WO2011065329A1 - 酸化物半導体装置およびその製造方法 - Google Patents
酸化物半導体装置およびその製造方法 Download PDFInfo
- Publication number
- WO2011065329A1 WO2011065329A1 PCT/JP2010/070816 JP2010070816W WO2011065329A1 WO 2011065329 A1 WO2011065329 A1 WO 2011065329A1 JP 2010070816 W JP2010070816 W JP 2010070816W WO 2011065329 A1 WO2011065329 A1 WO 2011065329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- field effect
- effect transistor
- manufacturing
- semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 276
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- 238000000034 method Methods 0.000 title abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 230000005669 field effect Effects 0.000 claims description 69
- 229910052760 oxygen Inorganic materials 0.000 claims description 29
- 239000000470 constituent Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000011701 zinc Substances 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 14
- 229910052725 zinc Inorganic materials 0.000 abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 5
- 229910003437 indium oxide Inorganic materials 0.000 abstract description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052718 tin Inorganic materials 0.000 abstract description 4
- 229910052738 indium Inorganic materials 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 abstract 1
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 189
- 239000010408 film Substances 0.000 description 126
- 238000004544 sputter deposition Methods 0.000 description 33
- 238000000206 photolithography Methods 0.000 description 28
- 238000001039 wet etching Methods 0.000 description 28
- 238000001312 dry etching Methods 0.000 description 27
- 229910020923 Sn-O Inorganic materials 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 20
- 229910007604 Zn—Sn—O Inorganic materials 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 239000011135 tin Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 229910007541 Zn O Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 11
- 229910018557 Si O Inorganic materials 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000002131 composite material Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000003334 potential effect Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910018516 Al—O Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical class C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Definitions
- the present invention relates to an oxide semiconductor device, and more particularly to a semiconductor device including a field effect transistor using an oxide film as a channel.
- TFT thin film transistor
- a display device having a thin film transistor (TFT) device As a transistor for driving an electronic device have been performed. Since this TFT saves space, it is used as a transistor for driving a display device of a portable device such as a mobile phone, a notebook personal computer, or a PDA.
- a portable device such as a mobile phone, a notebook personal computer, or a PDA.
- TFTs are made of silicon-based semiconductor materials typified by crystalline silicon and amorphous silicon. This is because there is a merit that it can be manufactured by using a manufacturing process / manufacturing technology of a conventional semiconductor device.
- a substrate that can be formed is limited because a processing temperature is 350 ° C. or higher.
- glass and flexible substrates often have a heat-resistant temperature of 350 ° C. or less, and it is difficult to produce TFTs using conventional semiconductor manufacturing processes. Therefore, recently, research and development of a TFT device (oxide TFT) using an oxide semiconductor material that can be manufactured at a low temperature has been advanced. Since the oxide TFT can be formed at a low temperature, it can be formed on a flexible substrate such as a glass substrate or plastic. Therefore, it is possible to manufacture a new device that is not available at low cost. In addition, application to an RFID tag or the like is possible by utilizing the transparency of the oxide material.
- Non-Patent Document 1 and Patent Document 1 for the purpose of improving characteristics, by stacking two or more oxide semiconductor layers, the field effect mobility can be improved more than twice as compared with a single layer. It has been reported. However, as the thickness of the lower channel layer increases, the threshold potential and field effect mobility change greatly. Also in this method, the thickness of the channel layer strongly depends on the TFT characteristics. Therefore, in the prior art, when a large number of TFTs are formed in a large area without controlling the channel film thickness, there is a problem that the variation in TFT characteristics increases and the yield of the product is remarkably reduced.
- An object of the present invention is to reduce the influence of channel thickness as described above on variations in TFT characteristics.
- a gate electrode in a field effect transistor, a gate electrode, a first semiconductor layer provided to the gate electrode through a gate insulating film, a second semiconductor layer connected to the first semiconductor layer, A source electrode connected to the second semiconductor layer and a drain electrode connected to the second semiconductor layer, the first semiconductor layer includes an In element and an O element, and the second semiconductor layer includes , Zn element and O element.
- the film thickness dependence of the field effect transistor can be reduced.
- Example 1 First, in Example 1, an outline of the device structure of the present invention is shown.
- the gate electrode GE is formed on the substrate SU, and the first semiconductor layer CH1 containing indium oxide as a main component with the gate insulating film GI interposed between the gate electrode GE and the gate electrode GE.
- a source electrode SE and a drain electrode DE on the second semiconductor layer CH2.
- a semiconductor device according to a typical embodiment is a semiconductor device manufactured by the above manufacturing method.
- the substrate examples include a Si substrate, a sapphire substrate, a quartz substrate, a glass substrate, and a flexible resin sheet so-called plastic film.
- plastic film examples include polyethylene terephthalate, polyethylene naphthalate, polyetherimide, polyacrylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate.
- the electrode material examples include oxide materials obtained by adding Al, Ga, In, and B to ITO and ZnO, metals such as Mo, Co, W, Ti, Au, Al, Ni, and Pt, and composites thereof. is there. Further, if necessary, these semiconductor materials may be doped.
- the first channel layer is a compound containing at least an In element and an O element.
- the compound may be a compound containing Zn element, Sn element, Ge element, or Si element.
- the compound include indium oxide or In—Mn—O (Mn: Sn, Zn, Si, Ge) in which tin, zinc, silicon, or germanium is added to indium oxide.
- the composition ratio of the In element in the constituent elements other than oxygen is 50% or more.
- the second channel layer is a compound containing at least a Zn element and an O element.
- Sn element may be included.
- Specific examples of the compound include Zn—O and Zn—Sn—O that do not include In element.
- annealing treatment may be performed after the formation of the oxide semiconductor.
- the insulating film material examples include silicon oxides and nitrides, aluminum oxides and nitrides, metal oxides such as Y 2 O 3 , YSZ, and HfO 2 , and organic insulating polymers such as polyimide derivatives, Examples include benzocyclobutene derivatives, photoacryl derivatives, polystyrene derivatives, polyvinyl phenol derivatives, polyester derivatives, polycarbonate derivatives, polyester derivatives, polyvinyl acetate derivatives, polyurethane derivatives, polysulfone derivatives, acrylate resins, acrylic resins, and epoxy resins.
- the invention according to this embodiment is a field effect transistor, which is connected to a gate electrode, a first semiconductor layer provided to the gate electrode via a gate insulating film, and the first semiconductor layer.
- the second semiconductor layer, a source electrode connected to the second semiconductor layer, and a drain electrode connected to the second semiconductor layer, and the first semiconductor layer includes an In element and an O element.
