[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011052504A1 - 幹細胞から肝細胞への分化誘導方法 - Google Patents

幹細胞から肝細胞への分化誘導方法 Download PDF

Info

Publication number
WO2011052504A1
WO2011052504A1 PCT/JP2010/068703 JP2010068703W WO2011052504A1 WO 2011052504 A1 WO2011052504 A1 WO 2011052504A1 JP 2010068703 W JP2010068703 W JP 2010068703W WO 2011052504 A1 WO2011052504 A1 WO 2011052504A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
differentiation
cell
hepatocytes
Prior art date
Application number
PCT/JP2010/068703
Other languages
English (en)
French (fr)
Inventor
水口 裕之
健二 川端
充 稲村
美保 古江
Original Assignee
財団法人ヒューマンサイエンス振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ヒューマンサイエンス振興財団 filed Critical 財団法人ヒューマンサイエンス振興財団
Priority to US13/504,149 priority Critical patent/US20120231490A1/en
Priority to JP2011538399A priority patent/JP5745423B2/ja
Priority to CN201080057923.0A priority patent/CN102666853B/zh
Priority to EP10826636.2A priority patent/EP2495320B1/en
Publication of WO2011052504A1 publication Critical patent/WO2011052504A1/ja
Priority to US15/267,178 priority patent/US20170009203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/36Lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/46Amines, e.g. putrescine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a method for inducing differentiation into hepatocytes from pluripotent stem cells such as embryonic stem cells (hereinafter also referred to as “ES cells”) or induced pluripotent stem cells (hereinafter also referred to as “iPS cells”). Furthermore, the present invention relates to a stem cell into which a gene useful for inducing differentiation into hepatocytes is introduced.
  • pluripotent stem cells such as embryonic stem cells (hereinafter also referred to as “ES cells”) or induced pluripotent stem cells (hereinafter also referred to as “iPS cells”).
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • a pluripotent stem cell is an undifferentiated cell having pluripotency and self-replication ability, and has been suggested to have tissue repair ability after tissue damage. For this reason, pluripotent stem cells have been extensively studied as useful in the screening of therapeutic substances for various diseases and in the field of regenerative medicine.
  • pluripotent stem cells iPS cells (Induced Puriuripotent Stem Cells) are introduced into somatic cells such as fibroblasts by introducing specific transcription factors such as OCT3 / 4, SOX2, KLF4, C-MYC, etc. It is an induced pluripotent stem cell produced by dedifferentiating somatic cells.
  • the cells having pluripotency can theoretically be induced to differentiate into all tissues and organs including the liver.
  • Differentiation induction methods from pluripotent stem cells to hepatocytes mainly include formation of cell aggregates (embryoid bodies), addition of humoral factors in the medium, appropriate extracellular matrix, feeder cells, Matrigel, etc.
  • a method of selecting and using has been tried.
  • these methods have been reported to have a long culture period, extremely low differentiation induction efficiency, and low drug-metabolizing enzyme activity in the obtained hepatocytes (Non-Patent Documents 1 to 4).
  • Non-Patent Documents 1 to 4 Non-Patent Documents 1 to 4).
  • no efficient gene transfer method has been established, almost no reports on induction of liver differentiation by gene transfer Absent.
  • the culture system is a liquid such as activin A, basic fibroblast growth factor (bFGF; basic Fibroblast Growth actFactor), BMP4 (bone morphogenetic protein 4), FGF4, retinoic acid, or DMSO Factors are used.
  • activin A basic fibroblast growth factor
  • BMP4 basic Fibroblast Growth actFactor
  • FGF4 bone morphogenetic protein 4
  • FGF4 retinoic acid or DMSO Factors
  • transcription factors such as HEX, HNF4A, HNF6, FOXA2 and the like are necessary as factors that can be differentiated into hepatocytes developmentally (Non-patent Document 5).
  • HEX gene is expressed in thyroid, lung, liver, blood cells, vascular endothelial cells and the like. In the HEX gene-deficient mice, hepatocytes were not observed, and death was observed around embryonic day 10.5 (E10.5).
  • the HEX gene is considered to regulate the expression of, for example, GATA4, HNF4A, FGF receptor gene and the like.
  • FOXA2 which is thought to be a hepatocyte-specific transcription factor in development, was introduced into ES cells, some differentiation from ES cells to hepatocytes was observed, but differentiation into cells other than hepatocytes also occurred. It has been confirmed in the literature that it has been confirmed (Non-Patent Document 6). Therefore, FOXA2 cannot be a transcription factor that can induce differentiation only into hepatocytes when introduced into pluripotent stem cells such as ES cells, and its action has not been fully elucidated.
  • Ad a system using an adenovirus
  • the structure of Ad is a regular icosahedron structure composed of 252 capsomers, 12 at the apex are called pentons (consisting of a penton base and fiber), and the other 240 are hexons. be called.
  • the entry of the virus into the cell occurs when the fiber binds to the Ad receptor (CAR; coxsackievirus-adenovirus receptor) and then the penton-based RGD motif binds to the integrin ( ⁇ v ⁇ 3, ⁇ v ⁇ 5) on the cell surface.
  • CAR coxsackievirus-adenovirus receptor
  • Non-patent Documents 8 and 9 It has been reported that an adenovirus vector can be used as a tool for differentiation of mouse ES and iPS cells. However, these non-patent documents do not disclose a method for inducing differentiation from stem cells to hepatocytes.
  • JP 2002-272480 A Patent No. 3635462
  • An object of the present invention is to provide a method for inducing differentiation from a stem cell to a hepatocyte by introducing a gene related to differentiation induction into a pluripotent stem cell such as an ES cell or iPS cell.
  • Another object of the present invention is to provide a stem cell into which a gene useful for inducing differentiation into tissue cells is introduced, and further to provide a hepatocyte generated by differentiation from a stem cell into which a gene has been introduced. Let it be an issue.
  • a specific gene can be introduced into pluripotent stem cells such as ES cells or iPS cells by using an Ad vector. It was. By introducing a specific gene using the vector, differentiation into hepatocytes can be effectively induced, thus completing the present invention.
  • this invention consists of the following. 1. A method for inducing differentiation from stem cells to hepatocytes, which comprises introducing a gene into stem cells using an Ad vector. 2. 2. The differentiation induction method according to item 1, wherein the gene to be introduced is any one or a plurality of genes selected from the HEX gene, the HNF4A gene, the HNF6 gene, and the SOX17 gene. 3. 3. The differentiation induction method according to item 1 or 2, wherein at least a HEX gene is introduced, and further an HNF4A gene and / or a SOX17 gene is introduced. 4). 4. The differentiation induction method according to item 3, wherein the SOX17 gene is introduced into the stem cell, and then the HEX gene is introduced. 5. 5. 5.
  • a method for inducing differentiation from stem cells to hepatocytes comprising the following steps: 1) Step of incorporating a HEX gene into an Ad vector; 2) A step of bringing a stem cell into contact with the Ad vector into which the gene has been incorporated in the above 1) to introduce the HEX gene into the cell; 3) A step of culturing the stem cell into which the gene has been introduced. 7).
  • the method for inducing differentiation from stem cells to hepatocytes according to item 6 above comprising the following steps before the steps according to 1) to 3) above: differentiation from stem cells to hepatocytes according to item 6 above
  • Guidance method a) incorporating the SOX17 gene into the Ad vector; b) a step of bringing a stem cell into contact with the Ad vector into which the gene has been incorporated in the above a) and introducing the SOX17 gene into the cell; c) A step of culturing the stem cell into which the gene has been introduced. 8).
  • the method for inducing differentiation from stem cells to hepatocytes according to item 6 above, wherein after the step of culturing the stem cells introduced with the HEX gene of 3), the cultured cells and an Ad vector incorporating the HNF4A gene are used.
  • the differentiation induction method according to 6 or 7 above which comprises a step of bringing the HNF4A gene into a cell by contacting the cells.
  • the differentiation induction method according to item 10 above wherein the embryonic stem cell or the induced pluripotent stem cell is a human embryonic stem cell or a human induced pluripotent stem cell.
  • 12 A stem cell into which a gene has been introduced by the differentiation induction method according to any one of 1 to 11 above.
  • 14 A method for using the hepatocytes according to item 13 for drug toxicity evaluation or pharmacokinetic evaluation.
  • a gene related to differentiation induction of pluripotent stem cells such as ES cells or iPS cells can be effectively introduced and induced to differentiate into hepatocytes.
  • stem cells such as ES cells or iPS cells
  • differentiation induction into hepatocytes is effectively induced. It can be made.
  • introduction of the HEX gene into stem cells can effectively induce differentiation from stem cells to hepatocytes.
  • differentiation can be induced more effectively from stem cells to hepatocytes by appropriately introducing other genes such as SOX17 gene and / or HNF4A gene according to the degree of cell differentiation.
  • Example 1-2 It is a figure which shows the result of having confirmed the differentiation to the hepatocyte when a human iPS cell was culture
  • Example 1-2 It is a figure which shows the result of having confirmed the differentiation to the hepatocyte when a human ES cell was culture
  • Example 2 It is a figure which shows the result of having confirmed the differentiation to the hepatocyte when a human ES cell was culture
  • Example 2 It is a photograph figure which shows the mode of differentiation from a human iPS cell to a hepatocyte by immuno-staining.
  • Example 3-1 It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • Example 4 It is a figure which shows the result of having confirmed the differentiation to a hepatocyte when a human iPS cell was culture
  • Example 4-1 It is a photograph figure which shows the mode of differentiation from a human iPS cell to a hepatocyte by immuno-staining.
  • Example 4-2 It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • Example 5 It is a figure which shows the result of having confirmed the expression level of FOXA2 and SOX17 which are endoderm markers when three types of human stem cells are cultured.
  • Example 5-1 It is a figure which shows the result of having confirmed the differentiation to the hepatocyte when culture
  • (Experimental example 5-1) It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • Example 6) It is a photograph figure which shows the mode of differentiation from a human iPS cell to a hepatocyte by immuno-staining.
  • Example 6-1 It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • Examples 7 and 8 It is a figure which shows the result of having confirmed the function of the human iPS cell (Tic strain
  • Example 7-1 It is a figure which shows the result of having confirmed the function of the human iPS cell which introduce
  • Example 7-2) The figure which shows the result of having confirmed the function of the cell by the expression of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) using the expression of albumin as the index of hepatocyte differentiation of human iPS cells (Tic strain, Dotcom strain) introduced with HEX gene It is.
  • Example 8-1 It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • Example 9 It is the photograph figure which confirmed the morphological change of the human iPS cell (Tic strain) which introduce
  • Example 9-1) It is a figure which shows the scheme about the differentiation induction experiment from a iPS cell to a hepatocyte by introduce
  • Example 10 It is a photograph figure which shows the mode of differentiation from a human iPS cell to a hepatocyte by immuno-staining.
  • Example 10-1 It is a figure which shows the result of having confirmed the differentiation to the hepatocyte when a human iPS cell was cultured on various culture conditions using the expression of AFP and albumin as an index.
  • Example 10-2 It is a figure which shows the scheme about the differentiation induction experiment from an iPS cell to a hepatocyte by introduce
  • FIG. 3 is a photographic diagram showing the expression of drug metabolizing enzyme cytochrome P450-3A4 (CYP3A4) in human iPS cells into which each gene has been introduced by immunostaining.
  • cytochrome P450-3A4 CYP3A4
  • Example 11-2 It is a figure which shows the result of having confirmed the function of the human iPS cell which introduce
  • Example 11-3 It is a figure which shows the differentiation induction scheme from an iPS cell to a hepatocyte by introduce
  • Example 12 The results of confirming the function of human iPS cells into which genes were introduced by each combination of SOX17 gene, HEX gene and HNF4A gene by expression of drug metabolizing enzymes cytochrome P450-2D6 (CYP2D6), 3A4 (CYP3A4), and 7A1 (CYP7A1) FIG. (Experimental example 12)
  • the present invention relates to a method for inducing differentiation from stem cells to hepatocytes by introducing a gene into stem cells using an Ad vector.
  • the stem cell refers to a pluripotent stem cell such as an ES cell or iPS cell, particularly preferably a human ES cell or human iPS cell, and a gene is further introduced into the human ES cell or human iPS cell.
  • cells that can be differentiated into hepatocytes such as mesendoderm cells, endoderm cells, and liver stem cells.
  • Hepatocytes in the present invention are capable of differentiating into mature hepatocytes as well as hepatocytes directed by introduction of genes into stem cells.
  • stem cells For example, hepatic stem cells and juvenile hepatocytes.
  • ES cells are pluripotent stem cells that have been isolated as undifferentiated stem cell populations by transferring cell clusters called inner cell mass (inner cell mass) inside blastocyst stage embryos to inner cell culture. It is. ES cells are pluripotent cell lines in mice by MJEvans & MH Kaufman (Nature, 292, 154, 1981) followed by GR Martin Mar (Natl. Acad. Sci. USA, 78, 7634, 1981). Established. Many strains of human-derived ES cells have already been established and can be obtained from ES Cell International, Wisconsin Alumni Research Foundation, National Stem Cell Bank (NSCB), and the like.
  • NSCB National Stem Cell Bank
  • ES cells are generally established by culturing early embryos, ES cells can also be produced from early embryos obtained by nuclear transfer of somatic cell nuclei.
  • the blastocyst stage embryo-like cell structure is produced by transplanting the cell nucleus of the desired animal into a cell vesicle (cytoplasts, ooplastoids) obtained by dividing the egg cell of a heterogeneous animal or a denucleated egg cell into a plurality of cells, There is also a method for producing ES cells based on this.
  • ES cells with genetic information on somatic cell nuclei by developing parthenogenetic embryos to the same stage as the blastocyst stage and trying to produce ES cells from them, or by fusing ES cells and somatic cells The method of making is also reported.
  • the ES cell used in the present invention may be an ES cell produced by a method known per se as described above, or an ES cell produced by a new method developed in the future.
  • iPS cells induce the reprogramming of differentiated cells without using eggs, embryos, or ES cells by introducing several types of genes into somatic cells. Induced pluripotent stem cells with, and were first made in 2006 from mouse fibroblasts in the world. Furthermore, we successfully established human iPS cells by introducing OCT3 / 4, SOX2, KLF4 and C-MYC, which are the four human homologous genes used to establish mouse iPS cells, into human fibroblasts. It has been reported (Cell 131: 861-872, 2007).
  • the iPS cell used in the present invention may be an iPS cell produced by a method known per se as described above, or an iPS cell produced by a new method developed in the future.
  • the method for culturing stem cells such as ES cells or iPS cells is not particularly limited, and may be a method known per se.
  • a medium capable of maintaining the undifferentiation and pluripotency of ES cells and a medium suitable for differentiation induction a medium known per se or a new medium developed in the future can be used.
  • a commercially available basal medium for mammalian cells such as DMEM and / or DMEM / F12 plus serum or knock-out serum replacemenc (KSR) and bFGF
  • a commercially available primate ES cell medium A primate ES cell growth basal medium hESF-GRO, a primate ES cell differentiation induction basal medium hESF-DIF, a primate ES cell growth medium CSTI-7, and the like can be used.
  • the medium includes additives known per se suitable for culturing pluripotent stem cells such as ES cells or iPS cells, such as N2 supplement, B27 supplement, insulin, bFGF, activin A, heparin, ROCK inhibitor and GSK-3.
  • One or more additives selected from various inhibitors such as an inhibitor can be added at an appropriate concentration.
  • the medium and its additives can be appropriately selected and used depending on the cells to be used, the differentiation state, and the like. For example, the method described in Tiss. Cult. Res. Commun., 27: 139-147 (2008) can be used.
  • the Ad vector is not particularly limited, and an Ad vector prepared by a method known per se can be used.
  • it may be an improved Ad vector that is improved so that the Ad vector can be introduced into cells in which CAR is not expressed or is very low in expression, or CAR is expressed.
  • It may be an Ad vector that can be used for existing cells.
  • DNA encoding cell adhesion peptide (RGD sequence) which is representative of adhesion peptide, DNA encoding peptide having affinity for heparan sulfate (K7 (KKKKKKK) sequence), affinity for laminin receptor Ad vectors introduced with DNA encoding a peptide having specificity, DNA encoding a peptide having affinity with E-selectin, etc.
  • the Ad vectors shown in Patent Documents 1 to 3 can be used. .
  • the method for incorporating the desired gene shown below into the Ad vector may be a method known per se or any method developed in the future.
  • the recognition sequence of one or a plurality of restriction enzymes can be digested with each restriction enzyme, and the transgene can be introduced by in vitro ligation via the shuttle vector or without the shuttle vector. .
  • the gene that can be introduced using the Ad vector may be any gene that can effectively induce differentiation from pluripotent stem cells such as ES cells or iPS cells to hepatocytes.
  • any gene selected from the HEX gene, the HNF4A gene, the HNF6 gene and the SOX17 gene can be introduced into the stem cell, and it is particularly preferable to introduce the HEX gene (FIGS. 1 and 8). 11, 14, 16, 20).
  • the HEX gene By introducing the HEX gene, differentiation can be induced from stem cells to hepatocytes.
  • the SOX17 gene is first introduced, the differentiation induction from stem cells to endoderm cells is directed, and then the HEX gene is introduced. It is preferable (see FIG.
  • any gene selected from HNF4A gene, HNF6 gene and FOXA2 gene, particularly preferably HNF4A gene, to hepatocytes Differentiation induction can be promoted (see FIG. 25).
  • introduce the SOX17 gene direct the differentiation induction from stem cells to hepatocytes, introduce the HEX gene, and then further add the HNF4A gene It is considered most suitable to introduce (see FIG. 29).
  • differentiation can be induced from ES cells or iPS cells to hepatocytes by an operation including the following steps 1) to 3).
  • a step of incorporating a gene capable of effectively inducing differentiation from stem cells such as ES cells or iPS cells into hepatocytes into an Ad vector 1) A step of bringing a stem cell into contact with the Ad vector into which the gene has been incorporated in 1) above, and introducing a gene capable of effectively inducing differentiation from the stem cell into a hepatocyte. 3) A step of culturing the stem cell into which the gene has been introduced.
  • the gene capable of effectively inducing differentiation from stem cells to hepatocytes is any gene selected from HEX gene, HNF4A gene and HNF6 gene, more preferably HEX gene.
  • the SOX17 gene By introducing the SOX17 gene into stem cells and culturing them prior to the introduction of the above genes, the direction of differentiation into hepatocytes can be made more effective.
  • the cultured cells and any of the genes selected from the HNF4A gene, the HNF6 gene, and the FOXA2 gene, particularly preferably the HNF4A gene, are introduced into the cells. It is possible to induce differentiation into hepatocytes effectively.
  • hepatocytes can be efficiently produced from iPS sputum cells.
  • the step of introducing each gene can be appropriately selected depending on the degree of cell differentiation.
  • introduction of the Sall4 gene and the HNF6 gene is considered effective for producing biliary epithelial cells surrounding hepatocytes.
  • an Ad vector in which a desired gene is incorporated can be brought into contact with a stem cell corresponding to each differentiation state, and any gene can be further introduced into the cell.
  • the HEX gene is registered in, for example, GenBank Accession No. BC014336
  • the HNF4A gene is registered in, for example, GenBank Accession No. NM000457
  • the HNF6 gene is in GenBank Accession No.
  • those registered in NM004498 and those registered in FOXA2 gene can be used, for example, those registered in GenBank Accession No. BC011780, and those registered in GenBank Accession No. NM_022454 can be used as the SOX17 gene.
  • the Ad vector of the present invention can be produced by a production method including the following steps A) and B).
  • the Ad vector of the present invention may be prepared by constructing a shuttle vector containing the expression construct of A) between the steps A) and B) and ligating the gene expression shuttle vector to the Ad genome. .
