[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011068305A2 - 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지 - Google Patents

파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지 Download PDF

Info

Publication number
WO2011068305A2
WO2011068305A2 PCT/KR2010/007003 KR2010007003W WO2011068305A2 WO 2011068305 A2 WO2011068305 A2 WO 2011068305A2 KR 2010007003 W KR2010007003 W KR 2010007003W WO 2011068305 A2 WO2011068305 A2 WO 2011068305A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
conductive polymer
organic
solar cell
organic solar
Prior art date
Application number
PCT/KR2010/007003
Other languages
English (en)
French (fr)
Other versions
WO2011068305A3 (ko
Inventor
문상진
이종철
소원욱
신원석
이상규
윤성철
황도훈
이창진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090118975A external-priority patent/KR101142207B1/ko
Priority claimed from KR1020090118973A external-priority patent/KR101142206B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US13/513,761 priority Critical patent/US8901415B2/en
Priority to CN201080062974.2A priority patent/CN102762631B/zh
Priority to JP2012541930A priority patent/JP2013512985A/ja
Publication of WO2011068305A2 publication Critical patent/WO2011068305A2/ko
Publication of WO2011068305A3 publication Critical patent/WO2011068305A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a conductive polymer having a pyrene compound represented by Formula 1 and an organic solar cell using the same as a material for an organic optoelectronic device, and more particularly, to a donor including one or more kinds of aromatic monomers.
  • a conductive polymer having improved hole mobility was prepared by introducing a pyrene compound into a donor-acceptor type polymer in which a repetitive acceptor was introduced into a polymer composed only of a functional group or a donor functional group.
  • the present invention relates to an organic solar cell having improved energy conversion efficiency by using as a device material.
  • the organic thin film solar cell uses organic materials as the photoactive layer, and research is actively conducted due to the advantages of making a thin film within several hundred nm and a relatively inexpensive material of the photoactive layer, especially a flexible device that can be easily bent. have.
  • the photoactive layer is used by mixing two materials having different electron affinity.
  • One side of the photoactive material absorbs light to be excited to form an exciton, and the exciton has a low electron affinity (donor, At the interface between the donor and the electron affinity material (acceptor), the electrons in the material with low electron affinity move to the material with high electron affinity and are separated into holes and electrons, respectively. .
  • the distance that excitons can move depends on the material but is about 10 nm. Therefore, the distance between the light absorbed position and the interface between two materials having different electron affinity must be within -10 nm, and the electron with the highest efficiency Since the separation of holes can be obtained, bulk heterojuction method using a mixture of donor and acceptor material is mainly used.
  • Organic solar cells are classified into two methods of manufacturing a thin film using a donor and an acceptor material, and a thin film using a solution process.
  • the deposition method uses both a donor and an acceptor as a single molecule
  • the solution process generally uses a polymer as a donor material, and as a acceptor a polymer, a fullerene derivative, and a perylene derivative.
  • Quantum dot inorganic nanoparticles and the like are used. Therefore, the use of a solution process using a polymer than a case of depositing and using a single molecule allows a large area of the device to be manufactured inexpensively. Therefore, the weight of research has recently been focused on the solution process using a polymer.
  • the organic solar cell must satisfy high energy conversion efficiency.
  • the present inventors have tried to develop a novel polymer applicable to the organic solar cell in order to obtain a high energy conversion efficiency of the organic solar cell, the polymer consisting of only a donor functional group containing at least one kind of various aromatic monomers
  • the present invention has been completed by introducing a pyrene compound into a donor-acceptor type polymer in which a repetitive acceptor is introduced into a donor functional group to derive a novel molecular design that improves hole mobility.
  • An object of the present invention is to provide a novel conductive polymer with improved hole mobility and its use as a material for organic optoelectronic devices using the same.
  • Another object of the present invention is to provide an organic solar cell having improved energy conversion efficiency by using the conductive polymer as an organic optoelectronic device material.
  • the present invention provides a conductive polymer having a pyrene compound represented by the following formula (1).
  • l is the mole fraction of monomer X as 0.40 ⁇ ⁇ 1
  • m is the mole fraction of monomer Y
  • n is the mole fraction of the pyrene compound
  • X and Y are either monomers having electron donor, acceptor or light absorption functions.
  • the content of pyrene compound is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇ ⁇ 0.05.
  • the present invention is any one selected from the group consisting of an organic light sensor (OPD), an organic light emitting diode (OLED), an organic thin film transistor (OTFT) and an organic solar cell is a conductive polymer in which the pyrene compound represented by the formula (1) is introduced Provided is a use as a material for an organic optoelectronic device applied to one field.
  • OPD organic light sensor
  • OLED organic light emitting diode
  • OTFT organic thin film transistor
  • an organic solar cell is a conductive polymer in which the pyrene compound represented by the formula (1) is introduced
  • Provided is a use as a material for an organic optoelectronic device applied to one field.
  • the content of the pyrene compound is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇ ⁇ 0.05.
  • the present invention comprises a substrate, a first electrode, a buffer layer, a photoelectric conversion layer and a second electrode, wherein the photoelectric conversion layer is used as an electron donor a conductive polymer in which a pyrene compound represented by Formula 1 of the present invention is introduced.
  • the present invention provides an organic solar cell including an organic optoelectronic device made of a photoelectric conversion material-containing solution containing a C 60 fullerene derivative or a C 70 fullerene derivative as an electron acceptor.
  • the content of the pyrene compound is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇ ⁇ 0.05.
  • the photoelectric conversion layer uses a conductive polymer having a pyrene compound represented by Formula 1 as an electron donor, and a C 60 fullerene derivative or a C 70 fullerene derivative as an electron acceptor. It consists of the photoelectric conversion material mix
  • the photovoltaic material-containing solution is an organic solar cell based on a solution phase in which 1.0 to 3.0% by weight of the photoelectric conversion material is dissolved in any one solvent selected from the group consisting of chlorobenzene, 1,2-dichlorobenzene, and chloroform.
  • the solution in which the photoelectric conversion material is dissolved may be applied or coated by one method selected from an inkjet printing method, a spin coating method, a screen printing method, and a doctor blade method.
  • a novel conductive polymer with improved energy conversion efficiency of the organic solar cell That is, a specific amount of a pyrene compound is added to a polymer composed of only a donor functional group containing one or more kinds of aromatic monomers or a donor-acceptor type polymer in which a repetitive acceptor is introduced into a donor functional group.
  • the conductive polymer of the present invention which has been introduced to improve hole mobility, is useful as a photoelectric conversion material.
  • the present invention can provide an organic solar cell using an organic optoelectronic device using a conductive polymer in which a pyrene compound is introduced as an electron donor, thereby achieving high power conversion efficiency (PCE).
  • PCE power conversion efficiency
  • FIG. 1 is a schematic diagram of an organic optoelectronic device manufactured according to an embodiment of the present invention
  • JV current density-voltage
  • JV current density-voltage
  • JV current density-voltage
  • the present invention provides a conductive polymer in which a pyrene compound represented by Chemical Formula 1 is introduced.
  • l is the mole fraction of monomer X as 0.40 ⁇ ⁇ 1
  • m is the mole fraction of monomer Y
  • n is the mole fraction of the pyrene compound
  • X and Y are either monomers having electron donor, acceptor or light absorption functions.
  • the conductive polymer of Chemical Formula 1 is a donor-acceptor-type polymer in which a repeater acceptor is introduced into a polymer or a donor functional group composed of only a donor functional group containing one or more kinds of aromatic monomers. Pyrene compound with high hole mobility is introduced.
  • the content of pyrene compound is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇
  • the solubility is lowered so that the conductive polymer cannot be used as a photoelectric conversion material, and the energy conversion efficiency is lowered.
  • X, Y or a combination of X and Y is important to simultaneously introduce a function for increasing light absorption and a function for self-assembling the polymer.
  • the other should have an acceptor monomer structure.
  • Preferred donor monomer is to use any one selected from the compounds represented by the formula (2) to (10 ).
  • R 1 or R 2 is a C 1 to C 20 straight or branched alkyl group, C 1 to C 20 heterocycloalkyl, C 6 to C 20 aryl or heteroaryl thereof.
  • the preferred acceptor monomer is to use any one selected from compounds represented by the following formulas (11) to (17 ).
  • R 3 or R 4 is a C 1 to C 20 straight or branched alkyl group, a C 1 to C 20 alkoxy group, a C 6 to C 20 aryl group, a C 1 to C 20 heterocycloalkyl, C 6 ⁇ C 20 aryl or heteroaryl thereof, and R 3 or R 4 may be the same or may not be the same.
  • X and Y may be any monomer structure having various known conductive functional groups or light absorbing functions, in addition to the donor monomer or the acceptor monomer.
  • both X and Y may be thiophene derivatives having crystallinity.
  • X has a donor functional group and Y has an acceptor functional group to constitute a low bandgap polymer of the donor-acceptor type.
  • the present invention provides a use thereof as a material for an organic optoelectronic device in which a conductive polymer having a pyrene compound represented by the following Chemical Formula 1 is introduced as an electron donor.
  • the content of the preferred pyrene compound is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇ ⁇ 0.05.
  • a conductive polymer prepared by containing a pyrene compound in a copolymer of fluorene and dithienylbenzothiadiazole is prepared by the following Scheme 1. to provide.
  • a conductive polymer prepared by containing a pyrene compound in a copolymer of dithiophensilol and benzothiazole is added to Scheme 2 below. Provided by us.
  • the present invention may provide a conductive polymer having improved hole transfer performance by introducing a small amount of pyrene compound into the main chain of the conductive polymer at 10 mol% or less, more preferably 5 mol% or less.
  • conductive polymers presented in the above examples are intended to describe the present invention in more detail, and those skilled in the art from the description of the above embodiments may be combined with a donor or acceptor type combination defined above in the present invention. By this, it will be able to easily synthesize a variety of conductive polymer to be implemented by the present invention.
  • the conductive polymer in which the pyrene compound represented by Formula 1 of the present invention is introduced is useful as a nonlinear optical material such as an organic light sensor (OPD), an organic light emitting diode (OLED), an organic thin film transistor (OTFT), or an organic solar cell. It is useful as a material for organic optoelectronic devices.
  • the present invention is composed of a substrate, a first electrode, a buffer layer, a photoelectric conversion layer and a second electrode, the photoconversion layer is a conductive polymer introduced with a pyrene compound represented by Formula 1 is used as an electron donor, C 60 Provided is an organic solar cell including an organic photovoltaic device made of a photoelectric conversion material in which a fullerene derivative or a C 70 fullerene derivative is incorporated into an electron acceptor.
  • the organic solar cell of the present invention has a structure in which the substrate 110, the first electrode 120, the buffer layer 130, the photoelectric conversion layer 140, and the second electrode 150 are stacked from the bottom.
  • (140) includes an organic optoelectronic device in which a conductive polymer in which a pyrene compound represented by Formula 1 is introduced is used as an electron donor, and a C 60 fullerene derivative or a C 70 fullerene derivative is formed of a photoconversion material-containing solution blended with an electron acceptor. Characterized in that.
  • a schematic diagram of an organic solar cell including an organic optoelectronic device manufactured according to a preferred embodiment of the present invention is as shown in FIG .
  • an electron transport layer, a hole blocking layer, or an optical space layer may be introduced between the photoelectric conversion layer 140 and the second electrode 150.
  • a conductive polymer used as an electron donor may introduce a pyrene compound, thereby achieving high energy conversion efficiency of an organic solar cell by improving photon absorption and hole mobility.
  • Table 2 Table 2
  • the content of the pyrene compound in the conductive polymer used as the electron donor in the organic optoelectronic device of the present invention is 0 ⁇ ⁇ 0.10 is preferred, more preferably 0 ⁇ ⁇ 0.05 must be satisfied.
  • a transparent material is preferable, and examples thereof include glass or polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polypropylene (PP), and PI. (polyamide), TAC (triacetyl cellulose) and the like, and more preferably glass.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polypropylene
  • PI polyamide
  • TAC triacetyl cellulose
  • the first electrode 120 may be formed on one surface of the substrate 110 by applying a transparent material or coating in a film form by using a method such as sputtering or spin coating.
  • the first electrode 120 functions as an anode, and may be used without particular limitation as long as the material has a work function as compared with the second electrode 150 to be described later.
  • the first electrode 120 is an ITO. (indium-tin oxide), Fluorine doped tin oxide (FTO), ZnO- (Ga 2 O 3 or Al 2 O 3 ), SnO 2 -Sb 2 O 3, etc. may be used, and more preferably, ITO is used. .
  • the buffer layer 130 formed on the upper portion of the first electrode 120 may improve hole mobility by using poly (3,4-ethylenedioxythiophene) [PEDOT: PSS] doped with polystyrenesulfonate. have.
  • the method of forming the buffer layer 130 may be introduced through a method such as spin coating.
  • the photoelectric conversion layer 140 is stacked on the buffer layer 130.
  • the photoelectric conversion layer 140 is composed of a junction structure of an electron donor and an electron acceptor, and provides a photovoltaic effect with a very fast charge transfer phenomenon between the electron donor and the electron acceptor.
  • the present invention uses a conductive polymer in which a pyrene compound represented by Formula 1 of the present invention is introduced as a material of the photoelectric conversion layer 140, and a C 60 fullerene derivative or a C 70 fullerene derivative as an electron acceptor.
  • the mixing ratio of the conductive polymer to which the pyrene compound represented by Formula 1 is introduced and the C 60 fullerene derivative or the C 70 fullerene derivative is 1: 0.5 to 1: 4. It is preferable to mix
  • the fullerene derivative is blended in less than 0.5 weight ratio, compared to the conductive polymer into which the pyrene compound of the present invention is incorporated, the content of the crystallized fullerene derivative is insufficient, and thus, the movement of the generated electrons is disturbed. In this case, the amount of the conductive polymer that absorbs light is relatively reduced, so that efficient absorption of light is not achieved.
  • the photoelectric conversion material in which the conductive polymer to which the pyrene compound of the present invention is introduced and the C 60 fullerene derivative or the C 70 fullerene derivative are blended is dissolved in a single organic solvent or two or more organic solvents having different boiling points to prepare a solution.
  • the organic solvent is prepared to be contained in a solvent content of 1.0 to 3.0% by weight in any one solvent selected from the group consisting of chlorobenzene, 1,2-dichlorobenzene and chloroform.
  • the solid content is less than 1.0% by weight, there is a problem in maintaining the thickness of the introduced thin film at 60 nm or more, and when it exceeds 3.0% by weight, the conductive polymer and the C 70 fullerene derivative are not preferable because there are many parts insoluble.
  • the solution in which the photoelectric conversion material is dissolved is applied or coated by one method selected from spin coating, screen printing, inkjet printing, and doctor blade methods, and is about 60 nm or more, preferably 65 to 200 nm thick. It is formed of a photoelectric conversion layer 140.
  • the second electrode 150 is vacuum-heat-deposited a metal material such as aluminum at 100 to 200 nm at a vacuum degree of about 10 ⁇ 7 torr or less while the photoelectric conversion layer 140 is introduced, and then the upper portion of the photoelectric conversion layer 140. Can be stacked on.
  • the material that can be used as the second electrode 150 includes gold, aluminum, copper, silver or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, aluminum / lithium alloys, and the like, preferably aluminum or aluminum Calcium alloy.
  • Conductive polymers containing pyrene groups of Examples 1 to 3 and Comparative Examples 1 to 3 synthesized through the Suzuki method are used as electron donors, and C 70 -PCBM is used as electron acceptors, but the compounding ratio is 1: 3.
  • the photoelectric conversion layer material prepared by mixing in a weight ratio was dissolved in a chlorobenzene solvent in a weight ratio of 1.5%, and then spin-coated on an ITO glass substrate into which a PEDOT layer was introduced under an argon atmosphere to form a photoelectric conversion layer having a thickness of 60 to 120 nm. It was introduce
  • a photoelectric conversion layer material was prepared by mixing the polymers of Examples 1 to 3 and Comparative Examples 1 to 3 and C 70 -PCBM, which are prepared as shown in Scheme 1, in a weight ratio of 1: 3, to an organic solar cell using the same. , The electro-optical characteristics results are shown in Table 1 below.
  • FIG. 2 is a current density of an organic solar cell using a photoelectric conversion layer material prepared by mixing the conductive polymers prepared in Examples 1 to 3 and Comparative Examples 1 to 3 and C 70 -PCBM in a weight ratio of 1: 3.
  • the fill factor and energy conversion efficiency were calculated by the following equations (1) and (2 ).
  • V mp is the voltage value at the maximum power point
  • I mp is the current density
  • V oc is the photoopen voltage
  • I sc is the optical short circuit current.
  • J sc is the optical short-circuit current density and V oc is the photo-opening voltage.
  • Comparative Example 2 in which 12.5% or more of monomers were added to fluorene, showed a similar efficiency to that of Polymer-1 of Comparative Example 1, which did not contain pyrene compounds, and Comparative Example 3, in which monomers of 25% or more were added. In the case of compared with the polymer-1 of Comparative Example 1, the energy conversion efficiency was found to decrease by about 27% rather than.
  • the conductive polymer including pyrene groups of Examples 5 to 6 and Comparative Example 4 synthesized through the Stilly method was used as an electron donor, and C 70 -PCBM was used as an electron acceptor, but the compounding ratio was 1: 3 by weight.
  • an organic solar cell was manufactured in the same manner as in Example 4.
  • a photoelectric conversion layer material was prepared by mixing the polymers of Examples 5 to 6 and Comparative Example 4 prepared as shown in Scheme 2 and C 70 -PCBM in a weight ratio of 1: 3, and the organic solar cell using the same Optical properties The results are shown in Table 2 below.
  • JV is a graph showing the measurement results.
  • Step 1 Preparation of 2,5-bis (5-bromo-3-hexylthiophen-2-yl) -thiazolo [5,4-d] thiazole
  • Step 2 2,7-bis (4 ', 4', 5 ', 5'-tetramethyl-1', 3 ', 2'-dioxaborolan-2'-yl) -N-9 "- Preparation of Heptadecanylcarbazole
  • the target compound was recrystallized from methanol / acetone (10: 1) solution to give the target compound 2: 2,7-bis (4 ', 4', 5 ', 5'-tetramethyl-1', 3 ' Obtained by purifying 2.5 g (50%) of 2'-dioxaborolan-2'-yl) -N-9 "-heptadecanylcarbazole.
  • 6-dibromopyrene 0.0072 (0.020 mmol) and 2,7-bis (4 ', 4', 5 ', 5'-tetramethyl-1', 3 ', 2'-di prepared in step 2 Add 0.263 g (0.400 mmol) of oxaborolan-2'-yl) -N-9 "-heptadecanylcarbazole, hold a vacuum for 1 hour, add 4 ml of toluene, and add 30 Stirred for minutes 20% by weight of 1.296 g of Et 4 NOH was added followed by bubbling with nitrogen to remove dissolved oxygen dissolved in the solvent.
  • a photoelectric conversion prepared by mixing the compounding ratio in a 1: 3 weight ratio
  • the layer material was dissolved in a chlorobenzene solvent at a weight ratio of 1.5%, and then spin-coated to an ITO glass substrate having a PEDOT layer introduced therein under an argon atmosphere to introduce a photoelectric conversion layer having a thickness of 70 to 120 nm. Heat treatment was performed for a minute.
  • LiF 0.6 nm and aluminum 100 to 200 nm were sequentially thermally deposited in a vacuum chamber having a vacuum degree of 10 ⁇ 7 torr or less to prepare an organic optoelectronic device.
  • the photoelectric conversion layer material was prepared by mixing the polymer prepared in Example 8 and Comparative Example 5 and C 70 -PCBM in a weight ratio of 1: 3, and the electro-optical characteristics of the organic solar cell device using the same were shown in Table 4 below. It is described in.
  • the conductive polymer of the present invention is suitable as a polymer for organic solar cells.
  • the current density-voltage of the organic solar cell manufactured using the conductive polymer prepared in Example 8 (polymer 11) and Comparative Example 5 (polymer 10) of FIG. 4 prepared by containing a small amount of pyrene in the polymer. From the measurement results, the polymer prepared in Example 8 was improved in the optical short circuit current and the fill factor compared to the polymer of Comparative Example 5 (polymer-10) containing no pyrene, and high energy conversion efficiency of the organic solar cell device It was confirmed. In particular, since the organic solar cell device of the present invention is manufactured in a solution type containing a polymer, there is an economic advantage that a large area device can be provided at low cost.
  • a specific amount of pyrene in a donor-acceptor type polymer in which a repetitive acceptor is introduced into a polymer or a donor functional group composed of only a donor functional group containing one or more kinds of aromatic monomers.
  • the charge transfer rate is improved to improve the energy conversion efficiency when used as an electron donor of the organic solar cell.
  • the conductive polymer of the present invention can be used as an organic optoelectronic device material that can be applied to the field of organic light sensor, organic light emitting diode, organic thin film transistor, organic solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자 및 그를 광전변환재료로 이용한 유기 태양전지에 관한 것이다. 본 발명은 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에 파이렌 화합물을 특정량 도입함으로써, 정공이동도를 향상시킨 전도성 고분자를 제공함에 따라, 유기 광센서(OPD), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT), 유기 태양전지 등의 유기 광전자소자용 재료로 활용될 수 있다. 나아가, 본 발명은 파이렌 화합물이 도입된 전도성 고분자를 전자공여체로 활용한 유기 태양전지를 제공함으로써, 높은 에너지변환효율(power conversion efficiency, PCE)을 구현할 수 있다.