- the second semiconductor layer includes a Zn element and an O element.
- FIG. 2 is a diagram illustrating the configuration of the semiconductor device and the manufacturing method thereof according to the second embodiment.
- a so-called bottom gate / top contact type oxide TFT is cited as a semiconductor device.
- the bottom gate here is a structure in which the gate electrode GE is formed below the semiconductor layer CH, and the top contact is the source / drain electrode SD formed above the semiconductor layer CH. The structure is shown.
- the manufacturing method of the semiconductor device in Example 2 is as follows. First, as shown in FIG. 2A, the gate electrode GE, the gate insulating film GI, and the first semiconductor layer CH1 are formed over the insulator substrate SU.
- the substrate SUB is made of, for example, glass, quartz, plastic film, etc., and an insulating film is coated on the surface on which the gate electrode GE is formed as required.
- the gate electrode GE is made of a conductive material such as molybdenum, chromium, tungsten, aluminum, copper, titanium, nickel, tantalum, silver, cobalt, zinc, gold or other metal single film, alloy film thereof, Laminated film or metal oxide conductive film such as ITO (In-Sn-O: indium tin oxide), laminated film of these and metal, metal nitride conductive film such as titanium nitride (Ti-N), and It consists of a laminated film of metal, other conductive metal compound films, a laminated film of these and metal, a semiconductor containing a high concentration of carriers, or a laminated film of semiconductor and metal.
- the processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- the gate insulating film GI As the gate insulating film GI, an oxide insulating film such as Si—O or Al—O is preferably used, but an inorganic insulating film other than an oxide such as Si—N or an organic insulating film such as parylene may be used.
- the gate insulating film GI is formed by a vapor deposition method, a CVD method, a sputtering method, a coating method, or the like, and the processing is performed by a combination of a general photolithography technique and dry etching or wet etching.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof. These films are formed by sputtering, PLD, CVD, coating, printing, or the like. After the step of forming the first semiconductor layer CH1 is completed, a step of removing the first semiconductor layer CH1 except for a predetermined portion is performed. This step can be performed by a combination of general photolithography technology and wet etching or dry etching.
- a gas pressure of 0.5 Pa (Ar + 10% O 2 ) a gas pressure of 0.5 Pa (Ar + 10% O 2 ), a DC power of 50 W, and a growth temperature (room temperature).
- the film is formed with a film thickness of 3 to 60 nm.
- the “island shape” means a state in which a necessary part of the first semiconductor layer CH1 is left and other parts are removed.
- this term is used similarly.
- a step of forming the second semiconductor layer CH2 is performed, and then a step of removing the second semiconductor layer CH2 except for a predetermined portion is performed.
- the second semiconductor layer CH2 is processed into an island shape so as to completely cover the first semiconductor layer CH1.
- “completely covering” means that not only the upper side of the first semiconductor layer but also the side surface is covered with the second semiconductor, and the first semiconductor layer and the source electrode or drain electrode formed later are It shall mean a state that is not directly connected.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, Sn—O, and the film formation thereof is performed.
- the step of removing the second semiconductor layer CH2 except for a predetermined portion is performed by a combination of general photolithography technology and wet etching or dry etching.
- gas pressure 0.5 Pa (Ar + 20% O 2 )
- RF power 50 W and growth temperature (room temperature) are applied to the second semiconductor layer CH2.
- the film is formed with a film thickness of 5 to 75 nm by sputtering.
- source / drain electrodes SD are formed.
- the source / drain electrode SD is made of a conductive material similar to the gate electrode GE, for example, molybdenum, chromium, tungsten, aluminum, copper, titanium, nickel, tantalum, silver, zinc, cobalt, nickel, gold or other metals.
- the film is formed by a CVD method or a sputtering method, and the processing is performed by using a general photolithography technique and dry etching or wet etching. Carried out by aligning seen.
- the fabricated TFT has a channel length of 0.1 mm and a channel width of 2 mm.
- the characteristics of the field-effect transistor described above and the manufacturing method thereof are as follows.
- a first step of forming a first semiconductor layer having an In element and an O element over a gate insulating film, and a second semiconductor layer having a Zn element and an O element over the first semiconductor film are formed.
- a second step of forming is because the field effect transistor described with reference to FIG. 1 can be realized and the object of the present invention of reducing the film thickness dependency of the field effect transistor can be realized by having such a process as a minimum.
- the 4th process of removing a 2nd semiconductor layer except a predetermined part will be further performed.
- a third step of removing the first semiconductor layer except for a predetermined portion is further performed, and then the second step is performed. It is characterized by performing.
- the field effect transistor having the configuration shown in FIG. 2 can be realized.
- the field effect transistor manufactured by this manufacturing method is characterized in that the first semiconductor layer and the source electrode are not directly connected. The same applies to the relationship between the first semiconductor layer and the drain electrode.
- FIG. 3 shows an ON current when the threshold voltage Vth, field effect mobility (FIG. 3A) and drain voltage VD of the oxide TFT manufactured in Example 2 were applied with 1 V and the gate voltage VG was 10 V (FIG. 3).
- FIG. 5B is a relationship diagram between the thickness of the first semiconductor layer CH1 and FIG. At this time, the thickness of the second semiconductor layer CH2 was set to 25 nm.
- the threshold potential is within ⁇ 1 V
- the field effect mobility is 43 to 48 cm 2 / Vs
- the ON current is 2 ⁇ 10 ⁇ 4 A. Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- FIG. 4 shows an ON current when the threshold voltage Vth, the field effect mobility (FIG. 4A) and the drain voltage VD of 1 V are applied to the oxide TFT manufactured in Example 2 and the gate voltage VG is 10 V (FIG. 4).
- FIG. 5B is a relationship diagram between the thickness of the second semiconductor layer CH2 and (B)). At this time, the thickness of the first semiconductor layer CH1 was set to 5 nm. As shown in FIG. 4, when the film thickness of the second semiconductor layer CH2 is 50 nm or less, the threshold potential is within ⁇ 1 V, the field effect mobility is 45 to 50 cm 2 / Vs, and the ON current is 2 ⁇ 10 ⁇ 4 A. . Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- the second semiconductor layer CH2 in Comparative Example 1 includes an oxide containing In, such as In—O, In—Ga—Zn—O, In—Sn—O, In—Zn—O, and In—Ga—O. , And their complex oxides, and these films are formed by sputtering, PLD, CVD, coating, printing, or the like.
- In—Sn—O is used for the first semiconductor layer CH1
- In—Ga—Zn—O is used for the second semiconductor layer CH2
- the In—Ga—Zn—O film has a gas pressure of 0. It was formed by sputtering under the conditions of 0.5 Pa (Ar + 20% O 2 ), RF power 50 W, and growth temperature (room temperature).
