[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010137248A1 - プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法 - Google Patents

プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法 Download PDF

Info

Publication number
WO2010137248A1
WO2010137248A1 PCT/JP2010/003229 JP2010003229W WO2010137248A1 WO 2010137248 A1 WO2010137248 A1 WO 2010137248A1 JP 2010003229 W JP2010003229 W JP 2010003229W WO 2010137248 A1 WO2010137248 A1 WO 2010137248A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
sustain
potential
scan
electrode
Prior art date
Application number
PCT/JP2010/003229
Other languages
English (en)
French (fr)
Inventor
井土眞澄
若林俊一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010137248A1 publication Critical patent/WO2010137248A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge

Definitions

  • the present invention relates to a plasma display device which is an image display device using an AC plasma display panel and a driving method of the plasma display panel.
  • a typical AC surface discharge panel as a plasma display panel includes a front substrate on which a plurality of display electrode pairs each formed of a pair of scan electrodes and sustain electrodes are formed, and data electrodes Are arranged opposite to the rear substrate on which a plurality of are formed.
  • a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. Color display is performed by generating gas discharge in each discharge cell of such a panel and exciting and emitting phosphors of each color.
  • a subfield method is generally used in which one field period is divided into a plurality of subfields, and a discharge cell is caused to emit light or not emit light in each subfield to perform gradation display.
  • Each subfield has, for example, an initialization period, a writing period, and a sustain period.
  • initializing period initializing discharge is generated, and wall charges necessary for the subsequent writing operation are formed on each electrode.
  • write period a scan pulse is applied to the scan electrode and a write pulse is selectively applied to the data electrode to generate a write discharge and form wall charges.
  • a sustain pulse is alternately applied to the display electrode pair, a sustain discharge is generated in the discharge cell that has caused the write discharge, and the phosphor layer of the corresponding discharge cell is caused to emit light, thereby displaying an image.
  • Patent Document 1 describes a driving method in which sustain pulses having different voltage values are applied to scan electrodes and sustain electrodes to generate sustain discharge stably.
  • Patent Document 2 discloses a scan electrode driving circuit that simplifies the circuit by applying a positive scan pulse to each scan electrode and applying a negative write pulse to a data electrode.
  • JP 2006-259061 A JP-A-11-316570
  • the drive voltage waveform tends to be complicated.
  • the scan electrode drive circuit is complicated, but the number of necessary potentials is increased and the power supply is increased.
  • the circuit also tended to be complicated.
  • the scan electrode drive circuit is simplified, the drive voltage waveform that can be realized is limited, and stable discharge control tends to be difficult. Thus, it has been difficult to achieve both stable discharge control and simplification of the drive circuit.
  • the present invention has been made in view of these problems, and provides a plasma display device and a plasma display panel driving method capable of simplifying a driving circuit and further realizing stable discharge control. With the goal.
  • the plasma display apparatus of the present invention is arranged such that a plurality of display electrode pairs each consisting of a pair of scan electrodes and sustain electrodes and a plurality of data electrodes intersect with a gap, A plasma display panel having a plurality of discharge cells each having the display electrode pair and the data electrode forming the gap and having the gap as a discharge space; and a drive circuit for driving the plasma display panel.
  • the drive circuit includes a scan electrode drive circuit that drives the scan electrode, a sustain electrode drive circuit that drives the sustain electrode, and a data electrode drive circuit that drives the data electrode, and the sustain electrode drive circuit includes: An address period during which an address operation is performed to generate the address discharge in the discharge cells to be lit, and an address discharge is generated.
  • each of the subfields of one field period configured using a plurality of subfields having a sustain period for causing the discharge cells to emit light
  • a period of one period from the first potential to the first A rising period rising to a second potential higher than the first potential, a high period holding the second potential, a falling period falling from the second potential to the first potential, and the first A sustain side sustain pulse composed of a low period for holding a potential is applied to the sustain electrode, and only a potential equal to one of the first potential and the second potential is applied in a period other than the sustain period.
  • the scan electrode driving circuit is configured to be applied to the sustain electrode, and the scan electrode driving circuit has a cycle different from that of the sustain-side sustain pulse in the sustain period of each subfield.
  • the sustain electrode is configured to apply a sustain pulse to the scan electrode, and the sustain electrode drive circuit and the scan electrode drive circuit have an amplitude that is a difference between the first potential and the second potential of the sustain side sustain pulse. Is smaller than the amplitude of the sustain pulse on the scanning side.
  • the scan-side sustain pulse includes a rising period in which a period of one period rises from a third potential to a fourth potential higher than the third potential, a high period in which the fourth potential is held,
  • the sustaining electrode driving circuit and the scanning electrode driving circuit are configured by a falling period falling from the fourth potential to the third potential and a low period holding the third potential.
  • the rising period of the sustain side sustain pulse that follows the low period of the sustain side sustain pulse including the first period ends, and the low period of the scan side sustain pulse overlaps the high period of the sustain side sustain pulse.
  • the sustain pulse of the scan side sustain pulse following the low period of the scan side sustain pulse including the second period before the fall period of the sustain side sustain pulse following the high period of the sustain side sustain pulse ends. It is preferable to end the rising period in order to realize stable discharge control.
  • the drive circuit divides the plurality of display electrode pairs into a plurality of display electrode pair groups, and uses one subfield having a plurality of subfields having the write period and the sustain period for each display electrode pair group.
  • the plasma display panel is driven so that the duration of the subfield sustain period does not exceed Tw ⁇ (N ⁇ 1) / N. Therefore, it is possible to secure a sufficient number of subfields for ensuring image quality and to drive with sufficient luminance.
  • the sustain electrode driving circuit can be simplified, which is preferable for realizing more stable discharge control.
  • a plurality of display electrode pairs each consisting of a pair of scan electrodes and sustain electrodes and a plurality of data electrodes are arranged so as to intersect with a gap.
  • a plurality of discharge cells having the gap as a discharge space, the scan electrode being driven by a scan electrode drive circuit, and the sustain electrode being driven by a sustain electrode drive circuit
  • a period of one period holds the second potential and a rising period in which the first potential rises to a second potential higher than the first potential
  • the sustain electrode drive circuit generates a sustain-side sustain pulse composed of a high period during which the sustain
  • the sustain electrode is applied to the sustain electrode, and the sustain electrode driving circuit applies only the potential equal to one of the first potential and the second potential to the sustain electrode in a period other than the sustain period.
  • the scan electrode drive circuit supplies the scan electrode with a scan side sustain pulse having the same period and a different phase from the sustain side sustain pulse, and the sustain side sustain pulse Amplitude which is a difference between the second potential and the first potential, it is desirable to the smaller than the amplitude of the scanning sustain pulse.
  • the scan-side sustain pulse includes a rising period in which a period of one period rises from a third potential to a fourth potential higher than the third potential, a high period in which the fourth potential is held, A falling period falling from the fourth potential to the third potential; and a low period holding the third potential.
  • the high period of the scan side sustain pulse and the low period of the sustain side sustain pulse Before the falling period of the scan-side sustain pulse that follows the high period of the scan-side sustain pulse including the first period that overlaps the period, the sustain-side sustain pulse that includes the first period is low.
  • the sustain-side sustain pulse high period includes a second period in which a rising period of the sustain-side sustain pulse following the period ends and a low period of the scan-side sustain pulse overlaps a high period of the sustain-side sustain pulse Said maintenance following Before the end of the sustain pulse falling period, a stable discharge may be performed by ending the rise period of the scan-side sustain pulse following the low period of the scan-side sustain pulse including the second period. This is preferable for realizing the control.
  • the plurality of display electrode pairs are divided into a plurality of display electrode pair groups, and for each display electrode pair group, one field period is divided using a plurality of subfields having the write period and the sustain period,
  • the sustain period of each subfield of each display electrode pair group By driving the plasma display panel so that the time does not exceed Tw ⁇ (N ⁇ 1) / N, a sufficient number of subfields to ensure image quality can be obtained even for ultra-high definition PDPs. Can be ensured, and can be driven with sufficient luminance.
  • the sustain electrode driving circuit can be simplified, which is preferable for realizing more stable discharge control.
  • FIG. 1 is an exploded perspective view showing a structure of a PDP used in Embodiment 1 of the present invention.
  • FIG. 2 is an electrode array diagram of the PDP used in Embodiment 1 of the present invention.
  • FIG. 3 is a circuit block diagram of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing details of the sustain electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 5 is a drive voltage waveform diagram applied to each electrode of the PDP in Embodiment 1 of the present invention.
  • FIG. 6 is a drive voltage waveform diagram showing details of the scan-side sustain pulse and sustain-side sustain pulse of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 7 is an electrode array diagram of the PDP used in the second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a method for setting the subfield configuration of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 9 is a drive voltage waveform diagram applied to each electrode of the PDP in the second embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing details of the sustain electrode drive circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a PDP 10 used in the embodiment of the present invention.
  • a plurality of display electrode pairs 14 made up of scanning electrodes 12 and sustaining electrodes 13 are formed.
  • a dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is formed thereon.
  • a phosphor layer 25 that emits red, green, and blue light is provided on the side surface of the partition wall 24 and on the dielectric layer 23.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 cross each other with a minute discharge space interposed therebetween, and the outer peripheral portion thereof is a sealing material (not shown) such as a glass frit. Z).
  • a sealing material such as a glass frit. Z.
  • a mixed gas of neon and xenon is enclosed as a discharge gas.
  • the discharge space is partitioned into a plurality of sections by barrier ribs 24, and discharge cells are formed at portions where display electrode pairs 14 and data electrodes 22 intersect. These discharge cells discharge and emit light to display an image.
  • the structure of the PDP 10 is not limited to that described above, and for example, a structure having a stripe-shaped partition wall instead of the cross-beam-shaped partition wall 24 may be used.
  • FIG. 2 is an electrode array diagram of the PDP 10 used in the embodiment of the present invention.
  • n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 1) long in the row direction are arranged, and m long in the column direction.
  • Data electrodes D1 to Dm (data electrodes 22 in FIG. 1) are arranged.
  • m ⁇ n discharge cells are formed.
  • FIG. 3 is a circuit block diagram of plasma display device 30 in accordance with the exemplary embodiment of the present invention.
  • the plasma display device 30 includes a PDP 10, an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit 36.
  • the image signal processing circuit 31 converts the input image signal into image data indicating light emission / non-light emission for each subfield.
  • the data electrode drive circuit 32 converts the image data for each subfield into signals corresponding to the data electrodes D1 to Dm, and applies the signals to the data electrodes D1 to Dm based on the timing signal from the timing generation circuit 35. Thus, the data electrodes D1 to Dm are driven.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit based on the horizontal synchronization signal and the vertical synchronization signal, and supplies them to the respective circuits 32, 33 and 34.
  • Scan electrode drive circuit 33 drives each of scan electrodes SC1 to SCn based on the applied timing signal
  • sustain electrode drive circuit 34 drives sustain electrodes SU1 to SUn based on the applied timing signal.
  • the power supply circuit 36 includes various power supplies that supply power to each circuit block including the sustain electrode drive circuit 34.
  • FIG. 4 is a circuit diagram showing details of sustain electrode drive circuit 34 of plasma display device 30 in accordance with the exemplary embodiment of the present invention.
  • the sustain electrode drive circuit 34 includes a pulse generator 40.
  • the pulse generator 40 includes a transistor Q42 as a switching element for applying a potential Vs2 to the sustain electrodes SU1 to SUn, a transistor Q43 as a switching element for applying a potential of 0 (V) to the sustain electrodes SU1 to SUn, And a power recovery unit 41 for recovering electric power when a sustain pulse (sustain-side sustain pulse) is applied to sustain electrodes SU1 to SUn.
  • the power recovery unit 41 includes a capacitor C1 for power recovery, transistors Q44 and Q45, diodes D1 and D2 for backflow prevention, and a resonance inductor L1.
  • the sustain pulse rises and falls by causing LC resonance between the “interelectrode capacitance Cp”) and the inductor L1.
  • the electric charge stored in the power recovery capacitor C1 is moved to the interelectrode capacitance Cp via the transistor Q44, the diode D1, and the inductor L1.
  • the sustain pulse falls, the electric charge stored in the interelectrode capacitance Cp is returned to the power recovery capacitor C1 via the inductor L1, the diode D2, and the transistor Q45.
  • the voltage clamp unit constituted by the transistors Q42 and Q43 connects the sustain electrodes SU1 to SUn to the power source and clamps them to the potential Vs2 by turning on the transistor Q42 while the transistor Q43 is non-conductive. Further, when the transistor Q42 is turned off and the transistor Q43 is turned on, the sustain electrodes SU1 to SUn are grounded and clamped to 0 (V).
  • sustain electrode drive circuit 34 applies sustain pulses (sustain-side sustain pulses) to sustain electrodes SU1 to SUn during the sustain period described later by controlling transistors Q42 to Q45. Further, the latter half of the initialization period in which the all-cell initialization operation described later is performed, the initialization period in which the selective initialization operation is performed, and the writing period are maintained by turning on the transistor Q42 while the transistor Q43 is in a non-conductive state. In the first half of the initializing period in which the electrodes SU1 to SUn are held at the potential Vs2 and the all-cell initializing operation is performed, the transistor Q42 is turned off and the sustaining electrodes SU1 to SUn are set to 0 (V). Hold on.
  • sustain pulses stain-side sustain pulses
  • the transistors Q42 to Q45 described above can be configured using generally known elements such as MOSFETs and IGBTs.
  • the plasma display device 30 performs gradation display by dividing the one-field period into a plurality of subfields and controlling light emission / non-light emission of each discharge cell for each subfield.
  • Each subfield has an initialization period, a writing period, and a sustain period.
  • initializing discharge is generated in the discharge cell in order to make the inside of the discharge cell in a charged state capable of writing discharge, and wall charges necessary for the subsequent writing discharge are formed on each electrode.
  • scanning pulses are sequentially applied to the scanning electrodes and writing pulses are applied to the data electrodes based on the image signal to selectively generate a writing discharge in the discharge cells to be emitted and form wall charges necessary for the subsequent sustain discharge.
  • a scan-side sustain pulse is alternately applied to the scan electrode, and a sustain-side sustain pulse is alternately applied to the sustain electrode, and a sustain discharge is generated in the discharge cell that has generated the write discharge to emit light.
  • one field is divided into, for example, first to ten ten subfields (first SF, second SF,..., Tenth SF), and each subfield is, for example, (1 2, 3, 6, 11, 18, 30, 44, 60, 80).
  • first SF first SF
  • second SF second SF
  • Tenth SF Tenth SF
  • each subfield is, for example, (1 2, 3, 6, 11, 18, 30, 44, 60, 80).
  • an all-cell initializing operation for generating an initializing discharge in all the discharge cells is performed
  • a discharge cell in which a sustain discharge is performed in the immediately preceding subfield.
  • a selective initializing operation for generating an initializing discharge is performed.
  • the number of subfields and the luminance weight of each subfield are not limited to the above values.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • FIG. 5 is a drive voltage waveform diagram applied to each electrode of the PDP 10 in the embodiment of the present invention, and shows drive voltage waveforms in the first SF (first subfield) and the second SF (second subfield).
  • Scan electrodes SC1 to SCn are supplied with the drive voltage shown in FIG. 5 from scan electrode drive circuit 33, and sustain electrodes SU1 to SUn are supplied with the drive voltage shown in FIG. 5 from sustain electrode drive circuit 34, and data electrodes D1 to A drive voltage shown in FIG. 5 is applied to Dm from the data electrode drive circuit 32.
  • a potential of 0 (V) is applied to the data electrodes D1 to Dm, and a potential of 0 (V) is applied to the sustain electrodes SU1 to SUn.
  • Scan electrodes SC1 to SCn are given an upward ramp waveform potential that gradually rises from sustain potential SU1 to SUn from potential Vi1 that is equal to or lower than the discharge start voltage to potential Vi2 that exceeds the discharge start voltage.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
  • the potential Vs2 is applied to the sustain electrodes SU1 to SUn.
  • Scan electrodes SC1 to SCn are applied with sustain waveform SU1 to SUn having a downward slope waveform potential that gently falls from potential Vi3 that is equal to or lower than the discharge start voltage to potential Vi4 that exceeds the discharge start voltage.
  • the potential Vi4 is a negative potential.
  • a weak initializing discharge occurs between scan electrodes SC1 to SCn and sustain electrodes SU1 to SUn, and between scan electrodes SC1 to SCn and data electrodes D1 to Dm. Then, the negative wall voltage on scan electrodes SC1 to SCn and the positive wall voltage on sustain electrodes SU1 to SUn are weakened, and the positive wall voltage on data electrodes D1 to Dm is adjusted to a value suitable for the write operation. Is done. That is, the inside of each discharge cell is in a charged state capable of writing discharge.
  • the potential Vs2 is continuously applied to the sustain electrodes SU1 to SUn, and the potential Vc is applied to the scan electrodes SC1 to SCn.
  • the potential difference at the intersection between the data electrode Dk and the scan electrode SC1 is obtained by adding the magnitude of the wall voltage on the data electrode Dk and the magnitude of the wall voltage on the scan electrode SC1 to the externally applied voltage (Vd ⁇ Va). Exceeding the discharge start voltage. Then, a discharge starts between data electrode Dk and scan electrode SC1, progresses to a discharge between sustain electrode SU1 and scan electrode SC1, and an address discharge is generated. As a result, a positive wall voltage is generated on scan electrode SC1, a negative wall voltage is generated on sustain electrode SU1, and a negative wall voltage is also generated on data electrode Dk.
  • a scan pulse is given to the scan electrode SC2 in the second row, and a write pulse is given to the data electrode Dk corresponding to the discharge cell to be lit in the second row.
  • a scan pulse at the potential Va is sequentially applied to the scan electrodes SC3 to SCn, and a write pulse is applied to the data electrode Dk corresponding to the discharge cell to be lit to selectively emit light to the discharge cell to be lit.
  • Write discharge is generated to form wall charges. In this way, the write operation is repeated until the discharge cell in the nth row is reached.
  • a scan-side sustain pulse whose peak value is potential Vs1 is alternately applied to scan electrodes SC1 to SCn, and a sustain-side sustain pulse whose peak value is potential Vs2 is alternately applied to sustain electrodes SU1 to SUn.
  • the sustain discharge is continuously generated in the discharge cell in which the address discharge is generated in step.
  • FIG. 6 is a drive voltage waveform diagram showing details of the scan-side sustain pulse and the sustain-side sustain pulse of the plasma display device 30 according to the embodiment of the present invention.
  • a scan-side sustain pulse having a peak value of potential Vs1 is applied to scan electrodes SC1 to SCn. Then, after the rising period of the scan-side sustain pulse ends, a potential of 0 (V) is applied to sustain electrodes SU1 to SUn.
  • the potential difference between the scan electrode SCi and the sustain electrode SUi is such that the sustain pulse voltage (Vs) has the wall voltage on the scan electrode SCi and the wall voltage on the sustain electrode SUi. And exceeds the discharge start voltage.
  • Vs sustain pulse voltage
  • a sustain discharge occurs between scan electrode SCi and sustain electrode SUi, and phosphor layer 25 emits light by the ultraviolet rays generated at this time.
  • a negative wall voltage is generated on scan electrode SCi
  • a positive wall voltage is generated on sustain electrode SUi.
  • a positive wall voltage is generated on the data electrode Dk.
  • a sustain-side sustain pulse having a peak value of potential Vs2 is applied to sustain electrodes SU1 to SUn. Then, after the rising period of the sustain-side sustain pulse ends, a potential of 0 (V) is applied to scan electrodes SC1 to SCn.
  • the potential difference between the sustain electrode SUi and the scan electrode SCi exceeds the discharge start voltage, so that the sustain discharge occurs again between the sustain electrode SUi and the scan electrode SCi, and the sustain electrode A negative wall voltage is generated on SUi, and a positive wall voltage is generated on scan electrode SCi.
  • a scan-side sustain pulse is applied to scan electrodes SC1 to SCn
  • a sustain-side sustain pulse is applied to sustain electrodes SU1 to SUn by the number corresponding to the luminance weight alternately, and discharge cells in which an address discharge is generated in the address period Sustain discharge is generated continuously.
  • the scan-side sustain pulse applied to scan electrodes SC1 to SCn and the sustain-side sustain pulse applied to sustain electrodes SU1 to SUn have a period of one period, a rising period, a high period, a falling period, and a low period, respectively. And the potential in the high period is different.
  • the scan-side sustain pulse and the sustain-side sustain pulse have the same period, but are out of phase by 180 degrees.
  • the selective initializing operation is an operation for selectively performing initializing discharge on the discharge cells that have undergone the sustain operation in the sustain period of the immediately preceding subfield.
  • the subsequent operation in the writing period of the second SF is the same as the operation in the writing period of the first SF, and the operation in the sustaining period is the same as the operation in the sustaining period of the first SF except for the number of sustaining pulses, and thus description thereof is omitted.
  • the operation is the same as that of the second SF except for the number of sustain pulses.
  • the potential Vi1 is 180 (V)
  • the potential Vi2 is 420 (V)
  • the potential Vi3 is 180 (V)
  • the potential Vi4 is ⁇ 95 (V)
  • the potential Va is ⁇ 100 (V).
  • the potential Vc is 0 (V)
  • the potential Vs1 is 210 (V)
  • the potential Vs2 is 150 (V).
  • the slopes of the rising slope waveform potential and the falling slope waveform potential applied to scan electrodes SC1 to SCn are both 10 (V / ⁇ sec.) Or less.
  • the potential Vd applied to the data electrodes D1 to Dm is 70 (V).
  • these values are not limited to the above-described values, and are desirably set optimally based on the discharge characteristics of the PDP and the specifications of the plasma display device.
  • the potentials applied to the sustain electrodes SU1 to SUn in the periods other than the sustain period are Vs2 and 0 (V), and the sustain electrode is maintained in the sustain period.
  • the potentials applied to SU1 to SUn are also Vs2 and 0 (V).
  • the potential applied to the sustain electrodes SU1 to SUn in the period other than the sustain period is only a potential equal to either the high level potential (potential Vs2) or the low level potential (0 V) of the sustain side sustain pulse applied in the sustain period.
  • the sustain electrode drive circuit 34 has the transistor Q42 connected to the high-potential-side power source that supplies the potential Vs2, except for the power recovery unit 41, and 0 (V). It is only necessary to include a clamp portion including a transistor Q43 connected to a low-potential-side power supply that supplies the potential, so that the circuit configuration of the sustain electrode drive circuit 34 can be simplified. For example, when a potential other than the high level potential (potential Vs2) and the low level potential (0 V) of the sustain side sustain pulse is applied to the sustain electrodes SU1 to SUn during the initialization period or the writing period, Although a circuit for applying a potential is required, such a circuit is not necessary in this embodiment.
  • the peak value of the scan-side sustain pulse is the value of the potential Vs1 (for example, 210V), and the peak value of the sustain-side sustain pulse is the value of the potential Vs2 (for example, 150V).
  • the peak value (amplitude) of the sustain pulse is smaller than the peak value (amplitude) of the scan-side sustain pulse.
  • the fall of the sustain side sustain pulse applied to sustain electrodes SU1 to SUn after the rise period of the scan side sustain pulse applied to scan electrodes SC1 to SCn ends. The period is started, and after the rising period of the sustain side sustain pulse applied to the sustain electrodes SU1 to SUn, the falling period of the scan side sustain pulse applied to the scan electrodes SC1 to SCn is started.
  • a sustain discharge is generated in response to the fall of the scan side sustain pulse and the sustain side sustain pulse. Therefore, a sustain discharge can be generated between scan electrode SCi and sustain electrode SUi without inducing an erase discharge between scan electrode SCi and data electrode Dk or an erase discharge between sustain electrode SUi and data electrode Dk. Sustained discharge can be realized.
  • the sustain-side sustain pulse falling period starts, and the sustain-side sustain pulse rise period ends. Later, the falling period of the scan-side sustain pulse is started.
  • the rising period of the sustain-side sustain pulse may be ended before the falling period of the scan-side sustain pulse ends, and the rising period of the scan-side sustain pulse may be ended before the falling period of the sustain-side sustain pulse ends. That is, the high period of the scan-side sustain pulse including the first period in which the high period of the scan-side sustain pulse (the period in which the potential is Vs1) and the low period of the sustain-side sustain pulse (the period in which the potential is 0 V) overlap.
  • the rise period of the sustain-side sustain pulse following the low period of the sustain-side sustain pulse including the first period ends, and the low period of the scan-side sustain pulse
  • the rising period of the scan-side sustain pulse that follows the low period of the scan-side sustain pulse including the second period may be ended. As a result, a sustain discharge is generated when the scan-side sustain pulse falls and when the sustain-side sustain pulse falls.
  • the potential of the scan electrodes SC1 to SCn is changed to the peak value ( Vs1) is raised to 50% or more, and before the potentials of scan electrodes SC1 to SCn drop to 50% or less of the peak value (Vs1) of the scan-side sustain pulse, the potentials of sustain electrodes SU1 to SUn It may be raised to 50% or more of the peak value (Vs2).
  • Stable sustain discharge can also be realized by applying a sustain pulse to the display electrode pair at such timing.
  • FIG. 7 is an electrode array diagram of the ultra-high definition PDP 10 used in the second embodiment of the present invention.
  • scan electrodes SC1 to SCn scan electrode 12 in FIG. 1
  • sustain electrodes SU1 to SUn sustain electrode 13 in FIG. 1 long in the row direction
  • m data electrodes D1 to D long in the column direction are arranged.
  • Dm data electrode 22 in FIG. 1 is arranged.
  • M ⁇ n are formed.
  • the 2160 display electrode pairs including the scan electrodes SC1 to SC2160 and the sustain electrodes SU1 to SU2160 are divided into a plurality of display electrode pair groups.
  • a method for determining the number of display electrode pair groups will be described later, and in the second embodiment, description will be made assuming that PDP 10 is divided into two display electrode pair groups by dividing the PDP 10 into two vertically. As shown in FIG. 7, the display electrode pair located in the upper half of the PDP 10 is a first display electrode pair group, and the display electrode pair located in the lower half of the PDP 10 is a second display electrode pair group.
  • 1080 scan electrodes SC1 to SC1080 and 1080 sustain electrodes SU1 to SU1080 belong to the first display electrode pair group
  • 1080 scan electrodes SC1081 to SC2160 and 1080 sustain electrodes SU1081 to SU2160 are the second. It belongs to the display electrode pair group.
  • FIG. 8 is a diagram for explaining a method for setting the subfield configuration of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • the vertical axis represents scan electrodes SC1 to SC2160
  • the horizontal axis represents time.
  • the timing for performing the write operation is indicated by a solid line
  • the timing of the sustain period and the erase period described later is indicated by hatching.
  • the time for one field period is 16.7 (msec.).
  • an initializing period for generating initializing discharges simultaneously in all the discharge cells is provided.
  • the time required for the initialization period is set to 500 ( ⁇ sec.).
  • the time Tw required to sequentially apply the scan pulses to the scan electrodes SC1 to SC2160 is estimated. At this time, it is desirable to apply the scan pulse as short as possible and continuously as possible so that the writing operation is continuously performed.
  • the number of display electrode pair groups is determined based on the required number of sustain pulses.
  • the number N of display electrode pair groups is obtained based on the following formula using the time Tw required to perform the write operation once for all the scan electrodes and the maximum time Ts required to give the sustain pulse.
  • 1512 / (1512 ⁇ 600) 1.66
  • the above formula is satisfied even when the number N of display electrode pair groups is set to a value of 3 or more.
  • the number of display electrode pair groups is N.
  • Tw in the above formula is a time required for performing one write operation on the discharge cells (all discharge cells) corresponding to all the display electrode pairs.
  • the writing operation is a writing process for generating a writing discharge in the discharge cells to emit light.
  • the display electrode pairs are divided into two display electrode pair groups as shown in FIG. Then, as shown in FIG. 8D, a sustain period for applying a sustain pulse is provided after writing of the scan electrodes belonging to each group.
  • Ts the maximum time required to give the sustain pulse is very important in determining the driving method of the PDP 10 and the number of display electrode pair groups.
  • N Tw / (Tw ⁇ Ts) Transforming Ts ⁇ Tw ⁇ (N ⁇ 1) / N
  • N 2
  • Tw 1512 ( ⁇ sec.)
  • Ts 600 ( ⁇ sec.).
  • Tw ⁇ (N ⁇ 1) / N 756 ⁇ 600
  • the driving method for driving the PDP 10 and the number of display electrode pair groups can be determined.
  • both the sustaining period and the erasing period are hatched from upper right to lower left. Shown with hatching.
  • the erasing period is ignored, but it is desirable to set so that no writing operation is performed when any of the display electrode pair groups is in the erasing period.
  • FIG. 9 is a diagram showing drive voltage waveforms applied to the respective electrodes of the PDP 10 of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • “initialization” indicates an initialization period
  • “write” indicates a write period
  • “maintain” indicates a sustain period
  • “erase” indicates an erase period
  • “pause” indicates a pause period.
  • an initializing period for generating an initializing discharge in each discharge cell is provided at the beginning of one field, and thereafter, subfields SF1, SF2,..., SF10 are provided for each display electrode pair group. Is provided.
  • an address period is first provided, a sustain period is provided after the address period, and after the sustain period, the discharge cells discharged in the sustain period are erased.
  • An erasing period for generating discharge is provided. Further, the writing periods for the respective display electrode pair groups are prevented from overlapping.
  • FIG. 9 shows the initialization period, the writing periods of SF1 to SF2 and SF3 for the first display electrode pair group, and SF1 to SF2 for the second display electrode pair group.
  • a potential of 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SU2160, respectively, and a ramp waveform potential that gradually increases from the potential Vi1 to the potential Vi2 is applied to the scan electrodes SC1 to SC2160. give. While this ramp waveform potential rises, a weak initializing discharge is generated between scan electrodes SC1 to SC2160, sustain electrodes SU1 to SU2160, and data electrodes D1 to Dm. Negative wall voltage is generated on scan electrodes SC1 to SC2160, and positive wall voltage is generated on data electrodes D1 to Dm and sustain electrodes SU1 to SU2160.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
  • the potential Vd may be applied to the data electrodes D1 to Dm during this period.
  • the potential Vs2 is applied to the sustain electrodes SU1 to SU2160, and the ramp waveform potential that gently decreases from the potential Vi3 to the potential Vi4 is applied to the scan electrodes SC1 to SC2160.
  • a weak initializing discharge is generated between scan electrodes SC1 to SC2160, sustain electrodes SU1 to SU2160, and data electrodes D1 to Dm.
  • the negative wall voltage on scan electrodes SC1 to SC2160 and the positive wall voltage on sustain electrodes SU1 to SU2160 are weakened, and the positive wall voltage on data electrodes D1 to Dm is adjusted to a value suitable for the write operation.
  • potential Vc is applied to scan electrodes SC1 to SC2160.
  • a potential Vs2 is applied to sustain electrodes SU1 to SU1080.
  • a scan pulse having a negative potential Va is applied to the scan electrode SC1
  • the potential difference at the intersection between the data electrode Dk and the scan electrode SC1 is obtained by adding the wall voltage on the data electrode Dk and the wall voltage on the scan electrode SC1 to the difference between the externally applied voltages (Vd ⁇ Va). Exceeding the discharge start voltage.
  • a discharge starts between data electrode Dk and scan electrode SC1, progresses to a discharge between sustain electrode SU1 and scan electrode SC1, and an address discharge is generated.
  • a positive wall voltage is generated on scan electrode SC1
  • a negative wall voltage is generated on sustain electrode SU1
  • a negative wall voltage is also generated on data electrode Dk.
  • an address operation is performed in which an address discharge is generated in the discharge cell to be lit in the first row to generate a wall voltage on each electrode.
  • the voltage at the intersection of the data electrodes D1 to Dm to which the write pulse is not applied and the scan electrode SC1 does not exceed the discharge start voltage, so no write discharge occurs.
  • a scan pulse is given to the scan electrode SC2 in the second row, and a write pulse is given to the data electrode Dk corresponding to the discharge cell to emit light in the second row. Then, an address discharge is generated in the discharge cells in the second row to which the scan pulse and the address pulse are simultaneously applied, and an address operation is performed.
  • the second display electrode pair group is a rest period before the subfield SF1.
  • a potential Vi1 is applied to scan electrodes SC1081 to SC2160 belonging to the second display electrode pair group.
  • the potential Vs2 is applied to the sustain electrodes SU1081 to SU2160.
  • the potential applied to each electrode belonging to the second display electrode pair group is not limited to the above, and another potential in a range where no discharge is generated may be applied.
  • the potential Vs2 is continuously applied to the sustain electrodes SU1081 to SU2160. Then, a scan pulse is applied to scan electrode SC1081, and a write pulse is applied to data electrode Dk corresponding to the discharge cell to emit light. Then, an address discharge is generated between data electrode Dk and scan electrode SC1081, and between sustain electrode SU1081 and scan electrode SC1081. Next, a scan pulse is applied to scan electrode SC1082, and a write pulse is applied to data electrode Dk corresponding to the discharge cell to be lit. Then, an address discharge is generated in the discharge cells in the row 1082 to which the scan pulse and the address pulse are simultaneously applied.
  • the above writing operation is repeated until reaching the discharge cell in the 2160th row, and a write discharge is selectively generated in the discharge cells to be lit to form wall charges.
  • sustain pulses are applied to scan electrodes SC1 to SC1080 and sustain electrodes SU1 to SU1080 belonging to the first display electrode pair group.
  • sustain pulses are alternately applied to cause the discharge cells that have undergone the write discharge to emit light.
  • a scan-side sustain pulse whose peak value is potential Vs1 is applied to scan electrodes SC1 to SC1080, and a potential of 0 (V) is applied to sustain electrodes SU1 to SU1080.
  • the scan-side sustain pulse voltage (Vs1) is added to the difference between the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi, and scan electrode SCi and sustain electrode SUi are added.
  • the potential difference from above exceeds the discharge start voltage.
  • a sustain discharge is generated between scan electrode SCi and sustain electrode SUi, and phosphor layer 25 emits light by the ultraviolet rays generated at this time.
  • a potential of 0 (V) is applied to scan electrodes SC1 to SC1080, and a sustain side sustain pulse having a peak value of potential Vs2 is applied to sustain electrodes SU1 to SU1080.
  • V potential of 0
  • a sustain side sustain pulse having a peak value of potential Vs2 is applied to sustain electrodes SU1 to SU1080.
  • sustain pulses are alternately applied to scan electrodes SC1 to SC1080 and sustain electrodes SU1 to SU1080, and a potential difference is applied between the electrodes of the display electrode pair, thereby maintaining the discharge cells in which the write discharge is generated in the write period. Discharging continues and the discharge cell emits light.
  • the sustain pulse alternately applied to the display electrode pair is a sustain pulse having a timing at which the scan electrodes SC1 to SC1080 and the sustain electrodes SU1 to SU1080 are simultaneously at the high level potential. That is, when the potential Vs1 is applied to scan electrodes SC1 to SC1080 and the potential of 0 (V) is applied to sustain electrodes SU1 to SU1080, the potential of scan electrodes SC1 to SC1080 is first changed from potential 0 (V) to potential Vs1. Thereafter, the potentials of sustain electrodes SU1 to SU1080 are lowered from potential Vs2 toward potential 0 (V).
  • the sustain pulses are applied so that the timings at which the scan electrodes SC1 to SC1080 and the sustain electrodes SU1 to SU1080 are simultaneously set to the high level potential are present, so that the scan electrodes SC1 to SC1080 and The sustained discharge can be continued. The reason will be described below.
  • the potential of one electrode of the display electrode pair is raised and then the potential of the other electrode is lowered to give a sustain pulse. Therefore, even if a write pulse is applied to the data electrode, display is performed. There is no risk of a prior discharge between one of the electrode pairs and the data electrode. Therefore, the sustain discharge can be stably continued regardless of the presence or absence of the write pulse.
  • the erasing period is not only for erasing the wall voltage but also for adjusting the wall voltage on the data electrode in preparation for the writing operation in the next writing period, so it is desirable to fix the potential of the data electrode.
  • the writing operation of the second display electrode pair group is stopped in the erasing period of the first display electrode pair group.
  • the first display electrode pair group is in a rest period in which no discharge occurs, and a potential Vs2 is applied to sustain electrodes SU1 to SU1080 after a potential of 0 (V) is applied to scan electrodes SC1 to SC1080.
  • the second display electrode pair group resumes the writing operation, and the first display electrode pair group continues the operation in the pause period until the writing of the scan electrode SC2160 is completed.
  • the first display electrode pair group is in the latter half of the erase period, the potential Vs2 is continuously applied to the sustain electrodes SU1 to SU1080, and the ramp waveform potential falling toward the potential Vi4 is applied to the scan electrodes SC1 to SC1080.
  • the wall voltage on the data electrode is adjusted in preparation for the write operation in the next write period.
  • the writing period starts and the writing operation starts from the scan electrode SC1.
  • the potential Vs2 is continuously applied to the sustain electrodes SU1 to SU1080.
  • Scan electrodes SC1 to SC1080 are sequentially supplied with scan pulses in the same manner as in the write period of SF1, and a write pulse is applied to data electrode Dk to perform an address operation in the discharge cells in the first to 1080th rows.
  • sustain pulses of “60” are alternately applied to scan electrodes SC1081 to SC2160 and sustain electrodes SU1081 to SU2160 to cause the discharge cells that have undergone the write discharge to emit light.
  • the sustain pulse applied alternately to the display electrode pair is a sustain pulse having a timing at which the scan electrodes SC1081 to SC2160 and the sustain electrodes SU1081 to SU2160 are simultaneously at the high level potential.
  • the sustain period there are two erase periods and a rest period.
  • a ramp waveform potential rising toward potential Vr is applied to scan electrodes SC1081 to SC2160, and a positive wall voltage on data electrode Dk is left, and a wall voltage on scan electrode SCi and sustain electrode SUi is left. Is erased.
  • the writing operation of the first display electrode pair group is stopped in the erasing period of the second display electrode pair group.
  • the second display electrode pair group is a rest period in which no discharge occurs, and a potential of 0 (V) is applied to scan electrodes SC1081 to SC2160, and then potential Vs2 is applied to sustain electrodes SU1081 to SU2160.
  • the first display electrode pair group resumes the writing operation, and the second display electrode pair group continues the operation in the pause period until the writing of the scan electrode SC1080 is completed. Thereafter, the second display electrode pair group is in the latter half of the erasing period, the potential Vs2 is continuously applied to the sustain electrodes SU1081 to SU2160, and the ramp waveform potential falling toward the potential Vi4 is applied to the scan electrodes SC1081 to SC2160. The wall voltage on the data electrode is adjusted in preparation for the write operation in the next write period. Immediately thereafter, the writing period starts and the writing operation starts from the scan electrode SC1.
  • the timing of the scan pulse and the write pulse is set so that the write operation is continuously performed in any one of the display electrode pair groups after the initialization period. As a result, ten subfields can be set within one field period.
  • the number of subfields is the maximum number that can be set within one field period in the present embodiment.
  • the driving time can be shortened by arranging the subfield having the smallest luminance weight in the last subfield.
  • the potential Vi1 is 150 (V), the potential Vi2 is 400 (V), the potential Vi3 is 200 (V), the potential Vi4 is ⁇ 150 (V), and the potential Vc is ⁇ 10 (V ),
  • the potential Vb is 150 (V)
  • the potential Va is ⁇ 160 (V)
  • the potential Vs1 is 230 (V)
  • the potential Vr is 230 (V)
  • the potential Vs2 is 170 (V)
  • the potential Vd is 60 (V). is there.
  • the gradient of the rising ramp waveform potential applied to scan electrodes SC1 to SC2160 is 10 (V / ⁇ sec.)
  • the gradient of the falling ramp waveform potential is ⁇ 2 (V / ⁇ sec.).
  • the circuit block diagram of the plasma display device in the second exemplary embodiment of the present invention is the same as that in the first exemplary embodiment, and is shown in FIG.
  • the plasma display device 30 according to the second embodiment includes a PDP 10, an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit 36. .
  • the image signal processing circuit 31 converts the input image signal into image data indicating light emission / non-light emission for each subfield.
  • the data electrode drive circuit 32 converts the image data for each subfield into signals corresponding to the data electrodes D1 to Dm, and applies the signals to the data electrodes D1 to Dm based on the timing signal from the timing generation circuit 35. Thus, the data electrodes D1 to Dm are driven.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit based on the horizontal synchronization signal and the vertical synchronization signal, and supplies them to the respective circuits 32, 33 and 34.
  • Scan electrode drive circuit 33 drives each of scan electrodes SC1 to SCn based on the applied timing signal
  • sustain electrode drive circuit 34 drives sustain electrodes SU1 to SUn based on the applied timing signal.
  • the power supply circuit 36 includes various power supplies that supply power to each circuit block including the sustain electrode drive circuit 34.
  • FIG. 10 is a circuit diagram showing details of sustain electrode drive circuit 34 of plasma display device 30 in accordance with the second exemplary embodiment of the present invention.
  • 2160 display electrode pairs including scan electrodes SC1 to SC2160 and sustain electrodes SU1 to SU2160 constituting PDP 10 are divided into a first display electrode pair group and a second display electrode pair group.
  • the first display electrode pair group includes a first scan electrode group and a first sustain electrode group
  • the second display electrode pair group includes a second scan electrode group and a second sustain electrode group. That is, the plurality of sustain electrodes SU1 to SU2160 constituting the PDP 10 are divided into a first sustain electrode group and a second sustain electrode group.
  • Sustain electrode drive circuit 34 has a pulse generating circuit 50a for applying sustain pulses to sustain electrodes SU1 to SU1080 belonging to the first sustain electrode group, and a pulse for applying sustain pulses to sustain electrodes SU1081 to SU2160 belonging to the second sustain electrode group. And a generation circuit 50b.
  • Pulse generation circuit 50a provides transistor Q52a as a switching element for applying potential Vs2 to sustain electrodes SU1 to SU1080 belonging to the first sustain electrode group, and applies 0 (V) potential to sustain electrodes SU1 to SU1080. It has a transistor Q53a as a switching element, and a power recovery unit 51a for recovering power when a sustain pulse (sustain side sustain pulse) is applied to sustain electrodes SU1 to SU1080.
  • the power recovery unit 51a includes a power recovery capacitor C51a, transistors Q54a and Q55a, backflow prevention diodes D54a and D55a, and a resonance inductor L51a.
  • the power recovery unit 51a returns the charge stored in the interelectrode capacitance Cp to the power recovery capacitor C51a via the inductor L51a, the diode D55a, and the transistor Q55a.
  • the voltage clamp unit composed of the transistors Q52a and Q53a connects the sustain electrodes SU1 to SU1080 belonging to the first sustain electrode group to the power supply to the potential Vs2 by conducting the transistor Q52a while the transistor Q53a is non-conductive. Clamp. Further, when transistor Q52a is non-conductive, transistor Q53a is made conductive, so that sustain electrodes SU1 to SU1080 are grounded and clamped to 0 (V).
  • the pulse generation circuit 50a of the sustain electrode drive circuit 34 controls the transistors Q52a to Q55a, thereby sustaining the sustain electrodes SU1 to SU1080 belonging to the first sustain electrode group during the sustain period (sustain-side sustain). Pulse).
  • the transistor Q53a is turned off and the transistor Q52a is turned on, so that the sustain electrodes SU1 to SU1080 are held at the potential Vs2.
  • the transistor Q52a is turned off and the transistor Q53a is turned on to hold the sustain electrodes SU1 to SU1080 at 0 (V).
  • the transistors Q52a to Q55a can be configured using generally known elements such as MOSFETs and IGBTs.
  • the pulse generation circuit 50b applies a potential of 0 (V) to the transistor Q52b as a switching element for applying the potential Vs2 to the sustain electrodes SU1081 to SU2160 belonging to the second sustain electrode group, and the sustain electrodes SU1081 to SU2160. It has a transistor Q53b as a switching element for providing, and a power recovery unit 51b for recovering power when applying a sustain pulse (sustain side sustain pulse) to sustain electrodes SU1081 to SU2160.
  • the power recovery unit 51b includes a power recovery capacitor C51b, transistors Q54b and Q55b, backflow prevention diodes D54b and D55b, and a resonance inductor L51b.
  • the interelectrode capacitance Cp and the inductor L51b are LC resonant Thus, the rising and falling of the sustain pulse are performed.
  • the electric charge stored in the power recovery capacitor C51b is moved to the interelectrode capacitance Cp of the second display electrode pair group via the transistor Q54b, the diode D54b, and the inductor L51b.
  • the power recovery unit 51b returns the charge stored in the interelectrode capacitance Cp to the power recovery capacitor C51b via the inductor L51b, the diode D55b, and the transistor Q55b.
  • the voltage clamp unit configured by the transistors Q52b and Q53b connects the sustain electrodes SU1081 to SU2160 belonging to the second sustain electrode group to the power source by connecting the transistor Q52b with the transistor Q53b in a non-conductive state to the potential Vs2. Clamp. Further, when transistor Q52b is non-conductive, transistor Q53b is made conductive, so that sustain electrodes SU1081 to SU2160 are grounded and clamped to 0 (V).
  • the pulse generation circuit 50b of the sustain electrode drive circuit 34 controls the transistors Q52b to Q55b, thereby sustaining the sustain electrodes SU1 to SU1080 belonging to the second sustain electrode group during the sustain period (sustain-side sustain). Pulse).
  • the transistor Q52b is turned off and the transistor Q52b is turned on, so that the sustain electrodes SU1081 to SU2160 are held at the potential Vs2.
  • the transistor Q52b is turned off and the transistor Q53b is turned on to hold the sustain electrodes SU1081 to SU2160 at 0 (V).
  • the transistors Q52b to Q55b can be configured using generally known elements such as MOSFETs and IGBTs.
  • the potentials applied to sustain electrodes SU1 to SU2160 in periods other than the sustain period are Vs2 and 0 (V).
  • the potentials applied to sustain electrodes SU1 to SU2160 in the sustain period are also Vs2 and 0 (V).
  • the potential applied to sustain electrodes SU1 to SU2160 during a period other than the sustain period is only a potential equal to either the high level potential (potential Vs2) or the low level potential (0 V) of the sustain side sustain pulse applied during the sustain period.
  • the pulse generation circuit 50a that applies the sustain pulse to the sustain electrodes SU1 to SU1080 belonging to the first sustain electrode group of the sustain electrode drive circuit 34, except for the power recovery unit 51a.
  • the transistor Q52a connected to the high potential power source for supplying the potential Vs2 and the transistor Q53a connected to the low potential power source for supplying the potential of 0 (V) may be provided.
  • the pulse generation circuit 50b that applies the sustain pulse to the sustain electrodes SU1081 to SU2060 belonging to the second sustain electrode group includes the transistor Q52b connected to the high potential side power source that supplies the potential Vs2, except for the power recovery unit 51b.
  • the transistor Q53b connected to the low-potential-side power supply that supplies a potential of 0 (V) may be provided, and the circuit configuration of the sustain electrode drive circuit 34 can be simplified. For example, when a potential other than the high level potential (Vs2) and the low level potential (0 V) of the sustain side sustain pulse is applied to the sustain electrodes SU1 to SU2160 during the initialization period or the write period, such potential However, in the second embodiment, such a circuit is unnecessary.
  • the peak value of the scan-side sustain pulse is the value of the potential Vs1 (for example, 230 V), and the peak value of the sustain-side sustain pulse is the value of the potential Vs2 (for example, 170 V).
  • the peak value (amplitude) of the side sustain pulse is smaller than the peak value (amplitude) of the scan side sustain pulse.
  • a sustain discharge is generated in response to the fall of the scan side sustain pulse and the sustain side sustain pulse. Therefore, a sustain discharge can be generated between scan electrode SCi and sustain electrode SUi without inducing an erase discharge between scan electrode SCi and data electrode Dk or an erase discharge between sustain electrode SUi and data electrode Dk. Sustain discharge can be realized.
  • the sustain-side sustain pulse falling period starts, and the sustain-side sustain pulse rise period ends.
  • the falling period of the scan-side sustain pulse is started.
  • the rising period of the sustain-side sustain pulse may be ended before the falling period of the scan-side sustain pulse ends, and the rising period of the scan-side sustain pulse may be ended before the falling period of the sustain-side sustain pulse ends. That is, the high period of the scan-side sustain pulse including the first period in which the high period of the scan-side sustain pulse (the period in which the potential is Vs1) and the low period of the sustain-side sustain pulse (the period in which the potential is 0 V) overlap.
  • the rise period of the sustain-side sustain pulse following the low period of the sustain-side sustain pulse including the first period ends, and the low period of the scan-side sustain pulse
  • the rising period of the scan-side sustain pulse that follows the low period of the scan-side sustain pulse including the second period may be ended. As a result, a sustain discharge is generated when the scan-side sustain pulse falls and when the sustain-side sustain pulse falls.
  • the potential of the scan electrodes SC1 to SCn is changed to the peak value ( Vs1) is raised to 50% or more, and before the potentials of scan electrodes SC1 to SCn drop to 50% or less of the peak value (Vs1) of the scan-side sustain pulse, the potentials of sustain electrodes SU1 to SUn It may be raised to 50% or more of the peak value (Vs2). Sustain discharge can be realized stably by giving a sustain pulse to the display electrode pair at such timing.
  • the sustain electrode driving circuit can be simplified, and further, stable discharge control can be realized, which is useful as a plasma display device and a plasma display panel driving method.
  • Plasma display panel DESCRIPTION OF SYMBOLS 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 22 Data electrode 30 Plasma display apparatus 31 Image signal processing circuit 32 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 36 Power supply circuit 40 Pulse generation part 41 Electric power Recovery part Q42, Q43 Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 駆動回路を簡素化し、さらには安定した放電制御を実現することができるプラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法を提供する。本発明は、プラズマディスプレイパネル(10)と走査電極駆動回路(33)と維持電極駆動回路(34)とデータ電極駆動回路(32)とを備え、維持電極駆動回路(34)は、書き込み期間と維持期間とを有する複数のサブフィールドを用いて構成される1フィールド期間の各々のサブフィールドの維持期間において、1周期の期間が、第1の電位から第2の電位へ立上る立上り期間と、第2の電位を保持するハイ期間と、第2の電位から第1の電位へ立下る立下り期間と、第1の電位を保持するロー期間とから構成される維持側維持パルスを維持電極に与え、維持期間以外の期間において、第1の電位および第2の電位のうちのいずれかと等しい電位のみを維持電極に与えるように構成されている。

Description

プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
 本発明は、AC型プラズマディスプレイパネルを用いた画像表示装置であるプラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法に関する。
 プラズマディスプレイパネル(以下、「PDP」と略記する)として代表的な交流面放電型パネルは、1対の走査電極と維持電極とからなる表示電極対が複数対形成された前面基板と、データ電極が複数形成された背面基板とが対向配置されている。そして表示電極対とデータ電極との対向する部分に放電セルが形成されている。このようなパネルの各放電セル内でガス放電を発生させ各色の蛍光体を励起発光させてカラー表示を行っている。
 PDPを駆動する方法としては、1フィールド期間を複数のサブフィールドに分割し、サブフィールドのそれぞれで放電セルを発光または非発光させて階調表示を行うサブフィールド法が一般的である。各サブフィールドは、例えば、初期化期間、書き込み期間および維持期間を有する。初期化期間では初期化放電を発生し、続く書き込み動作に必要な壁電荷を各電極上に形成する。書き込み期間では走査電極に走査パルスを印加するとともにデータ電極に選択的に書き込みパルスを印加して書き込み放電を発生し壁電荷を形成する。そして維持期間では表示電極対に交互に維持パルスを印加し、書き込み放電を起こした放電セルで維持放電を発生させ、対応する放電セルの蛍光体層を発光させることにより画像表示を行う。
 このようなPDPの駆動方法の中で、安定した放電制御を行うためにさまざまな駆動電圧波形が検討されている。例えば、特許文献1には、走査電極および維持電極に互いに異なる電圧値の維持パルスを印加して、維持放電を安定して発生させる駆動方法が記載されている。
 また、走査電極には、初期化パルス、走査パルス、維持パルス等の複雑な駆動電圧波形を印加する必要があり、それらの駆動電圧波形を発生させる走査電極駆動回路は複雑な回路構成となりがちである。そのため、簡素化した走査電極駆動回路の提案もなされている。例えば特許文献2には、正の走査パルスを各走査電極に印加し負の書き込みパルスをデータ電極に印加して回路の簡素化を図った走査電極駆動回路が開示されている。
特開2006-259061号公報 特開平11-316570号公報
 しかしながら、安定した放電制御を行うためには駆動電圧波形が複雑になる傾向があり、それを実現するために走査電極駆動回路が複雑になるだけでなく、必要な電位の数も増加して電源回路も複雑になる傾向があった。一方、走査電極駆動回路を簡素化すると、実現できる駆動電圧波形が制限され、安定した放電制御が難しくなる傾向があった。このように安定した放電制御と駆動回路の簡素化とを両立させることは難しかった。
 本発明はこれらの課題に鑑みなされたものであり、駆動回路を簡素化することができ、さらには安定した放電制御を実現することができるプラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法を提供することを目的とする。
 上記目的を達成するために本発明のプラズマディスプレイ装置は、対をなす走査電極及び維持電極からなる複数の表示電極対と複数のデータ電極とが間隙を有して交差するように配設され、前記間隙を形成する前記表示電極対及び前記データ電極とを有して前記間隙を放電空間とする複数の放電セルを有したプラズマディスプレイパネルと前記プラズマディスプレイパネルを駆動するための駆動回路とを備え、前記駆動回路は、前記走査電極を駆動する走査電極駆動回路と、前記維持電極を駆動する維持電極駆動回路と、前記データ電極を駆動するデータ電極駆動回路とを含み、前記維持電極駆動回路は、発光させるべき前記放電セルに前記書き込み放電を発生させる書き込み動作が行われる書き込み期間と、前記書き込み放電を発生させた前記放電セルを発光させる維持期間とを有する複数のサブフィールドを用いて構成される1フィールド期間の各々の前記サブフィールドの前記維持期間において、1周期の期間が、第1の電位から前記第1の電位より高い第2の電位へ立上る立上り期間と、前記第2の電位を保持するハイ期間と、前記第2の電位から前記第1の電位へ立下る立下り期間と、前記第1の電位を保持するロー期間とから構成される維持側維持パルスを前記維持電極に与え、前記維持期間以外の期間において、前記第1の電位および前記第2の電位のうちのいずれかと等しい電位のみを前記維持電極に与えるように構成され、前記走査電極駆動回路は、各々の前記サブフィールドの前記維持期間において、前記維持側維持パルスとは周期が同じで位相が異なる走査側維持パルスを前記走査電極に与えるように構成され、前記維持電極駆動回路及び前記走査電極駆動回路は、前記維持側維持パルスの前記第1の電位と前記第2の電位との差分である振幅が、前記走査側維持パルスの振幅より小さいように構成されている。この構成により、維持電極駆動回路を簡素化することができ、さらには安定した放電制御を実現することが可能になる。
 また、前記走査側維持パルスは、1周期の期間が、第3の電位から前記第3の電位より高い第4の電位へ立上る立上り期間と、前記第4の電位を保持するハイ期間と、前記第4の電位から前記第3の電位へ立下る立下り期間と、前記第3の電位を保持するロー期間とから構成され、前記維持電極駆動回路及び前記走査電極駆動回路は、前記走査側維持パルスのハイ期間と前記維持側維持パルスのロー期間とが重なる第1の期間を含む前記走査側維持パルスのハイ期間の後に続く前記走査側維持パルスの立下り期間が終了する前に、前記第1の期間を含む前記維持側維持パルスのロー期間の後に続く前記維持側維持パルスの立上り期間を終了し、前記走査側維持パルスのロー期間と前記維持側維持パルスのハイ期間とが重なる第2の期間を含む前記維持側維持パルスのハイ期間の後に続く前記維持側維持パルスの立下り期間が終了する前に、前記第2の期間を含む前記走査側維持パルスのロー期間の後に続く前記走査側維持パルスの立上り期間を終了するように構成されていることが、安定した放電制御を実現する上で好ましい。

 また、前記駆動回路は、前記複数の表示電極対を複数の表示電極対グループに分け、前記表示電極対グループ毎に、前記書き込み期間と前記維持期間とを有する複数のサブフィールドを用いて1フィールド期間を分割し、前記表示電極対グループの数をN、すべての放電セルに対して1回の前記書き込み動作を行うために必要な時間をTwとするとき、それぞれの表示電極対グループのそれぞれのサブフィールドの維持期間の時間が、Tw×(N-1)/Nを超えないように、前記プラズマディスプレイパネルを駆動するように構成されていることが、超高精細度のPDPであっても、画質を確保するための十分なサブフィールド数を確保することができ、十分な輝度で駆動することができる。また維持電極駆動回路を簡素化することができ、さらに安定した放電制御を実現する上で好ましい。

 また、本発明のプラズマディスプレイパネルの駆動方法は、対をなす走査電極及び維持電極からなる複数の表示電極対と複数のデータ電極とが間隙を有して交差するように配設され、前記間隙を形成する前記表示電極対及び前記データ電極とを有して前記間隙を放電空間とする複数の放電セルを有し、走査電極駆動回路によって前記走査電極が駆動され、維持電極駆動回路によって前記維持電極が駆動され、データ電極駆動回路によって前記データ電極が駆動されるプラズマディスプレイパネルの駆動方法であって、発光させるべき前記放電セルに前記書き込み放電を発生させる書き込み動作が行われる書き込み期間と、前記書き込み放電を発生させた前記放電セルを発光させる維持期間とを有する複数のサブフィールドを用いて構成される1フィールド期間の各々の前記サブフィールドの前記維持期間において、1周期の期間が、第1の電位から前記第1の電位より高い第2の電位へ立上る立上り期間と、前記第2の電位を保持するハイ期間と、前記第2の電位から前記第1の電位へ立下る立下り期間と、前記第1の電位を保持するロー期間とから構成される維持側維持パルスを前記維持電極駆動回路が前記維持電極に与え、前記維持期間以外の期間において、前記第1の電位および前記第2の電位のうちのいずれかと等しい電位のみを前記維持電極駆動回路が前記維持電極に与え、各々の前記サブフィールドの前記維持期間において、前記維持側維持パルスとは周期が同じで位相が異なる走査側維持パルスを前記走査電極駆動回路が前記走査電極に与え、前記維持側維持パルスの前記第1の電位と前記第2の電位との差分である振幅が、前記走査側維持パルスの振幅より小さいようにすることが望ましい。この駆動方法により、維持電極駆動回路を簡素化することができ、さらには安定した放電制御を実現することが可能になる。
 また、前記走査側維持パルスは、1周期の期間が、第3の電位から前記第3の電位より高い第4の電位へ立上る立上り期間と、前記第4の電位を保持するハイ期間と、前記第4の電位から前記第3の電位へ立下る立下り期間と、前記第3の電位を保持するロー期間とから構成され、前記走査側維持パルスのハイ期間と前記維持側維持パルスのロー期間とが重なる第1の期間を含む前記走査側維持パルスのハイ期間の後に続く前記走査側維持パルスの立下り期間が終了する前に、前記第1の期間を含む前記維持側維持パルスのロー期間の後に続く前記維持側維持パルスの立上り期間を終了し、前記走査側維持パルスのロー期間と前記維持側維持パルスのハイ期間とが重なる第2の期間を含む前記維持側維持パルスのハイ期間の後に続く前記維持側維持パルスの立下り期間が終了する前に、前記第2の期間を含む前記走査側維持パルスのロー期間の後に続く前記走査側維持パルスの立上り期間を終了するようにすることが、安定した放電制御を実現する上で好ましい。

 また、前記複数の表示電極対を複数の表示電極対グループに分け、前記表示電極対グループ毎に、前記書込み期間と前記維持期間とを有する複数のサブフィールドを用いて1フィールド期間を分割し、前記表示電極対グループの数をN、すべての放電セルに対して1回の前記書き込み動作を行うために必要な時間をTwとするとき、それぞれの表示電極対グループのそれぞれのサブフィールドの維持期間の時間が、Tw×(N-1)/Nを超えないようにプラズマディスプレイパネルを駆動することで、超高精細度のPDPであっても、画質を確保するための十分なサブフィールド数を確保することができ、十分な輝度で駆動することができる。また維持電極駆動回路を簡素化することができ、さらに安定した放電制御を実現する上で好ましい。
 本発明によれば、駆動回路を簡素化することができ、さらには安定した放電制御を実現することができるプラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法を提供することが可能となる。

 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
図1は、本発明の実施の形態1に用いるPDPの構造を示す分解斜視図である。 図2は、本発明の実施の形態1に用いるPDPの電極配列図である。 図3は、本発明の実施の形態1におけるプラズマディスプレイ装置の回路ブロック図である。 図4は、本発明の実施の形態1におけるプラズマディスプレイ装置の維持電極駆動回路の詳細を示す回路図である。 図5は、本発明の実施の形態1におけるPDPの各電極に与える駆動電圧波形図である。 図6は、本発明の実施の形態1におけるプラズマディスプレイ装置の走査側維持パルスおよび維持側維持パルスの詳細を示す駆動電圧波形図である。 図7は、本発明の実施の形態2に用いるPDPの電極配列図である。 図8は、本発明の実施の形態2におけるプラズマディスプレイ装置のサブフィールド構成の設定方法を説明するための図である。 図9は、本発明の実施の形態2におけるPDPの各電極に与える駆動電圧波形図である。 図10は、本発明の実施の形態2におけるプラズマディスプレイ装置の維持電極駆動回路の詳細を示す回路図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態に用いるPDP10の構造を示す分解斜視図である。ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして走査電極12と維持電極13とを覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23上には赤色、緑色および青色の各色に発光する蛍光体層25が設けられている。
 これら前面基板11と背面基板21とは、微小な放電空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置され、その外周部がガラスフリット等の封着材(図示せず)によって封着されている。そして放電空間には、例えばネオンとキセノンの混合ガスが放電ガスとして封入されている。放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に放電セルが形成されている。そしてこれらの放電セルが放電、発光することにより画像が表示される。
 なお、PDP10の構造は上述したものに限られるわけではなく、例えば井桁状の隔壁24に代えてストライプ状の隔壁を備えたものであってもよい。
 図2は、本発明の実施の形態に用いるPDP10の電極配列図である。PDP10には、行方向に長いn本の走査電極SC1~SCn(図1の走査電極12)およびn本の維持電極SU1~SUn(図1の維持電極13)が配列され、列方向に長いm本のデータ電極D1~Dm(図1のデータ電極22)が配列されている。そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが、放電空間を挟んで交差する領域およびその近傍領域が画像表示に寄与する1つの放電セルとなる。したがって、各放電セルは、1対の表示電極対(走査電極SCNiおよび維持電極SUSi)と1つのデータ電極とを備え、それらの間の放電空間を含んで構成される。このPDP10には、放電セルがm×n個形成されている。
 図3は、本発明の実施の形態におけるプラズマディスプレイ装置30の回路ブロック図である。プラズマディスプレイ装置30は、PDP10、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および電源回路36を備えている。
 画像信号処理回路31は、入力された画像信号をサブフィールド毎の発光・非発光を示す画像データに変換する。データ電極駆動回路32はサブフィールド毎の画像データを各データ電極D1~Dmに対応する信号に変換し、その信号をタイミング発生回路35からのタイミング信号に基づいて各データ電極D1~Dmに与えることにより各データ電極D1~Dmを駆動する。タイミング発生回路35は水平同期信号および垂直同期信号をもとにして各回路の動作を制御する各種のタイミング信号を発生し、それぞれの回路32,33,34へ供給する。走査電極駆動回路33は、与えられるタイミング信号に基づいて各走査電極SC1~SCnをそれぞれ駆動し、維持電極駆動回路34は、与えられるタイミング信号に基づいて維持電極SU1~SUnを駆動する。
 電源回路36は、維持電極駆動回路34を含む各回路ブロックに電力を供給する様々な電源を備えている。
 図4は、本発明の実施の形態におけるプラズマディスプレイ装置30の維持電極駆動回路34の詳細を示す回路図である。
 維持電極駆動回路34は、パルス発生部40を備えている。パルス発生部40は、維持電極SU1~SUnに電位Vs2を与えるためのスイッチング素子としてのトランジスタQ42と、維持電極SU1~SUnに0(V)の電位を与えるためのスイッチング素子としてのトランジスタQ43と、維持電極SU1~SUnに維持パルス(維持側維持パルス)を与える際の電力を回収するための電力回収部41とを有する。
 電力回収部41は、電力回収用のコンデンサC1と、トランジスタQ44、Q45と、逆流防止用のダイオードD1、D2と、共振用のインダクタL1とを有し、表示電極間の電極間容量(以下、「電極間容量Cp」という)とインダクタL1とをLC共振させて維持パルスの立上りおよび立下りを行う。維持パルスの立上り時には、電力回収用のコンデンサC1に蓄えられている電荷を、トランジスタQ44、ダイオードD1およびインダクタL1を介して電極間容量Cpに移動させる。維持パルスの立下り時には、電極間容量Cpに蓄えられた電荷を、インダクタL1、ダイオードD2およびトランジスタQ45を介して電力回収用のコンデンサC1に戻す。
 トランジスタQ42、Q43によって構成される電圧クランプ部は、トランジスタQ43が非導通状態でトランジスタQ42を導通させることにより維持電極SU1~SUnを電源に接続して電位Vs2にクランプする。また、トランジスタQ42が非導通状態でトランジスタQ43を導通させることにより維持電極SU1~SUnを接地して0(V)にクランプする。
 このようにして維持電極駆動回路34では、トランジスタQ42~Q45を制御することによって、後述の維持期間において、維持電極SU1~SUnに維持パルス(維持側維持パルス)を与える。また、後述の全セル初期化動作を行う初期化期間の後半部と、選択初期化動作を行う初期化期間と、書き込み期間とでは、トランジスタQ43が非導通状態でトランジスタQ42を導通させることにより維持電極SU1~SUnを電位Vs2に保持し、全セル初期化動作を行う初期化期間の前半部では、トランジスタQ42が非導通状態でトランジスタQ43を導通させることにより維持電極SU1~SUnを0(V)に保持する。
 なお、上記のトランジスタQ42~Q45は、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。
 次に、PDP10を駆動するための駆動電圧波形について説明する。プラズマディスプレイ装置30は、サブフィールド法、すなわち1フィールド期間を複数のサブフィールドに分割し、サブフィールド毎に各放電セルの発光・非発光を制御することによって階調表示を行う。それぞれのサブフィールドは初期化期間、書き込み期間および維持期間を有する。初期化期間では放電セル内部を書き込み放電が可能な帯電状態にするために放電セルに初期化放電を発生させ、続く書き込み放電に必要な壁電荷を各電極上に形成する。書き込み期間では走査電極に走査パルスを順次与えるとともに画像信号にもとづきデータ電極に書き込みパルスを与えて、発光させるべき放電セルで選択的に書き込み放電を発生させて続く維持放電に必要な壁電荷を形成する。そして維持期間では走査電極に走査側維持パルスを、維持電極に維持側維持パルスをそれぞれ交互に与えて、書き込み放電を発生した放電セルで維持放電を発生させて発光させる。
 本実施の形態においては、1フィールドを、例えば第1~第10の10個のサブフィールド(第1SF、第2SF、・・・、第10SF)に分割し、各サブフィールドはそれぞれ、例えば(1、2、3、6、11、18、30、44、60、80)の輝度重みを持つものとする。また、第1SFの初期化期間ではすべての放電セルで初期化放電を発生させる全セル初期化動作を行い、第2SF~第10SFの初期化期間では直前のサブフィールドで維持放電を行った放電セルで初期化放電を発生させる選択初期化動作を行うものとする。しかし本発明はサブフィールド数や各サブフィールドの輝度重みが上記の値に限定されるものではない。また、画像信号等に基づいてサブフィールド構成を切換える構成であってもよい。
 図5は、本発明の実施の形態におけるPDP10の各電極に与える駆動電圧波形図であり、第1SF(第1サブフィールド)と第2SF(第2サブフィールド)とにおける駆動電圧波形を示している。走査電極SC1~SCnには走査電極駆動回路33から図5に示す駆動電圧が与えられ、維持電極SU1~SUnには維持電極駆動回路34から図5に示す駆動電圧が与えられ、データ電極D1~Dmにはデータ電極駆動回路32から図5に示す駆動電圧が与えられる。
 第1SFの初期化期間の前半部では、データ電極D1~Dmに0(V)の電位を与え、維持電極SU1~SUnにも0(V)の電位を与える。走査電極SC1~SCnには、維持電極SU1~SUnに対して放電開始電圧以下の電位Vi1から、放電開始電圧を超える電位Vi2に向かって緩やかに上昇する上り傾斜波形電位を与える。
 この傾斜波形電位が上昇する間に、走査電極SC1~SCnと維持電極SU1~SUn及びデータ電極D1~Dmとの間でそれぞれ微弱な初期化放電が起こる。そして、走査電極SC1~SCn上に負の壁電圧が生じるとともに、データ電極D1~Dm上および維持電極SU1~SUn上には正の壁電圧が生じる。ここで、電極上の壁電圧とは電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。
 続く初期化期間の後半部では、維持電極SU1~SUnに電位Vs2を与える。そして走査電極SC1~SCnには、維持電極SU1~SUnに対して放電開始電圧以下となる電位Vi3から放電開始電圧を超える電位Vi4に向かって緩やかに下降する下り傾斜波形電位を与える。なお本実施の形態においては電位Vi4は負の電位である。
 この間に、走査電極SC1~SCnと維持電極SU1~SUnとの間、および走査電極SC1~SCnとデータ電極D1~Dmとの間で微弱な初期化放電が起こる。そして、走査電極SC1~SCn上の負の壁電圧および維持電極SU1~SUn上の正の壁電圧が弱められるとともに、データ電極D1~Dm上の正の壁電圧は書き込み動作に適した値に調整される。すなわち、各放電セル内部が書き込み放電可能な帯電状態になる。
 続く書き込み期間では、引き続き維持電極SU1~SUnには電位Vs2を与え、走査電極SC1~SCnに電位Vcを与える。
 次に、1行目の走査電極SC1に負の電位Vaである走査パルスを与えるとともに、1行目の発光させるべき放電セルに対応するデータ電極Dk(k=1~m)に電位Vdの書き込みパルスを与える。
 するとデータ電極Dk上と走査電極SC1上との交差部の電位差は、外部印加電圧(Vd-Va)にデータ電極Dk上の壁電圧の大きさと走査電極SC1上の壁電圧の大きさとが加算されたものとなり放電開始電圧を超える。そして、データ電極Dkと走査電極SC1との間で放電が開始し、維持電極SU1と走査電極SC1との間の放電に進展して書き込み放電が発生する。その結果、走査電極SC1上に正の壁電圧が生じ、維持電極SU1上に負の壁電圧が生じ、データ電極Dk上にも負の壁電圧が生じる。
 このようにして、1行目の発光させるべき放電セルで書き込み放電を起こして各電極上に壁電圧を生じさせる書き込み動作が行われる。一方、書き込みパルス電位Vdを与えなかったデータ電極D1~Dmと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書き込み放電は発生しない。
 次に、2行目の走査電極SC2に走査パルスを与えるとともに、2行目の発光させるべき放電セルに対応するデータ電極Dkに書き込みパルスを与える。
 すると走査パルスと書き込みパルスとが同時に与えられた2行目の放電セルでは書き込み放電が発生し、書き込み動作が行われる。
 以下同様に、電位Vaである走査パルスを走査電極SC3~SCnに順次与えるとともに、発光させるべき放電セルに対応するデータ電極Dkに書き込みパルスを与えて、発光させるべき放電セルに対して選択的に書き込み放電を発生させ壁電荷を形成する。このようにしてn行目の放電セルに至るまで書き込み動作を繰り返す。
 続く維持期間では、走査電極SC1~SCnに波高値が電位Vs1である走査側維持パルスを、維持電極SU1~SUnには波高値が電位Vs2である維持側維持パルスをそれぞれ交互に与え、書き込み期間において書き込み放電を起こした放電セルで維持放電を継続して発生させる。
 図6は、本発明の実施の形態におけるプラズマディスプレイ装置30の走査側維持パルスおよび維持側維持パルスの詳細を示す駆動電圧波形図である。
 走査電極SC1~SCnに波高値が電位Vs1である走査側維持パルスを与える。そして走査側維持パルスの立上り期間が終了した後に、維持電極SU1~SUnに0(V)の電位を与える。
 すると書き込み放電を起こした放電セルでは、走査電極SCi上と維持電極SUi上との電位差が、維持パルス電圧(Vs)に走査電極SCi上の壁電圧の大きさと維持電極SUi上の壁電圧の大きさとが加算されたものとなり、放電開始電圧を超える。そして、走査電極SCiと維持電極SUiとの間に維持放電が起こり、このとき発生した紫外線により蛍光体層25が発光する。そして走査電極SCi上に負の壁電圧が生じ、維持電極SUi上に正の壁電圧が生じる。さらにデータ電極Dk上にも正の壁電圧が生じる。書き込み期間において書き込み放電が起きなかった放電セルでは維持放電は発生せず、初期化期間の終了時における壁電圧が保たれる。
 次に、維持電極SU1~SUnに波高値が電位Vs2である維持側維持パルスを与える。そして維持側維持パルスの立上り期間が終了した後に、走査電極SC1~SCnに0(V)の電位を与える。
 すると、維持放電を起こした放電セルでは、維持電極SUi上と走査電極SCi上との電位差が放電開始電圧を超えるので、再び維持電極SUiと走査電極SCiとの間に維持放電が起こり、維持電極SUi上に負の壁電圧が生じ走査電極SCi上に正の壁電圧が生じる。
 以降同様に、走査電極SC1~SCnに走査側維持パルスを、維持電極SU1~SUnに維持側維持パルスを、それぞれ交互に輝度重みに応じた数だけ与え、書き込み期間において書き込み放電を起こした放電セルで維持放電を継続して発生させる。ここで、走査電極SC1~SCnに与える走査側維持パルスと、維持電極SU1~SUnに与える維持側維持パルスとは、それぞれ1周期の期間がそれぞれ立上り期間とハイ期間と立下り期間とロー期間とから構成され、ハイ期間における電位が異なる。また、走査側維持パルスと維持側維持パルスとは、周期は同じであるが、位相が180度ずれている。
 そして、維持期間の最後には走査電極SC1~SCnと維持電極SU1~SUnとの間にいわゆる細幅パルス状の電位差を与えて、データ電極Dk上の正の壁電圧を残したまま、走査電極SCi上および維持電極SUi上の壁電圧を消去している。こうして維持期間における維持動作が終了する。なお細幅パルス状の電位差に換えて傾斜状の電位差を与えてもよい。
 次に、選択初期化動作を行う第2SFの初期化期間では、全セル初期化動作を行う第1SFの初期化期間の後半部とほぼ同様の駆動を行う。すなわち、走査電極SC1~SCnには電位Vi3から電位Vi4に向かって緩やかに下降する傾斜波形電位を与える。
 すると直前のサブフィールドの維持期間で維持放電を起こした放電セルでは微弱な初期化放電が発生し、走査電極SCi上および維持電極SUi上の壁電圧が弱められる。また、データ電極Dkに対しては、直前の維持放電によってデータ電極Dk上に十分な正の壁電圧が生じているので、この壁電圧の過剰な部分が放電され、書き込み動作に適した壁電圧に調整される。一方、直前のサブフィールドで維持放電を起こさなかった放電セルについては放電することはなく、直前のサブフィールドの初期化期間終了時における壁電荷がそのまま保たれる。このように選択初期化動作は、直前のサブフィールドの維持期間で維持動作を行った放電セルに対して選択的に初期化放電を行う動作である。
 続く第2SFの書き込み期間の動作は第1SFの書き込み期間の動作と同様であり、維持期間の動作も維持パルスの数を除いて第1SFの維持期間の動作と同様であるため、説明を省略する。また、第2SFに続く第3SF以降のサブフィールドにおいても、維持パルスの数を除いて第2SFの動作と同様である。
 なお、本実施の形態においては、電位Vi1は180(V)、電位Vi2は420(V)、電位Vi3は180(V)、電位Vi4は-95(V)、電位Vaは-100(V)、電位Vcは0(V)、電位Vs1は210(V)、電位Vs2は150(V)である。また、走査電極SC1~SCnに与える上り傾斜波形電位および下り傾斜波形電位の傾斜はともに10(V/μsec.)以下である。また、データ電極D1~Dmに与える電位Vdは70(V)である。しかしこれらの値は上述した値に限定されるものではなく、PDPの放電特性やプラズマディスプレイ装置の仕様にもとづき最適に設定することが望ましい。
 上述したように、本実施の形態においては、維持期間以外の期間(初期化期間及び書き込み期間)に維持電極SU1~SUnに与える電位がVs2と0(V)とであり、維持期間に維持電極SU1~SUnに与える電位もVs2と0(V)とである。このように、維持期間以外の期間に維持電極SU1~SUnに与える電位を、維持期間に与える維持側維持パルスのハイレベル電位(電位Vs2)及びローレベル電位(0V)のいずれかに等しい電位のみとすることにより、図4に示したように、維持電極駆動回路34には、電力回収部41を除いて、電位Vs2を供給する高電位側電源に接続されたトランジスタQ42と、0(V)の電位を供給する低電位側電源に接続されたトランジスタQ43とからなるクランプ部を備えていればよく、維持電極駆動回路34の回路構成を簡素化することができる。例えば、初期化期間あるいは書き込み期間に維持電極SU1~SUnに、維持側維持パルスのハイレベル電位(電位Vs2)及びローレベル電位(0V)以外の電位を与えるようにした場合には、そのような電位を与えるための回路が必要になるが、本実施の形態ではそのような回路が不要である。
 また、本実施の形態においては、走査側維持パルスの波高値は電位Vs1の値(例えば210V)であり、維持側維持パルスの波高値は電位Vs2の値(例えば150V)であるので、維持側維持パルスの波高値(振幅)は走査側維持パルスの波高値(振幅)よりも小さい。
 一般に、波高値の異なる維持パルスを走査電極SC1~SCnおよび維持電極SU1~SUnに与える場合には、消去放電が発生して維持放電が不安定となる傾向がある。しかしながら本実施の形態においては、図6に示したように、走査電極SC1~SCnに与える走査側維持パルスの立上り期間が終了した後に維持電極SU1~SUnに与えていた維持側維持パルスの立下り期間を開始し、また、維持電極SU1~SUnに与える維持側維持パルスの立上り期間が終了した後に走査電極SC1~SCnに与えていた走査側維持パルスの立下り期間を開始している。このようなタイミングにて表示電極対に維持パルスを与えると、走査側維持パルスおよび維持側維持パルスの立下りをきっかけとして維持放電が発生する。そのため、走査電極SCiとデータ電極Dkとの消去放電または維持電極SUiとデータ電極Dkとの消去放電を誘発することなく、走査電極SCiと維持電極SUiとの維持放電を発生させることができ、安定した維持放電を実現することができる。
 なお、本実施の形態においては、図6に示したように、走査側維持パルスの立上り期間が終了した後に維持側維持パルスの立下り期間を開始し、維持側維持パルスの立上り期間が終了した後に走査側維持パルスの立下り期間を開始している。しかし、本発明はこれに限定されるものではない。走査側維持パルスの立下り期間が終了する前に維持側維持パルスの立上り期間を終了し、維持側維持パルスの立下り期間が終了する前に走査側維持パルスの立上り期間を終了すればよい。すなわち、走査側維持パルスのハイ期間(電位がVs1の期間)と維持側維持パルスのロー期間(電位が0Vの期間)とが重なる期間である第1期間を含む走査側維持パルスのハイ期間の後に続く走査側維持パルスの立下り期間が終了する前に、同第1期間を含む維持側維持パルスのロー期間の後に続く維持側維持パルスの立上り期間を終了し、走査側維持パルスのロー期間(電位が0Vの期間)と維持側維持パルスのハイ期間(電位がVs2の期間)とが重なる期間である第2期間を含む維持側維持パルスのハイ期間の後に続く維持側維持パルスの立下り期間が終了する前に、同第2期間を含む走査側維持パルスのロー期間の後に続く走査側維持パルスの立上り期間を終了するようにすればよい。これにより、走査側維持パルスの立下り時および維持側維持パルスの立下り時に維持放電が発生する。
 具体的には、例えば、維持電極SU1~SUnの電位が維持側維持パルスの波高値(Vs2)の50%以下に下がる前に、走査電極SC1~SCnの電位を走査側維持パルスの波高値(Vs1)の50%以上に立ち上げ、走査電極SC1~SCnの電位が走査側維持パルスの波高値(Vs1)の50%以下に下がる前に、維持電極SU1~SUnの電位を維持側維持パルスの波高値(Vs2)の50%以上に立ち上げてもよい。このようなタイミングにて表示電極対に維持パルスを与えることによっても安定した維持放電を実現することができる。
 なお、本実施の形態において用いた具体的な各数値は、単に一例を挙げたに過ぎず、パネルの特性やプラズマディスプレイ装置の仕様等に合わせて、適宜最適な値に設定することが望ましい。

 (実施の形態2)
 図7は、本発明の実施の形態2に用いる超高精細度のPDP10の電極配列図である。PDP10には、行方向に長い走査電極SC1~SCn(図1の走査電極12)および維持電極SU1~SUn(図1の維持電極13)が配列され、列方向に長いm本のデータ電極D1~Dm(図1のデータ電極22)が配列されている。そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した部分に放電セルが形成され、放電セルは放電空間内にm×n個形成されている。表示電極対の数について特に制限はないが、本実施の形態2においては、図7に示されるように、n=2160として説明する。
 走査電極SC1~SC2160および維持電極SU1~SU2160からなる2160対の表示電極対は、複数の表示電極対グループに分けられている。表示電極対グループの数の決め方については後述することとして、本実施の形態2においては、PDP10を上下に2分割して2つの表示電極対グループに分けたとして説明する。図7に示したように、PDP10の上半分に位置する表示電極対を第1の表示電極対グループとし、PDP10の下半分に位置する表示電極対を第2の表示電極対グループとする。すなわち1080本の走査電極SC1~SC1080および1080本の維持電極SU1~SU1080が第1の表示電極対グループに属し、1080本の走査電極SC1081~SC2160および1080本の維持電極SU1081~SU2160が第2の表示電極対グループに属している。
 次に、PDP10を駆動するための駆動方法について説明する。本実施の形態2においては、初期化期間を除き、書き込み動作が連続して行われるように走査パルスおよび書き込みパルスのタイミングを設定している。その結果、1フィールド期間内に最大限の数のサブフィールドを設定することができる。この構成により、超高精細度のPDPであっても、画質を確保するための十分なサブフィールド数を確保することができ、十分な輝度で駆動することができる。

 以下に、その詳細について、例をあげて説明する。

 図8は、本発明の実施の形態2におけるプラズマディスプレイ装置のサブフィールド構成の設定方法を説明するための図である。図8(a)~図8(d)の縦軸は走査電極SC1~SC2160を示し、横軸は時間を示している。また、書き込み動作を行うタイミングを実線で示し、維持期間および後述する消去期間のタイミングはハッチングで示している。なお以下の説明では、1フィールド期間の時間を16.7(msec.)とした。
 まず、図8(a)に示すように、1フィールド期間の最初に、すべての放電セルで一斉に初期化放電を発生させる初期化期間を設ける。本実施の形態においては、初期化期間に要する時間を500(μsec.)と設定した。
 次に、図8(b)に示すように、走査電極SC1~SC2160に走査パルスを順次与えるために要する時間Twを見積もる。このとき、書き込み動作が連続して行われるように走査パルスを可能な限り短くかつ可能な限り連続して与えることが望ましい。本実施の形態2においては、走査電極1本あたりの書き込み動作に要する時間を0.7(μsec.)とした。走査電極の数が2160本であるため、すべての走査電極で書き込み動作を1回行うために必要な時間Twは、0.7×2160=1512(μsec.)である。
 次に、サブフィールド数を見積もる。さしあたり消去期間に要する時間を無視するものとして、1フィールド期間の時間(16.7ms)から初期化期間の時間(0.5ms)を引いて、すべての走査電極で書き込み動作を1回行うために必要な時間(約1.5ms)で割ると、(16.7-0.5)/1.5=10.8となり、図8(c)に示すように、最大で10のサブフィールド(SF1、SF2、・・・、SF10)を確保できることがわかる。
 次に、必要な維持パルス数にもとづき、表示電極対グループの数を決める。本実施の形態2においては、各サブフィールドにおいてそれぞれ「60」、「44」、「30」、「18」、「11」、「6」、「3」、「2」、「1」、「1」の数の維持パルスを与えるものと仮定する。維持パルス周期を10(μsec.)とすると、維持パルスを与えるために要する最大の時間Tsは、10×60=600(μsec.)である。
 表示電極対グループの数Nは、すべての走査電極で書き込み動作を1回行うために必要な時間Twと維持パルスを与えるために要する最大の時間Tsを用いて、以下の数式にもとづき求める。
 N≧Tw/(Tw-Ts)

 本実施の形態2においては、Tw=1512(μsec.)、Ts=600(μsec.)であるので、1512/(1512-600)=1.66となり、表示電極対グループの数N=2となる。ここで、表示電極対グループの数Nを3以上の値としても上記数式を満足するが、本実施の形態では、駆動回路の簡素化等を考慮して上記数式を満足する最小の整数値を表示電極対グループの数Nとする。なお、上記数式におけるTwは、すべての表示電極対に対応する放電セル(すべての放電セル)に対して1回の書き込み動作を行うために必要な時間であるとも言える。また、書き込み動作は、発光させるべき放電セルに書き込み放電を発生させる書き込み処理であるとも言える。

 以上の考察にもとづき、図7に示したように表示電極対を2つの表示電極対グループに分ける。そして、図8(d)に示すように、それぞれのグループに属する走査電極の書き込みの後に、維持パルスを与える維持期間を設ける。

 ここで、PDP10の駆動方法および表示電極対グループの数を決める上で、維持パルスを与えるために要する最大の時間Tsが非常に重要であることがわかる。上述した数式

 N≧Tw/(Tw-Ts)
を変形すると、
Ts≦Tw×(N-1)/N
となるが、これは、それぞれの表示電極対グループのそれぞれのサブフィールドの維持期間の時間が時間Tsを越えてはならないことを示している。
 本実施の形態2においては、N=2、Tw=1512(μsec.)、Ts=600(μsec.)であるので、
Tw×(N-1)/N=756≧600
となり、もちろんこの条件を満たしている。
 以上のようにして、PDP10を駆動するための駆動方法および表示電極対グループの数をきめることができる。なお、本実施の形態2においては、各サブフィールドの維持期間の終了後に続いて消去期間を設ける必要があるが、図8(d)では維持期間と消去期間の両方とも右上から左下への斜線のハッチングで示している。

 なお、以上の計算では、消去期間については無視して計算したが、いずれかの表示電極対グループが消去期間であるときには、書き込み動作を行わないように設定することが望ましい。これは、消去期間は壁電圧を消去するだけでなく、次の書き込み期間の書き込み動作に備えてデータ電極上の壁電圧を調整する期間でもあるため、消去期間においてはデータ電極の電位を固定しておくことが望ましいからである。

 次に、駆動電圧波形の詳細とその動作について説明する。図9は、本発明の実施の形態2におけるプラズマディスプレイ装置のPDP10の各電極に印加する駆動電圧波形を示す図である。図9において、「初期化」は初期化期間を、「書込み」は書き込み期間を、「維持」は維持期間を、「消去」は消去期間を、「休止」は休止期間をそれぞれ示している。
 本実施の形態2においては、1フィールドの最初にそれぞれの放電セルで初期化放電を発生させる初期化期間を設け、その後に、表示電極対グループ毎にサブフィールドSF1,SF2,・・・,SF10が設けられている。そして、それぞれの表示電極対グループのそれぞれのサブフィールドでは、最初に書き込み期間が設けられ、書き込み期間の後に維持期間が設けられ、維持期間の後に、その維持期間で放電した放電セルに対して消去放電を発生させる消去期間が設けられている。また、それぞれの表示電極対グループに対する書き込み期間が重ならないようにしている。図9には、初期化期間と、第1の表示電極対グループに対するSF1~SF2およびSF3の書き込み期間、第2の表示電極対グループに対するSF1~SF2を示している。
 まず初期化期間について説明する。初期化期間では、データ電極D1~Dm、維持電極SU1~SU2160にそれぞれ0(V)の電位を与え、走査電極SC1~SC2160には電位Vi1から電位Vi2に向かって緩やかに上昇する傾斜波形電位を与える。この傾斜波形電位が上昇する間に、走査電極SC1~SC2160と維持電極SU1~SU2160及びデータ電極D1~Dmとの間でそれぞれ微弱な初期化放電が発生する。そして、走査電極SC1~SC2160上に負の壁電圧が生じるとともに、データ電極D1~Dm上および維持電極SU1~SU2160上には正の壁電圧が生じる。ここで、電極上の壁電圧とは電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。なお、この期間はデータ電極D1~Dmに電位Vdを与えてもよい。
 次に、維持電極SU1~SU2160に電位Vs2を与え、走査電極SC1~SC2160には電位Vi3から電位Vi4に向かって緩やかに下降する傾斜波形電位を与える。この間に、走査電極SC1~SC2160と維持電極SU1~SU2160及びデータ電極D1~Dmとの間でそれぞれ微弱な初期化放電が発生する。そして、走査電極SC1~SC2160上の負の壁電圧および維持電極SU1~SU2160上の正の壁電圧が弱められ、データ電極D1~Dm上の正の壁電圧は書き込み動作に適した値に調整される。その後、走査電極SC1~SC2160に電位Vcを与える。以上により、すべての放電セルに対して初期化放電を行う初期化動作が終了する。
 次に第1の表示電極対グループに対するサブフィールドSF1の書き込み期間について説明する。維持電極SU1~SU1080に電位Vs2を与える。そして走査電極SC1に負の電位Vaを持つ走査パルスを与えるとともに、1行目に発光させるべき放電セルに対応するデータ電極Dk(k=1~m)に電位Vdを持つ書き込みパルスを与える。するとデータ電極Dk上と走査電極SC1上との交差部の電位差は、外部印加電圧の差(Vd-Va)にデータ電極Dk上の壁電圧と走査電極SC1上の壁電圧の差とが加算されたものとなり放電開始電圧を超える。そして、データ電極Dkと走査電極SC1との間で放電が開始し、維持電極SU1と走査電極SC1との間の放電に進展して書き込み放電が発生する。その結果、走査電極SC1上に正の壁電圧が生じ、維持電極SU1上に負の壁電圧が生じ、データ電極Dk上にも負の壁電圧が生じる。このようにして、1行目に発光させるべき放電セルで書き込み放電を発生して各電極上に壁電圧を生じさせる書き込み動作が行われる。一方、書き込みパルスを印加しなかったデータ電極D1~Dmと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書き込み放電は発生しない。
 次に、2行目の走査電極SC2に走査パルスを与えるとともに、2行目に発光させるべき放電セルに対応するデータ電極Dkに書き込みパルスを与える。すると走査パルスと書き込みパルスとが同時に印加された2行目の放電セルでは書き込み放電が発生し、書き込み動作が行われる。
 以上の書込み動作を1080行目の放電セルに至るまで繰り返し、発光させるべき放電セルに対して選択的に書き込み放電を発生させて壁電荷を形成する。
 この間、第2の表示電極対グループに対してはサブフィールドSF1の前の休止期間である。第2の表示電極対グループに属する走査電極SC1081~SC2160に電位Vi1を与える。また、維持電極SU1081~SU2160には電位Vs2を与える。このように休止期間においては、放電が発生しない範囲で走査電極SC1081~SC2160をできるだけ高電位に保持することで壁電荷の減少を抑制することができ、続く書き込み期間において安定した書き込み動作を行うことができる。ただし、第2の表示電極対グループに属する各電極に与える電位は上記に限定されるものではなく、放電を発生しない範囲の他の電位を与えてもよい。
 次に第2の表示電極対グループに対するサブフィールドSF1の書き込み期間について説明する。維持電極SU1081~SU2160に電位Vs2を継続して与える。そして走査電極SC1081に走査パルスを与えるとともに、発光させるべき放電セルに対応するデータ電極Dkに書き込みパルスを与える。するとデータ電極Dkと走査電極SC1081との間、維持電極SU1081と走査電極SC1081との間で書き込み放電が発生する。次に、走査電極SC1082に走査パルスを与えるとともに、発光させるべき放電セルに対応するデータ電極Dkに書き込みパルスを与える。すると走査パルスと書き込みパルスとが同時に与えられた1082行目の放電セルで書き込み放電が発生する。
 以上の書き込み動作を2160行目の放電セルに至るまで繰り返し、発光させるべき放電セルに対して選択的に書き込み放電を発生させて壁電荷を形成する。
 この間に、第1の表示電極対グループに対してはサブフィールドSF1の維持期間があり、第1の表示電極対グループに属する走査電極SC1~SC1080および維持電極SU1~SU1080に「60」の維持パルスを交互に印加して、書き込み放電を行った放電セルを発光させる。
 具体的には、まず走査電極SC1~SC1080に波高値が電位Vs1である走査側維持パルスを与えるとともに維持電極SU1~SU1080に0(V)の電位を与える。すると書き込み放電を発生させた放電セルでは、走査電極SCi上の壁電圧と維持電極SUi上の壁電圧との差に走査側維持パルス電圧(Vs1)が加算され、走査電極SCi上と維持電極SUi上との電位差が放電開始電圧を超える。そして走査電極SCiと維持電極SUiとの間で維持放電が発生し、このとき発生した紫外線により蛍光体層25が発光する。そして走査電極SCi上に負の壁電圧が生じ、維持電極SUi上に正の壁電圧が生じる。書き込み期間において書き込み放電を発生させなかった放電セルでは維持放電は発生せず、初期化期間の終了時における壁電圧が保たれる。
 続いて、走査電極SC1~SC1080には0(V)の電位を、維持電極SU1~SU1080には波高値が電位Vs2である維持側維持パルスを与える。すると、維持放電を発生した放電セルでは、維持電極SUi上と走査電極SCi上との電位差が放電開始電圧を超えるので再び維持放電が発生し、維持電極SUi上に負の壁電圧が生じ走査電極SCi上に正の壁電圧が生じる。以降同様に、走査電極SC1~SC1080と維持電極SU1~SU1080とに交互に維持パルスを印加し、表示電極対の電極間に電位差を与えることにより、書き込み期間において書き込み放電を発生した放電セルで維持放電が継続して発生し、放電セルが発光する。
 ここで表示電極対に交互に与える維持パルスは、走査電極SC1~SC1080および維持電極SU1~SU1080が同時にハイレベル電位となるタイミングを有する維持パルスである。すなわち、走査電極SC1~SC1080に電位Vs1を与えるとともに維持電極SU1~SU1080に0(V)の電位を与える場合には、まず走査電極SC1~SC1080の電位を電位0(V)から電位Vs1に向かって上昇させ、その後に維持電極SU1~SU1080の電位を電位Vs2から電位0(V)に向かって降下させる。また走査電極SC1~SC1080に電位0(V)を与えるとともに維持電極SU1~SU1080に電位Vs2を与える場合には、まず維持電極SU1~SU1080の電位を電位0(V)から電位Vs2に向かって上昇させ、その後に走査電極SC1~SC1080の電位を電位Vs1から電位0(V)に向かって降下させる。
 このように、走査電極SC1~SC1080および維持電極SU1~SU1080が同時にハイレベル電位となるタイミングが存在するように維持パルスを与えることにより、データ電極に印加される書き込みパルスの影響を受けることなく安定した維持放電を継続することができる。以下にその理由について説明する。
 走査電極SC1~SC1080に電位0(V)を与えるとともに維持電極SU1~SU1080に電位Vs2を与える際に、仮に、まず走査電極SC1~SC1080の電位を電位Vs1から電位0(V)に向かって降下させ、その後に維持電極SU1~SU1080の電位を電位0(V)から電位Vs2に向かって上昇させたと仮定する。すると、データ電極に書き込みパルスが印加されている場合、走査電極SC1~SC1080の電位が降下した時点で、走査電極とデータ電極との間で放電が発生し、維持放電の継続に必要な壁電荷が減少する可能性がある。また走査電極SC1~SC1080に電位Vs1を与えるとともに維持電極SU1~SU1080に電位0(V)を与える際に、仮に、まず維持電極SU1~SU1080の電位を電位Vs2から電位0(V)に向かって降下させ、その後に走査電極SC1~SC1080の電位を電位0(V)から電位Vs1に向かって上昇させたと仮定する。すると、データ電極に書き込みパルスが印加されている場合、維持電極SU1~SU1080の電位が降下した時点で、維持電極とデータ電極との間で放電が発生し、維持放電の継続に必要な壁電荷が減少する可能性がある。
 このように、表示電極対の一方の電極の電位を降下した時点で放電が発生し壁電荷が減少すると、その後に他方の電極の電位を上昇させて維持パルスを印加しても維持放電が発生しない、あるいは弱い維持放電となり、十分な壁電荷が蓄積されないため、継続して維持放電を発生させることができなくなる恐れがあった。
 しかしながら本実施の形態2においては、表示電極対の一方の電極の電位を上昇させた後に他方の電極の電位を降下させて維持パルスを与えるので、データ電極に書き込みパルスが印加されていても表示電極対の一方とデータ電極との間で先行して放電が発生する恐れがない。そのため、書き込みパルスの有無にかかわらず維持放電を安定して継続することができる。
 そして、維持期間の後には、前半と後半の2つの消去期間と、その間の休止期間とが設けられている。前半の消去期間では、走査電極SC1~SC1080に電位Vrに向かって上昇する傾斜波形電位を与え、データ電極Dk上の正の壁電圧を残したまま、走査電極SCiおよび維持電極SUi上の壁電圧を消去している。このように消去動作を行うためにはある程度の時間が必要である。そして消去期間は壁電圧を消去するだけでなく、次の書き込み期間の書き込み動作に備えてデータ電極上の壁電圧を調整する期間でもあるため、データ電極の電位を固定しておくことが望ましい。そのため本実施の形態2における駆動電圧波形では、第1の表示電極対グループの消去期間において第2の表示電極対グループの書き込み動作を停止している。

