[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010131572A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2010131572A1
WO2010131572A1 PCT/JP2010/057444 JP2010057444W WO2010131572A1 WO 2010131572 A1 WO2010131572 A1 WO 2010131572A1 JP 2010057444 W JP2010057444 W JP 2010057444W WO 2010131572 A1 WO2010131572 A1 WO 2010131572A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon carbide
sic
substrate
semiconductor device
Prior art date
Application number
PCT/JP2010/057444
Other languages
French (fr)
Japanese (ja)
Inventor
和田 圭司
原田 真
増田 健良
美紗子 穂永
佐々木 信
太郎 西口
靖生 並川
藤原 伸介
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2011513303A priority Critical patent/JPWO2010131572A1/en
Priority to EP10774830.3A priority patent/EP2432020A4/en
Priority to CA2761245A priority patent/CA2761245A1/en
Priority to US13/320,247 priority patent/US20120056202A1/en
Priority to CN2010800205020A priority patent/CN102422424A/en
Publication of WO2010131572A1 publication Critical patent/WO2010131572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in a device manufacturing process.
  • silicon carbide (SiC) is being adopted as a material constituting a semiconductor device in order to enable a semiconductor device to have a high breakdown voltage, low loss, and use in a high temperature environment.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • a process of preparing a silicon carbide substrate (silicon carbide substrate) and forming an SiC epitaxial growth layer on the silicon carbide substrate is employed. Is effective. For example, when manufacturing a vertical power device (vertical MOSFET; Metal Oxide Semiconductor Field Effect Transistor, etc.) using a silicon carbide substrate, the on-resistance of the device is reduced by reducing the resistivity in the thickness direction of the substrate as much as possible. Can be reduced.
  • vertical MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the resistivity of the substrate is reduced by simply introducing impurities into the substrate at a high concentration
  • the following problems occur. That is, when a semiconductor device is manufactured using a silicon carbide substrate, a heat treatment is performed on the silicon carbide substrate, for example, thermal cleaning for cleaning the surface of the silicon carbide substrate. At this time, a stacking fault occurs in a silicon carbide substrate containing a high concentration of impurities. And when the epitaxial growth layer which consists of SiC is formed on the said silicon carbide substrate, the said stacking fault propagates also in the said SiC layer.
  • the structure of the stacking fault generated is the 3C type having a smaller band gap than the 4H type. Therefore, the band gap is locally reduced in the region where the stacking fault has occurred.
  • problems such as a decrease in breakdown voltage and an increase in leakage current occur.
  • an object of the present invention is to provide a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in a device manufacturing process.
  • a semiconductor device includes a silicon carbide substrate, a single crystal silicon carbide, an active layer disposed on one main surface of the silicon carbide substrate, a first electrode disposed on the active layer, And a second electrode formed on the other main surface of the silicon carbide substrate.
  • the silicon carbide substrate includes a base layer made of silicon carbide and a SiC layer made of single crystal silicon carbide and disposed on the base layer.
  • the impurity concentration of the base layer is larger than 2 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the SiC layer is larger than 5 ⁇ 10 18 cm ⁇ 3 and smaller than 2 ⁇ 10 19 cm ⁇ 3 .
  • the present inventor has conducted detailed studies on a method for reducing resistivity in the thickness direction while suppressing generation of stacking faults due to heat treatment in a device manufacturing process in a silicon carbide substrate. As a result, if the impurity concentration is less than 2 ⁇ 10 19 cm ⁇ 3 , generation of stacking faults due to the heat treatment can be suppressed, whereas if it exceeds 2 ⁇ 10 19 cm ⁇ 3 , it is difficult to suppress stacking faults. I found.
  • impurity refers to an impurity introduced to generate majority carriers in the silicon carbide substrate.
  • the base layer and the SiC layer are bonded, for example.
  • a silicon carbide substrate on which an SiC layer is arranged can be easily obtained while suppressing the propagation of defects in the base layer.
  • the base layer and the SiC layer may be directly bonded or may be bonded via an intermediate layer.
  • the impurity contained in the base layer may be different from the impurity contained in the SiC layer.
  • the semiconductor device provided with the silicon carbide substrate containing the suitable impurity according to the objective can be provided.
  • the impurity contained in the base layer is nitrogen or phosphorus, and the impurity contained in the SiC layer can also be nitrogen or phosphorus. Nitrogen and phosphorus are suitable as impurities for supplying electrons as majority carriers to SiC.
  • the base layer is made of single crystal silicon carbide, and the half width of the X-ray rocking curve of the SiC layer may be smaller than the half width of the X-ray rocking curve of the base layer.
  • SiC does not have a liquid phase at normal pressure. Therefore, normally, in the sublimation recrystallization method used in the case of producing bulk single crystal SiC by growing in the ⁇ 0001> direction of hexagonal crystal, the crystal growth temperature is very high as 2000 ° C. or more, Its stabilization is difficult. Therefore, it is difficult to increase the diameter of a substrate made of single crystal SiC while maintaining high quality. On the other hand, in order to efficiently manufacture a semiconductor device using a silicon carbide substrate, a substrate having a predetermined shape and size is required.
  • the silicon carbide substrate of the present invention on the base layer processed into the predetermined shape and size, for example, the half width of the X-ray rocking curve is smaller than that of the base layer.
  • a SiC layer that is high but does not have a desired shape or the like can be disposed. Since such a silicon carbide substrate is unified with a predetermined shape and size of the base layer, the manufacturing of the semiconductor device can be made efficient. Moreover, since it is possible to manufacture a semiconductor device using such a high quality SiC layer of a silicon carbide substrate, high quality single crystal silicon carbide can be used effectively. As a result, the manufacturing cost of the semiconductor device can be reduced.
  • the active layer is disposed on a silicon carbide substrate and has a first conductivity type drift layer made of single crystal silicon carbide, and a first main surface of the drift layer opposite to the silicon carbide substrate.
  • a first conductivity type well region disposed so as to include a first conductivity type well region including a first main surface in the well region and in contact with the first electrode;
  • An insulating film made of an insulator and a third electrode arranged on the insulating film may be further provided on the main surface so as to be in contact with the well region.
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the insulating film may be made of silicon dioxide. Thereby, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) can be obtained.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the main surface of the SiC layer opposite to the base layer may have an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • Hexagonal single crystal silicon carbide can be produced in a ⁇ 0001> direction to efficiently produce a high quality single crystal. And from the silicon carbide single crystal grown in the ⁇ 0001> direction, a silicon carbide substrate having a ⁇ 0001 ⁇ plane as a main surface can be efficiently collected. On the other hand, there may be a case where a high-performance semiconductor device can be manufactured by using a silicon carbide substrate having a main surface with an off angle with respect to the plane orientation ⁇ 0001 ⁇ of 50 ° to 65 °.
  • a silicon carbide substrate used for manufacturing a MOSFET for example, generally has a main surface with an off angle of about 0.3 ° to 8 ° with respect to the plane orientation ⁇ 0001 ⁇ . Then, an epitaxial growth layer (active layer) is formed on the main surface, and an insulating film (oxide film), an electrode, and the like are formed on the active layer to obtain a MOSFET. In this MOSFET, a channel region is formed in a region including the interface between the active layer and the insulating film.
  • an active layer in which a channel region is formed due to an off angle of about 0.3 ° to 8 ° with respect to the plane orientation ⁇ 0001 ⁇ of the main surface of the substrate In the vicinity of the interface between the insulating film and the insulating film, many interface states are formed and carriers are trapped, or channel mobility decreases due to scattering by trapped carriers.
  • the off-angle of the main surface of the SiC layer opposite to the base layer with respect to the ⁇ 0001 ⁇ plane is 50 ° or more and 65 ° or less, thereby reducing the formation of the interface state.
  • a MOSFET with reduced on-resistance can be manufactured.
  • the angle formed between the off orientation of the main surface of the SiC layer opposite to the base layer and the ⁇ 1-100> direction may be 5 ° or less.
  • the ⁇ 1-100> direction is a typical off orientation in the silicon carbide substrate. Then, by setting the variation in the off orientation due to the variation in slicing in the substrate manufacturing process to 5 ° or less, it is possible to easily form the epitaxial growth layer (active layer) on the silicon carbide substrate.
  • the off-angle of the main surface of the SiC layer opposite to the base layer with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction is not less than ⁇ 3 ° and not more than 5 °. Good.
  • the channel mobility when a MOSFET is fabricated using a silicon carbide substrate can be further improved.
  • the off angle with respect to the plane orientation ⁇ 03-38 ⁇ is set to ⁇ 3 ° or more and + 5 ° or less.
  • the channel mobility is particularly high within this range. Is based on the obtained.
  • the “off angle with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction” is an orthogonal projection of the normal of the principal surface to the plane extending in the ⁇ 1-100> direction and the ⁇ 0001> direction, This is an angle formed with the normal of the ⁇ 03-38 ⁇ plane, and its sign is positive when the orthographic projection approaches parallel to the ⁇ 1-100> direction, and the orthographic projection is in the ⁇ 0001> direction. The case of approaching parallel to is negative.
  • the plane orientation of the main surface is substantially ⁇ 03-38 ⁇ .
  • the surface orientation of the main surface is substantially ⁇ 03-38 ⁇ , taking into account the processing accuracy of the substrate, etc., the substrate is within an off-angle range where the surface orientation can be substantially regarded as ⁇ 03-38 ⁇ .
  • the off angle range is, for example, a range of ⁇ 2 ° with respect to ⁇ 03-38 ⁇ .
  • the angle formed between the off orientation of the main surface of the SiC layer opposite to the base layer and the ⁇ 11-20> direction may be 5 ° or less.
  • ⁇ 11-20> is a typical off orientation in the silicon carbide substrate, similarly to the above ⁇ 1-100> direction. Then, by setting the variation in the off orientation due to the variation in the slice processing in the substrate manufacturing process to ⁇ 5 °, it is possible to facilitate the formation of the epitaxial growth layer (active layer) on the SiC substrate.
  • the base layer may be made of single crystal silicon carbide.
  • the defect density of the SiC layer is preferably lower than the defect density of the base layer.
  • the micropipe density of the SiC layer is preferably smaller than the micropipe density of the base layer.
  • the dislocation density of the SiC layer is lower than the dislocation density of the base layer.
  • the threading screw dislocation density of the SiC layer is smaller than the threading screw dislocation density of the base layer.
  • the threading edge dislocation density of the SiC layer is smaller than the threading edge dislocation density of the base layer.
  • the basal plane dislocation density of the SiC layer is smaller than the basal plane dislocation density of the base layer.
  • the mixed dislocation density of the SiC layer is smaller than the mixed dislocation density of the base layer.
  • the stacking fault density of the SiC layer is smaller than the stacking fault density of the base layer.
  • the point defect density of the SiC layer is smaller than the point defect density of the base layer.
  • a high quality active layer can be formed on the SiC layer.
  • the active layer can be formed, for example, by combining epitaxial growth and impurity ion implantation.
  • a plurality of SiC layers may be stacked. Thereby, the semiconductor device provided with the some SiC layer according to the target function can be obtained.
  • the silicon carbide substrate further includes an intermediate layer made of a conductor or a semiconductor, disposed between the base layer and the SiC layer, and the intermediate layer joins the base layer and the SiC layer. May be.
  • the impurity concentration is 5 ⁇ 10 18 cm ⁇ on the base layer having an impurity concentration higher than 2 ⁇ 10 19 cm ⁇ 3.
  • 3 can be easily obtained a semiconductor device having a silicon carbide substrate disposed small SiC layer than 2 ⁇ 10 19 cm -3 greater than.
  • the intermediate layer is made of a conductor or a semiconductor, it is possible to ensure electrical connection between the base layer and the SiC layer.
  • the intermediate layer may be made of metal. A part of the metal constituting the intermediate layer may be silicided. In the semiconductor device, the intermediate layer may be made of carbon. The intermediate layer may be made of amorphous silicon carbide. This makes it possible to easily ensure electrical connection between the base layer and the SiC layer in the thickness direction of the substrate.
  • the base layer may include a single crystal layer made of single crystal silicon carbide so as to include a main surface on the side facing the SiC layer.
  • a difference in physical properties for example, a difference in linear expansion coefficient
  • the region other than the single crystal layer of the base layer is made of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body. It may be a non-single crystal layer. Thereby, the manufacturing cost of the semiconductor device can be reduced.
  • the half width of the X-ray rocking curve of the SiC layer is smaller than the half width of the X-ray rocking curve of the single crystal layer.
  • the micropipe density of a SiC layer is lower than the micropipe density of a single crystal layer.
  • the dislocation density of the SiC layer is preferably lower than the dislocation density of the single crystal layer.
  • the semiconductor device of the present invention it is possible to provide a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in the device manufacturing process.
  • FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment.
  • FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment.
  • FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment.
  • FIG. 7 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a third embodiment.
  • FIG. 6 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a fourth embodiment. 6 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a fourth embodiment.
  • FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment.
  • FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment.
  • FIG. 11 is a schematic cross sectional view for illustrating the method
  • FIG. 6 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a fifth embodiment.
  • 10 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a fifth embodiment.
  • FIG. 10 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a sixth embodiment.
  • 17 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a sixth embodiment.
  • FIG. 12 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the sixth embodiment. It is a figure which shows the relationship between the impurity concentration and mobility in n type 4H-SiC.
  • MOSFET 100 which is a semiconductor device in the present embodiment, includes a silicon carbide substrate 1 having a conductivity type of n type (first conductivity type) and a buffer made of silicon carbide and having a conductivity type of n type.
  • Layer 2 made of silicon carbide and having a conductivity type of n type, a pair of well regions 4 having a conductivity type of p type (second conductivity type), and n + as a source region having a conductivity type of n type.
  • a region 5 and a p + region 6 as a high-concentration second conductivity type region having a p-type conductivity are provided.
  • Buffer layer 2 is formed on one main surface of silicon carbide substrate 1 and has an n-type conductivity by containing an n-type impurity.
  • Drift layer 3 is formed on buffer layer 2 and has an n-type conductivity by including an n-type impurity.
  • the n-type impurity contained in the drift layer 3 is, for example, N (nitrogen), and is contained at a lower concentration (density) than the n-type impurity contained in the buffer layer 2.
  • the pair of well regions 4 are formed separately from each other so as to include a main surface 3A opposite to the main surface on the silicon carbide substrate 1 side in the drift layer 3, and p-type impurities (conductivity type is p-type). By including an impurity, the conductivity type is p-type (second conductivity type).
  • the p-type impurity contained in the well region 4 is, for example, aluminum (Al), boron (B), or the like.
  • the n + region 5 is formed inside each of the pair of well regions 4 so as to include the main surface 3 ⁇ / b > A and be surrounded by the well region 4.
  • the n + region 5 contains an n-type impurity, such as P, at a higher concentration (density) than the n-type impurity contained in the drift layer 3.
  • the p + region 6 includes the main surface 3 A, is surrounded by the well region 4, and is formed inside each of the pair of well regions 4 so as to be adjacent to the n + region 5.
  • the p + region 6 contains a p-type impurity such as Al at a higher concentration (density) than the p-type impurity contained in the well region 4.
  • the buffer layer 2, drift layer 3, well region 4, n + region 5 and p + region 6 constitute an active layer 7.
  • MOSFET 100 includes a gate oxide film 91 as a gate insulating film, a gate electrode 93, a pair of source contact electrodes 92, an interlayer insulating film 94, a source wiring 95, and a drain electrode 96. And.
  • Gate oxide film 91 is formed on main surface 3A of drift layer 3 so as to be in contact with main surface 3A and to extend from the upper surface of one n + region 5 to the upper surface of the other n + region 5.
  • it is made of silicon dioxide (SiO 2 ).
  • Gate electrode 93 is arranged in contact with gate oxide film 91 so as to extend from one n + region 5 to the other n + region 5.
  • the gate electrode 93 is made of a conductor such as polysilicon or Al to which impurities are added.
  • Source contact electrode 92 extends from each of the pair of n + regions 5 in a direction away from gate oxide film 91 to reach p + region 6 and is in contact with main surface 3A. .
  • the source contact electrode 92 is made of a material capable of ohmic contact with the n + region 5 such as Ni x Si y (nickel silicide).
  • Interlayer insulating film 94 is formed on main surface 3A of drift layer 3 so as to surround gate electrode 93 and to extend from one well region 4 to the other well region 4, and is, for example, an insulator. It consists of silicon dioxide (SiO 2 ).
  • Source wiring 95 surrounds interlayer insulating film 94 on main surface 3 ⁇ / b> A of drift layer 3 and extends to the upper surface of source contact electrode 92.
  • the source wiring 95 is made of a conductor such as Al and is electrically connected to the n + region 5 through the source contact electrode 92.
  • Drain electrode 96 is formed in contact with the main surface of silicon carbide substrate 1 opposite to the side on which drift layer 3 is formed. Drain electrode 96 is made of a material capable of making ohmic contact with silicon carbide substrate 1 such as Ni x Si y , and is electrically connected to silicon carbide substrate 1.
  • MOSFET 100 in the state where the voltage of gate electrode 93 is lower than the threshold voltage, that is, in the off state, well region 4 and drift layer 3 located immediately below gate oxide film 91 are applied even when a voltage is applied to the drain electrode.
  • a positive voltage equal to or higher than the threshold voltage is applied to the gate electrode 93, an inversion layer is formed in the channel region in the vicinity of the well region 4 in contact with the gate oxide film 91.
  • n + region 5 and drift layer 3 are electrically connected, and a current flows between source line 95 and drain electrode 96.
  • silicon carbide substrate 1 constituting MOSFET 100 in the present embodiment includes base layer 10 made of silicon carbide and single crystal silicon carbide, on one main surface 10 ⁇ / b> A of base layer 10. And SiC layer 20 disposed on the substrate.
  • the impurity concentration of the base layer 10 is larger than 2 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the SiC layer 20 is larger than 5 ⁇ 10 18 cm ⁇ 3 and smaller than 2 ⁇ 10 19 cm ⁇ 3 . Therefore, MOSFET 100 in the present embodiment is a semiconductor device that can achieve a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in the device manufacturing process.
  • Base layer 10 may be made of, for example, single crystal silicon carbide, polycrystalline silicon carbide, amorphous silicon carbide, silicon carbide sintered body, or a combination thereof.
  • base layer 10 may be made of single crystal silicon carbide.
  • the micropipe density of SiC layer 20 is preferably smaller than the micropipe density of base layer 10.
  • the threading screw dislocation density of the SiC layer 20 is preferably smaller than the threading screw dislocation density of the base layer 10.
  • the threading edge dislocation density of SiC layer 20 is preferably smaller than the threading edge dislocation density of base layer 10.
  • the basal plane dislocation density of SiC layer 20 is preferably smaller than the basal plane dislocation density of base layer 10.
  • the mixed dislocation density of SiC layer 20 is preferably smaller than the mixed dislocation density of base layer 10.
  • the stacking fault density of SiC layer 20 is preferably smaller than the stacking fault density of base layer 10.
  • the point defect density of SiC layer 20 is preferably smaller than the point defect density of base layer 10.
  • the SiC layer in which the defect density such as the micropipe density, the threading screw dislocation density, the threading edge dislocation density, the basal plane dislocation density, the mixed dislocation density, the stacking fault density, and the point defect density is reduced as compared with the base layer 10.
  • the high-quality active layer 7 can be formed on the SiC layer 20.
  • base layer 10 is made of single-crystal silicon carbide, and the half width of the X-ray rocking curve of SiC layer 20 is smaller than the half width of the X-ray rocking curve of base layer 10. Also good.
  • the SiC layer 20 has high crystallinity.
  • Single crystal silicon carbide in which a desired shape or the like is not realized can be used effectively. As a result, the manufacturing cost of the semiconductor device can be reduced.
  • main surface 20A of SiC layer 20 opposite to base layer 10 in silicon carbide substrate 1 has an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane. preferable.
  • the active layer 7 is formed by epitaxial growth and ion implantation of impurities, the formation of interface states in the vicinity of the interface with the gate oxide film 91 serving as the channel region in the active layer 7 is suppressed, and the on-resistance of the MOSFET 100 is reduced. Can be reduced.
  • the angle formed between the off orientation of main surface 20A opposite to base layer 10 in SiC layer 20 and the ⁇ 1-100> direction is 5 ° or less. Is preferred.
  • the ⁇ 1-100> direction is a typical off orientation in the silicon carbide substrate. Then, the variation in the off orientation caused by the variation in the slice processing in the manufacturing process of the substrate is set to 5 ° or less, thereby facilitating the formation of the epitaxial growth layer (active layer 7) on the silicon carbide substrate 1. it can.
  • MOSFET 100 in silicon carbide substrate 1, off-angle with respect to ⁇ 03-38 ⁇ plane in the ⁇ 1-100> direction of main surface 20A of SiC layer 20 opposite to base layer 10 is ⁇ 3 °.
  • the angle is preferably 5 ° or less.
  • the angle formed between the off orientation of main surface 20 ⁇ / b> A opposite to base layer 10 in SiC layer 20 and the ⁇ 11-20> direction is 5 ° or less. Good.
  • ⁇ 11-20> is a typical off orientation in the silicon carbide substrate, similarly to the above ⁇ 1-100> direction. Then, the variation of the off orientation caused by the variation of the slice processing in the manufacturing process of the substrate is set to ⁇ 5 °, whereby the formation of the epitaxial growth layer (active layer 7) on the SiC layer 20 can be facilitated. .
  • the impurity contained in base layer 10 and the impurity contained in SiC layer 20 may be different.
  • MOSFET 100 provided with silicon carbide substrate 1 containing an appropriate impurity according to the purpose of use can be obtained.
  • the impurity contained in the base layer 10 can be nitrogen or phosphorus
  • the impurity contained in the SiC layer 20 can also be nitrogen or phosphorus.
  • a silicon carbide substrate preparation step is performed as a step (S110).
  • base layer 10 including a base layer 10 made of single crystal silicon carbide and SiC layer 20 made of single crystal silicon carbide and disposed on base layer 10 is included.
  • a silicon carbide substrate 1 is prepared in which the impurity concentration of the SiC layer 20 is greater than 2 ⁇ 10 19 cm ⁇ 3 and the impurity concentration of the SiC layer 20 is greater than 5 ⁇ 10 18 cm ⁇ 3 and smaller than 2 ⁇ 10 19 cm ⁇ 3. .
  • single crystal is included so as to include main surface 10A on the side facing SiC layer 20 instead of base layer 10 made entirely of single crystal silicon carbide.
  • Base layer 10 including single crystal layer 10B made of silicon carbide and other region 10C made of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body may be employed.
  • base layer 10 made entirely of single crystal silicon carbide base layer 10 made entirely of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body may be employed. A method for manufacturing silicon carbide substrate 1 will be described later.
  • an epitaxial growth step is performed as a step (S120).
  • buffer layer 2 and drift layer 3 made of silicon carbide are sequentially formed on one main surface of silicon carbide substrate 1 by epitaxial growth.
  • an ion implantation step is performed as a step (S130).
  • ion implantation for forming well region 4 is performed. Specifically, for example, Al (aluminum) ions are implanted into drift layer 3 to form well region 4.
  • ion implantation for forming the n + region 5 is performed. More specifically, for example, P (phosphorus) ions are implanted into the well region 4 to form an n + region 5 in the well region 4.
  • ion implantation for forming the p + region 6 is performed.
  • Al ions are implanted into the well region 4, thereby forming a p + region 6 in the well region 4.
  • the ions can be implemented by, for example, forming a mask layer made of silicon dioxide (SiO 2 ) on the main surface of the drift layer 3 and having an opening in a desired region where ion implantation is to be performed.
  • an activation annealing step is performed as a step (S140).
  • this step (S140) for example, heat treatment is performed by heating to 1700 ° C. in an inert gas atmosphere such as argon and holding for 30 minutes. Thereby, the impurities implanted in the step (S130) are activated.
  • an oxide film forming step is performed as a step (S150).
  • this step (S150) referring to FIGS. 5 and 6, for example, an oxide film (gate oxide film) 91 is formed by performing a heat treatment in an oxygen atmosphere by heating to 1300 ° C. and holding for 60 minutes. Is done.
  • an electrode formation step is performed as a step (S160).
  • gate electrode 93 made of polysilicon which is a conductor doped with impurities at a high concentration is formed by, for example, CVD, photolithography and etching.
  • an interlayer insulating film 94 made of SiO 2 as an insulator is formed on the main surface 3A so as to surround the gate electrode 93 by, eg, CVD.
  • the interlayer insulating film 94 and the oxide film 91 in the region where the source electrode 92 is formed are removed by photolithography and etching.
  • a nickel (Ni) film formed by vapor deposition is heated and silicided, whereby the source contact electrode 92 and the drain electrode 96 are formed.
  • source wiring 95 made of Al as a conductor surrounds interlayer insulating film 94 on main surface 3A and extends to the upper surfaces of n + region 5 and source contact electrode 92. To be formed. With the above procedure, MOSFET 100 in the present embodiment is completed.
  • step (S110) single crystal layer 10B made of single crystal silicon carbide is included so as to include main surface 10A on the side facing SiC layer 20, and other region 10C is polycrystalline silicon carbide, amorphous silicon carbide, or
  • base layer 10 made of a silicon carbide sintered body is employed, a step of removing other region 10C may be performed.
  • MOSFET 100 provided with base layer 10 made of single crystal silicon carbide can be obtained (see FIG. 1).
  • the step of removing the region 10C may not be performed.
  • a non-single crystal layer (corresponding to the region 10C) made of a silicon carbide sintered body is formed.
  • This non-single crystal layer does not significantly affect the characteristics of the MOSFET 100 as long as its resistivity is low. Therefore, by adopting such a manufacturing process, the manufacturing cost of MOSFET 100 can be reduced without greatly affecting the characteristics.
  • the half width of the X-ray rocking curve of the SiC layer 20 may be smaller than the half width of the X-ray rocking curve of the single crystal layer 10B.
  • the high-quality active layer 7 can be formed by disposing the SiC layer 20 having a small half width of the X-ray rocking curve, that is, high crystallinity, as compared with the single crystal layer 10B of the base layer 10. it can.
  • the micropipe density of SiC layer 20 may be lower than the micropipe density of single crystal layer 10B.
  • the dislocation density of SiC layer 20 may be lower than the dislocation density of single crystal layer 10B.
  • the threading screw dislocation density of SiC layer 20 may be smaller than the threading screw dislocation density of single crystal layer 10B.
  • the threading edge dislocation density of SiC layer 20 may be smaller than the threading edge dislocation density of single crystal layer 10B.
  • the basal plane dislocation density of SiC layer 20 may be smaller than the basal plane dislocation density of single crystal layer 10B.
  • the mixed dislocation density of SiC layer 20 may be smaller than the mixed dislocation density of single crystal layer 10B.
  • the stacking fault density of SiC layer 20 may be smaller than the stacking fault density of single crystal layer 10B.
  • the point defect density of SiC layer 20 may be smaller than the point defect density of single crystal layer 10B.
  • the defect density such as micropipe density, threading screw dislocation density, threading edge dislocation density, basal plane dislocation density, mixed dislocation density, stacking fault density, point defect density, etc. is compared with the single crystal layer 10B of the base layer 10.
  • the MOSFET 100 including the high-quality active layer 7 can be obtained.
  • a substrate preparation step is first performed as a step (S10).
  • step (S10) referring to FIG. 2, for example, base substrate 10 made of single crystal silicon carbide and SiC substrate 20 made of single crystal silicon carbide are prepared.
  • main surface 20A of SiC substrate 20 is the main surface of silicon carbide substrate 1 obtained by this manufacturing method, and therefore, the plane orientation of main surface 20A of SiC substrate 20 in accordance with the plane orientation of the desired main surface.
  • SiC substrate 20 whose main surface is a ⁇ 03-38 ⁇ plane is prepared.
  • the base substrate 10 is a substrate having an impurity concentration higher than 2 ⁇ 10 19 cm ⁇ 3 .
  • a substrate having an impurity concentration larger than 5 ⁇ 10 18 cm ⁇ 3 and smaller than 2 ⁇ 10 19 cm ⁇ 3 is employed as the SiC substrate 20.
  • a substrate flattening step is performed as a step (S20).
  • This step (S20) is not an essential step, but can be performed when the flatness of the base substrate 10 or the SiC substrate 20 prepared in the step (S10) is insufficient. Specifically, for example, the main surface of base substrate 10 or SiC substrate 20 is polished.
  • the step (S20) may be performed without omitting the step (S20) and polishing the main surfaces of the base substrate 10 and the SiC substrate 20 to be in contact with each other. Thereby, the manufacturing cost of silicon carbide substrate 1 can be reduced. Further, from the viewpoint of removing the damaged layer near the surface formed by slicing or the like during the production of the base substrate 10 and the SiC substrate 20, for example, the step of removing the damaged layer by etching is replaced with the step (S20). Or after performing after the said process (S20), the process (S30) mentioned later may be implemented.
  • step (S30) a stacking step is performed.
  • base substrate 10 and SiC substrate 20 are stacked so that their main surfaces 10A and 20B are in contact with each other, and a laminated substrate is manufactured.
  • a joining step is performed as a step (S40).
  • base substrate 10 and SiC substrate 20 are joined by heating the laminated substrate to a temperature range equal to or higher than the sublimation temperature of silicon carbide, for example.
  • silicon carbide substrate 1 including base layer 10 and SiC layer 20 is completed.
  • the step (S20) is omitted.
  • the substrate 10 and the SiC substrate 20 can be easily joined.
  • the laminated substrate may be heated in an atmosphere obtained by reducing the atmospheric pressure. Thereby, the manufacturing cost of silicon carbide substrate 1 can be reduced.
  • the heating temperature of the multilayer substrate in the step (S40) is preferably 1800 ° C. or higher and 2500 ° C. or lower.
  • the heating temperature is lower than 1800 ° C., it takes a long time to join base substrate 10 and SiC substrate 20, and the manufacturing efficiency of silicon carbide substrate 1 decreases.
  • the heating temperature exceeds 2500 ° C., the surfaces of base substrate 10 and SiC substrate 20 are roughened, and there is a risk that the number of crystal defects in silicon carbide substrate 1 to be manufactured increases.
  • the heating temperature of the laminated substrate in step (S40) is preferably 1900 ° C. or higher and 2100 ° C. or lower.
  • the laminated substrate may be heated under a pressure higher than 10 ⁇ 1 Pa and lower than 10 4 Pa.
  • the atmosphere during heating in the step (S40) may be an inert gas atmosphere.
  • the said atmosphere is an inert gas atmosphere containing at least 1 selected from the group which consists of argon, helium, and nitrogen.
  • this silicon carbide substrate 1 is used to manufacture MOSFET 100.
  • a substrate preparation step is first performed as a step (S10).
  • SiC substrate 20 is prepared in the same manner as in the first embodiment, and raw material substrate 11 made of silicon carbide is prepared.
  • Raw material substrate 11 may be made of single crystal silicon carbide, may be made of polycrystalline silicon carbide, or may be a sintered body of silicon carbide. Moreover, it can replace with the raw material board
  • a proximity arrangement step is performed as a step (S50).
  • SiC substrate 20 and raw material substrate 11 are held by first heater 81 and second heater 82 arranged to face each other.
  • the appropriate value of the distance between the SiC substrate 20 and the raw material substrate 11 is related to the average free path of the sublimation gas during heating in the step (S60) described later.
  • the average value of the distance between the SiC substrate 20 and the raw material substrate 11 can be set to be smaller than the average free path of the sublimation gas during heating in the step (S60) described later.
  • the mean free path of atoms and molecules strictly depends on the atomic radius and molecular radius, but is about several to several tens of centimeters. Is preferably several cm or less. More specifically, SiC substrate 20 and raw material substrate 11 are arranged close to each other with their main surfaces facing each other with an interval of 1 ⁇ m to 1 cm. Furthermore, by setting the average value of the intervals to 1 cm or less, the film thickness distribution of the base layer 10 formed in the step (S60) described later can be reduced. Furthermore, by setting the average value of the intervals to 1 mm or less, the film thickness distribution of the base layer 10 formed in the step (S60) described later can be further reduced.
  • the sublimation gas is a gas formed by sublimation of solid silicon carbide, and includes, for example, Si, Si 2 C, and SiC 2 .
  • a sublimation step is performed as a step (S60).
  • SiC substrate 20 is heated to a predetermined substrate temperature by first heater 81.
  • the raw material substrate 11 is heated to a predetermined raw material temperature by the second heater 82.
  • SiC is sublimated from the surface of the source substrate by heating source substrate 11 to the source temperature.
  • the substrate temperature is set lower than the raw material temperature. Specifically, for example, the substrate temperature is set to be about 1 ° C. or more and 100 ° C. or less lower than the raw material temperature.
  • the substrate temperature is, for example, 1800 ° C. or higher and 2500 ° C. or lower.
  • SiC that has been sublimated from the raw material substrate 11 into a gas reaches the surface of the SiC substrate 20 and becomes a solid, thereby forming the base layer 10.
  • SiC constituting the raw material substrate 11 is sublimated and moves onto the surface of the SiC substrate 20.
  • step (S60) is completed, and silicon carbide substrate 1 shown in FIG. 2 is completed.
  • Embodiment 3 which is still another embodiment of the present invention will be described.
  • the semiconductor device according to the third embodiment basically has the same structure as that of the first embodiment. However, the semiconductor device of the third embodiment is different from that of the first embodiment in its manufacturing method.
  • the carbonization having a structure different from that in the first embodiment is performed in the silicon carbide substrate preparation step performed as step (S110).
  • a silicon substrate is prepared. Referring to FIG. 12, in silicon carbide substrate 1 prepared in the third embodiment, a plurality of SiC layers 20 are arranged side by side in a plan view. That is, a plurality of SiC layers 20 are arranged side by side along main surface 10 ⁇ / b> A of base layer 10. More specifically, the plurality of SiC layers 20 are arranged in a matrix so that adjacent SiC layers 20 on base layer 10 are in contact with each other.
  • silicon carbide substrate 1 in the present embodiment is silicon carbide substrate 1 that can be handled as a large-diameter substrate having high-quality SiC layer 20. And by using this silicon carbide substrate 1, the manufacturing process of a semiconductor device can be made efficient.
  • end surface 20 ⁇ / b> C of adjacent SiC layer 20 is substantially perpendicular to main surface 20 ⁇ / b> A of SiC layer 20.
  • silicon carbide substrate 1 of the present embodiment can be easily manufactured.
  • the angle formed by the end surface 20C and the main surface 20A is 85 ° or more and 95 ° or less, the end surface 20C and the main surface 20A can be determined to be substantially perpendicular.
  • Silicon carbide substrate 1 in the third embodiment has a plurality of SiC substrates 20 with end surface 20C substantially perpendicular to main surface 20A being formed on base substrate 10 in step (S30) in the first embodiment.
  • this silicon carbide substrate 1 is used to manufacture MOSFET 100.
  • a plurality of MOSFETs 100 are formed in a plan view by forming active layer 7 and the like on SiC layer 20 of silicon carbide substrate 1 shown in FIG. At this time, each MOSFET 100 is fabricated so as not to cross the boundary region between adjacent SiC layers 20.
  • MOSFET 100 semiconductor device
  • MOSFET 100 of the fourth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects.
  • MOSFET 100 of the fourth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
  • amorphous SiC layer 40 as an intermediate layer made of amorphous SiC is arranged between base layer 10 and SiC layer 20. ing. Base layer 10 and SiC layer 20 are connected by this amorphous SiC layer 40. Due to the presence of amorphous SiC layer 40, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
  • a method for manufacturing silicon carbide substrate 1 in the fourth embodiment will be described.
  • a substrate preparation step is performed as in step (S10) in the same manner as in the first embodiment. 20 are prepared.
  • a Si layer forming step is performed as a step (S11).
  • a Si layer having a thickness of, for example, about 100 nm is formed on one main surface of the base substrate 10 prepared in the step (S10).
  • the Si layer can be formed by, for example, a sputtering method.
  • step (S30) a lamination step is performed as a step (S30).
  • the SiC substrate 20 prepared in step (S10) is placed on the Si layer formed in step (S11).
  • a laminated substrate in which the SiC substrate 20 is laminated on the base substrate 10 with the Si layer interposed therebetween is obtained.
  • a heating step is performed as a step (S70).
  • the laminated substrate produced in the step (S30) is heated to about 1500 ° C. in a mixed gas atmosphere of hydrogen gas and propane gas having a pressure of 1 ⁇ 10 3 Pa, for example, for about 3 hours. Retained.
  • carbon is supplied to the Si layer mainly by diffusion from the base substrate 10 and the SiC substrate 20, and an amorphous SiC layer 40 is formed as shown in FIG.
  • silicon carbide substrate 1 in the fourth embodiment in which base layer 10 and SiC layer 20 having different impurity concentrations are connected by amorphous SiC layer 40 can be easily manufactured.
  • MOSFET 100 semiconductor device
  • MOSFET 100 in the fifth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects.
  • MOSFET 100 of the fifth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
  • silicon carbide substrate 1 in the fifth embodiment as an intermediate layer formed by siliciding at least a part of the metal layer between base layer 10 and SiC layer 20.
  • This is different from the first embodiment in that the ohmic contact layer 50 is formed. Base layer 10 and SiC layer 20 are connected by this ohmic contact layer 50. Due to the presence of the ohmic contact layer 50, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
  • a method for manufacturing silicon carbide substrate 1 in the fifth embodiment will be described.
  • a substrate preparation step is performed as in step (S ⁇ b> 10) in the same manner as in the first embodiment. 20 are prepared.
  • a metal film forming step is performed as a step (S12).
  • a metal film is formed, for example, by vapor-depositing a metal on one main surface of the base substrate 10 prepared in the step (S10).
  • This metal film contains, for example, at least one selected from metals that form silicide when heated, for example, nickel, molybdenum, titanium, aluminum, and tungsten.
  • step (S30) a lamination step is performed as a step (S30).
  • SiC substrate 20 prepared in step (S10) is placed on the metal film formed in step (S12).
  • a laminated substrate in which the SiC substrate 20 is laminated on the base substrate 10 with the metal film interposed therebetween is obtained.
  • a heating step is performed as a step (S70).
  • the laminated substrate produced in step (S30) is heated to about 1000 ° C. in an inert gas atmosphere such as argon.
  • an inert gas atmosphere such as argon.
  • the metal film a region in contact with the base substrate 10 and a region in contact with the SiC substrate
  • an ohmic contact layer 50 in ohmic contact with the base layer 10 and the SiC layer 20 is formed.
  • silicon carbide substrate 1 in the fifth embodiment in which base layer 10 and SiC layer 20 having different impurity concentrations are connected by ohmic contact layer 50 can be easily manufactured.
  • MOSFET 100 semiconductor device
  • MOSFET 100 in the sixth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects.
  • MOSFET 100 of the sixth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
  • a carbon layer 60 as an intermediate layer is formed between base layer 10 and SiC layer 20, and thus the present embodiment. This is different from the case of 1.
  • Base layer 10 and SiC layer 20 are connected by this carbon layer 60. Due to the presence of carbon layer 60, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
  • step (S10) is performed in the same manner as in the first embodiment, and then step (S20) is performed in the same manner as in the first embodiment as necessary.
  • precursor layer 61 is formed, for example, by applying a carbon adhesive on the main surface of base substrate 10.
  • a carbon adhesive what consists of resin, graphite fine particles, and a solvent can be employ
  • the resin a resin that becomes non-graphitizable carbon when heated, such as a phenol resin, can be employed.
  • the solvent for example, phenol, formaldehyde, ethanol, or the like can be used.
  • the coating amount of the carbon adhesive is preferably 10 mg / cm 2 or more and 40 mg / cm 2 or less, and more preferably 20 mg / cm 2 or more and 30 mg / cm 2 or less.
  • the thickness of the carbon adhesive to be applied is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • a stacking step is performed.
  • SiC substrate 20 is placed in contact with precursor layer 61 formed in contact with the main surface of base substrate 10, and the laminated substrate is Produced.
  • a pre-baking step is performed.
  • the solvent component is removed from the carbon adhesive constituting the precursor layer 61 by heating the laminated substrate.
  • the multilayer substrate is gradually heated to a temperature range exceeding the boiling point of the solvent component while applying a load to the multilayer substrate in the thickness direction. This heating is preferably performed while the base substrate 10 and the SiC substrate 20 are pressure-bonded using a clamp or the like. Further, by performing pre-baking (heating) as much as possible, degassing from the adhesive proceeds, and the strength of bonding can be improved.
  • a firing step is performed as a step (S90).
  • the laminated substrate heated in step (S80) and pre-baked with precursor layer 61 is heated to a high temperature, preferably 900 ° C. to 1100 ° C., for example 1000 ° C., preferably 10 minutes to 10 minutes.
  • the precursor layer 61 is fired by being held for a period of time, for example, 1 hour.
  • an atmosphere at the time of firing an inert gas atmosphere such as argon is adopted, and the pressure of the atmosphere can be set to atmospheric pressure, for example.
  • the precursor layer 61 becomes the carbon layer 60 made of carbon.
  • silicon carbide substrate 1 in the sixth embodiment in which base substrate (base layer) 10 and SiC substrate (SiC layer) 20 are bonded by carbon layer 60 is obtained.
  • the vertical MOSFET has been described as an example of the semiconductor device of the present invention.
  • the semiconductor device of the present invention is not limited to this, and the vertical semiconductor device in which current flows in the thickness direction of the silicon carbide substrate. Can be widely applied to.
  • the crystal structure of silicon carbide constituting SiC layer 20 is preferably a hexagonal system, and more preferably 4H—SiC.
  • Base layer 10 and SiC layer 20 are preferably composed of silicon carbide single crystals having the same crystal structure (when there are a plurality of SiC layers 20, the adjacent SiC layers 20 are also adjacent to each other).
  • silicon carbide single crystal having the same crystal structure for base layer 10 and SiC layer 20 physical properties such as a thermal expansion coefficient are unified, and silicon carbide substrate 1 and silicon carbide substrate 1 are formed.
  • warpage of silicon carbide substrate 1, separation between base layer 10 and SiC layer 20, or separation between SiC layers 20 can be suppressed.
  • the angle formed by the c-axis of the silicon carbide single crystal constituting each is less than 1 °. It is preferable that the angle is less than 0.1 °. Furthermore, it is preferable that the c-plane of the silicon carbide single crystal is not rotated in the plane.
  • the diameter of the base layer (base substrate) 10 of the silicon carbide substrate 1 used for manufacturing a semiconductor device such as the MOSFET 100 is preferably 2 inches or more, and more preferably 6 inches or more.
  • the thickness of silicon carbide substrate 1 is preferably 200 ⁇ m or more and 1000 ⁇ m or less, and more preferably 300 ⁇ m or more and 700 ⁇ m or less.
  • the resistivity of SiC layer 20 is preferably 50 m ⁇ cm or less, and more preferably 20 m ⁇ cm or less.
  • Example 1 will be described below. A calculation for estimating the effect of reducing the on-resistance in the semiconductor device of the present invention was performed. Specifically, in MOSFET100 in the first embodiment, the thickness 200 [mu] m, the base layer 10 of n-type impurity concentration 1 ⁇ 10 20 cm -3, thickness 200 [mu] m, SiC of n-type impurity concentration 1 ⁇ 10 19 cm -3 The on-resistance was calculated on the assumption that the silicon carbide substrate 1 including the layer 20 and the main surface of the SiC layer 20 on the active layer 7 side being the ⁇ 03-38 ⁇ plane is employed (Example A). .
  • Example A a conventional MOSFET in which a silicon carbide substrate having a thickness of 400 ⁇ m, an n-type impurity density of 1 ⁇ 10 19 cm ⁇ 3 and a main surface on the active layer side is a ⁇ 0001 ⁇ plane is also used. On-resistance was calculated (Comparative Example A).
  • the channel length was 1.0 ⁇ m
  • the drift layer thickness was 10 ⁇ m
  • the impurity concentration was 1 ⁇ 10 16 cm ⁇ 3 .
  • the substrate resistance and the drift resistance of the drift layer were calculated as follows. First, when the electron density is n n0 , the hole density is p p0 , the electron effective state density is N c , and the hole effective state density is N ⁇ , the following relationship is established.
  • the total resistance (ON resistance) can be calculated from the substrate resistance thus obtained and other resistance components. The results of the above calculation are shown in Table 1.
  • Example A which is a semiconductor device of the present invention, it was confirmed that the on-resistance can be reduced by about 60% as compared with the conventional MOSFET of Comparative Example A.
  • Example 2 Next, Example 2 will be described.
  • the calculation which estimates the reduction effect of the contact resistance of the 2nd electrode (drain electrode) and silicon carbide substrate in the semiconductor device of this invention was implemented.
  • (1) Use a metal with a low work function ⁇ to lower the Schottky barrier.
  • (2) Increase the impurity density of the semiconductor to reduce the width of the depletion layer, thereby reducing the Schottky barrier. Conceivable.
  • a semiconductor device of the present invention that employs a silicon carbide substrate including a base layer having a high impurity concentration, calculation results regarding contact resistance between the electrode and the base layer will be described.
  • the contact resistance R c depends exponentially on ⁇ bn / (N d 1/2 ). Then, by raising the impurity concentration (impurity concentration) N d, it is possible to reduce the contact resistance R c.
  • a contact resistance (Example B) between a substrate (base layer) and an electrode having an impurity concentration of 1 ⁇ 10 20 cm ⁇ 3 assuming a semiconductor device of the present invention, and a conventional semiconductor device are assumed.
  • the contact resistance (Comparative Example B) between the substrate and the electrode having an impurity concentration of 1 ⁇ 10 18 cm ⁇ 3 was calculated.
  • the metal constituting the electrode for example, Ni (nickel) having a work function ⁇ of 5.5 eV or Al (aluminum) having 4.1 eV can be employed. The calculation results are shown in Table 2.
  • the contact resistance in Example C assuming the semiconductor device of the present invention is reduced by about 40% with respect to the contact resistance in Comparative Example C assuming a conventional semiconductor device.
  • the contact resistance between the substrate and the electrode can be greatly reduced.
  • heat treatment is often performed after electrode formation for the purpose of reducing the contact resistance.
  • the heat treatment may be omitted.
  • the vertical MOSFET has been described as an example of the semiconductor device of the present invention.
  • the semiconductor device of the present invention is not limited to this, for example, JFET (Junction Field Effect Transistor), MESFET (Metal Semiconductor Fielder). (Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), a diode, etc. may be sufficient.
  • the semiconductor device of the present invention can be applied particularly advantageously to a vertical semiconductor device that requires a reduction in on-resistance.
  • base layer base substrate
  • 10A main surface, 10B single crystal Layer 11 material substrate, 11A main surface, 20 SiC layer (SiC substrate), 20A, 20B main surface, 20C end surface, 40 amorphous SiC layer, 50 ohmic contact layer, 60 carbon layer, 61 precursor layer, 81 first heater , 82 Second heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Disclosed is a MOSFET (100) which is a semiconductor device that can be reduced in the on-resistance, while being suppressed in the occurrence of stacking faults due to a heat treatment during the device production process. The MOSFET (100) comprises a silicon carbide substrate (1), an active layer (7) that is formed from single crystal silicon carbide and arranged on one main surface of the silicon carbide substrate (1), a source contact electrode (92) that is arranged on the active layer (7), and a drain electrode (96) that is formed on the other main surface of the silicon carbide substrate (1). The silicon carbide substrate (1) contains a base layer (10) that is formed from silicon carbide and an SiC layer (20) that is formed from single crystal silicon carbide and arranged on the base layer (10). The impurity concentration of the base layer (10) is higher than 2 × 1019 cm-3, and the impurity concentration of the SiC layer (20) is higher than 5 × 1018 cm-3 but lower than 2 × 1019 cm-3.

Description

半導体装置Semiconductor device
 本発明は半導体装置に関し、より特定的には、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつオン抵抗の低減が達成可能な半導体装置に関するものである。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in a device manufacturing process.
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素(SiC)の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。 In recent years, silicon carbide (SiC) is being adopted as a material constituting a semiconductor device in order to enable a semiconductor device to have a high breakdown voltage, low loss, and use in a high temperature environment. Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device. In addition, a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
 炭化珪素を材料として採用した高性能な半導体装置を製造するためには、炭化珪素からなる基板(炭化珪素基板)を準備し、当該炭化珪素基板上にSiCからなるエピタキシャル成長層を形成するプロセスの採用が有効である。また、たとえば炭化珪素基板を用いて縦型パワーデバイス(縦型MOSFET;Metal Oxide Semiconductor Field Effect Transistorなど)を製造する場合、基板の厚み方向における抵抗率をできる限り低減することにより、デバイスのオン抵抗を低減することができる。そして、基板の厚み方向における抵抗率を低減するためには、たとえばn型ドーパントである窒素などの不純物を高い濃度で基板に導入する方策を採用することができる(たとえば、R.C.GLASS et al.、“SiC Seeded Crystal Growth”、Phys. stat. sol.(b)、1997年、202、p149-162(非特許文献1)参照)。 In order to manufacture a high-performance semiconductor device employing silicon carbide as a material, a process of preparing a silicon carbide substrate (silicon carbide substrate) and forming an SiC epitaxial growth layer on the silicon carbide substrate is employed. Is effective. For example, when manufacturing a vertical power device (vertical MOSFET; Metal Oxide Semiconductor Field Effect Transistor, etc.) using a silicon carbide substrate, the on-resistance of the device is reduced by reducing the resistivity in the thickness direction of the substrate as much as possible. Can be reduced. In order to reduce the resistivity in the thickness direction of the substrate, it is possible to adopt a policy of introducing impurities such as nitrogen, which is an n-type dopant, into the substrate at a high concentration (for example, RCGLASS et al. al., “SiC Seed Crystal Growth”, Phys. stat. sol. (b), 1997, 202, p149-162 (Non-patent Document 1)).
 しかしながら、単に不純物を高い濃度で基板に導入することにより基板の抵抗率を低減した場合、以下のような問題が生じる。すなわち、炭化珪素基板を用いて半導体装置を作製する場合、たとえば炭化珪素基板の表面を清浄化するためのサーマルクリーニングなど、炭化珪素基板に対する熱処理が実施される。このとき、高濃度の不純物を含む炭化珪素基板においては、積層欠陥が発生する。そして、当該炭化珪素基板上にSiCからなるエピタキシャル成長層を形成した場合、当該SiC層中にも当該積層欠陥が伝播する。ここで、たとえば炭化珪素基板を構成するSiCが4H-SiCである場合、発生する上記積層欠陥の構造は4H型に比べてバンドギャップの小さい3C型である。そのため、積層欠陥が発生した領域において局所的にバンドギャップが小さくなる。その結果、上記炭化珪素基板を用いて半導体装置を作製した場合、耐圧の低下、リーク電流の増大などの問題が発生する。 However, when the resistivity of the substrate is reduced by simply introducing impurities into the substrate at a high concentration, the following problems occur. That is, when a semiconductor device is manufactured using a silicon carbide substrate, a heat treatment is performed on the silicon carbide substrate, for example, thermal cleaning for cleaning the surface of the silicon carbide substrate. At this time, a stacking fault occurs in a silicon carbide substrate containing a high concentration of impurities. And when the epitaxial growth layer which consists of SiC is formed on the said silicon carbide substrate, the said stacking fault propagates also in the said SiC layer. Here, for example, when SiC constituting the silicon carbide substrate is 4H—SiC, the structure of the stacking fault generated is the 3C type having a smaller band gap than the 4H type. Therefore, the band gap is locally reduced in the region where the stacking fault has occurred. As a result, when a semiconductor device is manufactured using the silicon carbide substrate, problems such as a decrease in breakdown voltage and an increase in leakage current occur.
 そこで、本発明の目的は、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつ、オン抵抗の低減が達成可能な半導体装置を提供することである。 Therefore, an object of the present invention is to provide a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in a device manufacturing process.
 本発明に従った半導体装置は、炭化珪素基板と、単結晶炭化珪素からなり、炭化珪素基板の一方の主面上に配置された活性層と、活性層上に配置された第1電極と、炭化珪素基板の他方の主面上に形成された第2電極とを備えている。炭化珪素基板は、炭化珪素からなるベース層と、単結晶炭化珪素からなり、ベース層上に配置されたSiC層とを含んでいる。そして、ベース層の不純物濃度は2×1019cm-3よりも大きく、SiC層の不純物濃度は5×1018cm-3よりも大きく2×1019cm-3よりも小さい。 A semiconductor device according to the present invention includes a silicon carbide substrate, a single crystal silicon carbide, an active layer disposed on one main surface of the silicon carbide substrate, a first electrode disposed on the active layer, And a second electrode formed on the other main surface of the silicon carbide substrate. The silicon carbide substrate includes a base layer made of silicon carbide and a SiC layer made of single crystal silicon carbide and disposed on the base layer. The impurity concentration of the base layer is larger than 2 × 10 19 cm −3 , and the impurity concentration of the SiC layer is larger than 5 × 10 18 cm −3 and smaller than 2 × 10 19 cm −3 .
 本発明者は、炭化珪素基板において、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつ、厚み方向の抵抗率を低減する方策について詳細な検討を行なった。その結果、不純物濃度が2×1019cm-3未満であれば当該熱処理による積層欠陥の発生を抑制可能である一方、2×1019cm-3を超えると積層欠陥の抑制が困難であることを見出した。したがって、炭化珪素基板に不純物濃度が2×1019cm-3よりも大きく、抵抗率の小さい層(ベース層)を設けるとともに、不純物濃度が2×1019cm-3よりも小さい層(SiC層)をベース層上に配置することにより、その後にデバイス作製プロセスにおける熱処理が実施された場合でも、少なくともSiC層においては積層欠陥の発生を抑制することができる。そして、当該SiC層上にSiCからなるエピタキシャル成長層(活性層)を形成して半導体装置を作製することにより、ベース層の存在による炭化珪素基板の抵抗率の低減を達成しつつ、ベース層に発生し得る積層欠陥の影響が半導体装置の特性に及ぶことを抑制することができる。一方、SiC層の不純物濃度が5×1018cm-3以下の場合、当該SiC層の抵抗率が大きくなりすぎるという問題が生じ得る。 The present inventor has conducted detailed studies on a method for reducing resistivity in the thickness direction while suppressing generation of stacking faults due to heat treatment in a device manufacturing process in a silicon carbide substrate. As a result, if the impurity concentration is less than 2 × 10 19 cm −3 , generation of stacking faults due to the heat treatment can be suppressed, whereas if it exceeds 2 × 10 19 cm −3 , it is difficult to suppress stacking faults. I found. Thus, greater than the impurity concentration in the silicon carbide substrate 2 × 10 19 cm -3, provided with a small layer resistivity (base layer), small layer (SiC layer than the impurity concentration of 2 × 10 19 cm -3 ) On the base layer, it is possible to suppress the occurrence of stacking faults at least in the SiC layer even when the heat treatment in the device manufacturing process is subsequently performed. Then, an epitaxial growth layer (active layer) made of SiC is formed on the SiC layer to fabricate a semiconductor device, thereby reducing the resistivity of the silicon carbide substrate due to the presence of the base layer and generating in the base layer. It is possible to suppress the influence of possible stacking faults on the characteristics of the semiconductor device. On the other hand, when the impurity concentration of the SiC layer is 5 × 10 18 cm −3 or less, there may arise a problem that the resistivity of the SiC layer becomes too high.
 このように、本発明の半導体装置によれば、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつオン抵抗の低減が達成可能な半導体装置を提供することができる。ここで、「不純物」とは、炭化珪素基板に多数キャリアを発生させるために導入される不純物をいう。 As described above, according to the semiconductor device of the present invention, it is possible to provide a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in the device manufacturing process. Here, “impurity” refers to an impurity introduced to generate majority carriers in the silicon carbide substrate.
 また、上記ベース層とSiC層とは、たとえば接合されている。これにより、ベース層の欠陥が伝播することを抑制しつつSiC層を配置した炭化珪素基板を容易に得ることができる。このとき、ベース層とSiC層とは、直接接合されていてもよいし、中間層を介して接合されていてもよい。 Further, the base layer and the SiC layer are bonded, for example. Thereby, a silicon carbide substrate on which an SiC layer is arranged can be easily obtained while suppressing the propagation of defects in the base layer. At this time, the base layer and the SiC layer may be directly bonded or may be bonded via an intermediate layer.
 上記半導体装置においては、ベース層に含まれる不純物と、SiC層に含まれる不純物とは異なっていてもよい。これにより、目的に応じた適切な不純物を含む炭化珪素基板を備えた半導体装置を提供することができる。 In the semiconductor device, the impurity contained in the base layer may be different from the impurity contained in the SiC layer. Thereby, the semiconductor device provided with the silicon carbide substrate containing the suitable impurity according to the objective can be provided.
 上記半導体装置においては、ベース層に含まれる不純物は窒素またはリンであり、SiC層に含まれる不純物も窒素またはリンとすることができる。窒素およびリンは、SiCに多数キャリアとしての電子を供給する不純物として、好適である。 In the semiconductor device, the impurity contained in the base layer is nitrogen or phosphorus, and the impurity contained in the SiC layer can also be nitrogen or phosphorus. Nitrogen and phosphorus are suitable as impurities for supplying electrons as majority carriers to SiC.
 上記半導体装置においては、ベース層は単結晶炭化珪素からなり、SiC層のX線ロッキングカーブの半値幅は、ベース層のX線ロッキングカーブの半値幅よりも小さくなっていてもよい。 In the semiconductor device, the base layer is made of single crystal silicon carbide, and the half width of the X-ray rocking curve of the SiC layer may be smaller than the half width of the X-ray rocking curve of the base layer.
 SiCは常圧で液相を持たない。したがって、通常、六方晶の<0001>方向に成長させてバルク単結晶SiCを作製する場合に用いられる昇華再結晶法では、結晶成長温度が2000℃以上と非常に高く、成長条件の制御や、その安定化が困難である。そのため、単結晶SiCからなる基板は、高品質を維持しつつ大口径化することが困難である。一方、炭化珪素基板を用いた半導体装置の製造プロセスにおいて効率よく製造を行なうためには、所定の形状および大きさに統一された基板が必要である。そのため、高品質な炭化珪素単結晶(たとえば転位密度が低い、あるいは結晶軸の揺らぎが小さくX線ロッキングカーブの半値幅が小さい単結晶炭化珪素)が得られた場合でも、切断等によって所定の形状等に加工できない領域は、有効に利用されない可能性がある。 SiC does not have a liquid phase at normal pressure. Therefore, normally, in the sublimation recrystallization method used in the case of producing bulk single crystal SiC by growing in the <0001> direction of hexagonal crystal, the crystal growth temperature is very high as 2000 ° C. or more, Its stabilization is difficult. Therefore, it is difficult to increase the diameter of a substrate made of single crystal SiC while maintaining high quality. On the other hand, in order to efficiently manufacture a semiconductor device using a silicon carbide substrate, a substrate having a predetermined shape and size is required. Therefore, even when a high quality silicon carbide single crystal (for example, single crystal silicon carbide having a low dislocation density or a small crystal axis fluctuation and a small half-value width of an X-ray rocking curve) is obtained, a predetermined shape is obtained by cutting or the like. There is a possibility that an area that cannot be processed in a uniform manner may not be used effectively.
 これに対し、上記本発明の炭化珪素基板においては、上記所定の形状および大きさに加工されたベース層上に、当該ベース層よりも、たとえばX線ロッキングカーブの半値幅が小さい、すなわち結晶性が高いものの所望の形状等が実現されていないSiC層を配置することができる。このような炭化珪素基板は、ベース層の所定の形状および大きさに統一されているため半導体装置の製造を効率化できる。また、このような炭化珪素基板の高品質なSiC層を使用して半導体装置を製造することが可能であるため、高品質な単結晶炭化珪素を有効に利用することができる。その結果、半導体装置の製造コストの低減を実現することができる。 On the other hand, in the silicon carbide substrate of the present invention, on the base layer processed into the predetermined shape and size, for example, the half width of the X-ray rocking curve is smaller than that of the base layer. A SiC layer that is high but does not have a desired shape or the like can be disposed. Since such a silicon carbide substrate is unified with a predetermined shape and size of the base layer, the manufacturing of the semiconductor device can be made efficient. Moreover, since it is possible to manufacture a semiconductor device using such a high quality SiC layer of a silicon carbide substrate, high quality single crystal silicon carbide can be used effectively. As a result, the manufacturing cost of the semiconductor device can be reduced.
 上記半導体装置においては、上記活性層は、炭化珪素基板上に配置され、単結晶炭化珪素からなる第1導電型のドリフト層と、ドリフト層において炭化珪素基板とは反対側の第1主面を含むように配置された第2導電型のウェル領域と、ウェル領域内の第1主面を含み、第1電極に接触するように配置された第1導電型のソース領域とを含み、第1主面上にウェル領域に接触するように配置され、絶縁体からなる絶縁膜と、絶縁膜上に配置された第3電極とをさらに備えていてもよい。 In the semiconductor device, the active layer is disposed on a silicon carbide substrate and has a first conductivity type drift layer made of single crystal silicon carbide, and a first main surface of the drift layer opposite to the silicon carbide substrate. A first conductivity type well region disposed so as to include a first conductivity type well region including a first main surface in the well region and in contact with the first electrode; An insulating film made of an insulator and a third electrode arranged on the insulating film may be further provided on the main surface so as to be in contact with the well region.
 これにより、第1電極をソース電極、第2電極をドレイン電極、第3電極をゲート電極とするMISFET(Metal Insulator Semiconductor Field Effect Transistor)を得ることができる。 As a result, a MISFET (Metal Insulator Semiconductor Field Effect Transistor) in which the first electrode is the source electrode, the second electrode is the drain electrode, and the third electrode is the gate electrode can be obtained.
 上記半導体装置においては、上記絶縁膜は二酸化珪素からなっていてもよい。これにより、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を得ることができる。 In the semiconductor device, the insulating film may be made of silicon dioxide. Thereby, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) can be obtained.
 上記半導体装置においては、炭化珪素基板において、SiC層の、ベース層とは反対側の主面は、{0001}面に対するオフ角が50°以上65°以下となっていてもよい。 In the semiconductor device, in the silicon carbide substrate, the main surface of the SiC layer opposite to the base layer may have an off angle of 50 ° or more and 65 ° or less with respect to the {0001} plane.
 六方晶の単結晶炭化珪素は、<0001>方向に成長させることにより、高品質な単結晶を効率よく作製することができる。そして、<0001>方向に成長させた炭化珪素単結晶からは、{0001}面を主面とする炭化珪素基板を効率よく採取することができる。一方、面方位{0001}に対するオフ角が50°以上65°以下である主面を有する炭化珪素基板を用いることにより、高性能な半導体装置を製造できる場合がある。 Hexagonal single crystal silicon carbide can be produced in a <0001> direction to efficiently produce a high quality single crystal. And from the silicon carbide single crystal grown in the <0001> direction, a silicon carbide substrate having a {0001} plane as a main surface can be efficiently collected. On the other hand, there may be a case where a high-performance semiconductor device can be manufactured by using a silicon carbide substrate having a main surface with an off angle with respect to the plane orientation {0001} of 50 ° to 65 °.
 具体的には、たとえばMOSFETの作製に用いられる炭化珪素基板は、面方位{0001}に対するオフ角が0.3°~8°程度である主面を有していることが一般的である。そして、当該主面上にエピタキシャル成長層(活性層)が形成されるとともに、当該活性層上に絶縁膜(酸化膜)、電極などが形成され、MOSFETが得られる。このMOSFETにおいては、活性層と絶縁膜との界面を含む領域にチャネル領域が形成される。しかし、このような構造を有するMOSFETにおいては、基板の主面の面方位{0001}に対するオフ角が0.3°~8°程度であることに起因して、チャネル領域が形成される活性層と絶縁膜との界面付近において多くの界面準位が形成されてキャリアがトラップされることにより、あるいはトラップされたキャリアによる散乱のため、チャネル移動度が低下する。 Specifically, for example, a silicon carbide substrate used for manufacturing a MOSFET, for example, generally has a main surface with an off angle of about 0.3 ° to 8 ° with respect to the plane orientation {0001}. Then, an epitaxial growth layer (active layer) is formed on the main surface, and an insulating film (oxide film), an electrode, and the like are formed on the active layer to obtain a MOSFET. In this MOSFET, a channel region is formed in a region including the interface between the active layer and the insulating film. However, in the MOSFET having such a structure, an active layer in which a channel region is formed due to an off angle of about 0.3 ° to 8 ° with respect to the plane orientation {0001} of the main surface of the substrate In the vicinity of the interface between the insulating film and the insulating film, many interface states are formed and carriers are trapped, or channel mobility decreases due to scattering by trapped carriers.
 これに対し、炭化珪素基板において、SiC層におけるベース層とは反対側の主面の、{0001}面に対するオフ角を50°以上65°以下とすることにより、上記界面準位の形成が低減され、オン抵抗が低減されたMOSFETを作製することができる。 On the other hand, in the silicon carbide substrate, the off-angle of the main surface of the SiC layer opposite to the base layer with respect to the {0001} plane is 50 ° or more and 65 ° or less, thereby reducing the formation of the interface state. Thus, a MOSFET with reduced on-resistance can be manufactured.
 上記半導体装置においては、炭化珪素基板において、上記SiC層におけるベース層とは反対側の主面のオフ方位と<1-100>方向とのなす角は5°以下となっていてもよい。 In the semiconductor device, in the silicon carbide substrate, the angle formed between the off orientation of the main surface of the SiC layer opposite to the base layer and the <1-100> direction may be 5 ° or less.
 <1-100>方向は、炭化珪素基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを5°以下とすることにより、炭化珪素基板上へのエピタキシャル成長層(活性層)の形成を容易にすることができる。 The <1-100> direction is a typical off orientation in the silicon carbide substrate. Then, by setting the variation in the off orientation due to the variation in slicing in the substrate manufacturing process to 5 ° or less, it is possible to easily form the epitaxial growth layer (active layer) on the silicon carbide substrate.
 上記炭化珪素基板においては、上記SiC層におけるベース層とは反対側の主面の、<1-100>方向における{03-38}面に対するオフ角は-3°以上5°以下であってもよい。これにより、炭化珪素基板を用いてMOSFETを作製した場合におけるチャネル移動度を、より一層向上させることができる。ここで、面方位{03-38}に対するオフ角を-3°以上+5°以下としたのは、チャネル移動度と当該オフ角との関係を調査した結果、この範囲内で特に高いチャネル移動度が得られたことに基づいている。 In the silicon carbide substrate, the off-angle of the main surface of the SiC layer opposite to the base layer with respect to the {03-38} plane in the <1-100> direction is not less than −3 ° and not more than 5 °. Good. Thereby, the channel mobility when a MOSFET is fabricated using a silicon carbide substrate can be further improved. Here, the off angle with respect to the plane orientation {03-38} is set to −3 ° or more and + 5 ° or less. As a result of investigating the relationship between the channel mobility and the off angle, the channel mobility is particularly high within this range. Is based on the obtained.
 また、「<1-100>方向における{03-38}面に対するオフ角」とは、<1-100>方向および<0001>方向の張る平面への上記主面の法線の正射影と、{03-38}面の法線とのなす角度であり、その符号は、上記正射影が<1-100>方向に対して平行に近づく場合が正であり、上記正射影が<0001>方向に対して平行に近づく場合が負である。 The “off angle with respect to the {03-38} plane in the <1-100> direction” is an orthogonal projection of the normal of the principal surface to the plane extending in the <1-100> direction and the <0001> direction, This is an angle formed with the normal of the {03-38} plane, and its sign is positive when the orthographic projection approaches parallel to the <1-100> direction, and the orthographic projection is in the <0001> direction. The case of approaching parallel to is negative.
 なお、上記主面の面方位は、実質的に{03-38}であることがより好ましい。ここで、主面の面方位が実質的に{03-38}であるとは、基板の加工精度などを考慮して実質的に面方位が{03-38}とみなせるオフ角の範囲に基板の主面の面方位が含まれていることを意味し、この場合のオフ角の範囲としてはたとえば{03-38}に対してオフ角が±2°の範囲である。これにより、上述したチャネル移動度をより一層向上させることができる。 In addition, it is more preferable that the plane orientation of the main surface is substantially {03-38}. Here, the surface orientation of the main surface is substantially {03-38}, taking into account the processing accuracy of the substrate, etc., the substrate is within an off-angle range where the surface orientation can be substantially regarded as {03-38}. In this case, the off angle range is, for example, a range of ± 2 ° with respect to {03-38}. As a result, the above-described channel mobility can be further improved.
 上記半導体装置においては、炭化珪素基板において、上記SiC層におけるベース層とは反対側の主面のオフ方位と<11-20>方向とのなす角は5°以下となっていてもよい。 In the semiconductor device, in the silicon carbide substrate, the angle formed between the off orientation of the main surface of the SiC layer opposite to the base layer and the <11-20> direction may be 5 ° or less.
 <11-20>は、上記<1-100>方向と同様に、炭化珪素基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC基板上へのエピタキシャル成長層(活性層)の形成を容易にすることができる。 <11-20> is a typical off orientation in the silicon carbide substrate, similarly to the above <1-100> direction. Then, by setting the variation in the off orientation due to the variation in the slice processing in the substrate manufacturing process to ± 5 °, it is possible to facilitate the formation of the epitaxial growth layer (active layer) on the SiC substrate.
 上記半導体装置においては、ベース層は単結晶炭化珪素からなっていてもよい。この場合、SiC層の欠陥密度は、ベース層の欠陥密度よりも低いことが好ましい。 In the semiconductor device, the base layer may be made of single crystal silicon carbide. In this case, the defect density of the SiC layer is preferably lower than the defect density of the base layer.
 たとえば、上記半導体装置において好ましくは、SiC層のマイクロパイプ密度はベース層のマイクロパイプ密度よりも小さい。 For example, in the above semiconductor device, the micropipe density of the SiC layer is preferably smaller than the micropipe density of the base layer.
 また、上記半導体装置において好ましくは、SiC層の転位密度は、ベース層の転位密度よりも低いことが好ましい。 In the semiconductor device, preferably, the dislocation density of the SiC layer is lower than the dislocation density of the base layer.
 また、上記半導体装置において好ましくは、SiC層の貫通らせん転位密度はベース層の貫通らせん転位密度よりも小さい。また、上記半導体装置において好ましくは、SiC層の貫通刃状転位密度はベース層の貫通刃状転位密度よりも小さい。また、上記半導体装置において好ましくは、SiC層の基底面転位密度はベース層の基底面転位密度よりも小さい。また、上記半導体装置において好ましくは、SiC層の混合転位密度はベース層の混合転位密度よりも小さい。また、上記半導体装置において好ましくは、SiC層の積層欠陥密度はベース層の積層欠陥密度よりも小さい。また、上記半導体装置において好ましくは、SiC層の点欠陥密度はベース層の点欠陥密度よりも小さい。 In the semiconductor device, preferably, the threading screw dislocation density of the SiC layer is smaller than the threading screw dislocation density of the base layer. In the semiconductor device, preferably, the threading edge dislocation density of the SiC layer is smaller than the threading edge dislocation density of the base layer. In the semiconductor device, preferably, the basal plane dislocation density of the SiC layer is smaller than the basal plane dislocation density of the base layer. In the semiconductor device, preferably, the mixed dislocation density of the SiC layer is smaller than the mixed dislocation density of the base layer. In the semiconductor device, preferably, the stacking fault density of the SiC layer is smaller than the stacking fault density of the base layer. In the semiconductor device, preferably, the point defect density of the SiC layer is smaller than the point defect density of the base layer.
 マイクロパイプ密度、貫通らせん転位密度、貫通刃状転位密度、基底面転位密度、混合転位密度、積層欠陥密度、点欠陥密度などの欠陥密度をベース層に比べて低減したSiC層を配置することにより、高品質な活性層をSiC層上に形成することができる。活性層は、たとえばエピタキシャル成長と不純物のイオン注入とを組み合わせることにより形成することができる。 By arranging a SiC layer in which the defect density such as micropipe density, threading screw dislocation density, threading edge dislocation density, basal plane dislocation density, mixed dislocation density, stacking fault density, point defect density is reduced compared to the base layer A high quality active layer can be formed on the SiC layer. The active layer can be formed, for example, by combining epitaxial growth and impurity ion implantation.
 上記半導体装置においては、SiC層は複数層積層されていてもよい。これにより、目的の機能に応じた複数のSiC層を備えた半導体装置を得ることができる。 In the semiconductor device, a plurality of SiC layers may be stacked. Thereby, the semiconductor device provided with the some SiC layer according to the target function can be obtained.
 上記半導体装置においては、炭化珪素基板は、ベース層とSiC層との間に配置され、導電体または半導体からなる中間層をさらに含み、当該中間層は、ベース層とSiC層とを接合していてもよい。 In the above semiconductor device, the silicon carbide substrate further includes an intermediate layer made of a conductor or a semiconductor, disposed between the base layer and the SiC layer, and the intermediate layer joins the base layer and the SiC layer. May be.
 このようにベース層とSiC層とが中間層により接合された構造を採用することにより、不純物濃度が2×1019cm-3よりも大きいベース層上に、不純物濃度が5×1018cm-3よりも大きく2×1019cm-3よりも小さいSiC層を配置した炭化珪素基板を備えた半導体装置を容易に得ることができる。また、中間層が導電体または半導体からなるものであることにより、ベース層とSiC層との間の電気的な接続を確保することが可能となる。 By adopting such a structure in which the base layer and the SiC layer are joined by the intermediate layer, the impurity concentration is 5 × 10 18 cm on the base layer having an impurity concentration higher than 2 × 10 19 cm −3. 3 can be easily obtained a semiconductor device having a silicon carbide substrate disposed small SiC layer than 2 × 10 19 cm -3 greater than. In addition, since the intermediate layer is made of a conductor or a semiconductor, it is possible to ensure electrical connection between the base layer and the SiC layer.
 上記半導体装置においては、上記中間層は金属からなっていてもよい。この中間層を構成する金属の一部は、シリサイド化していてもよい。また、上記半導体装置においては、上記中間層は炭素からなっていてもよい。また、上記中間層は非晶質炭化珪素からなっていてもよい、これにより、基板の厚み方向におけるベース層とSiC層との間の電気的な接続を容易に確保することが可能となる。 In the semiconductor device, the intermediate layer may be made of metal. A part of the metal constituting the intermediate layer may be silicided. In the semiconductor device, the intermediate layer may be made of carbon. The intermediate layer may be made of amorphous silicon carbide. This makes it possible to easily ensure electrical connection between the base layer and the SiC layer in the thickness direction of the substrate.
 上記炭化珪素基板においては、ベース層は、SiC層に対向する側の主面を含むように単結晶炭化珪素からなる単結晶層を含んでいてもよい。これにより、ベース層とSiC層との物性の差(たとえば線膨張率の差)が小さくなり、炭化珪素基板の反りなどを抑制することができる。このとき、半導体装置の特性に及ぼすベース層の結晶性の影響が小さい場合、ベース層の単結晶層以外の領域は、多結晶炭化珪素、非晶質炭化珪素、または炭化珪素焼結体などの非単結晶層であってもよい。これにより、半導体装置の製造コストを低減することができる。 In the silicon carbide substrate, the base layer may include a single crystal layer made of single crystal silicon carbide so as to include a main surface on the side facing the SiC layer. Thereby, a difference in physical properties (for example, a difference in linear expansion coefficient) between the base layer and the SiC layer is reduced, and warpage of the silicon carbide substrate can be suppressed. At this time, when the influence of the crystallinity of the base layer on the characteristics of the semiconductor device is small, the region other than the single crystal layer of the base layer is made of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body. It may be a non-single crystal layer. Thereby, the manufacturing cost of the semiconductor device can be reduced.
 また、上記炭化珪素基板においては、SiC層のX線ロッキングカーブの半値幅は、単結晶層のX線ロッキングカーブの半値幅よりも小さくなっていることが好ましい。また、上記炭化珪素基板においては、SiC層のマイクロパイプ密度は、単結晶層のマイクロパイプ密度よりも低いことが好ましい。また、上記炭化珪素基板においては、SiC層の転位密度は、単結晶層の転位密度よりも低いことが好ましい。このようにすることにより、高品質な活性層をSiC層上に形成することができる。活性層は、たとえばエピタキシャル成長と不純物のイオン注入とを組み合わせることにより形成することができる。 In the silicon carbide substrate, it is preferable that the half width of the X-ray rocking curve of the SiC layer is smaller than the half width of the X-ray rocking curve of the single crystal layer. Moreover, in the said silicon carbide substrate, it is preferable that the micropipe density of a SiC layer is lower than the micropipe density of a single crystal layer. In the silicon carbide substrate, the dislocation density of the SiC layer is preferably lower than the dislocation density of the single crystal layer. By doing in this way, a high quality active layer can be formed on a SiC layer. The active layer can be formed, for example, by combining epitaxial growth and impurity ion implantation.
 以上の説明から明らかなように、本発明の半導体装置によれば、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつオン抵抗の低減が達成可能な半導体装置を提供することができる。 As is apparent from the above description, according to the semiconductor device of the present invention, it is possible to provide a semiconductor device capable of achieving a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in the device manufacturing process.
MOSFETの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of MOSFET. 炭化珪素基板の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a silicon carbide substrate. MOSFETの製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of MOSFET. MOSFETの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method of MOSFET. MOSFETの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method of MOSFET. MOSFETの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method of MOSFET. 炭化珪素基板の製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of a silicon carbide substrate. 実施の形態2における炭化珪素基板の製造方法の概略を示すフローチャートである。5 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a second embodiment. 実施の形態2における炭化珪素基板の製造方法を説明するための概略断面図である。FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment. 実施の形態2における炭化珪素基板の製造方法を説明するための概略断面図である。FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment. 実施の形態2における炭化珪素基板の製造方法を説明するための概略断面図である。FIG. 11 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the second embodiment. 実施の形態3における炭化珪素基板の構造を示す概略断面図である。FIG. 7 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a third embodiment. 実施の形態4における炭化珪素基板の構造を示す概略断面図である。FIG. 6 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a fourth embodiment. 実施の形態4における炭化珪素基板の製造方法の概略を示すフローチャートである。6 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a fourth embodiment. 実施の形態5における炭化珪素基板の構造を示す概略断面図である。FIG. 6 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a fifth embodiment. 実施の形態5における炭化珪素基板の製造方法の概略を示すフローチャートである。10 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a fifth embodiment. 実施の形態6における炭化珪素基板の構造を示す概略断面図である。FIG. 10 is a schematic cross sectional view showing a structure of a silicon carbide substrate in a sixth embodiment. 実施の形態6における炭化珪素基板の製造方法の概略を示すフローチャートである。17 is a flowchart showing an outline of a method for manufacturing a silicon carbide substrate in a sixth embodiment. 実施の形態6における炭化珪素基板の製造方法を説明するための概略断面図である。FIG. 12 is a schematic cross sectional view for illustrating the method for manufacturing the silicon carbide substrate in the sixth embodiment. n型4H-SiCにおける不純物濃度と移動度との関係を示す図である。It is a figure which shows the relationship between the impurity concentration and mobility in n type 4H-SiC.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 まず、本発明の一実施の形態である実施の形態1について説明する。図1を参照して、本実施の形態における半導体装置であるMOSFET100は、導電型がn型(第1導電型)である炭化珪素基板1と、炭化珪素からなり導電型がn型であるバッファ層2と、炭化珪素からなり導電型がn型のドリフト層3と、導電型がp型(第2導電型)の一対のウェル領域4と、導電型がn型のソース領域としてのn領域5と、導電型がp型の高濃度第2導電型領域としてのp領域6とを備えている。
(Embodiment 1)
First, Embodiment 1 which is one embodiment of the present invention will be described. Referring to FIG. 1, MOSFET 100, which is a semiconductor device in the present embodiment, includes a silicon carbide substrate 1 having a conductivity type of n type (first conductivity type) and a buffer made of silicon carbide and having a conductivity type of n type. Layer 2 made of silicon carbide and having a conductivity type of n type, a pair of well regions 4 having a conductivity type of p type (second conductivity type), and n + as a source region having a conductivity type of n type. A region 5 and a p + region 6 as a high-concentration second conductivity type region having a p-type conductivity are provided.
 バッファ層2は、炭化珪素基板1の一方の主面上に形成され、n型不純物を含むことにより導電型がn型となっている。ドリフト層3は、バッファ層2上に形成され、n型不純物を含むことにより導電型がn型となっている。ドリフト層3に含まれるn型不純物は、たとえばN(窒素)であり、バッファ層2に含まれるn型不純物よりも低い濃度(密度)で含まれている。 Buffer layer 2 is formed on one main surface of silicon carbide substrate 1 and has an n-type conductivity by containing an n-type impurity. Drift layer 3 is formed on buffer layer 2 and has an n-type conductivity by including an n-type impurity. The n-type impurity contained in the drift layer 3 is, for example, N (nitrogen), and is contained at a lower concentration (density) than the n-type impurity contained in the buffer layer 2.
 一対のウェル領域4は、ドリフト層3において、炭化珪素基板1側の主面とは反対側の主面3Aを含むように互いに分離して形成され、p型不純物(導電型がp型である不純物)を含むことにより、導電型がp型(第2導電型)となっている。ウェル領域4に含まれるp型不純物は、たとえばアルミニウム(Al)、硼素(B)などである。 The pair of well regions 4 are formed separately from each other so as to include a main surface 3A opposite to the main surface on the silicon carbide substrate 1 side in the drift layer 3, and p-type impurities (conductivity type is p-type). By including an impurity, the conductivity type is p-type (second conductivity type). The p-type impurity contained in the well region 4 is, for example, aluminum (Al), boron (B), or the like.
 n領域5は、上記主面3Aを含み、かつウェル領域4に取り囲まれるように、一対のウェル領域4のそれぞれの内部に形成されている。n領域5は、n型不純物、たとえばPなどをドリフト層3に含まれるn型不純物よりも高い濃度(密度)で含んでいる。p領域6は、上記主面3Aを含み、かつウェル領域4に取り囲まれるとともに、n領域5に隣接するように一対のウェル領域4のそれぞれの内部に形成されている。p領域6は、p型不純物、たとえばAlなどをウェル領域4に含まれるp型不純物よりも高い濃度(密度)で含んでいる。上記バッファ層2、ドリフト層3、ウェル領域4、n領域5およびp領域6は、活性層7を構成する。 The n + region 5 is formed inside each of the pair of well regions 4 so as to include the main surface 3 </ b > A and be surrounded by the well region 4. The n + region 5 contains an n-type impurity, such as P, at a higher concentration (density) than the n-type impurity contained in the drift layer 3. The p + region 6 includes the main surface 3 A, is surrounded by the well region 4, and is formed inside each of the pair of well regions 4 so as to be adjacent to the n + region 5. The p + region 6 contains a p-type impurity such as Al at a higher concentration (density) than the p-type impurity contained in the well region 4. The buffer layer 2, drift layer 3, well region 4, n + region 5 and p + region 6 constitute an active layer 7.
 さらに、図1を参照して、MOSFET100は、ゲート絶縁膜としてのゲート酸化膜91と、ゲート電極93と、一対のソースコンタクト電極92と、層間絶縁膜94と、ソース配線95と、ドレイン電極96とを備えている。 Further, referring to FIG. 1, MOSFET 100 includes a gate oxide film 91 as a gate insulating film, a gate electrode 93, a pair of source contact electrodes 92, an interlayer insulating film 94, a source wiring 95, and a drain electrode 96. And.
 ゲート酸化膜91は、主面3Aに接触し、一方のn領域5の上部表面から他方のn領域5の上部表面にまで延在するようにドリフト層3の主面3A上に形成され、たとえば二酸化珪素(SiO)からなっている。 Gate oxide film 91 is formed on main surface 3A of drift layer 3 so as to be in contact with main surface 3A and to extend from the upper surface of one n + region 5 to the upper surface of the other n + region 5. For example, it is made of silicon dioxide (SiO 2 ).
 ゲート電極93は、一方のn領域5上から他方のn領域5上にまで延在するように、ゲート酸化膜91に接触して配置されている。また、ゲート電極93は、不純物が添加されたポリシリコン、Alなどの導電体からなっている。 Gate electrode 93 is arranged in contact with gate oxide film 91 so as to extend from one n + region 5 to the other n + region 5. The gate electrode 93 is made of a conductor such as polysilicon or Al to which impurities are added.
 ソースコンタクト電極92は、一対のn領域5上のそれぞれから、ゲート酸化膜91から離れる向きに延在してp領域6上にまで達するとともに、主面3Aに接触して配置されている。また、ソースコンタクト電極92は、たとえばNiSi(ニッケルシリサイド)など、n領域5とオーミックコンタクト可能な材料からなっている。 Source contact electrode 92 extends from each of the pair of n + regions 5 in a direction away from gate oxide film 91 to reach p + region 6 and is in contact with main surface 3A. . The source contact electrode 92 is made of a material capable of ohmic contact with the n + region 5 such as Ni x Si y (nickel silicide).
 層間絶縁膜94は、ドリフト層3の主面3A上においてゲート電極93を取り囲み、かつ一方のウェル領域4上から他方のウェル領域4上にまで延在するように形成され、たとえば絶縁体である二酸化珪素(SiO)からなっている。 Interlayer insulating film 94 is formed on main surface 3A of drift layer 3 so as to surround gate electrode 93 and to extend from one well region 4 to the other well region 4, and is, for example, an insulator. It consists of silicon dioxide (SiO 2 ).
 ソース配線95は、ドリフト層3の主面3A上において、層間絶縁膜94を取り囲み、かつソースコンタクト電極92の上部表面上にまで延在している。また、ソース配線95は、Alなどの導電体からなり、ソースコンタクト電極92を介してn領域5と電気的に接続されている。 Source wiring 95 surrounds interlayer insulating film 94 on main surface 3 </ b> A of drift layer 3 and extends to the upper surface of source contact electrode 92. The source wiring 95 is made of a conductor such as Al and is electrically connected to the n + region 5 through the source contact electrode 92.
 ドレイン電極96は、炭化珪素基板1においてドリフト層3が形成される側とは反対側の主面に接触して形成されている。このドレイン電極96は、たとえばNiSiなど、炭化珪素基板1とオーミックコンタクト可能な材料からなっており、炭化珪素基板1と電気的に接続されている。 Drain electrode 96 is formed in contact with the main surface of silicon carbide substrate 1 opposite to the side on which drift layer 3 is formed. Drain electrode 96 is made of a material capable of making ohmic contact with silicon carbide substrate 1 such as Ni x Si y , and is electrically connected to silicon carbide substrate 1.
 次に、MOSFET100の動作について説明する。図1を参照して、ゲート電極93の電圧が閾値電圧未満の状態、すなわちオフ状態では、ドレイン電極に電圧が印加されても、ゲート酸化膜91の直下に位置するウェル領域4とドリフト層3との間のpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極93に閾値電圧以上の正の電圧を印加すると、ウェル領域4のゲート酸化膜91と接触する付近であるチャネル領域において、反転層が形成される。その結果、n領域5とドリフト層3とが電気的に接続され、ソース配線95とドレイン電極96との間に電流が流れる。 Next, the operation of MOSFET 100 will be described. Referring to FIG. 1, in the state where the voltage of gate electrode 93 is lower than the threshold voltage, that is, in the off state, well region 4 and drift layer 3 located immediately below gate oxide film 91 are applied even when a voltage is applied to the drain electrode. The pn junction between and becomes a reverse bias and becomes non-conductive. On the other hand, when a positive voltage equal to or higher than the threshold voltage is applied to the gate electrode 93, an inversion layer is formed in the channel region in the vicinity of the well region 4 in contact with the gate oxide film 91. As a result, n + region 5 and drift layer 3 are electrically connected, and a current flows between source line 95 and drain electrode 96.
 さらに、図2を参照して、本実施の形態におけるMOSFET100を構成する炭化珪素基板1は、炭化珪素からなるベース層10と、単結晶炭化珪素からなり、ベース層10の一方の主面10A上に配置されたSiC層20とを含んでいる。そして、ベース層10の不純物濃度は2×1019cm-3よりも大きく、SiC層20の不純物濃度は5×1018cm-3よりも大きく2×1019cm-3よりも小さい。そのため、本実施の形態におけるMOSFET100は、デバイス作製プロセスにおける熱処理による積層欠陥の発生を抑制しつつ、オン抵抗の低減が達成可能な半導体装置となっている。なお、ベース層10とSiC層20との間には境界が存在し、当該境界において欠陥密度が不連続となっていてもよい。また、ベース層10は、たとえば単結晶炭化珪素、多結晶炭化珪素、非晶質炭化珪素、炭化珪素焼結体などからなるもの、あるいはこれらの組合せからなるものを採用することができる。 Further, referring to FIG. 2, silicon carbide substrate 1 constituting MOSFET 100 in the present embodiment includes base layer 10 made of silicon carbide and single crystal silicon carbide, on one main surface 10 </ b> A of base layer 10. And SiC layer 20 disposed on the substrate. The impurity concentration of the base layer 10 is larger than 2 × 10 19 cm −3 , and the impurity concentration of the SiC layer 20 is larger than 5 × 10 18 cm −3 and smaller than 2 × 10 19 cm −3 . Therefore, MOSFET 100 in the present embodiment is a semiconductor device that can achieve a reduction in on-resistance while suppressing generation of stacking faults due to heat treatment in the device manufacturing process. There may be a boundary between base layer 10 and SiC layer 20, and the defect density may be discontinuous at the boundary. Base layer 10 may be made of, for example, single crystal silicon carbide, polycrystalline silicon carbide, amorphous silicon carbide, silicon carbide sintered body, or a combination thereof.
 ここで、MOSFET100においては、ベース層10は単結晶炭化珪素からなっていてもよい。そして、SiC層20のマイクロパイプ密度はベース層10のマイクロパイプ密度よりも小さいことが好ましい。また、SiC層20の貫通らせん転位密度はベース層10の貫通らせん転位密度よりも小さいことが好ましい。また、SiC層20の貫通刃状転位密度はベース層10の貫通刃状転位密度よりも小さいことが好ましい。また、SiC層20の基底面転位密度はベース層10の基底面転位密度よりも小さいことが好ましい。また、SiC層20の混合転位密度はベース層10の混合転位密度よりも小さいことが好ましい。また、SiC層20の積層欠陥密度はベース層10の積層欠陥密度よりも小さいことが好ましい。また、SiC層20の点欠陥密度はベース層10の点欠陥密度よりも小さいことが好ましい。 Here, in MOSFET 100, base layer 10 may be made of single crystal silicon carbide. The micropipe density of SiC layer 20 is preferably smaller than the micropipe density of base layer 10. The threading screw dislocation density of the SiC layer 20 is preferably smaller than the threading screw dislocation density of the base layer 10. Further, the threading edge dislocation density of SiC layer 20 is preferably smaller than the threading edge dislocation density of base layer 10. The basal plane dislocation density of SiC layer 20 is preferably smaller than the basal plane dislocation density of base layer 10. The mixed dislocation density of SiC layer 20 is preferably smaller than the mixed dislocation density of base layer 10. Further, the stacking fault density of SiC layer 20 is preferably smaller than the stacking fault density of base layer 10. Further, the point defect density of SiC layer 20 is preferably smaller than the point defect density of base layer 10.
 このように、マイクロパイプ密度、貫通らせん転位密度、貫通刃状転位密度、基底面転位密度、混合転位密度、積層欠陥密度、点欠陥密度などの欠陥密度をベース層10に比べて低減したSiC層20を配置することにより、高品質な活性層7をSiC層20上に形成することができる。 Thus, the SiC layer in which the defect density such as the micropipe density, the threading screw dislocation density, the threading edge dislocation density, the basal plane dislocation density, the mixed dislocation density, the stacking fault density, and the point defect density is reduced as compared with the base layer 10. By disposing 20, the high-quality active layer 7 can be formed on the SiC layer 20.
 また、MOSFET100においては、ベース層10は単結晶炭化珪素からなっており、かつSiC層20のX線ロッキングカーブの半値幅は、ベース層10のX線ロッキングカーブの半値幅よりも小さくなっていてもよい。 In MOSFET 100, base layer 10 is made of single-crystal silicon carbide, and the half width of the X-ray rocking curve of SiC layer 20 is smaller than the half width of the X-ray rocking curve of base layer 10. Also good.
 これにより、所定の形状および大きさに統一されているものの、比較的結晶性の低い単結晶炭化珪素を炭化珪素基板1のベース層10として利用するとともに、SiC層20として、結晶性が高いものの所望の形状等が実現されていない単結晶炭化珪素を有効に利用することができる。その結果、半導体装置の製造コストを低減することができる。 As a result, although monolithic silicon carbide having a relatively low crystallinity is used as the base layer 10 of the silicon carbide substrate 1 while being unified in a predetermined shape and size, the SiC layer 20 has high crystallinity. Single crystal silicon carbide in which a desired shape or the like is not realized can be used effectively. As a result, the manufacturing cost of the semiconductor device can be reduced.
 また、MOSFET100においては、炭化珪素基板1において、SiC層20の、ベース層10とは反対側の主面20Aは、{0001}面に対するオフ角が50°以上65°以下となっていることが好ましい。これにより、活性層7がエピタキシャル成長および不純物のイオン注入により形成された場合、活性層7においてチャネル領域となるゲート酸化膜91との界面付近における界面準位の形成が抑制され、MOSFET100のオン抵抗を低減することができる。 In MOSFET 100, main surface 20A of SiC layer 20 opposite to base layer 10 in silicon carbide substrate 1 has an off angle of 50 ° to 65 ° with respect to the {0001} plane. preferable. Thus, when the active layer 7 is formed by epitaxial growth and ion implantation of impurities, the formation of interface states in the vicinity of the interface with the gate oxide film 91 serving as the channel region in the active layer 7 is suppressed, and the on-resistance of the MOSFET 100 is reduced. Can be reduced.
 また、MOSFET100においては、炭化珪素基板1において、SiC層20におけるベース層10とは反対側の主面20Aのオフ方位と<1-100>方向とのなす角は5°以下となっていることが好ましい。 In MOSFET 100, in silicon carbide substrate 1, the angle formed between the off orientation of main surface 20A opposite to base layer 10 in SiC layer 20 and the <1-100> direction is 5 ° or less. Is preferred.
 <1-100>方向は、炭化珪素基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを5°以下とすることにより、炭化珪素基板1上へのエピタキシャル成長層(活性層7)の形成を容易にすることができる。 The <1-100> direction is a typical off orientation in the silicon carbide substrate. Then, the variation in the off orientation caused by the variation in the slice processing in the manufacturing process of the substrate is set to 5 ° or less, thereby facilitating the formation of the epitaxial growth layer (active layer 7) on the silicon carbide substrate 1. it can.
 さらに、MOSFET100においては、上記炭化珪素基板1において、SiC層20におけるベース層10とは反対側の主面20Aの、<1-100>方向における{03-38}面に対するオフ角は-3°以上5°以下であることが好ましい。これにより、炭化珪素基板1を用いてMOSFET100を作製した場合におけるチャネル移動度を、より一層向上させることができる。 Further, in MOSFET 100, in silicon carbide substrate 1, off-angle with respect to {03-38} plane in the <1-100> direction of main surface 20A of SiC layer 20 opposite to base layer 10 is −3 °. The angle is preferably 5 ° or less. Thereby, the channel mobility in the case of manufacturing MOSFET 100 using silicon carbide substrate 1 can be further improved.
 一方、MOSFET100においては、炭化珪素基板1において、SiC層20におけるベース層10とは反対側の主面20Aのオフ方位と<11-20>方向とのなす角は5°以下となっていてもよい。 On the other hand, in MOSFET 100, in silicon carbide substrate 1, the angle formed between the off orientation of main surface 20 </ b> A opposite to base layer 10 in SiC layer 20 and the <11-20> direction is 5 ° or less. Good.
 <11-20>は、上記<1-100>方向と同様に、炭化珪素基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC層20上へのエピタキシャル成長層(活性層7)の形成を容易にすることができる。 <11-20> is a typical off orientation in the silicon carbide substrate, similarly to the above <1-100> direction. Then, the variation of the off orientation caused by the variation of the slice processing in the manufacturing process of the substrate is set to ± 5 °, whereby the formation of the epitaxial growth layer (active layer 7) on the SiC layer 20 can be facilitated. .
 ここで、MOSFET100を構成する炭化珪素基板1においては、ベース層10に含まれる不純物と、SiC層20に含まれる不純物とは異なっていてもよい。これにより、使用目的に応じた適切な不純物を含む炭化珪素基板1を備えたMOSFET100を得ることができる。また、ベース層10に含まれる不純物は窒素またはリンとすることができ、SiC層20に含まれる不純物も窒素またはリンとすることができる。 Here, in silicon carbide substrate 1 constituting MOSFET 100, the impurity contained in base layer 10 and the impurity contained in SiC layer 20 may be different. Thereby, MOSFET 100 provided with silicon carbide substrate 1 containing an appropriate impurity according to the purpose of use can be obtained. Moreover, the impurity contained in the base layer 10 can be nitrogen or phosphorus, and the impurity contained in the SiC layer 20 can also be nitrogen or phosphorus.
 次に、実施の形態1におけるMOSFET100の製造方法の一例について、図3~図6を参照して説明する。図3を参照して、本実施の形態におけるMOSFET100の製造方法では、まず工程(S110)として炭化珪素基板準備工程が実施される。この工程(S110)では、図4を参照して、単結晶炭化珪素からなるベース層10と、単結晶炭化珪素からなり、ベース層10上に配置されたSiC層20とを含み、ベース層10の不純物濃度は2×1019cm-3よりも大きく、SiC層20の不純物濃度は5×1018cm-3よりも大きく2×1019cm-3よりも小さい炭化珪素基板1が準備される。なお、この工程(S110)において準備される炭化珪素基板1においては、全体が単結晶炭化珪素からなるベース層10に代えて、SiC層20に対向する側の主面10Aを含むように単結晶炭化珪素からなる単結晶層10Bを含み、他の領域10Cが多結晶炭化珪素、アモルファス炭化珪素、または炭化珪素焼結体からなるベース層10が採用されてもよい。また、全体が単結晶炭化珪素からなるベース層10に代えて、全体が多結晶炭化珪素、アモルファス炭化珪素、または炭化珪素焼結体からなるベース層10が採用されてもよい。炭化珪素基板1の製造方法については、後述する。 Next, an example of a method for manufacturing MOSFET 100 in the first embodiment will be described with reference to FIGS. Referring to FIG. 3, in the method of manufacturing MOSFET 100 in the present embodiment, first, a silicon carbide substrate preparation step is performed as a step (S110). In this step (S110), with reference to FIG. 4, base layer 10 including a base layer 10 made of single crystal silicon carbide and SiC layer 20 made of single crystal silicon carbide and disposed on base layer 10 is included. A silicon carbide substrate 1 is prepared in which the impurity concentration of the SiC layer 20 is greater than 2 × 10 19 cm −3 and the impurity concentration of the SiC layer 20 is greater than 5 × 10 18 cm −3 and smaller than 2 × 10 19 cm −3. . In silicon carbide substrate 1 prepared in this step (S110), single crystal is included so as to include main surface 10A on the side facing SiC layer 20 instead of base layer 10 made entirely of single crystal silicon carbide. Base layer 10 including single crystal layer 10B made of silicon carbide and other region 10C made of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body may be employed. Instead of base layer 10 made entirely of single crystal silicon carbide, base layer 10 made entirely of polycrystalline silicon carbide, amorphous silicon carbide, or silicon carbide sintered body may be employed. A method for manufacturing silicon carbide substrate 1 will be described later.
 次に、工程(S120)としてエピタキシャル成長工程が実施される。この工程(S120)では、図4を参照して、エピタキシャル成長により炭化珪素基板1の一方の主面上に炭化珪素からなるバッファ層2およびドリフト層3が順次形成される。 Next, an epitaxial growth step is performed as a step (S120). In this step (S120), referring to FIG. 4, buffer layer 2 and drift layer 3 made of silicon carbide are sequentially formed on one main surface of silicon carbide substrate 1 by epitaxial growth.
 次に、工程(S130)としてイオン注入工程が実施される。この工程(S130)では、図4および図5を参照して、まずウェル領域4を形成するためのイオン注入が実施される。具体的には、たとえばAl(アルミニウム)イオンがドリフト層3に注入されることにより、ウェル領域4が形成される。次に、n領域5を形成するためのイオン注入が実施される。具体的には、たとえばP(リン)イオンがウェル領域4に注入されることにより、ウェル領域4内にn領域5が形成される。さらに、p領域6を形成するためのイオン注入が実施される。具体的には、たとえばAlイオンがウェル領域4に注入されることにより、ウェル領域4内にp領域6が形成される。上記イオンは、たとえばドリフト層3の主面上に二酸化珪素(SiO)からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。 Next, an ion implantation step is performed as a step (S130). In this step (S130), referring to FIGS. 4 and 5, first, ion implantation for forming well region 4 is performed. Specifically, for example, Al (aluminum) ions are implanted into drift layer 3 to form well region 4. Next, ion implantation for forming the n + region 5 is performed. More specifically, for example, P (phosphorus) ions are implanted into the well region 4 to form an n + region 5 in the well region 4. Further, ion implantation for forming the p + region 6 is performed. Specifically, for example, Al ions are implanted into the well region 4, thereby forming a p + region 6 in the well region 4. The ions can be implemented by, for example, forming a mask layer made of silicon dioxide (SiO 2 ) on the main surface of the drift layer 3 and having an opening in a desired region where ion implantation is to be performed.
 次に、工程(S140)として活性化アニール工程が実施される。この工程(S140)では、たとえばアルゴンなどの不活性ガス雰囲気中において1700℃に加熱し、30分間保持する熱処理が実施される。これにより、上記工程(S130)において注入された不純物が活性化する。 Next, an activation annealing step is performed as a step (S140). In this step (S140), for example, heat treatment is performed by heating to 1700 ° C. in an inert gas atmosphere such as argon and holding for 30 minutes. Thereby, the impurities implanted in the step (S130) are activated.
 次に、工程(S150)として酸化膜形成工程が実施される。この工程(S150)では、図5および図6を参照して、たとえば酸素雰囲気中において1300℃に加熱して60分間保持する熱処理が実施されることにより、酸化膜(ゲート酸化膜)91が形成される。 Next, an oxide film forming step is performed as a step (S150). In this step (S150), referring to FIGS. 5 and 6, for example, an oxide film (gate oxide film) 91 is formed by performing a heat treatment in an oxygen atmosphere by heating to 1300 ° C. and holding for 60 minutes. Is done.
 次に、工程(S160)として電極形成工程が実施される。図1を参照して、この工程(S160)では、まず、たとえばCVD法、フォトリソグラフィおよびエッチングにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極93が形成される。その後、たとえばCVD法により、絶縁体であるSiOからなる層間絶縁膜94が、主面3A上においてゲート電極93を取り囲むように形成される。次に、フォトリソグラフィおよびエッチングによりソース電極92を形成する領域の層間絶縁膜94と酸化膜91が除去される。次に、たとえば蒸着法により形成されたニッケル(Ni)膜が加熱されてシリサイド化されることにより、ソースコンタクト電極92およびドレイン電極96が形成される。そして、たとえば蒸着法により、導電体であるAlからなるソース配線95が、主面3A上において、層間絶縁膜94を取り囲むとともに、n領域5およびソースコンタクト電極92の上部表面上にまで延在するように形成される。以上の手順により、本実施の形態におけるMOSFET100が完成する。 Next, an electrode formation step is performed as a step (S160). Referring to FIG. 1, in this step (S160), first, gate electrode 93 made of polysilicon which is a conductor doped with impurities at a high concentration is formed by, for example, CVD, photolithography and etching. Thereafter, an interlayer insulating film 94 made of SiO 2 as an insulator is formed on the main surface 3A so as to surround the gate electrode 93 by, eg, CVD. Next, the interlayer insulating film 94 and the oxide film 91 in the region where the source electrode 92 is formed are removed by photolithography and etching. Next, for example, a nickel (Ni) film formed by vapor deposition is heated and silicided, whereby the source contact electrode 92 and the drain electrode 96 are formed. Then, for example, by vapor deposition, source wiring 95 made of Al as a conductor surrounds interlayer insulating film 94 on main surface 3A and extends to the upper surfaces of n + region 5 and source contact electrode 92. To be formed. With the above procedure, MOSFET 100 in the present embodiment is completed.
 なお、工程(S110)においてSiC層20に対向する側の主面10Aを含むように単結晶炭化珪素からなる単結晶層10Bを含み、他の領域10Cが多結晶炭化珪素、アモルファス炭化珪素、または炭化珪素焼結体からなるベース層10が採用される場合、上記他の領域10Cが除去される工程が実施されてもよい。これにより、単結晶炭化珪素からなるベース層10を備えたMOSFET100を得ることができる(図1参照)。一方、上記領域10Cを除去する工程は実施されなくてもよい。この場合、図1に示すMOSFET1のベース層10のSiC層20とは反対側の主面上に(すなわち図1においてベース層10の下側の層として)多結晶炭化珪素、アモルファス炭化珪素、または炭化珪素焼結体からなる非単結晶層(上記領域10Cに対応する)が形成される。この非単結晶層は、その抵抗率が低い限り、MOSFET100の特性には大きな影響を及ぼさない。そのため、このような製造プロセスを採用することにより、特性に大きな影響を与えることなく、MOSFET100の製造コストを低減することができる。 In step (S110), single crystal layer 10B made of single crystal silicon carbide is included so as to include main surface 10A on the side facing SiC layer 20, and other region 10C is polycrystalline silicon carbide, amorphous silicon carbide, or When base layer 10 made of a silicon carbide sintered body is employed, a step of removing other region 10C may be performed. Thereby, MOSFET 100 provided with base layer 10 made of single crystal silicon carbide can be obtained (see FIG. 1). On the other hand, the step of removing the region 10C may not be performed. In this case, polycrystalline silicon carbide, amorphous silicon carbide, or the main surface of MOSFET 1 shown in FIG. 1 on the opposite side of base layer 10 from SiC layer 20 (that is, as the lower layer of base layer 10 in FIG. 1), or A non-single crystal layer (corresponding to the region 10C) made of a silicon carbide sintered body is formed. This non-single crystal layer does not significantly affect the characteristics of the MOSFET 100 as long as its resistivity is low. Therefore, by adopting such a manufacturing process, the manufacturing cost of MOSFET 100 can be reduced without greatly affecting the characteristics.
 このとき、SiC層20のX線ロッキングカーブの半値幅は、単結晶層10BのX線ロッキングカーブの半値幅よりも小さくなっていてもよい。このように、ベース層10の単結晶層10Bに比べてX線ロッキングカーブの半値幅が小さい、すなわち結晶性の高いSiC層20を配置することにより、高品質な活性層7を形成することができる。 At this time, the half width of the X-ray rocking curve of the SiC layer 20 may be smaller than the half width of the X-ray rocking curve of the single crystal layer 10B. As described above, the high-quality active layer 7 can be formed by disposing the SiC layer 20 having a small half width of the X-ray rocking curve, that is, high crystallinity, as compared with the single crystal layer 10B of the base layer 10. it can.
 また、SiC層20のマイクロパイプ密度は、単結晶層10Bのマイクロパイプ密度よりも低くなっていてもよい。また、SiC層20の転位密度は、単結晶層10Bの転位密度よりも低くなっていてもよい。また、SiC層20の貫通らせん転位密度は、単結晶層10Bの貫通らせん転位密度よりも小さくなっていてもよい。また、SiC層20の貫通刃状転位密度は、単結晶層10Bの貫通刃状転位密度よりも小さくなっていてもよい。また、SiC層20の基底面転位密度は、単結晶層10Bの基底面転位密度よりも小さくなっていてもよい。また、SiC層20の混合転位密度は、単結晶層10Bの混合転位密度よりも小さくなっていてもよい。また、SiC層20の積層欠陥密度は、単結晶層10Bの積層欠陥密度よりも小さくなっていてもよい。また、SiC層20の点欠陥密度は、単結晶層10Bの点欠陥密度よりも小さくなっていてもよい。 Further, the micropipe density of SiC layer 20 may be lower than the micropipe density of single crystal layer 10B. Further, the dislocation density of SiC layer 20 may be lower than the dislocation density of single crystal layer 10B. Further, the threading screw dislocation density of SiC layer 20 may be smaller than the threading screw dislocation density of single crystal layer 10B. Further, the threading edge dislocation density of SiC layer 20 may be smaller than the threading edge dislocation density of single crystal layer 10B. Further, the basal plane dislocation density of SiC layer 20 may be smaller than the basal plane dislocation density of single crystal layer 10B. Further, the mixed dislocation density of SiC layer 20 may be smaller than the mixed dislocation density of single crystal layer 10B. Further, the stacking fault density of SiC layer 20 may be smaller than the stacking fault density of single crystal layer 10B. Further, the point defect density of SiC layer 20 may be smaller than the point defect density of single crystal layer 10B.
 このように、マイクロパイプ密度、貫通らせん転位密度、貫通刃状転位密度、基底面転位密度、混合転位密度、積層欠陥密度、点欠陥密度などの欠陥密度をベース層10の単結晶層10Bに比べて低減したSiC層20を配置することにより、高品質な活性層7を含むMOSFET100を得ることができる。 Thus, the defect density such as micropipe density, threading screw dislocation density, threading edge dislocation density, basal plane dislocation density, mixed dislocation density, stacking fault density, point defect density, etc. is compared with the single crystal layer 10B of the base layer 10. By disposing the reduced SiC layer 20, the MOSFET 100 including the high-quality active layer 7 can be obtained.
 次に、上記工程(S110)として実施される炭化珪素基板準備工程について説明する。図7を参照して、本実施の形態における炭化珪素基板の製造においては、まず、工程(S10)として基板準備工程が実施される。この工程(S10)では、図2を参照して、たとえば単結晶炭化珪素からなるベース基板10および単結晶炭化珪素からなるSiC基板20が準備される。 Next, the silicon carbide substrate preparation step performed as the above step (S110) will be described. Referring to FIG. 7, in the manufacture of the silicon carbide substrate in the present embodiment, a substrate preparation step is first performed as a step (S10). In this step (S10), referring to FIG. 2, for example, base substrate 10 made of single crystal silicon carbide and SiC substrate 20 made of single crystal silicon carbide are prepared.
 このとき、SiC基板20の主面20Aは、この製造方法により得られる炭化珪素基板1の主面となることから、所望の主面の面方位に合わせてSiC基板20の主面20Aの面方位を選択する。ここでは、たとえば主面が{03-38}面であるSiC基板20が準備される。また、ベース基板10には、不純物濃度が2×1019cm-3よりも大きい基板が採用される。そして、SiC基板20には、不純物濃度が5×1018cm-3よりも大きく2×1019cm-3よりも小さい基板が採用される。 At this time, main surface 20A of SiC substrate 20 is the main surface of silicon carbide substrate 1 obtained by this manufacturing method, and therefore, the plane orientation of main surface 20A of SiC substrate 20 in accordance with the plane orientation of the desired main surface. Select. Here, for example, SiC substrate 20 whose main surface is a {03-38} plane is prepared. The base substrate 10 is a substrate having an impurity concentration higher than 2 × 10 19 cm −3 . Then, a substrate having an impurity concentration larger than 5 × 10 18 cm −3 and smaller than 2 × 10 19 cm −3 is employed as the SiC substrate 20.
 次に、工程(S20)として基板平坦化工程が実施される。この工程(S20)は必須の工程ではないが、工程(S10)において準備されたベース基板10やSiC基板20の平坦性が不十分な場合に実施することができる。具体的には、たとえばベース基板10やSiC基板20の主面に対して研磨が実施される。 Next, a substrate flattening step is performed as a step (S20). This step (S20) is not an essential step, but can be performed when the flatness of the base substrate 10 or the SiC substrate 20 prepared in the step (S10) is insufficient. Specifically, for example, the main surface of base substrate 10 or SiC substrate 20 is polished.
 一方、工程(S20)を省略し、互いに接触すべきベース基板10およびSiC基板20の主面を研磨することなく工程(S30)が実施されてもよい。これにより、炭化珪素基板1の製造コストを低減することができる。また、ベース基板10およびSiC基板20の作製時におけるスライスなどにより形成された表面付近のダメージ層を除去する観点から、たとえばエッチングによって当該ダメージ層が除去される工程が上記工程(S20)に代えて、あるいは上記工程(S20)の後に実施された上で、後述する工程(S30)が実施されてもよい。 On the other hand, the step (S20) may be performed without omitting the step (S20) and polishing the main surfaces of the base substrate 10 and the SiC substrate 20 to be in contact with each other. Thereby, the manufacturing cost of silicon carbide substrate 1 can be reduced. Further, from the viewpoint of removing the damaged layer near the surface formed by slicing or the like during the production of the base substrate 10 and the SiC substrate 20, for example, the step of removing the damaged layer by etching is replaced with the step (S20). Or after performing after the said process (S20), the process (S30) mentioned later may be implemented.
 次に、工程(S30)として、積層工程が実施される。この工程(S30)では、図2を参照して、ベース基板10とSiC基板20とが、互いの主面10A,20Bが接触するように積み重ねられ、積層基板が作製される。 Next, as a step (S30), a stacking step is performed. In this step (S30), referring to FIG. 2, base substrate 10 and SiC substrate 20 are stacked so that their main surfaces 10A and 20B are in contact with each other, and a laminated substrate is manufactured.
 次に、工程(S40)として、接合工程が実施される。この工程(S40)では、上記積層基板がたとえば炭化珪素の昇華温度以上の温度域に加熱されることにより、ベース基板10とSiC基板20とが接合される。これにより、図2を参照して、ベース層10とSiC層20とを備えた炭化珪素基板1が完成する。また、昇華温度以上に加熱することにより、工程(S20)を省略し、互いに接触すべきベース基板10およびSiC基板20の主面を研磨することなく工程(S30)が実施された場合でも、ベース基板10とSiC基板20とを容易に接合することができる。なお、この工程(S40)では、大気雰囲気を減圧することにより得られた雰囲気中において上記積層基板が加熱されてもよい。これにより、炭化珪素基板1の製造コストを低減することができる。 Next, a joining step is performed as a step (S40). In this step (S40), base substrate 10 and SiC substrate 20 are joined by heating the laminated substrate to a temperature range equal to or higher than the sublimation temperature of silicon carbide, for example. Thereby, referring to FIG. 2, silicon carbide substrate 1 including base layer 10 and SiC layer 20 is completed. Further, even when the step (S30) is carried out without polishing the main surfaces of the base substrate 10 and the SiC substrate 20 to be in contact with each other by heating to the sublimation temperature or higher, the step (S20) is omitted. The substrate 10 and the SiC substrate 20 can be easily joined. In this step (S40), the laminated substrate may be heated in an atmosphere obtained by reducing the atmospheric pressure. Thereby, the manufacturing cost of silicon carbide substrate 1 can be reduced.
 さらに、工程(S40)における積層基板の加熱温度は1800℃以上2500℃以下であることが好ましい。加熱温度が1800℃よりも低い場合、ベース基板10とSiC基板20との接合に長時間を要し、炭化珪素基板1の製造効率が低下する。一方、加熱温度が2500℃を超えると、ベース基板10およびSiC基板20の表面が荒れ、作製される炭化珪素基板1における結晶欠陥の発生が多くなるおそれがある。炭化珪素基板1における欠陥の発生を一層抑制しつつ製造効率を向上させるためには、工程(S40)における積層基板の加熱温度は1900℃以上2100℃以下であることが好ましい。また、この工程(S40)では、10-1Paよりも高く10Paよりも低い圧力下において上記積層基板が加熱されてもよい。これにより、簡素な装置により上記接合を実施することが可能になるとともに比較的短時間で接合を実施するための雰囲気を得ることが可能となり、炭化珪素基板1の製造コストを低減することができる。また、工程(S40)における加熱時の雰囲気は、不活性ガス雰囲気であってもよい。そして、当該雰囲気に不活性ガス雰囲気を採用する場合、当該雰囲気は、アルゴン、ヘリウムおよび窒素からなる群から選択される少なくとも1つを含む不活性ガス雰囲気であることが好ましい。 Furthermore, the heating temperature of the multilayer substrate in the step (S40) is preferably 1800 ° C. or higher and 2500 ° C. or lower. When the heating temperature is lower than 1800 ° C., it takes a long time to join base substrate 10 and SiC substrate 20, and the manufacturing efficiency of silicon carbide substrate 1 decreases. On the other hand, when the heating temperature exceeds 2500 ° C., the surfaces of base substrate 10 and SiC substrate 20 are roughened, and there is a risk that the number of crystal defects in silicon carbide substrate 1 to be manufactured increases. In order to improve production efficiency while further suppressing generation of defects in silicon carbide substrate 1, the heating temperature of the laminated substrate in step (S40) is preferably 1900 ° C. or higher and 2100 ° C. or lower. In this step (S40), the laminated substrate may be heated under a pressure higher than 10 −1 Pa and lower than 10 4 Pa. As a result, it is possible to perform the above-described bonding with a simple device, and it is possible to obtain an atmosphere for performing the bonding in a relatively short time, and the manufacturing cost of silicon carbide substrate 1 can be reduced. . Further, the atmosphere during heating in the step (S40) may be an inert gas atmosphere. And when employ | adopting an inert gas atmosphere as the said atmosphere, it is preferable that the said atmosphere is an inert gas atmosphere containing at least 1 selected from the group which consists of argon, helium, and nitrogen.
 そして、本実施の形態におけるMOSFET100の製造方法では、この炭化珪素基板1が用いられ、MOSFET100が製造される。 And in the manufacturing method of MOSFET 100 in the present embodiment, this silicon carbide substrate 1 is used to manufacture MOSFET 100.
 (実施の形態2)
 次に、実施の形態2として、本発明の半導体装置を構成する炭化珪素基板の他の製造方法について、図8~図11を参照して説明する。実施の形態2における炭化珪素基板の製造方法は、基本的には上記実施の形態1の場合と同様に実施される。しかし、実施の形態2における炭化珪素基板の製造方法は、ベース層10の形成プロセスにおいて実施の形態1の場合とは異なっている。
(Embodiment 2)
Next, as a second embodiment, another method for manufacturing a silicon carbide substrate constituting the semiconductor device of the present invention will be described with reference to FIGS. The method for manufacturing the silicon carbide substrate in the second embodiment is basically performed in the same manner as in the first embodiment. However, the method for manufacturing the silicon carbide substrate in the second embodiment is different from that in the first embodiment in the formation process of base layer 10.
 図8を参照して、実施の形態2における炭化珪素基板の製造方法では、まず工程(S10)として基板準備工程が実施される。この工程(S10)では、図9を参照して、実施の形態1の場合と同様にSiC基板20が準備されるとともに、炭化珪素からなる原料基板11が準備される。この原料基板11は単結晶炭化珪素からなっていてもよいし、多結晶炭化珪素からなっていてもよく、炭化珪素の焼結体であってもよい。また、原料基板11に代えて炭化珪素からなる原料粉末を採用することもできる。 Referring to FIG. 8, in the method for manufacturing a silicon carbide substrate in the second embodiment, a substrate preparation step is first performed as a step (S10). In this step (S10), referring to FIG. 9, SiC substrate 20 is prepared in the same manner as in the first embodiment, and raw material substrate 11 made of silicon carbide is prepared. Raw material substrate 11 may be made of single crystal silicon carbide, may be made of polycrystalline silicon carbide, or may be a sintered body of silicon carbide. Moreover, it can replace with the raw material board | substrate 11, and can also employ | adopt the raw material powder which consists of silicon carbide.
 次に、工程(S50)として近接配置工程が実施される。この工程(S50)では、図9を参照して、互いに対向するように配置された第1ヒータ81および第2ヒータ82により、それぞれSiC基板20および原料基板11が保持される。ここで、SiC基板20と原料基板11との間隔の適正な値は、後述する工程(S60)における加熱時の昇華ガスの平均自由行程に関係していると考えられる。具体的には、SiC基板20と原料基板11との間隔の平均値は、後述する工程(S60)における加熱時の昇華ガスの平均自由行程よりも小さくなるように設定することができる。たとえば圧力1Pa、温度2000℃の下では、原子、分子の平均自由行程は、厳密には原子半径、分子半径に依存するが、おおよそ数~数十cm程度であり、よって現実的には上記間隔を数cm以下とすることが好ましい。より具体的には、SiC基板20と原料基板11とは、1μm以上1cm以下の間隔をおいて互いにその主面が対向するように近接して配置される。さらに、上記間隔の平均値が1cm以下とされることにより、後述する工程(S60)において形成されるベース層10の膜厚分布を小さくすることができる。さらに、上記間隔の平均値が1mm以下とされることにより、後述する工程(S60)において形成されるベース層10の膜厚分布を一層小さくすることができる。また、上記間隔の平均値が1μm以上とされることにより、炭化珪素が昇華する空間を十分に確保することができる。なお、上記昇華ガスは、固体炭化珪素が昇華することによって形成されるガスであって、たとえばSi、SiCおよびSiCを含む。 Next, a proximity arrangement step is performed as a step (S50). In this step (S50), referring to FIG. 9, SiC substrate 20 and raw material substrate 11 are held by first heater 81 and second heater 82 arranged to face each other. Here, it is considered that the appropriate value of the distance between the SiC substrate 20 and the raw material substrate 11 is related to the average free path of the sublimation gas during heating in the step (S60) described later. Specifically, the average value of the distance between the SiC substrate 20 and the raw material substrate 11 can be set to be smaller than the average free path of the sublimation gas during heating in the step (S60) described later. For example, under a pressure of 1 Pa and a temperature of 2000 ° C., the mean free path of atoms and molecules strictly depends on the atomic radius and molecular radius, but is about several to several tens of centimeters. Is preferably several cm or less. More specifically, SiC substrate 20 and raw material substrate 11 are arranged close to each other with their main surfaces facing each other with an interval of 1 μm to 1 cm. Furthermore, by setting the average value of the intervals to 1 cm or less, the film thickness distribution of the base layer 10 formed in the step (S60) described later can be reduced. Furthermore, by setting the average value of the intervals to 1 mm or less, the film thickness distribution of the base layer 10 formed in the step (S60) described later can be further reduced. In addition, by setting the average value of the intervals to 1 μm or more, a space in which silicon carbide sublimates can be sufficiently secured. The sublimation gas is a gas formed by sublimation of solid silicon carbide, and includes, for example, Si, Si 2 C, and SiC 2 .
 次に、工程(S60)として昇華工程が実施される。この工程(S60)では、第1ヒータ81によってSiC基板20が所定の基板温度まで加熱される。また、第2ヒータ82によって原料基板11が所定の原料温度まで加熱される。このとき、原料基板11が原料温度まで加熱されることによって、原料基板の表面からSiCが昇華する。一方、基板温度は原料温度よりも低く設定される。具体的には、たとえば基板温度は原料温度よりも1℃以上100℃以下程度低く設定される。基板温度は、たとえば1800℃以上2500℃以下である。これにより、図10に示すように、原料基板11から昇華して気体となったSiCは、SiC基板20の表面に到達して固体となり、ベース層10を形成する。そして、この状態を維持することにより、図11に示すように原料基板11を構成するSiCが全て昇華してSiC基板20の表面上に移動する。これにより、工程(S60)が完了し、図2に示す炭化珪素基板1が完成する。 Next, a sublimation step is performed as a step (S60). In this step (S60), SiC substrate 20 is heated to a predetermined substrate temperature by first heater 81. Further, the raw material substrate 11 is heated to a predetermined raw material temperature by the second heater 82. At this time, SiC is sublimated from the surface of the source substrate by heating source substrate 11 to the source temperature. On the other hand, the substrate temperature is set lower than the raw material temperature. Specifically, for example, the substrate temperature is set to be about 1 ° C. or more and 100 ° C. or less lower than the raw material temperature. The substrate temperature is, for example, 1800 ° C. or higher and 2500 ° C. or lower. As a result, as shown in FIG. 10, SiC that has been sublimated from the raw material substrate 11 into a gas reaches the surface of the SiC substrate 20 and becomes a solid, thereby forming the base layer 10. By maintaining this state, as shown in FIG. 11, all the SiC constituting the raw material substrate 11 is sublimated and moves onto the surface of the SiC substrate 20. Thereby, the step (S60) is completed, and silicon carbide substrate 1 shown in FIG. 2 is completed.
 (実施の形態3)
 次に、本発明のさらに他の実施の形態である実施の形態3について説明する。実施の形態3における半導体装置は、基本的には実施の形態1と同様の構造を有している。しかし、実施の形態3の半導体装置は、その製造方法において実施の形態1の場合とは異なっている。
(Embodiment 3)
Next, Embodiment 3 which is still another embodiment of the present invention will be described. The semiconductor device according to the third embodiment basically has the same structure as that of the first embodiment. However, the semiconductor device of the third embodiment is different from that of the first embodiment in its manufacturing method.
 具体的には、実施の形態3における半導体装置(たとえばMOSFET)の製造方法においては、工程(S110)として実施される炭化珪素基板準備工程において、実施の形態1の場合とは構造の異なった炭化珪素基板が準備される。図12を参照して、実施の形態3において準備される炭化珪素基板1では、SiC層20が、平面的に見て複数個並べて配置されている。すなわち、SiC層20は、ベース層10の主面10Aに沿って複数並べて配置されている。より具体的には、複数のSiC層20は、ベース層10上において隣接するSiC層20同士が互いに接触するように、マトリックス状に配置されている。これにより、本実施の形態における炭化珪素基板1は、高品質なSiC層20を有する大口径な基板として取り扱うことが可能な炭化珪素基板1となっている。そして、この炭化珪素基板1を用いることにより、半導体装置の製造プロセスを効率化することができる。また、図12を参照して、隣り合うSiC層20の端面20Cは、当該SiC層20の主面20Aに対し実質的に垂直となっている。これにより、本実施の形態の炭化珪素基板1は容易に製造可能となっている。ここで、たとえば端面20Cと主面20Aとのなす角が85°以上95°以下であれば、上記端面20Cと主面20Aとは実質的に垂直であると判断することができる。なお、実施の形態3における炭化珪素基板1は、実施の形態1における工程(S30)において、端面20Cが主面20Aに対して実質的に垂直な複数個のSiC基板20をベース基板10上に平面的に並べて配置することにより(図2参照)、もしくは実施の形態2における工程(S50)において、第1ヒータ81に端面20Cが主面20Aに対して実質的に垂直な複数個のSiC基板20を平面的に並べた状態で保持させることにより(図9参照)、実施の形態1もしくは実施の形態2の場合と同様に製造することができる。 Specifically, in the method of manufacturing the semiconductor device (eg, MOSFET) in the third embodiment, the carbonization having a structure different from that in the first embodiment is performed in the silicon carbide substrate preparation step performed as step (S110). A silicon substrate is prepared. Referring to FIG. 12, in silicon carbide substrate 1 prepared in the third embodiment, a plurality of SiC layers 20 are arranged side by side in a plan view. That is, a plurality of SiC layers 20 are arranged side by side along main surface 10 </ b> A of base layer 10. More specifically, the plurality of SiC layers 20 are arranged in a matrix so that adjacent SiC layers 20 on base layer 10 are in contact with each other. Thereby, silicon carbide substrate 1 in the present embodiment is silicon carbide substrate 1 that can be handled as a large-diameter substrate having high-quality SiC layer 20. And by using this silicon carbide substrate 1, the manufacturing process of a semiconductor device can be made efficient. Referring to FIG. 12, end surface 20 </ b> C of adjacent SiC layer 20 is substantially perpendicular to main surface 20 </ b> A of SiC layer 20. Thereby, silicon carbide substrate 1 of the present embodiment can be easily manufactured. Here, for example, if the angle formed by the end surface 20C and the main surface 20A is 85 ° or more and 95 ° or less, the end surface 20C and the main surface 20A can be determined to be substantially perpendicular. Silicon carbide substrate 1 in the third embodiment has a plurality of SiC substrates 20 with end surface 20C substantially perpendicular to main surface 20A being formed on base substrate 10 in step (S30) in the first embodiment. A plurality of SiC substrates in which the end face 20C of the first heater 81 is substantially perpendicular to the main face 20A by arranging them side by side in a plane (see FIG. 2) or in the step (S50) in the second embodiment. By holding 20 in a state of being arranged in a plane (see FIG. 9), it can be manufactured in the same manner as in the first or second embodiment.
 そして、本実施の形態における半導体装置(MOSFET100)の製造方法では、この炭化珪素基板1が用いられ、MOSFET100が製造される。ここで、MOSFET100は、図12に示す炭化珪素基板1のSiC層20上に活性層7等を形成することにより、平面的に見て複数個並べて作製される。このとき、隣り合うSiC層20同士の境界領域を跨ぐことがないように、各MOSFET100が作製される。 In the method for manufacturing the semiconductor device (MOSFET 100) in the present embodiment, this silicon carbide substrate 1 is used to manufacture MOSFET 100. Here, a plurality of MOSFETs 100 are formed in a plan view by forming active layer 7 and the like on SiC layer 20 of silicon carbide substrate 1 shown in FIG. At this time, each MOSFET 100 is fabricated so as not to cross the boundary region between adjacent SiC layers 20.
 (実施の形態4)
 次に、本発明のさらに他の実施の形態である実施の形態4について説明する。実施の形態4におけるMOSFET100(半導体装置)は、基本的には実施の形態1におけるMOSFET100と同様の構造を有し、同様の効果を奏する。しかし、実施の形態4のMOSFET100は、炭化珪素基板1の構造において実施の形態1の場合とは異なっている。
(Embodiment 4)
Next, a fourth embodiment which is still another embodiment of the present invention will be described. MOSFET 100 (semiconductor device) in the fourth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects. However, MOSFET 100 of the fourth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
 すなわち、図13を参照して、実施の形態4における炭化珪素基板1においては、ベース層10とSiC層20との間に、非晶質SiCからなる中間層としてのアモルファスSiC層40が配置されている。そして、ベース層10とSiC層20とは、このアモルファスSiC層40により接続されている。このアモルファスSiC層40の存在により、不純物濃度の異なるベース層10とSiC層20とを積層した炭化珪素基板1を容易に作製することができる。 That is, referring to FIG. 13, in SiC substrate 1 in the fourth embodiment, amorphous SiC layer 40 as an intermediate layer made of amorphous SiC is arranged between base layer 10 and SiC layer 20. ing. Base layer 10 and SiC layer 20 are connected by this amorphous SiC layer 40. Due to the presence of amorphous SiC layer 40, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
 次に、実施の形態4における炭化珪素基板1の製造方法について説明する。図14を参照して、実施の形態4における炭化珪素基板1の製造方法では、まず、工程(S10)として基板準備工程が実施の形態1の場合と同様に実施され、ベース基板10とSiC基板20とが準備される。 Next, a method for manufacturing silicon carbide substrate 1 in the fourth embodiment will be described. Referring to FIG. 14, in the method for manufacturing silicon carbide substrate 1 in the fourth embodiment, first, a substrate preparation step is performed as in step (S10) in the same manner as in the first embodiment. 20 are prepared.
 次に、工程(S11)としてSi層形成工程が実施される。この工程(S11)では、工程(S10)において準備されたベース基板10の一方の主面上に、たとえば厚み100nm程度のSi層が形成される。このSi層の形成は、たとえばスパッタリング法により実施することができる。 Next, a Si layer forming step is performed as a step (S11). In this step (S11), a Si layer having a thickness of, for example, about 100 nm is formed on one main surface of the base substrate 10 prepared in the step (S10). The Si layer can be formed by, for example, a sputtering method.
 次に、工程(S30)として積層工程が実施される。この工程(S30)では、工程(S11)において形成されたSi層上に、工程(S10)において準備されたSiC基板20が載置される。これにより、ベース基板10上にSi層を挟んでSiC基板20が積層された積層基板が得られる。 Next, a lamination step is performed as a step (S30). In this step (S30), the SiC substrate 20 prepared in step (S10) is placed on the Si layer formed in step (S11). Thereby, a laminated substrate in which the SiC substrate 20 is laminated on the base substrate 10 with the Si layer interposed therebetween is obtained.
 次に、工程(S70)として加熱工程が実施される。この工程(S70)では、工程(S30)において作製された積層基板が、たとえば圧力1×10Paの水素ガスとプロパンガスとの混合ガス雰囲気中で、1500℃程度に加熱され、3時間程度保持される。これにより、上記Si層に、主にベース基板10およびSiC基板20からの拡散によって炭素が供給され、図13に示すようにアモルファスSiC層40が形成される。これにより、不純物濃度の異なるベース層10とSiC層20とをアモルファスSiC層40により接続した実施の形態4における炭化珪素基板1を容易に製造することができる。 Next, a heating step is performed as a step (S70). In this step (S70), the laminated substrate produced in the step (S30) is heated to about 1500 ° C. in a mixed gas atmosphere of hydrogen gas and propane gas having a pressure of 1 × 10 3 Pa, for example, for about 3 hours. Retained. Thereby, carbon is supplied to the Si layer mainly by diffusion from the base substrate 10 and the SiC substrate 20, and an amorphous SiC layer 40 is formed as shown in FIG. Thereby, silicon carbide substrate 1 in the fourth embodiment in which base layer 10 and SiC layer 20 having different impurity concentrations are connected by amorphous SiC layer 40 can be easily manufactured.
 (実施の形態5)
 次に、本発明のさらに他の実施の形態である実施の形態5について説明する。実施の形態5におけるMOSFET100(半導体装置)は、基本的には実施の形態1におけるMOSFET100と同様の構造を有し、同様の効果を奏する。しかし、実施の形態5のMOSFET100は、炭化珪素基板1の構造において実施の形態1の場合とは異なっている。
(Embodiment 5)
Next, Embodiment 5 which is still another embodiment of the present invention will be described. MOSFET 100 (semiconductor device) in the fifth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects. However, MOSFET 100 of the fifth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
 すなわち、図15を参照して、実施の形態5における炭化珪素基板1においては、ベース層10とSiC層20との間に、金属層の少なくとも一部がシリサイド化されて形成された中間層としてのオーミックコンタクト層50が形成されている点において、実施の形態1の場合とは異なっている。そして、ベース層10とSiC層20とは、このオーミックコンタクト層50により接続されている。このオーミックコンタクト層50の存在により、不純物濃度の異なるベース層10とSiC層20とを積層した炭化珪素基板1を容易に作製することができる。 That is, referring to FIG. 15, in silicon carbide substrate 1 in the fifth embodiment, as an intermediate layer formed by siliciding at least a part of the metal layer between base layer 10 and SiC layer 20. This is different from the first embodiment in that the ohmic contact layer 50 is formed. Base layer 10 and SiC layer 20 are connected by this ohmic contact layer 50. Due to the presence of the ohmic contact layer 50, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
 次に、実施の形態5における炭化珪素基板1の製造方法について説明する。図16を参照して、実施の形態5における炭化珪素基板1の製造方法では、まず、工程(S10)として基板準備工程が実施の形態1の場合と同様に実施され、ベース基板10とSiC基板20とが準備される。 Next, a method for manufacturing silicon carbide substrate 1 in the fifth embodiment will be described. Referring to FIG. 16, in the method for manufacturing silicon carbide substrate 1 in the fifth embodiment, first, a substrate preparation step is performed as in step (S <b> 10) in the same manner as in the first embodiment. 20 are prepared.
 次に、工程(S12)として金属膜形成工程が実施される。この工程(S12)では、工程(S10)において準備されたベース基板10の一方の主面上に、たとえば金属を蒸着することにより、金属膜が形成される。この金属膜は、たとえば加熱されることによりシリサイドを形成する金属、たとえばニッケル、モリブデン、チタン、アルミニウム、タングステンから選択される少なくとも1種以上を含んでいる。 Next, a metal film forming step is performed as a step (S12). In this step (S12), a metal film is formed, for example, by vapor-depositing a metal on one main surface of the base substrate 10 prepared in the step (S10). This metal film contains, for example, at least one selected from metals that form silicide when heated, for example, nickel, molybdenum, titanium, aluminum, and tungsten.
 次に、工程(S30)として積層工程が実施される。この工程(S30)では、工程(S12)において形成された金属膜上に、工程(S10)において準備されたSiC基板20が載置される。これにより、ベース基板10上に金属膜を挟んでSiC基板20が積層された積層基板が得られる。 Next, a lamination step is performed as a step (S30). In this step (S30), SiC substrate 20 prepared in step (S10) is placed on the metal film formed in step (S12). Thereby, a laminated substrate in which the SiC substrate 20 is laminated on the base substrate 10 with the metal film interposed therebetween is obtained.
 次に、工程(S70)として加熱工程が実施される。この工程(S70)では、工程(S30)において作製された積層基板が、たとえばアルゴンなどの不活性ガス雰囲気中において1000℃程度に加熱される。これにより、上記金属膜の少なくとも一部(ベース基板10と接触する領域およびSiC基板と接触する領域)がシリサイド化され、ベース層10およびSiC層20とオーミックコンタクトするオーミックコンタクト層50が形成される。これにより、不純物濃度の異なるベース層10とSiC層20とをオーミックコンタクト層50により接続した実施の形態5における炭化珪素基板1を容易に製造することができる。 Next, a heating step is performed as a step (S70). In this step (S70), the laminated substrate produced in step (S30) is heated to about 1000 ° C. in an inert gas atmosphere such as argon. As a result, at least a part of the metal film (a region in contact with the base substrate 10 and a region in contact with the SiC substrate) is silicided, and an ohmic contact layer 50 in ohmic contact with the base layer 10 and the SiC layer 20 is formed. . Thereby, silicon carbide substrate 1 in the fifth embodiment in which base layer 10 and SiC layer 20 having different impurity concentrations are connected by ohmic contact layer 50 can be easily manufactured.
 (実施の形態6)
 次に、本発明のさらに他の実施の形態である実施の形態6について説明する。実施の形態6におけるMOSFET100(半導体装置)は、基本的には実施の形態1におけるMOSFET100と同様の構造を有し、同様の効果を奏する。しかし、実施の形態6のMOSFET100は、炭化珪素基板1の構造において実施の形態1の場合とは異なっている。
(Embodiment 6)
Next, Embodiment 6 which is still another embodiment of the present invention will be described. MOSFET 100 (semiconductor device) in the sixth embodiment has basically the same structure as MOSFET 100 in the first embodiment and has the same effects. However, MOSFET 100 of the sixth embodiment is different from that of the first embodiment in the structure of silicon carbide substrate 1.
 すなわち、図17を参照して、実施の形態6における炭化珪素基板1においては、ベース層10とSiC層20との間に中間層としてのカーボン層60が形成されている点において、実施の形態1の場合とは異なっている。そして、ベース層10とSiC層20とは、このカーボン層60により接続されている。このカーボン層60の存在により、不純物濃度の異なるベース層10とSiC層20とを積層した炭化珪素基板1を容易に作製することができる。 That is, referring to FIG. 17, in silicon carbide substrate 1 according to the sixth embodiment, a carbon layer 60 as an intermediate layer is formed between base layer 10 and SiC layer 20, and thus the present embodiment. This is different from the case of 1. Base layer 10 and SiC layer 20 are connected by this carbon layer 60. Due to the presence of carbon layer 60, silicon carbide substrate 1 in which base layer 10 and SiC layer 20 having different impurity concentrations are laminated can be easily manufactured.
 次に、実施の形態6における炭化珪素基板1の製造方法について説明する。図18を参照して、まず工程(S10)が実施の形態1と同様に実施された後、必要に応じて工程(S20)が実施の形態1と同様に実施される。 Next, a method for manufacturing silicon carbide substrate 1 in the sixth embodiment will be described. Referring to FIG. 18, first, step (S10) is performed in the same manner as in the first embodiment, and then step (S20) is performed in the same manner as in the first embodiment as necessary.
 次に、工程(S25)として接着剤塗布工程が実施される。この工程(S25)では、図19を参照して、たとえばベース基板10の主面上にカーボン接着剤が塗布されることにより、前駆体層61が形成される。カーボン接着剤として、たとえば樹脂と、黒鉛微粒子と、溶剤とからなるものを採用することができる。ここで、樹脂としては、加熱されることにより難黒鉛化炭素となる樹脂、たとえばフェノール樹脂などを採用することができる。また、溶剤としては、たとえばフェノール、ホルムアルデヒド、エタノールなどを採用することができる。さらに、カーボン接着剤の塗布量は、10mg/cm以上40mg/cm以下とすることが好ましく、20mg/cm以上30mg/cm以下とすることがより好ましい。また、塗布されるカーボン接着剤の厚みは100μm以下とすることが好ましく、50μm以下とすることがより好ましい。 Next, an adhesive application process is implemented as process (S25). In this step (S25), referring to FIG. 19, precursor layer 61 is formed, for example, by applying a carbon adhesive on the main surface of base substrate 10. As a carbon adhesive, what consists of resin, graphite fine particles, and a solvent can be employ | adopted, for example. Here, as the resin, a resin that becomes non-graphitizable carbon when heated, such as a phenol resin, can be employed. As the solvent, for example, phenol, formaldehyde, ethanol, or the like can be used. Furthermore, the coating amount of the carbon adhesive is preferably 10 mg / cm 2 or more and 40 mg / cm 2 or less, and more preferably 20 mg / cm 2 or more and 30 mg / cm 2 or less. Further, the thickness of the carbon adhesive to be applied is preferably 100 μm or less, and more preferably 50 μm or less.
 次に、工程(S30)として、積層工程が実施される。この工程(S30)では、図19を参照して、ベース基板10の主面上に接触して形成された前駆体層61上に接触するようにSiC基板20が載置されて、積層基板が作製される。 Next, as a step (S30), a stacking step is performed. In this step (S30), referring to FIG. 19, SiC substrate 20 is placed in contact with precursor layer 61 formed in contact with the main surface of base substrate 10, and the laminated substrate is Produced.
 次に、工程(S80)として、プリベーク工程が実施される。この工程(S80)では、上記積層基板が加熱されることにより、前駆体層61を構成するカーボン接着剤から溶剤成分が除去される。具体的には、たとえば上記積層基板に対して厚み方向に荷重を負荷しつつ、積層基板を溶剤成分の沸点を超える温度域まで徐々に加熱する。この加熱は、クランプなどを用いてベース基板10とSiC基板20とが圧着されつつ実施されることが好ましい。また、できるだけ時間をかけてプリベーク(加熱)が実施されることにより、接着剤からの脱ガスが進行し、接着の強度を向上させることができる。 Next, as a step (S80), a pre-baking step is performed. In this step (S80), the solvent component is removed from the carbon adhesive constituting the precursor layer 61 by heating the laminated substrate. Specifically, for example, the multilayer substrate is gradually heated to a temperature range exceeding the boiling point of the solvent component while applying a load to the multilayer substrate in the thickness direction. This heating is preferably performed while the base substrate 10 and the SiC substrate 20 are pressure-bonded using a clamp or the like. Further, by performing pre-baking (heating) as much as possible, degassing from the adhesive proceeds, and the strength of bonding can be improved.
 次に、工程(S90)として、焼成工程が実施される。この工程(S90)では、工程(S80)において加熱されて前駆体層61がプリベークされた積層基板が高温、好ましくは900℃以上1100℃以下、たとえば1000℃に加熱され、好ましくは10分以上10時間以下、たとえば1時間保持されることにより前駆体層61が焼成される。焼成時の雰囲気としては、アルゴンなどの不活性ガス雰囲気が採用され、雰囲気の圧力はたとえば大気圧とすることができる。これにより、前駆体層61が炭素からなるカーボン層60となる。その結果、図17を参照して、ベース基板(ベース層)10とSiC基板(SiC層)20とがカーボン層60により接合された実施の形態6における炭化珪素基板1が得られる。 Next, a firing step is performed as a step (S90). In this step (S90), the laminated substrate heated in step (S80) and pre-baked with precursor layer 61 is heated to a high temperature, preferably 900 ° C. to 1100 ° C., for example 1000 ° C., preferably 10 minutes to 10 minutes. The precursor layer 61 is fired by being held for a period of time, for example, 1 hour. As an atmosphere at the time of firing, an inert gas atmosphere such as argon is adopted, and the pressure of the atmosphere can be set to atmospheric pressure, for example. Thereby, the precursor layer 61 becomes the carbon layer 60 made of carbon. As a result, referring to FIG. 17, silicon carbide substrate 1 in the sixth embodiment in which base substrate (base layer) 10 and SiC substrate (SiC layer) 20 are bonded by carbon layer 60 is obtained.
 なお、上記実施の形態においては、本発明の半導体装置の一例として縦型MOSFETについて説明したが、本発明の半導体装置はこれに限られず、炭化珪素基板の厚み方向に電流が流れる縦型半導体装置に広く適用することができる。 In the above embodiment, the vertical MOSFET has been described as an example of the semiconductor device of the present invention. However, the semiconductor device of the present invention is not limited to this, and the vertical semiconductor device in which current flows in the thickness direction of the silicon carbide substrate. Can be widely applied to.
 なお、上記炭化珪素基板1においては、SiC層20を構成する炭化珪素の結晶構造は六方晶系であることが好ましく、4H-SiCであることがより好ましい。また、ベース層10とSiC層20とは(複数のSiC層20を有する場合、隣接するSiC層20同士についても)、同一の結晶構造を有する炭化珪素単結晶からなっていることが好ましい。このように、同一の結晶構造の炭化珪素単結晶をベース層10およびSiC層20に採用することにより、熱膨張係数などの物理的性質が統一され、炭化珪素基板1および当該炭化珪素基板1を用いた半導体装置の製造プロセスにおいて、炭化珪素基板1の反りや、ベース層10とSiC層20との分離、あるいはSiC層20同士の分離の発生を抑制することができる。 In silicon carbide substrate 1 described above, the crystal structure of silicon carbide constituting SiC layer 20 is preferably a hexagonal system, and more preferably 4H—SiC. Base layer 10 and SiC layer 20 are preferably composed of silicon carbide single crystals having the same crystal structure (when there are a plurality of SiC layers 20, the adjacent SiC layers 20 are also adjacent to each other). Thus, by adopting the silicon carbide single crystal having the same crystal structure for base layer 10 and SiC layer 20, physical properties such as a thermal expansion coefficient are unified, and silicon carbide substrate 1 and silicon carbide substrate 1 are formed. In the manufacturing process of the semiconductor device used, warpage of silicon carbide substrate 1, separation between base layer 10 and SiC layer 20, or separation between SiC layers 20 can be suppressed.
 さらに、SiC層20とベース層10とは(複数のSiC層20を有する場合、隣接するSiC層20同士についても)、それぞれを構成する炭化珪素単結晶のc軸のなす角が1°未満であることが好ましく、0.1°未満であることがより好ましい。さらに、当該炭化珪素単結晶のc面が面内において回転していないことが好ましい。 Further, SiC layer 20 and base layer 10 (when there are a plurality of SiC layers 20, also for adjacent SiC layers 20), the angle formed by the c-axis of the silicon carbide single crystal constituting each is less than 1 °. It is preferable that the angle is less than 0.1 °. Furthermore, it is preferable that the c-plane of the silicon carbide single crystal is not rotated in the plane.
 また、MOSFET100などの半導体装置の製造に用いられる炭化珪素基板1のベース層(ベース基板)10の口径は、2インチ以上であることが好ましく、6インチ以上であることがより好ましい。さらに、炭化珪素基板1の厚みは、200μm以上1000μm以下であることが好ましく、300μm以上700μm以下であることがより好ましい。また、SiC層20の抵抗率は50mΩcm以下であることが好ましく、20mΩcm以下であることがより好ましい。 Further, the diameter of the base layer (base substrate) 10 of the silicon carbide substrate 1 used for manufacturing a semiconductor device such as the MOSFET 100 is preferably 2 inches or more, and more preferably 6 inches or more. Furthermore, the thickness of silicon carbide substrate 1 is preferably 200 μm or more and 1000 μm or less, and more preferably 300 μm or more and 700 μm or less. Further, the resistivity of SiC layer 20 is preferably 50 mΩcm or less, and more preferably 20 mΩcm or less.
 (実施例1)
 以下、実施例1について説明する。本発明の半導体装置におけるオン抵抗の低減効果を見積もる計算を実施した。具体的には、上記実施の形態1におけるMOSFET100において、厚み200μm、n型不純物密度1×1020cm-3のベース層10と、厚み200μm、n型不純物密度1×1019cm-3のSiC層20とを含み、SiC層20の活性層7の側の主面が{03-38}面である炭化珪素基板1が採用されることを前提として、オン抵抗を算出した(実施例A)。一方、比較のため、厚み400μm、n型不純物密度1×1019cm-3、活性層の側の主面が{0001}面である炭化珪素基板が採用された従来のMOSFETの場合についても、オン抵抗を算出した(比較例A)。ここで、実施例Aおよび比較例Aにおいて、チャネル長は1.0μm、ドリフト層の厚みは10μm、不純物濃度は1×1016cm-3とした。
Example 1
Example 1 will be described below. A calculation for estimating the effect of reducing the on-resistance in the semiconductor device of the present invention was performed. Specifically, in MOSFET100 in the first embodiment, the thickness 200 [mu] m, the base layer 10 of n-type impurity concentration 1 × 10 20 cm -3, thickness 200 [mu] m, SiC of n-type impurity concentration 1 × 10 19 cm -3 The on-resistance was calculated on the assumption that the silicon carbide substrate 1 including the layer 20 and the main surface of the SiC layer 20 on the active layer 7 side being the {03-38} plane is employed (Example A). . On the other hand, for comparison, a conventional MOSFET in which a silicon carbide substrate having a thickness of 400 μm, an n-type impurity density of 1 × 10 19 cm −3 and a main surface on the active layer side is a {0001} plane is also used. On-resistance was calculated (Comparative Example A). Here, in Example A and Comparative Example A, the channel length was 1.0 μm, the drift layer thickness was 10 μm, and the impurity concentration was 1 × 10 16 cm −3 .
 また、基板抵抗、およびドリフト層のドリフト抵抗、すなわち直列抵抗については以下のように算出した。まず、電子密度をnn0、正孔密度をpp0、電子の有効状態密度をN、正孔の有効状態密度をNνとすると、以下の関係が成立する。 Further, the substrate resistance and the drift resistance of the drift layer, that is, the series resistance were calculated as follows. First, when the electron density is n n0 , the hole density is p p0 , the electron effective state density is N c , and the hole effective state density is N ν , the following relationship is established.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、n型4H-SiCにおいては、不純物濃度(密度)と移動度との間に図20に示す関係が成立する。そして、基板の抵抗Rは以下の式により算出することができる。 Here, in n-type 4H—SiC, the relationship shown in FIG. 20 is established between the impurity concentration (density) and the mobility. And the resistance R of a board | substrate is computable with the following formula | equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このようにして得られた基板抵抗と、他の抵抗成分とから合計抵抗(オン抵抗)を算出することができる。上記計算の結果を表1に示す。 The total resistance (ON resistance) can be calculated from the substrate resistance thus obtained and other resistance components. The results of the above calculation are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、本発明の半導体装置である上記実施例AのMOSFETによれば、従来の比較例AのMOSFETに比べてオン抵抗を60%程度低減できることが確認された。 As shown in Table 1, according to the MOSFET of Example A which is a semiconductor device of the present invention, it was confirmed that the on-resistance can be reduced by about 60% as compared with the conventional MOSFET of Comparative Example A.
 (実施例2)
 次に、実施例2について説明する。本発明の半導体装置における第2電極(ドレイン電極)と炭化珪素基板との接触抵抗の低減効果を見積もる計算を実施した。ここで、金属である電極とn型半導体である炭化珪素基板との接触抵抗を低減し、オーミックコンタクトを得るためには、
 (1)仕事関数Φの小さい金属を採用してショットキー障壁を低くする
 (2)半導体の不純物密度を高くして空乏層幅を小さくすることにより、ショットキー障壁を薄くする
 という2つの方策が考えられる。しかし、実際には(1)の方策を採用することは容易ではなく、(2)の方策を採用してトンネル電流を増大させ、オーミックコンタクトを得る方策が有効である。以下、高い不純物濃度を有するベース層を含む炭化珪素基板を採用した本発明の半導体装置を想定し、電極とベース層との接触抵抗に関する計算結果について説明する。
(Example 2)
Next, Example 2 will be described. The calculation which estimates the reduction effect of the contact resistance of the 2nd electrode (drain electrode) and silicon carbide substrate in the semiconductor device of this invention was implemented. Here, in order to reduce the contact resistance between the electrode that is a metal and the silicon carbide substrate that is an n-type semiconductor and obtain an ohmic contact,
(1) Use a metal with a low work function Φ to lower the Schottky barrier. (2) Increase the impurity density of the semiconductor to reduce the width of the depletion layer, thereby reducing the Schottky barrier. Conceivable. However, in practice, it is not easy to adopt the measure (1), and it is effective to adopt the measure (2) to increase the tunnel current and obtain ohmic contact. Hereinafter, assuming a semiconductor device of the present invention that employs a silicon carbide substrate including a base layer having a high impurity concentration, calculation results regarding contact resistance between the electrode and the base layer will be described.
 接触抵抗Rについては、以下の式が成り立つ。 For the contact resistance Rc , the following equation is established.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 つまり、接触抵抗RはΦbn/(N 1/2)に対して指数関数的に依存する。そして、不純物濃度(不純物密度)Nを上昇させることにより、接触抵抗Rを低減することができる。具体的には、たとえば本発明の半導体装置を想定した不純物濃度が1×1020cm-3である基板(ベース層)と電極との接触抵抗(実施例B)と、従来の半導体装置を想定した不純物濃度が1×1018cm-3である基板と電極との接触抵抗(比較例B)とを算出した。なお、電極を構成する金属としては、たとえば仕事関数Φが5.5eVであるNi(ニッケル)や4.1eVであるAl(アルミニウム)を採用することができる。計算結果を表2に示す。 That is, the contact resistance R c depends exponentially on Φ bn / (N d 1/2 ). Then, by raising the impurity concentration (impurity concentration) N d, it is possible to reduce the contact resistance R c. Specifically, for example, a contact resistance (Example B) between a substrate (base layer) and an electrode having an impurity concentration of 1 × 10 20 cm −3 assuming a semiconductor device of the present invention, and a conventional semiconductor device are assumed. The contact resistance (Comparative Example B) between the substrate and the electrode having an impurity concentration of 1 × 10 18 cm −3 was calculated. As the metal constituting the electrode, for example, Ni (nickel) having a work function Φ of 5.5 eV or Al (aluminum) having 4.1 eV can be employed. The calculation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2を参照して、本発明の半導体装置を想定した実施例Cにおける接触抵抗は、従来の半導体装置を想定した比較例Cの接触抵抗に対して、40%程度低減されている。このように、本発明の半導体装置によれば、基板と電極(裏面電極)との接触抵抗を大幅に低減することが可能である。また、一般的に上記接触抵抗を低減する目的で電極形成後に熱処理が実施される場合が多いが、本発明の半導体装置によれば当該熱処理を省略できる可能性もある。 Referring to Table 2, the contact resistance in Example C assuming the semiconductor device of the present invention is reduced by about 40% with respect to the contact resistance in Comparative Example C assuming a conventional semiconductor device. Thus, according to the semiconductor device of the present invention, the contact resistance between the substrate and the electrode (back electrode) can be greatly reduced. In general, heat treatment is often performed after electrode formation for the purpose of reducing the contact resistance. However, according to the semiconductor device of the present invention, the heat treatment may be omitted.
 なお、上記実施の形態においては、本発明の半導体装置の一例として縦型MOSFETについて説明したが、本発明の半導体装置はこれに限られず、たとえばJFET(Junction Field Effect Transistor)、MESFET(Metal Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、ダイオードなどであってもよい。 In the above-described embodiment, the vertical MOSFET has been described as an example of the semiconductor device of the present invention. However, the semiconductor device of the present invention is not limited to this, for example, JFET (Junction Field Effect Transistor), MESFET (Metal Semiconductor Fielder). (Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), a diode, etc. may be sufficient.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の半導体装置は、オン抵抗の低減が求められる縦型半導体装置に、特に有利に適用され得る。 The semiconductor device of the present invention can be applied particularly advantageously to a vertical semiconductor device that requires a reduction in on-resistance.
 1 炭化珪素基板、2 バッファ層、3 ドリフト層、3A 主面、4 ウェル領域、5 n領域、6 p領域、7 活性層、10 ベース層(ベース基板)、10A 主面、10B 単結晶層、11 原料基板、11A 主面、20 SiC層(SiC基板)、20A,20B 主面、20C 端面、40 アモルファスSiC層、50 オーミックコンタクト層、60 カーボン層、61 前駆体層、81 第1ヒータ、82 第2ヒータ、91 酸化膜(ゲート酸化膜)、92 ソースコンタクト電極、93 ゲート電極、94 層間絶縁膜、95 ソース配線、96 ドレイン電極、100 MOSFET。 1 silicon carbide substrate, 2 buffer layer, 3 drift layer, 3A main surface, 4 well region, 5 n + region, 6 p + region, 7 active layer, 10 base layer (base substrate), 10A main surface, 10B single crystal Layer, 11 material substrate, 11A main surface, 20 SiC layer (SiC substrate), 20A, 20B main surface, 20C end surface, 40 amorphous SiC layer, 50 ohmic contact layer, 60 carbon layer, 61 precursor layer, 81 first heater , 82 Second heater, 91 oxide film (gate oxide film), 92 source contact electrode, 93 gate electrode, 94 interlayer insulating film, 95 source wiring, 96 drain electrode, 100 MOSFET.

Claims (15)

  1.  炭化珪素基板(1)と、
     単結晶炭化珪素からなり、前記炭化珪素基板(1)の一方の主面上に配置された活性層(7)と、
     前記活性層(7)上に配置された第1電極(92)と、
     前記炭化珪素基板(1)の他方の主面上に形成された第2電極(96)とを備え、
     前記炭化珪素基板(1)は、
     炭化珪素からなるベース層(10)と、
     単結晶炭化珪素からなり、前記ベース層(10)上に配置されたSiC層(20)とを含み、
     前記ベース層(10)の不純物濃度は2×1019cm-3よりも大きく、
     前記SiC層(20)の不純物濃度は5×1018cm-3よりも大きく2×1019cm-3よりも小さい、半導体装置(100)。
    A silicon carbide substrate (1);
    An active layer (7) made of single-crystal silicon carbide and disposed on one main surface of the silicon carbide substrate (1);
    A first electrode (92) disposed on the active layer (7);
    A second electrode (96) formed on the other main surface of the silicon carbide substrate (1),
    The silicon carbide substrate (1)
    A base layer (10) made of silicon carbide;
    A SiC layer (20) made of single crystal silicon carbide and disposed on the base layer (10),
    The impurity concentration of the base layer (10) is greater than 2 × 10 19 cm −3 ,
    The semiconductor device (100), wherein the impurity concentration of the SiC layer (20) is larger than 5 × 10 18 cm −3 and smaller than 2 × 10 19 cm −3 .
  2.  前記活性層(7)は、
     前記炭化珪素基板(1)上に配置され、単結晶炭化珪素からなる第1導電型のドリフト層(3)と、
     前記ドリフト層(3)において前記炭化珪素基板(1)とは反対側の第1主面(3A)を含むように配置された第2導電型のウェル領域(4)と、
     前記ウェル領域(4)内の前記第1主面(3A)を含み、前記第1電極(92)に接触するように配置された第1導電型のソース領域(5)とを含み、
     前記第1主面(3A)上に前記ウェル領域(4)に接触するように配置され、絶縁体からなる絶縁膜(91)と、
     前記絶縁膜(91)上に配置された第3電極(93)とをさらに備えた、請求の範囲第1項に記載の半導体装置(100)。
    The active layer (7)
    A first conductivity type drift layer (3) made of single crystal silicon carbide, disposed on the silicon carbide substrate (1);
    A second conductivity type well region (4) arranged to include the first main surface (3A) opposite to the silicon carbide substrate (1) in the drift layer (3);
    A first conductivity type source region (5) including the first main surface (3A) in the well region (4) and arranged to contact the first electrode (92);
    An insulating film (91) made of an insulator and disposed on the first main surface (3A) in contact with the well region (4);
    The semiconductor device (100) according to claim 1, further comprising a third electrode (93) disposed on the insulating film (91).
  3.  前記絶縁膜(91)は二酸化珪素からなっている、請求の範囲第2項に記載の半導体装置(100)。 The semiconductor device (100) according to claim 2, wherein the insulating film (91) is made of silicon dioxide.
  4.  前記炭化珪素基板(1)において、前記SiC層(20)の、前記ベース層(10)とは反対側の主面(20A)は、{0001}面に対するオフ角が50°以上65°以下となっている、請求の範囲第2項に記載の半導体装置(100)。 In the silicon carbide substrate (1), the main surface (20A) of the SiC layer (20) opposite to the base layer (10) has an off angle of 50 ° or more and 65 ° or less with respect to the {0001} plane. The semiconductor device (100) according to claim 2, wherein the semiconductor device (100) is formed.
  5.  前記SiC層(20)における前記ベース層(10)とは反対側の主面(20A)のオフ方位と<1-100>方向とのなす角は5°以下となっている、請求の範囲第4項に記載の半導体装置(100)。 The angle formed by the off orientation of the main surface (20A) opposite to the base layer (10) in the SiC layer (20) and the <1-100> direction is 5 ° or less. 5. The semiconductor device (100) according to item 4.
  6.  前記SiC層(20)における前記ベース層(10)とは反対側の主面(20A)の、<1-100>方向における{03-38}面に対するオフ角は-3°以上5°以下である、請求の範囲第5項に記載の半導体装置(100)。 The main surface (20A) of the SiC layer (20) opposite to the base layer (10) has an off angle with respect to the {03-38} plane in the <1-100> direction of -3 ° to 5 °. The semiconductor device (100) according to claim 5, wherein the semiconductor device (100) is provided.
  7.  前記SiC層(20)における前記ベース層(10)とは反対側の主面(20A)のオフ方位と<11-20>方向とのなす角は5°以下となっている、請求の範囲第4項に記載の半導体装置(100)。 The angle between the off orientation of the main surface (20A) opposite to the base layer (10) in the SiC layer (20) and the <11-20> direction is 5 ° or less. 5. The semiconductor device (100) according to item 4.
  8.  前記炭化珪素基板(1)は、前記ベース層(10)と前記SiC層(20)との間に配置され、導電体または半導体からなる中間層(40,50,60)をさらに含み、
     前記中間層(40,50,60)は、前記ベース層(10)と前記SiC層(20)とを接合している、請求の範囲第1項に記載の半導体装置(100)。
    The silicon carbide substrate (1) is further disposed between the base layer (10) and the SiC layer (20), and further includes an intermediate layer (40, 50, 60) made of a conductor or a semiconductor,
    The semiconductor device (100) according to claim 1, wherein the intermediate layer (40, 50, 60) joins the base layer (10) and the SiC layer (20).
  9.  前記中間層(50)は金属からなっている、請求の範囲第8項に記載の半導体装置(100)。 The semiconductor device (100) according to claim 8, wherein the intermediate layer (50) is made of metal.
  10.  前記中間層は炭素(60)からなっている、請求の範囲第8項に記載の半導体装置(100)。 The semiconductor device (100) according to claim 8, wherein the intermediate layer is made of carbon (60).
  11.  前記中間層(40)は非晶質炭化珪素からなっている、請求の範囲第8項に記載の半導体装置(100)。 The semiconductor device (100) according to claim 8, wherein the intermediate layer (40) is made of amorphous silicon carbide.
  12.  前記ベース層(10)は単結晶炭化珪素からなり、
     前記SiC層(20)のX線ロッキングカーブの半値幅は、前記ベース層(10)のX線ロッキングカーブの半値幅よりも小さくなっている、請求の範囲第1項に記載の半導体装置(100)。
    The base layer (10) is made of single crystal silicon carbide,
    The semiconductor device (100) according to claim 1, wherein the half width of the X-ray rocking curve of the SiC layer (20) is smaller than the half width of the X-ray rocking curve of the base layer (10). ).
  13.  前記ベース層(10)は単結晶炭化珪素からなり、
     前記SiC層(20)のマイクロパイプ密度は、前記ベース層(10)のマイクロパイプ密度よりも低い、請求の範囲第1項に記載の半導体装置(100)。
    The base layer (10) is made of single crystal silicon carbide,
    The semiconductor device (100) according to claim 1, wherein the micropipe density of the SiC layer (20) is lower than the micropipe density of the base layer (10).
  14.  前記ベース層(10)は単結晶炭化珪素からなり、
     前記SiC層(20)の転位密度は、前記ベース層(10)の転位密度よりも低い、請求の範囲第1項に記載の半導体装置(100)。
    The base layer (10) is made of single crystal silicon carbide,
    The semiconductor device (100) according to claim 1, wherein a dislocation density of the SiC layer (20) is lower than a dislocation density of the base layer (10).
  15.  前記ベース層(10)は、前記SiC層(20)に対向する側の主面(10A)を含むように単結晶炭化珪素からなる単結晶層(10B)を含んでいる、請求の範囲第1項に記載の半導体装置(100)。 The base layer (10) includes a single crystal layer (10B) made of single crystal silicon carbide so as to include a main surface (10A) on the side facing the SiC layer (20). The semiconductor device (100) according to item.
PCT/JP2010/057444 2009-05-11 2010-04-27 Semiconductor device WO2010131572A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011513303A JPWO2010131572A1 (en) 2009-05-11 2010-04-27 Semiconductor device
EP10774830.3A EP2432020A4 (en) 2009-05-11 2010-04-27 Semiconductor device
CA2761245A CA2761245A1 (en) 2009-05-11 2010-04-27 Semiconductor device
US13/320,247 US20120056202A1 (en) 2009-05-11 2010-04-27 Semiconductor device
CN2010800205020A CN102422424A (en) 2009-05-11 2010-04-27 Semiconductor device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-114737 2009-05-11
JP2009114737 2009-05-11
JP2009-219065 2009-09-24
JP2009219065 2009-09-24
JP2009229764 2009-10-01
JP2009-229764 2009-10-01
JP2009248621 2009-10-29
JP2009-248621 2009-10-29

Publications (1)

Publication Number Publication Date
WO2010131572A1 true WO2010131572A1 (en) 2010-11-18

Family

ID=43084945

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2010/057445 WO2010131573A1 (en) 2009-05-11 2010-04-27 Insulating gate type bipolar transistor
PCT/JP2010/057439 WO2010131568A1 (en) 2009-05-11 2010-04-27 Silicon carbide substrate, semiconductor device, and method for manufacturing silicon carbide substrate
PCT/JP2010/057441 WO2010131569A1 (en) 2009-05-11 2010-04-27 Method for producing semiconductor substrate
PCT/JP2010/057444 WO2010131572A1 (en) 2009-05-11 2010-04-27 Semiconductor device
PCT/JP2010/057442 WO2010131570A1 (en) 2009-05-11 2010-04-27 Silicon carbide substrate and semiconductor device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2010/057445 WO2010131573A1 (en) 2009-05-11 2010-04-27 Insulating gate type bipolar transistor
PCT/JP2010/057439 WO2010131568A1 (en) 2009-05-11 2010-04-27 Silicon carbide substrate, semiconductor device, and method for manufacturing silicon carbide substrate
PCT/JP2010/057441 WO2010131569A1 (en) 2009-05-11 2010-04-27 Method for producing semiconductor substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057442 WO2010131570A1 (en) 2009-05-11 2010-04-27 Silicon carbide substrate and semiconductor device

Country Status (8)

Country Link
US (5) US20120056202A1 (en)
EP (5) EP2432022A1 (en)
JP (5) JP5477380B2 (en)
KR (5) KR20120024526A (en)
CN (5) CN102160143B (en)
CA (5) CA2761430A1 (en)
TW (5) TW201104861A (en)
WO (5) WO2010131573A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168515B2 (en) 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
WO2013114743A1 (en) * 2012-02-01 2013-08-08 住友電気工業株式会社 Silicon carbide semiconductor device
WO2013140871A1 (en) * 2012-03-21 2013-09-26 住友電気工業株式会社 Method for producing silicon carbide semiconductor device
JP2020113619A (en) * 2019-01-10 2020-07-27 三菱電機株式会社 Silicon carbide semiconductor substrate, manufacturing method thereof, and manufacturing method of silicon carbide semiconductor device

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201600407SA (en) * 2009-02-20 2016-02-26 Semiconductor Energy Lab Semiconductor device and manufacturing method of the same
CA2757205A1 (en) * 2009-11-13 2011-05-19 Makoto Sasaki Method for manufacturing semiconductor substrate
KR20120124352A (en) * 2010-02-05 2012-11-13 스미토모덴키고교가부시키가이샤 Method for producing silicon carbide substrate
JP2011246315A (en) * 2010-05-28 2011-12-08 Sumitomo Electric Ind Ltd Silicon carbide substrate and method for producing the same
JP5447206B2 (en) * 2010-06-15 2014-03-19 住友電気工業株式会社 Method for manufacturing silicon carbide single crystal and silicon carbide substrate
DE112011105073T5 (en) * 2011-03-22 2013-12-24 Sumitomo Electric Industries, Ltd. silicon carbide substrate
JP2012201543A (en) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd Silicon carbide substrate
JP2013018693A (en) * 2011-06-16 2013-01-31 Sumitomo Electric Ind Ltd Silicon carbide substrate and method for producing the same
DE112012003260T5 (en) * 2011-08-05 2014-05-15 Sumitomo Electric Industries, Ltd. Substrate, semiconductor device and method of making the same
JPWO2013073216A1 (en) * 2011-11-14 2015-04-02 住友電気工業株式会社 Silicon carbide substrate, semiconductor device and manufacturing method thereof
KR101984698B1 (en) * 2012-01-11 2019-05-31 삼성전자주식회사 Substrate structure, semiconductor device fabricated from the same and fabricating method thereof
TWI456737B (en) * 2012-03-05 2014-10-11 Richtek Technology Corp Vertical semiconductor device and manufacturing method thereof
CN103325747A (en) * 2012-03-19 2013-09-25 立锜科技股份有限公司 Vertical type semiconductor element and manufacturing method thereof
US9466552B2 (en) * 2012-03-30 2016-10-11 Richtek Technology Corporation Vertical semiconductor device having a non-conductive substrate and a gallium nitride layer
KR101386119B1 (en) * 2012-07-26 2014-04-21 한국전기연구원 Fabrication method of ohmic contacts on SiC MOSFETs
US9184229B2 (en) * 2012-07-31 2015-11-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
US8860040B2 (en) * 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
JP6297783B2 (en) * 2013-03-08 2018-03-20 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP6119564B2 (en) 2013-11-08 2017-04-26 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
JP6356428B2 (en) * 2014-02-17 2018-07-11 株式会社東芝 Semiconductor device and manufacturing method thereof
CN103855206A (en) * 2014-02-18 2014-06-11 宁波达新半导体有限公司 Insulated gate bipolar transistor and manufacturing method thereof
JP2015176995A (en) * 2014-03-14 2015-10-05 株式会社東芝 Semiconductor device and manufacturing method of the same
JP6180978B2 (en) * 2014-03-20 2017-08-16 株式会社東芝 Semiconductor device and manufacturing method thereof
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
DE112014007063T5 (en) * 2014-10-14 2017-06-29 Mitsubishi Electric Corporation Silicon carbide epitaxial wafer manufacturing method
CN104465721B (en) * 2014-12-05 2019-05-14 国家电网公司 A kind of silicon carbide epitaxy material and preparation method thereof
JP2017059600A (en) 2015-09-14 2017-03-23 株式会社東芝 Semiconductor device and manufacturing method of the same
JP6696499B2 (en) * 2015-11-24 2020-05-20 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
CN105679647B (en) * 2015-12-31 2018-06-29 清华大学 The preparation method of substrate with atomically flating surface
US10559653B2 (en) * 2016-07-21 2020-02-11 Mitsubishi Electric Corporation Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP6703915B2 (en) * 2016-07-29 2020-06-03 富士電機株式会社 Silicon carbide semiconductor substrate, method of manufacturing silicon carbide semiconductor substrate, semiconductor device, and method of manufacturing semiconductor device
KR101866869B1 (en) 2016-08-18 2018-06-14 주식회사 티씨케이 Silicon carbide material and silicon carbide composite
DE112017006972T5 (en) * 2017-01-31 2019-10-17 Sumitomo Electric Industries, Ltd. A silicon carbide epitaxial substrate and a method of manufacturing a silicon carbide semiconductor device
WO2018142744A1 (en) * 2017-01-31 2018-08-09 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6883745B2 (en) * 2017-03-24 2021-06-09 パナソニックIpマネジメント株式会社 Semiconductor devices and their manufacturing methods
WO2019143733A1 (en) 2018-01-16 2019-07-25 Ipower Semiconductor Self-aligned and robust igbt devices
US20190245070A1 (en) * 2018-02-07 2019-08-08 Ipower Semiconductor Igbt devices with 3d backside structures for field stop and reverse conduction
KR102649978B1 (en) 2018-05-03 2024-03-22 엘지전자 주식회사 Method for controlling water purifying apparatus
KR102345680B1 (en) * 2018-10-16 2021-12-29 에스아이씨씨 컴퍼니 리미티드 High-purity silicon carbide single crystal substrate and its manufacturing method and application
JP7410478B2 (en) * 2019-07-11 2024-01-10 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing a silicon carbide semiconductor device
WO2021092862A1 (en) * 2019-11-14 2021-05-20 华为技术有限公司 Semiconductor substrate, manufacturing method therefor, and semiconductor device
US11781241B2 (en) * 2020-07-27 2023-10-10 Globalwafers Co., Ltd. Silicon carbide seed crystal and method of manufacturing the same, and method of manufacturing silicon carbide ingot
KR102442732B1 (en) 2021-11-05 2022-09-13 주식회사 쎄닉 Silicon wafer and fabricating method of the same
TWI831512B (en) * 2022-12-09 2024-02-01 鴻揚半導體股份有限公司 Semiconductor device and forming method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223835A (en) * 1997-02-05 1998-08-21 Hitachi Ltd Semiconductor device and its manufacture
JPH113842A (en) * 1997-06-11 1999-01-06 Nippon Pillar Packing Co Ltd Substrate for semiconductor electronic element and manufacture thereof
JPH1187200A (en) * 1997-09-05 1999-03-30 Toshiba Corp Semiconductor substrate and manufacture of semiconductor device
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2002280531A (en) * 2001-03-19 2002-09-27 Denso Corp Semiconductor substrate and its manufacturing method
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2008004726A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
WO2008120467A1 (en) * 2007-03-29 2008-10-09 Panasonic Corporation Method for manufacturing semiconductor device

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637276B2 (en) * 1988-01-18 1994-05-18 株式会社豊田自動織機製作所 Pusher device with vertical movement mechanism
JP2846986B2 (en) 1991-10-30 1999-01-13 三菱マテリアル株式会社 Manufacturing method of semiconductor wafer
JPH0748198A (en) * 1993-08-05 1995-02-21 Sumitomo Electric Ind Ltd Method for synthesizing diamond
EP0922792A4 (en) * 1997-06-27 2000-08-16 Nippon Pillar Packing SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
JP3254559B2 (en) * 1997-07-04 2002-02-12 日本ピラー工業株式会社 Single crystal SiC and method for producing the same
JP2939615B2 (en) 1998-02-04 1999-08-25 日本ピラー工業株式会社 Single crystal SiC and method for producing the same
US6246076B1 (en) * 1998-08-28 2001-06-12 Cree, Inc. Layered dielectric on silicon carbide semiconductor structures
JP2000277405A (en) * 1999-03-29 2000-10-06 Meidensha Corp Method for producing semiconductor device
JP2002015619A (en) 2000-06-29 2002-01-18 Kyocera Corp Electro-conductive material, and plasma resistant member and semiconductor manufacturing device using it
JP4843854B2 (en) * 2001-03-05 2011-12-21 住友電気工業株式会社 MOS device
US6909119B2 (en) * 2001-03-15 2005-06-21 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
DE10247017B4 (en) * 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
JP3559971B2 (en) * 2001-12-11 2004-09-02 日産自動車株式会社 Silicon carbide semiconductor device and method of manufacturing the same
FR2834123B1 (en) * 2001-12-21 2005-02-04 Soitec Silicon On Insulator SEMICONDUCTOR THIN FILM DELIVERY METHOD AND METHOD FOR OBTAINING A DONOR WAFER FOR SUCH A DELAYING METHOD
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates
US8080826B1 (en) * 2002-02-14 2011-12-20 Rf Micro Devices, Inc. High performance active and passive structures based on silicon material bonded to silicon carbide
US20040144301A1 (en) * 2003-01-24 2004-07-29 Neudeck Philip G. Method for growth of bulk crystals by vapor phase epitaxy
WO2004067812A1 (en) * 2003-01-28 2004-08-12 Sumitomo Electric Industries, Ltd. Diamond composite substrate and process for producing the same
KR100985808B1 (en) 2003-06-13 2010-10-06 스미토모덴키고교가부시키가이샤 Field effect transistor
JP4238357B2 (en) * 2003-08-19 2009-03-18 独立行政法人産業技術総合研究所 Silicon carbide epitaxial wafer, method of manufacturing the same, and semiconductor device manufactured on the wafer
JP4219800B2 (en) 2003-12-22 2009-02-04 株式会社豊田中央研究所 Method for producing SiC single crystal
CN100533663C (en) * 2004-03-18 2009-08-26 克里公司 Lithographic methods to reduce stacking fault nucleation sites and structures having reduced stacking fault nucleation sites
JP4874527B2 (en) 2004-04-01 2012-02-15 トヨタ自動車株式会社 Silicon carbide semiconductor substrate and method for manufacturing the same
JP4442366B2 (en) 2004-08-27 2010-03-31 住友電気工業株式会社 Epitaxial SiC film, manufacturing method thereof, and SiC semiconductor device
JP4733485B2 (en) 2004-09-24 2011-07-27 昭和電工株式会社 Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
US7314520B2 (en) * 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP2006228961A (en) 2005-02-17 2006-08-31 Toyota Central Res & Dev Lab Inc Semiconductor device
JP4775102B2 (en) * 2005-05-09 2011-09-21 住友電気工業株式会社 Manufacturing method of semiconductor device
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
JP4916247B2 (en) * 2006-08-08 2012-04-11 トヨタ自動車株式会社 Silicon carbide semiconductor device and manufacturing method thereof
CN100438083C (en) * 2006-12-23 2008-11-26 厦门大学 Ultraviolet photoelectric detector delta doped 4H-SiC PIN structure
JP4748067B2 (en) 2007-01-15 2011-08-17 株式会社デンソー Method and apparatus for producing silicon carbide single crystal
JP2008226997A (en) 2007-03-09 2008-09-25 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
JP2008235776A (en) 2007-03-23 2008-10-02 Sumco Corp Production process of laminated wafer
US7718519B2 (en) * 2007-03-29 2010-05-18 Panasonic Corporation Method for manufacturing silicon carbide semiconductor element
FR2914488B1 (en) * 2007-03-30 2010-08-27 Soitec Silicon On Insulator DOPE HEATING SUBSTRATE
JP2008280207A (en) 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd METHOD FOR PRODUCING SiC SINGLE CRYSTAL SUBSTRATE
JP2009117533A (en) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd Manufacturing method of silicon carbide substrate
JP5157843B2 (en) * 2007-12-04 2013-03-06 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP5504597B2 (en) * 2007-12-11 2014-05-28 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2010184833A (en) * 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
WO2010131573A1 (en) 2009-05-11 2010-11-18 住友電気工業株式会社 Insulating gate type bipolar transistor
JPWO2010131571A1 (en) 2009-05-11 2012-11-01 住友電気工業株式会社 Semiconductor device
JPWO2011037079A1 (en) 2009-09-24 2013-02-21 住友電気工業株式会社 Silicon carbide ingot, silicon carbide substrate, manufacturing method thereof, crucible, and semiconductor substrate
US20110221039A1 (en) * 2010-03-12 2011-09-15 Sinmat, Inc. Defect capping for reduced defect density epitaxial articles
JP2011233638A (en) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd Silicon carbide substrate and manufacturing method of the same
JP2011243848A (en) * 2010-05-20 2011-12-01 Sumitomo Electric Ind Ltd Silicon carbide substrate manufacturing method
JP2011256053A (en) * 2010-06-04 2011-12-22 Sumitomo Electric Ind Ltd Combined substrate and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223835A (en) * 1997-02-05 1998-08-21 Hitachi Ltd Semiconductor device and its manufacture
JPH113842A (en) * 1997-06-11 1999-01-06 Nippon Pillar Packing Co Ltd Substrate for semiconductor electronic element and manufacture thereof
JPH1187200A (en) * 1997-09-05 1999-03-30 Toshiba Corp Semiconductor substrate and manufacture of semiconductor device
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2002280531A (en) * 2001-03-19 2002-09-27 Denso Corp Semiconductor substrate and its manufacturing method
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2008004726A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
WO2008120467A1 (en) * 2007-03-29 2008-10-09 Panasonic Corporation Method for manufacturing semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R. C. GLASS ET AL.: "SiC Seeded Crystal Growth", PHYS. STAT. SOL. (B, vol. 202, 1997, pages 149 - 162
R. C. GLASS ET AL.: "SiC Seeded Crystal Growth", PHYS. STAT. SOL. (B, vol. 202, 1997, pages L49 - 162
See also references of EP2432020A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168515B2 (en) 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
WO2013114743A1 (en) * 2012-02-01 2013-08-08 住友電気工業株式会社 Silicon carbide semiconductor device
US8829535B2 (en) 2012-02-01 2014-09-09 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
WO2013140871A1 (en) * 2012-03-21 2013-09-26 住友電気工業株式会社 Method for producing silicon carbide semiconductor device
JP2013197320A (en) * 2012-03-21 2013-09-30 Sumitomo Electric Ind Ltd Manufacturing method of silicon carbide semiconductor device
US9048093B2 (en) 2012-03-21 2015-06-02 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
JP2020113619A (en) * 2019-01-10 2020-07-27 三菱電機株式会社 Silicon carbide semiconductor substrate, manufacturing method thereof, and manufacturing method of silicon carbide semiconductor device
JP7143769B2 (en) 2019-01-10 2022-09-29 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
US8168515B2 (en) 2012-05-01
JPWO2010131570A1 (en) 2012-11-01
CA2735975A1 (en) 2010-11-18
KR20120014024A (en) 2012-02-15
JPWO2010131572A1 (en) 2012-11-01
EP2432000A1 (en) 2012-03-21
WO2010131570A1 (en) 2010-11-18
KR20120011059A (en) 2012-02-06
TW201120939A (en) 2011-06-16
KR20120014017A (en) 2012-02-15
US20110165764A1 (en) 2011-07-07
EP2432001A4 (en) 2012-11-21
JP5477380B2 (en) 2014-04-23
CA2761245A1 (en) 2010-11-18
CN102160143B (en) 2013-05-29
JPWO2010131568A1 (en) 2012-11-01
KR20120024526A (en) 2012-03-14
JP5344037B2 (en) 2013-11-20
EP2432020A1 (en) 2012-03-21
CA2761246A1 (en) 2010-11-18
CA2761430A1 (en) 2010-11-18
EP2432001A1 (en) 2012-03-21
TW201101482A (en) 2011-01-01
EP2432022A1 (en) 2012-03-21
WO2010131569A1 (en) 2010-11-18
KR20120023710A (en) 2012-03-13
CN102422425A (en) 2012-04-18
EP2432000A4 (en) 2012-11-21
CN102422387A (en) 2012-04-18
US20120056202A1 (en) 2012-03-08
TW201104861A (en) 2011-02-01
CN102422424A (en) 2012-04-18
WO2010131568A1 (en) 2010-11-18
EP2432020A4 (en) 2013-06-26
US20120061687A1 (en) 2012-03-15
JPWO2010131573A1 (en) 2012-11-01
CN102160143A (en) 2011-08-17
US20120056201A1 (en) 2012-03-08
US20120061686A1 (en) 2012-03-15
TW201104865A (en) 2011-02-01
TW201101484A (en) 2011-01-01
CA2761428A1 (en) 2010-11-18
WO2010131573A1 (en) 2010-11-18
EP2432002A4 (en) 2012-11-21
JPWO2010131569A1 (en) 2012-11-01
CN102422388A (en) 2012-04-18
EP2432002A1 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2010131572A1 (en) Semiconductor device
WO2011046020A1 (en) Silicon carbide substrate manufacturing method, silicon carbide substrate, and semiconductor device
JP2011243770A (en) Silicon carbide substrate, semiconductor device, and silicon carbide substrate manufacturing method
WO2011118101A1 (en) Semiconductor device and method for producing same
JPWO2011052321A1 (en) Method for manufacturing silicon carbide substrate and silicon carbide substrate
JPWO2011052320A1 (en) Method for manufacturing silicon carbide substrate and silicon carbide substrate
WO2010131571A1 (en) Semiconductor device
WO2011077797A1 (en) Silicon carbide substrate
WO2012127748A1 (en) Silicon carbide substrate
JP2011086660A (en) Method of manufacturing silicon carbide substrate, and silicon carbide substrate
WO2011086734A1 (en) Process for production of silicon carbide substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020502.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774830

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011513303

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2761245

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13320247

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117028245

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010774830

Country of ref document: EP