  • each step of differentiation from undifferentiated cells into mature hepatocytes ES cells or iPS cells according to the present invention, etc.
  • each humoral factor can be used in contact with the cells.
  • the step of bringing the humoral factor into contact with the cell is not particularly limited, and may be performed before or after the introduction of the various selected genes described above. Furthermore, when a gene is introduced multiple times, it may be brought into contact with the cell between the introduction of each gene.
  • extracellular matrix as described above can also be added in the above step.
  • the extracellular matrix include matrigel, fibronectin, vitronectin, laminin, nidogen, tenascin, thrombospondin, type I collagen, type IV collagen, gelatin, or a synthetic substrate corresponding to these.
  • Matrigel or laminin can be used particularly preferably. Specifically, it can be used by coating or adding to a culture vessel.
  • the present invention extends to stem cells such as ES cells or iPS cells into which an Ad vector incorporating the above gene has been introduced. Furthermore, it also extends to hepatocytes generated from stem cells into which an Ad vector incorporating the above gene has been introduced.
  • Drug toxicity and pharmacokinetic evaluation can be performed using hepatocytes prepared by the differentiation induction method of the present invention. Specifically, it is possible to predict the toxicity of a drug candidate compound in vivo in advance by adding a drug candidate compound to the hepatocytes prepared according to the present invention and analyzing changes in the expression of hepatotoxicity markers. It becomes possible. In addition, by adding a drug candidate compound to a hepatocyte prepared according to the present invention and analyzing the metabolite of the compound, the pharmacokinetics (metabolite) of the drug candidate compound in vivo can be predicted in advance. It becomes possible.
  • the present invention extends to a method for using hepatocytes prepared by the differentiation induction method of the present invention for drug toxicity evaluation and pharmacokinetic evaluation.
  • Various medium compositions 1 As a medium for maintaining undifferentiated human iPS cells, among the compositions shown in Table 2 of Tiss. Cult. Res. Commun., 27: 139-147 (2008), the basic medium is Knockout DMEM. A medium containing / F12 and bFGF (10 ng / ml) was used. Hereinafter, the medium is referred to as “medium 1”.
  • the basic medium is DMEM / F12, and bFGF (5 (ng / ml) medium containing sputum was used.
  • the medium is referred to as “medium 2”.
  • hESF-GRO medium (Cell Science & Technology Institute), which is a basic medium for culturing human ES cells, insulin (10 ⁇ g / ml), transferrin (5 ⁇ g / ml), albumin conjugate olein Contains acid (9.4 ⁇ g / ml), 2-mercaptoethanol (10 ⁇ M), 2-ethanolamine (10 ⁇ M), sodium selenite (20 nM), heparin (100 ng / ml), and bFGF (10 ng / ml) Medium (Proc Natl Acad Sci U S A .; 105 (36): 13409-13414 (2008)) was used.
  • the medium is referred to as “medium 3”.
  • Medium 3 does not require feeder cells and does not require KnockoOut Serum Replacement (KSR), and can be cultured while maintaining the undifferentiated state and pluripotency of human iPS cells.
  • KSR KnockoOut Serum Replacement
  • hESF-GRO Cell Science & Technology Institute
  • insulin 10 ⁇ g / ml
  • transferrin 5 ⁇ g / ml
  • 2-mercaptoethanol 10 ⁇ M
  • 2-ethanolamine 10 ⁇ M
  • sodium selenite 20 nM
  • bovine serum albumin 14 mg / ml
  • hESF-DIF Cell Science & ⁇ Technology Institute
  • insulin 10 ⁇ g / ml
  • transferrin 5 ⁇ g / ml
  • 2 -A medium FASEB J. 23: 114-22 (2009)
  • mercaptoethanol 10 ⁇ M
  • 2-ethanolamine 10 ⁇ M
  • sodium selenite 20 nM
  • Example 1 Method for inducing differentiation from human iPS cells into hepatocytes
  • a HEX gene was introduced into human iPS cells using an Ad vector, and the human iPS cells into which the genes were introduced were converted into hepatocytes. Differentiation induction will be described.
  • the experimental scheme of this example is shown in FIG.
  • AdHM41-K7 E1 deficient type 5 Ad genome
  • the transgene is a HEX gene consisting of the sequence shown in GenBank Accession No. BC014336.
  • human iPS cells Tic (JCRB1331), Dotcom (JCRB1327), Squaky (JCRB1329)
  • Human iPS cells cultured using the fetal fibroblasts (MEF) as feeder cells and using the medium 1 shown in the reference example according to the method described in Tiss. Cult. Res. Commun., 27: 139-147 (2008) Prepared. Two days before the induction of human iPS cell differentiation, the cultured medium was replaced with the medium 3 shown in Reference Example.
  • MEF fetal fibroblasts
  • Human iPS cells obtained by centrifugation were suspended in medium 4 supplemented with 50 ng / ml activin A (R & D Systems) and 10 ng / ml bFGF (R & D Systems), then laminin (sigma).
  • 2.5 ⁇ 10 5 cells / well of human iPS cells were seeded in each well of the cell culture plate (12 wells) coated with, and cultured at 37 ° C.
  • the medium was changed daily with medium 4 supplemented with 50 ng / ml activin A (R & D Systems) and 10 ng / ml bFGF (R & D Systems).
  • the time point at which the human iPS cells were seeded was defined as the differentiation induction day 0.
  • K7-type Ad vector inserted with the HEX gene in 1) above was infected with 3,000 VP (vector particle) / cell for 1.5 hours, then 10 ng / ml BMP4 (R & D Systems) and 10ng The medium 5 was replaced with / ml of FGF-4 (R & D Systems). Thereafter, the medium was changed every day with medium 5 supplemented with 10 ng / ml MBP4 (R & D Systems) and 10 ng / ml FGF-4 (R & D Systems).
  • Example 1-2 Results by Real-Time PCR Method TaqMan (R) Gene Expression Assays (Applied Biosystems ) on day 0 (undifferentiated cells), day 5 (endoderm cells) and day 12 cells Company, catalog number: Hs01040607_m1 for AFP and Hs00910225_m for albumin), and the expression levels of AFP and albumin that can be markers for hepatic stem cells were examined by real-time PCR. The expression level was calculated using the expression level of each gene in Human Fetal Liver Total RNA (Clontech, catalog number 636540) as a reference (100).
  • Example 2 Method for inducing differentiation of human ES cells into hepatocytes
  • human ES cells KhES-1 established by the Institute of Regenerative Medicine, Kyoto University were used as Ad vectors.
  • the HEX gene was introduced using and the differentiation induction experiment from human ES cells to hepatocytes was performed.
  • mouse fetal fibroblasts MEF
  • the medium 2 shown in the reference example was used according to the method described in Tiss. Cult. Res. Commun., 27: 139-147 (2008). Except for the preparation of cultured human ES cells, the same procedure as in Example 1 was carried out.
  • 1) Construction of an Ad vector for HEX gene introduction was performed, and 3) the HEX gene was introduced into human ES cells for experiments. It was.
  • Example 2 Results by Real-Time PCR Method Real-time PCR was performed on day 0 (undifferentiated cells), day 5 (endoderm cells) and day 12 cells in the same manner as in Experimental Example 1-2. The expression levels of AFP and albumin that can be used as indicators of differentiation were examined by PCR.
  • Example 3 Method for inducing differentiation of human iPS cells into hepatocytes
  • the HEX gene was introduced into human iPS cells using an Ad vector, and the human iPS cells into which the genes were introduced were transformed into hepatocytes. Differentiation induction will be described.
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for transfection of HEX gene 2) Culture of human iPS cells 3) Introduction of HEX gene into human iPS cells was carried out in the same manner as in Example 1. Human iPS cells (Squeaky (JCRB1329)) were used.
  • Example 4 Method for inducing differentiation from human iPS cells into hepatocytes
  • a HEX gene was introduced into human iPS cells using an Ad vector, and the human iPS cells into which the genes were introduced were transformed into hepatocytes. Differentiation induction will be described.
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for transfection of HEX gene 2) Culture of human iPS cells 3) Introduction of HEX gene into human iPS cells was carried out in the same manner as in Example 1. Human iPS cells (Tic (JCRB1331)) were used.
  • Example 4-1 Results by Real-Time PCR Method TaqMan® Gene Expression Assays (Applied Biosystems ) on day 0 (undifferentiated cells), day 5 (endoderm cells) and day 12 cells of culture Company, catalog number: Hs01040607_m1 for AFP and Hs00910225_m for albumin), and the expression levels of each gene of AFP and albumin that can be markers for hepatic stem cells were examined by real-time PCR. The expression level was calculated using the expression level of each gene in Human Fetal Liver Total RNA (Clontech, catalog number 636540) as a reference (100).
  • Example 5 Differentiation induction method from human iPS cells and ES cells to hepatocytes
  • HEX gene was used for human iPS cells and ES cells using Ad vectors. The induction of differentiation from human iPS cells and human ES cells into which the gene has been introduced into hepatocytes will be described.
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for HEX gene introduction, 2) cell culture, and 3) introduction of HEX gene into cells were performed in the same manner as in Example 1.
  • Tic (JCRB1331) and Dotcom (JCRB1327) were used as human iPS cells, and khES1 ES cells were used as ES cells.
  • Example 5-1 Results by Real-Time PCR Method Regarding cells on day 0 (undifferentiated cells), day 6 (endodermal cells) and day 12 of culture, FOXA2 and SOX17 that can be endoderm markers, and The expression level of each gene of AFP and albumin which can be a marker for hepatic stem cells was examined. Expression of each gene was examined by real-time PCR using TaqMan (R) Gene Expression Assays (Applied Biosystems, catalog number: Hs00232764_m1 for FOXA2, Hs00751752_s1 for SOX17, Hs01040607_m1 for AFP, Hs00910225_m for albumin) . The expression level was calculated based on the first day of culture (undifferentiated cells) in human iPS cells Tic (1).
  • Example 6 Hepatic differentiation induction effect by HEX gene (culture 18th day)
  • the induction of differentiation from a human iPS cell into which a HEX gene is introduced into a human iPS cell using an Ad vector and the gene is introduced into hepatocytes will be described.
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for HEX gene introduction and 3) Introduction of HEX gene into human iPS cells were carried out in the same manner as in Example 1. 2) Human iPS cells were cultured by the following method.
  • Human iPS cell culture In this example, human iPS cells (Tic (JCRB1331)) were used. The cells were cultured by the same method as in Experiment 1 until differentiation induction day 9. Thereafter, the cells on the 9th day of culture were collected with 0.0125% trypsin-0.01325 mM EDTA, and SingleQuots (R) (Lonza), 10 ng / mL as described in Stem Cells., 26: 1117-27 (2008).
  • Fibroblast growth factor 4 10 ng / mL hepatocyte growth factor (HGF) (R & D Systems), 10 ng / mL Oncostatin M (R & D Systems), 10-7 M dexamethasone (Sigma)
  • HGF hepatocyte growth factor
  • Oncostatin M R & D Systems
  • 10-7 M dexamethasone Sigma
  • Example 7 Functional evaluation of HEX gene-introduced cells
  • the introduction of HEX genes into human iPS cells using an Ad vector and the induction of differentiation from human iPS cells into which the genes have been introduced into hepatocytes are described. To do.
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for HEX gene introduction, and 3) Introduction of HEX gene into human iPS cells were carried out in the same manner as in Example 1. 2) Human iPS cells were cultured in the same manner as in Example 6. Performed. In this example, human iPS cells (Tic (JCRB1331)) were used.
  • Example 7-1 Result by real-time PCR method About the cell of culture
  • the expression level of CYP3A4 was remarkably increased, and an expression level comparable to fetal liver cells could be obtained.
  • CYP3A4 drug metabolizing enzyme cytochrome P450 3A4
  • 25 ⁇ M rifampicin (Sigma) or DMSO was added to human iPS cell-derived hepatocytes or human hepatoma cell line HepG2 on the 18th day of differentiation induction.
  • CYP3A4 activity was measured using P450-Glo TM CYP3A4 Assay Kit (Promega). The activity was quantified using a luminometer (Lumat LB 9507, Berthold).
  • Example 8 Differentiation induction into hepatocytes from an iPS cell line with high endoderm differentiation ability
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for HEX gene introduction, and 3) Introduction of HEX gene into human iPS cells were carried out in the same manner as in Example 1. 2) Human iPS cells were cultured in the same manner as in Example 6. Performed. In this example, human iPS cells (Tic (JCRB1331), Dotcom (JCRB1327)) were used.
  • Example 8-1 Activity Measurement of Drug Metabolizing Enzyme Cytochrome P450 3A4 (CYP3A4)
  • CYP3A4 The activity of CYP3A4 was measured by the same method as Experimental Example 7-2.
  • the HEX gene was introduced using an Ad vector, hepatocytes with higher expression levels of albumin and CYP3A4 could be induced to differentiate from the cell line Dotcom, which has a high differentiation ability into endoderm (FIG. 19). ).
  • Example 9 Morphological change during differentiation induction
  • the experimental scheme of this example is shown in FIG. 1) Construction of Ad vector for HEX gene introduction, and 3) Introduction of HEX gene into human iPS cells were carried out in the same manner as in Example 1. 2) Human iPS cells were cultured in the same manner as in Example 6. Performed. In this example, human iPS cells (Tic (JCRB1331)) were used.
  • Example 10 Method of inducing differentiation from human iPS cells to hepatocytes by a combination of SOX17 gene and HEX gene
  • SOX17 gene and HEX gene were introduced into human iPS cells using an Ad vector, and the gene The induction of differentiation from human iPS cells into which he has been introduced into hepatocytes will be described.
  • the experimental scheme of this example is shown in FIG.
  • AdHM41-K7 an Ad vector carrying the transgene at the E1 deficient site of the E1 deficient type 5 Ad genome (pAdHM41-K7) and the EF-1 ⁇ promoter upstream of it. Produced.
  • the transgene is the SOX17 gene consisting of the sequence shown in GenBank Accession No. NM_022454.
  • the HEX gene introduction Ad vector was prepared by the same method as in Example 1.
  • Example 2 Culture of human iPS cells
  • human iPS cells 201B7 (JCRB)
  • the cells were cultured in the same manner as in Example 1 until the third day of differentiation induction.
  • K7-type Ad vector inserted with SOX17 gene in 1) above was infected with 3,000 VP / cell for 1.5 hours, and then 50 ng
  • the medium 4 was exchanged with Activin A (Activin A; R & D Systems) and 10 ng / ml bFGF (R & D Systems). Thereafter, the medium was changed daily with medium 4 supplemented with 50 ng / ml Activin A (R & D Systems) and 10 ng / ml bFGF (R & D Systems).
  • Each well of the coated cell culture plate (12 wells) was seeded at 5.0 ⁇ 10 5 cells / well and cultured at 37 ° C. After culturing for 24 hours, the K7 type Ad vector inserted with the HEX gene was infected with 3,000 VP / cell for 1.5 hours, and then 10 ng / ml BMP4 (R & D Systems) and 10 ng / ml FGF4 (R & D Systems) ) Was added to medium 5. Thereafter, the medium was changed daily with medium 5 supplemented with 10 ng / ml BMP4 (R & D Systems) and 10 ng / ml FGF4 (R & D Systems).
  • the hepatic stem cell marker reacted more strongly than the system in which only the HEX gene was introduced. Although observed, bile duct epithelial cell markers were not expressed in either system. On the 12th day of culture, it was observed that the hepatocyte marker reacted more strongly in the system in which the SOX17 gene and the HEX gene were introduced using the Ad vector than in the system in which only the HEX gene was introduced.
  • Example 11 Method for inducing differentiation of human iPS cells into hepatocytes by a combination of HEX gene and HNF4A gene
  • the HEX gene and HNF4A gene are introduced into human iPS cells using an Ad vector, and differentiation induction from human iPS cells into which the genes are introduced into hepatocytes will be described.
  • the experimental scheme of this example is shown in FIG.
  • AdHM41-K7 Ad vector carrying an introduced gene at the E1 deficient site of the E1 deficient type 5 Ad genome (pAdHM41-K7) and an EF-1 ⁇ promoter upstream thereof was prepared.
  • the transgene is the HNF4A gene consisting of the sequence shown in GenBank Accession No. NM_000457.
  • the HEX gene introduction Ad vector was prepared by the same method as in Example 1.
  • Example 2 Culture of human iPS cells
  • human iPS cells Tic (JCRB1331), Dotcom (JCRB1327), 201B7) were used. The cells were cultured in the same manner as in Example 1 until the 9th day of differentiation induction.
  • HCM TM medium (Lonza) supplemented with 10 ml / ml hepatocyte growth factor (HGF) (R & D Systems), 10 ng / ml Oncostatin M (R & D Systems), and 10-7 M dexamethasone (Sigma) was replaced.
  • HGF hepatocyte growth factor
  • HGF HGF
  • medium at 10 ng / ml Oncostatin M R & D Systems, Inc.
  • 10 -7 M dexamethasone Sigma
  • Example 12 Method for inducing differentiation from human iPS cells to hepatocytes by a combination of SOX17, HEX gene, and HNF4A gene
  • an Ad vector was used for human iPS cells and the SOX17 gene, HEX gene, and HNF4A gene were used in a timely manner. And the induction of differentiation from human iPS cells to hepatocytes will be described.
  • the experimental scheme of this example is shown in FIG.
  • Ad vector for introduction of SOX17 gene, HEX gene, HNF4A gene The same Ad vector as in Application Example 1 was used.
  • Human iPS cell culture In this example, human iPS cells (Tic (JCRB1331)) were used. The cells were cultured in the same manner as in Example 1 until the third day of differentiation induction.
  • K7-type Ad vector inserted with SOX17 gene was infected with 3,000 VP / cell for 1.5 hours, and then with 50 ng / ml of activin A (R & D Systems) The medium was replaced with medium 4 supplemented with 10 ng / ml bFGF (R & D Systems). Thereafter, the medium was changed daily with medium 4 supplemented with 50 ng / ml activin A (R & D Systems) and 10 ng / ml bFGF (R & D Systems). Cells not transfected with the SOX17 gene were used as a control group.
  • Each well of the coated cell culture plate (12 wells) was seeded at 5.0 ⁇ 10 5 cells / well and cultured at 37 ° C.
  • the K7 type Ad vector inserted with the HEX gene was infected with 3,000 VP / cell for 1.5 hours, and then 10 ng / ml BMP4 (R & D Systems) and 10 ng / ml FGF4 (R & D Systems) ) was added to medium 5. Thereafter, the medium was changed daily with medium 5 supplemented with 10 ng / ml BMP4 (R & D Systems) and 10 ng / ml FGF4 (R & D Systems). Cells not transfected with the HEX gene were used as a control group.
  • HNF4A gene was infected with 3,000 VP / cell for 1.5 hours, and then 10 ng / ml of HGF (R & D Systems) ), HCM TM medium (Lonza) supplemented with 10 ng / ml Oncostatin M (R & D Systems) and 10 ⁇ 7 M dexamethasone (Sigma).
  • HGF HGF
  • medium at 10 ng / ml Oncostatin M R & D Systems, Inc.
  • 10 -7 M dexamethasone Sigma
  • Table 1 shows the combinations of genes to be introduced.
  • the expression level was calculated based on the expression level of each gene in human adult liver tissue (Human Adult Liver Total RNA: Clontech, catalog number 663531) as a reference (100). The results are shown in FIG. The numbers shown on the horizontal axis in FIG. 30 are based on the combinations of genes shown in Table 1. As a result, the expression levels of albumin, CYP2D6, CYP3A4, and CYP7A1 are significantly higher in cells into which all three types of SOX17 gene, HEX gene, and HNF4A gene have been introduced using Ad vectors compared to the case of introducing other combinations of genes. Increased, hepatocytes with higher expression levels of drug metabolism than before were obtained.
  • genes related to induction of differentiation of pluripotent stem cells such as ES cells or iPS cells can be effectively introduced and induced to differentiate into hepatocytes. confirmed.
  • stem cells such as ES cells or iPS cells
  • differentiation induction into hepatocytes is effectively induced. It can be made.
  • introduction of the HEX gene into stem cells can effectively induce differentiation from stem cells to hepatocytes.
  • differentiation can be induced more effectively from stem cells to hepatocytes by appropriately introducing other genes such as SOX17 gene and / or HNF4A gene according to the degree of cell differentiation.
  • drug toxicity evaluation and pharmacokinetic evaluation can be performed using hepatocytes prepared by the differentiation induction method of the present invention. Specifically, it is possible to predict the toxicity of a drug candidate compound in vivo in advance by adding a drug candidate compound to the hepatocytes prepared according to the present invention and analyzing changes in the expression of hepatotoxicity markers. It becomes possible.
  • the pharmacokinetics (metabolite) of the drug candidate compound in vivo can be predicted in advance. It becomes possible.
  • drug candidate compounds that should be excluded due to toxicity and pharmacokinetic problems can be screened at an early stage, and accelerated drug discovery is expected.
  • hepatocyte structure can be reconstructed in vitro, and further, mature hepatocytes and differentiation Production of liver by induction is expected.
  • Ad vector of the present invention hepatocytes can be induced to differentiate from various ES cells and iPS cells without producing stable strains that express specific genes. Therefore, as long as iPS cells are prepared, it is possible to quickly produce a human-derived autologous liver.
  • the method of the present invention opens up the possibility of treatment by regenerative medicine even for diseases that could only be dealt with by conventional organ transplantation, and is very useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 ES細胞又はiPS細胞等の幹細胞から効果的に肝細胞に分化誘導させる場合の遺伝子導入方法を提供する。さらに、肝細胞に分化誘導させるのに有用な遺伝子が導入された幹細胞を提供し、遺伝子が導入された幹細胞から生成した肝細胞を提供する。アデノウイルスベクターを用いることで、ES細胞又はiPS細胞等の幹細胞に、特定の遺伝子を導入することができる。さらに、当該遺伝子を導入することにより、効果的に肝細胞に分化誘導させることができる。具体的には、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれか1又は複数の遺伝子をES細胞又はiPS細胞等の幹細胞に導入することで、効果的に肝細胞へ分化誘導させうる。

Description

幹細胞から肝細胞への分化誘導方法
 本発明は、胚性幹細胞(以下、「ES細胞」ともいう)又は人工多能性幹細胞(以下、「iPS細胞」ともいう)等の多能性幹細胞から肝細胞に分化誘導させる方法に関する。さらに、本発明は肝細胞に分化誘導させるのに有用な遺伝子が導入された幹細胞に関する。
 本出願は、参照によりここに援用されるところの日本出願、特願2009-247342号、特願2010-121282号及び特願2010-154225号優先権を請求する。
 多能性幹細胞とは、多分化能と自己複製能を有する未分化細胞であり、組織損傷後の組織修復力を有することが示唆されている。このため、多能性幹細胞は、各種疾患の治療用物質のスクリーニング、再生医療分野において有用であるとして、さかんに研究されている。多能性幹細胞のうち、iPS細胞(Induced Pluripotent Stem Cells)は、線維芽細胞などの体細胞に、特定の転写因子、例えばOCT3/4、SOX2、KLF4、C-MYC等を導入することにより、体細胞を脱分化して作製された人工多能性幹細胞である。分化万能性を持った細胞は理論上、肝臓等を含む全ての組織や臓器に分化誘導することが可能である。
 多能性幹細胞から肝細胞への分化誘導方法としては、主として細胞凝集塊(胚様体)を形成させたり、液性因子を培地中に加えたり、適当な細胞外マトリクス、フィーダー細胞、マトリゲル等を選択して用いる方法などが試みられてきた。しかしながら、これらの方法は培養期間が長く、分化誘導効率も極めて低く、得られた肝細胞の薬物代謝酵素活性も低いことが報告されている(非特許文献1~4)。分化誘導効率を向上させるため、分化に重要な遺伝子を多能性幹細胞などに導入することが考えられるが、効率よい遺伝子導入方法が確立されていないため、遺伝子導入による肝分化誘導に関する報告は殆どない。幹細胞から成熟肝細胞へ分化させるには、幹細胞から内胚葉系細胞、肝幹細胞、幼若肝細胞を経ることが必要である。各分化の工程において、培養系にアクチビン(activin) A、塩基性繊維芽細胞増殖因子(bFGF; basic Fibroblast Growth Factor)、BMP4 (bone morphogenetic protein 4)、FGF4、レチノイン酸、又はDMSOなどの液性因子が用いられている。また、発生学的に肝細胞へ分化させうる因子として、HEX、HNF4A、HNF6、FOXA2等の転写因子が必要であることが報告されている(非特許文献5)。例えば、HEX遺伝子は、甲状腺、肺、肝臓、血液細胞、血管内皮細胞等に発現が認められる。HEX遺伝子欠損マウスは、肝実質細胞が認められず、胎生10.5日(E10.5)前後に死亡が観察されている。HEX遺伝子は、例えばGATA4、HNF4A、FGF受容体遺伝子等の発現を調節していると考えられる。
 上述のように、発生において肝細胞特異的な転写因子と考えられるFOXA2をES細胞に導入したところ、ES細胞から肝細胞への分化を一部認めたものの、肝細胞以外の細胞への分化も確認されたことが文献にて言及されている(非特許文献6)。このことから、FOXA2はES細胞のような多能性幹細胞に導入したときに、肝細胞へのみ分化を誘導しうる転写因子ということはできず、その作用は十分には解明されていない。
 次世代遺伝子治療用ベクターシステムとして、アデノウイルス(以下、単に「Ad」という。)を用いたシステムが開発されている。Adの構造は、252のカプソメアよりなる正20面体構造をしており、頂点にある12個は突起構造を持ったペントン(ペントンベースとファイバーからなる)と呼ばれ、他の240個はヘキソンと呼ばれる。ウイルスの細胞内への進入は、ファイバーがAd受容体(CAR; coxsackievirus-adenovirus receptor)に結合し、その後ペントンベースのRGDモチーフが細胞表面上のインテグリン(αvβ3、αvβ5)と結合することによって起こる。しかし、その後の研究において、CARが発現していないか又は発現していても非常に低い細胞に対してもAdベクターを導入可能なように各種の研究がなされており、開示されている(特許文献1~3)。このような改良型Adベクターを用いた間葉系幹細胞への遺伝子デリバリーについて報告がある(非特許文献7)。ここでは、各種改良型Adベクターを用いて、遺伝子を間葉系幹細胞等へ導入することが示されている。しかしながら、間葉系幹細胞とES細胞は全く相違するものである。また、本非特許文献ではAdベクターが、遺伝子を細胞へ導入しうるDDS (Drug Delivery System)の役割を有することが開示されているに過ぎない。アデノウイルスベクターが、マウスESやiPS細胞の分化のツールとして利用できることが報告されている(非特許文献8、9)。しかしながら、これらの非特許文献には、幹細胞から肝細胞へ分化誘導させる方法については、開示されていない。
特開2002-272480号公報(特許第3635462号公報) 特開2003-250566号公報 特開2008-136381号公報
Genes to Cells, 13, 731-746 (2008) Stem Cells, 26, 894-902 (2008) Stem Cells, 26, 1117-1127 (2008) Hepatology, 45, 1229-1239 (2007) Nature Reviews Genetics, 3, 499-215 (2002) FASEB Journal, 16, 1444-1446 (2002) Biochem. Biophys. Res. Commun., 332, 1101-1106 (2005) Mol Ther., 12(3), 547-554 (2005) Stem Cells, 27(8), 1802-1811 (2009)
 本発明は、分化誘導に係る遺伝子をES細胞又はiPS細胞等の多能性幹細胞に導入し、幹細胞から肝細胞へ分化誘導させる方法を提供することを課題とする。また、本発明は、組織細胞に分化誘導させるのに有用な遺伝子が導入された幹細胞を提供することを課題とし、さらには遺伝子が導入された幹細胞から分化により生成した肝細胞を提供することを課題とする。
 本発明者等は、上記課題を達成するために鋭意検討を重ねた結果、Adベクターを用いることで、ES細胞又はiPS細胞等の多能性幹細胞に特定の遺伝子を導入することができることを見出した。当該ベクターを用いて特定の遺伝子を導入することにより、効果的に肝細胞に分化誘導させることができ、本発明を完成した。
 即ち本発明は、以下よりなる。
1.Adベクターを用いて幹細胞に遺伝子を導入することを特徴とする、幹細胞から肝細胞への分化誘導方法。
2.導入する遺伝子が、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれか1又は複数の遺伝子である前項1に記載の分化誘導方法。
3.少なくともHEX遺伝子を導入し、さらに、HNF4A遺伝子及び/又はSOX17遺伝子を導入する、前項1又は2に記載の分化誘導方法。
4.幹細胞にSOX17遺伝子を導入し、その後HEX遺伝子を導入する、前項3に記載の分化誘導方法。
5.幹細胞にHEX遺伝子を導入し、その後HNF4A遺伝子を導入する、前項3又は4に記載の分化誘導方法。
6.以下の工程を含む、幹細胞から肝細胞への分化誘導方法:
1)Adベクターに、HEX遺伝子を組み込む工程;
2)幹細胞と、前記1)で遺伝子を組み込んだAdベクターを接触させ、HEX遺伝子を細胞内に導入させる工程;
3)遺伝子が導入された幹細胞を培養する工程。
7.前項6に記載の幹細胞から肝細胞への分化誘導方法であって、前記1)~3)に記載の工程の前に、以下の工程を含む、前項6に記載の幹細胞から肝細胞への分化誘導方法:
a)Adベクターに、SOX17遺伝子を組み込む工程;
b)幹細胞と、前記a)で遺伝子を組み込んだAdベクターを接触させ、SOX17遺伝子を細胞内に導入させる工程;
c)遺伝子が導入された幹細胞を培養する工程。
8.前項6に記載の幹細胞から肝細胞への分化誘導方法であって、前記3)のHEX遺伝子が導入された幹細胞を培養する工程の後、培養した細胞と、HNF4A遺伝子を組み込んだAdベクターとを接触させ、HNF4A遺伝子を細胞内にさらに導入させる工程を含む、前項6又は7に記載の分化誘導方法。
9.幹細胞を液性の分化誘導因子で処理する工程を含む、前項1~8のいずれか1に記載の分化誘導方法。
10.幹細胞が、胚性幹細胞又は人工多能性幹細胞である前項1~9のいずれか1に記載の分化誘導方法。
11.胚性幹細胞又は人工多能性幹細胞が、ヒト胚性幹細胞又はヒト人工多能性幹細胞である、前項10に記載の分化誘導方法。
12.前項1~11のいずれかに1に記載の分化誘導方法により、遺伝子が導入された幹細胞。
13.前項12に記載の遺伝子が導入された幹細胞から生成した肝細胞。
14.前項13に記載の肝細胞の、薬物毒性評価又は薬物動態評価のための使用方法。
 本発明のAdベクターを用いることで、ES細胞又はiPS細胞等の多能性幹細胞の分化誘導に係る遺伝子が効果的に導入され、肝細胞へ分化誘導させうることが確認された。具体的には、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれか1又は複数の遺伝子をES細胞又はiPS細胞等の幹細胞に導入することで、効果的に肝細胞へ分化誘導させうる。特に、HEX遺伝子を幹細胞に導入することで、効果的に幹細胞から肝細胞へ分化誘導させうることが確認された。さらに、他の遺伝子として、SOX17遺伝子及び/又はHNF4A遺伝子などを細胞の分化の程度に応じて、適宜導入することにより、より効果的に幹細胞から肝細胞へ分化誘導させうることが確認された。
ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例1、3) ヒトiPS細胞から肝細胞への分化の様子を免疫染色にて示す写真図である。(実験例1-1) ヒトiPS細胞を各種培養条件で培養したときの肝細胞への分化を、αフェトプロテイン(AFP)の発現を指標として確認した結果を示す図である。(実験例1-2) ヒトiPS細胞を各種培養条件で培養したときの肝細胞への分化を、アルブミンの発現を指標として確認した結果を示す図である。(実験例1-2) ヒトES細胞を各種培養条件で培養したときの肝細胞への分化を、AFPの発現を指標として確認した結果を示す図である。(実験例2) ヒトES細胞を各種培養条件で培養したときの肝細胞への分化を、アルブミンの発現を指標として確認した結果を示す図である。(実験例2) ヒトiPS細胞から肝細胞への分化の様子を免疫染色にて示す写真図である。(実験例3-1) ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例4) ヒトiPS細胞を各種培養条件で培養したときの肝細胞への分化を、AFP及びアルブミンの発現を指標として確認した結果を示す図である。(実験例4-1) ヒトiPS細胞から肝細胞への分化の様子を免疫染色にて示す写真図である。(実験例4-2) ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例5) 3種類のヒト幹細胞を培養したときの、内胚葉マーカーであるFOXA2及びSOX17の発現量を確認した結果を示す図である。(実験例5-1) 3種類のヒト幹細胞を培養したときの肝細胞への分化を、αフェトプロテイン(AFP)及びアルブミンの発現を指標として確認した結果を示す図である。(実験例5-1) ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例6) ヒトiPS細胞から肝細胞への分化の様子を免疫染色にて示す写真図である。(実験例6-1) ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例7、8) HEX遺伝子を導入したヒトiPS細胞(Tic株)の機能を、薬剤代謝酵素シトクロムP450 3A4(CYP3A4)の発現により確認した結果を示す図である。(実験例7-1) HEX遺伝子を導入したヒトiPS細胞の機能を、薬剤代謝酵素シトクロムP450 3A4(CYP3A4)の機能及び薬剤応答性により確認した結果を示す図である。(実験例7-2) HEX遺伝子を導入したヒトiPS細胞(Tic株、Dotcom株)の肝細胞の分化をアルブミンの発現を指標とし、細胞の機能を薬剤代謝酵素シトクロムP450 3A4(CYP3A4)の発現により確認した結果を示す図である。(実験例8-1) ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例9) HEX遺伝子を導入したヒトiPS細胞(Tic株)の形態的変化を確認した写真図である。(実験例9-1) ヒトiPS細胞にAdベクターを用いてSOX17遺伝子及びHEX遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例10) ヒトiPS細胞から肝細胞への分化の様子を免疫染色にて示す写真図である。(実験例10-1) ヒトiPS細胞を各種培養条件で培養したときの肝細胞への分化を、AFP 及びアルブミンの発現を指標として確認した結果を示す図である。(実験例10-2) ヒトiPS細胞にAdベクターを用いてHEX遺伝子及びHNF4A遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導実験についてのスキームを示す図である。(実施例11) 各遺伝子を導入したヒトiPS細胞における薬剤代謝酵素シトクロムP450 3A4(CYP3A4)の発現を免疫染色にて示す写真図である。(実験例11-1) HEX遺伝子及びHNF4A遺伝子を導入したヒトiPS細胞の機能を、薬剤代謝酵素シトクロムP450 2D6(CYP2D6)、3A4(CYP3A4)、及び7A1(CYP7A1)の発現により確認した結果を示す図である。(実験例11-2) HEX遺伝子及びHNF4A遺伝子を導入したヒトiPS細胞の機能を、薬物代謝活性により確認した結果を示す図である。(実験例11-3) ヒトiPS細胞にAdベクターを用いてSOX17遺伝子、HEX遺伝子及びHNF4A遺伝子を導入することによる、iPS細胞から肝細胞への分化誘導スキームを示す図である。(実施例12) SOX17遺伝子、HEX遺伝子及びHNF4A遺伝子の各組み合わせにより遺伝子を導入したヒトiPS細胞の機能を、薬剤代謝酵素シトクロムP450 2D6(CYP2D6)、3A4(CYP3A4)、及び7A1(CYP7A1)の発現により確認した結果を示す図である。(実験例12)
 本発明は、幹細胞にAdベクターを用いて遺伝子を導入し、幹細胞から肝細胞へ分化誘導させる方法に関する。本発明において、幹細胞とはES細胞又はiPS細胞等の多能性幹細胞をいい、特に好適にはヒトES細胞又はヒトiPS細胞をいうが、さらにヒトES細胞又はヒトiPS細胞に遺伝子が導入されることにより方向付けられた肝細胞への分化を可能とする細胞、例えば中内胚葉系細胞、内胚葉系細胞や肝幹細胞等も含まれる。本発明における肝細胞、より詳しくは、遺伝子が導入された幹細胞から生成した肝細胞とは、成熟肝細胞のほか、幹細胞に遺伝子が導入されることにより方向付けられた肝細胞への分化を可能とする細胞を含み、例えば肝幹細胞や、幼若肝細胞が挙げられる。
 ES細胞とは、一般的には胚盤胞期胚の内部にある内部細胞塊(inner cell mass)と呼ばれる細胞集塊をin vitro培養に移し、未分化幹細胞集団として単離した多能性幹細胞である。ES細胞は、M.J.Evans & M.H.Kaufman (Nature, 292, 154, 1981)に続いて、G.R.Martin (Natl.Acad.Sci.USA, 78, 7634, 1981)によりマウスで多分化能を有する細胞株として樹立された。ヒト由来ES細胞についても、既に多くの株が樹立されており、ES Cell International社、Wisconsin Alumni Research Foundation、National Stem Cell Bank (NSCB)等から入手することが可能である。ES細胞は、一般に初期胚を培養することにより樹立されるが、体細胞の核を核移植した初期胚からもES細胞を作製することが可能である。また、異種動物の卵細胞、又は脱核した卵細胞を複数に分割した細胞小胞(cytoplasts, ooplastoids)に、所望の動物の細胞核を移植して胚盤胞期胚様の細胞構造体を作製し、それを基にES細胞を作製する方法もある。また、単為発生胚を胚盤胞期と同等の段階まで発生させ、そこからES細胞を作製する試みや、ES細胞と体細胞を融合させることにより、体細胞核の遺伝情報を有したES細胞を作る方法も報告されている。本発明で使用されるES細胞は、上記のような自体公知の方法により作製されたES細胞、又は今後開発される新たな方法により作製されるES細胞であってもよい。
 また、iPS細胞とは、体細胞へ数種類の遺伝子を導入することにより、卵子、胚やES細胞を利用せずに分化細胞の初期化を誘導し、ES細胞と同様な多能性や増殖能を有する誘導多能性幹細胞をいい、2006年にマウスの線維芽細胞から世界で初めて作られた。さらに、マウスiPS細胞の樹立に用いた4遺伝子のヒト相同遺伝子であるOCT3/4、SOX2、KLF4、C-MYCを、ヒト由来線維芽細胞に導入してヒトiPS細胞の樹立に成功したことが報告されている(Cell 131: 861-872, 2007)。本発明で使用されるiPS細胞は、上記のような自体公知の方法により作製されたiPS細胞、又は今後開発される新たな方法により作製されるiPS細胞であってもよい。
 ES細胞又はiPS細胞等の幹細胞の培養方法は特に限定されず、自体公知の方法によることができる。ES細胞の未分化性及び多能性を維持可能な培地や分化誘導に適した培地として、自体公知の培地、又は今後開発される新たな培地を用いることができる。具体的には、DMEM及び/又はDMEM/F12などの市販のほ乳類細胞用基礎培地に、血清又はknock-out serum replacemenc (KSR)、並びにbFGFなどを加えたもの、市販の霊長類ES細胞用培地、霊長類ES細胞増殖用基礎培地hESF-GRO、霊長類ES細胞分化誘導用基礎培地hESF-DIF、霊長類ES細胞増殖培地CSTI-7等を用いることができる。また、培地には、ES細胞又はiPS細胞等の多能性幹細胞の培養に適する自体公知の添加物、例えば、N2サプリメント、B27サプリメント、インシュリン、bFGF、アクチビンA、ヘパリン、ROCKインヒビターやGSK-3インヒビターなどの各種インヒビター等から選択される1種又は複数種の添加物を適当な濃度で添加することができる。培地及びその添加物は、使用する細胞、分化状態等により適宜選択し、使用することができる。例えば、Tiss. Cult. Res. Commun., 27: 139-147 (2008) に記載の方法によることができる。
 本発明においてAdベクターは、特に限定されず、自体公知の方法で作製されたAdベクターを用いることができる。例えば、CARが発現していないか又は発現していても非常に低い細胞に対してもAdベクターを導入可能なように改良された改良型Adベクターであってもよいし、CARが発現している細胞に対して使用しうるAdベクターであってもよい。具体的には、接着ペプチドの代表である細胞接着ペプチド(RGD配列)をコードするDNA、ヘパラン硫酸との親和性を有するペプチド(K7(KKKKKKK)配列)をコードするDNA、ラミニン受容体との親和性を有するペプチドをコードするDNA、E-セレクチンとの親和性を有するペプチドをコードするDNA等を導入したAdベクターを用いることができ、例えば特許文献1~3に示すAdベクターを用いることができる。
 Adベクターに、下記に示す所望の遺伝子を組み込む方法は、自体公知の方法、又は今後開発されるあらゆる方法を採用することができる。本発明のAdベクターは、1又は複数の制限酵素の認識配列を各々制限酵素で消化し、導入遺伝子を、シャトルベクターを介して、又はシャトルベクターを介することなく、インビトロライゲーションにより導入することができる。
 本発明において、Adベクターを用いて導入しうる遺伝子は、ES細胞又はiPS細胞等の多能性幹細胞から肝細胞へ効果的に分化を誘導しうる遺伝子であればよい。具体的には、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれかの遺伝子を幹細胞に導入することができ、特にHEX遺伝子を導入するのが好適である(図1、8、11、14、16、20参照)。HEX遺伝子を導入することで、幹細胞から肝細胞へ分化誘導させることができる。さらに、効果的に肝細胞への分化誘導を促進させるためには、まずSOX17遺伝子を導入し、幹細胞から内胚葉系細胞への分化誘導の方向付けを行なった後、HEX遺伝子を導入するのが好適である(図22参照)。また、HEX遺伝子により肝細胞への分化誘導の方向付けを行なった後、さらにHNF4A遺伝子、HNF6遺伝子及びFOXA2遺伝子から選択されるいずれかの遺伝子、特に好ましくはHNF4A遺伝子を導入し、肝細胞への分化誘導を促進させることができる(図25参照)。最も効果的に幹細胞から肝細胞への分化誘導を行なうためには、SOX17遺伝子を導入し、幹細胞から肝細胞への分化誘導の方向付けを行なった後、HEX遺伝子を導入し、その後さらにHNF4A遺伝子を導入することが最も好適と考えられる(図29参照)。例えば、以下の工程1)~3)の工程を含む操作により、ES細胞又はiPS細胞から肝細胞へ分化誘導させることができる。
1)Adベクターに、ES細胞又はiPS細胞等の幹細胞から肝細胞へ効果的に分化を誘導しうる遺伝子を組み込む工程。
2)幹細胞と、前記1)で遺伝子を組み込んだAdベクターを接触させ、幹細胞から肝細胞へ効果的に分化を誘導しうる遺伝子を細胞内に導入させる工程。
3)遺伝子が導入された幹細胞を培養する工程。
 上記1)において、幹細胞から肝細胞へ効果的に分化を誘導しうる遺伝子は、HEX遺伝子、HNF4A遺伝子及びHNF6遺伝子から選択されるいずれかの遺伝子であり、より好適にはHEX遺伝子である。上記の遺伝子を導入する前に、SOX17遺伝子を幹細胞へ導入し、培養することで、肝細胞への分化の方向付けをより効果的になすことができる。さらには、上記の3)の工程の後に、培養した細胞と、HNF4A遺伝子、HNF6遺伝子及びFOXA2遺伝子から選択されるいずれかの遺伝子、特に好適にはHNF4A遺伝子を細胞内に導入することで、より効果的に肝細胞へ分化誘導させることができる。SOX17、HEX、HNF4A以外にも、GATA4、GATA6、HNF1A、HNF1B、FOXA1/HNF3A、FOXA2/HNF3B、FOXA3/HNF3G、CEBPA、CEBPB、TBX3、PROX1等の肝細胞の分化・増殖に関与する遺伝子を導入することにより、iPS 細胞から効率良く肝細胞を作製することができると考えられる。各遺伝子の導入の工程は、細胞の分化の程度に応じて適宜選択することができる。また、肝細胞をとりまく胆管上皮細胞を作製するためには、Sall4遺伝子及びHNF6遺伝子の導入が有効と考えられる。これらの遺伝子の導入は、所望の遺伝子を組み込んだAdベクターと各分化の状態に応じた幹細胞を接触させ、いずれかの遺伝子をさらに細胞内に導入することができる。
 導入する遺伝子について、HEX遺伝子は、例えばGenBank Accession No. BC014336に登録されているものを、HNF4A遺伝子は、例えばGenBank Accession No. NM000457に登録されているものを、HNF6遺伝子は、例えばGenBank Accession No. NM004498に登録されているものを及びFOXA2遺伝子は、例えばGenBank Accession No. BC011780に登録されているものを、SOX17遺伝子は、例えばGenBank Accession No. NM_022454に登録されているものを用いることができる。
 本発明のAdベクターは、以下のA)及びB)の工程を含む製造方法により作製することができる。
A)導入遺伝子の非翻訳領域にプロモーター配列を含む発現コンストラクトを構築する工程。
B)Adゲノムを制限酵素で切断し、A)で作製した発現コンストラクトをAdゲノムにライゲーションする工程。
 本発明のAdベクターは、上記A)とB)の工程の間に、A)の発現コンストラクトを含むシャトルベクターを構築し、当該遺伝子発現シャトルベクターをAdゲノムにライゲーションすることにより作製してもよい。
 未分化の細胞から成熟肝細胞への分化の各工程において、アクチビンA、bFGF、BMP4、FGF-4などの液性因子が用いられることが公知であるが、本発明によるES細胞又はiPS細胞等の幹細胞から肝細胞への分化誘導の工程においても、各液性因子を併用して細胞に接触させることができる。液性因子を細胞に接触させる工程は、特に限定されず、上記の各種選択された遺伝子の導入前であっても良いし、導入後であっても良い。さらに、複数回の遺伝子を導入する場合には、各遺伝子の導入と導入の間に細胞に接触させても良い。正常細胞の成長・分裂には細胞同士、他の細胞又は基質への接着が必要であり、細胞と細胞、又は細胞と基質の仲立ちをするタンパク質(細胞外マトリクス)も必要である。本発明の肝細胞への分化誘導させる方法においては、上述のような細胞外マトリクスも上記の工程において加えることができる。細胞外マトリクスとしては、マトリジェル、フィブロネクチン、ビトロネクチン、ラミニン、ニドジェン、テネイシン、トロンボスポンジン、I型コラーゲン、IV型コラーゲン、ゼラチン、又はこれらに相当する合成基質等を挙げることができ、本発明においてはマトリジェル又はラミニンを特に好適に使用することができる。具体的には、培養用容器にコーティング又は添加することで、使用することができる。
 本発明は、上記の遺伝子を組み込んだAdベクターが導入されたES細胞又はiPS細胞等の幹細胞にも及ぶ。さらには、上記の遺伝子を組み込んだAdベクターが導入された幹細胞から生成した肝細胞にも及ぶ。
 本発明の分化誘導方法により作製した肝細胞を用いて、薬物毒性や薬物動態評価を行うことができる。具体的には、本発明により作製した肝細胞に対して、医薬品候補化合物を添加し、肝毒性マーカーの発現変動を解析することで、生体での医薬品候補化合物の毒性を事前に予測することが可能になる。また、本発明により作製した肝細胞に対して、医薬品候補化合物を添加し、化合物の代謝産物を解析することで、生体での医薬品候補化合物の薬物動態(代謝産物)を事前に予測することが可能になる。これにより、毒性や薬物動態の問題により排除されるべき医薬品候補化合物を早期にスクリーニング可能となり、創薬の加速化が期待される。本発明は、本発明の分化誘導方法により作製した肝細胞の、薬物毒性評価や薬物動態評価のための使用方法にも及ぶ。
 以下、本発明の理解を深めるために実施例及び実験例を示して本発明を具体的に説明するが、これらは本発明の範囲を限定するものではないことはいうまでもない。
 なお、本実施例及び実験例では、ヒトiPS細胞又はヒトES細胞に対する各種培地が必要であるので、参考例として各種培地の組成について説明し、その後各実施例において、分化誘導方法を説明する。
(参考例)各種培地組成
1)ヒトiPS細胞未分化維持用培地として、Tiss. Cult. Res. Commun., 27: 139-147 (2008) の表2に示す組成のうち、基本培地はKnockout DMEM/F12であり、bFGF (10 ng/ml) を含む培地を用いた。以降、当該培地を「培地1」という。
2)ヒトES細胞未分化維持用培地として、Tiss. Cult. Res. Commun., 27: 139-147 (2008) の表2に示す組成のうち、基本培地はDMEM/F12であり、bFGF (5 ng/ml) を含む培地を用いた。以降、当該培地を「培地2」という。
3)未分化維持用培地として、ヒトES細胞培養用基本培地であるhESF-GRO培地(Cell Science & Technology Institute社)に、インスリン(10μg/ml)、トランスフェリン(5μg/ml)、アルブミンコンジュゲートオレイン酸(9.4μg/ml)、2-メルカプトエタノール(10μM)、2-エタノールアミン(10μM) 、亜セレン酸ナトリウム(20 nM)、ヘパリン(100ng/ml)、及びbFGF (10 ng/ml)を含む培地(Proc Natl Acad Sci U S A.; 105(36): 13409-13414 (2008)) を用いた。以降、当該培地を「培地3」という。培地3は、フィーダー細胞を必要とせず、またKnockoOut Serum Replacement (KSR) も必要としないで、ヒトiPS細胞の未分化状態や多分化能を維持して培養を行うことが可能である。
4)分化誘導用培地として、ヒトES細胞培養用基本培地であるhESF-GRO(Cell Science & Technology Institute社)に、インスリン(10μg/ml) 、トランスフェリン(5μg/ml)、2-メルカプトエタノール(10μM)、2-エタノールアミン(10μM) 、亜セレン酸ナトリウム(20 nM)及びウシ血清アルブミン(BSA)(1 mg/ml)を含む培地を用いた。以降、当該培地を「培地4」という。
5)分化誘導用培地の他の態様として、ヒトES細胞分化誘導用基本培地であるhESF-DIF(Cell Science & Technology Institute社)に、インスリン(10μg/ml)、トランスフェリン(5μg/ml)、2-メルカプトエタノール(10μM)、2-エタノールアミン(10μM)、亜セレン酸ナトリウム(20 nM)を含む培地 (FASEB J. 23:114-22 (2009))を用いた。以降、当該培地を「培地5」という。
(実施例1)ヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図1に示した。
1)HEX遺伝子導入用Adベクターの構築
 E1欠損型の5型Adゲノム(pAdHM41-K7)のE1欠損部位に導入遺伝子及びその上流にEF-1α プロモーターを搭載したAdベクターを作製した。導入遺伝子は、GenBank Accession No.BC014336に示す配列からなるHEX遺伝子である。
2)ヒトiPS細胞の培養
 本実施例では、ヒトiPS 細胞(Tic (JCRB1331)、Dotcom (JCRB1327)、Squeaky (JCRB1329))を用いた。マウス胎児線維芽細胞(MEF)をフィーダー細胞とし、Tiss. Cult. Res. Commun., 27: 139-147 (2008) に記載の方法に従い、参考例に示す培地1を用いて培養したヒトiPS細胞を準備した。ヒトiPS細胞の分化誘導2日前に、前記培養した培地を、参考例に示す培地3に交換した。
 次に、細胞剥離液であるAccutase(R) (Invitrogen社) を用いて37℃3分処理し、浮遊するフィーダー細胞を含む上清を除去した。その後、培地3を用いてヒトiPS細胞を剥がし、1,300rpmで3分間遠心処理を行った。参考例に示す培地4を用いて、1,300rpmで3分間の遠心処理を2回行なった。
 遠心処理により得られたヒトiPS細胞を、50 ng/mlのアクチビンA (R&D Systems社) 及び10 ng/mlのbFGF (R&D Systems社)を添加した培地4に懸濁後、ラミニン (sigma社) でコーティングした細胞培養用プレート(12ウェル)の各ウェルに2.5×105 cell/wellのヒトiPS細胞を播種し、37℃で培養した。50 ng/mlのアクチビンA (R&D Systems社) 及び10 ng/mlのbFGF (R&D Systems社)を添加した培地4で培地交換を毎日行なった。ヒトiPS細胞を播種した時点を、分化誘導0日目とした。
3)ヒトiPS細胞へのHEX遺伝子の導入