Description

파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
본 발명은 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자 및 그를 유기 광전자소자용 재료로 이용한 유기 태양전지에 관한 것으로서, 더욱 상세하게는 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에 파이렌 화합물을 도입함으로써, 정공이동도를 향상시킨 전도성 고분자를 제조하고, 이를 유기 광전자소자용 재료로 이용하여 에너지변환효율을 개선시킨 유기 태양전지에 관한 것이다.
유기박막 태양전지는 유기물을 광활성층으로 사용하는 것으로서, 수백 nm이내의 얇은 두께와 상대적으로 저렴한 광활성층의 재료, 특히 용이하게 구부릴 수 있는 플렉서블한 소자를 제작할 수 있다는 장점으로 인하여 연구가 활발히 진행되고 있다.
일반적으로 광활성층은 전자친화도가 다른 두 가지 물질을 혼합하여 사용하는데, 광활성물질의 일방이 광을 흡수하여 여기되어 여기자(exiton)를 형성하게 되고, 여기자는 전자친화도가 낮은 물질(도너, donor)과 전자친화도가 높은 물질(엑셉터, acceptor)의 경계면에서 전자친화도가 낮은 물질에 있는 전자가 전자친화도가 높은 물질로 이동하여 각각 정공(hole)과 전자(electron)로 분리된다. 이때, 여기자가 이동할 수 있는 거리가 물질에 따라 다르지만 ∼10 nm 정도이므로, 광이 흡수된 위치와 전자친화도가 다른 두 물질의 경계면과의 거리가 ∼10 nm 이내가 되어야 가장 높은 효율의 전자와 정공의 분리를 얻을 수 있으므로, 도너와 억셉터 물질을 혼합하여 사용하는 벌크 이종접합(bulk heterojuction)방법을 주로 사용한다.
유기태양전지는 크게 도너와 억셉터 물질을 증착법으로 박막을 제조하는 방법과, 용액공정을 사용하여 박막을 제조하는 두 가지 방법으로 분류된다.
상세하게는 증착을 이용하는 방법은 도너와 억셉터를 모두 단분자를 사용하는 반면, 용액공정을 사용하는 방법은 일반적으로 도너 물질로 고분자를 사용하고, 억셉터로는 고분자, 플러렌 유도체, 페릴렌 유도체, 양자점 무기나노입자 등을 사용한다. 따라서, 단분자를 증착하여 사용하는 경우보다, 고분자를 이용한 용액공정을 사용하면, 대면적의 소자를 값싸게 제작할 수 있기 때문에 최근에는 고분자를 이용한 용액공정 쪽에 연구의 무게가 집중되고 있는 실정이다.
현재까지 플러렌 유도체를 억셉터로 사용하는 것이 가장 좋은 효율들을 보여주고 있으며[J. Am. Chem. Soc., 2008, 130(48), 16144], 보다 높은 에너지전환효율을 도모하기 위해서, 서로 다른 영역의 광을 흡수하는 두 가지의 고분자 가운데 중간전극을 사이로 두고, 순차적으로 도입한 텐덤형 소자개발도 진행되고 있다[Science, 2007, 317, 222].
유기태양전지는 높은 에너지전환효율을 충족해야 하는데, 높은 에너지전환효율을 얻기 위해서는 첫째, 많은 양의 광자를 광흡수층에서 흡수해야하고, 둘째, 흡수되어 여기된 여기자가 도너와 억셉터의 계면으로 이동하여 정공과 전자로 효과적인 분리가 이루어져야 하고, 셋째, 분리된 정공과 전자가 양극과 음극으로 손실없이 이동해야 한다.
벌크 이종접합의 구조를 사용하고 억셉터로서 플러렌 유도체를 사용하는 경우, 두 번째의 여기자의 분리는 정량적으로 일어난다 할 수 있으므로, 유기박막 태양전지의 높은 에너지전환효율을 얻기 위해서는 도너로 사용되는 고분자가 많은 양의 광자를 흡수해야 하는 성질과, 정공을 잘 이동시킬 수 있는 성질을 동시에 충족시켜야 한다.
이에, 본 발명자들은 유기 태양전지의 높은 에너지변환효율을 얻기 위하여 유기 태양전지에 적용 가능한 신규한 고분자를 개발하고자 노력한 결과, 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에 파이렌 화합물을 도입하여, 정공이동도를 향상시킨 신규한 분자설계를 도출함으로써, 본 발명을 완성하였다.
본 발명의 목적은 정공이동도가 향상된 신규한 전도성 고분자 및 그를 이용한 유기 광전자소자용 재료로서의 용도를 제공하는 것이다.
본 발명의 다른 목적은 상기 전도성 고분자를 유기 광전자소자용 재료로 이용하여 에너지변환효율을 개선시킨 유기 태양전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 제공한다.
화학식 1
Figure PCTKR2010007003-appb-I000001
(상기 식에서, l은 단량체 X의 몰분율로서 0.40
Figure PCTKR2010007003-appb-I000002
< 1이고, m은 단량체 Y의 몰분율로서 0
Figure PCTKR2010007003-appb-I000003
0.50이고, n은 파이렌 화합물의 몰분율로서 0 <
Figure PCTKR2010007003-appb-I000004
≤ 0.10이고, X와 Y는 전자 도너, 억셉터 또는 광흡수 기능을 가지는 어느 하나의 단량체이다.)
상기 전체 전도성 고분자에서, 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000005
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000006
≤0.05이다.
또한, 상기 X 또는 Y 중 어느 한 쪽이 도너 단량체의 구조일 때, 다른 한쪽이 억셉터 단량체 구조인 것이다.
또한, 본 발명은 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 유기 광센서(OPD), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT) 및 유기 태양전지로 이루어진 군에서 선택되는 어느 하나의 분야에 적용되는 유기 광전자소자용 재료로서의 용도를 제공한다.
이때, 전체 전도성 고분자에서, 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000007
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000008
≤0.05이다.
나아가, 본 발명은 기판, 제1전극, 버퍼층, 광전변환층 및 제2전극으로 이루어지되, 상기 광전변환층이 본 발명의 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 전자공여체로 사용하고, C60 플러렌 유도체 또는 C70 플러렌 유도체를 전자수용체로 배합한 광전변환 물질 함유 용액으로 이루어진 유기 광전자소자를 포함한 유기 태양전지를 제공한다. 이때, 전도성 고분자에서, 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000009
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000010
≤0.05이다.
본 발명의 유기 태양전지에서, 광전변환층은 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 전자공여체로 하고, C60 플러렌 유도체 또는 C70 플러렌 유도체를 전자수용체로 사용하되, 그 배합비가 1:0.5 ∼ 1:4 중량비로 배합된 광전변환 물질로 이루어진 것이다.
또한, 상기 광전변환 물질 함유 용액은 클로로벤젠, 1,2-디클로로벤젠 및 클로로포름으로 이루어진 군에서 선택되는 어느 하나의 용매에 광전변환 물질 1.0 내지 3.0 중량%가 용해된 용액상에 기반한 유기 태양전지이다. 이때, 상기 광전변환 물질이 용해된 용액은 잉크젯 프린팅법, 스핀코팅법, 스크린 인쇄법 및 닥터 블레이드법에서 선택되는 하나의 방법으로 도포 또는 코팅될 수 있다.
본 발명에 따라, 유기 태양전지의 에너지변환효율이 개선된 신규한 전도성 고분자를 제공할 수 있다. 즉, 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에 파이렌 화합물을 특정량 도입하여 정공이동도를 향상시킨 본 발명의 전도성 고분자는 광전변환재료(光電變換材料)로서 유용하다.
이에, 본 발명은 파이렌 화합물이 도입된 전도성 고분자를 전자공여체로 활용한 유기 광전자소자를 이용한 유기 태양전지를 제공함으로써, 높은 에너지변환효율(power conversion efficiency, PCE)을 구현할 수 있다.
도 1은 본 발명의 실시예에 따라 제조된 유기 광전자소자의 모식도이고,
도 2는 본 발명의 바람직한 제1실시형태에 따라 제조된 유기 태양전지의 전류밀도-전압(J-V) 측정 결과이고,
도 3은 본 발명의 바람직한 제2실시형태에 따라 제조된 유기 태양전지의 자의 전류밀도-전압(J-V) 측정 결과이고,
도 4는 본 발명의 바람직한 제3실시형태에 따라 제조된 유기 태양전지의 자의 전류밀도-전압(J-V) 측정 결과이다.
이하, 본 발명을 상세히 설명하고자 한다.
본 발명은 하기 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 제공한다.
화학식 1
Figure PCTKR2010007003-appb-I000011
(상기 식에서, l은 단량체 X의 몰분율로서 0.40
Figure PCTKR2010007003-appb-I000012
< 1이고, m은 단량체 Y의 몰분율로서 0
Figure PCTKR2010007003-appb-I000013
0.50이고, n은 파이렌 화합물의 몰분율로서 0 <
Figure PCTKR2010007003-appb-I000014
≤ 0.10이고, X와 Y는 전자 도너, 억셉터 또는 광흡수 기능을 가지는 어느 하나의 단량체이다.)
상기 화학식 1의 전도성 고분자는 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에, 정공이동도가 높은 파이렌 화합물을 도입한 것이다.
이때, 본 발명의 화학식 1의 전도성 고분자에서, 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000015
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000016
≤0.05를 충족할 때, 정공이동도를 향상시킬 수 있는 동시에, 높은 광흡수도를 구현할 수 있는 전도성 고분자를 얻을 수 있다. 상기 파이렌 화합물의 함량이 0.10을 초과하면, 전도성 고분자가 광전변환재료로서 사용될 수 없을 정도로 용해도가 떨어지고, 에너지변환효율이 저하된다.
또한, 본 발명의 화학식 1의 전도성 고분자에서, 광흡수도를 높이기 위한 기능과 고분자의 자기조립을 할 수 있는 기능을 동시에 도입하기 위하여, X, Y 또는 X 및 Y의 조합이 중요하다. 이때, X 또는 Y 중 어느 한 쪽이 도너 단량체의 구조일 때, 다른 한쪽은 억셉터 단량체 구조를 가져야 한다.
바람직한 도너 단량체는 화학식 2 내지 화학식 10으로 표시되는 화합물 중에서 선택되는 어느 하나를 사용하는 것이다.
화학식 2
Figure PCTKR2010007003-appb-C000001
화학식 3
Figure PCTKR2010007003-appb-C000002
화학식 4
Figure PCTKR2010007003-appb-C000003
화학식 5
Figure PCTKR2010007003-appb-C000004
화학식 6
Figure PCTKR2010007003-appb-C000005
화학식 7
Figure PCTKR2010007003-appb-C000006
화학식 8
