[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011062460A2 - 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 - Google Patents

다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 Download PDF

Info

Publication number
WO2011062460A2
WO2011062460A2 PCT/KR2010/008296 KR2010008296W WO2011062460A2 WO 2011062460 A2 WO2011062460 A2 WO 2011062460A2 KR 2010008296 W KR2010008296 W KR 2010008296W WO 2011062460 A2 WO2011062460 A2 WO 2011062460A2
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
coating layer
separator
lithium
porous coating
Prior art date
Application number
PCT/KR2010/008296
Other languages
English (en)
French (fr)
Other versions
WO2011062460A3 (ko
Inventor
이주성
신병진
김종훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2012539821A priority Critical patent/JP5703306B2/ja
Priority to CN201080053007.XA priority patent/CN102668172B/zh
Priority to EP10831827.0A priority patent/EP2506339B1/en
Publication of WO2011062460A2 publication Critical patent/WO2011062460A2/ko
Priority to US13/243,091 priority patent/US8426053B2/en
Publication of WO2011062460A3 publication Critical patent/WO2011062460A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a separator of an electrochemical device such as a lithium secondary battery, a separator formed therefrom, and an electrochemical device having the same, and more particularly, a first porous coating layer and a polymer solution including an organic-inorganic mixture.
  • the present invention relates to a method for preparing a separator having an electrosprayed second porous coating layer, a separator formed therefrom, and an electrochemical device having the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
  • electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that an electrochemical device should not cause injury to the user in the event of a malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material characteristics and manufacturing process characteristics including stretching, and thus, a short circuit between the anode and the cathode. There is a problem that causes.
  • a separator having a porous coating layer formed by coating a mixture of excess inorganic particles and a binder polymer on at least one surface of the porous substrate having a plurality of pores has been proposed.
  • the inorganic particles in the porous coating layer formed on the porous substrate serves as a kind of spacer to maintain the physical form of the porous coating layer to suppress the thermal shrinkage or heat shrinkage of the porous substrate when the electrochemical device is overheated. In case of congestion, short circuit of both electrodes is prevented.
  • an interstitial volume exists between the inorganic particles to form fine pores.
  • inorganic particles In order for the organic-inorganic composite porous coating layer formed on the porous substrate to express the above functions well, inorganic particles must be sufficiently contained in a predetermined amount or more. However, as the content of the inorganic particles increases, the content of the binder polymer decreases relatively, so that the binding property with the electrode decreases and the porous coating layer is caused by contact with the outside or stress generated during the assembly of the electrochemical device such as winding. Inorganic particles are likely to detach. Desorbed inorganic particles act as local defects of the electrochemical device, which adversely affects the safety of the electrochemical device.
  • the problem to be solved by the present invention is to replace the separator having a porous coating layer containing an organic-inorganic mixture consisting of a conventional monolayer, to provide a first porous coating layer and a polymer solution containing an organic-inorganic mixture with improved binding power
  • the present invention provides a method for manufacturing a separator for spraying to form a second porous coating layer, a separator formed therefrom, and an electrochemical device having the same.
  • (S1) inorganic particles are dispersed and the binder polymer is dissolved in a solvent coating a slurry on at least one surface of the porous substrate to form a first porous coating layer; And (S2) forming a second porous coating layer by electrospraying the polymer solution on the outer surface of the first porous coating layer.
  • the porous substrate may be a polyolefin-based porous substrate.
  • the polyolefin-based porous substrate is preferably polyethylene, polypropylene, polybutylene and polypentene.
  • the inorganic particles may be used inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer capacity, and mixtures thereof.
  • Inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC and TiO 2 are preferred, and the inorganic particles having lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ) and lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (L
  • the binder polymer is polyvinylidene fluoride-co-hexafluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene), polyvinylidene fluoride-co-trichloroethylene (polyvinylidene fluoride-co-trichloroethylene), poly Methyl methacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol, ethylene vinyl Acetate-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate acetate propionate), cyanoethyl Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan
  • the polymer solution is polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polymethylmethacrylate Butyl acrylate (polybutylacrylate), polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alchol, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylflurane cyanoethylpullulan, cyanoethylpolybi Fusing alcohols (cyanoethylpolyvinylalcohol), cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose and low molecular weight compounds up to 10,000
  • the electrospray may be electrospinning or electrospraying.
  • Separation membrane according to the present invention, (a) is formed on the outer surface of at least one surface of the porous substrate, the first porous coating layer made of a mixture of inorganic particles and a binder polymer; And (b) a second porous coating layer formed by electrospraying a polymer solution on the outer surface of the first porous coating layer.
  • the porous substrate may be a polyolefin-based porous substrate.
  • the polyolefin-based porous substrate is preferably polyethylene, polypropylene, polybutylene and polypentene.
  • the thickness of the porous substrate is 5 to 50 ⁇ m, and the pore size and porosity are preferably 0.01 to 50 ⁇ m and 10 to 95%, respectively.
  • the average particle diameter of the inorganic particles be 0.001 to 10 ⁇ m.
  • inorganic particles inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transfer ability, and mixtures thereof may be used.
  • Inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC and TiO 2 are preferred, and the inorganic particles having lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ) and lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (L
  • the binder polymer is polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate. Polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol, ethylene vinyl acetate Polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate ), Cyanoethylflurane (cyanoe thylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose and molecular weight 10,000 g / mol The following low molecular weight compounds etc. can be used.
  • the polymer solution may be polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, Polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alchol, ethylene vinyl acetate copolymer (polyethylene-co- vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylflu Cyanoethylpullulan, cyanoethylpol Consisting of vinyl alcohol (cyanoethylpolyvinylalcohol), cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose and low molecular weight compounds up to 10,000 g / mol Can be used.
  • vinyl alcohol cyanoeth
  • This second porous coating layer may be formed by electrospray, such as electrospinning or electrospraying.
  • the thickness of the second porous coating layer is preferably 0.001 to 5 ⁇ m.
  • Such a separator of the present invention can be applied to both separators of electrochemical devices such as lithium secondary electrons or supercapacitor devices.
  • the first porous coating layer formed on the outer surface of the porous substrate may be made of an inorganic material having excellent thermal stability to suppress a short circuit between the anode and the cathode even when the electrochemical device is overheated.
  • the second porous coating layer in which the polymer solution is electrosprayed porosity is maintained while improving the binding property of the separator to the other substrate, thereby ensuring excellent battery performance. It is possible to reduce the content of the organic material for the binding of the first porous coating layer by forming the organic coating layer on the bonding surface with other substrate material, thereby ensuring the porosity, thereby contributing to the improvement of the performance of the electrochemical device. In addition, desorption of the inorganic particles in handling the separator can be prevented.
  • Figure 1 shows a SEM photograph of the surface of the separator of Example 1 of the present invention.
  • Figure 2 shows a SEM photograph of the surface of the separator of Example 2 of the present invention.
  • Figure 3 shows a SEM photograph of the surface of the separator of Comparative Example 1 of the present invention.
  • a method of forming a first porous coating layer and a second porous coating layer on an outer surface of a porous substrate is as follows.
  • inorganic particles are dispersed and a binder polymer is dissolved in a solvent to coat a slurry on at least one surface of the porous substrate to form a first porous coating layer (step S1).
  • the slurry in which the inorganic particles are dispersed and the binder polymer is dissolved in the solvent may be prepared by dissolving the binder polymer in the solvent and then adding the inorganic particles and dispersing the binder polymer.
  • the inorganic particles may be added in a state of being crushed to an appropriate size, but after adding the inorganic particles to the solution of the binder polymer, it is preferable to disperse the inorganic particles while crushing by using a ball mill method.
  • the method of coating the slurry on which the inorganic particles are dispersed and the binder polymer dissolved in the solvent on the porous substrate may use a conventional coating method known in the art, for example, dip coating or die coating. Various methods may be used, such as roll coating, comma coating, and gravure coating or a mixture thereof.
  • the first porous coating layer may be selectively formed on both surfaces or only one surface of the porous substrate.
  • any planar porous substrate commonly used in an electrochemical device such as a porous membrane or a nonwoven fabric formed of various polymers can be used.
  • a polyolefin-based porous membrane or a nonwoven fabric made of polyethylene terephthalate fiber which is used as an electrochemical device, in particular, a separator of a lithium secondary battery, may be used, and the material and shape thereof may be variously selected as desired.
  • the polyolefin-based porous membrane is a polyolefin-based polymer such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, or a mixture thereof.
  • the polymer may be formed, and the nonwoven fabric may also be made of a fiber using a polyolefin-based polymer or a polymer having higher heat resistance.
  • the thickness of the porous substrate is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and the pore size and pore present in the porous substrate are also not particularly limited, but 0.01 to 50 ⁇ m and 10, respectively. It is preferably from 95%.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt, such as lithium salt, in the liquid electrolyte.
  • the inorganic particles preferably comprise high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more.
  • inorganic particles having a dielectric constant greater than 5 include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2, SiC Or mixtures thereof.
  • the inorganic particles may be inorganic particles having lithium ion transfer capability, that is, inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium.
  • inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ), lithium lanthan
  • the average particle diameter of the inorganic particles is not particularly limited, but for forming a coating layer of uniform thickness and proper porosity, it is preferably in the range of 0.001 to 10 ⁇ m. When the thickness is less than 0.001 ⁇ m, the dispersibility may be decreased, and when the thickness is more than 10 ⁇ m, the thickness of the coating layer formed may be increased.
  • the binder polymer it is preferable to use a polymer having a glass transition temperature (T g ) of -200 to 200 ° C, because it can improve mechanical properties such as flexibility and elasticity of the finally formed coating layer. .
  • T g glass transition temperature
  • the binder polymer does not necessarily have an ion conducting ability, but when a polymer having an ion conducting ability is used, the performance of the electrochemical device may be further improved. Therefore, the binder polymer is preferably as high as possible dielectric constant. In fact, since the dissociation degree of the salt in the electrolyte depends on the dielectric constant of the solvent of the electrolyte, the higher the dielectric constant of the binder polymer, the higher the dissociation of the salt in the electrolyte.
  • the binder polymer may have a feature that can exhibit a high degree of swelling of the electrolyte by gelling upon impregnation of the liquid electrolyte. Accordingly, it is preferred to use polymers having a solubility index of 15 to 45 MPa 1/2 , more preferred solubility indices in the range of 15 to 25 MPa 1/2 and 30 to 45 MPa 1/2 . Therefore, it is preferable to use hydrophilic polymers having more polar groups than hydrophobic polymers such as polyolefins. This is because when the solubility index is less than 15 MPa 1/2 and more than 45 MPa 1/2 , it is difficult to be swelled by a conventional battery liquid electrolyte.
  • binder polymers include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacryl Polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate , Cyanoethylfuran (cyanoeth ylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose and molecular weight 10,000 g / mol The following low molecular weight compounds etc. are mentioned.
  • the weight ratio of the inorganic particles and the binder polymer is preferably in the range of 50:50 to 99: 1, more preferably 70:30 to 95: 5.
  • the content ratio of the inorganic particles to the binder polymer is less than 50:50, the pore size and porosity of the coating layer formed by increasing the content of the polymer may be reduced.
  • the content of the inorganic particles exceeds 99 parts by weight, since the binder polymer content is small, the peeling resistance of the coating layer formed may be weakened.
  • a solubility index is similar to that of the binder polymer to be used, and a boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal.
  • solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone, NMP), cyclohexane, water or a mixture thereof.
  • the polymer solution can be used as long as it can produce a porous coating layer by electrospraying.
  • the polymer in addition to a solution in which an appropriate amount of the polymer is dissolved in a solvent for solution electrospray, the polymer is not used for melt electrospray. It should be interpreted that the solution obtained by melting is included in the polymer solution of the present invention.
  • the polymer solution may be polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, Polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alchol, ethylene vinyl acetate copolymer (polyethylene-co- vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylflu Cyanoethylpullulan, cyanoethylpol Soluble vinyl alcohol (cyanoethylpolyvinylalcohol), cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose and low molecular weight compounds with a molecular weight of 10,000 g / mol or less Or dissolved in a
  • the solubility index is similar to the polymer to be used, and a boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal.
  • solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone, NMP), cyclohexane, water or a mixture thereof.
  • Electrospray is a method in which a high voltage is applied to a solution to impart a charge, and then the charged solution is sprayed onto the substrate through a spray head for generating a microscopic injection nozzle or droplets. Electrospray may include electrospinning or electrospraying.
  • Korean Patent Laid-Open Publication No. 2009-0054385 discloses a syringe (syringe pump), a needle, and a bottom electrode (stainless steel plate with adjustable rotation speed).
  • the distance between the tip of the needle and the drum is 5 to 30 cm
  • the radiation voltage is 15 kV or more
  • the flow rate of the spinning solution of the syringe pump is 1 to 20.
  • a method of electrospinning by adjusting to ml / hr is disclosed.
  • Republic of Korea Patent Publication No. 0027116 has been described with respect to the electrospray apparatus and method. The above documents are also incorporated by reference of the present invention.
  • the porous substrate is placed on the substrate of the electrospray apparatus, and the polymer solution prepared on the outer surface of the first porous coating layer formed on at least one surface of the porous substrate is electrosprayed to form a second porous coating layer.
  • Always electrospraying methods include electrospinning or electrospraying.
  • Electrospray is applied in the form of nanofibers or nanodrops. It is preferable that the diameter of the nanofibers is 1 to 200 nm, and in the case of nanodrops, the diameter of the nanofibers is preferably 10 to 500 nm based on the short diameter of the oval.
  • the separator of the present invention prepared according to the above-described method, (a) is formed on the outer surface of at least one side of the porous substrate, the first porous coating layer made of a mixture of inorganic particles and a binder polymer; And (b) a second porous coating layer formed by electrospraying a polymer solution on the outer surface of the first porous coating layer.
  • the first porous coating layer of the present invention is connected and fixed between the inorganic particles by the binder polymer, the pore structure is formed due to the interstitial volume between the inorganic particles. That is, the first porous coating layer is attached to each other (that is, the binder polymer is connected and fixed between the inorganic particles) so that the binder polymer can remain in the state in which the inorganic particles are bound to each other, and the first porous coating layer is a binder It remains bound to the porous substrate by the polymer.
  • the inorganic particles of the first porous coating layer are present in the closest-filled structure substantially in contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other becomes pores of the first porous coating layer.
  • the second porous coating layer of the present invention is polyvinylidene fluoride-co-hexafluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene), polyvinylidene fluoride-co-trichloroethylene (polyvinylidene fluoride-co-trichloroethylene), polymethyl methacrylate (polymethylmethacrylate), polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose Acetate (cellulose acetate), cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose (cyanoethylcellulose), cyano Til sucrose (cyanoethylsucrose), pullulan (pullulan), carboxymethyl cellulose is preferably
  • the second porous coating layer formed by the electrospray is composed of organic fibers, and is not particularly limited in form, but preferably has a form of a microporous membrane formed by nanofibers or nanodrops.
  • the organic fiber porous coating layer formed by electrospinning is composed of organic fibers in the form of relatively long nanofibers
  • the organic fiber porous coating layer formed by electrospray is composed of organic fibers in the form of relatively short nanodrops. Connected to form a mesh porous coating.
  • the thickness of the second porous coating layer is preferably 0.001 to 5 ⁇ m in order to achieve binding property while minimizing the influence on battery performance.
  • the average pore size of the second porous coating layer is 0.01 to 50 ⁇ m, porosity is preferably 1 to 90%.
  • Such a separator having a functional multilayer of the present invention may be interposed between the positive electrode and the negative electrode as in the conventional separator, in which case the first porous coating layer made of an inorganic material prevents a short circuit between the positive electrode and the negative electrode even when overheated. .
  • the electrochemical device of the present invention includes all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • an electrolyte in which a salt having a structure such as A + B ⁇ is dissolved in an organic solvent may be selectively used.
  • a + is Li +, Na +, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K +
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - and include such anions or an ion composed of a combination of do.
  • Organic solvents include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane , Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC), gamma butyrolactone (g-butyrolactone) or mixtures thereof, but is not limited thereto. no.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane , Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC), gam
  • the injection of the electrolyte may be performed at an appropriate step in the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • Example 2 Working as in Example 1 except that the voltage conditions for forming the second porous coating layer was converted to the electrospray form by adjusting to 15kV.
  • the second porous coating layer obtained by the electrospray was applied in the form of a drop having a size of 100 to 300 nm on a short diameter basis.
  • the Gurley value of the separator thus obtained was 383.5 sec / 100 mL, which was a good level for implementing battery performance, and the bonding force between the separators was 6.89 gf / cm, which was sufficient for battery assembly.
  • the Gurley value of the separator was 370.8 sec / 100 mL, which was a good level to realize battery performance, but the bonding force between the separators was 1.84 gf / cm, which prevented cell assembly. .
  • Example 1-2 and Comparative Example 1 were observed using a scanning electron microscope (SEM) and shown in FIGS. 1-3. In contrast to Example 1-2, in Comparative Example 1, it can be seen that the inorganic particles are directly exposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

본 발명의 분리막 제조방법은 (S1) 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 다공성 기재의 적어도 일면에 코팅하여 제1 다공성 코팅층을 형성하는 단계; 및 (S2) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성하는 단계를 포함한다. 본 발명의 다공성 기재의 외면에 형성된 제1 다공성 코팅층은 열적 안정성이 뛰어난 무기물로 구성되어 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 단락을 억제할 수 있으며, 전기분사된 제2 다공성 코팅층은 전극의 다른 기재와의 결착성을 향상시킨다.

Description

다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
본 발명은 리튬 이차전지와 같은 전기화학소자의 분리막 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자에 관한 것으로서, 더 상세하게는 유기-무기 혼합물을 포함하는 제1 다공성 코팅층 및 고분자 용액이 전기분사된 제2 다공성 코팅층이 형성된 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자에 관한 것이다.
본 출원은 2009년 11월 23일에 출원된 한국특허출원 제10-2009-0113179호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2010년 11월 23일에 출원된 한국특허출원 제10-2010-0116778호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동 시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 코팅층을 형성한 분리막이 제안되었다. 다공성 코팅층이 형성된 분리막에 있어서, 다공성 기재에 형성된 다공성 코팅층 내의 무기물 입자들은 다공성 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하거나 열 폭주시 양 전극의 단락을 방지하게 된다. 또한, 무기물 입자들 사이에는 빈 공간(interstitial volume)이 존재하여 미세 기공을 형성한다.
다공성 기재에 형성된 유기-무기 복합 다공성 코팅층이 전술한 기능을 양호하게 발현하기 위해서는 무기물 입자들이 소정 함량 이상으로 충분히 함유되어야 한다. 그러나, 무기물 입자들의 함량이 높아짐에 따라 바인더 고분자의 함량은 상대적으로 작아지게 되므로, 전극과의 결착성이 저하되고 권취 등 전기화학소자의 조립과정에서 발생하는 응력이나 외부와의 접촉에 의하여 다공성 코팅층의 무기물 입자들이 탈리되기 쉽다. 탈리된 무기물 입자들은 전기화학소자의 국부적인 결점으로 작용하여 전기화학소자의 안전성에 악영향을 미치게 된다.
이에, 결착성이 우수하고 무기물 입자의 탈리를 방지하기 위한 개선된 성능을 갖는 분리막의 제조방법이 필요하다.
따라서, 본 발명이 해결하고자 하는 과제는 종래의 단층으로 구성된 유기-무기 혼합물을 함유하는 다공성 코팅층을 갖는 분리막을 대체하여, 결착력이 향상된 유기-무기 혼합물을 함유하는 제1 다공성 코팅층 및 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성하는 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자를 제공하는 데 있다.
상기 과제를 해결하기 위하여, 본 발명의 분리막 제조방법은, (S1) 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 다공성 기재의 적어도 일면에 코팅하여 제1 다공성 코팅층을 형성하는 단계; 및 (S2) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성하는 단계를 포함한다.
본 발명의 분리막 제조방법에 있어서, 다공성 기재는 폴리올레핀계 다공성 기재를 사용할 수 있다.
상기 폴리올레핀계 다공성 기재로는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐인 것이 바람직하다.
본 발명의 분리막 제조방법에 있어서, 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물을 사용할 수 있다.
유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2인 것이 바람직하고, 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass인 것이 바람직하다.
본 발명의 분리막 제조방법에 있어서, 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물을 사용할 수 있다.
고분자 용액은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물을 융용시키거나 용매에 용해시킨 것을 사용할 수 있다.
또한, 본 발명의 분리막 제조방법에 있어서, 상기 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)일 수 있다.
본 발명에 따른 분리막은, (a) 다공성 기재의 적어도 일면의 외면에 형성되어 있으며, 무기물 입자 및 바인더 고분자의 혼합물로 된 제1 다공성 코팅층; 및 (b) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 형성된 제2 다공성 코팅층을 구비한다.
본 발명의 분리막에 있어서, 다공성 기재는 폴리올레핀계 다공성 기재를 사용할 수 있다.
상기 폴리올레핀계 다공성 기재로는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐인 것이 바람직하다.
다공성 기재의 두께는 5 내지 50 ㎛이고, 기공 크기 및 기공도는 각각 0.01 내지 50 ㎛ 및 10 내지 95 %인 것이 바람직하다.
본 발명의 분리막에 있어서, 무기물 입자의 평균입경은 0.001 내지 10 ㎛인 것을 사용하는 것이 바람직하다.
무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물을 사용할 수 있다.
유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2인 것이 바람직하고, 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass인 것이 바람직하다.
본 발명의 분리막에 있어서, 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물 등을 사용할 수 있다.
상기 고분자 용액은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물 등으로 이루어진 것을 사용할 수 있다.
이러한 제2 다공성 코팅층은 전기방사(electrospinning) 또는 전기분무(electrospraying)와 같은 전기분사에 의해 형성될 수 있다.
본 발명의 분리막에 있어서, 제2 다공성 코팅층의 두께는 0.001 내지 5 ㎛인 것이 바람직하다.
이와 같은 본 발명의 분리막은 리튬 이차전자나 수퍼 캐패시터 소자와 같은 전기화학소자의 분리막에 모두에 적용될 수 있다.
본 발명에 따라 다공성 기재 외면에 형성된 제1 다공성 코팅층은 열적 안정성이 뛰어난 무기물로 구성되어 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 단락을 억제할 수 있다.
고분자 용액이 전기분사된 제2 다공성 코팅층의 도입에 의해서, 타기재에 대한 분리막의 결착성을 향상시키면서도 다공성이 유지되어 우수한 전지성능의 확보가 가능하다. 이는 유기물 코팅층을 타기재와의 접합면에 형성함으로써 제1 다공성 코팅층의 결착성을 위한 유기물의 함량을 줄일 수 있어 기공성의 확보가 용이하여 전기화학소자의 성능 향상에 기여하게 된다. 또한, 분리막의 취급상의 무기물 입자의 탈리를 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 실시예 1의 분리막 표면의 SEM 사진을 나타낸 것이다.
도 2는 본 발명의 실시예 2의 분리막 표면의 SEM 사진을 나타낸 것이다.
도 3은 본 발명의 비교예 1의 분리막 표면의 SEM 사진을 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명에 따라 다공성 기재 외면에 제1 다공성 코팅층 및 제2 다공성 코팅층을 형성하는 방법은 다음과 같다.
먼저, 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 다공성 기재의 적어도 일면에 코팅하여 제1 다공성 코팅층을 형성한다 (S1 단계).
무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리는 바인더 고분자를 용매에 용해시킨 다음 무기물 입자를 첨가하고 이를 분산시켜 제조할 수 있다. 무기물 입자들은 적정 크기로 파쇄된 상태에서 첨가할 수 있으나, 바인더 고분자의 용액에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용하여 파쇄하면서 분산시키는 것이 바람직하다.
무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 다공성 기재상에 코팅하는 방법은 당 업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 및 그래비어(gravure)코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다. 또한, 제1 다공성 코팅층은 다공성 기재의 양면 모두 또는 일면에만 선택적으로 형성할 수 있다.
다공성 기재로는 다양한 고분자로 형성된 다공성 막이나 부직포 등 통상적으로 전기화학소자에 사용되는 평면상의 다공성 기재라면 모두 사용이 가능하다. 예를 들어 전기화학소자 특히, 리튬 이차전지의 분리막으로 사용되는 폴리올레핀계 다공성 막이나, 폴리에틸렌테레프탈레이트 섬유로 이루어진 부직포 등을 사용할 수 있으며, 그 재질이나 형태는 목적하는 바에 따라 다양하게 선택할 수 있다. 예를 들어 폴리올레핀계 다공성 막(membrane)은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성할 수 있으며, 부직포 역시 폴리올레핀계 고분자 또는 이보다 내열성이 높은 고분자를 이용한 섬유로 제조될 수 있다. 다공성 기재의 두께는 특별히 제한되지 않으나, 바람직하게는 1 내지 100 ㎛, 더욱 바람직하게는 5 내지 50 ㎛이고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95 %인 것이 바람직하다.
무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리에 있어서, 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합체 등이 있다.
또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
또한, 무기물 입자의 평균입경은 특별한 제한이 없으나 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하다. 0.001 ㎛ 미만인 경우 분산성이 저하될 수 있고, 10 ㎛를 초과하는 경우 형성되는 코팅층의 두께가 증가할 수 있다.
바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200 ℃인 고분자를 사용하는 것이 바람직한데, 이는 최종적으로 형성되는 코팅층의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다.
또한, 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기화학소자의 성능을 더욱 향상시킬 수 있다. 따라서, 바인더 고분자는 가능한 유전율 상수가 높은 것이 바람직하다. 실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 바인더 고분자의 유전율 상수가 높을수록 전해질에서의 염 해리도를 향상시킬 수 있다. 이러한 바인더 고분자의 유전율 상수는 1.0 내지 100 (측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상인 것이 바람직하다.
전술한 기능 이외에, 바인더 고분자는 액체 전해액 함침시 겔화됨으로써 높은 전해액 함침율(degree of swelling)을 나타낼 수 있는 특징을 가질 수 있다. 이에 따라, 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 사용하는 것이 바람직하며, 더욱 바람직한 용해도 지수는 15 내지 25 MPa1/2 및 30 내지 45 MPa1/2 범위이다. 따라서, 폴리올레핀류와 같은 소수성 고분자들보다는 극성기를 많이 갖는 친수성 고분자들을 사용하는 것이 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵기 때문이다.
이러한 바인더 고분자의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물 등을 들 수 있다.
무기물 입자와 바인더 고분자의 중량비는 예를 들어 50:50 내지 99:1 범위가 바람직하며, 더욱 바람직하게는 70:30 내지 95:5이다. 바인더 고분자에 대한 무기물 입자의 함량비가 50:50 미만일 경우 고분자의 함량이 많아지게 되어 형성되는 코팅층의 기공 크기 및 기공도가 감소될 수 있다. 무기물 입자의 함량이 99 중량부를 초과할 경우 바인더 고분자 함량이 적기 때문에 형성되는 코팅층의 내필링성이 약화될 수 있다.
바인더 고분자의 용매로는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다.
이어서, 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성한다(S2).
고분자 용액은 전기분사를 수행하여 다공성 코팅층을 제조할 수 있는 것이라면 모두 사용이 가능한데, 예를 들어 용액 전기분사를 위해 용매에 고분자를 적정량 용해시킨 용액 외에, 용융 전기분사를 위해 용매를 사용하지 않고 고분자를 용융시킨 용액도 본 발명의 고분자 용액에 포함되는 것으로 해석해야 한다.
상기 고분자 용액은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물을 융용시키거나 용매에 용해시킨 것을 사용하는 것이 바람직하다.
상기 용매로는 사용하고자 하는 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다.
고분자 용액을 이용하여 전기분사하는 방법은 당업계에 잘 알려져 있다. 전기분사는 용액에 대하여 고전압을 인가하여 전하를 부여한 후, 하전된 용액을 미세경의 분사노즐이나 소적을 발생시키는 분무헤드를 통하여 기재로 분사하는 방법이다. 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)를 포함하는데, 대한민국 공개특허공보 제2009-0054385호에는 주사기(실린지 펌프)와 주사바늘, 바닥전극(회전 속도를 조절할 수 있는 스테인레스 강판의 드럼) 및 방사전압 공급장치로 구성된 전기방사장치를 이용하고, 주사바늘의 끝과 드럼 사이의 거리를 5 내지 30 cm, 방사전압은 15 kV 이상, 실린지 펌프의 방사용액의 유량을 1 내지 20 ml/hr로 조절하여 전기방사하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제0271116호에는 전기분무 장치 및 방법에 대하여 상술되어 있다. 위 문헌들 역시 본 발명의 레퍼런스로서 통합된다.
본 발명에서는 전기분사 장치의 기재에 다공성 기재를 위치시키고, 다공성 기재의 적어도 일면에 형성된 제1 다공성 코팅층의 외면에 준비된 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성한다. 이때, 공지의 방법에 따라 주사바늘 사이의 간격, 기재의 운반속도 등을 조절하여, 코팅층의 기공도를 최적화할 수 있다. 상시 전기분사하는 방법은 전기방사(electrospinning) 또는 전기분무(electrospraying)를 포함한다.
전기분사에 의해서 나노섬유(nanofiber) 또는 나노드롭(nanodrop)의 형태로 도포되게 된다. 나노섬유의 직경은 1 ~ 200 nm인 것이 바람직하고, 나노드롭의 경우에는 타원형의 짧은 직경 기준으로 10 ~ 500 nm인 것이 바람직하다.
예시된 전술한 방법에 따라 제조한 본 발명의 분리막은, (a) 다공성 기재의 적어도 일면의 외면에 형성되어 있으며, 무기물 입자 및 바인더 고분자의 혼합물로 된 제1 다공성 코팅층; 및 (b) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 형성된 제2 다공성 코팅층을 구비한다.
본 발명의 제1 다공성 코팅층은 바인더 고분자에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자들 사이의 틈새 공간(interstitial volume)으로 인해 기공구조가 형성되어 있다. 즉, 상기 제1 다공성 코팅층은 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 상기 제1 다공성 코팅층은 바인더 고분자에 의해 다공성 기재와 결착된 상태를 유지한다. 상기 제1 다공성 코팅층의 무기물 입자들은 실질적으로 서로 접촉한 상태로 최밀 충전된 구조로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 제1 다공성 코팅층의 기공이 된다.
본 발명의 제2 다공성 코팅층은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 것이 바람직하다.
이러한 전기분사에 의해 형성되는 제2 다공성 코팅층은 유기섬유로 구성되며, 특별히 그 형태를 제한하는 것은 아니지만 나노 섬유 또는 나노 드롭에 의해 형성된 미세 다공막의 형태를 갖는 것이 바람직하다. 일반적으로 전기방사에 의해 형성된 유기섬유 다공성 코팅층은 비교적 길이가 긴 나노섬유 형태인 유기섬유로 구성되고, 전기분무에 의해 형성된 유기섬유 다공성 코팅층은 비교적 짧은 나노드롭 형태의 유기섬유로 구성되며, 이들이 서로 연결되어 망목상의 다공성 코팅층이 형성된다. 그러나, 운전조건을 조절하여 전기방사에 의해서도 나노드롭 형태인 유기섬유를 형성할 수 있다. 나노섬유의 직경은 1 ~ 200 nm인 것이 바람직하고, 나노드롭의 경우에는 타원형의 짧은 직경 기준으로 10 ~ 500 nm인 것이 바람직하다.
나노크기의 직경으로 입자크기를 제어하여 섬유상 무기물의 결착성을 향상시키면서도 다공성이 유지되어 전지성능의 확보가 가능하다. 다만, 전지성능에 영향을 최소화하면서, 결착성을 달성하기 위해서 제2 다공성 코팅층의 두께는 0.001 내지 5 ㎛인 것이 바람직하다. 제2 다공성 코팅층의 평균 기공크기는 0.01 내지 50 ㎛이고, 기공도는 1 내지 90 %인 것이 바람직하다.
이와 같은 본 발명의 기능성 다층을 갖는 분리막은 종래의 분리막과 같이 양극과 음극 상이에 개재시킬 수 있는 데, 이 경우 무기물로 된 제1 다공성 코팅층은 과열에 의한 경우에도 양극과 음극의 단락을 방지한다.
본 발명의 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 전기화학소자에는 A+B-와 같은 구조의 염을 유기용매에 용해시킨 전해질을 선택적으로 사용할 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함한다. 유기용매로는 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
Al2O3와 BaTiO3를 9:1로 혼합한 무기물 18 중량%에 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (PVdF-HFP)과 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol)을 9:1로 혼합한 유기물 2 중량%를 아세톤에 용해시켜 슬러리를 준비하였다. 상기 슬러리를 폴리올레핀 계열의 SK에너지사 제품인 312HT 필름 위에 코팅한 후 건조하여 양면에 각각 3㎛ 두께의 제1 다공성 코팅층을 형성하였다. 이후 전기방사 방법으로 6 중량%의 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌을 주사기 펌프 유량 50 mL/min 조건에서 5kV로 전기방사하여 직경이 50 ~ 100 nm인 섬유형태의 제2 다공성 코팅층을 형성하였다. 이로써 얻어진 분리막의 Gurley값은 372.7 sec/100mL로 전지성능을 구현하기에 양호한 수준이었으며, 분리막간의 접합력은 7.00 gf/cm으로 전지 조립이 충분한 수준이었다.
실시예 2
제2 다공성 코팅층을 형성하기 위한 전압조건을 15kV로 조정하여 전기분무 형태로 전환한 것을 제외하고는 실시예 1과 동일하게 작업하였다. 이러한 전기분무로 얻어진 제2 다공성 코팅층은 짧은 직경 기준으로 100 ~ 300 nm 크기의 드롭 형태로 도포되었다. 이로써 얻어진 분리막의 Gurley값은 383.5 sec/100mL로 전지성능을 구현하기에 양호한 수준이었으며, 분리막 간 접합력은 6.89gf/cm으로 전지 조립이 충분한 수준이었다.
비교예 1
Al2O3와 BaTiO3를 9:1로 혼합한 무기물 18 중량%에 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (PVdF-HFP)과 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol)을 9:1로 혼합한 유기물 2 중량%를 아세톤에 용해시켜 슬러리를 준비하였다. 상기 슬러리를 폴리올레핀 계열의 SK에너지사 제품인 312HT 필름 위에 코팅한 후 건조하여 양면에 각각 3㎛ 두께의 제1 다공성 코팅층을 형성하였다.
제1 다공성 코팅층을 형성한 결과 표면에 무기물이 관찰되었으며, 분리막의 Gurley값은 370.8 sec/100 mL로 전지성능을 구현하기에 양호한 수준이었으나, 분리막 간 접합력은 1.84gf/cm으로 전지조립이 불가능하였다.
시험예 1
실시예 1-2 및 비교예 1의 분리막을 주사형 전자현미경(SEM)을 사용하여 표면을 관찰하여 도 1-3에 도시하였다. 실시예 1-2와 달리 비교예 1에서는 무기물 입자가 직접적으로 노출되어 있음을 알 수 있다.

Claims (23)

  1. (S1) 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 다공성 기재의 적어도 일면에 코팅하여 제1 다공성 코팅층을 형성하는 단계; 및
    (S2) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 제2 다공성 코팅층을 형성하는 단계를 포함하는 분리막의 제조방법.
  2. 제1항에 있어서,
    상기 다공성 기재는 폴리올레핀계 다공성 기재인 것을 특징으로 하는 분리막의 제조방법.
  3. 제2항에 있어서,
    상기 폴리올레핀계 다공성 기재는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐으로 이루어진 군으로부터 선택된 어느 하나의 고분자로 형성된 것을 특징으로 하는 분리막의 제조방법.
  4. 제1항에 있어서,
    상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 무기물 입자인 것을 특징으로 하는 분리막의 제조방법.
  5. 제4항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막의 제조방법.
  6. 제4항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막의 제조방법.
  7. 제1항에 있어서,
    상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나의 바인더 고분자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막의 제조방법.
  8. 제1항에 있어서,
    상기 고분자 용액은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 2종 이상의 혼합물을 융용시키거나 용매에 용해시킨 것을 특징으로 하는 분리막의 제조방법.
  9. 제1항에 있어서,
    상기 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)인 것을 특징으로 하는 분리막의 제조방법.
  10. (a) 다공성 기재의 적어도 일면의 외면에 형성되어 있으며, 무기물 입자 및 바인더 고분자의 혼합물로 된 제1 다공성 코팅층; 및
    (b) 상기 제1 다공성 코팅층의 외면에 고분자 용액을 전기분사하여 형성된 제2 다공성 코팅층을 구비한 분리막.
  11. 제10항에 있어서,
    상기 다공성 기재는 폴리올레핀계 다공성 기재인 것을 특징으로 하는 분리막.
  12. 제11항에 있어서,
    상기 폴리올레핀계 다공성 기재는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐으로 이루어진 군으로부터 선택된 어느 하나의 고분자로 형성된 것을 특징으로 하는 분리막.
  13. 제10항에 있어서,
    상기 다공성 기재의 두께는 5 내지 50 ㎛이고, 기공 크기 및 기공도는 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것을 특징으로 하는 분리막.
  14. 제10항에 있어서,
    상기 무기물 입자의 평균입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 분리막.
  15. 제10항에 있어서,
    상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 무기물 입자인 것을 특징으로 하는 분리막.
  16. 제15항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막.
  17. 제15항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막.
  18. 제10항에 있어서,
    상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나의 바인더 고분자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 분리막.
  19. 제 10항에 있어서,
    상기 고분자용액은 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 분자량 10,000 g/mol 이하의 저분자 화합물로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 2종 이상의 혼합물로 이루어진 것을 특징으로 하는 분리막.
  20. 제10항에 있어서,
    상기 전기분사는 전기방사(electrospinning) 또는 전기분무(electrospraying)인 것을 특징으로 하는 분리막.
  21. 제10항에 있어서,
    상기 제2 다공성 코팅층의 두께는 0.001 내지 5 ㎛이고, 기공 크기 및 기공도는 각각 0.01 내지 50 ㎛ 및 1 내지 90%인 것을 특징으로 하는 분리막.
  22. 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전기화학소자에 있어서,
    상기 분리막이 제10항 내지 제21항 중 어느 한 항의 분리막인 것을 특징으로 하는 전기화학소자.
  23. 제 22항에 있어서,
    상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2010/008296 2009-11-23 2010-11-23 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 WO2011062460A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012539821A JP5703306B2 (ja) 2009-11-23 2010-11-23 多孔性コーティング層を備えるセパレータの製造方法、その方法によって形成されたセパレータ、及びそれを備える電気化学素子
CN201080053007.XA CN102668172B (zh) 2009-11-23 2010-11-23 包括多孔涂层的隔膜的制造方法,由该方法制造的隔膜以及包括该隔膜的电化学设备
EP10831827.0A EP2506339B1 (en) 2009-11-23 2010-11-23 Method for preparing separator having porous coating layer, separator formed therefrom and electrochemical device containing same
US13/243,091 US8426053B2 (en) 2009-11-23 2011-09-23 Method for manufacturing separator including porous coating layers, separator manufactured by the method and electrochemical device including the separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090113179 2009-11-23
KR10-2009-0113179 2009-11-23
KR10-2010-0116778 2010-11-23
KR1020100116778A KR101055431B1 (ko) 2009-11-23 2010-11-23 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/243,091 Continuation US8426053B2 (en) 2009-11-23 2011-09-23 Method for manufacturing separator including porous coating layers, separator manufactured by the method and electrochemical device including the separator

Publications (2)

Publication Number Publication Date
WO2011062460A2 true WO2011062460A2 (ko) 2011-05-26
WO2011062460A3 WO2011062460A3 (ko) 2011-11-03

Family

ID=44365343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008296 WO2011062460A2 (ko) 2009-11-23 2010-11-23 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자

Country Status (6)

Country Link
US (1) US8426053B2 (ko)
EP (1) EP2506339B1 (ko)
JP (1) JP5703306B2 (ko)
KR (1) KR101055431B1 (ko)
CN (1) CN102668172B (ko)
WO (1) WO2011062460A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295170A1 (en) * 2011-11-03 2014-10-02 Sk Innovation Co., Ltd. Micro-Porous Polyolefin Composite Film Having Excellent Heat Resistance and Stability and Method for Producing the Same
JP2015519681A (ja) * 2012-03-29 2015-07-09 コーロン インダストリーズ インク 高分子電解質膜、その製造方法及びそれを含む膜−電極アセンブリ
EP3696880A1 (en) * 2019-02-18 2020-08-19 Samsung SDI Co., Ltd. Separator and lithium battery including the same
CN115428249A (zh) * 2020-03-27 2022-12-02 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173201B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101173202B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101364566B1 (ko) * 2012-03-29 2014-02-19 주식회사 시노펙스 미세 다공성 필터 소재의 제조방법
JP6208663B2 (ja) * 2012-04-20 2017-10-04 エルジー・ケム・リミテッド セパレータの製造方法、その方法で形成されたセパレータ、及びそれを含む電気化学素子
KR101601145B1 (ko) * 2012-04-25 2016-03-08 주식회사 엘지화학 코어-시스 복합섬유로 이루어진 다공성 부직포 기재를 포함하는 분리막, 및 이를 포함하는 전기화학 소자
TW201351758A (zh) 2012-06-11 2013-12-16 Enerage Inc 電化學裝置隔離膜及其製備方法
JP6016466B2 (ja) * 2012-06-13 2016-10-26 三菱製紙株式会社 リチウムイオン電池用セパレータ用塗液およびリチウムイオン電池用セパレータ
KR101465173B1 (ko) 2012-06-15 2014-11-25 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
CN103545472B (zh) * 2012-07-17 2016-03-02 比亚迪股份有限公司 一种锂电池用复合隔膜及其制备方法和包括该复合隔膜的锂电池
CN104040756B (zh) * 2012-09-24 2016-04-13 株式会社Lg化学 制备用于锂二次电池的隔膜的方法、通过该方法制备的隔膜以及包含其的锂二次电池
EP2869363B1 (en) * 2012-10-05 2017-04-26 LG Chem, Ltd. Separator, and electrochemical device comprising same
KR101470696B1 (ko) * 2012-10-10 2014-12-08 한국생산기술연구원 리튬이차전지용 분리막의 제조방법 및 이에 따라 제조된 분리막 및 이를 구비하는 리튬이차전지
KR101535199B1 (ko) * 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
KR102137129B1 (ko) * 2012-11-30 2020-07-24 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
KR101532730B1 (ko) 2013-01-16 2015-06-30 주식회사 엘지화학 전극조립체의 제조장치
KR101267283B1 (ko) 2013-01-25 2013-05-27 톱텍에이치앤에스 주식회사 전해액 젖음성이 우수한 이차전지용 분리막 및 이의 제조방법
KR101298340B1 (ko) * 2013-02-12 2013-08-20 삼성토탈 주식회사 유/무기 복합 코팅 다공성 분리막 및 이를 이용한 이차전지소자
KR101447565B1 (ko) * 2013-03-14 2014-10-07 (주)에프티이앤이 무기 코팅층을 포함하는 이차전지용 다공성 분리막 및 이의 제조방법
WO2014142450A1 (ko) * 2013-03-14 2014-09-18 (주)에프티이앤이 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
KR101479748B1 (ko) * 2013-03-14 2015-01-07 (주)에프티이앤이 이차전지용 무기 고분자 분리막 및 이의 제조방법
KR101616079B1 (ko) * 2013-06-18 2016-04-27 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 그를 포함하는 전기화학소자
KR101640639B1 (ko) * 2013-07-17 2016-07-18 주식회사 엘지화학 다공성 막, 다공성 막의 제조방법 및 다공성 막을 포함하는 연료전지
CN104377328B (zh) * 2013-08-14 2019-09-13 三星Sdi株式会社 可再充电锂电池
DE102013216297A1 (de) 2013-08-16 2015-02-19 Robert Bosch Gmbh Lithium-Zelle mit Titanat-Separator
US9742028B2 (en) * 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
CN104681762B (zh) * 2013-10-22 2017-05-17 万向一二三股份公司 一种锂离子电池复合隔膜的制备方法
TWI557165B (zh) * 2013-10-31 2016-11-11 Lg化學股份有限公司 製造電化學裝置用分離器的方法、由該方法製造的電化學裝置用分離器以及包含該分離器的電化學裝置
WO2015076573A1 (ko) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 이차 전지
KR20150106808A (ko) 2013-11-21 2015-09-22 삼성에스디아이 주식회사 이차 전지 및 이의 제조 방법
WO2015076574A1 (ko) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 분리막 및 이를 이용한 이차 전지
WO2015076575A1 (ko) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 분리막 및 이를 이용한 이차 전지
WO2015093852A1 (ko) * 2013-12-17 2015-06-25 주식회사 엘지화학 전기화학소자용 분리막
US9887407B2 (en) 2014-04-04 2018-02-06 Lg Chem, Ltd. Secondary battery with improved life characteristics
CN104064783B (zh) * 2014-06-30 2016-08-31 武汉纺织大学 一种微生物燃料电池阳极用磁性导电纳米纤维膜的制备方法
JP2016081710A (ja) * 2014-10-16 2016-05-16 Tdk株式会社 セパレータ、及びそれを用いたリチウムイオン二次電池
KR101938385B1 (ko) * 2014-12-08 2019-04-11 주식회사 엘지화학 바인더 고분자 층을 갖는 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2016159720A1 (ko) * 2015-04-02 2016-10-06 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법
KR102604599B1 (ko) * 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법
CN104852008A (zh) * 2015-05-06 2015-08-19 东莞市魔方新能源科技有限公司 一种锂离子二次电池用隔离膜
KR101874159B1 (ko) * 2015-09-21 2018-07-03 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극
CN109792020B (zh) * 2017-01-06 2022-08-26 株式会社Lg新能源 包括功能性粘合剂的电池隔板以及包括该电池隔板的电化学装置
KR102378995B1 (ko) * 2017-08-14 2022-03-25 주식회사 엘지에너지솔루션 분리막 내전압 불량 검출법을 포함하는 전지 분리막의 제조방법
KR102170661B1 (ko) * 2017-12-27 2020-10-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
KR102280606B1 (ko) 2018-01-05 2021-07-22 주식회사 엘지에너지솔루션 Cmc, 입자형 바인더 및 용해형 바인더를 포함하는 분리막
KR102263460B1 (ko) * 2018-01-05 2021-06-11 주식회사 엘지에너지솔루션 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
KR102277391B1 (ko) * 2018-04-18 2021-07-14 주식회사 엘지에너지솔루션 비대칭 구조의 이차전지용 난연 분리막
CN110416467B (zh) * 2018-04-28 2021-06-18 比亚迪股份有限公司 聚合物隔膜及其制备方法和应用以及锂离子电池及其制备方法
JP6847893B2 (ja) * 2018-07-02 2021-03-24 株式会社東芝 電極構造体および二次電池
CN109802083B (zh) 2019-03-29 2022-02-01 宁德新能源科技有限公司 电化学装置
KR20210051064A (ko) * 2019-10-29 2021-05-10 주식회사 엘지화학 기체발생제를 포함하는 분리막 및 이의 제조방법
CN112821009B (zh) * 2019-11-15 2022-10-21 珠海恩捷新材料科技有限公司 一种锂电池隔膜及其锂离子电池的制备方法
CN111925547B (zh) * 2020-10-16 2020-12-29 河南功能高分子膜材料创新中心有限公司 一种含氟聚合物复合涂层的聚乙烯膜及其制备方法
KR20220143465A (ko) * 2021-04-16 2022-10-25 삼성에스디아이 주식회사 리튬 이차 전지용 분리막, 이를 포함하는 리튬 이차 전지, 및 상기 리튬 이차 전지용 분리막의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271116B1 (ko) 1992-10-02 2000-11-01 스프레이그 로버트 월터 전기분무 피복 장치 및 방법
KR20090054385A (ko) 2007-11-26 2009-05-29 주식회사 두본 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218637B2 (ja) 1990-07-26 2001-10-15 大正製薬株式会社 安定なリポソーム水懸濁液
US20020110732A1 (en) * 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process
KR20020063020A (ko) * 2001-01-26 2002-08-01 한국과학기술연구원 미세 섬유상 고분자웹의 제조 방법
RU2005131013A (ru) * 2003-03-07 2006-03-20 Филип Моррис Продактс С.А. (Ch) Способ электростатической обработки полимерных композиций и устройство для его осуществления
KR20050006540A (ko) * 2003-07-09 2005-01-17 한국과학기술연구원 초극세 섬유상 다공성 고분자 분리막을 포함하는리튬이차전지 및 그 제조방법
EP3739668B1 (en) * 2004-07-07 2024-11-13 LG Energy Solution, Ltd. New organic/inorganic composite porous film and electrochemical device prepared thereby
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR100659855B1 (ko) * 2005-04-25 2006-12-19 삼성에스디아이 주식회사 이차 전지용 세퍼레이터
JP4979217B2 (ja) * 2005-09-29 2012-07-18 日本バイリーン株式会社 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法、及び非水電解質二次電池
WO2007066967A1 (en) * 2005-12-06 2007-06-14 Lg Chem, Ltd. Organic/ inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
CN101038959A (zh) * 2007-04-13 2007-09-19 大连振邦集团有限公司 一种锂电池隔膜的制备方法及设备
KR100966024B1 (ko) 2007-04-24 2010-06-24 주식회사 엘지화학 이종의 세퍼레이터를 구비한 전기화학소자
KR100983438B1 (ko) * 2007-05-15 2010-09-20 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
CN101388441B (zh) * 2007-09-11 2013-01-30 松下电器产业株式会社 电解质膜和多孔性基材及其制备方法,以及锂离子二次电池
EP2927993B1 (en) * 2008-01-30 2018-09-19 LG Chem, Ltd. Separator for an electrochemical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271116B1 (ko) 1992-10-02 2000-11-01 스프레이그 로버트 월터 전기분무 피복 장치 및 방법
KR20090054385A (ko) 2007-11-26 2009-05-29 주식회사 두본 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2506339A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295170A1 (en) * 2011-11-03 2014-10-02 Sk Innovation Co., Ltd. Micro-Porous Polyolefin Composite Film Having Excellent Heat Resistance and Stability and Method for Producing the Same
JP2015501523A (ja) * 2011-11-03 2015-01-15 エスケー イノベーション カンパニー リミテッド 耐熱性及び安定性に優れたポリオレフィン系複合微多孔膜及びその製造方法
US9562164B2 (en) * 2011-11-03 2017-02-07 Sk Innovation Co., Ltd. Micro-porous polyolefin composite film having excellent heat resistance and stability and method for producing the same
JP2015519681A (ja) * 2012-03-29 2015-07-09 コーロン インダストリーズ インク 高分子電解質膜、その製造方法及びそれを含む膜−電極アセンブリ
EP3696880A1 (en) * 2019-02-18 2020-08-19 Samsung SDI Co., Ltd. Separator and lithium battery including the same
CN115428249A (zh) * 2020-03-27 2022-12-02 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Also Published As

Publication number Publication date
EP2506339A4 (en) 2016-11-30
EP2506339A2 (en) 2012-10-03
KR20110057079A (ko) 2011-05-31
JP2013511806A (ja) 2013-04-04
KR101055431B1 (ko) 2011-08-08
EP2506339B1 (en) 2018-01-10
JP5703306B2 (ja) 2015-04-15
US8426053B2 (en) 2013-04-23
US20120015254A1 (en) 2012-01-19
WO2011062460A3 (ko) 2011-11-03
CN102668172A (zh) 2012-09-12
CN102668172B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2011062460A2 (ko) 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2011040704A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2013070031A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2013157902A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2013058421A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2014073937A1 (ko) 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자
WO2010117195A2 (ko) 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2010076989A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2010024559A2 (ko) 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2009096671A2 (en) Separator for progressing united force to electrode and electrochemical containing the same
WO2013012292A9 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2011105865A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2013100519A1 (ko) 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2013154253A1 (ko) 다공성 코팅층을 포함하는 전극, 상기 전극의 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2012150838A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2013100653A1 (ko) 리튬 이차전지 및 그 제조방법
WO2011065765A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2011002205A2 (ko) 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
WO2014046521A1 (ko) 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
WO2018147714A1 (ko) 접착층을 구비한 리튬 이차전지용 분리막
WO2013165151A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
KR20110129203A (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053007.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010831827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012539821

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE