[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011046091A1 - Magnet device - Google Patents

Magnet device Download PDF

Info

Publication number
WO2011046091A1
WO2011046091A1 PCT/JP2010/067788 JP2010067788W WO2011046091A1 WO 2011046091 A1 WO2011046091 A1 WO 2011046091A1 JP 2010067788 W JP2010067788 W JP 2010067788W WO 2011046091 A1 WO2011046091 A1 WO 2011046091A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic shield
shield
substrate
curved region
Prior art date
Application number
PCT/JP2010/067788
Other languages
French (fr)
Japanese (ja)
Inventor
敬仁 渡邊
眞子 隆志
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011536127A priority Critical patent/JPWO2011046091A1/en
Publication of WO2011046091A1 publication Critical patent/WO2011046091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a magnetic device.
  • the present invention relates to a magnetic device provided with a magnetic shield.
  • a magnetic element using a magnetic substance is known.
  • a magnetoresistive element Magnetic Resistance Element
  • a typical magnetoresistive element has a structure in which a non-magnetic layer is sandwiched between two magnetic layers. One magnetic layer is a magnetization fixed layer whose magnetization direction is fixed, and the other is a magnetization free layer whose magnetization direction can be reversed.
  • the resistance value of the magnetoresistive element configured in this way is higher when the magnetization fixed layer and the magnetization free layer are antiparallel than when the magnetization directions are parallel to each other.
  • a magnetic random access memory (MRAM) and various logic circuits can be configured.
  • a magnetic shield In a magnetic device using a magnetic element, it is important to prevent the magnetization state (magnetization direction, etc.) of the magnetic material from fluctuating due to external disturbances for its normal operation.
  • a “magnetic shield” is generally used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-124538 discloses an information storage device in which the surface of a resin for sealing an MRAM chip is curved.
  • a resin mixed with high permeability powder is used for the resin sealing of the MRAM chip.
  • the periphery of the MRAM chip is hardened with a sealing resin mixed with a high magnetic permeability powder.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-309196 discloses a magnetic shield package of a magnetic nonvolatile memory element.
  • FIG. 1 shows a cross-sectional structure of the magnetic shield package.
  • the magnetic shield package 110 includes an MRAM element 111, a wire 112, a lead frame 113, and a magnetic shield 114.
  • the MRAM element 111 is connected to the lead frame 113 by a wire 112. Further, the entire periphery of the MRAM element 111 is surrounded by a hollow magnetic shield 114.
  • the magnetic shield 114 is made of an insulating soft magnetic material and has a rectangular cross-sectional shape as shown in FIG.
  • Patent Document 1 has the following problems. That is, in the information storage device described in Patent Document 1, the surface of the resin that seals the MRAM chip is curved, but the periphery of the MRAM chip is solidified with a sealing resin mixed with high magnetic permeability powder. In addition, there is no space with low magnetic permeability between the sealing resin and the MRAM chip. In the case of this structure, a shielding effect against a high-frequency magnetic field variation may be obtained, but a shielding effect against a static magnetic field cannot be obtained. This is because the magnetic flux of the static magnetic field is concentrated in the high permeability region. Since the high magnetic permeability resin surrounding the MRAM chip concentrates the magnetic flux of the static magnetic field around the MRAM chip, the MRAM chip does not have a shielding effect but rather damages the MRAM chip.
  • An object of the present invention is to provide a technique capable of further improving the shielding effect in a magnetic device including a magnetic shield.
  • a magnetic device in one aspect of the present invention, includes a substrate, at least one magnetic element mounted on the first main surface of the substrate, and a magnetic shield of a soft magnetic material disposed on the first main surface side of the substrate.
  • the magnetic shield includes a curved region that curves so as to be convex when viewed from the substrate.
  • the curved region includes at least a region where the magnetic shield and the magnetic element overlap when viewed from the top surface of the substrate.
  • the space between the magnetic shield and the magnetic element is magnetically hollow.
  • the shielding effect is further improved in the magnetic device including the magnetic shield.
  • FIG. 1 is a cross-sectional view showing a typical magnetic shield package according to the related art.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic device according to the embodiment of the present invention.
  • FIG. 3 is a perspective view showing an example of the shape of the magnetic shield according to the present embodiment.
  • FIG. 4 is a perspective view showing another example of the shape of the magnetic shield according to the present embodiment.
  • FIG. 5 is a cross-sectional view showing the structure of the magnetic device according to the present embodiment.
  • FIG. 6 is a schematic diagram for explaining the effect of the magnetic shield according to the present embodiment.
  • FIG. 7 is a schematic diagram for explaining the simulation conditions.
  • FIG. 8 is a schematic diagram for explaining the simulation conditions.
  • FIG. 9 is a graph showing the curvature dependency of the shielding effect.
  • FIG. 10 is a graph showing the thickness dependence of the shielding effect.
  • FIG. 11 is a cross-sectional view showing a first modification of the magnetic device according to the present embodiment.
  • FIG. 12 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment.
  • FIG. 13 is a cross-sectional view showing a third modification of the magnetic device according to the present embodiment.
  • FIG. 14 is a cross-sectional view showing a fourth modification of the magnetic device according to the present embodiment.
  • FIG. 15 is a cross-sectional view showing a fifth modification of the magnetic device according to the present embodiment.
  • FIG. 16 is a cross-sectional view showing an example of a package of the magnetic device according to the present embodiment.
  • FIG. 11 is a cross-sectional view showing a first modification of the magnetic device according to the present embodiment.
  • FIG. 12 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment.
  • FIG. 13 is a cross-section
  • FIG. 17 is a cross-sectional view showing another example of the package of the magnetic device according to the present embodiment.
  • FIG. 18 is a cross-sectional view showing still another example of the package of the magnetic device according to the present embodiment.
  • FIG. 19 is a perspective view showing still another example of the package of the magnetic device according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic device 1 according to the embodiment of the present invention.
  • the magnetic device 1 includes a substrate 10, a magnetic element 20, and a magnetic shield 30.
  • the direction perpendicular to the surface of the substrate 10 is the Z direction
  • the plane directions perpendicular to the Z direction are the X direction and the Y direction.
  • the substrate 10 is a member on which the magnetic element 20 is mounted.
  • Examples of the substrate 10 include a wiring substrate, a lead frame, and a semiconductor substrate.
  • the substrate 10 has a first main surface (front surface) 11 on which the magnetic element 20 is mounted, and a second main surface (back surface) 12 opposite to the first main surface 11. ing.
  • the magnetic element 20 is an element using a magnetic material.
  • Examples of the magnetic element 20 include a magnetoresistive element, an MRAM chip, and a logic circuit using the magnetoresistive element.
  • at least one magnetic element 20 is mounted on the first main surface 11 of the substrate 10.
  • the magnetic shield 30 is made of a soft magnetic material.
  • This soft magnetic material has a sufficiently high relative magnetic permeability (preferably 1000 or more).
  • the soft magnetic material include iron, nickel, silicon steel, permalloy, ferrite, amorphous magnetic alloy, and nanocrystal magnetic alloy. If there is a concern about a short circuit between the magnetic shield 30 and an internal structure such as a bonding wire, an insulating magnetic material (ferrite, etc.) may be used as the material of the magnetic shield 30.
  • the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
  • the magnetic shield 30 is at least disposed on the first main surface 11 side of the substrate 10. Furthermore, at least a part of the magnetic shield 30 is curved so as to be convex when viewed from the substrate 10.
  • the region where the magnetic shield 30 is curved is hereinafter referred to as “curved region RC”.
  • the curved region RC includes at least a region where the magnetic shield 30 and the magnetic element 20 overlap. In other words, the curved portion of the magnetic shield 30 covers the upper side of the magnetic element 20. In the example shown in FIG. 2, the curved region RC extends over the entire area of the magnetic shield 30.
  • FIG. 3 and 4 are perspective views showing examples of the shape of the magnetic shield 30.
  • the magnetic shield 30 has a dome shape.
  • the magnetic shield 30 has a tunnel shape (partial cylindrical shape).
  • the space MC between the magnetic shield 30 and the magnetic element 20 is “magnetically hollow”, and is hereinafter referred to as “magnetic cavity space MC”.
  • Magneticically hollow means that the magnetic permeability is extremely low (relative magnetic permeability ⁇ 1) compared to the magnetic shield 30 having high magnetic permeability (relative magnetic permeability> 1000).
  • the magnetic cavity space MC is physically hollow.
  • the magnetic cavity space MC may be filled with a nonmagnetic insulator 40.
  • the nonmagnetic insulator 40 is, for example, a molding resin.
  • the magnetic shield 30 has the curved region RC that is curved in a convex shape when viewed from the substrate 10. Therefore, the external magnetic field He in the Z direction is not perpendicular to the surface of the magnetic shield 30 at almost all positions in the curved region RC. As a result, as shown in FIG. 6, the magnetic flux of the external magnetic field He is efficiently guided into the high magnetic permeability magnetic shield 30 without penetrating the magnetic shield 30. In other words, the magnetic flux of the external magnetic field He is bent by the magnetic shield 30 in a direction away from the Z direction. In particular, since the curved region RC covers the magnetic element 20, the magnetic flux of the external magnetic field He is bent in a direction away from the magnetic element 20 above the magnetic element 20.
  • the magnetic permeability of the magnetic cavity space MC between the magnetic shield 30 and the magnetic element 20 is extremely lower than the magnetic permeability of the magnetic shield 30. Therefore, the magnetic flux once guided into the magnetic shield 30 having high permeability is effectively prevented from leaking into the magnetic cavity space MC.
  • the magnetic flux of the external magnetic field He reaching the vicinity of the magnetic element 20 is greatly reduced. That is, the shielding effect by the magnetic shield 30 is improved. For this reason, when an MRAM chip using a perpendicular magnetization film is employed as the magnetic element 20, the magnetic shield 30 of the present embodiment is particularly suitable.
  • the inventors of the present application have demonstrated the effect of this embodiment through simulation.
  • 7 and 8 are diagrams for explaining the simulation conditions.
  • the shape of the magnetic shield 30 is the tunnel shape (partial cylindrical shape) shown in FIG.
  • the length of the cylinder in the longitudinal direction is 20 mm.
  • the radius of curvature of the inner diameter of the cylinder is r [mm], and the curvature is 1 / r [/ mm].
  • the thickness of the magnetic shield 30 is d [mm].
  • the relative permeability of the magnetic shield 30 is 2000, and its saturation magnetization is 1 [T].
  • a magnet was disposed at a position 20 mm away from the bottom of the magnetic shield 30 in the Z direction.
  • the magnet has a plane area of 20 mm ⁇ 28 mm and a thickness of 50 mm.
  • the coercive force of the magnet is 3000 [Oe], and the residual magnetization is 4000 [G].
  • the shielding effect against the vertical magnetic field generated by this magnet was investigated.
  • FIG. 9 is a graph showing the curvature dependency of the shielding effect.
  • the vertical axis represents the vertical magnetic field [Oe] near the element, and the horizontal axis represents the curvature 1 / r [/ mm].
  • the thickness d is fixed at 0.15 mm.
  • FIG. 9 shows that the shielding effect is enhanced by curving the magnetic shield. However, if the curvature is too large, the shielding effect tends to weaken. A sufficient shielding effect is obtained when the curvature is 0.06 [/ mm] or less, which is preferable.
  • FIG. 10 is a graph showing the thickness dependence of the shielding effect.
  • the vertical axis represents the vertical magnetic field [Oe] near the element, and the horizontal axis represents the thickness d [mm].
  • the curvature radius r is fixed at 26 mm.
  • FIG. 10 shows that a certain thickness d is necessary to obtain a sufficient shielding effect.
  • the thickness d is 0.1 mm or less, the magnetic shield 30 is considered to be in a saturated state.
  • the demagnetizing field component inside the magnetic shield 30 is considered to be weak.
  • the shielding effect by the magnetic shield is improved.
  • the shielding effect is not limited to the external magnetic field in the Z direction.
  • the curved magnetic shield 30 achieves the same shielding effect for all directions.
  • FIG. 11 is a cross-sectional view showing a first modification example of the magnetic device 1.
  • the curved region RC may be only a part of the magnetic shield 30. Even in that case, the curved region RC includes at least a region where the magnetic element 20 and the magnetic shield 30 overlap.
  • FIG. 12 is a cross-sectional view showing a second modification example of the magnetic device 1.
  • magnetic shields 30 may be provided on both sides of the substrate 10 as shown in FIG. More specifically, the first magnetic shield 30A is arranged on the first main surface 11 side, and the second magnetic shield 30B is arranged on the second main surface 12 side.
  • Each of the magnetic shields 30 ⁇ / b> A and 30 ⁇ / b> B is the same as the magnetic shield 30. That is, each of the magnetic shields 30 ⁇ / b> A and 30 ⁇ / b> B is curved so as to be convex as viewed from the substrate 10.
  • the space MC between each of the magnetic shields 30A and 30B and the substrate 10 is magnetically hollow. According to this modification, the shielding effect is further improved.
  • FIG. 13 is a cross-sectional view showing a third modification of the magnetic device 1.
  • the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) is covered with an external mold resin 50. Thereby, corrosion of the magnetic shield 30 is prevented, and workability is also improved.
  • magnetic powder may be mixed in the external mold resin 50 outside the magnetic shield 30. That is, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) may be covered with the external mold resin 50 mixed with magnetic powder. Thereby, the shielding effect as a whole further increases. Further, the magnetic flux emitted from the end of the magnetic shield 30 can be collected not on the magnetic cavity space MC but on the external mold resin 50 side due to the difference in magnetic permeability. The penetration of the magnetic flux into the magnetic cavity space MC is further suppressed, which is preferable.
  • FIG. 14 is a cross-sectional view showing a fourth modified example of the magnetic device 1.
  • the magnetic shield 30 is a metal magnetic shield formed of a conductive magnetic material.
  • the metal magnetic shield 30 is grounded.
  • the ground pad 61 is provided on the substrate 10, and the metal magnetic shield 30 is electrically connected to the ground pad 61 via the solder 62.
  • the grounded metal magnetic shield 30 also serves as an electromagnetic wave shield, which is preferable.
  • FIG. 15 is a cross-sectional view showing a fifth modification of the magnetic device 1.
  • a plurality of magnetic elements 20 are mounted on the substrate 10, and the magnetic shield 30 is provided in common so as to cover all of the plurality of magnetic elements 20.
  • two MRAM chips 20-1 and 20-2 are mounted on the wiring board 10, and the magnetic shield 30 is provided in common so as to cover both of the MRAM chips 20-1 and 20-2.
  • FIG. 15 shows a mode in which two MRAM chips 20-1 and 20-2 are arranged in the X-axis direction, but a mode in which a plurality of MRAM chips are arranged in the Y-axis direction, 2 in the X-axis direction and the Y-axis direction.
  • a dimensional arrangement is also possible.
  • FIG. 16 shows an example of a BGA (Ball Grid Array) package.
  • a magnetic element 20 is mounted on a wiring board 10 having solder balls 71 as external terminals.
  • the magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film.
  • the adhesive layer 72 between the wiring board 10 and the MRAM chip 20 is DAF (Die Attach Film) or DAP (Die Attach Paste).
  • the MRAM chip 20 is electrically connected to the wiring board 10 via bonding wires 73.
  • the magnetic cavity space MC between the magnetic shield 30 and the wiring board 10 may be physically hollow or filled with a nonmagnetic insulator 40.
  • a nonmagnetic insulator 40 When a short circuit between the magnetic shield 30 and the bonding wire 73 is a concern, an insulating magnetic material (ferrite, etc.) may be used as the material of the magnetic shield 30.
  • the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
  • the magnetic shield 30 may be fixed to the wiring board 10 with an adhesive 74.
  • the adhesive 74 may be omitted.
  • the magnetic shield 30 is a metal magnetic shield, the metal magnetic shield 30 is electrically connected to the ground pad of the wiring board 10 via a conductive member (solder, conductive resin, conductive adhesive, etc.). It may be connected.
  • the outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
  • FIG. 17 shows an example of FCBGA (Flip Chip Chip Ball Grid Array) package.
  • a magnetic element 20 is mounted on a wiring board 10 having solder balls 81 as external terminals.
  • the magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film.
  • Solder bumps 82 as connection terminals are formed on the MRAM chip 20, and the MRAM chip 20 is electrically connected to the wiring substrate 10 via the solder bumps 82.
  • the magnetic cavity space MC between the magnetic shield 30 and the wiring board 10 may be physically hollow or filled with a nonmagnetic insulator 40.
  • the magnetic shield 30 may be fixed to the wiring board 10 with an adhesive 84.
  • the adhesive 84 may not be required.
  • the magnetic shield 30 is a metal magnetic shield, the metal magnetic shield 30 is electrically connected to the ground pad of the wiring board 10 via a conductive member (solder, conductive resin, conductive adhesive, etc.). It may be connected.
  • the outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
  • FIG. 18 shows an example of QFP (Quad Flat Package).
  • a magnetic element 20 is mounted on a die pad 91 corresponding to the substrate 10.
  • the magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film.
  • the adhesive layer 92 between the die pad 91 and the MRAM chip 20 is DAF or DAP.
  • the MRAM chip 20 is electrically connected to a lead frame 95 as an external terminal via a bonding wire 93.
  • the magnetic shield 30 is placed on the lead frame 95. Therefore, it is desirable that the magnetic shield 30 is formed of an insulating magnetic material, or the conductive magnetic shield 30 is coated with an insulating material.
  • the magnetic shield 30 may be fixed to the lead frame 95 with an insulating adhesive 94.
  • the magnetic cavity space MC inside the magnetic shield 30 may be physically hollow or may be filled with a nonmagnetic insulator 40.
  • the outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
  • the first magnetic shield 30A and the second magnetic shield 30B are respectively disposed on both sides of the die pad 91 (substrate 10).
  • the second magnetic shield 30B is removed, the effects of the present invention can be obtained.
  • FIG. 19 shows an example of a multichip module package.
  • a plurality of MRAM chips 20 ⁇ / b> A are mounted on the substrate 10.
  • the MRAM chip 20A and another semiconductor chip 20B may be mixedly mounted in one package.
  • the magnetic shield 30 is provided so as to cover all the chips.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Disclosed is a magnet device provided with a substrate, at least one magnet element mounted on a first principal surface of the substrate, and a soft-magnetic magnetic shield disposed on the first-principal-surface side of the substrate. The magnetic shield includes a curved region that is curved convexly, as seen from the substrate. The curved region includes at least the region where the magnetic shield and a magnet element overlap, as seen from the top surface of the substrate. The space between the magnetic shield and the magnet element is a magnetic cavity.

Description

磁性体装置Magnetic device
 本発明は、磁性体装置に関する。特に、本発明は、磁気シールドを備えた磁性体装置に関する。 The present invention relates to a magnetic device. In particular, the present invention relates to a magnetic device provided with a magnetic shield.
 磁性体を利用した磁性体素子が知られている。例えば、磁気抵抗素子(Magneto Resistance
Element)は、磁性体の磁化状態に応じて抵抗値が変わる磁性体素子である。典型的な磁気抵抗素子は、2層の磁性体層に非磁性体層が挟まれた構造を有している。一方の磁性体層は、磁化方向が固定された磁化固定層であり、他方は、磁化方向が反転可能な磁化自由層である。このように構成された磁気抵抗素子の抵抗値は、磁化固定層と磁化自由層の磁化方向が互いに平行である場合よりも、それらが反平行である場合により高くなる。このような磁気抵抗素子を利用することによって、磁気ランダムアクセスメモリ(MRAM: Magnetic Random Access Memory)や様々な論理回路を構成可能である。
A magnetic element using a magnetic substance is known. For example, a magnetoresistive element (Magneto Resistance)
Element) is a magnetic element whose resistance value changes according to the magnetization state of the magnetic substance. A typical magnetoresistive element has a structure in which a non-magnetic layer is sandwiched between two magnetic layers. One magnetic layer is a magnetization fixed layer whose magnetization direction is fixed, and the other is a magnetization free layer whose magnetization direction can be reversed. The resistance value of the magnetoresistive element configured in this way is higher when the magnetization fixed layer and the magnetization free layer are antiparallel than when the magnetization directions are parallel to each other. By using such a magnetoresistive element, a magnetic random access memory (MRAM) and various logic circuits can be configured.
 磁性体素子を用いた磁性体装置では、その正常動作のために、磁性体の磁化状態(磁化方向等)が外部擾乱によって変動することを防ぐことが重要である。そのために、一般的に、「磁気シールド(magnetic shield)」が利用される。 In a magnetic device using a magnetic element, it is important to prevent the magnetization state (magnetization direction, etc.) of the magnetic material from fluctuating due to external disturbances for its normal operation. For this purpose, a “magnetic shield” is generally used.
 特許文献1(特開2003-124538号公報)には、MRAMチップを封止する樹脂の表面が湾曲している情報記憶装置が開示されている。MRAMチップの樹脂封止には、高透磁率粉末が混合された樹脂が用いられている。言い換えれば、MRAMチップの周囲が、高透磁率粉末が混合された封止樹脂で固められている。 Patent Document 1 (Japanese Patent Laid-Open No. 2003-124538) discloses an information storage device in which the surface of a resin for sealing an MRAM chip is curved. For the resin sealing of the MRAM chip, a resin mixed with high permeability powder is used. In other words, the periphery of the MRAM chip is hardened with a sealing resin mixed with a high magnetic permeability powder.
 特許文献2(特開2003-309196号公報)には、磁気不揮発性メモリ素子の磁気シールドパッケージが開示されている。図1は、その磁気シールドパッケージの断面構造を示している。磁気シールドパッケージ110は、MRAM素子111、ワイヤ112、リードフレーム113、及び磁気シールド114を備えている。MRAM素子111は、ワイヤ112でリードフレーム113に接続されている。更に、MRAM素子111は、その周囲全体が中空の磁気シールド114に囲まれている。磁気シールド114は、絶縁性の軟磁性材料で形成され、図1に示されるように矩形の断面形状を有している。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-309196) discloses a magnetic shield package of a magnetic nonvolatile memory element. FIG. 1 shows a cross-sectional structure of the magnetic shield package. The magnetic shield package 110 includes an MRAM element 111, a wire 112, a lead frame 113, and a magnetic shield 114. The MRAM element 111 is connected to the lead frame 113 by a wire 112. Further, the entire periphery of the MRAM element 111 is surrounded by a hollow magnetic shield 114. The magnetic shield 114 is made of an insulating soft magnetic material and has a rectangular cross-sectional shape as shown in FIG.
特開2003-124538号公報JP 2003-124538 A 特開2003-309196号公報JP 2003-309196 A
 しかしながら、特許文献1に記載の技術には、以下に示すような問題点が存在する。即ち、特許文献1に記載の情報記憶装置は、MRAMチップを封止する樹脂の表面が湾曲した態様であるが、MRAMチップの周囲が高透磁率粉末が混合された封止樹脂で固められており、封止樹脂とMRAMチップの間に透磁率の低い空間が存在しない。この構造の場合、高周波の磁界変動に対するシールド効果は得られるかもしれないが、静磁界に対するシールド効果は得られない。それは、静磁界の磁束は高透磁率領域に集中するためである。MRAMチップを取り囲む高透磁率樹脂は、MRAMチップの周りに静磁界の磁束を集中させるため、そのMRAMチップに対してシールド効果ではなく、むしろダメージを与えてしまう。 However, the technique described in Patent Document 1 has the following problems. That is, in the information storage device described in Patent Document 1, the surface of the resin that seals the MRAM chip is curved, but the periphery of the MRAM chip is solidified with a sealing resin mixed with high magnetic permeability powder. In addition, there is no space with low magnetic permeability between the sealing resin and the MRAM chip. In the case of this structure, a shielding effect against a high-frequency magnetic field variation may be obtained, but a shielding effect against a static magnetic field cannot be obtained. This is because the magnetic flux of the static magnetic field is concentrated in the high permeability region. Since the high magnetic permeability resin surrounding the MRAM chip concentrates the magnetic flux of the static magnetic field around the MRAM chip, the MRAM chip does not have a shielding effect but rather damages the MRAM chip.
 一方、図1で示された特許文献2の構造の場合、MRAM素子111と磁気シールド114との間に透磁率の低い空間が存在する。しかしながら、MRAM素子111の上方において、磁気シールド114は水平(デバイス面に平行)である。このため、その水平磁気シールド114に対して垂直な外部磁界Heが印加された場合、理論的には、その外部磁界Heは磁気シールド114を貫通して、磁気シールド114より内側のMRAM素子111近傍に達してしまう。すなわち、所望のシールド効果が十分に得られない。 On the other hand, in the case of the structure of Patent Document 2 shown in FIG. 1, a space with low magnetic permeability exists between the MRAM element 111 and the magnetic shield 114. However, above the MRAM element 111, the magnetic shield 114 is horizontal (parallel to the device surface). Therefore, when an external magnetic field He perpendicular to the horizontal magnetic shield 114 is applied, theoretically, the external magnetic field He penetrates the magnetic shield 114 and is near the MRAM element 111 inside the magnetic shield 114. Will be reached. That is, the desired shielding effect cannot be obtained sufficiently.
 本発明の目的は、磁気シールドを備える磁性体装置において、シールド効果をより向上させることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of further improving the shielding effect in a magnetic device including a magnetic shield.
 本発明の1つの観点において、磁性体装置が提供される。その磁性体装置は、基板と、基板の第1主面上に搭載された少なくとも1つの磁性体素子と、基板の第1主面側に配置された軟磁性体の磁気シールドと、を備える。磁気シールドは、基板から見て凸になるように湾曲する湾曲領域を含む。その湾曲領域は、少なくとも、基板上面から見て磁気シールドと磁性体素子とがオーバーラップする領域を含む。磁気シールドと磁性体素子との間の空間は、磁気的に空洞である。 In one aspect of the present invention, a magnetic device is provided. The magnetic device includes a substrate, at least one magnetic element mounted on the first main surface of the substrate, and a magnetic shield of a soft magnetic material disposed on the first main surface side of the substrate. The magnetic shield includes a curved region that curves so as to be convex when viewed from the substrate. The curved region includes at least a region where the magnetic shield and the magnetic element overlap when viewed from the top surface of the substrate. The space between the magnetic shield and the magnetic element is magnetically hollow.
 本発明によれば、磁気シールドを備える磁性体装置において、シールド効果がより向上する。 According to the present invention, the shielding effect is further improved in the magnetic device including the magnetic shield.
 上記及び他の目的、長所、特徴は、次の図面と共に説明される本発明の実施の形態により明らかになるであろう。 The above and other objects, advantages, and features will become apparent from the embodiments of the present invention described in conjunction with the following drawings.