- FIG. 5 is a relationship diagram of the threshold potential Vth and the field effect mobility with respect to the film thickness of the first semiconductor layer CH1 of the oxide TFT manufactured in Comparative Example 1.
- the thickness of the second semiconductor layer CH2 was set to 25 nm.
- the threshold potential was shifted to the negative side as the film thickness of the first semiconductor layer CH1 increased, and the field effect mobility increased.
- it has dependency on the film thickness of the semiconductor layer, and is inferior in terms of variation in TFT characteristics. This is because, by including In in the second semiconductor layer CH2, a carrier network of In 5s electrons is formed from the second semiconductor layer CH2 to the first semiconductor layer CH1, and the first semiconductor layer CH1 This is probably due to an increase in apparent carriers.
- the present invention realizes the effect of reducing the film thickness dependency of the field effect transistor, particularly when the first semiconductor layer CH1 contains the In element. It is.
- the semiconductor layer CH in the present comparative example 2 is processed into an island shape for element isolation, and is performed by a combination of general photolithography technology and wet etching or dry etching.
- the semiconductor layer CH includes Zn—O, In—O, Ga—O, Sn—O, In—Ga—Zn—O, Zn—Sn—O, In—Sn—O, In—Zn—O, and Ga—Zn. It is formed of Zn, In, Ga, Sn oxides such as —O and In—Ga—O, and complex oxides thereof, and these films can be formed by sputtering, PLD, CVD, and coating. By the law and printing method.
- Zn—Sn—O is used for the semiconductor layer CH, and a film thickness of 5 to 5 is formed by sputtering under conditions of a gas pressure of 0.5 Pa (Ar + 8% O 2 ), an RF power of 50 W, and a growth temperature (room temperature). Form at 60 nm.
- FIG. 6 is a relationship diagram of the threshold potential Vth and the field effect mobility with respect to the film thickness of the oxide TFT fabricated in Comparative Example 2. As shown in FIG. 6, the threshold potential shifted to the negative side as the thickness of the semiconductor layer increased, and the field effect mobility slightly increased. Compared with Example 1, it showed a strong dependence on the film thickness. This result is the same for other materials, and is presumed to be caused by an increase in the number of carriers accompanying an increase in film thickness.
- the invention of the present application is different from the invention according to the comparative example 2, and the film thickness dependence of the field effect transistor is particularly improved by the combination of the two-layer structure of the first semiconductor layer and the second semiconductor layer and the channel material.
- the effect of reducing is realized.
- Example 3 The difference from the second embodiment is that it includes a process of simultaneously processing the first semiconductor layer CH1 and the second semiconductor layer CH2, and the source / drain electrode wiring layer SD is connected to both semiconductor layers CH.
- the other points are the same as in the second embodiment.
- FIG. 7 is a diagram illustrating the configuration of the semiconductor device according to the third embodiment.
- the structure shown in FIG. 7A was manufactured by the following procedure. After the formation of the gate electrode GE and the gate insulating film GI, the first semiconductor layer CH1 and the second semiconductor layer CH2 are continuously deposited.
- the semiconductor layer CH is separated from the common photolithography technique and wet etching or dry for element isolation. It was processed into an island shape by a combination of etching.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O. These films are formed by sputtering, PLD, CVD, coating, printing, or the like.
- the film is formed with a film thickness of 3 to 60 nm.
- the film thickness is 5 to 75 nm.
- source / drain electrodes SD are deposited and formed by a combination of general photolithography technology and dry etching or wet etching.
- FIG. 7B shows an enlarged view of the region (I).
- the resistance value Rc of the channel portion, the resistance value from the channel portion through the first semiconductor layer CH1 to the source / drain electrode SD is Rc1
- the resistance value from the channel portion to the second semiconductor layer CH2 A resistance value passing through the source / drain electrode SD was defined as Rc2.
- the “channel layer” means a layer provided in the portion between the source electrode and the drain electrode in the first semiconductor layer CH1.
- the manufactured TFT exhibits the same characteristics as those of the TFT manufactured in Example 2, the threshold potential is within ⁇ 1 V, the field effect mobility is 43 to 50 cm 2 / Vs, and the ON current is 2 ⁇ 10. -4 A was shown. From this result, when the source / drain electrode SD is directly connected to the first semiconductor layer CH1 and the second semiconductor layer CH2, the relationship of Rc1> Rc2 is indispensable, and the first semiconductor layer CH2 has a first relationship higher than that of the second semiconductor layer CH2. When the resistance value of the semiconductor layer CH1 is low, it is presumed that the first semiconductor layer CH1 contributes effectively as a channel. In the manufacturing method of this embodiment, CH1 and CH2 can be processed at the same time, and cost reduction is expected due to reduction of process steps and photomasks.
- FIG. 8 is a diagram illustrating the configuration of the semiconductor device and the manufacturing method according to the fourth embodiment.
- a so-called bottom gate / top contact type oxide TFT is cited as a semiconductor device.
- the bottom gate here is a structure in which the gate electrode GE is formed below the semiconductor layer CH, and the top contact is the source / drain electrode SD formed above the semiconductor layer CH. The structure is shown. Except for the manufacturing method, the same materials and processes as in Example 2 were used.
- the manufacturing method of the semiconductor device according to the fourth embodiment is as follows. First, as shown in FIG. 8A, the gate electrode GE, the gate insulating film GI, the first semiconductor layer CH1, and the second semiconductor layer CH2 are formed in this order on the insulator substrate SU.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O.
- These films are formed by sputtering, PLD, CVD, coating, printing, or the like.
- the film thickness is 5 to 75 nm.
- the first semiconductor layer CH1 and the second semiconductor layer are removed except for a predetermined portion. Perform the process. Processing in this step is performed by a combination of general photolithography technology and dry etching or wet etching.
- a barrier layer BL is deposited and processed to form a wiring through hole CON with the second semiconductor layer CH2.
- the barrier layer BL Si—O, Al—O, or another oxide insulating film may be used, and an inorganic insulating film other than an oxide such as Si—N or an organic insulating film such as parylene may be used.
- the barrier layer BL is formed by a CVD method, a sputtering method, a coating method, or the like. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- source / drain electrodes SD are deposited, and processing is performed by a combination of general photolithography technique and dry etching or wet etching.
- the fabricated TFT had a channel length of 0.1 mm and a channel width of 2 mm, and exhibited the same characteristics as the TFT fabricated in Example 2.
