WO2015076573A1 - 이차 전지 - Google Patents
이차 전지 Download PDFInfo
- Publication number
- WO2015076573A1 WO2015076573A1 PCT/KR2014/011178 KR2014011178W WO2015076573A1 WO 2015076573 A1 WO2015076573 A1 WO 2015076573A1 KR 2014011178 W KR2014011178 W KR 2014011178W WO 2015076573 A1 WO2015076573 A1 WO 2015076573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- secondary battery
- negative electrode
- adhesive layer
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a secondary battery.
- a nickel-cadmium battery a nickel-hydrogen battery, a nickel-zinc battery, a lithium secondary battery, etc.
- lithium secondary batteries have been used in many fields because of their advantages such as small size and large size, high operating voltage, and high energy density per unit weight.
- the secondary battery uses a rigid packaging material such as, for example, a metal square, as a method of bringing the positive electrode and the negative electrode into close contact with each other. Without the packaging material, the electrodes are peeled off and it is difficult to maintain the electrical connection between the electrodes through the separator, and the battery performance is reduced (see Korean Patent Application Laid-Open No. 10-2013-0099543). In addition, due to such an exterior material, the weight and volume of the entire battery are increased, and the shape of the battery is limited due to the rigidity, which makes it difficult to manufacture any shape.
- a rigid packaging material such as, for example, a metal square
- the shape of the secondary battery can be maintained even without a rigid exterior material, and can be used in any form.
- the secondary battery has a strong adhesive strength between the positive electrode or the negative electrode and the separator, without increasing the ion conductivity resistance between the electrodes. And to provide a method of manufacturing the same.
- a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; Electrolyte solution; And a separator disposed between the anode and the cathode,
- the separator includes a porous adhesive layer having a plurality of pores adhered to the anode or the cathode, the pore of the porous adhesive layer contains an electrolyte solution,
- the porous adhesive layer is provided with a secondary battery comprising an acrylate-acetate copolymer.
- a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; Electrolyte solution; And a separator disposed between the anode and the cathode,
- the separator includes a porous adhesive layer having a plurality of pores adhered to the cathode or the anode, and the separator provides a secondary battery having a transfer rate of at least 75% of the cathode or anode active material of Formula 1, respectively.
- a 0 is the total area of the negative electrode or the positive electrode
- a 1 forms an electrode assembly in which the positive electrode, the separator and the negative electrode are sequentially stacked and at a temperature of 20 °C to 110 °C, for 1 second to 5 seconds
- First crimping with a force of 1 kgf / cm 2 to 30 kgf / cm 2 injecting an electrolyte solution into the pressed electrode assembly, 60 ° C. to 110 ° C., 30 seconds to 180 seconds, and 1 kgf / cm 2 to 30 kgf /
- It is the area of the positive electrode or negative electrode active material transferred to the separator after the second pressing with a force of cm 2 .
- a positive electrode is formed by forming a positive electrode active material layer on a positive electrode current collector, a negative electrode is prepared by forming a negative electrode active material layer on a negative electrode current collector, and a separator is disposed between the positive electrode and the negative electrode.
- the secondary battery is pressed at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 for 1 second to 5 seconds at 20 to 110 °C, and a secondary battery comprising injecting an electrolyte solution to the laminated structure of the cathode / separator / cathode A method for producing is provided.
- Secondary battery according to one embodiment of the present invention can be maintained in any shape without having a rigid outer material can be used in any shape and excellent in shape stability, between the positive or negative electrode and the separator without increasing the ion conductivity resistance between the electrodes Each has strong adhesive force and has high efficiency charge and discharge characteristics.
- the secondary battery 200 includes a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the positive electrode 6 and the negative electrode 12 and bonded to the positive electrode or the negative electrode, respectively.
- FIG. 2 is a perspective view of a secondary battery according to an embodiment of the present invention, wherein the secondary battery 200 includes a positive electrode 6; Cathode 12; And a separator 9 disposed between the positive electrode 6 and the negative electrode 12 and bonded to the positive electrode or the negative electrode, respectively, in the case 50 together with the sealing member 40.
- FIG. 3 is a cross-sectional view of a part of a secondary battery according to another embodiment of the present invention, the secondary battery comprising: a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the anode 6 and the cathode 12 and bonded to the anode or the cathode, respectively, and including a porous substrate 8 and a porous adhesive layer 7 formed on one surface of the porous substrate. do.
- the transfer rate of the negative electrode active material or the positive electrode active material in the separator herein refers to the percentage of the area of the negative electrode or positive electrode active material transferred to the separator based on the area of the positive electrode or the negative electrode when the prepared secondary battery is disassembled in the order of negative electrode-separation membrane-anode-separation membrane. it means.
- the transfer rate of the negative electrode active material or the positive electrode active material in the separator of 75% or more shows that the shape stability is improved by maintaining the integrated form of the positive electrode / membrane / cathode in the actual secondary battery environment.
- FIGS. 1 and 2 a rechargeable battery according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- the secondary battery 200 includes a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the anode 6 and the cathode 12 and bonded to the anode or the cathode, respectively.
- the separator 9 may include a porous substrate 8 and a porous adhesive layer 7, 7 ′ formed on the porous substrate 8.
- the secondary battery 200 according to the present embodiment includes an electrode assembly wound between a cathode 6 and an anode 12 with a separator 9 interposed therebetween, and a case 50 in which the electrode assembly is embedded. It includes.
- the positive electrode 6, the negative electrode 12, and the separator 9 are impregnated with an electrolyte (not shown).
- Secondary battery according to the present embodiment can maintain the shape even without a separate outer packaging material by disassembling the separator and the negative electrode, or the transfer rate between the separator and the positive electrode is 75% or more during disassembly in the state holding the electrolyte as shown in Equation 1 above, It can have high efficiency charge and discharge characteristics.
- the separator and the positive electrode or the separator and the negative electrode are present in an integrated form without being separated, the electrical connection between the electrodes can be stably maintained through the separator and the degradation of battery performance can be prevented.
- the method of measuring the transfer rate is not limited thereto, for example, as follows: An electrode assembly of 7 cm * 6.5 cm is prepared by interposing a separator between the positive electrode and the negative electrode, and at a temperature of 20 ° C. to 110 ° C. for 1 second to 1 second. 5 seconds, first crimped with a force of 1 kgf / cm 2 to 30 kgf / cm 2 , placed in a case, for example an aluminum coated pouch (8 cm * 12 cm), and sealing two adjacent corners at a temperature of 143 ° C. Add 6.5 g of electrolyte.
- the sealing is performed so that no air is left in the battery using a degassing machine for at least 3 minutes, and the prepared battery is aged for 10 hours to 30 hours, specifically 12 hours or 24 hours, and 20 to 25 ° C.
- the battery is dismantled to measure the area of the negative electrode or positive electrode active material transferred to the separator.
- the area of the positive or negative electrode active material may be taken by a known image analyzer (eg, lumenera high resolution camera) and measured using an area calculation program (eg, Easy Measure converter 1.0.0.4). This is not restrictive.
- the transfer rate of the negative electrode active material or the positive electrode active material may be 75% or more, respectively.
- the transfer rate of the negative electrode active material or the positive electrode active material may be 80% or more, and more specifically, the transfer rate of the negative electrode active material or the positive electrode active material may be 90% or more, respectively.
- the transfer rate of the negative electrode active material may be 90% or more, and the transfer rate of the positive electrode active material may be 98% or more.
- the separator 9 may include a porous substrate 8 and porous adhesive layers 7 and 7 ′ containing acrylate-acetate copolymers formed on both surfaces of the porous substrate.
- porous substrate 8 those having a plurality of pores and which can be used for an electrochemical device can be used.
- porous substrates include polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyetheretherketone, polyaryletherketone, polyether Formed of any one polymer selected from the group consisting of mid, polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide and polyethylene naphthalene or mixtures of two or more thereof It may be a polymer film.
- the porous substrate may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function may contribute to the improvement of the safety of the battery.
- the polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane.
- the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer.
- the porous substrate may have a thickness of 1 ⁇ m to 40 ⁇ m, more specifically 5 to 15 ⁇ m.
- a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
- the porous adhesive layers 7 and 7 ' may be formed of an adhesive layer composition, and the adhesive layer composition may include an organic binder and a solvent.
- the organic binder may be an acrylate-acetate copolymer, and may be, for example, an acrylic copolymer including a (meth) acrylate-based monomer-derived repeating unit and an acetate group-containing monomer-derived repeating unit.
- an acrylic copolymer having a (meth) acrylate-based monomer-derived repeating unit and an acetate group-containing monomer-derived repeating unit is used as a binder, a separate adhesive may be obtained due to strong adhesion to a positive electrode or a negative electrode in a secondary battery, which is an environment in which a separator is actually used. The shape can be maintained even without a rigid exterior material.
- Glass transition temperature (Tg) of the acrylic copolymer may be in the range of less than 100 °C, for example, 20 to 60 °C, specifically 30 to 45 °C. Within this range, the separator may be positioned between the electrodes to form good adhesion at a temperature at which the separator is compressed, thereby ensuring shape stability.
- the acrylic copolymer having a (meth) acrylate-based monomer-derived repeating unit and an acetate group-containing monomer-derived repeating unit which can be used in the present embodiment is particularly suitable as long as it can form a good adhesive force at a temperature pressed between the anode and the cathode.
- the acrylic copolymer is one or more selected from the group consisting of butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate (meth) ) And a copolymer produced by polymerizing an acrylate-based monomer with at least one acetate group-containing monomer selected from the group consisting of vinyl acetate and allyl acetate.
- the acetate group-containing monomer-derived repeating unit may be a repeating unit of Formula 1:
- R 1 is a single bond, linear or branched alkyl having 1 to 6 carbon atoms
- R 2 is hydrogen or methyl
- l is an integer between 1 and 100, respectively.
- the acetate group-containing monomer-derived repeating unit may be a repeating unit derived from an acetate group-containing monomer selected from at least one selected from the group consisting of vinyl acetate and allyl acetate.
- the acrylic copolymer is a (meth) acrylate monomer and an acetate group-containing monomer, for example, vinyl acetate and / or allyl acetate in a molar ratio of 3: 7 to 7: 3, specifically 4: 6 to 6: 4 More specifically, by polymerization in a ratio of about 5: 5.
- the acrylic copolymer may be, for example, a butyl (meth) acrylate monomer, a methyl (meth) acrylate monomer, and a vinyl acetate and / or allyl acetate monomer in a molar ratio of 3 to 5: 0.5 to 1.5: 4 to 6, specifically In addition, it can be prepared by polymerization reaction in a molar ratio of 4: 1: 5.
- the thickness of the porous adhesive layers 7 and 7 ′ may be 1 ⁇ m to 15 ⁇ m, specifically 1 to 10 ⁇ m, more specifically 1 to 8 ⁇ m and 1 ⁇ m to 5 ⁇ m.
- the porous adhesive layer within the thickness range, it is possible to obtain an excellent thermal stability and adhesion by forming a porous adhesive layer of an appropriate thickness, and to prevent the internal resistance of the battery from increasing by preventing the thickness of the entire separator from being too thick. Can be.
- Non-limiting examples of the solvent include acetone, dimethyl formamide, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate or N-methylpyrrolidone (N- methylpyrrolydone), and the like.
- the content of the solvent may be 20 to 99% by weight, specifically 50 to 95% by weight, and more specifically 70 to 95% by weight based on the weight of the adhesive layer composition.
- the solvent is contained in the above range, the preparation of the adhesive layer composition may be facilitated, and the drying process of the porous adhesive layer may be smoothly performed.
- Secondary battery according to another embodiment of the present invention is substantially a secondary battery according to an embodiment of the present invention described above, except that the porous adhesive layer may be formed from an adhesive layer composition comprising an organic binder, inorganic particles and a solvent. Since the same configuration as described above will be described with respect to the inorganic particles.
- the porous adhesive layer may include inorganic particles, and thus may be effective in forming excellent pores in the porous adhesive layer.
- the inorganic particles are not particularly limited, and inorganic particles commonly used in the art may be used.
- Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types.
- As the inorganic particles used in the present invention for example, Al 2 O 3 (alumina) can be used.
- the size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 nm to 2,000 nm, for example, 100 nm to 1,000 nm, 100 nm to 500 nm.
- the inorganic particles In the case of using the inorganic particles in the size range, it is possible to prevent the dispersibility of the inorganic particles in the adhesive layer composition and the fairness of the formation of the adhesive layer to be lowered, and the thickness of the porous adhesive layer is appropriately adjusted to reduce the mechanical properties and the electrical resistance. The increase can be prevented. In addition, the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery.
- the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent.
- the appropriate solvent is not particularly limited and may be a solvent commonly used in the art.
- Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
- the inorganic dispersion may be prepared by a conventional method without any particular limitation. For example, Al 2 O 3 may be added to acetone in an appropriate amount, and the inorganic dispersion may be milled and dispersed using a bead mill. Dispersions can be prepared.
- the inorganic particles in the porous adhesive layer may be included in 70 to 99% by weight, specifically 75 to 95% by weight, more specifically 80 to 90% by weight based on the total weight of the porous adhesive layer. When the inorganic particles are contained within the above range, the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the adhesive layer is formed using the separator, heat shrinkage of the separator may be effectively suppressed.
- the secondary battery according to the present embodiment may further include other types of organic binders in addition to the acrylic copolymer described above as the organic binder in the porous adhesive layer of the separator.
- the porous adhesive layer and the adhesive layer composition according to the present embodiment are distinguished from the embodiment of the present invention in that another binder is added in addition to the above-described acrylic copolymer.
- another binder is added in addition to the acrylic copolymer.
- the weight ratio of the acrylic copolymer and the added binder is 9: 1 to 5: 5, specifically 8.5: 1.5 to 5: 5, 8: 2 to 5: 5, and more specifically 7: 3 to 5: 5 Can be.
- the PVdF-based binder may have a weight average molecular weight (Mw) of 500,000 to 1,500,000 (g / mol).
- the PVdF-based binder may have a weight average molecular weight (Mw) of 100,000 to 1,500,000 (g / mol).
- two or more kinds having different weight average molecular weights may be used in combination.
- one or more types of weight average molecular weights of 1,000,000 g / mol or less and one or more types of 1,000,000 g / mol or more can be mixed and used.
- the use of the PVdF-based binder within the above molecular weight range enhances the adhesion between the porous adhesive layer and the porous substrate, thereby effectively suppressing thermal shrinkage of the porous substrate, for example, the polyolefin-based substrate, which is weak to heat, and also impregnates the electrolyte. It is possible to produce a sufficiently improved separator and there is an advantage that can produce a battery that uses an efficient electrical output by using this.
- the secondary battery according to the embodiment includes a positive electrode 6 having a positive electrode active material layer 5 formed on a positive electrode current collector 4; A negative electrode 12 having a negative electrode active material layer 10 formed on the negative electrode current collector 11; And a separator 9 disposed between the positive electrode 6 and the negative electrode 12 and adhered to the positive electrode or the negative electrode.
- the separator 9 may include a porous substrate 8 and a porous adhesive layer 7 formed on one surface of the porous substrate 8. Since the secondary battery of the present embodiment differs only in that the secondary battery and the porous adhesive layer of the embodiment with reference to FIG. 2 are formed on one side of the porous substrate rather than both sides, the description of the above-described secondary battery may be applied to the present embodiment as it is.
- the separator of the secondary battery according to the embodiments of the present invention may have a ventilation of 500 sec / 100cc or less, specifically 50 to 400 sec / 100cc, and more specifically 50 to 300 sec / 100cc.
- the tensile strength of the separator in the MD direction may be 1750 kg / cm 2 or more
- the tensile strength in the TD direction may be 1700 kg / cm 2 or more
- the tensile strength of the separator in the MD direction may be 1750 kg / cm 2 to 2550 kg / cm 2
- the tensile strength in the TD direction may be 1700 kg / cm 2 to 2500 kg / cm 2 . Therefore, the separator according to the embodiments of the present invention has excellent adhesiveness and excellent mechanical properties without deteriorating air permeability.
- a secondary battery includes a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; Electrolyte solution; And a separator disposed between the positive electrode and the negative electrode, wherein the separator includes a porous adhesive layer having a plurality of pores adhered to the positive electrode or the negative electrode, wherein the separator is a separator of the positive electrode or the negative electrode active material of Formula 1 as a separator.
- the transcription rate may each be at least 75%.
- a 0 is the total area of the negative electrode or the positive electrode
- a 1 forms an electrode assembly in which the positive electrode, the separator and the negative electrode are sequentially stacked and at a temperature of 20 °C to 110 °C, for 1 second to 5 seconds
- First crimping with a force of 1 kgf / cm 2 to 30 kgf / cm 2 injecting an electrolyte solution into the pressed electrode assembly, 60 ° C. to 110 ° C., 30 seconds to 180 seconds, and 1 kgf / cm 2 to 30 kgf /
- It is the area of the positive electrode or negative electrode active material transferred to the separator after the second pressing with a force of cm 2 .
- a positive electrode is formed by forming a positive electrode active material layer on a positive electrode current collector
- a negative electrode is formed by forming a negative electrode active material layer on a negative electrode current collector
- the positive electrode and The separator is disposed between the cathodes, and then compressed under a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 20 to 110 ° C. for 1 second to 5 seconds, and an electrolyte solution is injected into the laminated structure of the compressed anode / separator / cathode. It may include doing.
- the positive electrode or negative electrode constituting the secondary battery of the present invention can be produced in a form in which an electrode active material is bound to an electrode current collector by a method commonly used in the technical field of the present invention.
- the positive electrode active material that can be used in the examples of the present invention is not particularly limited, and a positive electrode active material commonly used in the art may be used.
- Non-limiting examples of the positive electrode active material include lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a lithium composite oxide in combination thereof.
- the negative electrode active material that can be used in the examples of the present invention is not particularly limited, and may be a negative electrode active material commonly used in the art.
- Non-limiting examples of the negative electrode active material include lithium adsorption materials such as lithium metal or lithium alloy, carbon, petroleum coke, graphite, activated carbon, graphite or other carbons, and the like. Can be.
- the electrode current collector that can be used in the examples of the present invention is not particularly limited, and an electrode current collector commonly used in the art may be used.
- Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof.
- Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, copper alloy or a combination thereof.
- the electrolyte solution used in the present invention is not particularly limited, and the electrolyte solution for a secondary battery commonly used in the technical field of the present invention may be used.
- the electrolyte solution may be one in which a salt having a structure such as A + B ⁇ is dissolved or dissociated in an organic solvent.
- a + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof.
- the B - Non-limiting examples of the, PF 6 -, BF 4 - , Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 - or C (CF 2 SO 2) 3 - anions, such as, or may be an anion consisting of a combination thereof.
- Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate DPC), dimethyl sulfoxide Acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC) or gamma-butyrolactone (-Butyrolactone ), And the like. These may be used alone or in combination of two or more thereof.
- the separator that can be used in the production of the secondary battery of the present invention is a binder comprising an acrylic copolymer having a repeating unit derived from a (meth) acrylate monomer and a repeating unit derived from an acetate group-containing monomer such as vinyl acetate or allyl acetate monomer.
- Porous adhesive layer comprising a may be formed on one side or both sides of the porous substrate.
- the acrylic copolymer disclosed herein may be present at 7% or more, specifically 10% or more, more specifically 12 to 90% based on the total solid weight of the porous adhesive layer.
- the porous adhesive layer of the separator may be formed from an adhesive layer composition, and the adhesive layer composition may be formed by adding a binder and a solvent including an acrylic copolymer, or adding inorganic particles thereto, and stirring at 10 to 40 ° C. for 30 minutes to 5 hours. It may include doing. At this time, the content of solids may be 10 to 20 parts by weight with respect to the adhesive layer composition, when the inorganic particles, the weight ratio of the binder and the inorganic particles may be 3: 7 to 0.5: 9.5.
- an inorganic dispersion in which the inorganic particles are dispersed in a dispersion medium may be prepared, and then mixed with a polymer solution containing a binder and a solvent including an acrylic copolymer to prepare an adhesive layer composition.
- a polymer solution containing a binder and a solvent including an acrylic copolymer to prepare an adhesive layer composition.
- the binder component and the inorganic particles may be prepared and mixed in a dissolved or dispersed state in a suitable solvent, respectively.
- an acrylic copolymer, a polyvinylidene fluoride homopolymer, and / or a polyvinylidene fluoride-hexafluoropropylene copolymer are prepared by dissolving each in an appropriate solvent, and an inorganic dispersion in which inorganic particles are dispersed.
- the adhesive layer compositions can then be prepared by mixing them with a suitable solvent.
- a ball mill, a beads mill, a screw mixer, or the like may be used for the mixing.
- a porous adhesive layer is formed of one or both surfaces of the porous substrate using the adhesive layer composition.
- the method of forming the porous adhesive layer on the porous substrate using the adhesive layer composition is not particularly limited, and methods commonly used in the technical field of the present invention, for example, a coating method, lamination, coextrusion, and the like. Can be used.
- Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods.
- the porous adhesive layer of the separator of the present invention may be formed by, for example, a dip coating method.
- the porous adhesive layer may be dried by hot air, hot air, low wet air, vacuum drying, or a method of irradiating far infrared rays or electron beams.
- the drying temperature is different depending on the type of the solvent, it can be dried at a temperature of approximately 60 to 120 °C.
- the drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In embodiments, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 90 to 120 °C.
- the acrylic copolymer of the present application Formability of the secondary battery may be improved by forming strong adhesion with the positive electrode or the negative electrode.
- the crimping conditions are 4 kgf / cm 2 to 20 kgf for 1 second to 5 seconds at room temperature (20 to 30 ° C.) or 80 to 100 ° C, in consideration of the temperature at which the thermal contraction of the substrate is not significant when the porous substrate of the separator is polyolefin-based. It may be to apply a pressure of / cm 2 .
- a method of manufacturing a secondary battery includes injecting an electrolyte into the laminated structure of the compressed cathode / separator / cathode and applying a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 60 to 110 ° C. for 30 seconds to 180 seconds.
- Secondary compression may further comprise.
- a method of manufacturing a secondary battery may further include storing an electrolyte solution in a range of 10 to 30 ° C. for 6 hours to 48 hours after injecting an electrolyte solution into the laminated structure of the first compressed cathode / separation membrane / cathode.
- Secondary compression may be performed on the stored secondary battery at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 for 30 seconds to 180 seconds at 60 to 110 ° C.
- the secondary battery of the present invention may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
- BMA butyl methacrylate
- MMA methyl methacrylate
- VAc vinyl acetate
- PVdF-based binder KF9300 (Kurehasa, Mw: 1,000,000 ⁇ 1,200,000 g / mol) was dissolved in acetone, DMAc mixed solvent to 7% by weight solid solution, and stirred for 2 hours at 40 °C using a stirrer to prepare a second binder solution It was.
- An alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight, followed by bead mill dispersion at 25 ° C. for 2 hours.
- the first and second binder solutions and the alumina dispersion were mixed so that the weight ratio of the acrylic binder and the PVdF-based binder was 8/2, and the binder solid content and the alumina solid content were 1/5 weight ratio, and the total solid content was 10% by weight.
- Acetone was added to prepare an adhesive layer composition. 12 ⁇ m in thickness was coated on both sides of the polyethylene fabric (W scope) with the adhesive layer composition, each having a thickness of 2 ⁇ m to prepare a separator having a total thickness of about 16 ⁇ m.
- the binder solution and the alumina dispersion were mixed so that the weight ratio of the acrylic binder and the 5130 binder was 7/3, the binder solid content and the alumina solid content were 1/6 weight ratio, and acetone was added so that the total solid content was 10% by weight.
- An adhesive layer composition was prepared.
- a separator having a total thickness of about 16 ⁇ m was prepared using the above adhesive layer composition on both sides of a polyethylene cloth having a thickness of 12 ⁇ m (W scope).
- the binder solution and the alumina dispersion were mixed so that the weight ratio of the acrylic binder and the KF9300, 21216 binder was 5/3/2, and the binder solid content and the alumina solid content were 1/5 weight ratio, and the total solid content was 10% by weight.
- Acetone was added to prepare an adhesive layer composition.
- a separator having a total thickness of about 16 ⁇ m was prepared using the above adhesive layer composition on both sides of a polyethylene cloth having a thickness of 12 ⁇ m (W scope).
- the weight ratio of the acrylic binder and PVdF-based binder 9300 was 7/3, and the same procedure as in Preparation Example 1 except that the binder solid content and the alumina solid content were 1/6 weight ratio.
- a separator having a total thickness of about 16 ⁇ m was prepared.
- Preparation Example 1 except for producing a membrane having a total thickness of about 14 ⁇ m by coating a thickness of 2 ⁇ m with an adhesive layer composition on one side of the polyethylene fabric (W scope) having a thickness of 12 ⁇ m (W scope) The same process as in the preparation of the separator formed with a porous adhesive layer on only one surface.
- Alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight and dispersing the beads for 3 hours. The binder solution and the alumina dispersion were mixed such that the weight ratio of the above KF9300 and 21216 binders was 5/5, the binder solids and the alumina solids were 1/4 weight ratio, and the adhesive layer was added with acetone so that the total solids was 11% by weight.
- the composition was prepared.
- a separator having a total thickness of about 16 ⁇ m was prepared using an adhesive layer composition having a thickness of 12 ⁇ m polyethylene fabric (W scope).
- Preparation Example 1 instead of the acrylic copolymer in which butyl methacrylate (BMA), methyl methacrylate (MMA), and vinyl acetate (Vinyl Acetate, VAc) were polymerized with an acrylic binder, Methyl methacrylate-co-ethyl acrylate) was added to acetone in a solid content of 10% by weight and the same procedure as in Preparation Example 1 was carried out in the same manner as in Preparation Example 1 except that the mixture was stirred at 40 ° C for 4 hours using a stirrer. A degree of separation membrane was produced.
- BMA butyl methacrylate
- MMA methyl methacrylate
- VAc vinyl acetate
- Preparation Example 1 polybutyl instead of an acrylic copolymer in which butyl methacrylate (BMA), methyl methacrylate (MMA) and vinyl acetate (Vinyl Acetate, VAc) were polymerized with an acrylic binder. Except that the methacrylate was added to acetone in a solid content of 10% by weight and the mixture was stirred at 40 ° C for 4 hours using a stirrer, the same procedure as in Preparation Example 1 was carried out to prepare a separator having a total thickness of about 16 ⁇ m.
- BMA butyl methacrylate
- MMA methyl methacrylate
- VAc vinyl acetate
- LCO LiCoO 2
- a positive electrode active material LCO (LiCoO 2) was coated on both sides of an aluminum foil having a thickness of 14 ⁇ m with a thickness of 94 ⁇ m, dried, and rolled to prepare a positive electrode having a total thickness of 108 ⁇ m.
- natural graphite and artificial graphite (1: 1) were coated on both sides of a copper foil having a thickness of 8 ⁇ m at 120 ⁇ m, dried, and rolled to prepare a negative electrode having a total thickness of 128 ⁇ m.
- the separator prepared in Preparation Example 1 was wound between 7 cm * 6.5 cm electrode assemblies between the positive electrode and the negative electrode. After pressing the electrode assembly at 100 ° C. under a pressure of 9 kgf / cm 2 for 3 seconds, the electrode assembly was placed in an aluminum coated pouch (8 cm * 12 cm), and the two adjacent corners were sealed at a temperature of 143 ° C., and 6.5 g of the electrolyte was added thereto. The degassing machine was used to seal the air in the battery for at least 3 minutes.
- the secondary battery of Example 1 was prepared by aging the prepared battery at 25 ° C. for 12 hours and then pressing it at 100 ° C. for 30 seconds at a pressure of 9 kgf / cm 2 .
- Example 1 the secondary battery of Example 2 was prepared in the same manner as in Example 1 except that the separator of Preparation Example 2 was used as the separator.
- Example 1 the secondary battery of Example 3 was prepared in the same manner as in Example 1 except that the separator of Preparation Example 3 was used as the separator.
- Example 1 the secondary battery of Example 4 was prepared in the same manner as in Example 1 except that the separator of Preparation Example 4 was used as the separator.
- Example 1 using the separator of Preparation Example 5 as a separator, and replacing the anode on the separator surface on which the porous adhesive layer is formed, the same as in Example 1 except for replacing the cathode on the separator surface without the porous adhesive layer It carried out to manufacture the secondary battery of Example 5.
- Example 1 a secondary battery of Comparative Example 1 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 1 was used as the separator.
- Example 1 the secondary battery of Comparative Example 2 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 2 was used as the separator.
- Example 1 the secondary battery of Comparative Example 3 was prepared in the same manner as in Example 1 except that the separator of Comparative Preparation Example 3 was used as the separator.
- the pouch was cut out and the compressed electrode assembly was taken out and disassembled. After separating and releasing between cathode and separator, disassemble in order of cathode-membrane-anode-membrane.Then, the area where the active material of cathode or anode is transferred to separator and separated is taken by using image analyzer (lumenera high resolution camera). The transferred area was calculated using an image analyzer (Easy Measure converter 1.0.0.4) and calculated as a percentage.
- the battery characteristics of the secondary battery manufactured by the separator prepared in Examples and Comparative Examples obtained a capacity value of 2300 mAh to 2600 mAh at a current value of 1C, the discharge capacity after the charge and discharge of 0.7C 200 times more than 85% As a result, it was confirmed that the cycle characteristics of the battery were not weakened even after the adhesive force was applied.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은, 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 전해액; 및 상기 양극 및 음극 사이에 배치되는 분리막을 포함하고, 상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하고, 상기 다공성 접착층의 포어 내에는 전해액이 함유되어 있으며, 상기 다공성 접착층은 아크릴레이트-아세테이트 공중합체를 포함하는 이차 전지에 관한 것이다.
Description
본 발명은 이차 전지에 관한 것이다.
일반적으로 비디오 카메라, 휴대 전화, 휴대 컴퓨터와 같은 휴대용 전자 기기는 경량화 및 고기능화가 진행됨에 따라 그 구동 전원으로 사용되는 이차 전지에 관한 많은 연구가 이루어지고 있다. 이러한 이차 전지는, 예를 들어, 니켈-카드늄 전지, 니켈-수소 전지, 니켈-아연 전지, 리튬 이차 전지 등이 사용되고 있다. 이중, 리튬 이차 전지는 소형 및 대형화가 가능하며, 작동 전압이 높고, 단위 중량당 에너지 밀도가 높다는 이점 때문에 많은 분야에서 사용되고 있다.
이차 전지는 양극과 음극을 밀착시키는 방법으로 예를 들어, 금속형의 각형 등의 견고한 외장재를 사용한다. 외장재가 없으면 전극간이 박리하고 전극간의 전기적인 접속을 분리막을 통해 유지하는 것이 어려워지고, 전지 성능이 저하된다 (대한민국 특허 출원 공개 10-2013-0099543호 참조). 또한, 이러한 외장재로 인해 전지 전체의 중량과 부피가 커지고 강직성으로 인해 전지 형상이 한정되어 임의의 형상으로 제조하는 것이 곤란하다.
이에 외장재 없이도 형상을 유지하여 임의의 형상으로 제조하는 것이 가능하며, 경량화, 에너지 밀도가 증가된 이차 전지를 제공할 필요가 있다.
본 발명에서는 견고한 외장재 없이도 형상을 유지할 수 있어 임의의 형태로도 사용이 가능하며 형태 안정성이 우수하고, 전극간의 이온전도저항이 증가되지 않으면서도 양극 혹은 음극과 분리막 사이에 각각 강한 접착력을 갖는 이차 전지 및 이의 제조 방법을 제공하고자 한다.
본 발명의 일 예에 따르면, 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 전해액; 및 상기 양극 및 음극 사이에 배치되는 분리막을 포함하고,
상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하고, 상기 다공성 접착층의 포어 내에는 전해액이 함유되어 있으며,
상기 다공성 접착층은 아크릴레이트-아세테이트 공중합체를 포함하는 이차 전지가 제공된다.
본 발명의 다른 예에 따르면, 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 전해액; 및 상기 양극 및 음극 사이에 배치되는 분리막을 포함하고,
상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하며, 상기 분리막은 식 1의 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 75% 이상인, 이차 전지가 제공된다.
[식 1]
전사율 (%) = (A1 / A0) X 100
상기 식 1에서, A0는 음극 또는 양극의 전체 면적이고, A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.
본 발명의 또 다른 예에 따르면, 양극 전류집전체에 양극 활물질층을 형성하여 양극을 제조하고, 음극 전류집전체에 음극 활물질층을 형성하여 음극을 제조하고, 상기 양극 및 음극 사이에 분리막을 배치시킨 후 20 내지 110℃에서 1 초 내지 5초간 1 kgf/cm2 내지 30 kgf/cm2 의 압력으로 압착하고, 상기 압착된 양극/분리막/음극의 적층 구조에 전해액을 주입하는 것을 포함하는 이차 전지의 제조 방법이 제공된다.
본 발명의 일 예들에 따른 이차 전지는 견고한 외장재 없이도 형상을 유지할 수 있어 임의의 형태로도 사용이 가능하며 형태 안정성이 우수하고, 전극간의 이온전도저항이 증가되지 않으면서 양극 혹은 음극과 분리막 사이에 각각 강한 접착력이 이루어져 고효율의 충방전 특성을 갖는다.
도 1은 본 발명의 일 예에 따른 이차 전지의 일부의 단면도로, 상기 이차 전지(200)는 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착된 분리막(9)을 포함한다.
도 2는 본 발명의 일 예에 따른 이차 전지의 사시도로, 상기 이차 전지(200)는 양극(6); 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착된 분리막(9)이 봉입 부재(40)와 함께 케이스(50)에 내장됨을 도시한다.
도 3은 본 발명의 다른 예에 따른 이차 전지의 일부의 단면도로, 상기 이차 전지는 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착되며, 다공성 기재(8)와 다공성 기재의 일면에 형성된 다공성 접착층(7)을 포함하는 분리막(9)을 포함한다.
이하 본 발명에 대해 보다 상세히 설명한다. 본원 명세서에 기재되어 있지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
본원에서 분리막 중 음극 활물질 혹은 양극 활물질의 전사율이란 제조된 이차 전지를 음극-분리막-양극-분리막 순으로 해체했을 때 양극 혹은 음극 면적을 기준으로 분리막에 전사된 음극 혹은 양극 활물질의 면적의 백분율을 의미한다. 분리막에서 음극 활물질 혹은 양극 활물질의 전사율이 각각 75% 이상인 것은 실제 사용되는 이차 전지 환경 내에서 양극/분리막/음극이 일체화된 형태를 유지하여 형태 안정성이 개선됨을 보여준다.
이하, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 이차 전지에 대해 설명한다.
도 1을 참조하면, 본 실시예에 따른 이차 전지(200)는, 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 양극(6)과 음극(12) 사이에 배치되어 양극 혹은 음극과 각각 접착된 분리막(9)을 포함할 수 있다. 분리막(9)은 다공성 기재(8)과, 다공성 기재(8) 상에 형성된 다공성 접착층(7,7')을 포함할 수 있다. 도 2를 참조하면, 본 실시예에 따른 이차 전지(200)는 양극(6)과 음극(12) 사이에 분리막(9)을 개재하여 권취된 전극 조립체와 당해 전극 조립체가 내장되는 케이스(50)를 포함한다. 양극(6), 음극(12) 및 분리막(9)은 전해액(미도시)에 함침된다. 본 실시예에 따른 이차 전지는 분리막과 음극, 혹은 분리막과 양극 간의 전사율이 상기 식 1에서와 같이 전해액을 보유한 상태에서 해체시 각각 75% 이상임으로써 별도의 단단한 외장재 없이도 형상을 유지할 수 있으며, 또한, 고효율의 충방전 특성을 가질 수 있다. 또한, 분리막과 양극, 혹은 분리막과 음극이 분리되지 않고 일체화된 형태로 존재함으로써 전극간의 전기적인 접속을 분리막을 통해 안정하게 유지할 수 있고 또한 전지 성능의 저하를 방지할 수 있다
상기 전사율 측정 방법은 이에 제한되는 것은 아니지만 일 예로 다음과 같다: 분리막을 양극 및 음극 사이에 개재시켜 7cm*6.5cm의 전극 조립체를 제조하고, 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하여, 케이스, 예를 들어, 알루미늄 코팅 파우치 (8cm*12cm)에 넣고 인접한 두 모서리를 143℃의 온도로 실링(sealing)한 후 전해액 6.5g을 투입한다. 이후, 3분 이상 degassing machine을 이용하여 전지 내 공기가 남아있지 않도록 실링하고, 제조된 전지를 10시간 내지 30시간, 구체적으로 12시간 또는 24시간, 20 내지 25℃에서 에이징(aging)한 후 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 압력으로 2차 압착한 후 전지를 해체하여 분리막에 전사된 음극 혹은 양극 활물질의 면적을 측정한다. 상기 양극 혹은 음극 활물질의 면적은 공지된 이미지 분석기(예: lumenera 사 고해상도 카메라)로 촬영하고 이를 면적 계산 프로그램(예: Easy Measure converter 1.0.0.4)을 사용하여 측정될 수 있으며, 면적 계산이 가능하다면 이에 제한되지 않는다.
본 실시예에 개시된 이차 전지의 분리막에서 음극 활물질 혹은 양극 활물질의 전사율은 각각 75% 이상일 수 있다. 구체적으로 음극 활물질 혹은 양극 활물질의 전사율은 각각 80% 이상일 수 있으며, 보다 구체적으로 음극 활물질 혹은 양극 활물질의 전사율은 각각 90% 이상일 수 있다. 일 예에서, 음극 활물질의 전사율은 90% 이상이고, 양극 활물질의 전사율은 98% 이상일 수 있다.
계속해서 도 1을 참조하면, 분리막(9)은 다공성 기재(8), 및 상기 다공성 기재의 양면에 형성된, 아크릴레이트-아세테이트 공중합체 함유 다공성 접착층(7, 7')을 포함할 수 있다.
다공성 기재(8)로는 다수의 기공을 가지며 통상 전기화학소자에 사용될 수 있는 것을 사용할 수 있다. 다공성 기재의 비제한적인 예로는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리에테르에테르케톤, 폴리아릴에테르케톤, 폴리에테르이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리에테르설폰, 폴리페닐렌옥사이드, 사이클릭 올레핀 코폴리머, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 이종 이상의 혼합물로 형성된 고분자막일 수 있다. 일 예에서, 상기 다공성 기재는 폴리올레핀계 기재일 수 있으며, 폴리올레핀계 기재는 셧 다운(shut down) 기능이 우수하여 전지의 안전성 향상에 기여할 수 있다. 폴리올레핀계 기재는 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막으로 이루어진 군에서 선택될 수 있다. 다른 예에서, 폴리올레핀계 수지는 올레핀 수지 외에 비올레핀 수지를 포함하거나, 올레핀과 비올레핀 모노머의 공중합체를 포함할 수 있다. 상기 다공성 기재의 두께는 1 ㎛ 내지 40 ㎛일 수 있고, 보다 구체적으로는 5 내지 15 ㎛일 수 있다. 상기 두께 범위 내의 기재를 사용하는 경우, 전지의 양극과 음극의 단락을 방지할 수 있을 만큼 충분히 두꺼우면서도 전지의 내부 저항을 증가시킬 만큼 두껍지는 않은, 적절한 두께를 갖는 분리막을 제조할 수 있다.
다공성 접착층(7, 7')은 접착층 조성물로 형성될 수 있으며, 접착층 조성물은 유기 바인더, 및 용매를 포함할 수 있다.
구체적으로, 상기 유기 바인더는 아크릴레이트-아세테이트 공중합체일 수 있으며, 예를 들어 (메트)아크릴레이트계 단량체 유래 반복단위, 및 아세테이트기 함유 단량체 유래 반복단위를 포함하는 아크릴계 공중합체일 수 있다. 바인더로 (메트)아크릴레이트계 단량체 유래 반복단위, 및 아세테이트기 함유 단량체 유래 반복단위를 갖는 아크릴계 공중합체를 사용하면 분리막이 실제 사용되는 환경인 이차 전지 내에서 양극 혹은 음극과의 접착력이 강하여 별도의 단단한 외장재 없이도 형상을 유지할 수 있다. 또한, 다공성 접착층이 전해액을 보유함으로써 전극간 양호한 이온 전도성을 유지할 수 있으며, 기재 필름의 기공도를 저해하지 않을 수 있다. 상기 아크릴계 공중합체의 유리전이온도(Tg)는 100℃ 미만, 예를 들어, 20 내지 60℃, 구체적으로 30 내지 45 ℃의 범위일 수 있다. 상기 범위이면 분리막을 전극 사이에 위치시키고 이를 압착하는 온도에서 양호한 접착을 형성하여 형태 안정성을 확보할 수 있다. 본 실시예에서 사용될 수 있는 (메트)아크릴레이트계 단량체 유래 반복단위, 및 아세테이트기 함유 단량체 유래 반복단위를 갖는 아크릴계 공중합체는 양극과 음극 사이에서 압착하는 온도에서 양호한 접착력을 형성할 수 있는 것이라면 특별히 제한되지 않으나, 예를 들어, 상기 아크릴계 공중합체는 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 (메트)아크릴레이트계 단량체와, 비닐 아세테이트 및 알릴 아세테이트로 이루어진 군으로부터 선택된 1종 이상의 아세테이트기 함유 단량체를 중합시켜 생성된 공중합체일 수 있다.
상기 아세테이트기 함유 단량체 유래 반복단위는 화학식 1의 반복단위일 수 있다:
[화학식 1]
상기 화학식 1에서, R1은 단일 결합이거나, 직쇄 또는 분지된 탄소수 1 내지 6의 알킬이고, R2는 수소이거나 메틸이고, l은 각각 1 내지 100 사이의 정수이다.
예를 들어, 상기 아세테이트기 함유 단량체 유래 반복단위는 비닐 아세테이트 및 알릴 아세테이트로 이루어진 군으로부터 하나 이상 선택된 아세테이트기 함유 단량체 유래 반복단위일 수 있다.
상기 아크릴계 공중합체는 상기 (메트)아크릴레이트계 단량체와, 아세테이트기 함유 단량체, 예를 들어, 비닐 아세테이트 및/또는 알릴 아세테이트를 몰비 3:7 내지 7:3, 구체적으로 4:6 내지 6:4, 보다 구체적으로는 약 5:5의 비로 중합하여 제조될 수 있다. 상기 아크릴계 공중합체는 예를 들어, 부틸 (메트)아크릴레이트 단량체, 메틸 (메트)아크릴레이트 단량체, 및 비닐 아세테이트 및/또는 알릴 아세테이트 단량체를, 몰비 3 내지 5 : 0.5 내지 1.5 : 4 내지 6, 구체적으로, 4 : 1 : 5의 몰비로 중합 반응시켜 제조될 수 있다.
다공성 접착층(7, 7')의 두께는 1 ㎛ 내지 15 ㎛일 수 있고, 구체적으로는 1 내지 10 ㎛, 보다 구체적으로 1 내지 8 ㎛, 1 ㎛ 내지 5 ㎛ 일 수 있다. 상기 두께 범위 내의 다공성 접착층을 사용하는 경우, 적절한 두께의 다공성 접착층을 형성하여 우수한 열적 안정성 및 접착력을 얻을 수 있으며, 전체 분리막의 두께가 지나치게 두꺼워지는 것을 방지하여 전지의 내부 저항이 증가하는 것을 억제할 수 있다.
상기 용매의 비제한적인 예로는 아세톤, 디메틸포름아미드(Dimethyl formamide), 디메틸설폭사이드(Dimethyl sulfoxide), 디메틸아세트아미드(Dimethyl acetamide), 디메틸카보네이트(Dimethyl carbonate) 또는 N-메틸피롤리돈(N-methylpyrrolydone) 등을 들 수 있다. 접착층 조성물의 중량을 기준으로 용매의 함량은 20 내지 99 중량%일 수 있고, 구체적으로 50 내지 95 중량%일 수 있으며, 보다 구체적으로 70 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 접착층 조성물의 제조가 용이해지며 다공성 접착층의 건조 공정이 원활히 수행될 수 있다.
이하, 본 발명의 다른 실시예에 따른 이차전지에 대해 설명한다. 본 발명의 다른 실시예에 따른 이차전지는 다공성 접착층이 유기 바인더, 무기입자 및 용매를 포함하는 접착층 조성물로부터 형성될 수 있다는 점을 제외하고는 상술한 본 발명의 일 실시예에 따른 이차전지와 실질적으로 동일한 구성을 포함하므로 여기서는 무기입자를 중심으로 설명한다. 본 실시예에서는 다공성 접착층이 무기입자를 포함함으로써 열 안정성이 우수하고 다공성 접착층 내에 균일한 기공이 형성되는데 효과적일 수 있다.
상기 무기 입자는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 무기 입자를 사용할 수 있다. 본 발명에서 사용 가능한 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 본 발명에서 사용되는 무기 입자로는 예를 들어, Al2O3(알루미나)를 사용할 수 있다. 본 발명에서 사용되는 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 1 nm 내지 2,000 nm일 수 있고, 예를 들어, 100 nm 내지 1,000 nm, 100 nm 내지 500 nm일 수 있다. 상기 크기 범위의 무기 입자를 사용하는 경우, 접착층 조성물 내에서의 무기 입자의 분산성 및 접착층 형성의 공정성이 저하되는 것을 방지할 수 있고 다공성 접착층의 두께가 적절히 조절되어 기계적 물성의 저하 및 전기적 저항의 증가를 방지할 수 있다. 또한, 분리막에 생성되는 기공의 크기가 적절히 조절되어 전지의 충방전 시 내부 단락이 일어날 확률을 낮출 수 있는 이점이 있다. 접착층 조성물의 제조에 있어서 상기 무기 입자는 이를 적절한 용매에 분산시킨 무기 분산액 형태로 이용될 수 있다. 상기 적절한 용매는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 용매를 사용할 수 있다. 상기 무기 입자를 분산시키는 적절한 용매로서 예를 들어, 아세톤을 사용할 수 있다. 상기 무기 분산액을 제조하는 방법은 특별한 제한없이 통상적인 방법에 의할 수 있으며, 예를 들어 Al2O3를 아세톤에 적정 함량으로 첨가하고 비즈 밀(Beads mill)을 이용해 밀링하여 분산시키는 방식으로 무기 분산액을 제조할 수 있다. 다공성 접착층 내에서 상기 무기입자는 다공성 접착층 전체 중량을 기준으로 70 내지 99 중량%, 구체적으로 75 내지 95중량%, 보다 구체적으로 80 내지 90중량%로 포함될 수 있다. 상기 범위 내로 무기 입자를 함유하는 경우, 무기 입자의 방열 특성이 충분히 발휘될 수 있으며 이를 이용하여 분리막을 접착층을 형성할 경우 분리막의 열수축을 효과적으로 억제할 수 있다.
이하, 본 발명의 또 다른 실시예에 따른 이차 전지에 대해 설명한다. 본 실시예에 따른 이차전지는 분리막의 다공성 접착층에 유기 바인더로 상술한 아크릴계 공중합체 외에 다른 종류의 유기 바인더를 추가로 포함할 수 있다. 본 실시예에 따른 다공성 접착층 및 접착층 조성물은 상술한 아크릴계 공중합체 외에 다른 바인더를 추가한다는 점에서 상기 본 발명의 일 실시예와 구분된다. 아크릴계 공중합체외에 다른 바인더를 추가로 포함함으로써 접착력 및 내열성을 더욱 향상시킬 수 있다. 이에 이하에서는 추가되는 다른 바인더를 중심으로 설명한다.
아크릴계 공중합체 외에 추가될 수 있는 바인더의 예로, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 (Polyvinylidene fluoride-Hexafluoropropylene copolymer, PVdF-HFP), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 및 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물을 들 수 있다. 아크릴계 공중합체 및 상기 추가되는 바인더의 중량비는 9:1 내지 5:5이며, 구체적으로 8.5:1.5 내지 5:5, 8:2 내지 5:5로, 보다 구체적으로는 7:3 내지 5:5일 수 있다. 예를 들어 PVdF계 바인더를 추가로 포함하는 경우, PVdF계 바인더는 중량평균분자량(Mw)이 500,000 내지 1,500,000 (g/mol) 일 수 있다. 구체예에서, PVdF계 바인더는 중량평균분자량(Mw)이 100,000 내지 1,500,000 (g/mol) 일 수 있다. 다른 예에서, 중량평균분자량이 상이한 2종 이상을 혼합하여 사용할 수 있다. 예를 들어, 중량평균분자량이 1,000,000 g/mol 이하인 1종 이상과 1,000,000 g/mol 이상인 1종 이상을 혼합하여 사용할 수 있다. 상기 분자량 범위 내의 PVdF계 바인더를 사용하면 다공성 접착층과 다공성 기재 사이의 접착력이 강화되어, 열에 약한 다공성 기재, 예를 들어, 폴리올레핀계 기재가 열에 의해 수축되는 것을 효과적으로 억제할 수 있으며, 또한 전해질 함침성을 충분히 향상된 분리막을 제조할 수 있으며 이를 활용하여 전기 출력이 효율적으로 일어나는 전지를 생산할 수 있는 이점이 있다.
이하, 도 3을 참조하여 본 발명의 또 다른 실시예에 따른 이차 전지에 대해 설명한다. 상기 실시예에 따른 이차 전지는, 양극 전류집전체(4)에 양극 활물질층(5)이 형성된 양극(6); 음극 전류집전체(11)에 음극 활물질층(10)이 형성된 음극(12); 및 상기 양극(6)과 상기 음극(12) 사이에 배치되어 양극 혹은 음극에 접착된 분리막(9)을 포함할 수 있다. 상기 분리막(9)은 다공성 기재(8)과 상기 다공성 기재(8)의 일면에 형성된 다공성 접착층(7)을 포함할 수 있다. 본 실시예의 이차 전지는 도 2를 참조한 실시예의 이차 전지와 다공성 접착층이 다공성 기재의 양면이 아닌 일면에 형성된 것에서만 차이가 있으므로 상술한 이차 전지에 대한 설명은 본 실시예에도 그대로 적용될 수 있다.
본 발명의 실시예들에 따른 이차전지의 분리막은 통기도가 500 sec/100cc 이하, 구체적으로 50 내지 400 sec/100cc, 보다 구체적으로 50 내지 300 sec/100cc 일 수 있다. 또한, 분리막의 MD 방향의 인장강도가 1750 kg/cm2 이상이고, TD 방향의 인장강도가 1700 kg/cm2 이상일 수 있다. 분리막의 MD 방향의 인장강도는 1750 kg/cm2 내지 2550 kg/cm2이고, TD 방향의 인장강도가 1700 kg/cm2 내지 2500 kg/cm2 일 수 있다. 따라서, 본 발명의 실시예들에 따른 분리막은 접착성이 우수함에도 통기도가 저하되지 않고 기계적 물성까지 우수하다.
본 발명의 실시예들에 따른 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 전해액; 및 상기 양극 및 음극 사이에 배치되는 분리막을 포함하고, 상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하며, 상기 분리막은 식 1의 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 75% 이상일 수 있다.
[식 1]
전사율 (%) = (A1 / A0) X 100
상기 식 1에서, A0는 음극 또는 양극의 전체 면적이고, A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.
이하, 본 발명의 일 실시예에 따른 이차 전지의 제조방법에 대해 설명한다. 본 발명의 일 실시예에 따른 이차 전지의 제조 방법은, 양극 전류집전체에 양극 활물질층을 형성하여 양극을 제조하고, 음극 전류집전체에 음극 활물질층을 형성하여 음극을 제조하고, 상기 양극 및 음극 사이에 분리막을 배치시킨 후 20 내지 110℃에서 1 초 내지 5초간 1 kgf/cm2 내지 30 kgf/cm2의 압력하에 압착하고, 상기 압착된 양극/분리막/음극의 적층 구조에 전해액을 주입하는 것을 포함할 수 있다.
본 발명의 이차 전지를 구성하는 양극 혹은 음극은, 본 발명의 기술 분야에서 통상적으로 사용하는 방법에 의해 전극 활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다.
본 발명의 일 예들에서 사용될 수 있는 양극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 양극 활물질을 사용할 수 있다. 상기 양극 활물질의 비제한적인 예로는, 리튬 망간 산화물, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 철 산화물 또는 이들을 조합한 리튬 복합 산화물 등을 들 수 있다.
본 발명의 일 예들에서 사용될 수 있는 상기 음극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 음극 활물질을 사용할 수 있다.
상기 음극 활물질의 비제한적인 예로는, 리튬 금속 또는 리튬 합금, 탄소, 석유 코크 (petroleum coke), 흑연, 활성화 탄소 (activated carbon), 그라파이트 (graphite) 또는 기타 탄소류 등과 같은 리튬 흡착 물질 등을 들 수 있다.
본 발명의 일 예들에서 사용될 수 있는 상기 전극 전류집전체는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전극 전류집전체를 사용할 수 있다.
상기 전극 전류집전체 중 양극 전류집전체 소재의 비제한적인 예로는, 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다. 상기 전극 전류집전체 중 음극 전류집전체 소재의 비제한적인 예로는, 구리, 금, 니켈, 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다.
본 발명에서 사용되는 전해액은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 이차 전지용 전해액을 사용할 수 있다.
상기 전해액은 A+ B-와 같은 구조의 염이, 유기 용매에 용해 또는 해리된 것일 수 있다. 상기 A+의 비제한적인 예로는, Li+, Na+ 또는 K+와 같은 알칼리 금속 양이온, 또는 이들의 조합으로 이루어진 양이온을 들 수 있다. 상기 B-의 비제한적인 예로는, PF6
-, BF4
-, Cl-, Br-, I-, ClO4
-, AsF6
-, CH3CO2
-, CF3SO3
-, N (CF3SO2)2
- 또는 C (CF2SO2)3
-와 같은 음이온, 또는 이들의 조합으로 이루어진 음이온을 들 수 있다. 상기 유기 용매의 비제한적인 예로는, 프로필렌 카보네이트 (Propylene carbonate; PC), 에틸렌 카보네이트 (EC), 디에틸카보네이트 (Diethyl carbonate; DEC), 디메틸카보네이트 (DMC), 디프로필카보네이트 DPC), 디메틸설폭사이드, 아세토니트릴 (Acetonitrile), 디메톡시에탄, 디에톡시에탄, 테트라하이드로푸란 (Tetrahydrofuran), N-메틸-2-피롤리돈 (NMP), 에틸메틸카보네이트 (EMC) 또는 감마-부티로락톤 (-Butyrolactone) 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.
본 발명의 이차 전지의 제조에 사용될 수 있는 분리막은 (메트)아크릴레이트계 단량체 유래 반복단위, 및 비닐 아세테이트 또는 알릴 아세테이트 단량체와 같은, 아세테이트기 함유 단량체 유래 반복단위를 갖는 아크릴계 공중합체를 포함하는 바인더를 포함하는 다공성 접착층이, 다공성 기재의 일면 또는 양면에 형성되어 있는 것일 수 있다. 상기와 같은 아크릴계 공중합체를 포함하는 바인더를 사용하면 양극/분리막/음극의 적층 구조에서 가열 및 가압시 우수한 접착력을 나타내어 전해액을 포함하는 이차 전지 내에서도 양극/분리막/음극이 일체화된 형태를 유지할 수 있다. 본원에 개시된 아크릴계 공중합체는 다공성 접착층의 전체 고형 중량을 기준으로 7% 이상, 구체적으로 10% 이상, 보다 구체적으로는 12 내지 90%로 존재할 수 있다.
상기 분리막의 다공성 접착층은 접착층 조성물로부터 형성될 수 있으며, 접착층 조성물을 형성하는 것은 아크릴계 공중합체를 포함하는 바인더 및 용매, 혹은 이에 무기 입자를 추가하여, 10 내지 40℃에서 30분 내지 5시간 동안 교반하는 것을 포함할 수 있다. 이 때, 고형분의 함량은 접착층 조성물에 대해 10 내지 20 중량부일 수 있으며, 무기입자를 포함하는 경우, 바인더와 무기입자의 중량비는 3:7 내지 0.5:9.5일 수 있다.
또는, 상기 무기 입자를 분산 매질에 분산시킨 무기 분산액을 제조하고, 이를 아크릴계 공중합체를 포함하는 바인더 및 용매를 함유하는 고분자 용액과 혼합하여 접착층 조성물을 제조할 수 있다. 상기와 같이 무기 분산액을 별도로 제조하는 경우 무기입자 및 바인더의 분산성 및 조액 안정성을 향상시킬 수 있다. 따라서, 다른 양태에서, 본 발명의 접착층 조성물을 제조함에 있어서, 바인더 성분 및 무기 입자는 각각 적절한 용매 내에 용해 또는 분산된 상태로 제조되어 혼합될 수 있다.
예를 들어, 아크릴계 공중합체와 폴리비닐리덴 플루오라이드 호모폴리머 및/또는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 각각을 적절한 용매에 용해시킨 용액과, 무기 입자를 분산시킨 무기 분산액을 각각 제조한 다음, 이들을 적절한 용매와 함께 혼합하는 방식으로 접착층 조성물을 제조할 수 있다. 상기 혼합에는 볼 밀(Ball mill), 비즈 밀(Beads mill) 또는 스크류 믹서(Screw mixer) 등을 이용할 수 있다.
이어서, 다공성 기재의 일면 또는 양면에 상기 접착층 조성물로 다공성 접착층을 형성한다.
상기 접착층 조성물을 이용하여 다공성 기재에 다공성 접착층을 형성하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법, 예를 들어 코팅법, 라미네이션(lamination), 공압출(coextrusion) 등을 사용할 수 있다. 상기 코팅 방법의 비제한적인 예로는, 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(Roll) 코팅법 또는 콤마(Comma) 코팅법 등을 들 수 있다. 이들은 단독 또는 2 가지 이상의 방법을 혼합하여 적용될 수 있다. 본 발명의 분리막의 다공성 접착층은 예를 들어 딥 코팅법에 의해 형성된 것일 수 있다.
본 발명에서 다공성 접착층을 건조하는 것은 온풍, 열풍, 저습풍에 의한 건조나 진공 건조 또는 원적외선이나 전자선 등을 조사하는 방법을 사용할 수 있다. 그리고 건조 온도는 용매의 종류에 따라 차이가 있으나 대체로 60 내지 120℃의 온도에서 건조할 수 있다. 건조 시간 역시 용매의 종류에 따라 차이가 있으나 대체로 1분 내지 1시간 건조할 수 있다. 구체예에서, 90 내지 120 ℃의 온도에서 1분 내지 30분, 또는 1분 내지 10분 건조할 수 있다.
양극 및 음극 사이에 상기와 같은 방법에 의해 제조된 분리막을 배치시킨 후 20 내지 110℃에서 1 초 내지 5초간 1kgf/cm2 내지 30 kgf/cm2 의 압력하에 압착하면, 본원의 아크릴계 공중합체가 양극 혹은 음극과 강한 접착을 형성하여 이차 전지의 형태 보존성이 개선될 수 있다. 상기 압착 조건은 분리막의 다공성 기재가 폴리올레핀계인 경우 기재의 열수축이 현저하게 되지 않는 온도를 고려하여 상온(20~30℃) 또는 80 내지 100℃에서 1 초 내지 5초간 4 kgf/cm2 내지 20 kgf/cm2의 압력을 가하는 것일 수 있다.
다른 예의 이차 전지에 제조 방법은, 상기 압착된 양극/분리막/음극의 적층 구조에 전해액을 주입하고, 60 내지 110℃에서 30 초 내지 180초간 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 2차 압착하는 것을 추가로 포함할 수 있다.
또 다른 예의 이차 전지에 제조 방법은, 상기 1차 압착된 양극/분리막/음극의 적층 구조에 전해액을 주입한 후 6시간 내지 48시간 10 내지 30℃의 범위에서 보관하는 것을 추가로 포함할 수 있다. 상기 보관된 이차 전지에 대해 60 내지 110℃에서 30 초 내지 180초간 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 2차 압착을 실시할 수 있다.
본 발명의 상기 이차 전지는 구체적으로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.
실시예
제조예 1: 분리막의 제조
부틸 메타크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc) 가 4/1/5 몰비율로 중합된 아크릴계 공중합체 바인더(Tg: 35℃, Mw: 600K(GPC))를 아세톤(acetone)에 고형분 10 중량%로 용해시키고 교반기를 이용해 40℃에서 2시간 동안 교반하여 제1 바인더 용액을 제조하였다. PVdF계 바인더 KF9300 (쿠레하사, Mw: 1,000,000~1,200,000 g/mol)을 아세톤, DMAc 혼합 용매에 고형분 7 중량% 용액이 되도록 용해시키고 교반기를 이용해 40℃에서 4시간 동안 교반하여 제2 바인더 용액을 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량%로 첨가 후 25℃에서 2시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 아크릴계 바인더와 PVdF계 바인더의 중량비가 8/2이 되도록, 바인더 고형분과 알루미나 고형분이 1/5 중량 비율이 되도록 제1, 제2 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 10 중량%가 되도록 아세톤을 첨가하여 접착층 조성물을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면에 상기 접착층 조성물로 각각 2㎛ 두께로 코팅하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
제조예 2: 분리막의 제조
부틸 메타크릴레이트(BMA), 메틸 메타크릴레이트(MMA), 비닐 아세테이트(VAc)가 4/1/5 몰비율로 중합된 아크릴계 바인더를 아세톤에 용해시킨 5 중량% 용액과, PVdF계 바인더 5130(솔베이, Mw: 1,000,000~1,200,000 g/mol)을 아세톤, DMAc 혼합 용매에 용해시킨 10 중량% 용액을 각각 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량% 로 첨가 후 3시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 아크릴계 바인더와 5130 바인더의 중량비가 7/3이 되도록, 바인더 고형분과 알루미나 고형분이 1/6 중량 비율이 되도록 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 10 중량%가 되도록 아세톤을 첨가하여 접착층 조성물을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면에 위의 접착층 조성물을 사용하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
제조예 3: 분리막의 제조
부틸 메타크릴레이트(BMA), 메틸 메타크릴레이트(MMA), 비닐 아세테이트(VAc)가 4/1/5 몰비율로 중합된 아크릴계 바인더를 아세톤에 용해시킨 5 중량% 용액과, PVdF계 바인더 KF9300을 아세톤, DMAc 혼합 용매에 용해시킨 7 중량% 용액, PVdF-HFP 바인더(21216(솔베이), 중량 평균 분자량: 500,000 ~ 700,000 g/mol)를 아세톤에 용해시킨 10 중량% 용액을 각각 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량% 로 첨가 후 3시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 아크릴계 바인더와 KF9300, 21216 바인더의 중량비가 5/3/2가 되도록, 바인더 고형분과 알루미나 고형분이 1/5 중량 비율이 되도록 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 10 중량%가 되도록 아세톤을 첨가하여 접착층 조성물을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면에 위의 접착층 조성물을 사용하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
제조예 4: 분리막의 제조
상기 제조예 1에 있어서, 아크릴계 바인더와 PVdF계 바인더 9300의 중량비가 7/3이 되도록 하고, 바인더 고형분과 알루미나 고형분이 1/6 중량 비율이 되게 한 것을 제외하고는 제조예 1과 동일하게 실시하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
제조예 5: 분리막의 제조
상기 제조예 1에 있어서, 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 양면이 아닌 일면에 접착층 조성물로 2㎛ 두께로 코팅하여 총 두께 14 ㎛ 정도의 분리막을 제작하는 것을 제외하고는 제조예 1과 동일하게 실시하여 일면에만 다공성 접착층이 형성된 분리막을 제조하였다.
비교제조예 1: 분리막의 제조
PVdF계 바인더인 KF9300을 아세톤, DMAc 혼합 용매에 용해시킨 7 중량% 용액과, 21216 바인더를 아세톤에 용해시킨 10 중량% 용액을 각각 제조하였다. 알루미나(LS235, 일본경금속)를 아세톤에 25 중량%로 첨가 후 3시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 KF9300, 21216 바인더의 중량비가 5/5가 되도록, 바인더 고형분과 알루미나 고형분이 1/4 중량 비율이 되도록 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 11 중량%가 되도록 아세톤을 첨가하여 접착층 조성물을 제조하였다. 두께가 12 ㎛인 폴리에틸렌 원단(W scope)의 접착층 조성물을 사용하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
비교제조예 2: 분리막의 제조
상기 제조예 1에 있어서, 아크릴계 바인더로 부틸 메타아크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc)를 중합시킨 아크릴계 공중합체 대신, 폴리(메틸 메타크릴레이트-코-에틸 아크릴레이트)를 아세톤에 고형분 10 중량%로 첨가하고 교반기를 이용해 40℃에서 4시간 교반한 것을 사용한 것을 제외하고는 상기 제조예 1과 동일하게 실시하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
비교제조예 3: 분리막의 제조
상기 제조예 1에 있어서, 아크릴계 바인더로 부틸 메타아크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc)를 중합시킨 아크릴계 공중합체 대신, 폴리 부틸메트아크릴레이트를 아세톤에 고형분 10 중량%로 첨가하고 교반기를 이용해 40℃에서 4시간 교반한 것을 사용한 것을 제외하고는 상기 제조예 1과 동일하게 실시하여 총 두께 16 ㎛ 정도의 분리막을 제작하였다.
상기 제조예 1 내지 5 및 비교제조예 1 내지 3에 따른 각 분리막 코팅의 조성을 하기 표 1에 나타낸다.
표 1
원단/두께(㎛) | 바인더 조성 | ||
제조예1 | PE/12 | 아크릴-아세테이트 공중합체/PVdF계 바인더, 80/20% | BMA+MMA+VAc |
제조예2 | PE/12 | 아크릴-아세테이트 공중합체/PVdF계 바인더, 70/30% | BMA+MMA+VAc |
제조예3 | PE/12 | 아크릴-아세테이트 공중합체/PVdF계 바인더 +PVdF-HFP, 50/50% | BMA+MMA+ VAc |
제조예4 | PE/12 | 아크릴-아세테이트 공중합체/PVdF계 바인더, 70/30% | BMA+ MMA +VAc |
제조예5 | PE/12 | 아크릴-아세테이트 공중합체/PVdF계 바인더, 80/20% | BMA+MMA+VAc |
비교제조예1 | PE/12 | PVdF계 바인더, 100% | |
비교제조예2 | PE/12 | PMMAEA/PVdF계 바인더, 80/20% | |
비교제조예3 | PE/12 | PBMA/PVdF계 바인더, 80/20% |
실시예
실시예 1: 이차 전지의 제조
양극 활물질로 LCO (LiCoO2)를 두께 14 μm의 알루미늄 호일에 두께 94μm로 양면 코팅하고 건조, 압연하여 총 두께 108 μm의 양극을 제조하였다. 음극 활물질로 천연 흑연과 인조 흑연(1:1)을 두께 8μm의 구리 호일에 120μm로 양면 코팅하고 건조, 압연하여 총 두께 128 μm의 음극을 제조하였다. 전해액으로는 EC/EMC/DEC + 0.2%LiBF4 + 5.0% FEC + 1.0% VC + 3.00%SN +1.0%PS + 1.0%SA 의 유기용매에 혼합된 1.5M LiPF6 (PANAX ETEC CO., LTD.)을 사용하였다.
상기 제조예 1에서 제조된 분리막을 상기 양극 및 음극 사이에 개재시켜 7cm*6.5cm의 전극 조립체로 권취하였다. 상기 전극 조립체를 100℃에서 9kgf/cm2의 압력하에 3초간 압착하여 알루미늄 코팅 파우치 (8cm*12cm)에 넣고 인접한 두 모서리를 143℃의 온도로 실링(sealing)한 후 상기 전해액 6.5g을 투입, 3분 이상 degassing machine을 이용하여 전지 내 공기가 남아있지 않도록 실링하였다. 상기 제조된 전지를 12시간 25℃에서 에이징(aging)한 후 100℃에서 30초간 9kgf/cm2의 압력으로 2차 프레스하여 실시예 1의 이차 전지를 제조하였다.
실시예 2: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 제조예 2의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 2의 이차 전지를 제조하였다.
실시예 3: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 제조예 3의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 3의 이차 전지를 제조하였다.
실시예 4: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 제조예 4의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 4의 이차 전지를 제조하였다.
실시예 5: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 제조예 5의 분리막을 사용하고, 다공성 접착층이 형성된 분리막 면에 양극을 대치시키고, 다공성 접착층이 없는 분리막 면에 음극을 대치시킨 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 5의 이차 전지를 제조하였다.
비교예 1: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 비교제조예 1의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 1의 이차 전지를 제조하였다.
비교예 2: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 비교제조예 2의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 2의 이차 전지를 제조하였다.
비교예 3: 이차 전지의 제조
상기 실시예 1에서, 분리막으로 비교제조예 3의 분리막을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 3의 이차 전지를 제조하였다.
실험예
상기 실시예 1 내지 5 및 비교예 1 내지 3에서 제조된 이차 전지에 대해 아래에 개시된 측정 방법으로 활물질 전사율 및 사이클 후 전지 성능을 측정하고 그 결과를 표 2에 나타내었다.
표 2
실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 비교예 1 | 비교예 2 | 비교예 3 | ||
활물질전사율(%) | 양극 | 100% | 100% | 100% | 100% | 100% | 0% | 0% | 0% |
음극 | 98% | 96% | 100% | 100% | - | 0% | 0% | 0% | |
200 사이클 후 용량 (%) | 88% | 85% | 88% | 88% | 85% | 85% | 87% | 88% |
1. 양극 혹은 음극 활물질 전사율
상기 실시예 및 비교예들에서 제조된 이차 전지 각각에 대해 파우치를 잘라내어 압착된 전극조립체를 꺼내 해체하였다. 음극과 분리막 사이를 분리하여 풀어낸 후 음극-분리막-양극-분리막의 순서로 해체하며 음극 혹은 양극의 활물질이 분리막에 전사되어 떨어져 나간 면적을 이미지 분석기 (lumenera 사 고해상도 카메라)를 사용하여 촬영하고 이를 이미지 분석기(Easy Measure converter 1.0.0.4)을 사용하여 전사된 면적을 계산하고 백분율로 계산하였다.
2. 사이클 후 전지 성능 평가
상기 실시예 및 비교예들에서 제조된 분리막으로 제작한 이차 전지의 전지특성은, 전류치 1C에서 2300 mAh 내지 2600 mAh의 용량값을 얻었으며 0.7C 200회의 충방전을 한 후의 방전용량이 85% 이상으로, 접착력이 부여된 후에도 전지의 사이클 특성이 약화되지 않음이 확인되었다.
Claims (10)
- 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;전해액; 및상기 양극 및 음극 사이에 배치되는 분리막을 포함하고,상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하고,상기 다공성 접착층의 포어 내에는 전해액이 함유되어 있으며,상기 다공성 접착층은 아크릴레이트-아세테이트 공중합체를 포함하는 이차 전지.
- 제1항에 있어서, 상기 아크릴레이트-아세테이트 공중합체가, (메트)아크릴레이트계 단량체 유래 반복단위, 및 아세테이트기 함유 단량체 유래 반복단위를 포함하는, 이차 전지.
- 제1항에 있어서, 상기 아크릴레이트-아세테이트 공중합체의 유리전이온도가 100℃ 미만인, 이차 전지.
- 제1항에 있어서, 상기 다공성 접착층이 무기입자를 추가로 포함하며, 상기 무기입자가 다공성 접착층의 전체 중량을 기준으로 70 내지 99 중량%인, 이차 전지.
- 제1항에 있어서, 상기 다공성 접착층이, 폴리비닐리덴 플루오라이드 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복실 메틸 셀룰로오스, 및 아크릴로니트릴스티렌부타디엔 공중합체로 이루어진 군으로부터 하나 이상 선택된 바인더를 추가로 포함하는, 이차 전지.
- 제2항에 있어서, 상기 (메트)아크릴레이트계 단량체 유래 반복단위가, 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체로부터 유래된 반복단위인, 이차 전지.
- 제2항에 있어서, 상기 아크릴레이트-아세테이트 공중합체가, (메트)아크릴레이트계 단량체와, 아세테이트기 함유 단량체를 몰비 3:7 내지 7:3으로 중합시켜 제조된, 이차 전지.
- 제1항 내지 제7항 중 어느 하나의 항에 있어서, 식 1의 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 75% 이상인, 이차 전지.[식 1]전사율 (%) = (A1 / A0) X 100상기 식 1에서,A0는 음극 또는 양극의 전체 면적이고,A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.
- 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;전해액; 및상기 양극 및 음극 사이에 배치되는 분리막을 포함하고,상기 분리막은 상기 양극 또는 상기 음극과 접착되는 다수의 포어를 갖는 다공성 접착층을 포함하며,상기 분리막은 식 1의 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 75% 이상인, 이차 전지.[식 1]전사율 (%) = (A1 / A0) X 100상기 식 1에서,A0는 음극 또는 양극의 전체 면적이고,A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.
- 제1항 내지 제7항 및 제9항 중 어느 하나의 항에 있어서, 상기 이차 전지는 리튬 이차 전지인 이차 전지.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0142324 | 2013-11-21 | ||
KR20130142324 | 2013-11-21 | ||
KR10-2014-0041124 | 2014-04-07 | ||
KR20140041124 | 2014-04-07 | ||
KR10-2014-0133337 | 2014-10-02 | ||
KR1020140133337A KR20150106808A (ko) | 2013-11-21 | 2014-10-02 | 이차 전지 및 이의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015076573A1 true WO2015076573A1 (ko) | 2015-05-28 |
Family
ID=53179778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/011178 WO2015076573A1 (ko) | 2013-11-21 | 2014-11-20 | 이차 전지 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015076573A1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107316968A (zh) * | 2017-05-11 | 2017-11-03 | 东莞市赛普克电子科技有限公司 | 一种粘性电池隔膜及使用该隔膜的锂离子电池 |
CN109565021A (zh) * | 2016-09-21 | 2019-04-02 | 帝人株式会社 | 非水系二次电池用隔膜及非水系二次电池 |
CN109950464A (zh) * | 2019-02-01 | 2019-06-28 | 湖北锂诺新能源科技有限公司 | 一种多孔硅碳负极极片及其制备方法 |
CN110982008A (zh) * | 2019-12-30 | 2020-04-10 | 宣城研一新能源科技有限公司 | 锂离子电池负极水性粘结剂 |
CN111057184A (zh) * | 2019-12-30 | 2020-04-24 | 宣城研一新能源科技有限公司 | 负极极片水性粘结剂的制备方法 |
CN112103509A (zh) * | 2020-08-20 | 2020-12-18 | 欣旺达电动汽车电池有限公司 | 正极集流体、正极片、锂离子电池及电池模组 |
CN112103558A (zh) * | 2020-10-09 | 2020-12-18 | 昆山宝创新能源科技有限公司 | 自支撑固态电解质复合膜及其制备方法和应用 |
WO2024113988A1 (zh) * | 2022-11-28 | 2024-06-06 | 欣旺达动力科技股份有限公司 | 一种二次电池以及用电设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063343A (ja) * | 2002-07-30 | 2004-02-26 | Toshiba Corp | リチウムイオン二次電池 |
KR100727248B1 (ko) * | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자 |
KR20080101043A (ko) * | 2007-05-15 | 2008-11-21 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자 |
KR20110057079A (ko) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 |
KR20130067684A (ko) * | 2011-12-14 | 2013-06-25 | 주식회사 엘지화학 | 전기화학소자용 전극 및 이를 구비한 전기화학소자 |
-
2014
- 2014-11-20 WO PCT/KR2014/011178 patent/WO2015076573A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063343A (ja) * | 2002-07-30 | 2004-02-26 | Toshiba Corp | リチウムイオン二次電池 |
KR100727248B1 (ko) * | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자 |
KR20080101043A (ko) * | 2007-05-15 | 2008-11-21 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자 |
KR20110057079A (ko) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 |
KR20130067684A (ko) * | 2011-12-14 | 2013-06-25 | 주식회사 엘지화학 | 전기화학소자용 전극 및 이를 구비한 전기화학소자 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109565021A (zh) * | 2016-09-21 | 2019-04-02 | 帝人株式会社 | 非水系二次电池用隔膜及非水系二次电池 |
CN107316968A (zh) * | 2017-05-11 | 2017-11-03 | 东莞市赛普克电子科技有限公司 | 一种粘性电池隔膜及使用该隔膜的锂离子电池 |
CN107316968B (zh) * | 2017-05-11 | 2020-07-14 | 东莞市赛普克电子科技有限公司 | 一种粘性电池隔膜及使用该隔膜的锂离子电池 |
CN109950464A (zh) * | 2019-02-01 | 2019-06-28 | 湖北锂诺新能源科技有限公司 | 一种多孔硅碳负极极片及其制备方法 |
CN110982008A (zh) * | 2019-12-30 | 2020-04-10 | 宣城研一新能源科技有限公司 | 锂离子电池负极水性粘结剂 |
CN111057184A (zh) * | 2019-12-30 | 2020-04-24 | 宣城研一新能源科技有限公司 | 负极极片水性粘结剂的制备方法 |
CN110982008B (zh) * | 2019-12-30 | 2022-01-07 | 浙江研一新能源科技有限公司 | 锂离子电池负极水性粘结剂 |
CN111057184B (zh) * | 2019-12-30 | 2022-02-25 | 宣城研一新能源科技有限公司 | 负极极片水性粘结剂的制备方法 |
CN112103509A (zh) * | 2020-08-20 | 2020-12-18 | 欣旺达电动汽车电池有限公司 | 正极集流体、正极片、锂离子电池及电池模组 |
CN112103509B (zh) * | 2020-08-20 | 2023-06-06 | 欣旺达电动汽车电池有限公司 | 正极集流体、正极片、锂离子电池及电池模组 |
CN112103558A (zh) * | 2020-10-09 | 2020-12-18 | 昆山宝创新能源科技有限公司 | 自支撑固态电解质复合膜及其制备方法和应用 |
WO2024113988A1 (zh) * | 2022-11-28 | 2024-06-06 | 欣旺达动力科技股份有限公司 | 一种二次电池以及用电设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015076573A1 (ko) | 이차 전지 | |
WO2017171524A1 (ko) | 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체 | |
WO2015076611A1 (ko) | 코팅층을 포함하는 분리막 및 이를 이용한 전지 | |
WO2014084681A1 (ko) | 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법 | |
WO2017039385A1 (ko) | 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체 | |
WO2020067778A1 (ko) | 전기화학소자용 분리막 및 이를 제조하는 방법 | |
WO2017188537A1 (ko) | 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지 | |
WO2015076571A1 (ko) | 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지 | |
WO2016171519A1 (ko) | 리튬 이차전지용 분리막 및 그의 제조방법 | |
WO2011059154A1 (ko) | 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지 | |
WO2014208926A1 (ko) | 코팅층을 포함하는 분리막 및 상기 분리막을 이용한 전지 | |
WO2015076574A1 (ko) | 분리막 및 이를 이용한 이차 전지 | |
WO2022092679A1 (ko) | 전극 조립체 및 이를 포함하는 전지셀 | |
WO2021101222A1 (ko) | 전기화학소자용 분리막 및 이를 포함하는 전기화학소자 | |
WO2021075924A1 (ko) | 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법 | |
WO2021080212A1 (ko) | 가압식 분리막 저항 측정 장치 및 측정 방법 | |
WO2021034060A1 (ko) | 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지 | |
WO2020226367A1 (ko) | 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막 | |
WO2020190101A1 (ko) | 전기화학소자용 분리막 및 이의 제조 방법 | |
WO2020050559A1 (ko) | 분리막 기재가 없는 이차전지용 분리막 | |
WO2023059173A1 (ko) | 이차전지용 분리막 | |
WO2023027558A1 (ko) | 전기화학소자용 분리막, 이를 포함하는 전극 조립체 및 전기화학소자 | |
WO2018030810A1 (ko) | 전극과 분리막이 부분 결착된 전극조립체 | |
WO2015076602A1 (ko) | 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 | |
WO2015076575A1 (ko) | 분리막 및 이를 이용한 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14864722 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14864722 Country of ref document: EP Kind code of ref document: A1 |