図1は、関連技術に係る典型的な磁気シールドパッケージを示す断面図である。FIG. 1 is a cross-sectional view showing a typical magnetic shield package according to the related art. 図2は、本発明の実施の形態に係る磁性体装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the magnetic device according to the embodiment of the present invention. 図3は、本実施の形態に係る磁気シールドの形状の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the shape of the magnetic shield according to the present embodiment. 図4は、本実施の形態に係る磁気シールドの形状の他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of the shape of the magnetic shield according to the present embodiment. 図5は、本実施の形態に係る磁性体装置の構造を示す断面図である。FIG. 5 is a cross-sectional view showing the structure of the magnetic device according to the present embodiment. 図6は、本実施の形態に係る磁気シールドによる効果を説明するための概略図である。FIG. 6 is a schematic diagram for explaining the effect of the magnetic shield according to the present embodiment. 図7は、シミュレーション条件を説明するための概略図である。FIG. 7 is a schematic diagram for explaining the simulation conditions. 図8は、シミュレーション条件を説明するための概略図である。FIG. 8 is a schematic diagram for explaining the simulation conditions. 図9は、シールド効果の曲率依存性を示すグラフである。FIG. 9 is a graph showing the curvature dependency of the shielding effect. 図10は、シールド効果の厚さ依存性を示すグラフである。FIG. 10 is a graph showing the thickness dependence of the shielding effect. 図11は、本実施の形態に係る磁性体装置の第1の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a first modification of the magnetic device according to the present embodiment. 図12は、本実施の形態に係る磁性体装置の第2の変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment. 図13は、本実施の形態に係る磁性体装置の第3の変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a third modification of the magnetic device according to the present embodiment. 図14は、本実施の形態に係る磁性体装置の第4の変形例を示す断面図である。FIG. 14 is a cross-sectional view showing a fourth modification of the magnetic device according to the present embodiment. 図15は、本実施の形態に係る磁性体装置の第5の変形例を示す断面図である。FIG. 15 is a cross-sectional view showing a fifth modification of the magnetic device according to the present embodiment. 図16は、本実施の形態に係る磁性体装置のパッケージの一例を示す断面図である。FIG. 16 is a cross-sectional view showing an example of a package of the magnetic device according to the present embodiment. 図17は、本実施の形態に係る磁性体装置のパッケージの他の例を示す断面図である。FIG. 17 is a cross-sectional view showing another example of the package of the magnetic device according to the present embodiment. 図18は、本実施の形態に係る磁性体装置のパッケージの更に他の例を示す断面図である。FIG. 18 is a cross-sectional view showing still another example of the package of the magnetic device according to the present embodiment. 図19は、本実施の形態に係る磁性体装置のパッケージの更に他の例を示す斜視図である。FIG. 19 is a perspective view showing still another example of the package of the magnetic device according to the present embodiment.
 添付図面を参照して、本発明の実施の形態に係る磁性体装置を説明する。 A magnetic device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 1.基本構造
 図2は、本発明の実施の形態に係る磁性体装置1の構造を示す断面図である。図2に示されるように、磁性体装置1は、基板10、磁性体素子20、及び磁気シールド30を備えている。以下の説明において、基板10の表面に垂直な方向はZ方向であり、Z方向に直交する平面方向は、X方向及びY方向である。
1. Basic Structure FIG. 2 is a cross-sectional view showing the structure of the magnetic device 1 according to the embodiment of the present invention. As shown in FIG. 2, the magnetic device 1 includes a substrate 10, a magnetic element 20, and a magnetic shield 30. In the following description, the direction perpendicular to the surface of the substrate 10 is the Z direction, and the plane directions perpendicular to the Z direction are the X direction and the Y direction.
 基板10は、磁性体素子20が搭載される部材である。基板10としては、配線基板、リードフレーム、半導体基板などが挙げられる。図2に示されるように、基板10は、磁性体素子20が搭載される第1主面(表面)11と、第1主面11の逆側の第2主面(裏面)12を有している。 The substrate 10 is a member on which the magnetic element 20 is mounted. Examples of the substrate 10 include a wiring substrate, a lead frame, and a semiconductor substrate. As shown in FIG. 2, the substrate 10 has a first main surface (front surface) 11 on which the magnetic element 20 is mounted, and a second main surface (back surface) 12 opposite to the first main surface 11. ing.
 磁性体素子20は、磁性体を利用した素子である。磁性体素子20としては、磁気抵抗素子、MRAMチップ、磁気抵抗素子を利用した論理回路などが挙げられる。本実施の形態では、少なくとも1つの磁性体素子20が、基板10の第1主面11上に搭載される。 The magnetic element 20 is an element using a magnetic material. Examples of the magnetic element 20 include a magnetoresistive element, an MRAM chip, and a logic circuit using the magnetoresistive element. In the present embodiment, at least one magnetic element 20 is mounted on the first main surface 11 of the substrate 10.
 磁気シールド30は、軟磁性体材料で形成されている。この軟磁性体材料は、十分に高い比透磁率(好ましくは、1000以上)を有している。軟磁性体材料としては、鉄、ニッケル、珪素鋼、パーマロイ、フェライト、アモルファス磁性合金、ナノクリスタル磁性合金などが挙げられる。尚、磁気シールド30とボンディングワイヤ等の内部構造との間のショートが懸念される場合、磁気シールド30の材料として、絶縁性磁性体(フェライト、等)が用いられてもよい。あるいは、導電性磁性体の磁気シールド30の表面が、絶縁体でコーティングされてもよい。 The magnetic shield 30 is made of a soft magnetic material. This soft magnetic material has a sufficiently high relative magnetic permeability (preferably 1000 or more). Examples of the soft magnetic material include iron, nickel, silicon steel, permalloy, ferrite, amorphous magnetic alloy, and nanocrystal magnetic alloy. If there is a concern about a short circuit between the magnetic shield 30 and an internal structure such as a bonding wire, an insulating magnetic material (ferrite, etc.) may be used as the material of the magnetic shield 30. Alternatively, the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
 図2に示されるように、磁気シールド30は、基板10の第1主面11側に少なくとも配置されている。更に、磁気シールド30の少なくとも一部分は、基板10から見て凸になるように湾曲している。磁気シールド30が湾曲している領域は、以下「湾曲領域RC」と参照される。本実施の形態では、湾曲領域RCは、少なくとも、磁気シールド30と磁性体素子20とがオーバーラップしている領域を含む。言い換えれば、磁気シールド30の湾曲部分が、磁性体素子20の上方を覆っている。図2で示された例では、湾曲領域RCは、磁気シールド30の全域にわたっている。 As shown in FIG. 2, the magnetic shield 30 is at least disposed on the first main surface 11 side of the substrate 10. Furthermore, at least a part of the magnetic shield 30 is curved so as to be convex when viewed from the substrate 10. The region where the magnetic shield 30 is curved is hereinafter referred to as “curved region RC”. In the present embodiment, the curved region RC includes at least a region where the magnetic shield 30 and the magnetic element 20 overlap. In other words, the curved portion of the magnetic shield 30 covers the upper side of the magnetic element 20. In the example shown in FIG. 2, the curved region RC extends over the entire area of the magnetic shield 30.
 図3及び図4は、磁気シールド30の形状の例を示す斜視図である。図3の例では、磁気シールド30はドーム形状を有している。図4の例では、磁気シールド30は、トンネル形状(部分円筒形状)を有している。 3 and 4 are perspective views showing examples of the shape of the magnetic shield 30. FIG. In the example of FIG. 3, the magnetic shield 30 has a dome shape. In the example of FIG. 4, the magnetic shield 30 has a tunnel shape (partial cylindrical shape).
 再度図2を参照して説明する。磁気シールド30と磁性体素子20との間の空間MCは、“磁気的に空洞”であり、以下「磁気空洞空間MC」と参照される。“磁気的に空洞”とは、高透磁率の磁気シールド30(比透磁率>1000)に比べて、透磁率が極めて低い(比透磁率~1)ことを意味する。例えば、図2に示されるように、磁気空洞空間MCは、物理的に空洞である。あるいは、図5に示されるように、磁気空洞空間MCは、非磁性絶縁体40で充填されていてもよい。非磁性絶縁体40は、例えば、モールド樹脂(molding compound)である。 Explanation will be made with reference to FIG. 2 again. The space MC between the magnetic shield 30 and the magnetic element 20 is “magnetically hollow”, and is hereinafter referred to as “magnetic cavity space MC”. “Magnetically hollow” means that the magnetic permeability is extremely low (relative magnetic permeability˜1) compared to the magnetic shield 30 having high magnetic permeability (relative magnetic permeability> 1000). For example, as shown in FIG. 2, the magnetic cavity space MC is physically hollow. Alternatively, as shown in FIG. 5, the magnetic cavity space MC may be filled with a nonmagnetic insulator 40. The nonmagnetic insulator 40 is, for example, a molding resin.
 2.作用、効果
 図6を参照して、本実施の形態に係る構造による効果を説明する。ここでは、デバイス面(基板10の表面)に垂直なZ方向の外部磁界Heを考える。
2. Action and Effect With reference to FIG. 6, the effect of the structure according to the present embodiment will be described. Here, an external magnetic field He in the Z direction perpendicular to the device surface (the surface of the substrate 10) is considered.
 上述の通り、磁気シールド30は、基板10から見て凸形状に湾曲した湾曲領域RCを有している。従って、湾曲領域RCのほとんど全ての位置で、Z方向の外部磁界Heが磁気シールド30の表面に対して垂直でなくなる。その結果、図6に示されるように、外部磁界Heの磁束は、磁気シールド30を貫通することなく、高透磁率の磁気シールド30内部に効率的にガイドされる。言い換えれば、外部磁界Heの磁束は、磁気シールド30によって、Z方向から離れる方向に曲げられる。特に、湾曲領域RCは磁性体素子20の上方を覆っているため、外部磁界Heの磁束は、磁性体素子20の上方において、磁性体素子20から離れる方向に曲げられる。 As described above, the magnetic shield 30 has the curved region RC that is curved in a convex shape when viewed from the substrate 10. Therefore, the external magnetic field He in the Z direction is not perpendicular to the surface of the magnetic shield 30 at almost all positions in the curved region RC. As a result, as shown in FIG. 6, the magnetic flux of the external magnetic field He is efficiently guided into the high magnetic permeability magnetic shield 30 without penetrating the magnetic shield 30. In other words, the magnetic flux of the external magnetic field He is bent by the magnetic shield 30 in a direction away from the Z direction. In particular, since the curved region RC covers the magnetic element 20, the magnetic flux of the external magnetic field He is bent in a direction away from the magnetic element 20 above the magnetic element 20.
 更に、磁気シールド30と磁性体素子20との間の磁気空洞空間MCの透磁率は、磁気シールド30の透磁率に比べて極めて低い。従って、高透磁率の磁気シールド30内部に一旦ガイドされた磁束が、磁気空洞空間MCに漏れ出すことが効果的に防止される。このように、本実施の形態によれば、磁性体素子20の近傍にまで到達する外部磁界Heの磁束が大幅に低減される。すなわち、磁気シールド30によるシールド効果が向上する。このため、磁性体素子20として垂直磁化膜を利用したMRAMチップを採用した場合、本実施の形態の磁気シールド30は特に好適である。 Furthermore, the magnetic permeability of the magnetic cavity space MC between the magnetic shield 30 and the magnetic element 20 is extremely lower than the magnetic permeability of the magnetic shield 30. Therefore, the magnetic flux once guided into the magnetic shield 30 having high permeability is effectively prevented from leaking into the magnetic cavity space MC. Thus, according to the present embodiment, the magnetic flux of the external magnetic field He reaching the vicinity of the magnetic element 20 is greatly reduced. That is, the shielding effect by the magnetic shield 30 is improved. For this reason, when an MRAM chip using a perpendicular magnetization film is employed as the magnetic element 20, the magnetic shield 30 of the present embodiment is particularly suitable.
 本願発明者らは、シミュレーションを通して、本実施の形態による効果を実証した。図7及び図8は、シミュレーション条件を説明するための図である。磁気シールド30の形状は、図4で示されたトンネル形状(部分円筒形状)である。円筒の長手方向の長さは20mmである。円筒の内径の曲率半径はr[mm]であり、その曲率は1/r[/mm]である。磁気シールド30の厚さはd[mm]である。磁気シールド30の比透磁率は2000であり、その飽和磁化は1[T]である。また、磁気シールド30の底部からZ方向に20mm離れた位置に、磁石が配置された。その磁石の平面積は20mm×28mmであり、その厚さは50mmである。その磁石の保磁力は3000[Oe]であり、残留磁化は4000[G]である。この磁石により生成される垂直磁界に対するシールド効果が調べられた。 The inventors of the present application have demonstrated the effect of this embodiment through simulation. 7 and 8 are diagrams for explaining the simulation conditions. The shape of the magnetic shield 30 is the tunnel shape (partial cylindrical shape) shown in FIG. The length of the cylinder in the longitudinal direction is 20 mm. The radius of curvature of the inner diameter of the cylinder is r [mm], and the curvature is 1 / r [/ mm]. The thickness of the magnetic shield 30 is d [mm]. The relative permeability of the magnetic shield 30 is 2000, and its saturation magnetization is 1 [T]. A magnet was disposed at a position 20 mm away from the bottom of the magnetic shield 30 in the Z direction. The magnet has a plane area of 20 mm × 28 mm and a thickness of 50 mm. The coercive force of the magnet is 3000 [Oe], and the residual magnetization is 4000 [G]. The shielding effect against the vertical magnetic field generated by this magnet was investigated.
 図9は、シールド効果の曲率依存性を示すグラフである。縦軸は素子近傍の垂直磁界[Oe]を表し、横軸は曲率1/r[/mm]を表している。厚さdは0.15mmに固定されている。曲率1/r=0の場合は、図1で示された水平の磁気シールドに相当する。図9から、磁気シールドを湾曲させることによってシールド効果が高まっていることが分かる。但し、曲率があまりにも大きくなり過ぎると、シールド効果が弱くなる傾向もある。曲率が0.06[/mm]以下であると十分なシールド効果が得られ、好適である。 FIG. 9 is a graph showing the curvature dependency of the shielding effect. The vertical axis represents the vertical magnetic field [Oe] near the element, and the horizontal axis represents the curvature 1 / r [/ mm]. The thickness d is fixed at 0.15 mm. The curvature 1 / r = 0 corresponds to the horizontal magnetic shield shown in FIG. FIG. 9 shows that the shielding effect is enhanced by curving the magnetic shield. However, if the curvature is too large, the shielding effect tends to weaken. A sufficient shielding effect is obtained when the curvature is 0.06 [/ mm] or less, which is preferable.
 図10は、シールド効果の厚さ依存性を示すグラフである。縦軸は素子近傍の垂直磁界[Oe]を表し、横軸は厚さd[mm]を表している。曲率半径rは26mmに固定されている。図10から、十分なシールド効果を得るためには、ある程度の厚さdが必要であることが分かる。厚さdが0.1mm以下の場合、磁気シールド30は飽和状態にあると考えられる。一方、厚さdが5mm以上になると、磁気シールド30内部の反磁界成分が弱くなると考えられる。 FIG. 10 is a graph showing the thickness dependence of the shielding effect. The vertical axis represents the vertical magnetic field [Oe] near the element, and the horizontal axis represents the thickness d [mm]. The curvature radius r is fixed at 26 mm. FIG. 10 shows that a certain thickness d is necessary to obtain a sufficient shielding effect. When the thickness d is 0.1 mm or less, the magnetic shield 30 is considered to be in a saturated state. On the other hand, when the thickness d is 5 mm or more, the demagnetizing field component inside the magnetic shield 30 is considered to be weak.
 以上に説明されたように、本実施の形態によれば、磁気シールドによるシールド効果が向上する。尚、シールド効果は、Z方向の外部磁界に対してだけに限られない。湾曲した磁気シールド30によって、全方位に対するシールド効果が同様に実現される。 As described above, according to the present embodiment, the shielding effect by the magnetic shield is improved. The shielding effect is not limited to the external magnetic field in the Z direction. The curved magnetic shield 30 achieves the same shielding effect for all directions.
 3.変形例
 3-1.第1の変形例
 図11は、磁性体装置1の第1の変形例を示す断面図である。図11に示されるように、湾曲領域RCは、磁気シールド30のうち一部分だけであってもよい。その場合でも、湾曲領域RCは、磁性体素子20と磁気シールド30とがオーバーラップする領域を少なくとも含んでいる。
3. Modified example 3-1. First Modification Example FIG. 11 is a cross-sectional view showing a first modification example of the magnetic device 1. As shown in FIG. 11, the curved region RC may be only a part of the magnetic shield 30. Even in that case, the curved region RC includes at least a region where the magnetic element 20 and the magnetic shield 30 overlap.
 3-2.第2の変形例
 図12は、磁性体装置1の第2の変形例を示す断面図である。パッケージ構造が許せば、図12に示されるように、基板10の両側に磁気シールド30が設けられてもよい。より詳細には、第1磁気シールド30Aが第1主面11側に配置され、第2磁気シールド30Bが第2主面12側に配置されている。磁気シールド30A、30Bの各々は、磁気シールド30と同様である。すなわち、磁気シールド30A、30Bの各々は、基板10から見て凸になるように湾曲している。更に、磁気シールド30A、30Bの各々と基板10との間の空間MCは、磁気的に空洞である。本変形例によれば、シールド効果が更に向上する。
3-2. Second Modification Example FIG. 12 is a cross-sectional view showing a second modification example of the magnetic device 1. If the package structure permits, magnetic shields 30 may be provided on both sides of the substrate 10 as shown in FIG. More specifically, the first magnetic shield 30A is arranged on the first main surface 11 side, and the second magnetic shield 30B is arranged on the second main surface 12 side. Each of the magnetic shields 30 </ b> A and 30 </ b> B is the same as the magnetic shield 30. That is, each of the magnetic shields 30 </ b> A and 30 </ b> B is curved so as to be convex as viewed from the substrate 10. Furthermore, the space MC between each of the magnetic shields 30A and 30B and the substrate 10 is magnetically hollow. According to this modification, the shielding effect is further improved.
 3-3.第3の変形例
 磁気シールド30の外周面は露出していてもよいが、腐食防止や加工性を考えると、磁気シールド30の外側も樹脂封止した方が望ましい。図13は、磁性体装置1の第3の変形例を示す断面図である。図13において、磁気シールド30の外周面(磁気空洞空間MC側と逆側の面)は、外部モールド樹脂50によって覆われている。これにより、磁気シールド30の腐食が防止され、また、加工性も向上する。
3-3. Third Modification Although the outer peripheral surface of the magnetic shield 30 may be exposed, it is desirable that the outer side of the magnetic shield 30 is also resin-sealed in view of corrosion prevention and workability. FIG. 13 is a cross-sectional view showing a third modification of the magnetic device 1. In FIG. 13, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) is covered with an external mold resin 50. Thereby, corrosion of the magnetic shield 30 is prevented, and workability is also improved.
 更に、磁気シールド30の外側の外部モールド樹脂50には、磁性体粉が混合されていてもよい。すなわち、磁気シールド30の外周面(磁気空洞空間MC側と逆側の面)は、磁性体粉が混合された外部モールド樹脂50によって覆われていてもよい。これにより、全体としてのシールド効果が更に高まる。また、磁気シールド30の端部から放出される磁束を、透磁率の差により、磁気空洞空間MCではなく外部モールド樹脂50側に集めることができる。磁束の磁気空洞空間MCへの侵入が更に抑制され、好適である。 Furthermore, magnetic powder may be mixed in the external mold resin 50 outside the magnetic shield 30. That is, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) may be covered with the external mold resin 50 mixed with magnetic powder. Thereby, the shielding effect as a whole further increases. Further, the magnetic flux emitted from the end of the magnetic shield 30 can be collected not on the magnetic cavity space MC but on the external mold resin 50 side due to the difference in magnetic permeability. The penetration of the magnetic flux into the magnetic cavity space MC is further suppressed, which is preferable.
 3-4.第4の変形例
 図14は、磁性体装置1の第4の変形例を示す断面図である。本変形例において、磁気シールド30は、導電性磁性材料で形成された金属磁気シールドである。そして、その金属磁気シールド30が接地されている。例えば、基板10上にグランドパッド61が設けられ、金属磁気シールド30は半田62を介してそのグランドパッド61に電気的に接続される。このように接地した金属磁気シールド30は、電磁波シールドの役割も果たすことになり、好適である。
3-4. Fourth Modified Example FIG. 14 is a cross-sectional view showing a fourth modified example of the magnetic device 1. In this modification, the magnetic shield 30 is a metal magnetic shield formed of a conductive magnetic material. The metal magnetic shield 30 is grounded. For example, the ground pad 61 is provided on the substrate 10, and the metal magnetic shield 30 is electrically connected to the ground pad 61 via the solder 62. The grounded metal magnetic shield 30 also serves as an electromagnetic wave shield, which is preferable.
 3-5.第5の変形例
 図15は、磁性体装置1の第5の変形例を示す断面図である。本変形例において、基板10上には複数の磁性体素子20が搭載され、磁気シールド30はそれら複数の磁性体素子20の全てをカバーするように共通に設けられる。例えば、配線基板10上に2つのMRAMチップ20-1、20-2が搭載され、磁気シールド30はそれらMRAMチップ20-1、20-2の両方をカバーするように共通に設けられる。
3-5. Fifth Modification FIG. 15 is a cross-sectional view showing a fifth modification of the magnetic device 1. In this modification, a plurality of magnetic elements 20 are mounted on the substrate 10, and the magnetic shield 30 is provided in common so as to cover all of the plurality of magnetic elements 20. For example, two MRAM chips 20-1 and 20-2 are mounted on the wiring board 10, and the magnetic shield 30 is provided in common so as to cover both of the MRAM chips 20-1 and 20-2.
 なお、図15は2つのMRAMチップ20-1、20-2がX軸方向に並んだ態様であるが、複数のMRAMチップがY軸方向に並んだ態様、X軸方向及びY軸方向に2次元的に並んだ態様も、もちろん可能である。 FIG. 15 shows a mode in which two MRAM chips 20-1 and 20-2 are arranged in the X-axis direction, but a mode in which a plurality of MRAM chips are arranged in the Y-axis direction, 2 in the X-axis direction and the Y-axis direction. Of course, a dimensional arrangement is also possible.
 矛盾しない限りにおいて、上述の変形例同士の組み合わせも可能である。 As long as there is no contradiction, combinations of the above-described modifications are possible.
 4.パッケージ例
 以下、本発明が適用された磁気シールドパッケージの様々な例を説明する。
4). Package Examples Hereinafter, various examples of the magnetic shield package to which the present invention is applied will be described.
 図16は、BGA(Ball Grid Array)パッケージの例を示している。外部端子としての半田ボール(Solder Ball)71を有する配線基板10上に、磁性体素子20が搭載されている。磁性体素子20は、例えば、垂直磁化膜を利用したMRAMチップである。配線基板10とMRAMチップ20との間の接着層72は、DAF(Die Attach Film)あるいはDAP(Die Attach Paste)である。MRAMチップ20は、ボンディングワイヤ73を介して、配線基板10に電気的に接続されている。 FIG. 16 shows an example of a BGA (Ball Grid Array) package. A magnetic element 20 is mounted on a wiring board 10 having solder balls 71 as external terminals. The magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film. The adhesive layer 72 between the wiring board 10 and the MRAM chip 20 is DAF (Die Attach Film) or DAP (Die Attach Paste). The MRAM chip 20 is electrically connected to the wiring board 10 via bonding wires 73.
 磁気シールド30と配線基板10との間の磁気空洞空間MCは、物理的に空洞であってもよいし、非磁性絶縁体40で充填されていてもよい。磁気シールド30とボンディングワイヤ73との間のショートが懸念される場合、磁気シールド30の材料として、絶縁性磁性体(フェライト、等)が用いられてもよい。あるいは、導電性磁性体の磁気シールド30の表面が、絶縁体でコーティングされてもよい。 The magnetic cavity space MC between the magnetic shield 30 and the wiring board 10 may be physically hollow or filled with a nonmagnetic insulator 40. When a short circuit between the magnetic shield 30 and the bonding wire 73 is a concern, an insulating magnetic material (ferrite, etc.) may be used as the material of the magnetic shield 30. Alternatively, the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
 磁気シールド30は、接着剤74で配線基板10に固定されてもよい。磁気空洞空間MCが非磁性絶縁体40で充填される場合、接着剤74はなくてもよい。あるいは、磁気シールド30が金属磁気シールドである場合、その金属磁気シールド30は、導電部材(半田、導電性樹脂、導電性接着剤、等)を介して、配線基板10のグランドパッドに電気的に接続されてもよい。磁気シールド30の外周面は、磁性体粉が混合された外部モールド樹脂50によって覆われていてもよい。 The magnetic shield 30 may be fixed to the wiring board 10 with an adhesive 74. When the magnetic cavity space MC is filled with the nonmagnetic insulator 40, the adhesive 74 may be omitted. Alternatively, when the magnetic shield 30 is a metal magnetic shield, the metal magnetic shield 30 is electrically connected to the ground pad of the wiring board 10 via a conductive member (solder, conductive resin, conductive adhesive, etc.). It may be connected. The outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
 図17は、FCBGA(Flip Chip Ball Grid Array)パッケージの例を示している。外部端子としての半田ボール81を有する配線基板10上に、磁性体素子20が搭載されている。磁性体素子20は、例えば、垂直磁化膜を利用したMRAMチップである。MRAMチップ20上には接続端子としての半田バンプ82が形成されており、MRAMチップ20は、その半田バンプ82を介して、配線基板10に電気的に接続されている。 FIG. 17 shows an example of FCBGA (Flip Chip Chip Ball Grid Array) package. A magnetic element 20 is mounted on a wiring board 10 having solder balls 81 as external terminals. The magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film. Solder bumps 82 as connection terminals are formed on the MRAM chip 20, and the MRAM chip 20 is electrically connected to the wiring substrate 10 via the solder bumps 82.
 磁気シールド30と配線基板10との間の磁気空洞空間MCは、物理的に空洞であってもよいし、非磁性絶縁体40で充填されていてもよい。磁気シールド30は、接着剤84で配線基板10に固定されてもよい。磁気空洞空間MCが非磁性絶縁体40で充填される場合、接着剤84はなくてもよい。あるいは、磁気シールド30が金属磁気シールドである場合、その金属磁気シールド30は、導電部材(半田、導電性樹脂、導電性接着剤、等)を介して、配線基板10のグランドパッドに電気的に接続されてもよい。磁気シールド30の外周面は、磁性体粉が混合された外部モールド樹脂50によって覆われていてもよい。 The magnetic cavity space MC between the magnetic shield 30 and the wiring board 10 may be physically hollow or filled with a nonmagnetic insulator 40. The magnetic shield 30 may be fixed to the wiring board 10 with an adhesive 84. When the magnetic cavity space MC is filled with the nonmagnetic insulator 40, the adhesive 84 may not be required. Alternatively, when the magnetic shield 30 is a metal magnetic shield, the metal magnetic shield 30 is electrically connected to the ground pad of the wiring board 10 via a conductive member (solder, conductive resin, conductive adhesive, etc.). It may be connected. The outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
 図18は、QFP(Quad Flat Package)の例を示している。基板10に相当するダイパッド91上に、磁性体素子20が搭載されている。磁性体素子20は、例えば、垂直磁化膜を利用したMRAMチップである。ダイパッド91とMRAMチップ20との間の接着層92は、DAFあるいはDAPである。MRAMチップ20は、ボンディングワイヤ93を介して、外部端子としてのリードフレーム(lead frame)95に電気的に接続されている。 FIG. 18 shows an example of QFP (Quad Flat Package). A magnetic element 20 is mounted on a die pad 91 corresponding to the substrate 10. The magnetic element 20 is, for example, an MRAM chip using a perpendicular magnetization film. The adhesive layer 92 between the die pad 91 and the MRAM chip 20 is DAF or DAP. The MRAM chip 20 is electrically connected to a lead frame 95 as an external terminal via a bonding wire 93.
 磁気シールド30は、リードフレーム95上に載置される。従って、磁気シールド30は絶縁性磁性体で形成される、あるいは、導電性の磁気シールド30が絶縁体でコーティングされることが望ましい。磁気シールド30は、絶縁性の接着剤94でリードフレーム95に固定されてもよい。磁気シールド30の内側の磁気空洞空間MCは、物理的に空洞であってもよいし、非磁性絶縁体40で充填されていてもよい。磁気シールド30の外周面は、磁性体粉が混合された外部モールド樹脂50によって覆われていてもよい。 The magnetic shield 30 is placed on the lead frame 95. Therefore, it is desirable that the magnetic shield 30 is formed of an insulating magnetic material, or the conductive magnetic shield 30 is coated with an insulating material. The magnetic shield 30 may be fixed to the lead frame 95 with an insulating adhesive 94. The magnetic cavity space MC inside the magnetic shield 30 may be physically hollow or may be filled with a nonmagnetic insulator 40. The outer peripheral surface of the magnetic shield 30 may be covered with an external mold resin 50 mixed with magnetic powder.
 図18に示されるように、ダイパッド91(基板10)の両側に、第1磁気シールド30Aと第2磁気シールド30Bがそれぞれ配置されると好適である。当然、第2磁気シールド30Bが除かれても、本発明の効果は得られる。 As shown in FIG. 18, it is preferable that the first magnetic shield 30A and the second magnetic shield 30B are respectively disposed on both sides of the die pad 91 (substrate 10). Of course, even if the second magnetic shield 30B is removed, the effects of the present invention can be obtained.
 図19は、マルチチップモジュールパッケージの例を示している。例えば、基板10上に、複数のMRAMチップ20Aが搭載される。また、1パッケージ内に、MRAMチップ20Aと他の半導体チップ20Bが混載されていてもよい。いずれの場合であっても、磁気シールド30は全てのチップをカバーするように設けられる。 FIG. 19 shows an example of a multichip module package. For example, a plurality of MRAM chips 20 </ b> A are mounted on the substrate 10. Further, the MRAM chip 20A and another semiconductor chip 20B may be mixedly mounted in one package. In either case, the magnetic shield 30 is provided so as to cover all the chips.
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。 The embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed by those skilled in the art without departing from the gist.
 本出願は、2009年10月13日に出願された日本国特許出願2009-236326を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-236326 filed on Oct. 13, 2009, the entire disclosure of which is incorporated herein.

Claims (7)

  1.  基板と、
     前記基板の第1主面上に搭載された少なくとも1つの磁性体素子と、
     前記基板の前記第1主面側に配置された軟磁性体の磁気シールドと
     を備え、
     前記磁気シールドは、前記基板から見て凸になるように湾曲する湾曲領域を含み、
     前記湾曲領域は、少なくとも、前記基板上面から見て前記磁気シールドと前記磁性体素子とがオーバーラップする領域を含み、
     前記磁気シールドと前記磁性体素子との間の空間は、磁気的に空洞である
     磁性体装置。
    A substrate,
    At least one magnetic element mounted on the first main surface of the substrate;
    A magnetic shield of soft magnetic material disposed on the first main surface side of the substrate,
    The magnetic shield includes a curved region that curves so as to be convex when viewed from the substrate,
    The curved region includes at least a region where the magnetic shield and the magnetic element overlap when viewed from the upper surface of the substrate,
    A space between the magnetic shield and the magnetic element is a magnetic cavity.
  2.  請求項1に記載の磁性体装置であって、
     前記磁気シールドと前記磁性体素子との間には非磁性絶縁体が充填されている、または、前記磁気シールドと前記磁性体素子の間の空間は空洞である
     磁性体装置。
    The magnetic device according to claim 1,
    A nonmagnetic insulator is filled between the magnetic shield and the magnetic element, or a space between the magnetic shield and the magnetic element is a cavity.
  3.  請求項1又は2に記載の磁性体装置であって、
     前記磁気シールドの前記空間と逆側の面は、磁性体粉が混合された外部モールド樹脂によって覆われている
     磁性体装置。
    The magnetic device according to claim 1 or 2,
    The surface of the magnetic shield opposite to the space is covered with an external mold resin mixed with magnetic powder.
  4.  請求項1乃至3のいずれか一項に記載の磁性体装置であって、
     前記磁気シールドは、導電性磁性材料で形成され、且つ、接地されている
     磁性体装置。
    A magnetic device according to any one of claims 1 to 3,
    The magnetic shield is formed of a conductive magnetic material and is grounded.
  5.  請求項1乃至4のいずれか一項に記載の磁性体装置であって、
     前記磁性体素子の数は複数であり、
     前記湾曲領域は、前記複数の磁性体素子の全てをカバーする
     磁性体装置。
    The magnetic device according to any one of claims 1 to 4, wherein
    The number of the magnetic elements is plural,
    The curved region covers all of the plurality of magnetic elements.
  6.  請求項1乃至5のいずれか一項に記載の磁性体装置であって、
     前記湾曲領域は、前記磁気シールドの全域にわたる
     磁性体装置。
    It is a magnetic body device according to any one of claims 1 to 5,
    The curved region extends over the entire area of the magnetic shield.
  7.  請求項1乃至6のいずれか一項に記載の磁性体装置であって、
     更に、軟磁性体の他の磁気シールドを備え、
     前記他の磁気シールドは、前記基板の前記第1主面と逆側の第2主面側に配置され、
     前記他の磁気シールドは、前記基板から見て凸になるように湾曲する他の湾曲領域を備え、
     前記他の磁気シールドと前記基板との間の空間は、磁気的に空洞である
     磁性体装置。
    A magnetic device according to any one of claims 1 to 6,
    In addition, it has another magnetic shield of soft magnetic material,
    The other magnetic shield is disposed on the second main surface side opposite to the first main surface of the substrate,
    The other magnetic shield includes another curved region that curves so as to be convex when viewed from the substrate,
    A space between the other magnetic shield and the substrate is magnetically hollow.
PCT/JP2010/067788 2009-10-13 2010-10-08 Magnet device WO2011046091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011536127A JPWO2011046091A1 (en) 2009-10-13 2010-10-08 Magnetic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009236326 2009-10-13
JP2009-236326 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011046091A1 true WO2011046091A1 (en) 2011-04-21

Family

ID=43876141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067788 WO2011046091A1 (en) 2009-10-13 2010-10-08 Magnet device

Country Status (2)

Country Link
JP (1) JPWO2011046091A1 (en)
WO (1) WO2011046091A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145844A (en) * 2012-01-16 2013-07-25 Dainippon Printing Co Ltd Semiconductor device
JP2014036192A (en) * 2012-08-10 2014-02-24 Toshiba Corp Nonvolatile semiconductor storage device
JP2015053450A (en) * 2013-09-09 2015-03-19 株式会社東芝 Semiconductor device and manufacturing method of the same
JP2015065223A (en) * 2013-09-24 2015-04-09 株式会社東芝 Semiconductor device and method of manufacturing the same
JP2016148687A (en) * 2016-05-27 2016-08-18 株式会社東芝 Element package and electric circuit
JP2016171114A (en) * 2015-03-11 2016-09-23 新光電気工業株式会社 Semiconductor device
JP2017167021A (en) * 2016-03-17 2017-09-21 Tdk株式会社 Magnetic sensor
US10070230B2 (en) 2012-11-20 2018-09-04 Kabushiki Kaisha Toshiba Microphone package
EP4421867A1 (en) * 2023-02-27 2024-08-28 GLOBALFOUNDRIES Singapore Pte. Ltd. Magnetic shields for integrated circuits

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214691A (en) * 1990-01-18 1991-09-19 Fujitsu Ltd Integrated circuit mounting structure of flexible printed board
WO1997040654A1 (en) * 1996-04-24 1997-10-30 Okamura, Susumu Semiconductor device
JP2003124538A (en) * 2001-10-16 2003-04-25 Sony Corp Information storage device and electronic equipment mounted with the same information storage device
JP2003309196A (en) * 2002-04-16 2003-10-31 Sony Corp Magnetic shielding package for magnetic nonvolatile memory element
JP2004349476A (en) * 2003-05-22 2004-12-09 Toshiba Corp Semiconductor device
JP2005531928A (en) * 2002-06-28 2005-10-20 モトローラ・インコーポレイテッド Magnetic shielding of electronic circuits containing magnetic materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258980A (en) * 2009-04-28 2010-11-11 Alps Green Devices Co Ltd Magnetic coupling type isolator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214691A (en) * 1990-01-18 1991-09-19 Fujitsu Ltd Integrated circuit mounting structure of flexible printed board
WO1997040654A1 (en) * 1996-04-24 1997-10-30 Okamura, Susumu Semiconductor device
JP2003124538A (en) * 2001-10-16 2003-04-25 Sony Corp Information storage device and electronic equipment mounted with the same information storage device
JP2003309196A (en) * 2002-04-16 2003-10-31 Sony Corp Magnetic shielding package for magnetic nonvolatile memory element
JP2005531928A (en) * 2002-06-28 2005-10-20 モトローラ・インコーポレイテッド Magnetic shielding of electronic circuits containing magnetic materials
JP2004349476A (en) * 2003-05-22 2004-12-09 Toshiba Corp Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145844A (en) * 2012-01-16 2013-07-25 Dainippon Printing Co Ltd Semiconductor device
JP2014036192A (en) * 2012-08-10 2014-02-24 Toshiba Corp Nonvolatile semiconductor storage device
US10070230B2 (en) 2012-11-20 2018-09-04 Kabushiki Kaisha Toshiba Microphone package
JP2015053450A (en) * 2013-09-09 2015-03-19 株式会社東芝 Semiconductor device and manufacturing method of the same
JP2015065223A (en) * 2013-09-24 2015-04-09 株式会社東芝 Semiconductor device and method of manufacturing the same
JP2016171114A (en) * 2015-03-11 2016-09-23 新光電気工業株式会社 Semiconductor device
US9659880B2 (en) 2015-03-11 2017-05-23 Shinko Electric Industries Co., Ltd. Semiconductor device
JP2017167021A (en) * 2016-03-17 2017-09-21 Tdk株式会社 Magnetic sensor
WO2017158900A1 (en) * 2016-03-17 2017-09-21 Tdk株式会社 Magnetic sensor
CN108780128A (en) * 2016-03-17 2018-11-09 Tdk株式会社 Magnetic sensor
JP2016148687A (en) * 2016-05-27 2016-08-18 株式会社東芝 Element package and electric circuit
EP4421867A1 (en) * 2023-02-27 2024-08-28 GLOBALFOUNDRIES Singapore Pte. Ltd. Magnetic shields for integrated circuits

Also Published As

Publication number Publication date
JPWO2011046091A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2011046091A1 (en) Magnet device
US6962833B2 (en) Magnetic shield for integrated circuit packaging
JP6010005B2 (en) Semiconductor device and manufacturing method thereof
US20120309131A1 (en) Semiconductor device and method of manufacturing same
US6984867B2 (en) Magnetic memory device
KR20070001015A (en) Magnetic shielding of mram chips
KR101217920B1 (en) Magnetic shield body, magnetic shield structure and magnetic memory system
JP3879576B2 (en) Magnetic non-volatile memory element magnetic shield package
TWI830269B (en) Methods for manufacturing device having magnetic shielding layer
JP2016192445A (en) Memory device
US10431732B2 (en) Shielded magnetoresistive random access memory devices and methods for fabricating the same
US20230361050A1 (en) Package structure and method for fabricating the same
WO2011111789A1 (en) Magnetic device and process for production thereof
US20220344578A1 (en) Package structure and manufacturing method thereof
JP3879566B2 (en) Magnetic shield package and sealing material for magnetic non-volatile memory device
JP5574281B2 (en) Magnetic device
WO2011046090A1 (en) Magnet device
KR102604273B1 (en) MRAM Package with Magnetic Shielding Layer and Method of Manufacturing the Same
CN115411175A (en) Magnetic assembly and packaging method thereof
TW201532206A (en) Semiconductor package and method thereof
JP2005340237A (en) Magnetic storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536127

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823359

Country of ref document: EP

Kind code of ref document: A1