- the threshold potential is within ⁇ 1 V
- the field effect mobility is 45 to 51 cm 2 / Vs
- the ON current is 2 ⁇ 10 -4 A was obtained. Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- Example 4 after performing the first step of forming the first semiconductor layer having In element and O element on the gate insulating film, Zn element and O element are added on the first semiconductor layer. Performing a second step of forming a second semiconductor layer having the second semiconductor layer, and after performing the second step, a sixth step of removing the first semiconductor layer and the second semiconductor layer except for a predetermined portion. Further, it is characterized in that it is performed.
- the field effect transistor manufactured by this manufacturing method has an effect of reducing the film thickness dependency of the field effect transistor, as in the second embodiment, particularly by the configuration in which only the source electrode and the second semiconductor layer are directly connected. It is because it can achieve.
- FIG. 9 is a diagram illustrating the configuration of the semiconductor device and the manufacturing method thereof according to the fifth embodiment.
- a so-called bottom gate / bottom contact type oxide TFT is cited as a semiconductor device.
- the bottom gate is a structure in which the gate electrode GE is formed below the semiconductor layer CH
- the bottom contact is a structure in which the source / drain electrode SD is formed below the semiconductor layer CH. The structure is shown. Except for the manufacturing method, the same materials and processes as in Example 2 were used.
- the manufacturing method of the semiconductor device in Example 5 is as follows. First, as shown in FIG. 9A, a gate electrode GE, a gate insulating film GI, and a source / drain electrode SD are formed in this order on an insulator substrate SU.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. Processing is performed by a combination of general photolithography technology and dry etching or wet etching. At this time, the order of forming the source / drain electrode SD and the first semiconductor layer CH1 may be either before or after.
- In—O indium oxide 100%
- a gas pressure of 0.5 Pa (Ar + 10% O 2 ) a DC power of 50 W
- a growth temperature room temperature.
- the film thickness is 3 to 60 nm.
- a second semiconductor layer CH2 is formed.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. To do. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- the film thickness is 5 to 75 nm.
- the fabricated TFT had a channel length of 0.1 mm and a channel width of 2 mm, and exhibited the same characteristics as the TFT fabricated in Example 2.
- the threshold potential is within ⁇ 1 V
- the field effect mobility is 43 to 50 cm 2 / Vs
- the ON current is 2 ⁇ 10 -4 A was obtained. Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- FIG. 10 is a diagram illustrating the configuration of the semiconductor device and the manufacturing method thereof according to the sixth embodiment.
- a so-called top gate / top contact type oxide TFT is cited as a semiconductor device.
- the top gate here is a structure in which the gate electrode GE is formed above the semiconductor layer CH, and the top contact is the source / drain electrode SD formed above the semiconductor layer CH. The structure is shown. Except for the manufacturing method, the same materials and processes as in Example 2 were used.
- the manufacturing method of the semiconductor device in Example 6 is as follows. First, as shown in FIG. 10A, first, the second semiconductor layer CH2, the source / drain electrode SD, and the first semiconductor layer CH1 are formed over the insulator substrate SU. At this time, the order of forming the source / drain electrode SD and the first semiconductor layer CH1 may be either before or after.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. To do. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- gas pressure 0.5 Pa Ar + 20% O 2 )
- the film is formed with a film thickness of 5 to 75 nm by sputtering.
- the source / drain electrode SD is processed by a combination of general photolithography technology and dry etching or wet etching after film formation.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- the gate insulating film GI is processed by a combination of general photolithography technology and dry etching or wet etching.
- the gate electrode GE After forming the gate electrode GE, it is processed by a combination of a general photolithography technique and dry etching or wet etching.
- the fabricated TFT had a channel length of 0.1 mm and a channel width of 2 mm, and exhibited the same characteristics as the TFT fabricated in Example 2.
- the threshold potential is within ⁇ 1 V
- the field effect mobility is 42 to 48 cm 2 / Vs
- the ON current 2 ⁇ 10 -4 A was obtained. Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- FIG. 11 is a diagram illustrating the configuration and the manufacturing method of the semiconductor device according to the seventh embodiment.
- a so-called top gate / bottom contact type oxide TFT is cited as a semiconductor device.
- the top gate here is a structure in which a gate electrode GE is formed in an upper layer than the semiconductor layer CH, and the bottom contact is a source / drain electrode SD formed in a lower layer than the semiconductor layer CH. The structure is shown. Except for the manufacturing method, the same materials and processes as in Example 2 were used.
- the manufacturing method of the semiconductor device in Example 7 is as follows. First, as shown in FIG. 11A, first, a source / drain electrode SD, a second semiconductor layer CH2, and a first semiconductor layer CH1 are formed in this order on an insulator substrate SU.
- the source / drain electrode SD is processed by a combination of general photolithography technology and dry etching or wet etching after film formation.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. To do. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- Zn—O zinc oxide 100%
- Zn—O is applied to the second semiconductor layer CH2 by sputtering under conditions of a gas pressure of 0.5 Pa (Ar + 20% O 2 ), an RF power of 50 W, and a growth temperature (room temperature).
- the film thickness is 5 to 75 nm.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the gate insulating film GI After forming the gate insulating film GI, it is processed by a combination of a general photolithography technique and dry etching or wet etching.
- the gate electrode GE After forming the gate electrode GE, it is processed by a combination of a general photolithography technique and dry etching or wet etching.
- the fabricated TFT had a channel length of 0.1 mm and a channel width of 2 mm, and exhibited the same characteristics as the TFT fabricated in Example 2.
- the threshold potential is within ⁇ 1 V
- the field effect mobility is 43 to 47 cm 2 / Vs
- the ON current is 2 ⁇ 10 -4 A was obtained. Since there is almost no change in characteristics with respect to film thickness variation, it becomes easy to produce a TFT array on a large area substrate.
- the manufacturing method of the semiconductor device is as follows. First, as shown in FIG. 11A, first, a source / drain electrode SD, a second semiconductor layer CH2, and a first semiconductor layer CH1 are formed in this order on an insulator substrate SU.
- the source / drain electrode SD is processed by a combination of general photolithography technology and dry etching or wet etching after film formation.
- the second semiconductor layer CH2 is formed of an oxide such as Zn—Sn—O, Zn—O, or Sn—O.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. To do. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- the film is formed with a film thickness of 5 to 75 nm by sputtering.
- the first semiconductor layer CH1 is formed of an oxide such as In—O, In—Zn—O, In—Sn—O, In—Ga—O, In—Si—O, or a composite oxide thereof.
- the film formation is performed by sputtering, PLD, CVD, coating, printing, or the like. Processing is performed by a combination of general photolithography technology and dry etching or wet etching.
- the film is formed with a film thickness of 3 to 60 nm.
- the gate insulating film GI After forming the gate insulating film GI, it is processed by a combination of a general photolithography technique and dry etching or wet etching.
- the gate electrode GE After forming the gate electrode GE, it is processed by a combination of a general photolithography technique and dry etching or wet etching.
- the manufactured TFT shifts the threshold potential as the film thickness of the first semiconductor layer CH1 increases, and the field effect mobility is about 15 to 20 cm 2 / Vs. It was.
- the composition ratio of the In element in the constituent elements other than oxygen in the first semiconductor layer CH1 was less than 50%, the TFT characteristics deteriorated rapidly. This result is presumed to be due to a decrease in carriers due to a decrease in In concentration in the first semiconductor layer CH1.
- FIG. 12 is a diagram illustrating the configuration of the semiconductor device according to the eighth embodiment.
- the antenna resonant circuit 11, the rectifier 12, the modulator 13, the digital circuit 14, and the like are configured using the TFTs having the structures shown in Embodiments 2 to 7, and a wireless tag is formed.
- the wireless tag can communicate with the reader 15 or the writer 16 wirelessly.
- an oxide semiconductor is a transparent material, an almost transparent circuit can be formed.
- a transparent conductive film such as ITO is used for the electrode and wiring portion, and the structure of the present invention is used for the TFT portion, and transmission / reception at 13.56 MHz was confirmed. Since a structure such as a Si chip or a metal antenna is not visible like a conventional RFID tag, it can be retrofitted without damaging the design described on the film or card.
- FIG. 13 is a diagram illustrating the configuration of the semiconductor device according to the ninth embodiment.
- elements having TFTs having the structures of the second to seventh embodiments as constituent elements are arranged in an array on the substrate SU.
- the TFTs shown in the second to seventh embodiments are used not only for switching and driving transistors of each element in the array, but also a gate line driving circuit for sending a signal to the gate wiring 17 connected to the gate electrode GE of the TFT. 18 or a transistor constituting the data line driving circuit 20 for sending a signal to the data wiring 19 connected to the source electrode / drain electrode SD of the TFT.
- the TFT of each element and the TFT in the gate line driving circuit 18 or the data line driving circuit 20 can be formed in parallel.
- each element has a configuration as shown in FIG.
- a scanning signal is supplied to the gate wiring 17 extending in the x direction in the figure
- the TFT 21 is turned on, and the video signal from the data wiring 19 extending in the y direction in the figure is passed through the turned on TFT 21 to the pixel electrode. 22 is supplied.
- the gate wiring 17 is arranged in parallel in the y direction in the figure
- the data wiring 19 is arranged in parallel in the x direction in the figure, and is a region (pixel area) surrounded by the pair of adjacent gate wirings 17 and the adjacent data wirings 19. ) Is provided with the pixel electrode 22.
- the data line 19 is electrically connected to the source electrode SE, and the pixel electrode 22 is electrically connected to the drain electrode DE.
- the data line 19 may also serve as the source electrode SE.
- the above-described array may be applied not only to the liquid crystal display device but also to an organic EL display device.
- a TFT is applied to a transistor constituting the pixel circuit.
- the above-described array may be applied to a memory element, and a TFT may be applied to a selection transistor.
- the present invention relates to an oxide semiconductor device, and can be applied to a semiconductor device including a field effect transistor using an oxide film for a channel.
- Barrier layer 11 ... Antenna resonance circuit, 12 ... Rectifier, 13 ... Modulator, 14 ... Digital circuit, 15 ... Reader, 16 ... Writer, 17 ... Gate wiring, 18 ... Gate line drive circuit, 19 ... Data distribution , 20 ... data line driving circuit, 21 ... TFT, 22 ... pixel electrode.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
始めに、実施例1において、本発明のデバイス構造の概略を示す。図1に示した半導体装置の製造方法は、基板SU上にゲート電極GEを形成し、そのゲート電極GEに対しゲート絶縁膜GIを挟んでインジウム酸化物を主成分とする第1の半導体層CH1を膜厚(tc1)5nm以上で形成し、その第1の半導体層CH1上に亜鉛および錫酸化物を主成分とする第2の半導体層CH2を膜厚(tc2)5~50nmで形成し、第2の半導体層CH2上にソース電極SEとドレイン電極DEを形成する工程とを含むことを特徴とするものである。図1に示したVS、VD、VGはそれぞれソース電圧、ドレイン電圧、ゲート電圧である。このように第1の半導体層CH1と第2の半導体層CH2を組み合わせることで、TFTのしきい電位と電界効果移動度の半導体層膜厚の依存性の少ない半導体装置を提供する。また、代表的な実施の形態による半導体装置は、上記製造方法によって製造される半導体装置である。
図2は、本実施例2における半導体装置の構成および製造方法を示す図である。半導体装置としていわゆるボトムゲート/トップコンタクト型酸化物TFTを挙げている。ここでいうボトムゲートとは、半導体層CHよりも下層にゲート電極GEが形成されている構造のことであり、トップコンタクトとは、半導体層CHよりも上層にソース・ドレイン電極SDが形成されている構造のことを示している。
実施例2との違いは第2の半導体層CH2がInを含む酸化物材料からなる点であり、それ以外の点は実施例2と同一である。
実施例2との違いは2種類の半導体層を用いず、単層の半導体層のみ用いる点であり、それ以外の点は実施例1と同一である。
実施例2との違いは第1の半導体層CH1と第2の半導体層CH2を同時に加工するプロセスを含み、かつソース・ドレイン電極配線層SDが両方の半導体層CHに接続する点である。それ以外の点は実施例2と同一である。
図8は、本実施例4における半導体装置の構成および製造方法を示す図である。半導体装置としていわゆるボトムゲート/トップコンタクト型酸化物TFTを挙げている。ここでいうボトムゲートとは、半導体層CHよりも下層にゲート電極GEが形成されている構造のことであり、トップコンタクトとは、半導体層CHよりも上層にソース・ドレイン電極SDが形成されている構造のことを示している。製造方法以外は、実施例2と同様な材料、プロセスを用いた。
図9は、本実施例5における半導体装置の構成および製造方法を示す図である。半導体装置としていわゆるボトムゲート/ボトムコンタクト型酸化物TFTを挙げている。ここでいうボトムゲートとは、半導体層CHよりも下層にゲート電極GEが形成されている構造のことであり、ボトムコンタクトとは、半導体層CHよりも下層にソース・ドレイン電極SDが形成されている構造のことを示している。製造方法以外は、実施例2と同様な材料、プロセスを用いた。
図10は、本実施例6における半導体装置の構成および製造方法を示す図である。半導体装置としていわゆるトップゲート/トップコンタクト型酸化物TFTを挙げている。ここでいうトップゲートとは、半導体層CHよりも上層にゲート電極GEが形成されている構造のことであり、トップコンタクトとは、半導体層CHよりも上層にソース・ドレイン電極SDが形成されている構造のことを示している。製造方法以外は、実施例2と同様な材料、プロセスを用いた。
図11は、本実施例7における半導体装置の構成および製造方法を示す図である。半導体装置としていわゆるトップゲート/ボトムコンタクト型酸化物TFTを挙げている。ここでいうトップゲートとは、半導体層CHよりも上層にゲート電極GEが形成されている構造のことであり、ボトムコンタクトとは、半導体層CHよりも下層にソース・ドレイン電極SDが形成されている構造のことを示している。製造方法以外は、実施例2と同様な材料、プロセスを用いた。
実施例1~7との違いは、第1の半導体層における酸素以外の構成元素においてIn元素の組成比が50%未満である点であり、それ以外の点は実施例1~7と同一である。
図12は本実施例8における半導体装置の構成を示す図である。実施例2~7に示す構造のTFTを用いてアンテナ共振回路11、整流器12、変調器13、デジタル回路14などを構成し、無線タグを形成している。無線タグはリーダ15またはライタ16と無線で通信を行うことができるようになっている。また、酸化物半導体は透明材料であるため、ほとんど透明な回路が形成できる。例えば、電極および配線部分をITOなどの透明導電膜を用い、TFT部分には本発明の構造を用いることで実現可能となり、13.56MHzでの送受信が確認できた。従来のRFIDタグのように、Siのチップや金属によるアンテナ等の構造が見える形態ではないため、フィルムやカード上に記載されている意匠を損なうことなく後付することが可能である。
図13は本実施例9における半導体装置の構成を示す図である。本実施例9では、前記実施例2~7の構造を有するTFTを構成要素とする素子が基板SU上にアレイ状に配置されている。前記実施例2~7に示すTFTを、アレイ内の各素子のスイッチングや駆動用のトランジスタに用いることはもちろん、このTFTのゲート電極GEと接続されるゲート配線17に信号を送るゲート線駆動回路18や、このTFTのソース電極・ドレイン電極SDと接続されるデータ配線19に信号を送るデータ線駆動回路20を構成するトランジスタに用いてもよい。この場合、各素子のTFTとゲート線駆動回路18あるいはデータ線駆動回路20内のTFTを並行して形成することができる。
Claims (15)
- ゲート電極と、
前記ゲート電極に対しゲート絶縁膜を介して設けられた第1の半導体層と、
前記第1の半導体層と接続された第2の半導体層と、
前記第2の半導体層と接続されたソース電極と、
前記第2の半導体層と接続されたドレイン電極とを有し、
前記第1の半導体層は、In元素及びO元素を有し、
前記第2の半導体層は、Zn元素及びO元素を有することを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記第1の半導体層は、Zn元素、Sn元素、Ge元素、又はSi元素をさらに有することを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記第2の半導体層は、Sn元素をさらに有することを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記第1の半導体層と前記ソース電極とは、直接接続されていないことを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記ソース電極は、前記第1の半導体層及び前記第2の半導体層と直接接続され、
前記第1の半導体層のチャネル層と前記ソース電極の間の抵抗のうち前記第1の半導体層を介する部分の抵抗をR1とし、前記チャネル層と前記ソース電極の間の抵抗のうち前記第2の半導体層を介する部分の抵抗をR2としたとき、R1はR2より大きいことを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記第1の半導体層は、全体に占める酸素以外の構成元素においてIn組成比が50%以上であることを特徴とする電界効果トランジスタ。 - 請求項1記載の電界効果トランジスタにおいて、
前記ゲート電極は、前記電界効果トランジスタの基板上に設けられ、
前記ゲート絶縁膜は、前記ゲート電極上に設けられ、
前記第1の半導体層は、前記ゲート絶縁膜上に設けられ、
前記第2の半導体層は、前記第1の半導体層上に設けられ、
前記ソース電極及び前記ドレイン電極は、前記第2の半導体層に設けられることを特徴とする電界効果トランジスタ。 - ゲート絶縁膜上に、In元素及びO元素を有する第1の半導体層を形成する第1の工程と、
前記第1の半導体膜上に、Zn元素及びO元素を有する第2の半導体層を形成する第2の工程とを有することを特徴とする電界効果トランジスタの製造方法。 - 請求項8記載の電界効果トランジスタの製造方法において、
前記第1の工程を行った後に、前記第1の半導体層を所定の部分を除いて除去する第3の工程をさらに行い、その後前記第2の工程を行うことを特徴とする電界効果トランジスタの製造方法。 - 請求項9記載の電界効果トランジスタの製造方法において、
前記第2の工程を行った後に、前記第2の半導体層を所定の部分を除いて除去する第4の工程をさらに行うことを特徴とする電界効果トランジスタの製造方法。 - 請求項10記載の電界効果トランジスタの製造方法において、
前記第4の工程を行った後に、前記第2の半導体層に接続されるソース電極、及び前記第2の半導体層に接続されるドレイン電極を形成する第5の工程をさらに行うことを特徴とする電界効果トランジスタの製造方法。 - 請求項8記載の電界効果トランジスタの製造方法において、
前記第1の工程を行った後に、前記第2の工程を行い、
前記第2の工程を行った後に、前記第1の半導体層及び前記第2の半導体層を所定の部分を除いて除去する第6の工程をさらに行うことを特徴とする電界効果トランジスタの製造方法。 - 請求項12記載の電界効果トランジスタの製造方法において、
前記第6の工程を行った後に、前記第1の半導体層及び前記第2の半導体層に接続されるソース電極、並びに、前記第1の半導体層及び前記第2の半導体層に接続されるドレイン電極を形成する第7の工程をさらに行うことを特徴とする電界効果トランジスタの製造方法。 - 請求項8記載の電界効果トランジスタの製造方法において、
前記第1の半導体層は、Zn元素、Sn元素、Ge元素、又はSi元素をさらに有することを特徴とする電界効果トランジスタの製造方法。 - 請求項8記載の電界効果トランジスタの製造方法において、
前記第2の半導体層は、Sn元素をさらに有することを特徴とする電界効果トランジスタの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011543245A JP5503667B2 (ja) | 2009-11-27 | 2010-11-22 | 電界効果トランジスタおよび電界効果トランジスタの製造方法 |
US13/512,062 US20120280227A1 (en) | 2009-11-27 | 2010-11-22 | Oxide semiconductor device and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-269436 | 2009-11-27 | ||
JP2009269436 | 2009-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065329A1 true WO2011065329A1 (ja) | 2011-06-03 |
Family
ID=44066434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/070816 WO2011065329A1 (ja) | 2009-11-27 | 2010-11-22 | 酸化物半導体装置およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120280227A1 (ja) |
JP (1) | JP5503667B2 (ja) |
TW (1) | TWI452698B (ja) |
WO (1) | WO2011065329A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235104A (ja) * | 2011-04-22 | 2012-11-29 | Kobe Steel Ltd | 薄膜トランジスタ構造、ならびにその構造を備えた薄膜トランジスタおよび表示装置 |
JP2013038400A (ja) * | 2011-07-08 | 2013-02-21 | Semiconductor Energy Lab Co Ltd | 半導体装置、及び半導体装置の作製方法 |
JP2013038399A (ja) * | 2011-07-08 | 2013-02-21 | Semiconductor Energy Lab Co Ltd | 半導体装置、及び半導体装置の作製方法 |
JP2013125782A (ja) * | 2011-12-13 | 2013-06-24 | Hitachi Ltd | 酸化物半導体装置 |
KR20130141735A (ko) * | 2012-06-15 | 2013-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2014017477A (ja) * | 2012-06-15 | 2014-01-30 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2014030001A (ja) * | 2012-06-29 | 2014-02-13 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2014045173A (ja) * | 2012-08-02 | 2014-03-13 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2015501529A (ja) * | 2011-10-07 | 2015-01-15 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | 高性能な電気的に安定した半導電性の金属酸化物層の製造法、当該方法により製造された層および当該層の使用 |
JP2015188096A (ja) * | 2011-06-17 | 2015-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2016006911A (ja) * | 2012-11-15 | 2016-01-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2016225637A (ja) * | 2011-07-08 | 2016-12-28 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2017050563A (ja) * | 2011-06-17 | 2017-03-09 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US10158026B2 (en) | 2012-04-13 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including oxide semiconductor stacked layers |
JP2019033143A (ja) * | 2017-08-07 | 2019-02-28 | 日立金属株式会社 | 半導体装置の製造方法 |
US10304859B2 (en) | 2013-04-12 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having an oxide film on an oxide semiconductor film |
JP2019114751A (ja) * | 2017-12-26 | 2019-07-11 | シャープ株式会社 | 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法 |
JP2022177074A (ja) * | 2013-12-25 | 2022-11-30 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014181785A1 (en) * | 2013-05-09 | 2014-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP6747247B2 (ja) * | 2016-01-29 | 2020-08-26 | 日立金属株式会社 | 半導体装置および半導体装置の製造方法 |
CN107026208B (zh) * | 2016-01-29 | 2020-11-13 | 日立金属株式会社 | 半导体装置和半导体装置的制造方法 |
CN106876334B (zh) * | 2017-03-10 | 2019-11-29 | 京东方科技集团股份有限公司 | 阵列基板的制造方法及阵列基板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009034953A1 (ja) * | 2007-09-10 | 2009-03-19 | Idemitsu Kosan Co., Ltd. | 薄膜トランジスタ |
JP2009170905A (ja) * | 2008-01-15 | 2009-07-30 | Samsung Electronics Co Ltd | 表示基板およびこれを含む表示装置 |
JP2009224479A (ja) * | 2008-03-14 | 2009-10-01 | Fujifilm Corp | 薄膜電界効果型トランジスタおよびその製造方法 |
JP2009278115A (ja) * | 2008-05-15 | 2009-11-26 | Samsung Electronics Co Ltd | トランジスタとこれを含む半導体素子及びそれらの製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7262463B2 (en) * | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
US7576394B2 (en) * | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US20080023703A1 (en) * | 2006-07-31 | 2008-01-31 | Randy Hoffman | System and method for manufacturing a thin-film device |
JP2008140984A (ja) * | 2006-12-01 | 2008-06-19 | Sharp Corp | 半導体素子、半導体素子の製造方法、及び表示装置 |
US8945981B2 (en) * | 2008-07-31 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
-
2010
- 2010-11-22 JP JP2011543245A patent/JP5503667B2/ja active Active
- 2010-11-22 US US13/512,062 patent/US20120280227A1/en not_active Abandoned
- 2010-11-22 WO PCT/JP2010/070816 patent/WO2011065329A1/ja active Application Filing
- 2010-11-23 TW TW099140400A patent/TWI452698B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009034953A1 (ja) * | 2007-09-10 | 2009-03-19 | Idemitsu Kosan Co., Ltd. | 薄膜トランジスタ |
JP2009170905A (ja) * | 2008-01-15 | 2009-07-30 | Samsung Electronics Co Ltd | 表示基板およびこれを含む表示装置 |
JP2009224479A (ja) * | 2008-03-14 | 2009-10-01 | Fujifilm Corp | 薄膜電界効果型トランジスタおよびその製造方法 |
JP2009278115A (ja) * | 2008-05-15 | 2009-11-26 | Samsung Electronics Co Ltd | トランジスタとこれを含む半導体素子及びそれらの製造方法 |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235104A (ja) * | 2011-04-22 | 2012-11-29 | Kobe Steel Ltd | 薄膜トランジスタ構造、ならびにその構造を備えた薄膜トランジスタおよび表示装置 |
US9379248B2 (en) | 2011-04-22 | 2016-06-28 | Kobe Steel, Ltd. | Thin-film transistor structure, as well as thin-film transistor and display device each having said structure |
JP2015188096A (ja) * | 2011-06-17 | 2015-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9768307B2 (en) | 2011-06-17 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2017085149A (ja) * | 2011-06-17 | 2017-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
JP2017050563A (ja) * | 2011-06-17 | 2017-03-09 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9548397B2 (en) | 2011-06-17 | 2017-01-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2015195384A (ja) * | 2011-07-08 | 2015-11-05 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11588058B2 (en) | 2011-07-08 | 2023-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US12132121B2 (en) | 2011-07-08 | 2024-10-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US9698275B2 (en) | 2011-07-08 | 2017-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
JP2017085168A (ja) * | 2011-07-08 | 2017-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2017157856A (ja) * | 2011-07-08 | 2017-09-07 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2013038400A (ja) * | 2011-07-08 | 2013-02-21 | Semiconductor Energy Lab Co Ltd | 半導体装置、及び半導体装置の作製方法 |
US10658522B2 (en) | 2011-07-08 | 2020-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US9530897B2 (en) | 2011-07-08 | 2016-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2016225637A (ja) * | 2011-07-08 | 2016-12-28 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11011652B2 (en) | 2011-07-08 | 2021-05-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US10043918B2 (en) | 2011-07-08 | 2018-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2013038399A (ja) * | 2011-07-08 | 2013-02-21 | Semiconductor Energy Lab Co Ltd | 半導体装置、及び半導体装置の作製方法 |
JP2015501529A (ja) * | 2011-10-07 | 2015-01-15 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | 高性能な電気的に安定した半導電性の金属酸化物層の製造法、当該方法により製造された層および当該層の使用 |
JP2013125782A (ja) * | 2011-12-13 | 2013-06-24 | Hitachi Ltd | 酸化物半導体装置 |
US10872981B2 (en) | 2012-04-13 | 2020-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising an oxide semiconductor |
US10158026B2 (en) | 2012-04-13 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including oxide semiconductor stacked layers |
US10559699B2 (en) | 2012-04-13 | 2020-02-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US11355645B2 (en) | 2012-04-13 | 2022-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising stacked oxide semiconductor layers |
US11929437B2 (en) | 2012-04-13 | 2024-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising various thin-film transistors |
US9847430B2 (en) | 2012-06-15 | 2017-12-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10483406B2 (en) | 2012-06-15 | 2019-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including an oxide semiconductor |
KR20210044198A (ko) * | 2012-06-15 | 2021-04-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US10032926B2 (en) | 2012-06-15 | 2018-07-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including an oxide semiconductor |
KR102241183B1 (ko) * | 2012-06-15 | 2021-04-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US11424368B2 (en) | 2012-06-15 | 2022-08-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including an oxide semiconductor |
KR20130141735A (ko) * | 2012-06-15 | 2013-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2014017477A (ja) * | 2012-06-15 | 2014-01-30 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
US10741695B2 (en) | 2012-06-15 | 2020-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including an oxide semiconductor |
JP2014027263A (ja) * | 2012-06-15 | 2014-02-06 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
KR20200056370A (ko) * | 2012-06-15 | 2020-05-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR102392732B1 (ko) * | 2012-06-15 | 2022-04-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US10483404B2 (en) | 2012-06-15 | 2019-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with multiple oxide semiconductor layers |
KR102113160B1 (ko) * | 2012-06-15 | 2020-05-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US9437747B2 (en) | 2012-06-15 | 2016-09-06 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with multiple oxide semiconductor layers |
US10424673B2 (en) | 2012-06-29 | 2019-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including a stack of oxide semiconductor layers |
US9666721B2 (en) | 2012-06-29 | 2017-05-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including pellet-like particle or flat-plate-like particle |
JP2014030001A (ja) * | 2012-06-29 | 2014-02-13 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
US9583634B2 (en) | 2012-08-02 | 2017-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9761738B2 (en) | 2012-08-02 | 2017-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having first and second oxide semiconductors with difference energy level |
JP2017143299A (ja) * | 2012-08-02 | 2017-08-17 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US10032934B2 (en) | 2012-08-02 | 2018-07-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2014045173A (ja) * | 2012-08-02 | 2014-03-13 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
US10347212B2 (en) | 2012-11-15 | 2019-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for driving information processing device, program, and information processing device |
JP2016006911A (ja) * | 2012-11-15 | 2016-01-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11063066B2 (en) | 2013-04-12 | 2021-07-13 | Semiconductor Energy Laboratory Co., Ltd. | C-axis alignment of an oxide film over an oxide semiconductor film |
US11843004B2 (en) | 2013-04-12 | 2023-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having specified relative material concentration between In—Ga—Zn—O films |
US10304859B2 (en) | 2013-04-12 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having an oxide film on an oxide semiconductor film |
JP2022177074A (ja) * | 2013-12-25 | 2022-11-30 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP7457074B2 (ja) | 2013-12-25 | 2024-03-27 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2019033143A (ja) * | 2017-08-07 | 2019-02-28 | 日立金属株式会社 | 半導体装置の製造方法 |
JP2019114751A (ja) * | 2017-12-26 | 2019-07-11 | シャープ株式会社 | 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20120280227A1 (en) | 2012-11-08 |
JPWO2011065329A1 (ja) | 2013-04-11 |
TWI452698B (zh) | 2014-09-11 |
TW201138109A (en) | 2011-11-01 |
JP5503667B2 (ja) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5503667B2 (ja) | 電界効果トランジスタおよび電界効果トランジスタの製造方法 | |
JP5666567B2 (ja) | 半導体装置およびそれを用いたrfidタグならびに表示装置 | |
US9954006B2 (en) | Thin film transistor array substrate and method of manufacturing the same | |
US8395155B2 (en) | Thin film transistors having an additional floating channel and methods of manufacturing the same | |
KR101126905B1 (ko) | 박막 트랜지스터 및 그 제조 방법 | |
US20140339537A1 (en) | Oxide thin film transistor and method of fabricating the same | |
JP2010021170A (ja) | 半導体装置およびその製造方法 | |
WO2011125940A1 (ja) | 薄膜トランジスタおよびその製造方法 | |
WO2012063614A1 (ja) | 半導体装置 | |
WO2013104226A1 (zh) | 薄膜晶体管及其制造方法、阵列基板和显示器件 | |
US20170170309A1 (en) | Thin film transistor, array substrate and display device having the same, and method thereof | |
US9508544B2 (en) | Semiconductor device and method for manufacturing same | |
KR20110052939A (ko) | 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자 | |
US9178024B2 (en) | Thin film transistor display panel and manufacturing method thereof | |
JP5666616B2 (ja) | 酸化物半導体装置の製造方法 | |
JP2013115111A (ja) | 酸化物半導体装置およびその製造方法 | |
CN215644507U (zh) | 薄膜晶体管和阵列基板 | |
US20130143358A1 (en) | Method for manufacturing oxide thin film transistor | |
CN112420764B (zh) | 显示驱动基板、显示驱动基板的制作方法以及显示面板 | |
JP5098151B2 (ja) | 薄膜トランジスタの製造方法 | |
CN118039702A (zh) | 一种顶栅肖特基氧化物薄膜晶体管及制备方法 | |
WO2022247148A1 (zh) | 薄膜晶体管及其制备方法、阵列基板 | |
CN115735428A (zh) | 氧化物薄膜晶体管及其制备方法、显示装置 | |
KR20140076106A (ko) | 트렌지스터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833175 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011543245 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13512062 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833175 Country of ref document: EP Kind code of ref document: A1 |