Figure PCTKR2010007003-appb-C000007
화학식 9
Figure PCTKR2010007003-appb-C000008
화학식 10
Figure PCTKR2010007003-appb-C000009
(상기 식에서, R1 또는 R2는 C1∼C20 직쇄 또는 측쇄의 알킬기, C1∼C20 헤테로사이클로알킬, C6∼C20 아릴 또는 그의 헤테로아릴이다.)
또한, 바람직한 억셉터 단량체는 하기 화학식 11 내지 화학식 17로 표시되는 화합물 중에서 선택되는 어느 하나를 사용하는 것이다.
화학식 11
Figure PCTKR2010007003-appb-C000010
화학식 12
Figure PCTKR2010007003-appb-C000011
화학식 13
Figure PCTKR2010007003-appb-C000012
화학식 14
Figure PCTKR2010007003-appb-C000013
화학식 15
Figure PCTKR2010007003-appb-C000014
화학식 16
Figure PCTKR2010007003-appb-C000015
화학식 17
Figure PCTKR2010007003-appb-C000016
(상기 식에서, R3 또는 R4는 C1∼C20 직쇄 또는 측쇄의 알킬기, C1∼C20의 알콕시기, C6∼C20의 아릴기, C1∼C20 헤테로사이클로알킬, C6∼C20 아릴 또는 그의 헤테로아릴이고, R3 또는 R4는 동일하거나, 동일하지 않을 수 있다.)
본 발명의 화학식 1의 전도성 고분자에서 X와 Y는 상기 도너 단량체 또는 억셉터 단량체 이외에도, 공지된 다양한 전도성 작용기 또는 광흡수 기능을 가지는 어느 하나의 단량체 구조도 가능하다. 바람직하게는 X와 Y 모두 결정성을 가지는 싸이오펜 유도체가 될 수도 있다. 더욱 바람직하게는, X는 도너 작용기를 가지고, Y는 억셉터 작용기를 가지고 있어 도너-억셉터 형태의 낮은 밴드갭의 고분자를 구성할 수 있다.
본 발명은 하기 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자가 전자공여체로 사용되는 유기 광전자소자용 재료로서의 그 용도를 제공한다.
화학식 1
Figure PCTKR2010007003-appb-I000017
(상기 식에서, l, m, n은 상기 명세서에서 정의한 바와 같다.)
상기 식에서, 바람직한 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000018
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000019
≤0.05인 것이다.
본 발명의 바람직한 제1실시형태로서, 본 발명의 실시예 1 내지 3에서는 플루오렌 및 디티에닐벤조싸이아다이아졸의 공중합체에 파이렌 화합물이 함유되어 제조된 전도성 고분자를 하기 반응식 1에 의해 제공한다.
반응식 1
Figure PCTKR2010007003-appb-I000020
또한, 본 발명의 바람직한 제2실시형태로서, 본 발명의 실시예 5 및 6에서는 디싸이오펜실롤 및 벤조싸이아다이아졸의 공중합체에 파이렌 화합물이 함유되어 제조된 전도성 고분자를 하기 반응식 2에 의해 제공한다.
반응식 2
Figure PCTKR2010007003-appb-I000021
이때, 본 발명은 전도성 고분자의 주쇄에 10몰% 이하, 더욱 바람직하게는 5 몰% 이하로 소량의 파이렌 화합물을 도입함으로써, 정공전달의 성능이 향상된 전도성 고분자를 제공할 수 있다.
상기 실시예에서 제시된 전도성 고분자는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 상기 실시예의 기재로부터 이 기술분야의 통상의 지식을 가진 자라면, 본 발명에서 앞서 정의된 도너 또는 억셉터 형태의 조합에 의하여, 본 발명이 구현하고자 하는 다양한 전도성 고분자를 용이하게 합성할 수 있을 것이다.
본 발명의 파이렌 화합물이 도입된 전도성 고분자를 전자공여체로 사용하고, 플러렌 유도체를 억셉터로 사용하는 경우, 유기 태양전지의 높은 에너지변환효율을 확인함으로써[표 1표 2], 높은 광자 흡수능과 정공이동도를 동시에 충족한다.
이에, 본 발명의 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자는 유기 광센서(OPD), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT), 유기 태양전지 등의 비선형 광학재료로 유용한 유기 광전자소자용 재료로 유용하다.
또한, 본 발명은 기판, 제1전극, 버퍼층, 광전변환층 및 제2전극으로 이루어지되, 상기 광전변환층이 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자가 전자공여체로 사용되고, C60 플러렌 유도체 또는 C70 플러렌 유도체가 전자수용체로 배합된 광전변환 물질로 이루어진 유기 광전자소자(organic photovoltaic device)를 포함한 유기 태양전지를 제공한다.
본 발명의 유기 태양전지는 하부에서부터 기판(110), 제1전극(120), 버퍼층(130), 광전변환층(140) 및 제2전극(150)이 적층된 구조에 있어서, 상기 광전변환층(140)이 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자가 전자공여체로 사용되고, C60 플러렌 유도체 또는 C70 플러렌 유도체가 전자수용체로 배합된 광전변환 물질 함유 용액으로 형성된 유기 광전자소자를 포함하는 것을 특징으로 한다. 본 발명의 바람직한 실시예에 따라 제조된 유기 광전자소자를 포함하는 유기 태양전지의 모식도는 도 1에 도시한 바와 같다.
또한, 본 발명의 유기 광전자소자는 상기 광전변환층(140)과 제2전극(150)사이에 전자전달층, 정공저지층 또는 옵티컬 스페이스(optical space)층을 도입할 수 있다.
본 발명의 유기 광전자소자는 전자공여체로 사용되는 전도성 고분자가 파이렌 화합물을 도입함으로써, 높은 광자 흡수능과 정공이동도 향상에 의하여, 최종적으로 유기 태양전지의 높은 에너지변환효율을 구현할 수 있다[표 1 및 표 2].
이때, 본 발명의 유기 광전자소자에 전자공여체로 사용되는 전도성 고분자 내 파이렌 화합물의 함량은 0 <
Figure PCTKR2010007003-appb-I000022
≤0.10이 바람직하고, 더욱 바람직하게는 0 <
Figure PCTKR2010007003-appb-I000023
≤0.05를 충족해야 한다.
본 발명의 유기 태양전지에 사용되는 기판(110)의 소재로는 투명 물질이 바람직하고, 그 일례로는 유리(glass) 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polypropylene), PI(polyamide), TAC(triacetyl cellulose) 등의 플라스틱이고, 더욱 바람직하게는 유리를 사용하는 것이다.
또한, 제1전극(120)은 상기 기판(110)의 일면에 스퍼터링, 스핀코팅 등의 방법을 사용하여 투명 물질을 도포하거나 필름 형태로 코팅하여 형성시킬 수 있다. 제1전극(120)은 애노드로 기능하는 부분으로서, 후술하는 제2전극(150)에 비하여 일함수가 작은 물질로서 투명성 및 도전성을 갖는 것이라면 특별히 제한되지 않고 사용될 수 있는데, 그의 바람직한 일례로는 ITO(indium-tin oxide), FTO(Fluorine doped tin oxide), ZnO-(Ga2O3 또는 Al2O3), SnO2-Sb2O3 등이 사용될 수 있으며, 더욱 바람직하게는 ITO를 사용한다.
상기 제1전극(120)의 상부로 형성되는 버퍼층(130)은 폴리스티렌설포네이트로 도핑된 폴리(3,4-에틸렌디옥시싸이오펜)[PEDOT:PSS]를 사용하여 정공이동도를 향상시킬 수 있다. 이때, 버퍼층(130)의 형성방법은 스핀코팅 등의 방법을 통하여 도입될 수 있다.
한편, 상기 버퍼층(130)의 상부에는 광전변환층(140)이 적층된다. 상기 광전변환층(140)은 전자공여체와 전자수용체의 접합 구조로 이루어지면서, 전자공여체와 전자수용체 사이의 매우 빠른 전하 이동현상으로 광기전력 효과를 제공한다.
이때, 본 발명은 광전변환층(140)의 재료로서, 전자공여체로서 본 발명의 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자를 사용하고, 전자수용체로서는 C60 플러렌 유도체 또는 C70 플러렌 유도체를 사용한다.
또한, 본 발명의 광전변환층(140)의 광전변환 물질은 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자와 C60 플러렌 유도체 또는 C70 플러렌 유도체간의 혼합비율이 1:0.5 ∼ 1:4의 중량비로 배합되는 것이 바람직하다. 이때, 본 발명의 파이렌 화합물이 도입된 전도성 고분자에 비하여, 플러렌 유도체가 0.5 중량비 미만으로 배합되면, 결정화된 플러렌 유도체의 함량이 부족하여 생성된 전자의 이동에 장애가 발생하고, 4 중량비를 초과하면, 광을 흡수하는 전도성 고분자의 양이 상대적으로 줄어들어 광의 효율적인 흡수가 이루어지지 않아 바람직하지 않다.
본 발명의 파이렌 화합물이 도입된 전도성 고분자와 C60 플러렌 유도체 또는 C70 플러렌 유도체가 배합되는 광전변환 물질은 단일 유기용매 또는 비점이 상이한 2종 이상의 유기용매에 용해시켜 용액을 제조하는데, 이때 사용되는 유기용매로는 클로로벤젠, 1,2-디클로로벤젠 및 클로로폼으로 이루어진 군에서 선택되는 어느 하나의 용매에 고형분 함량(광전변환 물질) 1.0 내지 3.0 중량%로 함유되도록 제조된다. 이때, 고형분 함량 1.0중량% 미만이면, 도입된 박막의 두께를 60nm 이상으로 유지하는데 문제가 있고, 3.0중량%를 초과 함유되면, 전도성 고분자와 C70 플러렌 유도체가 녹지 않는 부분이 많아 바람직하지 않다.
이후, 상기 광전변환 물질이 용해된 용액은 스핀코팅법, 스크린 인쇄법, 잉크젯 프린팅법 및 닥터 블레이드법에서 선택되는 하나의 방법으로 도포 또는 코팅되어 약 60nm 이상, 바람직하게는 65 내지 200 nm 두께의 광전변환층(140)으로 형성된다.
제2전극(150)은 광전변환층(140)이 도입된 상태에서 약 10-7 torr 이하의 진공도에서 알루미늄 등의 금속 물질을 100∼200 ㎚로 진공 열 증착하여 광전변환층(140)의 상부에 적층될 수 있다.
상기 제2전극(150)으로 사용될 수 있는 물질로는 금, 알루미늄, 구리, 은 또는 그들의 합금, 칼슘/알루미늄 합금, 마그네슘/은 합금, 알루미늄/리튬 합금 등을 포함하며, 바람직하게는 알루미늄 또는 알루미늄/칼슘 합금이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다.
본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1> 전도성 고분자-2의 합성
고분자-2:
Figure PCTKR2010007003-appb-I000024
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란(dioxaborolan)-2'-일)-9,9-디데실플루오렌 0.300g(0.429mmol), 4,7-디-2'-(5'-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.191g(0.416mmol), 1,6-디브로모파이렌 0.00464g(0.0129mmol)을 넣고 1시간 동안 진공을 잡아둔 후, 톨루엔 7㎖를 넣어준 후, 30분 동안 교반하였다. 에탄올 1.5㎖와 20중량% Et4NOH 1.5㎖를 넣어준 후, 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다. 이후, Pd(OAc)2 2.9 mg(0.0129 mmol)과 트리싸이클로헥시포스핀 10.8 mg(0.0386 mmol)을 넣고, 질소 분위기에서 외부 오일배스의 온도를 120℃로 유지하며 2일 동안 환류시켰다.