 分化誘導5日目に、0.0125% トリプシン(trypsin)-0.01325 mM EDTAでヒトiPS細胞を細胞培養用プレートから剥離したのち、0.1 mg/ml のトリプシンインヒビターにてトリプシンを中和後、参考例に示す培地5を用いて、1,300rpmで3分間の遠心処理を2回行った。遠心処理により得られたヒトiPS細胞を、50 ng/mlのアクチビンA (R&D Systems社) 及び10 ng/mlのbFGF (R&D Systems社) を添加した培地5に懸濁し、ラミニン (sigma社) でコーティングした細胞培養用プレート(12ウェル)の各ウェルに5.0×105 cell/wellで播種し、37℃で培養した。
 24時間培養後、上記1)でHEX遺伝子を挿入したK7型Adベクターを3,000 VP(vector particle)/cellで1.5時間感染させた後、10 ng/mlのBMP4 (R&D Systems社) と10ng/mlのFGF-4 (R&D Systems社) を添加した培地5に交換した。その後、10 ng/mlのMBP4 (R&D Systems社) と10 ng/mlのFGF-4 (R&D Systems社) を添加した培地5で培地交換を毎日行った。
(実験例1-1)抗体免疫染色法による結果
 培養12日目に、Alexa(R)594で標識した抗αフェトプロテイン(AFP)抗体(Dako社製)及びAlexa(R)488で標識した抗CK7抗体(Invitrogen社製)を用いて免疫抗体染色法により、各遺伝子の発現を確認した。AFPは肝幹細胞のマーカーとなり、CK7は胆管上皮細胞のマーカーとなる。図2に示すように、Adベクターを用いてHEX遺伝子を導入した系では、遺伝子を導入しない系に比べて、各種マーカーが強く反応していることが観察された。このことより、Adベクターを用いてHEX遺伝子を導入することで、ヒトiPS細胞から肝細胞への分化誘導が促進されることが確認された。
(実験例1-2)リアルタイムPCR法による結果
 培養0日目(未分化な細胞)、5日目(内胚葉系細胞)及び12日目の細胞について、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:AFPについてはHs01040607_m1、アルブミンについてはHs00910225_m)を用いてリアルタイムPCR法により、肝幹細胞のマーカーとなりうるAFP及びアルブミンの発現量を調べた。発現量は、Human Fetal Liver Total RNA(Clontech社、カタログ番号636540)における各遺伝子発現量を基準(100)として、算出した。
 その結果、AFP及びアルブミンのいずれについても、HEX遺伝子を導入した系で明らかに発現量が増加することが確認され、HEX遺伝子を導入した系で分化誘導傾向を示すことがわかった(図3、4)。
(実施例2)ヒトES細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞の代わりに、京都大学再生医科学研究所樹立のヒトES細胞(KhES-1)に、Adベクターを用いてHEX遺伝子を導入し、ヒトES細胞から肝細胞への分化誘導実験を行なった。本実施例では、マウス胎児線維芽細胞(MEF)をフィーダー細胞とし、Tiss. Cult. Res. Commun., 27: 139-147 (2008)に記載の方法に従い、参考例に示す培地2を用いて培養したヒトES細胞を準備した他は、実施例1と同手法により、1)HEX遺伝子導入用Adベクターの構築を行い、3)ヒトES細胞へのHEX遺伝子の導入操作を行ない、実験を行なった。
(実験例2)リアルタイムPCR法による結果
 培養0日目(未分化な細胞)、5日目(内胚葉系細胞)及び12日目の細胞について、実験例1-2と同手法にて、リアルタイムPCR法により分化の指標となりうるAFP及びアルブミンの発現量を調べた。
 その結果、AFP及びアルブミンのいずれについても、HEX遺伝子を導入した系で明らかに発現量が増加することが確認され、HEX遺伝子を導入した系で分化誘導傾向を示すことがわかった(図5、6)。
(実施例3)ヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図1に示した。1)HEX遺伝子導入用Adベクターの構築、2)ヒトiPS細胞の培養、3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行なった。ヒトiPS細胞(Squeaky (JCRB1329))を用いた。
(実験例3-1)抗体免疫染色法による結果
 培養12日目に、Alexa(R)594で標識した抗AFP抗体(Dako社製)及びAlexa(R)488で標識した抗CK7抗体(Invitrogen社製)を用いて免疫抗体染色法により、AFP及びCK7の各遺伝子の発現を確認した。AFPは肝幹細胞のマーカーとなり、CK7は胆管上皮細胞のマーカーとなる。図7に示すように、Adベクターを用いてHEX遺伝子を導入した系では、遺伝子を導入しない系に比べて、各種マーカーが強く反応していることが観察された。このことより、Adベクターを用いてHEX遺伝子を導入することで、ヒトiPS細胞から肝細胞への分化誘導が促進されることが確認された。
(実施例4)ヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図8に示した。1)HEX遺伝子導入用Adベクターの構築、2)ヒトiPS細胞の培養、3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行なった。ヒトiPS細胞(Tic (JCRB1331))を用いた。
(実験例4-1)リアルタイムPCR法による結果
 培養0日目(未分化な細胞)、5日目(内胚葉系細胞)及び12日目の細胞について、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:AFPについてはHs01040607_m1、アルブミンについてはHs00910225_m)を用いてリアルタイムPCR法により、肝幹細胞のマーカーとなりうるAFP及びアルブミンの各遺伝子の発現量を調べた。発現量は、Human Fetal Liver Total RNA(Clontech社、カタログ番号636540)における各遺伝子発現量を基準(100)として、算出した。
 その結果、AFP及びアルブミンのいずれについても、HEX遺伝子を導入した系で明らかに発現量が増加することが確認され、HEX遺伝子を導入した系で分化誘導傾向を示すことがわかった(図9)。
(実験例4-2)抗体免疫染色法による結果
 培養12日目に、Alexa(R)594で標識した抗AFP抗体(Dako社製)、Alexa(R)594で標識した抗アルブミン (ALB)抗体(SIGMA社製)、及びAlexa(R)488で標識した抗CK7抗体(Invitrogen社製)を用いて免疫抗体染色法により、AFP、アルブミン及びCK7の各遺伝子の発現を確認した。AFPは肝幹細胞のマーカー、アルブミンは肝細胞のマーカー、CK7は胆管上皮細胞のマーカーとなる。図10に示すように、Adベクターを用いてHEX遺伝子を導入した系では、遺伝子を導入しない系に比べて、各種マーカーが強く反応していることが観察された。このことより、Adベクターを用いてHEX遺伝子を導入することで、ヒトiPS細胞から肝細胞への分化誘導が促進されることが確認された。
(実施例5)ヒトiPS細胞、ES細胞からの肝細胞への分化誘導方法
 1)ヒトiPS細胞及びヒトES細胞の培養
 本実施例では、ヒトiPS細胞やES細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞及びヒトES細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図11に示した。1)HEX遺伝子導入用Adベクターの構築、2)細胞の培養、3)細胞へのHEX遺伝子の導入については、実施例1と同手法により行なった。ヒトiPS細胞は、Tic (JCRB1331)、Dotcom (JCRB1327)を、ES細胞はkhES1 ES細胞を用いた。
(実験例5-1)リアルタイムPCR法による結果
 培養0日目(未分化な細胞)、6日目(内胚葉系細胞)及び12日目の細胞について、内胚葉マーカーとなりうるFOXA2及びSOX17、並びに肝幹細胞のマーカーとなりうるAFP及びアルブミン各遺伝子の発現量を調べた。各遺伝子の発現は、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:FOXA2についてはHs00232764_m1、SOX17についてはHs00751752_s1、AFPについてはHs01040607_m1、アルブミンについてはHs00910225_m)を用いてリアルタイムPCR法により調べた。発現量は、ヒトiPS細胞Ticにおける培養0日目(未分化な細胞)を基準(1)として、算出した。
 図12に示すように、6日目(内胚葉系細胞)において内胚葉マーカーであるFOXA2及びSOX17が、細胞株Dotcomにおいて最も発現量が高かった。さらに、図13に示すように、Adベクターを用いてHEX遺伝子を導入することで、細胞株Dotcomにおいて、肝幹細胞のマーカーとなりうるAFP及び肝細胞のマーカーとなりうるアルブミンは、最も著しい発現量の増加を確認した。このことより、Adベクターを用いてHEX遺伝子を導入することで、内胚葉系マーカーを強く発現する細胞からより効率的に肝細胞への分化誘導が促進されることが確認された。
(実施例6)HEX遺伝子による肝分化誘導効果(培養18日目)
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図14に示した。1)HEX遺伝子導入用Adベクターの構築、及び3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行なった。2)ヒトiPS細胞は、以下の方法により培養した。
2)ヒトiPS細胞の培養
 本実施例では、ヒトiPS 細胞(Tic (JCRB1331))を用いた。分化誘導9日目まで(実験例1)と同様の方法で培養した。その後、培養9日目の細胞を0.0125 %トリプシン-0.01325 mM EDTAで回収し、Stem Cells.,26:1117-27(2008)に記載の通り、SingleQuots(R) (Lonza社)、10 ng/mL 線維芽細胞増殖因子4 (FGF4)、10 ng/mL 肝細胞増殖因子 (HGF)(R&D Systems社), 10 ng/mL オンコスタチンM (R&D Systems社)、10-7 M デキサメタゾン(Sigma社)を添加した HCMTM Hepatocyte Culture Medium (Lonza社)に懸濁後、I型コラーゲン(Nitta Gelatin社)でコーティングした細胞培養用プレート(12ウェル)に播種した。培地交換は1日毎行った。
(実験例6-1)抗体免疫染色法による結果
 培養18日目に、Alexa(R)594で標識した抗アルブミン (ALB)抗体(SIGMA社製)、Alexa(R)594で標識した抗薬剤代謝酵素シトクロムP450 3A4(CYP3A4)抗体(Santa Cruz 社製)、及びAlexa(R)594で標識した抗薬剤代謝酵素シトクロムP450 7A1(CYP7A1)抗体(Santa Cruz 社製)を用いて免疫抗体染色法により、各遺伝子の発現を確認した。アルブミン 、CYP3A4、CYP7A1はいずれも肝細胞マーカーとなる。図15に示すように、培養18日目ではAdベクターを用いてHEX遺伝子導入した系では、遺伝子を導入しない系に比べて、いずれの肝細胞マーカーも強く反応していることが観察された。
(実施例7)HEX遺伝子導入細胞の機能性評価
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図16に示した。1)HEX遺伝子導入用Adベクターの構築、及び3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行い、2)ヒトiPS細胞の培養は、実施例6と同手法により行なった。本実施例では、ヒトiPS細胞(Tic (JCRB1331))を用いた。
(実験例7-1)リアルタイムPCR法による結果
 培養18日目の細胞について、薬剤代謝酵素シトクロムP450 3A4 (CYP3A4) の発現量を、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号: CYP3A4についてはHs00430021_m1)を用いてリアルタイムPCR法により調べた。発現量は、Human Adult Liver Total RNA(Clontech社、カタログ番号636531)における各遺伝子発現量を基準(100)として、算出した(図17)。
 その結果、Adベクターを用いてHEX遺伝子を導入することで、CYP3A4の発現量は著しく増加し、胎児肝細胞に匹敵する発現量を得ることが出来た。
(実験例7-2)薬剤代謝酵素シトクロムP450 3A4 (CYP3A4) の活性測定
 分化誘導18日目のヒトiPS細胞由来の肝細胞又はヒト肝癌細胞株HepG2に25μM リファンピシン(Sigma社)又はDMSOを添加し、72時間後にP450-GloTM CYP3A4 Assay Kit (Promega社)を用いてCYP3A4の活性を測定した。活性はルミノメーター (Lumat LB 9507、Berthold社)を用いて定量した。
 その結果、培養18日目ではAdベクターを用いてHEX遺伝子導入した系では、遺伝子を導入しない系に比べて、CYP3A4の活性が増加するとともに、リファンピシンによる薬剤応答性も増加することが観察された(図18)。
(実施例8)内胚葉分化能の高いiPS細胞株からの肝細胞への分化誘導
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームは図16に示した。1)HEX遺伝子導入用Adベクターの構築、及び3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行い、2)ヒトiPS細胞の培養は、実施例6と同手法により行なった。本実施例では、ヒトiPS細胞(Tic (JCRB1331)、Dotcom (JCRB1327))を用いた。
(実験例8-1)薬剤代謝酵素シトクロムP450 3A4 (CYP3A4) の活性測定
 実験例7-2と同手法により、CYP3A4の活性を測定した。その結果、Adベクターを用いてHEX遺伝子を導入した場合、内胚葉への分化能が高い細胞株Dotcomから、アルブミンやCYP3A4の発現量がより高い肝細胞を分化誘導することができた(図19)。
(実施例9)分化誘導時の形態変化
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図20に示した。1)HEX遺伝子導入用Adベクターの構築、及び3)ヒトiPS細胞へのHEX遺伝子の導入については、実施例1と同手法により行い、2)ヒトiPS細胞の培養は、実施例6と同手法により行なった。本実施例では、ヒトiPS細胞(Tic (JCRB1331))を用いた。
(実験例9-1)形態観察
 培養0日目(未分化な細胞)、6日目(内胚葉系細胞)、9日目(肝幹細胞)及び21日目の細胞の形態を観察した。その結果、緻密な細胞形態(培養0日目)から細胞間の密度が低い分化した細胞に特徴的な形態(培養6日目)へと変化した。さらに培養9日目から21日目にかけて、Adベクターを用いてHEX遺伝子を導入した系では、肝細胞に特徴的な上皮様の細胞形態へと変化した。したがって、細胞の形態からもHEX遺伝子を導入することで分化誘導された細胞は肝細胞であることが示唆された(図21)。
(実施例10)SOX17遺伝子とHEX遺伝子の組み合わせによるヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いてSOX17遺伝子ならびにHEX遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図22に示した。
1)SOX17遺伝子導入用Adベクターの構築
 SOX17遺伝子導入用として、E1欠損型の5型Adゲノム(pAdHM41-K7)のE1欠損部位に導入遺伝子及びその上流にEF-1α プロモーターを搭載したAdベクターを作製した。導入遺伝子は、GenBank Accession No. NM_022454に示す配列からなるSOX17遺伝子である。なお、HEX遺伝子導入用Adベクターは、実施例1と同手法により作製した。
2)ヒトiPS細胞の培養
 本実施例では、ヒトiPS 細胞(201B7(JCRB))を用いた。分化誘導3日目まで実施例1と同様の方法で培養した。
3)ヒトiPS細胞へのSOX17遺伝子の導入
 分化誘導開始から72時間培養後、上記1)でSOX17遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、50 ng/mlのアクチビンA (Activin A; R&D Systems社) と10ng/mlのbFGF (R&D Systems社) を添加した培地4に交換した。その後、50 ng/mlのActivin A(R&D Systems社) と10ng/mlのbFGF (R&D Systems社)を添加した培地4で培地交換を毎日行った。
4)SOX17遺伝子導入細胞へのHEX遺伝子の導入
 分化誘導5日目に、0.0125 %トリプシン-0.01325 mM EDTAでヒトiPS細胞を細胞培養用プレートから剥離したのち、0.1 mg/ml のトリプシンインヒビターにてトリプシンを中和後、参考例に示す培地5を用いて、1,300rpmで3分間の遠心処理を2回行った。遠心処理により得られたヒトiPS細胞を、50 ng/mlのアクチビンA (R&D Systems社) 及び10 ng/mlのbFGF (R&D Systems社) を添加した培地5に懸濁し、ラミニン (sigma社) でコーティングした細胞培養用プレート(12ウェル)の各ウェルに5.0×105 cell/wellで播種し、37℃で培養した。24時間培養後、HEX遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、10 ng/mlのBMP4 (R&D Systems社) と10ng/mlのFGF4 (R&D Systems社) を添加した培地5に交換した。その後、10 ng/mlの BMP4 (R&D Systems社) と10 ng/mlのFGF4 (R&D Systems社) を添加した培地5で培地交換を毎日行った。
(実験例10-1)抗体免疫染色法による結果
 培養9日目及び培養12日目に、Alexa(R)594で標識した抗αフェトプロテイン(AFP)抗体(Dako社製)、Alexa(R)594で標識した抗アルブミン (ALB)抗体(SIGMA社製)、及びAlexa(R)488で標識した抗CK7抗体(Invitrogen社製)を用いて免疫抗体染色法により、各遺伝子の発現を確認した。AFPは肝幹細胞のマーカー、アルブミンは肝細胞のマーカー、CK7は胆管上皮細胞のマーカーとなる。図23に示すように、培養9日目ではAdベクターを用いてSOX17遺伝子とHEX遺伝子を導入した系では、HEX遺伝子のみを導入した系に比べて、肝幹細胞マーカーが強く反応していることが観察されたが、胆管上皮細胞マーカーはいずれの系においても発現していなかった。また培養12日目ではAdベクターを用いてSOX17遺伝子とHEX遺伝子を導入した系では、HEX遺伝子のみを導入した系に比べて、肝細胞マーカーが強く反応していることが観察された。
(実験例10-2)リアルタイムPCR法による結果
 培養9日目及び培養12日目の細胞について、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:AFPについてはHs01040607_m1、アルブミンについてはHs00910225_m)を用いてリアルタイムPCR法により、肝幹細胞のマーカーとなりうるAFP及びアルブミンの発現量を調べた。発現量は、Human Fetal Liver Total RNA(Clontech社、カタログ番号636540)における各遺伝子発現量を基準(100)として、算出した。その結果、Adベクターを用いてSOX17遺伝子とHEX遺伝子を導入することで、HEX遺伝子のみを用いた場合と比較し、より効率良くヒトiPS細胞から肝細胞への分化誘導が促進される傾向があることが確認された(図24)。
(実施例11)HEX遺伝子とHNF4A遺伝子の組み合わせによるヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いてHEX遺伝子ならびにHNF4A遺伝子を導入し、当該遺伝子を導入したヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図25に示した。
1)HNF4A遺伝子導入用Adベクターの構築
 E1欠損型の5型Adゲノム(pAdHM41-K7)のE1欠損部位に導入遺伝子及びその上流にEF-1α プロモーターを搭載したAdベクターを作製した。導入遺伝子は、GenBank Accession No. NM_000457に示す配列からなるHNF4A遺伝子である。なお、HEX遺伝子導入用Adベクターは、実施例1と同手法により作製した。
2)ヒトiPS細胞の培養
 本実施例では、ヒトiPS 細胞(Tic (JCRB1331)、Dotcom (JCRB1327)、201B7)を用いた。分化誘導9日目まで実施例1と同様の方法で培養した。
3)ヒトiPS細胞へのHEX遺伝子及びHNF4A遺伝子の導入
 分化誘導9日目、上記1)でHNF4A遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、10 ng/mlの肝細胞増殖因子(HGF)(R&D Systems社) 、10 ng/mlのオンコスタチンM (R&D Systems社)、及び10-7 M デキサメタゾン(Sigma社)を添加したHCMTM培地(Lonza社)に交換した。その後、10 ng/mlのHGF (R&D Systems社) 、10 ng/mlのオンコスタチンM (R&D Systems社)、及び10-7 M デキサメタゾン(Sigma社)を添加したHCMTM培地(Lonza社)で培地交換を2日に1度行った。
(実験例11-1)抗体免疫染色法による結果
 培養18日目に、Alexa(R)594で標識した抗薬剤代謝酵素P450 2D6(CYP2D6)抗体(Santa Cruz 社製)、Alexa(R)594で標識した抗薬剤代謝酵素P450 3A4(CYP3A4)抗体(Santa Cruz 社製)、及びAlexa(R)594で標識した抗薬剤代謝酵素P450 7A1(CYP7A1)抗体(Santa Cruz 社製)を用いて免疫抗体染色法により、各遺伝子の発現を確認した。CYP2D6、CYP3A4、CYP7A1はいずれも肝細胞マーカーとなる。図26に示すように、培養18日目ではAdベクターを用いてHEX遺伝子とHNF4A遺伝子を導入した系では、HEX遺伝子のみを導入した系に比べて、いずれの肝細胞マーカーも強く反応していることが観察された。
(実験例11-2)リアルタイムPCR法による結果
 培養18日目の細胞について、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:CYP2D6についてはHs02576168_g1、CYP3A4についてはHs00430021_m1、CYP7A1についてはHs00167982_m1)を用いてリアルタイムPCR法により、肝細胞マーカーとなりうるCYP2D6、CYP3A4、CYP7A1の発現量を調べた。発現量は、Human Adult Liver Total RNA(Clontech社、カタログ番号636531)における各遺伝子発現量を基準(100)として、算出した。その結果、Adベクターを用いてHEX遺伝子とHNF4A遺伝子を導入することで、HEX遺伝子のみを用いた場合と比較し、CYP2D6、CYP3A4、CYP7A1の発現量は著しく増加し、従来よりも薬剤代謝の発現量が高い肝細胞を得ることが出来た(図27)。
(実験例11-3)薬剤代謝酵素P450 3A4の活性測定
 分化誘導18日目のヒトiPS細胞由来の肝細胞又はヒト肝癌細胞株HepG2に25μM リファンピシン (Sigma社)又はDMSOを添加し、72時間後にP450-GloTM CYP3A4 Assay Kit (Promega社)を用いてCYP3A4の活性を測定した。活性はルミノメーター (Lumat LB 9507、Berthold社)を用いて定量した。その結果、Adベクターを用いてHEX遺伝子とHNF4A遺伝子を導入することで、HEX遺伝子のみを用いた場合と比較し、CYP3A4の活性が増加するとともに、リファンピシンによる薬剤応答性も増加することが観察された。したがって、本方法により、Adベクターを用いてHEX遺伝子とHNF4A遺伝子を導入することで、従来よりも薬剤代謝酵素の活性が高い肝細胞を得ることが出来た(図28)。
(実施例12)SOX17、HEX遺伝子、HNF4A遺伝子の組み合わせによるヒトiPS細胞からの肝細胞への分化誘導方法
 本実施例では、ヒトiPS細胞にAdベクターを用いて適時SOX17遺伝子、HEX遺伝子、HNF4A遺伝子を導入し、ヒトiPS細胞から肝細胞への分化誘導について説明する。本実施例の実験スキームを図29に示した。
1)SOX17遺伝子、HEX遺伝子、HNF4A遺伝子導入用Adベクター
 出願例1と同様のAdベクターを使用した。
2)ヒトiPS細胞の培養
 本実施例では、ヒトiPS 細胞(Tic (JCRB1331))を用いた。分化誘導3日目まで実施例1と同様の方法で培養した。
3)SOX17遺伝子の導入
 分化誘導開始から3日後、SOX17遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、50 ng/mlのアクチビンA (R&D Systems社) と10 ng/mlのbFGF (R&D Systems社) を添加した培地4に交換した。その後、50 ng/mlのアクチビンA (R&D Systems社) と10ng/mlのbFGF (R&D Systems社)を添加した培地4で培地交換を毎日行った。SOX17遺伝子を導入していない細胞をコントロール群とした。
4)HEX遺伝子の導入
 分化誘導6日目に、0.0125 %トリプシン-0.01325 mM EDTAで上記の各細胞を細胞培養用プレートから剥離したのち、0.1 mg/ml のトリプシンインヒビターにてトリプシンを中和後、参考例に示す培地5を用いて、1,300rpmで3分間の遠心処理を2回行った。遠心処理により得られたヒトiPS細胞を、50 ng/mlのアクチビンA (R&D Systems社) 及び10 ng/mlのbFGF (R&D Systems社) を添加した培地5に懸濁し、ラミニン (sigma社) でコーティングした細胞培養用プレート(12ウェル)の各ウェルに5.0×105 cell/wellで播種し、37℃で培養した。24時間培養後、HEX遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、10 ng/mlのBMP4 (R&D Systems社) と10ng/mlのFGF4 (R&D Systems社) を添加した培地5に交換した。その後、10 ng/mlの BMP4 (R&D Systems社) と10 ng/mlのFGF4 (R&D Systems社) を添加した培地5で培地交換を毎日行った。HEX遺伝子を導入していない細胞をコントロール群とした。
5)HNF4A遺伝子の導入
 分化誘導9日目、上記1)でHNF4A遺伝子を挿入したK7型Adベクターを3,000 VP/cellで1.5時間感染させた後、10 ng/mlのHGF (R&D Systems社) 、10 ng/mlのオンコスタチンM (R&D Systems社)、及び10-7 M デキサメタゾン(Sigma社)を添加したHCMTM培地(Lonza社)に交換した。その後、10 ng/mlのHGF (R&D Systems社) 、10 ng/mlのオンコスタチンM (R&D Systems社)、及び10-7 M デキサメタゾン(Sigma社)を添加したHCMTM培地(Lonza社)で培地交換を2日に1度行った。HNF4A遺伝子を導入していない細胞をコントロール群とした。
 導入する遺伝子の組み合わせは、表1に従った。
Figure JPOXMLDOC01-appb-T000001
(実験例12)リアルタイムPCR法による結果
 培養18日目の細胞について、TaqMan(R) Gene Expression Assays(Applied Biosystems社、カタログ番号:アルブミン(ALB)についてはHs00910225_m 、CYP2D6についてはHs02576168_g1、CYP3A4についてはHs00430021_m1、CYP7A1についてはHs00167982_m1)を用いてリアルタイムPCR法により、肝細胞マーカーとなりうるALB、CYP2D6、CYP3A4、CYP7A1の発現量を調べた。発現量は、ヒト成人肝組織(Human Adult Liver Total RNA:Clontech社、カタログ番号636531)における各遺伝子発現量を基準(100)として、算出した。その結果を図30に示した。図30の横軸に示す番号は、表1の遺伝子の組み合わせによるものである。その結果、Adベクターを用いてSOX17遺伝子、HEX遺伝子、HNF4A遺伝子を3種全て導入した細胞において、他の組み合わせの遺伝子を導入した場合と比較し、アルブミン、CYP2D6、CYP3A4、CYP7A1の発現量が著しく増加し、従来よりも薬剤代謝の発現量が高い肝細胞を得ることができた。
 以上詳述したように、本発明のAdベクターを用いることで、ES細胞又はiPS細胞等の多能性幹細胞の分化誘導に係る遺伝子が効果的に導入され、肝細胞へ分化誘導させうることが確認された。具体的には、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれか1又は複数の遺伝子をES細胞又はiPS細胞等の幹細胞に導入することで、効果的に肝細胞へ分化誘導させうる。特にHEX遺伝子を幹細胞に導入することで、効果的に幹細胞から肝細胞へ分化誘導させうることが確認された。さらに、他の遺伝子として、SOX17遺伝子及び/又はHNF4A遺伝子などを細胞の分化の程度に応じて、適宜導入することにより、より効果的に幹細胞から肝細胞へ分化誘導させうることが確認された。
本発明の分化誘導方法により作製した肝細胞を用いて、例えば薬物毒性評価や薬物動態評価を行うことができる。具体的には、本発明により作製した肝細胞に対して、医薬品候補化合物を添加し、肝毒性マーカーの発現変動を解析することで、生体での医薬品候補化合物の毒性を事前に予測することが可能になる。また、本発明により作製した肝細胞に対して、医薬品候補化合物を添加し、化合物の代謝産物を解析することで、生体での医薬品候補化合物の薬物動態(代謝産物)を事前に予測することが可能になる。これにより、毒性や薬物動態の問題により排除されるべき医薬品候補化合物を早期にスクリーニング可能となり、創薬の加速化が期待される。
 本発明の方法により、ES細胞又はiPS細胞のような多能性幹細胞から肝細胞へ分化誘導させることができれば、in vitroで肝細胞構造の再構築が可能となり、さらには成熟肝細胞や、分化誘導による肝臓の作製が期待される。本発明のAdベクターを用いることで、種々のES細胞やiPS細胞から、特定の遺伝子を発現する安定株を作製せずに、肝細胞を分化誘導することができる。したがって、iPS細胞を用意さえすれば、迅速にそのヒト特有の自己由来肝臓の作製が可能となる。また、本発明の方法により、従来臓器移植でしか対応できなかった疾患に対しても、再生医療により治療することの可能性が開かれ、非常に有用である。

Claims (14)

  1. アデノウイルスベクターを用いて幹細胞に遺伝子を導入することを特徴とする、幹細胞から肝細胞への分化誘導方法。
  2. 導入する遺伝子が、HEX遺伝子、HNF4A遺伝子、HNF6遺伝子及びSOX17遺伝子から選択されるいずれか1又は複数の遺伝子である請求項1に記載の分化誘導方法。
  3. 少なくともHEX遺伝子を導入し、さらに、HNF4A遺伝子及び/又はSOX17遺伝子を導入する、請求項1又は2に記載の分化誘導方法。
  4. 幹細胞にSOX17遺伝子を導入し、その後HEX遺伝子を導入する、請求項3に記載の分化誘導方法。
  5. 幹細胞にHEX遺伝子を導入し、その後HNF4A遺伝子を導入する、請求項3又は4に記載の分化誘導方法。
  6. 以下の工程を含む、幹細胞から肝細胞への分化誘導方法:
    1)アデノウイルスベクターに、HEX遺伝子を組み込む工程;
    2)幹細胞と、前記1)で遺伝子を組み込んだアデノウイルスベクターを接触させ、HEX遺伝子を細胞内に導入させる工程;
    3)遺伝子が導入された幹細胞を培養する工程。
  7. 請求項6に記載の幹細胞から肝細胞への分化誘導方法であって、前記1)~3)に記載の工程の前に、以下の工程を含む、請求項6に記載の幹細胞から肝細胞への分化誘導方法:
    a)アデノウイルスベクターに、SOX17遺伝子を組み込む工程;
    b)幹細胞と、前記a)で遺伝子を組み込んだアデノウイルスベクターを接触させ、SOX17遺伝子を細胞内に導入させる工程;
    c)遺伝子が導入された幹細胞を培養する工程。
  8. 請求項6に記載の幹細胞から肝細胞への分化誘導方法であって、前記3)のHEX遺伝子が導入された幹細胞を培養する工程の後、培養した細胞と、HNF4A遺伝子を組み込んだアデノウイルスベクターとを接触させ、HNF4A遺伝子を細胞内にさらに導入させる工程を含む、請求項6又は7に記載の分化誘導方法。
  9. 幹細胞を液性の分化誘導因子で処理する工程を含む、請求項1~8のいずれか1に記載の分化誘導方法。
  10. 幹細胞が、胚性幹細胞又は人工多能性幹細胞である請求項1~9のいずれか1に記載の分化誘導方法。
  11. 胚性幹細胞又は人工多能性幹細胞が、ヒト胚性幹細胞又はヒト人工多能性幹細胞である、請求項10に記載の分化誘導方法。
  12. 請求項1~11のいずれかに1に記載の分化誘導方法により、遺伝子が導入された幹細胞。
  13. 請求項12に記載の遺伝子が導入された幹細胞から生成した肝細胞。
  14. 請求項13に記載の肝細胞の、薬物毒性評価又は薬物動態評価のための使用方法。
PCT/JP2010/068703 2009-10-28 2010-10-22 幹細胞から肝細胞への分化誘導方法 WO2011052504A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/504,149 US20120231490A1 (en) 2009-10-28 2010-10-22 Method Of Differentiation From Stem Cells To Hepatocytes
JP2011538399A JP5745423B2 (ja) 2009-10-28 2010-10-22 幹細胞から肝細胞への分化誘導方法
CN201080057923.0A CN102666853B (zh) 2009-10-28 2010-10-22 由干细胞向肝细胞的分化诱导方法
EP10826636.2A EP2495320B1 (en) 2009-10-28 2010-10-22 Method for induction of differentiation of stem cells into hepatocytes
US15/267,178 US20170009203A1 (en) 2009-10-28 2016-09-16 Method Of Differentiation From Stem Cells To Hepatocytes

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009247342 2009-10-28
JP2009-247342 2009-10-28
JP2010-121282 2010-05-27
JP2010121282 2010-05-27
JP2010154225 2010-07-06
JP2010-154225 2010-07-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/504,149 A-371-Of-International US20120231490A1 (en) 2009-10-28 2010-10-22 Method Of Differentiation From Stem Cells To Hepatocytes
US15/267,178 Division US20170009203A1 (en) 2009-10-28 2016-09-16 Method Of Differentiation From Stem Cells To Hepatocytes

Publications (1)

Publication Number Publication Date
WO2011052504A1 true WO2011052504A1 (ja) 2011-05-05

Family

ID=43921926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068703 WO2011052504A1 (ja) 2009-10-28 2010-10-22 幹細胞から肝細胞への分化誘導方法

Country Status (5)

Country Link
US (2) US20120231490A1 (ja)
EP (1) EP2495320B1 (ja)
JP (1) JP5745423B2 (ja)
CN (1) CN102666853B (ja)
WO (1) WO2011052504A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523183A (ja) * 2010-04-13 2013-06-17 セルラー ダイナミクス インターナショナル, インコーポレイテッド フォワードプログラミングによる肝細胞の産生
JPWO2011102532A1 (ja) * 2010-02-16 2013-06-17 国立大学法人九州大学 誘導肝細胞
JP2013252081A (ja) * 2012-06-06 2013-12-19 Japan Health Science Foundation 幹細胞から肝細胞への分化誘導方法
WO2014168157A1 (ja) 2013-04-08 2014-10-16 独立行政法人医薬基盤研究所 肝幹前駆様細胞の培養方法及びその培養物
JP2016508369A (ja) * 2013-02-08 2016-03-22 シャンハイ インスティチューツ フォー バイオロジカル サイエンシーズ、 チャイニーズ アカデミー オブ サイエンシーズ ヒト肝細胞様細胞およびその使用
WO2016147975A1 (ja) * 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 小腸上皮様細胞
WO2016167329A1 (ja) * 2015-04-14 2016-10-20 国立大学法人京都大学 体細胞への分化誘導に適した幹細胞クローンを製造する方法
JP2017131211A (ja) * 2016-01-29 2017-08-03 国立大学法人 千葉大学 肝細胞系譜細胞を取得するための方法および物質
JP2018508207A (ja) * 2015-02-20 2018-03-29 インセルム(インスティテュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) 多能性細胞を肝細胞系統の細胞へと分化させるためのラミニンの使用
WO2019082874A1 (ja) * 2017-10-23 2019-05-02 国立大学法人九州大学 ダイレクトリプログラミングによる肝幹細胞又は肝前駆細胞の製造方法
JP2019535272A (ja) * 2016-11-16 2019-12-12 アリール バイオテクノロジー アンド ファーマシューティカルズ, インコーポレイテッド Rnaでの幹細胞分化による肝細胞の誘導
JP2020523015A (ja) * 2017-06-07 2020-08-06 ワイルド タイプ,インク. エクスビボでの食肉の生産

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148429B2 (ja) * 2011-01-31 2017-06-14 協和発酵バイオ株式会社 ヒト多能性幹細胞の培養方法
CN104830906B (zh) * 2014-02-12 2018-09-04 北京维通达生物技术有限公司 一种重编程获得功能性人肝脏实质细胞的方法
WO2016143826A1 (ja) * 2015-03-09 2016-09-15 学校法人慶應義塾 多能性幹細胞を所望の細胞型へ分化する方法
JP7203427B2 (ja) 2017-02-14 2023-01-13 ユニバーシティ オブ ピッツバーグ - オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション ヒト人工多能性幹細胞を操作して肝臓組織を作製する方法
EP4118188A1 (en) 2020-03-11 2023-01-18 Bit Bio Limited Method of generating hepatic cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272480A (ja) 2000-05-31 2002-09-24 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho アデノウイルスベクター
JP2003250566A (ja) 2002-03-01 2003-09-09 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho アデノウイルスベクター
JP2008136381A (ja) 2006-11-30 2008-06-19 Japan Health Science Foundation 改変型アデノウイルスベクター及びその作製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473555B2 (en) * 2000-04-27 2009-01-06 Geron Corporation Protocols for making hepatocytes from embryonic stem cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272480A (ja) 2000-05-31 2002-09-24 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho アデノウイルスベクター
JP3635462B2 (ja) 2000-05-31 2005-04-06 国立医薬品食品衛生研究所長 アデノウイルスベクター
JP2003250566A (ja) 2002-03-01 2003-09-09 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho アデノウイルスベクター
JP2008136381A (ja) 2006-11-30 2008-06-19 Japan Health Science Foundation 改変型アデノウイルスベクター及びその作製方法

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 332, 2005, pages 1101 - 1106
CAI J. ET AL: "Directed differentiation of human embryonic stem cells into functional hepatic cells", HEPATOLOGY, vol. 45, no. 5, May 2007 (2007-05-01), pages 1229 - 1239, XP008155505 *
CELL, vol. 131, 2007, pages 861 - 872
CHEN M.L. ET AL: "HNF-4a determines hepatic differentiation of human mesenchymal stem cells from bone marrow", WORLD J. GASTROENTEROL., vol. 16, no. 40, 28 October 2010 (2010-10-28), pages 5092 - 5103, XP008155517 *
FASEB J., vol. 23, 2009, pages 114 - 22
FASEB JOURNAL, vol. 16, 2002, pages 1444 - 1446
G. R. MARTIN, NATL. ACAD. SCI. USA, vol. 78, 1981, pages 7634
GENES TO CELLS, vol. 13, 2008, pages 731 - 746
HEPATOLOGY, vol. 45, 2007, pages 1229 - 1239
INAMURA M. ET AL: "Efficient Generation of Hepatoblasts From Human ES Cells and iPS Cells by Transient Overexpression of Homeobox Gene HEX", MOL. THER., 23 November 2010 (2010-11-23), XP008155514, Retrieved from the Internet <URL:http://www.nature.com/mt/journal/vaop/ncurrent/full/mt2010241a.html> [retrieved on 20110112] *
KAWABATA K. ET AL: "Efficient gene transfer into mouse embryonic stem cells with adenovirus vectors", MOL. THER., vol. 12, no. 3, September 2005 (2005-09-01), pages 547 - 554, XP008155508 *
KUBO A. ET AL: "The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm", HEPATOLOGY, vol. 51, no. 2, 5 February 2010 (2010-02-05), pages 633 - 641, XP008155506 *
KUBO A. ET AL: "The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation", BLOOD, vol. 105, no. 12, 22 February 2005 (2005-02-22), pages 4590 - 4597, XP008155481 *
M. J. EVANS; M. H. KAUFMAN, NATURE, vol. 292, 1981, pages 154
MOL THER., vol. 12, no. 3, 2005, pages 547 - 554
NAIKI T. ET AL: "Adenovirus-mediated hepatocyte nuclear factor-4alpha overexpression maintains liver phenotype in cultured rat hepatocytes", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 335, no. 2, 23 September 2005 (2005-09-23), pages 496 - 500, XP008155516 *
NATURE REVIEWS GENETICS, vol. 3, 2002, pages 499 - 215
PROC. NATL. ACAD. SCI. USA, vol. 105, no. 36, 2008, pages 13409 - 13414
See also references of EP2495320A4 *
SHIMODA M. ET AL: "Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro", J. CELL SCI., vol. 120, no. 21, 16 October 2007 (2007-10-16), pages 3859 - 3869, XP008155510 *
SONG Z. ET AL: "Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells", CELL RES., vol. 19, no. 11, 8 September 2009 (2009-09-08), pages 1233 - 1242, XP008155513 *
STEM CELLS, vol. 26, 2008, pages 1117 - 1127
STEM CELLS, vol. 26, 2008, pages 1117 - 27
STEM CELLS, vol. 26, 2008, pages 894 - 902
STEM CELLS, vol. 27, no. 8, 2009, pages 1802 - 1811
TISS, CULT. RES. COMMUN., vol. 27, 2008, pages 139 - 147
TISS. CULT, RES. COMMUN., vol. 27, 2008, pages 139 - 147
TISS. CULT. RES. COMMUN., vol. 27, 2008, pages 139 - 147

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011102532A1 (ja) * 2010-02-16 2013-06-17 国立大学法人九州大学 誘導肝細胞
US9260722B2 (en) 2010-04-13 2016-02-16 Cellular Dynamics International, Inc. Hepatocyte production by forward programming
JP2013523183A (ja) * 2010-04-13 2013-06-17 セルラー ダイナミクス インターナショナル, インコーポレイテッド フォワードプログラミングによる肝細胞の産生
JP2013252081A (ja) * 2012-06-06 2013-12-19 Japan Health Science Foundation 幹細胞から肝細胞への分化誘導方法
US9623048B2 (en) 2013-02-08 2017-04-18 Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences Human hepatocyte-like cells and uses thereof
JP2016508369A (ja) * 2013-02-08 2016-03-22 シャンハイ インスティチューツ フォー バイオロジカル サイエンシーズ、 チャイニーズ アカデミー オブ サイエンシーズ ヒト肝細胞様細胞およびその使用
WO2014168157A1 (ja) 2013-04-08 2014-10-16 独立行政法人医薬基盤研究所 肝幹前駆様細胞の培養方法及びその培養物
JP2021006054A (ja) * 2015-02-20 2021-01-21 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) 多能性細胞を肝細胞系統の細胞へと分化させるためのラミニンの使用
JP7132463B2 (ja) 2015-02-20 2022-09-07 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) 多能性細胞を肝細胞系統の細胞へと分化させるためのラミニンの使用
JP2018508207A (ja) * 2015-02-20 2018-03-29 インセルム(インスティテュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) 多能性細胞を肝細胞系統の細胞へと分化させるためのラミニンの使用
US10889805B2 (en) 2015-03-13 2021-01-12 National Institutes Of Biomedical Innovation, Health And Nutrition Intestinal epithelioid cells
WO2016147975A1 (ja) * 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 小腸上皮様細胞
JPWO2016147975A1 (ja) * 2015-03-13 2018-03-08 国立研究開発法人医薬基盤・健康・栄養研究所 小腸上皮様細胞
JPWO2016167329A1 (ja) * 2015-04-14 2018-02-15 国立大学法人京都大学 体細胞への分化誘導に適した幹細胞クローンを製造する方法
WO2016167329A1 (ja) * 2015-04-14 2016-10-20 国立大学法人京都大学 体細胞への分化誘導に適した幹細胞クローンを製造する方法
JP2017131211A (ja) * 2016-01-29 2017-08-03 国立大学法人 千葉大学 肝細胞系譜細胞を取得するための方法および物質
JP2019535272A (ja) * 2016-11-16 2019-12-12 アリール バイオテクノロジー アンド ファーマシューティカルズ, インコーポレイテッド Rnaでの幹細胞分化による肝細胞の誘導
JP2020523015A (ja) * 2017-06-07 2020-08-06 ワイルド タイプ,インク. エクスビボでの食肉の生産
JPWO2019082874A1 (ja) * 2017-10-23 2020-09-17 国立大学法人九州大学 ダイレクトリプログラミングによる肝幹細胞又は肝前駆細胞の製造方法
WO2019082874A1 (ja) * 2017-10-23 2019-05-02 国立大学法人九州大学 ダイレクトリプログラミングによる肝幹細胞又は肝前駆細胞の製造方法
JP7307478B2 (ja) 2017-10-23 2023-07-12 国立大学法人九州大学 ダイレクトリプログラミングによる肝幹細胞又は肝前駆細胞の製造方法
US11981927B2 (en) 2017-10-23 2024-05-14 Kyushu University, National University Corporation Method for producing liver stem cells or liver progenitor cells by direct reprogramming

Also Published As

Publication number Publication date
EP2495320A1 (en) 2012-09-05
US20120231490A1 (en) 2012-09-13
EP2495320A4 (en) 2013-07-24
EP2495320B1 (en) 2019-02-27
JP5745423B2 (ja) 2015-07-08
JPWO2011052504A1 (ja) 2013-03-21
US20170009203A1 (en) 2017-01-12
CN102666853A (zh) 2012-09-12
CN102666853B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5745423B2 (ja) 幹細胞から肝細胞への分化誘導方法
JP5970245B2 (ja) 幹細胞から肝細胞への分化誘導方法
Zabulica et al. Guide to the assessment of mature liver gene expression in stem cell-derived hepatocytes
Sullivan et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells
US10435710B2 (en) Engineering a heterogeneous tissue from pluripotent stem cells
Ishii et al. Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells
EP3397753B1 (en) Microtissue formation using stem cell-derived human hepatocytes
US20080019949A1 (en) Differentiation of stem cells from umbilical cord matrix into hepatocyte lineage cells
Piravar et al. In vitro culture of human testicular stem cells on feeder-free condition
Aravalli et al. Hepatic differentiation of porcine induced pluripotent stem cells in vitro
Meng et al. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata
JP6421335B2 (ja) 肝幹前駆様細胞の培養方法及びその培養物
Fukusumi et al. Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells
Naujok et al. Selective removal of undifferentiated embryonic stem cells from differentiation cultures through HSV1 thymidine kinase and ganciclovir treatment
WO2019021990A1 (ja) 小腸上皮様細胞
WO2011016485A1 (ja) iPS細胞から肝実質細胞への分化誘導方法
JP6486619B2 (ja) 薬物評価用細胞及び薬物評価方法
Okamura et al. Generation of hybrid hepatocytes by cell fusion from monkey embryoid body cells in the injured mouse liver
JP7148134B2 (ja) 肝芽細胞から胆管上皮前駆細胞への段階的誘導方法
Maezawa et al. Expression of cytochrome P450 and transcription factors during in vitro differentiation of mouse embryonic stem cells into hepatocytes
Lavon Generation of hepatocytes from human embryonic stem cells
Hu et al. Hepatic differentiation of mouse ES cells into BE cells in vitro
US20240139256A1 (en) Methods for the production of cardiac fibroblasts
US20230078230A1 (en) Methods for the production of committed cardiac progenitor cells
Zhu et al. Induce pluripotency via specific distal enhancer-promoter associations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057923.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504149

Country of ref document: US