop user is mapped to layer 2, and the transmit matrix for pre-coding processing is:
  • is to ensure that the closed-end user's SINR (signal-to-noise ratio) is at a maximum by decomposing the H t eigenvalue.
  • the transmit matrix for precoding processing is:
  • the transmit matrix for precoding processing is: ti ⁇ 3 ⁇ 42 ti ⁇
  • the transmit matrix for precoding processing is: -ss:
  • the transmit matrix for precoding processing is:
  • the transmit matrix for precoding processing is:
  • the transmit matrix for precoding processing is:
  • the if 2 is calculated using the zero space found by the method based on BD or the like.
  • the calculation of ⁇ is to ensure that the closed-end user's SINR (signal to interference and noise ratio) is at a maximum by decomposing the ⁇ ⁇ eigenvalue.
  • the transmit matrix for precoding processing is:
  • the transmit matrix for precoding processing is:
  • the method can also multiplex more users on the same resource. In this case, only the data of the corresponding different closed-loop users needs to be placed in the corresponding layer of the closed-loop user.
  • the method of 4 antennas and 8 antennas can also be used, in which case higher precoding and beamforming gain can be obtained.
  • Can also be used The following emission matrix is used to increase the code rate:
  • M is the closed-loop user data
  • s is the open-loop user data
  • is the conjugate of ⁇
  • the closed-loop user is the N-layer
  • the open-loop user is the M-layer
  • closed-loop user data stream is mapped to layer 2
  • open-loop user data stream is mapped to layer 2 when the closed-loop user's receive matrix is:
  • Equation 2 and Equation (3) It can be seen from Equation 2 and Equation (3) that the precoding of the present invention is performed before transmission, and the open loop user does not cause interference to the receiving matrix received by the closed loop user.
  • the closed-loop user performs MRC (Maximal Ratio Combining), MMSE (Minimum Mean Square Error) or MMSE-SIC (Sof Interference Cancellation Based on Minimum Mean Square Error) according to the received signal. Soft interference cancellation) is used to detect and finally recover the original information of the sender.
  • the closed-loop user's receive matrix is:
  • the closed-loop user's receive matrix is:
  • the present invention also provides a transmitting device. As shown in FIG. 2, the device includes:
  • a data stream processing module configured to perform layer mapping on the data streams to be transmitted of the open loop user and the closed loop user respectively;
  • a precoding module is connected to the data stream processing module, and is configured to perform precoding processing on the layer data matrix of the open loop user and the closed loop user mapped by the layer;
  • the transmitting precoding module includes: a precoding matrix acquiring submodule And setting the precoding matrix ⁇ and ⁇ , wherein the W 2 is a zero space space vector of the channel matrix Hi of the closed loop user, and the signal to interference and noise ratio (SINR ) of the closed loop user is a maximum value;
  • a transmit matrix processing sub-module coupled to the precoding matrix acquisition sub-module and configured to follow the pre-coding matrices W and W2 and the layer data matrix of the closed-loop user and the open-loop user according to an emission matrix Complete the precoding process.
  • a transmit antenna mapping module coupled to the precoding module, and configured to map the precoded layer data matrix to the plurality of transmit antennas
  • a transmit antenna is coupled to the transmit antenna mapping module and configured to transmit data.
  • the method of the present invention is a sub-optimal scheme adopted in a specific scenario.
  • the present invention can improve spectrum utilization in a full load situation of the cell or other possible scenarios, and the precoding process is performed by using the transmit matrix in the present invention, so that multiple users can be better reduced at the transmitting end.
  • the interference between the performance is better than the multiplexing between the two closed-loop users that are completely unsuitable for pairing. Therefore, the method of the present invention is a sub-optimal scheme adopted in a specific scenario.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

一种多用户复用方法及发射装置
技术领域
本发明涉及长期演进高级系统( Long term evolution advanced system, 简 称 LTE- Advanced ) , 具体地说, 是涉及 LTE- Advanced系统一种多用户复用 方法及发射装置。 背景技术
在 LTE (长期演进计划) 系统中, 下行定义了发射天线为 2天线时的分 集方式为 SFBC (空频编码) , 编码矩阵如式 1 所示; 4 天线的分集方式为 SFBC+FSTD (频率切换分集)编码矩阵为式 2所示。
天钱】 天钱:
频净 1 -s '
频率; s; _
式 1
天钱 1 天 天钱: 天钱
频率 1 0 0
频率; 0 0
频率; 0 0 - - si
频率 0 s4 0 在 LTE现有的标准版本中, 只有在开环情况下的发射分集和闭环情况下 的多用户复用, 也就是说但凡在开环的情况下就不存在用户的复用情况, 分 集用户单独占用一定的资源, 复用只考虑在信道条件较好, 低速移动的用户 之间的复用。 发明内容
本发明提供一种多用户复用方法及发射装置, 可以有效地提高频 i "利用 率。
为解决以上技术问题, 本发明提供了一种多用户复用方法, 该方法包括: 发射装置对开环用户和闭环用户的待发射数据流分别进行层映射; 发射装置对层映射得到的开环用户和闭环用户的层数据矩阵进行预编码 处理; 以及
发射装置将预编码处理后的层数据矩阵映射到多个发射天线上并发送。 进行预编码处理的步骤可以包括: 计算预编码矩阵 和 2, 其中 是闭环用户的信道矩阵 H;的零空间空间矢量, W!保证闭环用户的信干噪比
( SINR )为最大值; 以及, 将预编码矩阵 IV!和 V2以及闭环用户和开环用户 的层数据矩阵按照发射矩阵完成预编码处理。
4发射天线, 闭环用户的待发射数据流映射到 1层的情况下, 发射矩阵 可以为: ^ M S S2II
-s2" sx" 其中 M,., 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
4发射天线, 闭环用户的待发射数据流映射到 2层的情况下, 发射矩阵 可以为: w2
其中 M,., 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
8发射天线, 闭环用户的待发射数据流映射到 1层的情况下, 开环用户 的待发射数据流映射到 2层时, 发 以为:
Figure imgf000004_0001
开环用户的待发射数据流映射到 4层时, 发射矩阵可以为: S, S2 0 0
0 o s4
-s* s* o 0
o o -s4* s; 其中 Mi, 分别为闭环用户和开环用户的待发射数据, &为&的共轭, -Si 为 &的共轭的相反数。
8发射天线, 闭环用户的待发射数据流映射到 2层的情况下, 开环用户 的待发射数据流映射到 2层时, 发射矩阵可以为:
Figure imgf000005_0001
开环用户的待发射数据流 4层时, 发射矩阵可以为:
Figure imgf000005_0002
其中 Mi, 分别为闭环用户和开环用户的待发射数据, 为&的共轭, -S- 为 &的共轭的相反数。
8发射天线, 闭环用户的待发射数据流映射到 3层, 开环用户的待发射 数据流映射到 2层时, 发射矩阵可以为:
w2
-s* s* 开环用户的待发射数据流映射到 4层时, 发射矩阵可以为: M4 u7 11 \0
u2 u5 un
n3 11 n
s2 0 0
0 0 s4
0 0
0 0 -s:
其中 M,., 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
8发射天线, 闭环用户的待发射数据流映射到 4层的情况下, 开环用户 的待发射数据流映射到 2层时, 发射矩阵可以为:
u5
"8
s2
-s: s;
开环用户的待发射数据流映射到 4层时, 发射矩阵可以为:
u5 u9 U\3
¾
u3 u7 "11 " 5
«4 un
0 0
0 0 & s4
0 0
0 0 -s
其中 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
发射天线数为 Nr情况下,可以釆用上述任一 4发射天线或 8发射天线时 的方法, 或采用下列发射矩阵进行预编码处理: u
' · ' u2n3
S2 0 0 0 0
[w„w2
0 0 S3 & … 0 0 Sm
-s S; 0 0 0 0
0 0 -s; s; · · · 0 0
0 0 + · · · 0 0 其中, 《为闭环用户的待发射数据, s为开环用户的待发射数据, 为 S 的共轭, -^为 >s的共轭的相反数, 闭环用户的待发射数据流映射到 N层, 开 环用户的待发射数据流映射到 M层, 且 N+M≤N7 , Nr>8„
本发明还提供一种发射装置, 该装置包括:
数据流处理模块, 其设置成对开环用户和闭环用户的待发射数据流分别 进行层映射; f■ 发射预编码模块, 其与所述数据流处理模块连接, 并设置成对层映射后 的开环用户和闭环用户的层数据矩阵进行预编码处理;
发射天线映射模块, 其与所述预编码模块连接, 并设置成将预编码处理 后的层数据矩阵映射到多个发射天线上;
发射天线, 其与所述发射天线映射模块连接, 并设置成发送数据。
发射预编码模块可包括: 预编码矩阵获取子模块, 其可设置成获取预编 码矩阵 和 ^, 其中 ^是闭环用户的信道矩阵/^的零空间空间矢量, 保证闭环用户的信干噪比(SINR )为最大值; 预编码矩阵处理子模块, 其可 与预编码矩阵获取子模块连接, 并可设置成将预编码矩阵 ^和 W2以及闭环 用户和开环用户的层数据矩阵按照发射矩阵完成预编码处理。
在小区的满负载或其他特定情况下采用本发明方法把开环高速用户和闭 环低速用户复用在一起, 可以提高频豫利用率, 而由于采用本发明发射矩阵 进行预编码处理, 在发射端可以较好的减少多用户之间的干扰, 其性能优于 完全不合适配对的两个闭环用户之间的复用。 因此本发明方法是特定场景下 釆用的次优方案。 附图概述
图 1是本发明多用户复用方法的示意图。
图 2是本发明发射装置的模块结构示意图。 本发明的较佳实施方式
本发明多用户复用方法及发射装置的主要思想是将开环用户和闭环用户 数据复用, 从而在小区负载较大(频傳资源紧张或饱和) 的情况下或者其他 场景下获得更好的频谱利用率。
当小区负载处在满负荷或者是小区资源利用已经达到饱和的情况下, 这 时就需要考虑多用户复用的情况, 但是现有 LTE在这种情况下一般只限制在 闭环多用户之间进行复用, 而不考虑开环用户和闭环用户的复用。 本发明在 现有 LTE中的发送复用方案的基础上增加了新的发送方案, 即将开环用户和 闭环用户利用本发明的预编码方法进行复用以充分利用小区资源。 通常由于 用户移动速度高而使得信道是快变的, 从而导致反馈的内容无法正确反应高 速用户当前的信道, 产生反馈无效、 反馈误差大等问题。 对于这种用户, 为 了获得较好的接收性能而釆用了开环分集的发送方式,而且都是资源独占的。 在小区满负荷时, 当闭环 (低速)用户已经没有合适配对的情况下, 釆用本 发明方法在闭环用户和开环用户之间的配对复用, 也可以在小区负载很大的 情况下有效提高频谱利用率。
因为闭环用户是满速率发送, 干扰对其造成的影响较大, 为了使得闭环 用户在高秩的情况下获得较好的性能, 要利用发明的预编码技术来避免开环 用户会对闭环用户造成千扰。 开环用户可以使用发送分集增益来减少闭环用 户对其干扰, 而且由于高速用户信道快变性, 所以长期统计对高速开环用户 的性能影响不是 4艮大, 且保证了对闭环用户的性能影响不大。
采用天线和频率切换技术可以进一步避免这种性能的降低, 并且开环用 户可以通过长期的统计, 利用计算波达角 (AOA, Angle of Arrival)来寻找最 优的低速用户进行配对, 从而获得更好的性能。
本发明通过选择最佳的预编码矢量使得分集性能得到进一步的增强。 即 明将结合预编码开环发射分集和闭环复用,设计 LTE-Advanced系统的分集和 波束成形多用户复用方法。
如图 1所示, 本发明的多用户复用方法包括:
步骤 101 : 发射装置对开环用户和闭环用户的待发射数据流分别进行层 映射;
在基站端每种用户分别有 Ml和 M2个流(对于 LTE-A可以有多个流, 一个用户可以有多个流) , 总共由 M1+M2个流来进行发射, Ml个流为高 速的开环用户流, M2个流为低速的闭环用户流, 开环高速用户流经过信道 编码、 速率匹配、 调制等过程变为符号级的用户流, 然后通过层映射把数据 流映射到不同的层上, 这里对于高速开环用户的流可以分别进行 2层和 4层 的映射。 同时闭环低速用户流经过信道编码、 速率匹配、 调制等过程变为符 号级的用户流, 然后通过层映射把数据流映射到不同的层上, 这里对于低速 闭环用户的流可以分别进行 1、 2、 3、 4层的映射。
步骤 102: 发射装置对层映射得到的开环用户和闭环用户的层数据矩阵 进行预编码处理;
进行预编码处理的过程包括:
A: 计算预编码矩阵 ^和 ^, 其中所述 ^是闭环用户的信道矩阵 ^ 的零空间空间矢量, W保证闭环用户的 SINR为最大值;
预编码矩阵 可根据特征值分解方法计算,但要保证其信千噪比( SINR, Signal to Interferenc Noise Ratio ) 为最大值。
预编码矩阵 ^有多种计算方法, 比如基于块对角化 (BD , Block Diagnolization ) 等算法, 还可以根据以下公式来计算预编码矩阵 W2:
W2 = {I -H H,)D ( 1 ) 是基站到闭环用户的信道矩阵, 也就是信道从基站到闭环用户的衰落 矩阵。 可以由闭环用户反馈给基站, 也可以基站利用上下行的互易性来获 B: 将预编码矩阵 W和 W2以及所述闭环用户和开环用户的层数据矩阵 按照发射矩阵完成预编码处理。
将以上计算所得的预编码矩阵 JVi和 w2用于发射矩阵后, 可以消除开环 用户对闭环用户的千扰。 这是因为 2是 的零空间矢量, 保证了 H,2 = 0 , 从而消除了多用户之间的干扰。
步骤 103 : 发射装置将预编码处理后的层数据矩阵映射到多个发射天线 上并发送。
将经过预编码的不同层的数据进行资源映射和天线映射把多用户的数据 映射到天线上发送。
一般来说, 找到两个可以很好配对的闭环用户复用是最优的, 而在某些 情况下找不到这种配对, 但小区的满负载情况下要求提高频谱利用率, 这时 采用本发明方法把开环高速用户和闭环低速用户复用在一起, 可以提高频语 利用率, 而由于釆用本发明的发射矩阵进行预编码处理, 在发射端可以较好 地减少多用户之间的千扰, 其性能优于完全不合适配对的两个闭环用户之间 的复用。 因此本发明方法是特定场景下采用的次优方案。
以下结合具体实例, 对本发明发射矩阵进行详细说明:
应用实例 1
4发射天线, 闭环用户数据流映射到 1层, 开环用户数据流映射到 2层 的情况下, 进行预编码处理的发射矩
Figure imgf000010_0001
其中 M,., 分别为闭环用户和开环用户发送的数据, 为 &的共轭, 为&的共轭的相反数, z' = l,2。 为预编码矩阵,户 1,2。
这里釆用 BD等方法来找到 H,的零空间来计算 ^。 的计算要通过对 H, 特征值分解的方法来保证闭环用户的 SINR (信干噪比) 为最大值。
应用实例 2 4发射天线, 闭环用户的数据流映射到 2层, 开环用户的数据流映射到 2 层的情况下, 进行预编码处理的发射矩阵为:
M3
-s* s: 其中 M,., 分别为闭环用户和开环用户发送的数据, / = 1, 2; 为相应的预 编码矩阵, =1,2。 这里采用 BD等方法来找到 的零空间来计算 2。 ^的计 算要通过对 Ht特征值分解的方法来保证闭环用户的 SINR (信千噪比)为最大 值。
应用实例 3 V S MlI
8发射天线, 闭环用户的数据流映射到 1层的情况下:
开环用户的数据流映射到 2层时, 进行预编码处理的发射矩阵为:
开环用户的数据流映射到 4层时, 进行预编码处理的发射矩阵为: ti^ ¾2 ti^
S o 0
0 0 s3 SA
-s; s; o 0
o o -s s; 其中 M,., 分别为闭环用户和开环用户发送的数据, &为 &的共轭, -Si 为 &的共轭的相反数, ; = 1, 2, 3, 4; 为预编码矩阵,户1,2。 采用基于 BD等 方法来找到 H\的零空间来计算 ^。 ^的计算要通过对 特征值分解的方法来 保证闭环用户的 SINR (信干噪比) 为最大值。
应用实例 4
8发射天线, 闭环用户的数据流映射到 2层的情况下:
开环用户的数据流映射到 2层时, 进行预编码处理的发射矩阵为: -s s: 开环用户的数据流映射到 4层时, 进行预编码处理的发射矩阵为
M3 u5 u7
n2 w6 "8
s2 0 0
0 0 & s4
-s 0 0
0 0 -s: 其中 Mi, 分别为闭环用户和开环用户发送的数据, 为 &的共轭, 为 &的共轭的相反数, , = 1,2,3, 4,5,6,7,8; ^为预编码向量, j=l,2。 釆用基于 BD等方法来找到 H的零空间来计算 ^。 的计算要通过对 A特征值分解的 方法来保证闭环用户的 SINR (信干噪比) 为最大值。
应用实例 5
8发射天线, 闭环用户数据流映射到 3层的情况下:
开环用户映射到 2层时, 进行预编码处理的发射矩阵为:
Figure imgf000012_0001
开环用户映射到 4层时, 进行预编码处理的发射矩阵为:
Figure imgf000012_0002
其中 , 分别为闭环用户和开环用户发送的数据, 为&的共轭, 为 &的共轭的相反数, ζ = 1, 2, · · ·, 12 , ^为预编码向量, =i,2。 采用基于 BD等的 方法来找到 的零空间来计算 if2。 ^的计算要通过对 Ηλ特征值分解的方法来 保证闭环用户的 SINR (信干噪比) 为最大值。
应用实例 6
8发射天线, 闭环用户数据流映射到 4层的情况下:
开环用户的数据流映射到 2层时, 进行预编码处理的发射矩阵为:
Figure imgf000013_0001
开环用户的数据流映射到 4层时, 进行预编码处理的发射矩阵为:
u5
u2
u3 u7 "15
4
0 0
0 0 s, s.
-s s* 0 0
0 0 -s; 其中 5分别为闭环用户和开环用户发送的数据, 为 &的共轭, 为 &的共轭的相反数, 7 = 1,2, .. ·, 16 ; 为预编码向量, =1,2 采用基于 BD 等方法来找到 ^的零空间来计算 ^。 的计算要通过对 特征值分解的方法 来保证闭环用户的 SINR (信干噪比) 为最大值。
本方法也可以在相同的资源上复用更多的用户, 这时只需要把相应不同 的多个闭环用户的数据放在闭环用户的相应层即可。
在 LTE_A中扩展到发射天线数 (NT > 8)8情况下同样可以采用 4天线和 8 天线时的方法, 这时可以获得更高的预编码和波束成形增益。 也可以采用 下列发射矩阵来提高传码率:
Figure imgf000014_0001
其中, M为闭环用户数据, s为开环用户数据, ^为 ^的共轭, 为 S的 共轭的相反数, 闭环用户为 N层, 开环用户为 M层, Ν+Μ<ΝΤ, NT〉8 以下结合实例来验证对闭环用户数据流干扰消除的效果:
在这里分别举 4发射天线, 闭环用户为 2层时, 以及 8发射天线, 闭环 用户为 2层或者 4层的例子来说明基本原理:
例 1
4发射天线, 闭环用户数据流映射到 2层, 开环用户数据流映射到 2层 时 闭环用户的接收矩阵为:
Figure imgf000014_0002
Figure imgf000014_0003
其中 分别为闭环用户和开环用户发送的数据, 为 &的共轭, 为 &的共轭的相反数, = 1,2, /^为闭环用户对应的信道矩阵, 为预编码 向量,户 1,2, 可以使得 IIH II最大, 其中 为闭环用户对应的信道矩阵。
2是 的零空间矢量, 保证了 =0 , 因此闭环用户的接收矩阵的 有效部分仅为:
(3)
u u. 从式 2和式( 3 )可以看出, 在发射前进行本发明预编码, 开环用户不会 对闭环用户接收的接收矩阵造成千扰。 闭环用户根据接收的信号进行 MRC(Maximal Ratio Combining, 最大比合 并 ), MMSE(Minimum Mean Square Error , 最小均方误差 )或者是 MMSE-SIC(Sof Interference Cancellation Based on Minimum Mean Square Error, 最小均方误差软干扰消除)来进行检测, 最终恢复出发送端原始信息。
例 2
8发射天线, 闭环用户的数据流映射到 2层的情况下, 闭环用户的接收 矩阵为:
Figure imgf000015_0001
Figure imgf000015_0003
8发射天线, 闭环用户的数据流映射到 4层的情况下, 闭环用户的接收 矩阵为:
Figure imgf000015_0002
其中 M,., 分别为闭环用户和开环用户发送的数据, / = 1,2,- - -, 16; //为闭 环用户对应的信道矩阵, ^为预编码向量, J=l,2。
为了实现以上方法, 本发明还提供了一种发射装置, 如图 2所示, 该装 置包括:
数据流处理模块, 其设置成对开环用户和闭环用户的待发射数据流分别 进行层映射;
发射预编码模块, 其与所述数据流处理模块连接, 并设置成对层映射后 的开环用户和闭环用户的层数据矩阵进行预编码处理;发射预编码模块包括: 预编码矩阵获取子模块, 其设置成获取预编码矩阵 ^和 ^, 其中所述 W2是闭环用户的信道矩阵 Hi的零空间空间矢量, 所述 保证闭环用户的信 干噪比 (SINR ) 为最大值;
预编码矩阵 和 ^的计算和获取方法见本发明方法中的描述。
发射矩阵处理子模块, 其与预编码矩阵获取子模块连接, 并设置成将预 编码矩阵 W和 W2以及所述闭环用户和开环用户的层数据矩阵按照发射矩阵 完成预编码处理。
不同情况下发射矩阵的具体实现与以上方法中描述的相同, 在此不再赘 述。
发射天线映射模块, 其与所述预编码模块连接, 并设置成将预编码处理 后的层数据矩阵映射到多个发射天线上;
发射天线, 其与所述发射天线映射模块连接, 并设置成发送数据。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等。
一般来说, 找到两个可以很好配对的闭环用户复用是最优的, 而在某些 情况下找不到这种配对, 但小区的满负载情况下要求提高频脊利用率, 这时 采用本发明方法把开环高速用户和闭环低速用户复用在一起, 可以提高频谱 利用率, 而由于釆用本发明发射矩阵进行预编码处理, 在发射端可以较好的 减少多用户之间的千扰, 其性能优于完全不合适配对的两个闭环用户之间的 复用。 因此本发明方法是特定场景下采用的次优方案。
工业实用性
与现有技术相比, 本发明在小区的满负载情况或者其他可能的场景下可 以提高频谱利用率, 而由于本发明釆用发射矩阵进行预编码处理, 在发射端 可以较好地减少多用户之间的干扰, 其性能优于完全不合适配对的两个闭环 用户之间的复用。 因此本发明方法是特定场景下采用的次优方案。

Claims

权 利 要 求 书
1、 一种多用户复用方法, 包括:
发射装置对开环用户和闭环用户的待发射数据流分别进行层映射; 发射装置对层映射得到的开环用户和闭环用户的层数据矩阵进行预编码 处理; 以及
发射装置将预编码处理后的层数据矩阵映射到多个发射天线上并发送。
2、 如权利要求 1所述的方法, 其中, 进行预编码处理的步骤包括: 计算预编码矩阵 和 2, 其中所述 ^是闭环用户的信道矩阵 的零 空间空间矢量, 所述 ^保证闭环用户的信干噪比 SINR为最大值;
将预编码矩阵 W】和 W2以及所述闭环用户和开环用户的层数据矩阵按照 发射矩阵完成预编码处理。
3、 如权利要求 2所述的方法, 其中, 4发射天线, 闭环用户的待发射数 据流映射到 1层的情况下, 所述发射矩阵为:
Figure imgf000017_0001
-s s: 其中 M,, 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
4、 如权利要求 2所述的方法, 其中, 4发射天线, 闭环用户的待发射数 据流映射到 2层的情况下, 所述发射 :
Figure imgf000017_0002
其中 Μί, 分别为闭环用户和开环用户的待发射数据, 为&的共轭, -si 为 &的共轭的相反数。
5、 如权利要求 2所述的方法, 其中, 8发射天线, 闭环用户的待发射数 据流映射到 1层的情况下, 开环用户的待发射数据流映射到 2层时, 所述发 射矩阵为:
Figure imgf000018_0001
开环用户的待发射数据流映射到 4层时, 所述发射矩阵为:
Figure imgf000018_0002
其中 分别为闭环用户和开环用户的待发射数据, 为&的共轭, -Si 为 &的共轭的相反数。
6、 如权利要求 2所述的方法, 其中, 8发射天线, 闭环用户的待发射数 据流映射到 2层的情况下, 开环用户的待发射数据流映射到 2层时, 所述发 射矩阵为:
Figure imgf000018_0003
开环用户的待发射数据流 4层时, 所述发射矩阵为:
Figure imgf000018_0004
其中^ 分别为闭环用户和开环用户的待发射数据, 为&的共轭, -si 为 &的共轭的相反数。
7、 如权利要求 2所述的方法, 其中, 8发射天线, 闭环用户的待发射数 据流映射到 3层, 开环用户的待发射 映射到 2层时, 所述发射矩阵为
Figure imgf000019_0001
开环用户的待发射数据流映射到 4层时, 所述发射矩阵为:
M4 u7 uw
u5 uu
un
s2 0 0
0 0 & s4
-s 0 0
0 0 -s;
其中 M,., 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
8、 如权利要求 2所述的方法, 其中, 8发射天线, 闭环用户的待发射数 据流映射到 4层的情况下, 开环用户的待发射数据流映射到 2层时, 所述发 射矩阵为:
u5
"8
s2
-s: s;
开环用户的待发射数据流映射到 4层时, 所述发射矩阵为
u5 u9 U\3
¾
u3 u7 "11 " 5
«4 un
0 0
0 0 & s4
0 0
0 0 -s 其中 , 分别为闭环用户和开环用户的待发射数据, 为&的共轭, 为 &的共轭的相反数。
9、 如权利要求 2所述的方法, 其中, 发射天线数为 Nr的情况下, 釆用 权利要求 3-8中任一所述的 4发射天线或 8发射天线时的方法, 或采用下列 发射矩阵完成预编码处理:
"2 "4 ■■■ 3 u
Figure imgf000020_0001
0 0 " ' Sm3 0 0
0 0 & s4 . . . 0 0 Sm― sm
-s; s; 0 0 0 0
0 0 s; ... o 0 ― 1
0 0 4 ... o *
0 其中, M为闭环用户的待发射数据, S为开环用户的待发射数据, S*为 S 的共轭, -^*为 S的共轭的相反数, 闭环用户的待发射数据流映射到 N层, 开 环用户的待发射数据流映射到 M层, N+M < NT , Ντ> 。
10、 一种发射装置, 包括:
数据流处理模块, 其设置成对开环用户和闭环用户的待发射数据流分别 进行层映射, 得到开环用户和闭环用户的层数据矩阵;
发射预编码模块, 其与所述数据流处理模块连接, 并设置成对开环用户 和闭环用户的层数据矩阵进行预编码处理;
发射天线映射模块, 其与所述发射预编码模块连接, 并设置成将预编码 处理后的层数据矩阵映射到多个发射天线上;
发射天线, 其与所述发射天线映射模块连接, 并设置成发送数据。
11、 如权利要求 10所述的方法, 其中, 所述发射预编码模块包括: 预编码矩阵获取子模块, 其设置成获取预编码矩阵 和 , 其中所述 W2是闭环用户的信道矩阵 的零空间空间矢量, 所述 W!保证闭环用户的信 干噪比 SINR为最大值;
预编码矩阵处理子模块, 其与所述预编码矩阵获取子模块连接, 并设置 成将预编码矩阵 和 W2以及所述闭环用户和开环用户的层数据矩阵按照发 射矩阵完成预编码处理。
PCT/CN2010/077925 2009-12-18 2010-10-20 一种多用户复用方法及发射装置 WO2011072553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/258,600 US8649251B2 (en) 2009-12-18 2010-10-20 Multi-user multiplexing method and transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910261639.4 2009-12-18
CN200910261639.4A CN102104942B (zh) 2009-12-18 2009-12-18 小区满负载情况下次优多用户复用方法及发射装置

Publications (1)

Publication Number Publication Date
WO2011072553A1 true WO2011072553A1 (zh) 2011-06-23

Family

ID=44157384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077925 WO2011072553A1 (zh) 2009-12-18 2010-10-20 一种多用户复用方法及发射装置

Country Status (3)

Country Link
US (1) US8649251B2 (zh)
CN (1) CN102104942B (zh)
WO (1) WO2011072553A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656596B (zh) * 2014-11-14 2019-07-19 电信科学技术研究院 一种进行数据传输的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094786A1 (en) * 2006-02-16 2007-08-23 Lucent Technologies Inc. Method of multiple-antenna communication having improved utilization of channel correlations
CN101515845A (zh) * 2009-03-17 2009-08-26 中兴通讯股份有限公司 一种多天线系统的发射装置及方法
CN101577573A (zh) * 2008-05-09 2009-11-11 中兴通讯股份有限公司 独立数据流控制方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949064B2 (en) * 2006-08-14 2011-05-24 Texas Instruments Incorporated Codebook and pre-coder selection for closed-loop mimo
PT2899897T (pt) * 2007-02-13 2017-08-28 ERICSSON TELEFON AB L M (publ) Métodos e sistemas para pré-codificação combinada com diversidade de atraso cíclico
JP5135358B2 (ja) * 2007-02-14 2013-02-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Harqを実装するシステムにおけるコードワード対レイヤ・マッピング
KR101049138B1 (ko) * 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
US8160177B2 (en) * 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
US8335274B2 (en) * 2007-12-03 2012-12-18 Telefonaktiebolaget Lm Ericsson (Publ) Precoder for spatial multiplexing, multiple antenna transmitter
CN101562503B (zh) * 2008-04-16 2012-06-27 电信科学技术研究院 一种小间距天线阵基站及其多数据流发射方法
US8406787B2 (en) * 2008-12-17 2013-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Positioning in telecommunication systems
US8385441B2 (en) * 2009-01-06 2013-02-26 Marvell World Trade Ltd. Efficient MIMO transmission schemes
CN102754358B (zh) * 2009-12-30 2015-08-12 意大利电信股份公司 “多入多出”(“mimo”)系统中选择预编码矩阵的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094786A1 (en) * 2006-02-16 2007-08-23 Lucent Technologies Inc. Method of multiple-antenna communication having improved utilization of channel correlations
CN101577573A (zh) * 2008-05-09 2009-11-11 中兴通讯股份有限公司 独立数据流控制方法及装置
CN101515845A (zh) * 2009-03-17 2009-08-26 中兴通讯股份有限公司 一种多天线系统的发射装置及方法

Also Published As

Publication number Publication date
CN102104942A (zh) 2011-06-22
US8649251B2 (en) 2014-02-11
US20120106317A1 (en) 2012-05-03
CN102104942B (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6862526B2 (ja) 減少されたフィードバックfd−mimoのための方法及び装置
Boccardi et al. Multiple-antenna techniques in LTE-advanced
KR100969753B1 (ko) 다중 입력 다중 출력 방식을 사용하는 무선 통신시스템에서 사전 부호화 장치 및 방법
TWI442726B (zh) 無線通信系統之方法及配置
CN101686110B (zh) 一种多输入多输出系统、及其数据传输的方法及装置
DK2465208T3 (en) AERIAL DEVICES
EP2557698A1 (en) Method and apparatus for information feedback and pre-coding
EP3523888A1 (en) Advanced csi reporting in advanced wireless communication systems
WO2019047705A1 (zh) 通信方法、网络设备、终端设备和系统
US9312934B2 (en) Method for transmitting efficient feedback in multi-antenna wireless communication system and apparatus therefor
CN105519029B (zh) Ofdm通信系统及信号收发方法与装置
KR20100053417A (ko) 다중입력다중출력 시스템에서 신호 전송 방법 및 신호 수신 방법
KR20130112699A (ko) 무선 통신 시스템에서 코드북을 이용한 신호 송수신 방법 및 장치
WO2018028309A1 (zh) 传输方案指示方法、数据传输方法、装置及系统
KR102381159B1 (ko) 다중 안테나 무선 통신 시스템에서 채널 측정을 위한 참조 신호 전송 방법 및 이를 위한 장치
JP5865485B2 (ja) 多重入出力(mimo)のための空間チャネル状態情報のフィードバック方法およびシステム
CN107733492B (zh) 数据发送、接收方法和装置
WO2011020359A1 (zh) 一种基于正交分集的mu-mimo处理方法和装置
KR101356936B1 (ko) 폐루프 다중 입력 다중 출력 통신시스템에서 채널 분해 방법 및 장치
US9479237B2 (en) Vector selection modulation-based multi-antenna transmission method, receiving method and device
Darsena et al. Beamforming and precoding techniques
CN102255691B (zh) 一种上行多天线系统开环空间复用的发射方法和装置
KR20180045271A (ko) 코드북 인덱스를 선택하는 방법 및 장치
WO2011072553A1 (zh) 一种多用户复用方法及发射装置
CN107863995B (zh) 数据发送方法、数据接收方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836990

Country of ref document: EP

Kind code of ref document: A1