페닐보로닉산(phenylboronic acid) 0.05g을 넣고 3시간 반응시킨 후, 브로모벤젠 0.12g을 넣고, 4시간 더 반응시켰다. 반응용액을 300㎖ 메탄올에 떨어뜨려 얻어진 미정제된 고체 고분자를 메탄올에서 24시간 속실렛을 이용하여 세척하였다. 용매를 클로로포름으로 바꾸어 고분자를 녹여낸 후, 용매를 최소량만 남기고 증발시킨 후 300㎖ 메탄올에 침전시켰다. 고체를 필터한 후, 용매를 제거하고, 다시 최소량의 클로로포름에 녹인 후 300㎖ 메탄올에 재침전시킨 후 필터하고 진공하에서 건조하여 고분자-2 200mg을 얻었다[Mw = 19,000 g/mol (PDI=2.4)].
<실시예 2> 전도성 고분자-3의 합성
고분자-3:
Figure PCTKR2010007003-appb-I000025
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-9,9-디데실플루오렌 0.300g(0.429mmol), 4,7-디-2‘-(5’-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.187g(0.409mmol), 1,6-디브로모파이렌 0.00774g(0.0215mmol)을 넣고 1시간동안 진공을 잡아둔 후, 톨루엔 7㎖를 넣어준 후 30분 동안 교반하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 고분자-3 200mg을 얻었다[Mw=26,400 g/mol(PDI=2.1)].
<실시예 3> 전도성 고분자-4의 합성
고분자-4:
Figure PCTKR2010007003-appb-I000026
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-9,9-디데실플루오렌 0.300g(0.429mmol), 4,7-디-2'-(5'-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.177g(0.386mmol), 1,6-디브로모파이렌 0.0155g(0.043mmol)을 넣고 1시간동안 진공을 잡아둔 후, 톨루엔 7㎖를 넣어준 후 30분 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여, 고분자-4 200mg을 얻었다[Mw=25,000 g/mol(PDI=2.3)].
<비교예 1> 전도성 고분자-1의 합성
고분자-1:
Figure PCTKR2010007003-appb-I000027
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-N-9"-헵타데카닐카바졸 0.263 g (0.400 mmol), 4,7-디-2‘-(5’-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.183 g (0.400 mmol)을 넣고 1시간동안 진공을 잡아둔 후, 톨루엔 4㎖를 넣어준 후 30분 동안 교반하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 고분자-1 300㎎을 얻었다. [Mw=31,000g/mol (PDI=3.9)]. 원소분석. C47H52N2S3에 대한 이론치: C 75.96; H 7.32; N 3.77; S 12.94. 측정치: C 75.84; H 7.25; N 3.71; S 12.98.
<비교예 2> 전도성 고분자-5의 합성
고분자-5:
Figure PCTKR2010007003-appb-I000028
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-9,9-디데실플루오렌 0.300g(0.429mmol), 4,7-디-2'-(5'-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.148g(0.322mmol), 1,6-디브로모파이렌 0.0385g(0.107mmol)을 넣고 1시간동안 진공을 잡아둔 후, 톨루엔 7㎖를 넣어준 후 30분 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여, 고분자-5 200mg을 얻었다[Mw=27,000 g/mol(PDI=2.7)].
<비교예 3> 전도성 고분자-6의 합성
고분자-6:
Figure PCTKR2010007003-appb-I000029
반응플라스크에 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-9,9-디데실플루오렌 0.300g(0.429mmol), 4,7-디-2'-(5'-브로모)-싸이에닐-2,1,3-벤조싸이아다이아졸 0.0985g(0.215mmol), 1,6-디브로모파이렌 0.0774g(0.215mmol)을 넣고 1시간동안 진공을 잡아둔 후, 톨루엔 7㎖를 넣어준 후 30분 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여, 고분자-6 200mg을 얻었다[Mw=45,000 g/mol(PDI=2.8)].
<실시예 4> 유기 태양전지의 제조 1
상기 스즈끼방법을 통하여 합성된 실시예 1∼3 및 비교예 1∼3의 파이렌기를 포함하는 전도성 고분자를 전자공여체로 사용하고, C70-PCBM를 전자수용체로 사용하되, 그 배합비를 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 클로로벤젠 용매에 1.5%의 중량비로 함유되도록 용해시킨 후, 아르곤 분위기 하에서 PEDOT층이 도입된 ITO 유리 기판에 스핀 코팅하여 60∼120nm 두께의 광전변환층을 도입하고, 120℃ 열판에서 5분간 열처리하였다. 이어서 10-7 torr 이하의 진공도를 가진 진공 챔버에서 LiF 0.6nm와 알루미늄 100∼200㎚을 순차적으로 열증착하여 유기 태양전지를 제조하였다.
<실험예 1> 유기 광전자 소자를 채용한 유기 태양전지의 전기 광학적 특성
하기 반응식 1에 제시된 바와 같이 제조된 실시예 1∼3 및 비교예 1∼3의 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 광전변환층 재료를 제조하고, 이를 이용한 유기 태양전지에 대하여, 전기 광학적 특성결과를 하기 표 1에 기재하였다.
또한, 도 2는 상기 실시예 1∼3 및 비교예 1∼3에서 제조된 전도성 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 이용한 유기 태양전지의 전류밀도-전압(J-V) 측정 결과를 나타낸 그래프이다.
전기 광학적 특성 중, 필 팩터 및 에너지 전환 효율은 하기 수학식 1수학식 2에 의해 산출되었다.
수학식 1
Figure PCTKR2010007003-appb-M000001
(상기에서, Vmp는 최대 전력점에서 전압값이고, Imp는 전류밀도이고, Voc는 광개방 전압이고, Isc는 광 단락 전류이다.)
수학식 2
Figure PCTKR2010007003-appb-M000002
(상기에서, Jsc는 광 단락 전류밀도이고, Voc는 광개방 전압이다.)
Figure PCTKR2010007003-appb-I000030
Figure PCTKR2010007003-appb-I000031
상기 표 1 및 도 2의 결과로부터, 플루오렌 및 디티에닐벤조싸이아다이아졸의 공중합체에 소량의 파이렌이 함유되어 제조된 실시예 1∼3의 고분자(고분자-2 내지 고분자-4)를 이용한 유기 태양전지는 파이렌 화합물이 함유되지 않은 비교예 1의 고분자(고분자-1)에 대비하여, 에너지변환효율이 각각 55%, 59%, 38% 향상된 결과를 보였다.
또한, 플루오렌에 대하여, 12.5% 이상의 단량체를 첨가한 비교예 2의 경우 파이렌 화합물이 함유되지 않은 비교예 1의 고분자-1대비 비슷한 효율을 보여주고, 25% 이상의 단량체를 첨가한 비교예 3의 경우에는 비교예 1의 고분자-1에 대비하여, 에너지변환효율이 27%정도 오히려 감소되는 결과를 확인하였다.
<실시예 5> 전도성 고분자-8의 합성
반응플라스크에 4,4'-비스(2-에틸-헥실)-5,5'-비스(트리케틸실릴)-디싸이레노실롤 (4,4'-bis(2-ethyl-hexyl)-5,5'-bis(trimethylsilyl)-dithieno [3,2-b:2',3'-d]silole 0.325g(0.436mmol), 4,7-브로모-2,1,3-벤조싸이아다이아졸 0.122g(0.414mmol), 1,6-디브로모파이렌 0.00784g(0.0218mmol)과 톨루엔 2㎖를 넣어준 후, 10분 동안 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다. 질소를 흘려주면서 Pd2(dba)3 11.8 mg(0.0129 mmol)과 P(o-tolyl)3 11.7mg (0.0386 mmol)을 넣고 다시 5분간 질소로 버블링시켰다. 질소 분위기에서 외부 오일배스의 온도를 120℃로 유지하며 2일 동안 환류시켰다. 트리부틸페닐 주석(Tributhylphenyl tin) 0.05g을 넣고 3시간 반응시킨 후, 브로모벤젠 0.12g을 넣고, 4시간 더 반응시켰다. 반응용액을 300㎖ 메탄올에 떨어뜨려 얻어진 미정제된 고체 고분자를 메탄올에서 24시간 속실렛을 이용하여 세척하였다. 용매를 클로로포름으로 바꾸어 고분자를 녹여낸 후, 용매를 최소량만 남기고 증발시킨 후 300㎖ 메탄올에 침전시켰다. 고체를 필터한 후, 용매를 제거하고, 다시 최소량의 클로로포름에 녹인 후 300㎖ 메탄올에 재침전시킨 후, 필터하고 진공하에서 건조하여 고분자-8 130mg을 얻었다[Mw = 67,000 g/mol(PDI=1.8)].
<실시예 6> 전도성 고분자-9의 합성
반응플라스크에 4,4'-비스(2-에틸-헥실)-5,5'-비스(트리케틸실릴)-디싸이레노실롤0.325g(0.436mmol), 4,7-브로모-2,1,3-벤조싸이아다이아졸 0.180g(0.392mmol), 1,6-디브로모파이렌 0.0157g(0.0436mmol)과 톨루엔 2㎖를 넣어준 후, 10분 동안 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다.
질소를 흘려주면서 Pd2(dba)3 11.8 mg(0.0129 mmol)과 P(o-tolyl)3 11.7mg (0.0386 mmol)을 넣고 다시 5분간 질소로 버블링시켰다. 질소 분위기에서 외부 오일배스의 온도를 120℃로 유지하며 일 동안 환류시키고, 이후의 실험은 상기 실시예 4와 동일한 방법으로 수행하여, 고분자-9 180mg을 얻었다[Mw=60,000g/mol(PDI=1.7)].
<비교예 4> 전도성 고분자-7의 합성
반응플라스크에 4,4'-비스(2-에틸-헥실)-5,5'-비스(트리케틸실릴)-디싸이레노실롤 0.325g(0.436mmol), 4,7-브로모-2,1,3-벤조싸이아다이아졸 0.200g(0.436mmol)과 톨루엔 2㎖를 넣어준 후, 10분 동안 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다.
질소를 흘려주면서 Pd2(dba)3 11.8 mg(0.0129 mmol)과 P(o-tolyl)3 11.7mg (0.0386 mmol)을 넣고 다시 5분간 질소로 버블링시켰다. 질소 분위기에서 외부 오일배스의 온도를 120℃로 유지하며 2일 동안 환류시키고, 이후의 실험은 상기 실시예 4와 동일한 방법으로 수행하여, 고분자-7 180mg을 얻었다[Mw=40,000g/mol(PDI=1.3)].
<실시예 7> 유기 광전자소자의 제조 2
상기 스틸리방법을 통하여 합성된 실시예 5∼6 및 비교예 4의 파이렌기를 포함하는 전도성 고분자를 전자공여체로 사용하고, C70-PCBM를 전자수용체로 사용하되, 그 배합비를 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 클로로벤젠 용매에 1.5%의 중량비로 함유되도록 용해시킨 후, 상기 실시예 4와 동일한 방법으로 유기 태양전지를 제조하였다.
<실험예 2> 유기 광전자소자를 채용한 유기 태양전지의 전기 광학적 특성
하기 반응식 2에 제시된 바와 같이 제조된 실시예 5∼6 및 비교예 4의 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 광전변환층 재료를 제조하고, 이를 이용한 유기 태양전지에 대하여, 전기 광학적 특성결과를 하기 표 2에 기재하였다.
또한, 도 3은 상기 실시예 5∼6 및 비교예 4에서 제조된 전도성 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 이용한 유기 태양전지의 전류밀도-전압(J-V) 측정 결과를 나타낸 그래프이다.
Figure PCTKR2010007003-appb-I000032
Figure PCTKR2010007003-appb-I000033
상기 표 2 및 도 3의 결과로부터, 디싸이오펜실롤 및 벤조싸이아다이아졸의 공중합체에 소량의 파이렌이 함유되어 제조된 실시예 5∼6의 고분자(고분자-8 및 고분자-9)를 포함한 유기 태양전지의 경우, 파이렌이 함유되지 않은 비교예 4의 고분자(고분자-7)에 비하여, 에너지변환효율이 각각 15%, 28% 향상된 결과를 확인하였다.
<실시예 8> 전도성 고분자-11의 합성
Figure PCTKR2010007003-appb-I000034
단계 1: 2,5-비스(5-브로모-3-헥실티오펜-2-일)-티아졸로[5,4-d]티아졸의 제조
반응플라스크에 2,5-비스(3-헥실티오펜-2-일)-티아졸로[5,4-d]티아졸 0.720g(1.52 mmol)과 N-브로모석신이미드(NBS) 0.541g(3.04 mmol)을 넣고 클로로포름 35㎖에 녹인 후, 3시간 동안 환류 반응하였다. 반응 온도를 실온으로 떨어뜨린 후에 물로 2번 정도 씻은 후, 유기층에 녹아 있는 물질을 MgSO4를 이용하여 미량의 물을 제거한 후에 용매를 제거하였다.
용매를 제거한 후, 헥산/클로로포름(50:1) 전개용매로 컬럼크로마토그래피를 이용하여 목적화합물인 2,5-비스(5-브로모-3-헥실티오펜-2-일)-티아졸로[5,4-d]티아졸 0.3 g(31 %)을 얻었다.
1H NMR (300 MHz, C6D6)(ppm): 6.96(s, 2H), 2.91(t, 4H), 1.67(q, 4H), 1.34(br, 12H), 0.91(t, 6H).
단계 2:2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란-2'-일)-N-9"-헵타데카닐카바졸의 제조
반응플라스크에 N-9'-헵타데카닐-2,7-디브로모카바졸 5.000g(8.87 mmol)을 THF 100㎖에 녹여 -78℃로 유지한 후, n-BuLi(2.5 M 헥산용액) 7.27㎖ (18.18 mmol)를 천천히 적하하였다. 한 시간 동안 같은 온도에서 교반한 후에 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 3.63㎖(19.51 mmol)을 용액에 적하하였다. 동일 온도에서 한 시간 더 교반한 후에, 반응용기의 온도를 상온으로 높인 후 16시간 교반하여 반응시켰다. 상기 반응물을 물에 부은 후, 디에틸 에테르로 추출한 후에 MgSO4를 이용하여 미량의 물을 제거한 후 용매를 제거하였다.
용매를 제거한 후에 메탄올/아세톤 (10:1) 용액을 이용하여 재결정을 통해 목적화합물인 2:2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란(dioxaborolan)-2'-일)-N-9"-헵타데카닐카바졸 2.5g(50%)을 정제하여 수득하였다.
1H NMR (300 MHz, C6D6)(ppm): 8.44(br, 1H), 8.19(d, J = 7.8 Hz, 1H), 8.15(t, J= 8.1 Hz, 2H), 8.10(d, J=7.7 Hz, 1H), 4.50(m, 1H), 2.33(m, 2H), 1.61(m, 2H), 1.22(br, 4H), 1.19(br, 12H), 1.17(br, 12H), 1.03(br, 20H), 0.87(t, J = 7.1 Hz, 6H).
단계 3: 전도성 고분자의 제조
반응플라스크에 단계 1에서 제조된 2,5-비스(5-브로모-3-헥실티오펜-2-일)-티아졸로[5,4-d]티아졸 0.240g(0.380 mmol), 1,6-디브로모파이렌 0.0072 (0.020 mmol)과, 단계 2에서 제조된 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란(dioxaborolan)-2'-일)-N-9"-헵타데카닐카바졸 0.263g(0.400 mmol)을 넣고 1시간 동안 진공을 잡아둔 후, 톨루엔 4㎖를 넣어준 후, 30분 동안 교반하였다. 20중량%의 Et4NOH 1.296g를 첨가한 후, 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다.
이후, Pd(OAc)2 5.4 mg(0.008 mmol)과 트리싸이클로헥시포스핀 3.4 mg(0.0386 mmol)을 넣고, 질소 분위기에서 외부 오일배스의 온도를 90℃로 유지하며 24시간 동안 환류반응시켰다. 반응용액을 300㎖ 메탄올에 떨어뜨려 얻어진 미정제된 고체 고분자를 메탄올과 아세톤에서 각각 24시간 속실렛을 이용하여 세척하였다. 용매를 클로로포름으로 바꾸어 고분자를 녹여낸 후, 용매를 최소량만 남기고 증발시킨 후 300㎖ 메탄올에 침전시켰다. 고체를 필터한 후, 용매를 제거하고, 다시 최소량의 클로로포름에 녹인 후 300㎖ 메탄올에 재침전시킨 후 필터하고 진공 하에서 건조하여 전도성 고분자 210mg을 제조하였다[Mw=57,000g/mol(PDI=2.2)].
<비교예 5> 전도성 고분자-10의 합성
반응플라스크에 단계 1에서 제조된 2,5-비스(5-브로모-3-헥실티오펜-2-일)-티아졸로[5,4-d]티아졸 0.253g(0.400 mmol)과, 단계 2에서 제조된 2,7-비스(4',4',5',5'-테트라메틸-1',3',2'-디옥사보로란(dioxaborolan)-2'-일)-N-9"-헵타데카닐카바졸 0.263g(0.400 mmol)을 넣고 1시간 동안 진공을 잡아둔 후, 톨루엔 4㎖를 넣어준 후, 30분 동안 교반하였다. 20중량%의 Et4NOH 1.296g를 첨가한 후, 질소로 버블링하여, 용매 중에 녹아있는 용존 산소를 제거하였다.
이후, Pd(OAc)2 5.4 mg(0.008 mmol)과 트리싸이클로헥시포스핀 3.4 mg(0.0386 mmol)을 넣고, 질소 분위기에서 외부 오일배스의 온도를 90℃로 유지하며 24시간 동안 환류반응시켰다. 반응용액을 300㎖ 메탄올에 떨어뜨려 얻어진 미정제된 고체 고분자를 메탄올과 아세톤에서 각각 24시간 속실렛을 이용하여 세척하였다. 용매를 클로로포름으로 바꾸어 고분자를 녹여낸 후, 용매를 최소량만 남기고 증발시킨 후 300㎖ 메탄올에 침전시켰다. 고체를 필터한 후, 용매를 제거하고, 다시 최소량의 클로로포름에 녹인 후 300㎖ 메탄올에 재침전시킨 후 필터하고 진공 하에서 건조하여 전도성 고분자 320mg을 제조하였다[Mw=58,000g/mol(PDI=2.9)].
원소분석. C53H69N3S4에 대한 이론치: C 72.63; H 7.94; N 4.79; S 14.63. 측정치: C 72.46; H 7.82; N 4.58; S 14.20.
<실시예 9> 유기 광전자 소자의 제조 3
상기 스즈끼방법을 통하여, 상기 실시예 8 및 비교예 5에서 제조된 고분자를 전자공여체로 사용하고, C70-PCBM을 전자수용체로 사용하되, 그 배합비를 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 클로로벤젠 용매에 1.5%의 중량비로 함유되도록 용해시킨 후, 아르곤 분위기 하에서 PEDOT층이 도입된 ITO 유리 기판에 스핀 코팅하여 70∼120nm 두께의 광전변환층을 도입하고, 120℃ 열판에서 5분간 열처리하였다.
이어서 10-7 torr 이하의 진공도를 가진 진공 챔버에서 LiF 0.6nm와 알루미늄 100∼200㎚을 순차적으로 열증착하여 유기 광전자 소자를 제조하였다.
<실험예 3> 유기 광전자소자를 채용한 유기 태양전지의 전기 광학적 특성
상기 실시예 8 및 비교예 5에서 제조된 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 광전변환층 재료를 제조하고, 이를 이용한 유기 태양전지 소자에 대하여, 전기 광학적 특성결과를 하기 표 4에 기재하였다.
도 4은 상기 실시예 8 및 비교예 5에서 제조된 전도성 고분자와 C70-PCBM을 1:3 중량비로 혼합하여 제조된 광전변환층 재료를 이용한 유기 태양전지의 전류밀도-전압(J-V) 측정 결과를 나타낸 그래프이다.
Figure PCTKR2010007003-appb-I000035
상기 표 4에서 보이는 바와 같이, 고분자 내에, 도너(donor)-어셉터(acceptor) 세그먼트를 동시에 포함하고, 특히 디티오펜-티아졸로타아졸기를 도입함으로써, 광자 흡수능을 높일 뿐 아니라, 정공 이동도가 향상된 결과를 확인함으로써, 본 발명의 전도성 고분자는 유기태양전지용 고분자로서 적합하다.
또한, 상기 고분자에 소량의 파이렌이 함유되어 제조된 도 4의 실시예 8(고분자 11) 및 비교예 5(고분자 10)에서 제조된 전도성 고분자를 이용하여 제조된 유기 태양전지의 전류밀도-전압 측정 결과로부터, 실시예 8에서 제조된 고분자는 파이렌이 함유되지 않은 비교예 5의 고분자(고분자-10)에 비하여, 광단락 전류 및 필팩터가 향상되었으며, 유기 태양전지 소자의 높은 에너지전환효율을 확인하였다. 특히, 본 발명의 유기 태양전지 소자가 고분자를 함유한 용액형으로 제조되므로 대면적 소자를 저가로 제공할 수 있는 경제적 이점이 있다.
상기에서 살펴본 바와 같이,
첫째, 다양한 종류의 방향족 단량체가 1종 이상 포함된 도너(donor) 작용기만으로 구성된 고분자 또는 도너 작용기에 반복적인 억셉터기(acceptor)를 도입한 도너-억셉터 형태의 고분자에, 특정량의 파이렌 화합물을 도입한 전도성 고분자를 제공함에 따라, 전하이동 속도가 향상되어 유기 태양전지의 전자 공여체로서 사용할 경우 에너지변환효율을 향상시키는 효과가 있다.
둘째, 본 발명의 전도성 고분자의 높은 광자 흡수능 및 정공이동도에 의하여, 유기 광센서, 유기발광다이오드, 유기박막트랜지스터, 유기 태양전지 분야에 적용할 수 있는 유기 광전자소자용 재료로서 활용될 수 있다.
셋째, 본 발명의 전도성 고분자를 상기 전도성 고분자를 유기 광전자소자용 재료로 이용하여 에너지변환효율을 개선시킨 유기 태양전지를 제공할 수 있다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (12)

  1. 하기 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자:
    화학식 1
    Figure PCTKR2010007003-appb-I000036
    상기 식에서, l은 단량체 X의 몰분율로서 0.40
    Figure PCTKR2010007003-appb-I000037
    < 1이고, m은 단량체 Y의 몰분율로서 0
    Figure PCTKR2010007003-appb-I000038
    0.50이고, n은 파이렌 화합물의 몰분율로서 0 <
    Figure PCTKR2010007003-appb-I000039
    ≤ 0.10이고, X와 Y는 전자 도너, 억셉터 또는 광흡수 기능을 가지는 어느 하나의 단량체이다.
  2. 제1항에 있어서, 상기 식에서, 0 <
    Figure PCTKR2010007003-appb-I000040
    ≤0.10이 바람직하고, 더욱 바람직하게는 0 <
    Figure PCTKR2010007003-appb-I000041
    ≤0.05인 것을 특징으로 하는 상기 파이렌 화합물이 도입된 전도성 고분자.
  3. 제1항에 있어서, 상기 X 또는 Y 중 어느 한 쪽이 도너 단량체의 구조이고, 다른 한쪽이 억셉터 단량체 구조인 것을 특징으로 하는 상기 파이렌 화합물이 도입된 전도성 고분자.
  4. 제1항에 있어서, 상기 도너 단량체가 하기 화학식 2 내지 화학식 10으로 표시되는 화합물에서 선택되는 어느 하나인 것을 특징으로 하는 상기 파이렌 화합물이 도입된 전도성 고분자:
    화학식 2
    Figure PCTKR2010007003-appb-I000042
    화학식 3
    Figure PCTKR2010007003-appb-I000043
    화학식 4
    Figure PCTKR2010007003-appb-I000044
    화학식 5
    Figure PCTKR2010007003-appb-I000045
    화학식 6
    Figure PCTKR2010007003-appb-I000046
    화학식 7
    Figure PCTKR2010007003-appb-I000047
    화학식 8
    Figure PCTKR2010007003-appb-I000048
    화학식 9
    Figure PCTKR2010007003-appb-I000049
    화학식 10
    Figure PCTKR2010007003-appb-I000050
    상기 식에서, R1 또는 R2는 C1∼C20 직쇄 또는 측쇄의 알킬기, C1∼C20 헤테로사이클로알킬, C6∼C20 아릴 또는 그의 헤테로아릴이다.
  5. 제1항에 있어서, 상기 억셉터 단량체가 하기 화학식 11 내지 화학식 17로 표시되는 화합물에서 선택되는 어느 하나인 것을 특징으로 하는 상기 파이렌 화합물이 도입된 전도성 고분자:
    화학식 11
    Figure PCTKR2010007003-appb-I000051
    화학식 12
    Figure PCTKR2010007003-appb-I000052
    화학식 13
    Figure PCTKR2010007003-appb-I000053
    화학식 14
    Figure PCTKR2010007003-appb-I000054
    화학식 15
    Figure PCTKR2010007003-appb-I000055
    화학식 16
    Figure PCTKR2010007003-appb-I000056
    화학식 17
    Figure PCTKR2010007003-appb-I000057
    상기 식에서, R3 또는 R4는 C1∼C20 직쇄 또는 측쇄의 알킬기, C1∼C20 알콕시, C1∼C20의 아릴기, C1∼C20 헤테로사이클로알킬, C6∼C20 아릴 또는 그의 헤테로아릴이고, R3 또는 R4는 동일하거나 동일하지 않을 수 있다.
  6. 제1항의 파이렌 화합물이 도입된 전도성 고분자가 유기 광센서, 유기발광다이오드 및 유기박막트랜지스터 및 유기 태양전지 중에서 선택되는 어느 하나에 적용되는 유기 광전자소자용 재료:
    화학식 1
    Figure PCTKR2010007003-appb-I000058
    상기 식에서, X, Y, l, m 및 n은 제1항에서 정의한 바와 같다.
  7. 제6항에 있어서, 상기 식에서, 0 <
    Figure PCTKR2010007003-appb-I000059
    ≤0.05인 것을 특징으로 하는 상기 유기 광전자소자용 재료.
  8. 기판, 제1전극, 버퍼층, 광전변환층 및 제2전극으로 이루어지되,
    상기 광전변환층이 제1항의 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자가 전자공여체로 사용되고, C60 플러렌 유도체 또는 C70 플러렌 유도체가 전자수용체로 배합된 광전변환 물질 함유 용액으로 이루어진 유기 광전자소자를 포함하는 유기 태양전지:
    화학식 1
    Figure PCTKR2010007003-appb-I000060
    상기 식에서, X, Y, l, m 및 n은 제1항에서 정의한 바와 같다.
  9. 제8항에 있어서, 상기 식에서, 0 <
    Figure PCTKR2010007003-appb-I000061
    ≤0.05인 것을 특징으로 하는 상기 유기 태양전지.
  10. 제8항에 있어서, 상기 광전변환층이 화학식 1로 표시되는 파이렌 화합물이 도입된 전도성 고분자의 전자공여체 및 C60 플러렌 유도체 또는 C70 플러렌 유도체의 전자수용체가 1:0.5 ∼ 1:4 중량비로 배합된 광전변환 물질로 이루어진 것을 특징으로 하는 상기 유기 태양전지.
  11. 제8항에 있어서, 상기 광전변환 물질 함유 용액이 클로로벤젠, 1,2-디클로로벤젠 및 클로로포름으로 이루어진 군에서 선택되는 어느 하나의 용매에 광전변환 물질 1.0 내지 3.0 중량%가 용해된 것을 특징으로 하는 상기 유기 태양전지.
  12. 제8항에 있어서, 상기 광전변환 물질이 용해된 용액이 잉크젯 프린팅법, 스핀코팅법, 스크린 인쇄법 및 닥터 블레이드법에서 선택되는 하나의 방법으로 도포 또는 코팅되는 것을 특징으로 하는 상기 유기 태양전지.
PCT/KR2010/007003 2009-12-03 2010-10-13 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지 WO2011068305A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/513,761 US8901415B2 (en) 2009-12-03 2010-10-13 Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same
CN201080062974.2A CN102762631B (zh) 2009-12-03 2010-10-13 含芘导电聚合物及包括含芘导电聚合物的有机太阳能电池
JP2012541930A JP2013512985A (ja) 2009-12-03 2010-10-13 ピレン化合物の導入された伝導性高分子及びそれを用いた有機太陽電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0118975 2009-12-03
KR1020090118975A KR101142207B1 (ko) 2009-12-03 2009-12-03 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
KR10-2009-0118973 2009-12-03
KR1020090118973A KR101142206B1 (ko) 2009-12-03 2009-12-03 디티오펜-티아졸로티아졸기가 함유된 전도성 고분자, 그를 이용한 유기 광전자 소자 및 그를 채용한 유기 태양전지

Publications (2)

Publication Number Publication Date
WO2011068305A2 true WO2011068305A2 (ko) 2011-06-09
WO2011068305A3 WO2011068305A3 (ko) 2011-09-09

Family

ID=44115381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007003 WO2011068305A2 (ko) 2009-12-03 2010-10-13 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지

Country Status (4)

Country Link
US (1) US8901415B2 (ko)
JP (1) JP2013512985A (ko)
CN (1) CN102762631B (ko)
WO (1) WO2011068305A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151171A (ja) * 2011-01-17 2012-08-09 Konica Minolta Holdings Inc 有機光電変換素子および太陽電池
CN103159934A (zh) * 2011-12-13 2013-06-19 海洋王照明科技股份有限公司 含并噻唑单元的聚合物及其制备方法和太阳能电池器件
WO2013049062A3 (en) * 2011-09-26 2013-07-11 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
JP2015501339A (ja) * 2011-11-30 2015-01-15 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 2,7−カルバゾールとジチエニルチアゾロチアゾールとのコポリマー、その調製方法、及び、それを含む太陽電池
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000860A1 (de) * 2012-06-29 2014-01-03 Merck Patent Gmbh Polymere enthaltend 2,7-pyren-struktureinheiten
KR102230190B1 (ko) 2014-03-11 2021-03-22 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102261639B1 (ko) 2014-06-16 2021-06-08 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
JP6790826B2 (ja) * 2015-09-28 2020-11-25 東レ株式会社 高分子化合物、樹脂組成物、膜、固体撮像素子、高分子化合物の製造方法、固体撮像素子の製造方法、および光学デバイス
CN113480733B (zh) * 2021-06-23 2022-07-01 南京邮电大学 一种本征可拉伸n型界面材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154107A1 (en) * 2004-05-27 2006-07-13 Idemitsu Kosan Co., Ltd. Asymmetric pyrene derivative and organic electroluminescence device employing the same
JP2007015961A (ja) * 2005-07-06 2007-01-25 Idemitsu Kosan Co Ltd ピレン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
KR100786947B1 (ko) * 2005-06-30 2007-12-17 주식회사 엘지화학 파이렌 유도체 및 파이렌 유도체를 이용한 유기전자소자
KR20090107316A (ko) * 2008-04-08 2009-10-13 한국화학연구원 C70 플러렌 유도체 및 그를 이용한 유기 광기전력 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297426A (ja) * 1992-04-21 1993-11-12 Nippon Telegr & Teleph Corp <Ntt> 非線形光学材料および非線形光学装置
JP2006206503A (ja) * 2005-01-28 2006-08-10 Tokyo Institute Of Technology π電子系化合物、及びそれを用いたn−型有機電界効果トランジスタ
JP2008056910A (ja) * 2006-07-31 2008-03-13 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP5546752B2 (ja) * 2007-09-28 2014-07-09 住友化学株式会社 高分子化合物及びその製造方法、並びに、この高分子化合物を含む組成物
JP5434088B2 (ja) * 2008-01-22 2014-03-05 三菱化学株式会社 架橋性有機化合物、有機電界発光素子用組成物、有機電界発光素子および有機elディスプレイ
WO2009123269A1 (ja) * 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
CN101503507A (zh) * 2009-01-20 2009-08-12 南京邮电大学 芴和芘、苝的共轭聚合物材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154107A1 (en) * 2004-05-27 2006-07-13 Idemitsu Kosan Co., Ltd. Asymmetric pyrene derivative and organic electroluminescence device employing the same
KR100786947B1 (ko) * 2005-06-30 2007-12-17 주식회사 엘지화학 파이렌 유도체 및 파이렌 유도체를 이용한 유기전자소자
JP2007015961A (ja) * 2005-07-06 2007-01-25 Idemitsu Kosan Co Ltd ピレン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
KR20090107316A (ko) * 2008-04-08 2009-10-13 한국화학연구원 C70 플러렌 유도체 및 그를 이용한 유기 광기전력 장치

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
JP2012151171A (ja) * 2011-01-17 2012-08-09 Konica Minolta Holdings Inc 有機光電変換素子および太陽電池
WO2013049062A3 (en) * 2011-09-26 2013-07-11 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
JP2014098156A (ja) * 2011-09-26 2014-05-29 Nitto Denko Corp 増強された太陽光集光効率のための高蛍光性かつ光安定性の発色団
CN105419379A (zh) * 2011-09-26 2016-03-23 日东电工株式会社 用于提高的日光采集效率的高荧光且光稳定性生色团
CN105419379B (zh) * 2011-09-26 2018-11-20 日东电工株式会社 用于提高的日光采集效率的高荧光且光稳定性生色团
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
JP2015501339A (ja) * 2011-11-30 2015-01-15 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 2,7−カルバゾールとジチエニルチアゾロチアゾールとのコポリマー、その調製方法、及び、それを含む太陽電池
EP2787019A4 (en) * 2011-11-30 2015-05-06 Oceans King Lighting Science COPOLYMER OF 2,7-CARBAZOLE AND DITHIENYL THIAYOLOTHIAZOL AND PROCESS FOR THE PRODUCTION THEREOF AND SOLAR BATTERY THEREWITH
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency
CN103159934A (zh) * 2011-12-13 2013-06-19 海洋王照明科技股份有限公司 含并噻唑单元的聚合物及其制备方法和太阳能电池器件
CN103159934B (zh) * 2011-12-13 2016-01-13 海洋王照明科技股份有限公司 含并噻唑单元的聚合物及其制备方法和太阳能电池器件

Also Published As

Publication number Publication date
CN102762631A (zh) 2012-10-31
JP2013512985A (ja) 2013-04-18
US20120305082A1 (en) 2012-12-06
CN102762631B (zh) 2015-03-11
US8901415B2 (en) 2014-12-02
WO2011068305A3 (ko) 2011-09-09

Similar Documents

Publication Publication Date Title
WO2011068305A2 (ko) 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
WO2010117158A2 (ko) 카바졸이 함유된 전도성 고분자 및 그를 이용한 유기 광기전력 장치
KR101473083B1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2014119962A1 (ko) 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지
WO2013089443A1 (ko) 신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자
WO2013066065A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2021118238A1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
WO2014077590A1 (ko) 신규한 나프탈렌 다이이미드를 포함하는 중합체 및 이를 이용한 유기 전자 소자
US20110132439A1 (en) Fullerene compounds for solar cells and photodetectors
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
WO2018017345A1 (en) Unsymmetrical benzothiadiazole-based random copolymers
WO2013077615A1 (ko) 팔라듐계 촉매를 사용한 직접적 ch 아릴화 방법
Kim et al. 2, 2-dimethyl-2 H-benzimidazole based small molecules for organic solar cells
WO2014204082A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
KR20190103062A (ko) 유기반도체용 삼성분 공중합체, 이의 제조방법 및 이를 포함하는 유기반도체소자
WO2015182973A1 (ko) 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지
KR20110062295A (ko) 디티오펜-티아졸로티아졸기가 함유된 전도성 고분자, 그를 이용한 유기 광전자 소자 및 그를 채용한 유기 태양전지
WO2018076247A1 (en) A weak electron-donating building block, copolymers thereof and their preparation methods as well as their applications
WO2013077613A1 (ko) 저밴드갭의 공중합체 및 이의 제조방법
WO2012148185A2 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 디바이스
KR101495152B1 (ko) 유기 반도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
WO2016163624A1 (ko) 중간 밴드갭을 가지는 공액 고분자, 이의 제조방법 및 이를 적용한 유기 전자 소자
WO2019164054A1 (ko) 신규한 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자
WO2021107674A1 (ko) 신규한 화합물 및 이를 이용하는 유기 전자 소자
WO2020171320A1 (ko) 저온공정을 위한 공액 고분자 및 이를 이용한 유기태양전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062974.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012541930

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13513761

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10834720

Country of ref document: EP

Kind code of ref document: A2