 その後、第1の表示電極対グループに対しては放電が発生しない休止期間であり、走査電極SC1~SC1080に0(V)の電位を与えた後、維持電極SU1~SU1080に電位Vs2を与える。そして、第2の表示電極対グループは書き込み動作を再開し、走査電極SC2160の書き込みが終了するまで第1の表示電極対グループは休止期間の動作を継続する。

 その後、第1の表示電極対グループは後半の消去期間であり、維持電極SU1~SU1080に電位Vs2を継続して与え、走査電極SC1~SC1080に電位Vi4に向かって降下する傾斜波形電位を与え、次の書き込み期間の書き込み動作に備えてデータ電極上の壁電圧を調整する。その後直ちに書き込み期間になり走査電極SC1から書き込み動作を始める。このように電位Vi4に向かって降下する傾斜波形電位を与えた直後に書き込み動作を開始することによって、壁電荷の減少を抑制することができ、続く書き込み期間において安定した書き込み動作を行うことができる。
 次に第1の表示電極対グループに対するサブフィールドSF2の書き込み期間について説明する。
 維持電極SU1~SU1080に電位Vs2を継続して与える。そして走査電極SC1~SC1080には、SF1の書き込み期間と同様に走査パルスを順次与えるとともに、データ電極Dkに書き込みパルスを与えて、1~1080行目の放電セルで書き込み動作を行う。
 この第1の表示電極対グループが書き込み期間の間に、第2の表示電極対グループに対するサブフィールドSF1の維持期間がある。すなわち、走査電極SC1081~SC2160および維持電極SU1081~SU2160には「60」の維持パルスを交互に印加して、書き込み放電を行った放電セルを発光させる。
 ここでも表示電極対に交互に印加される維持パルスは、走査電極SC1081~SC2160および維持電極SU1081~SU2160が同時にハイレベル電位となるタイミングを有する維持パルスである。
 そして、維持期間の後は2つの消去期間と休止期間である。前半の消去期間では、走査電極SC1081~SC2160に電位Vrに向かって上昇する傾斜波形電位を与え、データ電極Dk上の正の壁電圧を残したまま、走査電極SCiおよび維持電極SUi上の壁電圧を消去している。ここでも、前述したように第2の表示電極対グループの消去期間において第1の表示電極対グループの書き込み動作を停止している。

 その後、第2の表示電極対グループに対しては放電が発生しない休止期間であり、走査電極SC1081~SC2160に0(V)の電位を与えた後、維持電極SU1081~SU2160に電位Vs2を与える。そして、第1の表示電極対グループは書き込み動作を再開し、走査電極SC1080の書き込みが終了するまで第2の表示電極対グループは休止期間の動作を継続する。

 その後、第2の表示電極対グループは後半の消去期間であり、維持電極SU1081~SU2160に電位Vs2を継続して与え、走査電極SC1081~SC2160に電位Vi4に向かって降下する傾斜波形電位を与え、次の書き込み期間の書き込み動作に備えてデータ電極上の壁電圧を調整する。その後直ちに書き込み期間になり走査電極SC1から書き込み動作を始める。このように電位Vi4に向かって降下する傾斜波形電位を与えた直後に書き込み動作を開始することによって、壁電荷の減少を抑制することができ、続く書き込み期間において安定した書き込み動作を行うことができる。

 以降同様に、第2の表示電極対グループに対するサブフィールドSF2の書き込み期間、第1の表示電極対グループに対するサブフィールドSF3の書き込み期間、・・・、第2の表示電極対グループに対するサブフィールドSF10の書き込み期間と続き、最後に第2の表示電極対グループに対するサブフィールドSF10の維持期間および消去期間と続いて1フィールドを終える。

 このように本実施の形態2においては、初期化期間の後に、いずれかの表示電極対グループで書き込み動作が連続して行われるように走査パルスおよび書き込みパルスのタイミングを設定している。その結果、1フィールド期間内に10のサブフィールドを設定することができる。そしてこのサブフィールドの数は、本実施の形態において1フィールド期間内に設定できる最大の数である。
 また本実施の形態2においては、最後に第2の表示電極対グループに対する維持期間および消去期間で1フィールドを終える。そのために、最後のサブフィールドは輝度重みの最も小さいサブフィールドを配置することで、駆動時間を短縮することができる。
 なお、本実施の形態2においては、電位Vi1は150(V)、電位Vi2は400(V)、電位Vi3は200(V)、電位Vi4は-150(V)、電位Vcは-10(V)、電位Vbは150(V)電位Vaは-160(V)、電位Vs1は230(V)、電位Vrは230(V)、電位Vs2は170(V)、電位Vdは60(V)である。また走査電極SC1~SC2160に与える上り傾斜波形電位の勾配は10(V/μsec.)、下り傾斜波形電位の勾配は-2(V/μsec.)である。しかしこれらの電位の値、勾配は上述した値に限定されるものではなく、パネルの放電特性やプラズマディスプレイ装置の仕様にもとづき最適に設定することが望ましい。

 本発明の実施の形態2におけるプラズマディスプレイ装置の回路ブロック図は、実施の形態1と同様であり、図3で示される。本実施の形態2におけるプラズマディスプレイ装置30は、PDP10、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および電源回路36を備えている。
 画像信号処理回路31は、入力された画像信号をサブフィールド毎の発光・非発光を示す画像データに変換する。データ電極駆動回路32はサブフィールド毎の画像データを各データ電極D1~Dmに対応する信号に変換し、その信号をタイミング発生回路35からのタイミング信号に基づいて各データ電極D1~Dmに与えることにより各データ電極D1~Dmを駆動する。タイミング発生回路35は水平同期信号および垂直同期信号をもとにして各回路の動作を制御する各種のタイミング信号を発生し、それぞれの回路32、33、34へ供給する。走査電極駆動回路33は、与えられるタイミング信号に基づいて各走査電極SC1~SCnをそれぞれ駆動し、維持電極駆動回路34は、与えられるタイミング信号に基づいて維持電極SU1~SUnを駆動する。
 電源回路36は、維持電極駆動回路34を含む各回路ブロックに電力を供給する様々な電源を備えている。
 図10は、本発明の実施の形態2におけるプラズマディスプレイ装置30の維持電極駆動回路34の詳細を示す回路図である。上述したように、PDP10を構成する走査電極SC1~SC2160および維持電極SU1~SU2160からなる2160対の表示電極対は、第1の表示電極対グループと第2の表示電極対グループに分けられる。第1の表示電極対グループは第1の走査電極グループおよび第1の維持電極グループを含み、第2の表示電極対グループは第2の走査電極グループおよび第2の維持電極グループを含む。すなわち、PDP10を構成する複数の維持電極SU1~SU2160は、第1の維持電極グループおよび第2の維持電極グループに分割される。
 維持電極駆動回路34は、第1の維持電極グループに属する維持電極SU1~SU1080に維持パルスを与えるパルス発生回路50aと、第2の維持電極グループに属する維持電極SU1081~SU2160に維持パルスを与えるパルス発生回路50bとを備えている。
 パルス発生回路50aは、第1の維持電極グループに属する維持電極SU1~SU1080に電位Vs2を与えるためのスイッチング素子としてのトランジスタQ52aと、維持電極SU1~SU1080に0(V)の電位を与えるためのスイッチング素子としてのトランジスタQ53aと、維持電極SU1~SU1080に維持パルス(維持側維持パルス)を与える際の電力を回収するための電力回収部51aとを有する。
 電力回収部51aは、電力回収用のコンデンサC51aと、トランジスタQ54a、Q55aと、逆流防止用のダイオードD54a、D55aと、共振用のインダクタL51aを有し、電極間容量CpとインダクタL51aとをLC共振させて維持パルスの立上りおよび立下りを行う。維持パルスの立上り時には、電力回収用のコンデンサC51aに蓄えられている電荷を、トランジスタQ54a、ダイオードD54a、およびインダクタL51aを介して、第1の表示電極対グループの電極間容量Cpに移動させる。一方、電力回収部51aは、維持パルスの立下り時には、電極間容量Cpに蓄えられた電荷を、インダクタL51a、ダイオードD55a、およびトランジスタQ55aを介して、電力回収用のコンデンサC51aに戻す。
 トランジスタQ52a、Q53aによって構成される電圧クランプ部は、トランジスタQ53aが非導通状態でトランジスタQ52aを導通させることにより、第1の維持電極グループに属する維持電極SU1~SU1080を電源に接続して電位Vs2にクランプする。またトランジスタQ52aが非導通状態でトランジスタQ53aを導通させることにより維持電極SU1~SU1080を接地して0(V)にクランプする。
 このようにして維持電極駆動回路34のパルス発生回路50aでは、トランジスタQ52a~Q55aを制御することによって、維持期間において、第1の維持電極グループに属する維持電極SU1~SU1080に維持パルス(維持側維持パルス)を与える。
 また、初期化期間の後半部と、後半の消去期間と、書き込み期間と、休止期間とでは、トランジスタQ53aが非導通状態でトランジスタQ52aを導通させることにより維持電極SU1~SU1080を電位Vs2に保持し、初期化期間の前半部と、前半の消去期間とでは、トランジスタQ52aが非導通状態でトランジスタQ53aを導通させることにより維持電極SU1~SU1080を0(V)に保持する。
 なお、上記のトランジスタQ52a~Q55aは、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。
 同様に、パルス発生回路50bは、第2の維持電極グループに属する維持電極SU1081~SU2160に電位Vs2を与えるためのスイッチング素子としてのトランジスタQ52bと、維持電極SU1081~SU2160に0(V)の電位を与えるためのスイッチング素子としてのトランジスタQ53bと、維持電極SU1081~SU2160に維持パルス(維持側維持パルス)を与える際の電力を回収するための電力回収部51bとを有する。
 電力回収部51bは、電力回収用のコンデンサC51bと、トランジスタQ54b、Q55bと、逆流防止用のダイオードD54b、D55bと、共振用のインダクタL51bを有し、電極間容量CpとインダクタL51bとをLC共振させて維持パルスの立上りおよび立下りを行う。維持パルスの立上り時には、電力回収用のコンデンサC51bに蓄えられている電荷を、トランジスタQ54b、ダイオードD54b、およびインダクタL51bを介して、第2の表示電極対グループの電極間容量Cpに移動させる。一方、電力回収部51bは、維持パルスの立下り時には、電極間容量Cpに蓄えられた電荷を、インダクタL51b、ダイオードD55b、およびトランジスタQ55bを介して、電力回収用のコンデンサC51bに戻す。
 トランジスタQ52b、Q53bによって構成される電圧クランプ部は、トランジスタQ53bが非導通状態でトランジスタQ52bを導通させることにより、第2の維持電極グループに属する維持電極SU1081~SU2160を電源に接続して電位Vs2にクランプする。またトランジスタQ52bが非導通状態でトランジスタQ53bを導通させることにより維持電極SU1081~SU2160を接地して0(V)にクランプする。
 このようにして維持電極駆動回路34のパルス発生回路50bでは、トランジスタQ52b~Q55bを制御することによって、維持期間において、第2の維持電極グループに属する維持電極SU1~SU1080に維持パルス(維持側維持パルス)を与える。
 また、初期化期間の後半部と、後半の消去期間と、書き込み期間と、休止期間とでは、トランジスタQ53bが非導通状態でトランジスタQ52bを導通させることにより維持電極SU1081~SU2160を電位Vs2に保持し、初期化期間の前半部と、前半の消去期間とでは、トランジスタQ52bが非導通状態でトランジスタQ53bを導通させることにより維持電極SU1081~SU2160を0(V)に保持する。
 なお、上記のトランジスタQ52b~Q55bは、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。

 上述したように、本実施の形態2においては、維持期間以外の期間(初期化期間、書き込み期間、休止期間および消去期間)に維持電極SU1~SU2160に与える電位がVs2と0(V)であり、維持期間に維持電極SU1~SU2160に与える電位もVs2と0(V)である。このように、維持期間以外の期間に維持電極SU1~SU2160に与える電位を、維持期間に与える維持側維持パルスのハイレベル電位(電位Vs2)およびローレベル電位(0V)のいずれかに等しい電位のみとすることにより、図10に示したように、維持電極駆動回路34の第1の維持電極グループに属する維持電極SU1~SU1080に維持パルスを与えるパルス発生回路50aは、電力回収部51aを除いて、電位Vs2を供給する高電位側電源に接続されたトランジスタQ52aと、0(V)の電位を供給する低電位側電源に接続されたトランジスタQ53aを備えていればよい。また、第2の維持電極グループに属する維持電極SU1081~SU2060に維持パルスを与えるパルス発生回路50bは、電力回収部51bを除いて、電位Vs2を供給する高電位側電源に接続されたトランジスタQ52bと、0(V)の電位を供給する低電位側電源に接続されたトランジスタQ53bを備えていればよく、維持電極駆動回路34の回路構成を簡素化することができる。例えば、初期化期間あるいは書き込み期間に維持電極SU1~SU2160に、維持側維持パルスのハイレベル電位(Vs2)およびローレベル電位(0V)以外の電位を与えるようにした場合には、そのような電位を与えるための回路が必要になるが、本実施の形態2ではそのような回路が不要である。
 また、本実施の形態2においては、走査側維持パルスの波高値は電位Vs1の値(例えば230V)であり、維持側維持パルスの波高値は電位Vs2の値(例えば170V)であるので、維持側維持パルスの波高値(振幅)は走査側維持パルスの波高値(振幅)よりも小さい。
 一般的に、波高値の異なる維持パルスを走査電極SC1~SC2160および維持電極SU1~SU2160に与える場合には、消去放電が発生して維持放電が不安定になる傾向がある。しかしながら本実施の形態2においては、図6に示したように、走査電極SC1~SC2160に与える走査側維持パルスの立上り期間が終了した後に維持電極SU1~SU2160に与える維持側維持パルスの立下り期間を開始し、また、維持電極SU1~SU2160に与える維持側維持パルスの立上り期間が終了した後に走査電極SC1~SC2160に与える走査側維持パルスの立下り期間を開始している。このようなタイミングにて表示電極対に維持パルスを与えると、走査側維持パルスおよび維持側維持パルスの立下りをきっかけとして維持放電が発生する。そのため走査電極SCiとデータ電極Dkとの消去放電または維持電極SUiとデータ電極Dkとの消去放電を誘発することなく、走査電極SCiと維持電極SUiとの維持放電を発生させることができ、安定した維持放電を実現することができる。
 なお、本実施の形態2においては、図6に示したように、走査側維持パルスの立上り期間が終了した後に維持側維持パルスの立下り期間を開始し、維持側維持パルスの立上り期間が終了した後に走査側維持パルスの立下り期間を開始している。しかし、本発明はこれに限定されるものではない。走査側維持パルスの立下り期間が終了する前に維持側維持パルスの立上り期間を終了し、維持側維持パルスの立下り期間が終了する前に走査側維持パルスの立上り期間を終了すればよい。すなわち、走査側維持パルスのハイ期間(電位がVs1の期間)と維持側維持パルスのロー期間(電位が0Vの期間)とが重なる期間である第1期間を含む走査側維持パルスのハイ期間の後に続く走査側維持パルスの立下り期間が終了する前に、同第1期間を含む維持側維持パルスのロー期間の後に続く維持側維持パルスの立上り期間を終了し、走査側維持パルスのロー期間(電位が0Vの期間)と維持側維持パルスのハイ期間(電位がVs2の期間)とが重なる期間である第2期間を含む維持側維持パルスのハイ期間の後に続く維持側維持パルスの立下り期間が終了する前に、同第2期間を含む走査側維持パルスのロー期間の後に続く走査側維持パルスの立上り期間を終了するようにすればよい。これにより、走査側維持パルスの立下り時および維持側維持パルスの立下り時に維持放電が発生する。
 具体的には、例えば、維持電極SU1~SUnの電位が維持側維持パルスの波高値(Vs2)の50%以下に下がる前に、走査電極SC1~SCnの電位を走査側維持パルスの波高値(Vs1)の50%以上に立上げ、走査電極SC1~SCnの電位が走査側維持パルスの波高値(Vs1)の50%以下に下がる前に、維持電極SU1~SUnの電位を維持側維持パルスの波高値(Vs2)の50%以上に立上げてもよい。このようなタイミングにて表示電極対に維持パルスを与えることによっても安定して維持放電を実現することができる。
 なお、本実施の形態2において用いた具体的な各数値は、単に一例を挙げたに過ぎず、パネルの特性やプラズマディスプレイ装置の仕様等に合わせて、適宣最適な値に設定することが望ましい。

 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明によれば、維持電極駆動回路を簡素化することができ、さらには安定した放電制御を実現することができる、プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法等として有用である。
 10  プラズマディスプレイパネル(PDP)
 12  走査電極
 13  維持電極
 14  表示電極対
 22  データ電極
 30  プラズマディスプレイ装置
 31  画像信号処理回路
 32  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 36  電源回路
 40  パルス発生部
 41  電力回収部
 Q42,Q43  トランジスタ

Claims (6)

  1.  対をなす走査電極及び維持電極からなる複数の表示電極対と複数のデータ電極とが間隙を有して交差するように配設され、前記間隙を形成する前記表示電極対及び前記データ電極とを有して前記間隙を放電空間とする複数の放電セルを有したプラズマディスプレイパネルと前記プラズマディスプレイパネルを駆動するための駆動回路とを備え、
     前記駆動回路は、
     前記走査電極を駆動する走査電極駆動回路と、
     前記維持電極を駆動する維持電極駆動回路と、
     前記データ電極を駆動するデータ電極駆動回路とを含み、
     前記維持電極駆動回路は、
     発光させるべき前記放電セルに前記書き込み放電を発生させる書き込み動作が行われる書き込み期間と、前記書き込み放電を発生させた前記放電セルを発光させる維持期間とを有する複数のサブフィールドを用いて構成される1フィールド期間の各々の前記サブフィールドの前記維持期間において、1周期の期間が、第1の電位から前記第1の電位より高い第2の電位へ立上る立上り期間と、前記第2の電位を保持するハイ期間と、前記第2の電位から前記第1の電位へ立下る立下り期間と、前記第1の電位を保持するロー期間とから構成される維持側維持パルスを前記維持電極に与え、前記維持期間以外の期間において、前記第1の電位および前記第2の電位のうちのいずれかと等しい電位のみを前記維持電極に与えるように構成され、
     前記走査電極駆動回路は、
     各々の前記サブフィールドの前記維持期間において、前記維持側維持パルスとは周期が同じで位相が異なる走査側維持パルスを前記走査電極に与えるように構成され、
     前記維持電極駆動回路及び前記走査電極駆動回路は、
     前記維持側維持パルスの前記第1の電位と前記第2の電位との差分である振幅が、前記走査側維持パルスの振幅より小さいように構成された、
    プラズマディスプレイ装置。
  2.  前記走査側維持パルスは、1周期の期間が、第3の電位から前記第3の電位より高い第4の電位へ立上る立上り期間と、前記第4の電位を保持するハイ期間と、前記第4の電位から前記第3の電位へ立下る立下り期間と、前記第3の電位を保持するロー期間とから構成され、
     前記維持電極駆動回路及び前記走査電極駆動回路は、
     前記走査側維持パルスのハイ期間と前記維持側維持パルスのロー期間とが重なる第1の期間を含む前記走査側維持パルスのハイ期間の後に続く前記走査側維持パルスの立下り期間が終了する前に、前記第1の期間を含む前記維持側維持パルスのロー期間の後に続く前記維持側維持パルスの立上り期間を終了し、前記走査側維持パルスのロー期間と前記維持側維持パルスのハイ期間とが重なる第2の期間を含む前記維持側維持パルスのハイ期間の後に続く前記維持側維持パルスの立下り期間が終了する前に、前記第2の期間を含む前記走査側維持パルスのロー期間の後に続く前記走査側維持パルスの立上り期間を終了するように構成された、請求項1に記載のプラズマディスプレイ装置。

  3.  前記駆動回路は、
     前記複数の表示電極対を複数の表示電極対グループに分け、
     前記表示電極対グループ毎に、前記書き込み期間と前記維持期間とを有する複数のサブフィールドを用いて1フィールド期間を分割し、
     前記表示電極対グループの数をN、すべての放電セルに対して1回の前記書き込み動作を行うために必要な時間をTwとするとき、
     それぞれの表示電極対グループのそれぞれのサブフィールドの維持期間の時間が、
    Tw×(N-1)/N
    を超えないように、前記プラズマディスプレイパネルを駆動する、請求項1または2に記載のプラズマディスプレイ装置。
  4.  対をなす走査電極及び維持電極からなる複数の表示電極対と複数のデータ電極とが間隙を有して交差するように配設され、前記間隙を形成する前記表示電極対及び前記データ電極とを有して前記間隙を放電空間とする複数の放電セルを有し、走査電極駆動回路によって前記走査電極が駆動され、維持電極駆動回路によって前記維持電極が駆動され、データ電極駆動回路によって前記データ電極が駆動されるプラズマディスプレイパネルの駆動方法であって、
     発光させるべき前記放電セルに前記書き込み放電を発生させる書き込み動作が行われる書き込み期間と、前記書き込み放電を発生させた前記放電セルを発光させる維持期間とを有する複数のサブフィールドを用いて構成される1フィールド期間の各々の前記サブフィールドの前記維持期間において、1周期の期間が、第1の電位から前記第1の電位より高い第2の電位へ立上る立上り期間と、前記第2の電位を保持するハイ期間と、前記第2の電位から前記第1の電位へ立下る立下り期間と、前記第1の電位を保持するロー期間とから構成される維持側維持パルスを前記維持電極駆動回路が前記維持電極に与え、前記維持期間以外の期間において、前記第1の電位および前記第2の電位のうちのいずれかと等しい電位のみを前記維持電極駆動回路が前記維持電極に与え、
     各々の前記サブフィールドの前記維持期間において、前記維持側維持パルスとは周期が同じで位相が異なる走査側維持パルスを前記走査電極駆動回路が前記走査電極に与え、
     前記維持側維持パルスの前記第1の電位と前記第2の電位との差分である振幅が、前記走査側維持パルスの振幅より小さい、プラズマディスプレイパネルの駆動方法。
  5.  前記走査側維持パルスは、1周期の期間が、第3の電位から前記第3の電位より高い第4の電位へ立上る立上り期間と、前記第4の電位を保持するハイ期間と、前記第4の電位から前記第3の電位へ立下る立下り期間と、前記第3の電位を保持するロー期間とから構成され、
     前記走査側維持パルスのハイ期間と前記維持側維持パルスのロー期間とが重なる第1の期間を含む前記走査側維持パルスのハイ期間の後に続く前記走査側維持パルスの立下り期間が終了する前に、前記第1の期間を含む前記維持側維持パルスのロー期間の後に続く前記維持側維持パルスの立上り期間を終了し、前記走査側維持パルスのロー期間と前記維持側維持パルスのハイ期間とが重なる第2の期間を含む前記維持側維持パルスのハイ期間の後に続く前記維持側維持パルスの立下り期間が終了する前に、前記第2の期間を含む前記走査側維持パルスのロー期間の後に続く前記走査側維持パルスの立上り期間を終了する、請求項4に記載のプラズマディスプレイパネルの駆動方法。

  6.  前記複数の表示電極対を複数の表示電極対グループに分け、
     前記表示電極対グループ毎に、前記書き込み期間と前記維持期間とを有する複数のサブフィールドを用いて1フィールド期間を分割し、
     前記表示電極対グループの数をN、すべての放電セルに対して1回の前記書き込み動作を行うために必要な時間をTwとするとき、
    それぞれの表示電極対グループのそれぞれのサブフィールドの維持期間の時間が、
    Tw×(N-1)/N

    を超えない、請求項4または5に記載のプラズマディスプレイパネルの駆動方法。
PCT/JP2010/003229 2009-05-27 2010-05-13 プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法 WO2010137248A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-128076 2009-05-27
JP2009128076 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010137248A1 true WO2010137248A1 (ja) 2010-12-02

Family

ID=43222379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003229 WO2010137248A1 (ja) 2009-05-27 2010-05-13 プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法

Country Status (1)

Country Link
WO (1) WO2010137248A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244578A (ja) * 1996-03-13 1997-09-19 Fujitsu Ltd プラズマ表示装置及びその駆動方法
JP2001265281A (ja) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd 表示装置およびその駆動方法
JP2002229508A (ja) * 2001-02-05 2002-08-16 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの駆動方法
JP2003271089A (ja) * 2002-03-15 2003-09-25 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルおよびその駆動方法
JP2006171758A (ja) * 2004-12-14 2006-06-29 Lg Electronics Inc プラズマディスプレイ装置及びその駆動方法
JP2006259061A (ja) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244578A (ja) * 1996-03-13 1997-09-19 Fujitsu Ltd プラズマ表示装置及びその駆動方法
JP2001265281A (ja) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd 表示装置およびその駆動方法
JP2002229508A (ja) * 2001-02-05 2002-08-16 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの駆動方法
JP2003271089A (ja) * 2002-03-15 2003-09-25 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルおよびその駆動方法
JP2006171758A (ja) * 2004-12-14 2006-06-29 Lg Electronics Inc プラズマディスプレイ装置及びその駆動方法
JP2006259061A (ja) * 2005-03-16 2006-09-28 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法

Similar Documents

Publication Publication Date Title
JP4655090B2 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2005114626A1 (ja) プラズマディスプレイパネルの駆動方法
KR20080042915A (ko) 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마디스플레이 장치
JP5131241B2 (ja) プラズマディスプレイパネルの駆動方法
KR100667360B1 (ko) 플라즈마 디스플레이 장치 및 그의 구동 방법
WO2009133660A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP5126439B2 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
KR100605763B1 (ko) 플라즈마 디스플레이 패널 구동 장치 및 방법
JP5131383B2 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2007094295A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2010143403A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2010137248A1 (ja) プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
JP4893283B2 (ja) プラズマディスプレイパネルの駆動方法
JP2010266651A (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2007094293A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP4997751B2 (ja) プラズマディスプレイパネルの駆動方法
JP5183476B2 (ja) プラズマディスプレイパネル駆動方法及びプラズマディスプレイ装置
JP2009265465A (ja) プラズマディスプレイパネル表示装置とその駆動方法
JP2010266648A (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JPWO2008026436A1 (ja) プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法
JPWO2009072239A1 (ja) プラズマディスプレイパネル表示装置とその駆動方法
JP2010117391A (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP2009192589A (ja) プラズマディスプレイ装置
WO2011052219A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP2012003094A (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780210

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP