[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010128811A2 - Thin film deposition apparatus and thin film deposition system comprising same - Google Patents

Thin film deposition apparatus and thin film deposition system comprising same Download PDF

Info

Publication number
WO2010128811A2
WO2010128811A2 PCT/KR2010/002887 KR2010002887W WO2010128811A2 WO 2010128811 A2 WO2010128811 A2 WO 2010128811A2 KR 2010002887 W KR2010002887 W KR 2010002887W WO 2010128811 A2 WO2010128811 A2 WO 2010128811A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chambers
thin film
chamber
transfer
Prior art date
Application number
PCT/KR2010/002887
Other languages
French (fr)
Korean (ko)
Other versions
WO2010128811A3 (en
Inventor
배경빈
윤형석
강창호
Original Assignee
에스엔유 프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유 프리시젼 주식회사 filed Critical 에스엔유 프리시젼 주식회사
Priority to JP2012509732A priority Critical patent/JP5506917B2/en
Priority to CN201080020337.9A priority patent/CN102421933B/en
Publication of WO2010128811A2 publication Critical patent/WO2010128811A2/en
Publication of WO2010128811A3 publication Critical patent/WO2010128811A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Definitions

  • the present invention relates to a thin film deposition apparatus, and more particularly, to a thin film deposition apparatus for forming a thin film on a substrate and a thin film deposition system in which the thin film deposition apparatus is connected in an in-line manner.
  • OLEDs organic light emitting diodes
  • the display device using the same may implement an excellent image without problems of the viewing angle and afterimage.
  • Such an organic light emitting device is produced by laminating a multilayer thin film such as an organic film and a metal film on a glass substrate. Therefore, in the related art, a cluster method in which a plurality of unit chambers in which a series of unit processes are performed around a circular transfer chamber is mainly used, and a substrate transfer and device process in a state where a glass substrate is horizontally disposed between the respective chambers. This was configured to be done.
  • This cluster method has the advantage of being able to proceed rapidly in a series of processes, there is an advantage that the exchange of the deposition mask (essential mask) is essential when manufacturing the organic light emitting device.
  • the inline (in) in which the process chambers performing the respective unit processes are connected in series -line) method is suitable. Therefore, there is a need to convert the conventional cluster method to the inline method, the inline method has a lot of overlapping equipment compared to the cluster method is expensive to build the production line, there is a problem that the productivity is low due to the slow process speed.
  • the substrate is horizontally arranged to perform a thin film process (organic film deposition process), which causes severe deflection of the substrate, which causes considerable difficulty in fabricating the device.
  • a thin film process organic film deposition process
  • the deposition mask for a large-area substrate has a load of several hundred kg or more, the deflection phenomenon of the substrate is more severe, causing serious problems such as breaking of the substrate.
  • the present invention has been proposed to solve the above problems, and can achieve high productivity by minimizing the process waiting time such as processing a plurality of substrates in parallel, loading / fixing of substrates, and placing / aligning deposition masks.
  • process waiting time such as processing a plurality of substrates in parallel, loading / fixing of substrates, and placing / aligning deposition masks.
  • the present invention provides a thin film deposition apparatus and a thin film deposition system having the same to maximize the common use of the overlapping equipment, thereby reducing the construction cost of the production line.
  • the present invention provides a thin film deposition apparatus and a thin film deposition system having the same to be able to overcome the deflection phenomenon of the substrate by performing a thin film process by placing the substrate in a vertical state.
  • a thin film deposition apparatus includes a transfer chamber in which a substrate is transferred; And first and second process chambers respectively coupled to both sides of the transfer chamber.
  • Each of the first and second process chambers includes: first and second substrate holders spaced apart from each other; And a spraying unit installed between the first and second substrate holders to sequentially supply deposition raw materials toward the first and second substrate holders. It includes.
  • the first and second substrate holders support the substrate in a vertical state.
  • the transfer chamber is provided with a substrate rotating member which rotates the substrate to stand in a vertical state or lie down in a horizontal state.
  • the jetting unit is rotatable between the first substrate holder and the second substrate holder.
  • the spray unit has a spray structure of any one of a point type, a linear type and a planar type.
  • Each of the first and second process chambers may be connected to a mask chamber for providing a deposition mask to each of the first and second substrate holders or replacing the deposition mask.
  • a thin film deposition system includes: a plurality of transfer chambers connected in a line to transfer a substrate; And first and second process chambers respectively coupled to at least one of the plurality of transfer chambers.
  • Each of the first and second process chambers includes: first and second substrate holders spaced apart from each other; And an injection unit installed between the first and second substrate holders to sequentially supply deposition material toward the first and second substrate holders.
  • the plurality of transfer chambers include a plurality of distribution chambers connected to the first and second process chambers to distribute the substrate and a plurality of buffer chambers connected between neighboring distribution chambers to temporarily hold the substrate. .
  • the first and second substrate holders support the substrate in a vertical state.
  • the transfer chamber is provided with a substrate rotating member which rotates the substrate to stand in a vertical state or lie down in a horizontal state.
  • the jetting unit is rotatable between the first substrate holder and the second substrate holder.
  • a plurality of process chambers that perform the same process are connected to both sides of the transfer chamber, so that the process speed may be increased by performing a thin film process on a plurality of substrates in parallel.
  • the present invention can sequentially achieve a thin film process for a plurality of substrates provided in the process chamber through a single injection unit to achieve cost reduction and productivity improvement at the same time.
  • the present invention is provided with a plurality of processing means on both sides of the inside of the process chamber, it is possible to perform a preliminary preparation for the other process or to perform a post-cleaning operation while the process of one side is performed. Therefore, the overall work waiting time can be shortened and productivity can be greatly improved.
  • the substrate is disposed in a horizontal state during substrate transfer, the substrate is less likely to break during substrate transfer, and the substrate is disposed in a vertical state during the thin film process, so that the substrate is less likely to sag and thus device manufacturing is easy.
  • FIG. 1 is a plan view showing a thin film deposition system according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing some chambers in the thin film deposition system of FIG. 1.
  • 3 to 8 are plan views illustrating a unit process of a thin film deposition system according to an exemplary embodiment of the present invention.
  • loading chamber 120 unloading chamber
  • 200A, 200B process chamber 311, 312, 321, 322: mask chamber
  • FIG. 1 is a plan view showing a thin film deposition system according to an embodiment of the present invention
  • Figure 2 is a plan view showing a part of the chamber in the thin film deposition system of FIG.
  • a plurality of transfer chambers 410, 420, 400 are connected in a line between a front loading chamber 110 and a rear unloading chamber 120.
  • the first and second process chambers 200A and 200B are connected to both of the transfer chambers 410, so that the substrate transfer and the unit process are performed in an in-line manner.
  • the unit process for one substrate G1 / G2 is performed.
  • the preliminary preparation work of the unit process for the other side substrate G3 / G4 can be performed.
  • the loading chamber 110 serves to receive the substrates G1, G2, G3, and G4 that have completed a predetermined preliminary process at atmospheric pressure, and to carry them into the vacuum transfer chamber 400, and the unloading chamber 120
  • the loading chamber 110 and the unloading chamber 120 are configured to switch between the atmospheric pressure state and the vacuum state.
  • the loading chamber 110 and the unloading chamber 120 may be connected with a substrate carrying means such as a robot arm and a substrate loading means such as a substrate cassette.
  • the transfer chamber 400 is connected to the first and second process chambers 200A and 200B and is connected between the distribution chamber 410 and neighboring distribution chambers for distributing the substrates G1, G2, G3, and G4.
  • the buffer chamber 420 may be temporarily suspended by the substrates G1, G2, G3, and G4. In this case, the buffer chamber 420 provides a temporary space in which the substrates G1, G2, G3, and G4 temporarily stay for process waiting.
  • the distribution chamber 410 is provided with a substrate rotating member (not shown) for rotating the substrates G1, G2, G3, and G4 to stand in a vertical state or to lie down in a horizontal state.
  • the substrates G1, G2, G3, and G4 conveyed in a horizontal state from the preceding chamber by the substrate rotating member are erected in a vertical state and introduced into the first and second process chambers 200A and 200B.
  • the substrates G1, G2, G3, and G4 carried out in the vertical state from the two process chambers 200A and 200B are laid down in a horizontal state and conveyed to the subsequent chamber. Accordingly, the substrates G1, G2, G3, and G4 may be disposed in a vertical state in the thin film process, thereby minimizing substrate deflection, and the substrates G1, G2, G3, and G4 may be disposed in the vertical state during substrate transfer. It is possible to minimize the breakage of the substrate due to the flow.
  • the substrates G1, G2, G3, and G4 may be disposed in a vertical state even when the substrate is conveyed, and in this case, the substrate rotating member does not need to be provided in the distribution chamber 410.
  • the first and second process chambers 200A and 200B are connected to both sides of each of the distribution chambers 410, and the deposition masks M1 / M3, and each of the first and second process chambers 200A and 200B are also connected to each of the distribution chambers 410.
  • First and second mask chambers 311/321, 312/322 for supplying the M2 / M4 are connected.
  • the first and second mask chambers 311/321, 312/322 store deposition masks to be used or replaced in the thin film process.
  • only one common mask chamber may be connected to each of the first and second process chambers 200A and 200B.
  • first and second process chambers 200A and 200B connected to the same distribution chamber 410 are configured to perform the same unit process, and the first and second process chambers 211 / connected to the series of distribution chambers.
  • 221/231/241/251 / 261,212 / 222/232/242/252/262 are configured to perform a series of device processes on a substrate.
  • a hole injection layer (HIL), a hole transport layer (HTL), an emitting material layer (EML), and an electron are formed on a substrate G on which an anode is formed from the outside. It is configured to form an organic light emitting device in which a transport layer (ETL), an electron injection layer (EIL), and a cathode are sequentially stacked.
  • first and second process chambers 211 and 212 for forming a hole injection layer are connected to the first distribution chamber, and first and second process chambers 221 and 222 for forming a hole transport layer are connected to the second distribution chamber. do.
  • first and second process chambers 231 and 232 for forming the emission layer are connected to the third distribution chamber, and the first and second process chambers 241 and 242 for forming the electron transport layer are connected to the fourth distribution chamber.
  • first and second process chambers 251 and 252 for forming an electron injection layer are connected to the fifth distribution chamber, and first and second process chambers 261 and 262 for forming a cathode are connected to the sixth transfer chamber.
  • the first and second chambers 231 and 232 for forming the light emitting layer may include a plurality of chambers 231a / 231b, 231c and 232a for forming blue (B), green (G) and red (R) light emitting layers to achieve natural colors.
  • / 232b / 232c, and the first and second chambers 261 and 262 for forming the cathode may include a plurality of chambers 261a / 261b, 261c, 262a / 262b / 262c for forming the cathode of the multilayer structure. It may include.
  • Each of the process chambers 200A and 200B is formed in a rectangular box shape, and a predetermined reaction space for processing the substrates G1, G2, G3, and G4 is provided therein.
  • first and second substrate holders 520/620, 530/630 supporting the substrates G1, G2, G3, and G4 in a vertical state are installed to be spaced apart from each other, and the first and second substrate holders 520.
  • Injection units 540 and 640 are installed between / 620, 530 and 630.
  • first and second gates 511/611, 512/612 are formed in the process chambers 200A and 200B to be connected to the distribution chamber 410 so that the substrate G is loaded or taken out.
  • the first and second gates 511/611 and 512/612 may be configured as slit valves.
  • Each of the first and second substrate holders 520/620, 530/630 is provided with a support 521 for supporting a rear surface of the substrates G1, G2, G3, and G4, and the substrate G is provided on the support 521.
  • a temperature controller 523 for controlling the substrate temperature.
  • the temperature controller 523 is installed inside or under the support 521 to control the substrates G1 / G2 and G3 / G4 mounted on the support 521 to be maintained at a temperature suitable for performing a process.
  • the temperature control means 521 may be composed of a combination of at least one of cooling means for cooling the substrates G1 / G2, G3 / G4 and heating means for heating the substrates G1 / G2, G3 / G4. Can be.
  • a cooling passage is formed in the body of the support 521 so that the substrate temperature is kept constant at the process temperature, thereby improving reactivity with the deposition material deposited on the upper surfaces of the substrates G1 / G2 and G3 / G4. .
  • the clamp 522 holds the edges of the substrates G1, G2, G3, and G4 to prevent the substrates G1, G2, G3, and G4 seated on the support 521 from flowing during the process.
  • the deposition masks M1, M2, M3, and M4 are disposed on the substrates G1, G2, G3, and G4 to regulate the thin film patterns formed on the substrates G1, G2, G3, and G4. Therefore, the clamp 522 may be configured to fix the substrates G1, G2, G3, and G4 and the deposition masks M1, M2, M3, and M4 on the support 521.
  • each injection unit (540,640) includes a crucible in which the raw material is stored, a heating part for vaporizing the raw material and an injection part for injecting the vaporized raw material, and the injection part has a point (point) point.
  • this embodiment is a linear deposition source 540 configured by arranging a plurality of point deposition sources in a row
  • the linear deposition sources 540 and 640 uniformly inject raw materials to the entire area of the substrates G1, G2, G3, and G4 while reciprocating left and right by a reciprocating driving member (not shown).
  • the spray units 540 and 640 of the present embodiment are rotated 180 degrees with respect to the first substrate holders 520 and 620 to spray the raw materials toward the second substrate holders 530 and 630, or vice versa. And to spray the raw material in the direction of (520,620). Accordingly, the thin film process for the plurality of substrates G1 / G2, G3 / G4 provided on both sides of the single chamber 200A or 200B may be sequentially performed using one injection unit.
  • the substrate G on which the anode is formed through the preceding process is loaded into the loading chamber 110 at atmospheric pressure, and the inside of the loading chamber 110 is converted into a vacuum state. Subsequently, the substrate G in a vacuum state is sequentially transferred to a plurality of transfer chambers 410 and 420 connected in series with the loading chamber 110, and each of the process chambers connected to some of the transfer chambers ie, the distribution chamber 410.
  • the unit process is performed by adding to (211/221/231/241/251 / 261,212 / 222/232/242/252/262).
  • the substrate G is sequentially introduced into the hole injection layer forming chambers 211 and 212, the hole transport layer forming chambers 221 and 222, and the light emitting layer forming chambers 231 and 232 in a vacuum state. Accordingly, the hole injection layer, the hole transport layer, and the light emitting layer are sequentially formed on the anode of the substrate G. Thereafter, the electron transport layer forming chambers 241 and 242, the electron injection layer forming chambers 251 and 252, and the cathode forming chambers 261 and 262 are sequentially input. As a result, an electron transporting layer, an electron injection layer, and a multilayer cathode are formed on the light emitting layer of the substrate G, thereby producing an organic light emitting device. Subsequently, the substrate G, which has completed the device process, is transferred to the unloading chamber 120 and is carried out to the outside at atmospheric pressure.
  • the substrate G is conveyed in the vertical state or the horizontal state, and the thin film process is performed in the vertical state.
  • a process of switching the substrate G in the horizontal state to the vertical state is required in each transfer chamber 410.
  • FIGS. 3 to 8. 3 to 8 are plan views illustrating a unit process of a thin film deposition system according to an exemplary embodiment of the present invention.
  • the first and second substrates G1 and G2 in a horizontal state are loaded into the distribution chamber 410 and then converted into a vertical state, and the first and second process chambers ( After being loaded into the inside of the 200A and 200B, the substrate 200 is fixed to the substrate holders 520 and 630. At this time, conveyance of the 1st, 2nd board
  • G1, G2) is arranged in front of the deposition surface and aligned. Subsequently, as shown in FIG. 5, the injection directions of the injection units 540 and 640 are positioned to face the deposition surfaces of the first and second substrates G1 and G2, and the first and second substrates are disposed through the injection units 540 and 640.
  • the first thin film process is performed on the first and second substrates G1 and G2 by spraying a vaporized raw material onto the deposition surfaces of G1 and G2.
  • the third and fourth substrates G3 and G4 are loaded into the distribution chamber 410 during the first thin film process.
  • the third and fourth substrates G3 and G4 are converted into the vertical state in the distribution chamber 410, and are loaded into the first and second process chambers 200A and 200B, respectively, and then the substrate holders 520 and 630. Is fixed to.
  • deposition masks M3 and M4 are provided from the mask chambers 312 and 321 connected to the first and second process chambers 200A and 200B, respectively.
  • G3, G4) are arranged in front of the deposition surface and aligned.
  • the loading / fixing operation of the third and fourth substrates G3 and G4 and the placement / alignment operation of the deposition masks M3 and M4 therefor are preferably performed during the first thin film process.
  • productivity can be improved by shortening the waiting time for performing the next second thin film process.
  • the spray directions of the spray units 540 and 640 are rotated 180 degrees in the opposite direction. Accordingly, when the deposition surfaces of the third and fourth substrates G3 and G4 and the spraying directions of the injection units 540 and 640 face each other, the third and fourth substrates G3 and G4 may be disposed through the injection units 540 and 640.
  • a second thin film process is performed on the third and fourth substrates G3 and G4 by spraying a vaporized raw material on the deposition surface.
  • the deposition masks M1 and M2 are separated from the first and second substrates G1 and G2 that have completed the first thin film process while the second thin film process is being performed, and the deposition mask M1 is performed.
  • the first and second substrates G1 and G2 from which M2 is separated are brought back into the distribution chamber 410.
  • the first and second substrates G1 and G2 are converted into a horizontal state in the distribution chamber 410 and then sequentially transferred to subsequent process chambers that perform horizontal transfer to perform a series of device processes.
  • the carrying out / separating operation of the first and second substrates G1 and G2 and the separating operation of the deposition masks M1 and M2 used therein are preferably performed during the performance of the second thin film process. Therefore, it is possible to shorten the waiting time for performing the next first thin film process to improve productivity.
  • the deposition masks M1, M2, M3, and M4 used in the first and second thin film processes are used in the next thin film process while staying in the chamber, and masks corresponding to replacement factors such as contamination and breakage occur. It is transferred to the chambers 311, 312, 313, 314 and taken out to the atmosphere. Thereafter, the deposition mask is reused through operations such as cleaning and repairing.
  • the deposition masks used in the mask chambers 311, 312, 313, 314 and the spare deposition masks for replacement are stored, thereby minimizing the process downtime during the replacement operation.
  • a plurality of substrates G1 / G2 and G3 / G4 may be connected by connecting a plurality of process chambers 200A and 200B to perform the same process on both sides of the transfer chamber 400.
  • the thin film process for) may be performed in parallel to increase the process speed.
  • the process chamber 200A or 200B is provided with a single injection unit 540, 640 for sequentially injecting raw materials toward the plurality of substrate holders 520/530, 620/630, thereby providing a single injection unit 540, 640.
  • the process chamber 200A or 200B is provided with a plurality of process means 520/530 and 620/630 on both sides thereof, so that the preliminary preparatory work for the other process is performed during one process, for example, The import / fix operation and the deposition / arrangement operation of the deposition mask may be performed, or the post-cleaning operation may be performed, for example, the carrying out / separation operation of the substrate and the separation operation of the deposition mask. Therefore, the overall work waiting time can be shortened and productivity can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention provides a thin film deposition apparatus comprising: a transfer chamber for transferring substrates; and a first process chamber and a second process chamber coupled to both sides of the transfer chamber, respectively, wherein each of the first process chamber and the second process chamber includes: a first substrate holder and a second substrate holder spaced apart from each other; and a spray unit interposed between the first substrate holder and the second substrate holder to consecutively supply deposition materials in the direction of the first and second substrate holders. The present invention also provides a thin film deposition system comprising the apparatus. The thus-configured apparatus of the present invention has multiple process chambers which perform the same process and which are connected to both sides of the transfer chamber, respectively, thus performing a thin film process simultaneously on multiple substrates and improving processing speed.

Description

박막 증착 장치 및 이를 구비하는 박막 증착 시스템Thin film deposition apparatus and thin film deposition system having same
본 발명은 박막 증착 장치에 관한 것으로, 보다 상세하게는 기판 상에 박막을 형성하는 박막 증착 장치 및 이러한 박막 증착 장치가 인라인(in-line) 방식으로 연결된 박막 증착 시스템에 관한 것이다.The present invention relates to a thin film deposition apparatus, and more particularly, to a thin film deposition apparatus for forming a thin film on a substrate and a thin film deposition system in which the thin film deposition apparatus is connected in an in-line manner.
유기 발광 소자(Organic Light Emitted Diode;OLED)는 액정 표시 장치와는 달리 자체 발광이 가능하기 때문에 백라이트가 필요 없어 소비 전력이 작다. 또한, 시야각이 넓고 응답 속도가 빠르기 때문에 이를 이용한 표시 장치는 시야각 및 잔상의 문제가 없는 우수한 화상을 구현할 수 있다.Unlike liquid crystal displays, organic light emitting diodes (OLEDs) emit light by themselves and thus require no backlight, and thus consume less power. In addition, since the viewing angle is wide and the response speed is high, the display device using the same may implement an excellent image without problems of the viewing angle and afterimage.
이러한 유기 발광 소자는 유리 기판 상에 유기막 및 금속막 등 다층의 박막을 적층시켜 제작한다. 따라서, 종래에는 원형의 반송 챔버 주위에 일련의 단위 공정이 수행되는 다수의 단위 챔버가 연결된 클러스터 방식이 주로 사용되었으며, 각각의 챔버들 사이에서 유리 기판이 수평으로 배치한 상태에서 기판 이송 및 소자 공정이 수행되도록 구성되었다. 이러한 클러스터 방식은 일련의 공정을 연속하여 신속하게 진행할 수 있는 장점이 있으며, 유기 발광 소자의 제조시 필수적인 증착 마스크(mask)의 교환이 유리한 장점이 있다.Such an organic light emitting device is produced by laminating a multilayer thin film such as an organic film and a metal film on a glass substrate. Therefore, in the related art, a cluster method in which a plurality of unit chambers in which a series of unit processes are performed around a circular transfer chamber is mainly used, and a substrate transfer and device process in a state where a glass substrate is horizontally disposed between the respective chambers. This was configured to be done. This cluster method has the advantage of being able to proceed rapidly in a series of processes, there is an advantage that the exchange of the deposition mask (essential mask) is essential when manufacturing the organic light emitting device.
한편, 최근에는 고정세 금속 마스크(Fin Metal Mask;FMM)을 이용하여 대면적 기판 상에 청색(B), 녹색(G) 및 적색(R) 발광층을 순차적으로 형성하는 이른바 삼원색 독립 화소 방식의 유기 발광 소자가 주목받고 있다. 이러한 삼원색 독립 화소 방식은 색 순도 및 광 효율이 좋고, 가격 경쟁력 확보에 유리한 것으로 알려져 있다. On the other hand, recently, a so-called three primary color independent pixel type organic layer in which blue (B), green (G) and red (R) emission layers are sequentially formed on a large-area substrate using a high-definition metal mask (FMM) is used. The light emitting element is attracting attention. Such three primary color independent pixel systems are known to have good color purity and light efficiency, and are advantageous in securing price competitiveness.
그러나, 삼원색 독립 화소 방식은 각각 독립된 공정 챔버에서 청색(B), 녹색(G) 및 적색(R) 발광층을 순차적으로 형성하여야 하므로, 각각의 단위 공정을 수행하는 공정 챔버들이 일렬로 연결된 인라인(in-line) 방식이 적합하다. 따라서, 종래의 클러스터 방식을 인라인 방식으로 전환할 필요성이 있는데, 인라인 방식은 클러스터 방식에 비해 중첩 장비가 많아 생산 라인의 구축 비용이 많이들고, 공정 속도가 느려 생산성이 낮은 문제점이 있었다.However, since the three primary color independent pixel methods must form the blue (B), green (G), and red (R) light emitting layers sequentially in the independent process chambers, the inline (in) in which the process chambers performing the respective unit processes are connected in series -line) method is suitable. Therefore, there is a need to convert the conventional cluster method to the inline method, the inline method has a lot of overlapping equipment compared to the cluster method is expensive to build the production line, there is a problem that the productivity is low due to the slow process speed.
그리고, 종래의 클러스터 방식은 기판을 수평으로 배치하여 박막 공정(유기막 성막 공정)을 수행하는데, 이로 인해 기판의 쳐짐 현상이 심각하여 소자 제작시 상당한 곤란함이 있었다. 또한, 대면적 기판용 증착 마스크는 하중이 수백 kg 이상이기 때문에 기판의 처짐 현상이 더욱 심해 기판 파단 등의 심각한 문제를 야기한다. In the conventional cluster method, the substrate is horizontally arranged to perform a thin film process (organic film deposition process), which causes severe deflection of the substrate, which causes considerable difficulty in fabricating the device. In addition, since the deposition mask for a large-area substrate has a load of several hundred kg or more, the deflection phenomenon of the substrate is more severe, causing serious problems such as breaking of the substrate.
본 발명은 상기의 문제점을 해결하고자 제안된 것으로서, 다수의 기판을 병행 처리하고, 기판의 반입/고정 작업 및 증착 마스크의 배치/정렬 작업 등의 공정 대기 시간을 최소화함으로써, 높은 생산성을 달성할 수 있도록 한 박막 증착 장치 및 이를 구비하는 박막 증착 시스템을 제공한다.The present invention has been proposed to solve the above problems, and can achieve high productivity by minimizing the process waiting time such as processing a plurality of substrates in parallel, loading / fixing of substrates, and placing / aligning deposition masks. To provide a thin film deposition apparatus and a thin film deposition system having the same.
또한, 본 발명은 중첩 장비의 공용 사용을 극대화함으로써, 생산 라인의 구축 비용을 절감할 수 있도록 한 박막 증착 장치 및 이를 구비하는 박막 증착 시스템을 제공한다.In addition, the present invention provides a thin film deposition apparatus and a thin film deposition system having the same to maximize the common use of the overlapping equipment, thereby reducing the construction cost of the production line.
또한, 본 발명은 기판을 수직 상태로 배치시켜 박막 공정을 수행함으로써, 기판의 처짐 현상을 극복할 수 있도록 한 박막 증착 장치 및 이를 구비하는 박막 증착 시스템을 제공한다.In addition, the present invention provides a thin film deposition apparatus and a thin film deposition system having the same to be able to overcome the deflection phenomenon of the substrate by performing a thin film process by placing the substrate in a vertical state.
본 발명의 일 측면에 따른 박막 증착 장치는, 기판이 이송되는 반송 챔버; 및 상기 반송 챔버의 양쪽에 각각 결합된 제 1, 제 2 공정 챔버; 를 포함하고, 상기 제 1, 제 2 공정 챔버 각각은, 상호 이격되어 설치되는 제 1, 제 2 기판 홀더; 및 상기 제 1, 제 2 기판 홀더 사이에 설치되어 상기 제 1, 제 2 기판 홀더 방향으로 순차적으로 증착 원료를 공급하는 분사 유닛; 을 포함한다.According to an aspect of the present invention, a thin film deposition apparatus includes a transfer chamber in which a substrate is transferred; And first and second process chambers respectively coupled to both sides of the transfer chamber. Each of the first and second process chambers includes: first and second substrate holders spaced apart from each other; And a spraying unit installed between the first and second substrate holders to sequentially supply deposition raw materials toward the first and second substrate holders. It includes.
상기 제 1, 제 2 기판 홀더는 기판을 수직 상태로 지지하는 것이 바람직하다.Preferably, the first and second substrate holders support the substrate in a vertical state.
상기 반송 챔버에는 기판을 회전시켜 수직 상태로 세우거나 수평 상태로 눕혀주는 기판 회전 부재가 마련되는 것이 바람직하다.Preferably, the transfer chamber is provided with a substrate rotating member which rotates the substrate to stand in a vertical state or lie down in a horizontal state.
상기 분사 유닛은 제 1 기판 홀더와 제 2 기판 홀더 사이에서 회전 가능한 것이 바람직하다.Preferably, the jetting unit is rotatable between the first substrate holder and the second substrate holder.
상기 분사 유닛은 점형, 선형 및 면형 중 어느 하나의 분사 구조를 갖는 것이 바람직하다.Preferably, the spray unit has a spray structure of any one of a point type, a linear type and a planar type.
상기 제 1, 제 2 공정 챔버 각각에는 상기 제 1, 제 2 기판 홀더 각각에 증착 마스크를 제공하거나, 또는 증착 마스크를 교체하기 위한 마스크 챔버가 연결되는 것이 바람직하다.Each of the first and second process chambers may be connected to a mask chamber for providing a deposition mask to each of the first and second substrate holders or replacing the deposition mask.
본 발명의 다른 측면에 따른 박막 증착 시스템은, 일렬로 연결되어 기판이 이송되는 다수의 반송 챔버; 및 상기 다수의 반송 챔버 중 적어도 하나의 양쪽에 각각 결합된 제 1, 제 2 공정 챔버; 를 포함하고, 상기 제 1, 제 2 공정 챔버 각각은 상호 이격되어 설치되는 제 1, 제 2 기판 홀더; 및 상기 제 1, 제 2 기판 홀더 사이에 설치되어 상기 제 1, 제 2 기판 홀더 방향으로 순차적으로 증착 원료를 공급하는 분사 유닛;을 포함한다.According to another aspect of the present invention, a thin film deposition system includes: a plurality of transfer chambers connected in a line to transfer a substrate; And first and second process chambers respectively coupled to at least one of the plurality of transfer chambers. Each of the first and second process chambers includes: first and second substrate holders spaced apart from each other; And an injection unit installed between the first and second substrate holders to sequentially supply deposition material toward the first and second substrate holders.
상기 다수의 반송 챔버는 상기 제 1, 제 2 공정 챔버에 연결되어 기판을 분배하는 다수의 분배 챔버 및 이웃한 분배 챔버들 사이에 연결되어 기판이 일시 대기되는 다수의 완충 챔버를 포함하는 것이 바람직하다.Preferably, the plurality of transfer chambers include a plurality of distribution chambers connected to the first and second process chambers to distribute the substrate and a plurality of buffer chambers connected between neighboring distribution chambers to temporarily hold the substrate. .
상기 다수의 반송 챔버 중 선단에 연결되어 외부로부터 기판이 반입되는 로딩 챔버 및 상기 다수의 반송 챔버 중 후단에 연결되어 기판이 외부로 반출되는 언로딩 챔버를 포함하는 것이 바람직하다.It is preferable to include a loading chamber connected to a front end of the plurality of transfer chambers and a substrate is carried in from the outside, and an unloading chamber connected to a rear end of the plurality of transfer chambers and the substrate is carried out.
상기 제 1, 제 2 기판 홀더는 기판을 수직 상태로 지지하는 것이 바람직하다.Preferably, the first and second substrate holders support the substrate in a vertical state.
상기 반송 챔버에는 기판을 회전시켜 수직 상태로 세우거나 수평 상태로 눕혀주는 기판 회전 부재가 마련되는 것이 바람직하다.Preferably, the transfer chamber is provided with a substrate rotating member which rotates the substrate to stand in a vertical state or lie down in a horizontal state.
상기 분사 유닛은 제 1 기판 홀더와 제 2 기판 홀더 사이에서 회전 가능한 것이 바람직하다.Preferably, the jetting unit is rotatable between the first substrate holder and the second substrate holder.
본 발명은 반송 챔버의 양쪽에 동일 공정을 수행하는 다수의 공정 챔버가 연결됨으로써, 다수의 기판에 대한 박막 공정을 병행적으로 실시하여 공정 속도를 높일 수 있다.According to the present invention, a plurality of process chambers that perform the same process are connected to both sides of the transfer chamber, so that the process speed may be increased by performing a thin film process on a plurality of substrates in parallel.
또한, 본 발명은 단일의 분사 유닛을 통해 공정 챔버 내에 마련된 다수의 기판에 대한 박막 공정을 순차적으로 실시하여 비용 절감 및 생산성 향상을 동시에 달성할 수 있다.In addition, the present invention can sequentially achieve a thin film process for a plurality of substrates provided in the process chamber through a single injection unit to achieve cost reduction and productivity improvement at the same time.
또한, 본 발명은 공정 챔버의 내부 양쪽에 다수의 공정 수단이 마련됨으로써, 일측의 공정이 수행되는 동안에 타측 공정에 대한 사전 준비 작업을 실시하거나, 또는 사후 정리 작업을 수행을 수행할 수 있다. 따라서, 전체적인 작업 대기 시간을 단축하여 생산성을 크게 향상시킬 수 있다. In addition, the present invention is provided with a plurality of processing means on both sides of the inside of the process chamber, it is possible to perform a preliminary preparation for the other process or to perform a post-cleaning operation while the process of one side is performed. Therefore, the overall work waiting time can be shortened and productivity can be greatly improved.
또한, 본 발명은 기판 반송시에는 기판이 수평 상태로 배치되므로 기판 반송 중에 기판이 파단될 우려가 적고, 박막 공정시에는 기판이 수직 상태로 배치되므로 기판 처짐 현상이 적어 소자 제작이 용이하다.In addition, in the present invention, since the substrate is disposed in a horizontal state during substrate transfer, the substrate is less likely to break during substrate transfer, and the substrate is disposed in a vertical state during the thin film process, so that the substrate is less likely to sag and thus device manufacturing is easy.
도 1은 본 발명의 실시예에 따른 박막 증착 시스템을 나타낸 평면도.1 is a plan view showing a thin film deposition system according to an embodiment of the present invention.
도 2는 도 1의 박막 증착 시스템에서 일부 챔버를 나타낸 평면도.FIG. 2 is a plan view showing some chambers in the thin film deposition system of FIG. 1. FIG.
도 3 내지 도 8은 본 발명의 실시예에 따른 박막 증착 시스템의 단위 공정을 설명하기 위한 평면도.3 to 8 are plan views illustrating a unit process of a thin film deposition system according to an exemplary embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
110: 로딩 챔버 120: 언로딩 챔버110: loading chamber 120: unloading chamber
200A,200B: 공정 챔버 311,312,321,322: 마스크 챔버200A, 200B: process chamber 311, 312, 321, 322: mask chamber
410: 분배 챔버 420: 완충 챔버410: distribution chamber 420: buffer chamber
511,512,611,612: 게이트 520,530,620,630: 기판 홀더511,512,611,612: gates 520,530,620,630: substrate holder
521: 지지대 522: 클램프521: support 522: clamp
G: 기판 M: 마스크G: Substrate M: Mask
이후, 첨부된 도면을 참조하여 본 발명에 따른 실시예를 더욱 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상의 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment according to the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. Like reference numerals in the drawings refer to like elements.
도 1은 본 발명의 실시예에 따른 박막 증착 시스템을 나타낸 평면도이고, 도 2는 도 1의 박막 증착 시스템에서 일부 챔버를 나타낸 평면도이다.1 is a plan view showing a thin film deposition system according to an embodiment of the present invention, Figure 2 is a plan view showing a part of the chamber in the thin film deposition system of FIG.
도 1 및 도 2를 참조하면, 박막 증착 시스템은 선단의 로딩(loading) 챔버(110)와 후단의 언로딩(unloading) 챔버(120) 사이에 다수의 반송 챔버(410,420;400)가 일렬로 연결되고, 이 중에서 일부 반송 챔버(410)의 양쪽에 제 1, 제 2 공정 챔버(200A,200B)가 연결되어, 전체적으로 기판 반송 및 단위 공정이 일렬로 진행되는 인라인(in-line) 방식으로 구성된다. 이때, 제 1, 제 2 공정 챔버(200A,200B) 각각의 내부 공간으로 두 개의 기판(G1/G2,G3/G4)이 반입될 수 있으므로, 일측 기판(G1/G2)에 대한 단위 공정을 실시하는 동안에 타측 기판(G3/G4)에 대한 단위 공정의 사전 준비 작업을 실시할 수 있다.1 and 2, in a thin film deposition system, a plurality of transfer chambers 410, 420, 400 are connected in a line between a front loading chamber 110 and a rear unloading chamber 120. Among them, the first and second process chambers 200A and 200B are connected to both of the transfer chambers 410, so that the substrate transfer and the unit process are performed in an in-line manner. . In this case, since two substrates G1 / G2 and G3 / G4 may be carried into the internal spaces of the first and second process chambers 200A and 200B, the unit process for one substrate G1 / G2 is performed. In the meantime, the preliminary preparation work of the unit process for the other side substrate G3 / G4 can be performed.
로딩 챔버(110)는 소정의 선행 공정을 마친 기판(G1,G2,G3,G4)을 대기압 상태에서 전달받아 이를 진공 상태의 반송 챔버(400)로 반입시키는 역할을 하고, 언로딩 챔버(120)는 일련의 단위 공정을 마친 기판(G1,G2,G3,G4)을 반송 챔버(400)로부터 전달받아 이를 후행 공정을 위해 대기압 상태로 반출시키는 역할을 한다. 따라서, 로딩 챔버(110) 및 언로딩 챔버(120)는 대기압 상태와 진공 상태를 상호 전환할 수 있도록 구성된다. 또한, 도시되지는 않았지만, 상기 로딩 챔버(110) 및 언로딩 챔버(120)는 로봇 암과 같은 기판 반송 수단 및 기판 카셋트와 같은 기판 적재 수단과 연결될 수 있다.The loading chamber 110 serves to receive the substrates G1, G2, G3, and G4 that have completed a predetermined preliminary process at atmospheric pressure, and to carry them into the vacuum transfer chamber 400, and the unloading chamber 120 The substrates G1, G2, G3, and G4, which have completed a series of unit processes, receive the substrates G1, G2, G3, and G4 from the transfer chamber 400 and take them out to atmospheric pressure for the subsequent process. Thus, the loading chamber 110 and the unloading chamber 120 are configured to switch between the atmospheric pressure state and the vacuum state. In addition, although not shown, the loading chamber 110 and the unloading chamber 120 may be connected with a substrate carrying means such as a robot arm and a substrate loading means such as a substrate cassette.
반송 챔버(400)는 상기 제 1, 제 2 공정 챔버(200A,200B)에 연결되어 기판(G1,G2,G3,G4)을 분배하는 분배 챔버(410) 및 이웃한 분배 챔버들 사이에 연결되어 기판(G1,G2,G3,G4)이 일시 대기되는 완충 챔버(420)를 포함한다. 이때, 완충 챔버(420)는 공정 대기를 위해 기판(G1,G2,G3,G4)이 잠시 머무르는 임시 공간을 제공한다. 상기 분배 챔버(410)에는 기판(G1,G2,G3,G4)을 회전시켜 수직 상태로 세우거나 수평 상태로 눕혀주는 기판 회전 부재(미도시)가 마련된다. 이러한 기판 회전 부재에 의해 선행 챔버로부터 수평 상태로 반송된 기판(G1,G2,G3,G4)은 수직 상태로 세워져서 제 1, 제 2 공정 챔버(200A,200B)로 투입되고, 제 1, 제 2 공정 챔버(200A,200B)로부터 수직 상태로 반출된 기판(G1,G2,G3,G4)은 수평 상태로 눕혀져서 후속 챔버로 반송된다. 따라서, 박막 공정 시에는 기판(G1,G2,G3,G4)을 수직 상태로 배치시켜 기판 쳐짐 현상을 최소화할 수 있고, 기판 반송 시에는 기판(G1,G2,G3,G4)을 수직 상태로 배치시켜 유동에 따른 기판 파손을 최소화할 수 있다. 물론, 기판 반송 시에도 기판(G1,G2,G3,G4)이 수직 상태로 배치될 수 있고, 이 경우에는 분배 챔버(410)에 기판 회전 부재가 마련될 필요가 없다.The transfer chamber 400 is connected to the first and second process chambers 200A and 200B and is connected between the distribution chamber 410 and neighboring distribution chambers for distributing the substrates G1, G2, G3, and G4. The buffer chamber 420 may be temporarily suspended by the substrates G1, G2, G3, and G4. In this case, the buffer chamber 420 provides a temporary space in which the substrates G1, G2, G3, and G4 temporarily stay for process waiting. The distribution chamber 410 is provided with a substrate rotating member (not shown) for rotating the substrates G1, G2, G3, and G4 to stand in a vertical state or to lie down in a horizontal state. The substrates G1, G2, G3, and G4 conveyed in a horizontal state from the preceding chamber by the substrate rotating member are erected in a vertical state and introduced into the first and second process chambers 200A and 200B. The substrates G1, G2, G3, and G4 carried out in the vertical state from the two process chambers 200A and 200B are laid down in a horizontal state and conveyed to the subsequent chamber. Accordingly, the substrates G1, G2, G3, and G4 may be disposed in a vertical state in the thin film process, thereby minimizing substrate deflection, and the substrates G1, G2, G3, and G4 may be disposed in the vertical state during substrate transfer. It is possible to minimize the breakage of the substrate due to the flow. Of course, the substrates G1, G2, G3, and G4 may be disposed in a vertical state even when the substrate is conveyed, and in this case, the substrate rotating member does not need to be provided in the distribution chamber 410.
한편, 각각의 분배 챔버(410)에는 양쪽에 제 1, 제 2 공정 챔버(200A,200B)가 연결되고, 상기 제 1, 제 2 공정 챔버(200A,200B) 각각에도 증착 마스크(M1/M3,M2/M4)를 공급하는 제 1, 제 2 마스크 챔버(311/321,312/322)가 연결된다. 상기 제 1, 제 2 마스크 챔버(311/321,312/322)에는 박막 공정시 사용하거나, 또는 교체 사용할 증착 마스크가 저장된다. 물론, 제 1, 제 2 마스크 챔버(311/321,312/322)는 공용 사용될 수 있으므로, 상기 제 1, 제 2 공정 챔버(200A,200B) 각각에는 하나의 공용 마스크 챔버만 연결될 수도 있다. The first and second process chambers 200A and 200B are connected to both sides of each of the distribution chambers 410, and the deposition masks M1 / M3, and each of the first and second process chambers 200A and 200B are also connected to each of the distribution chambers 410. First and second mask chambers 311/321, 312/322 for supplying the M2 / M4 are connected. The first and second mask chambers 311/321, 312/322 store deposition masks to be used or replaced in the thin film process. Of course, since the first and second mask chambers 311/321, 312/322 may be used in common, only one common mask chamber may be connected to each of the first and second process chambers 200A and 200B.
또한, 동일한 분배 챔버(410)에 연결된 제 1, 제 2 공정 챔버(200A,200B)는 동일한 단위 공정을 수행하도록 구성되며, 일련된 분배 챔버들에 연결된 제 1, 제 2 공정 챔버들(211/221/231/241/251/261,212/222/232/242/252/262)이 기판 상에 일련의 소자 공정을 수행하도록 구성된다. 예를 들어, 본 실시예는 외부에서 양극이 형성된 기판(G) 상에 정공 주입층(Hole Injection Layer;HIL), 정공 수송층(Hole Transport Layer;HTL), 발광층(Emitting material Layer;EML), 전자 수송층(Electron Transport Layer;ETL), 전자 주입층(Electron Injection Layer;EIL) 및 음극이 순차적으로 적층된 유기 발광 소자를 형성할 수 있도록 구성된다. 이를 위해, 제 1 분배 챔버에는 정공 주입층 형성을 위한 제 1, 제 2 공정 챔버(211,212)가 연결되고, 제 2 분배 챔버에는 정공 수송층 형성을 위한 제 1, 제 2 공정 챔버(221,222)가 연결된다. 또한, 제 3 분배 챔버에는 발광층 형성을 위한 제 1, 제 2 공정 챔버(231,232)가 연결되고, 제 4 분배 챔버에는 전자 수송층 형성을 위한 제 1, 제 2 공정 챔버(241,242)가 연결된다. 또한, 제 5 분배 챔버에는 전자 주입층 형성을 위한 제 1, 제 2 공정 챔버(251,252)가 연결되고, 제 6 반송 챔버에는 음극 형성을 위한 제 1, 제 2 공정 챔버(261,262)가 연결된다. 이때, 상기 발광층 형성을 위한 제 1, 제 2 챔버(231,232)는 천연색 구현을 위해 청색(B), 녹색(G) 및 적색(R) 발광층을 형성하는 다수의 챔버(231a/231b,231c, 232a/232b/232c)를 포함할 수 있고, 음극 형성을 위한 제 1, 제 2 챔버(261,262)는 다층 구조의 음극을 형성하는 다수의 챔버(261a/261b,261c,262a/262b/262c))를 포함할 수 있다.In addition, the first and second process chambers 200A and 200B connected to the same distribution chamber 410 are configured to perform the same unit process, and the first and second process chambers 211 / connected to the series of distribution chambers. 221/231/241/251 / 261,212 / 222/232/242/252/262 are configured to perform a series of device processes on a substrate. For example, in the present embodiment, a hole injection layer (HIL), a hole transport layer (HTL), an emitting material layer (EML), and an electron are formed on a substrate G on which an anode is formed from the outside. It is configured to form an organic light emitting device in which a transport layer (ETL), an electron injection layer (EIL), and a cathode are sequentially stacked. To this end, first and second process chambers 211 and 212 for forming a hole injection layer are connected to the first distribution chamber, and first and second process chambers 221 and 222 for forming a hole transport layer are connected to the second distribution chamber. do. In addition, the first and second process chambers 231 and 232 for forming the emission layer are connected to the third distribution chamber, and the first and second process chambers 241 and 242 for forming the electron transport layer are connected to the fourth distribution chamber. In addition, first and second process chambers 251 and 252 for forming an electron injection layer are connected to the fifth distribution chamber, and first and second process chambers 261 and 262 for forming a cathode are connected to the sixth transfer chamber. In this case, the first and second chambers 231 and 232 for forming the light emitting layer may include a plurality of chambers 231a / 231b, 231c and 232a for forming blue (B), green (G) and red (R) light emitting layers to achieve natural colors. / 232b / 232c, and the first and second chambers 261 and 262 for forming the cathode may include a plurality of chambers 261a / 261b, 261c, 262a / 262b / 262c for forming the cathode of the multilayer structure. It may include.
각각의 공정 챔버(200A,200B)는 사각 박스 형상으로 제작되어, 내부에는 기판(G1,G2,G3,G4)을 처리할 수 있는 소정의 반응 공간이 마련된다. 상기 반응 공간에는 기판(G1,G2,G3,G4)을 수직 상태로 지지하는 제 1, 제 2 기판 홀더(520/620,530/630)가 상호 이격되어 설치되고, 제 1, 제 2 기판 홀더(520/620,530/630)의 사이에 분사 유닛(540,640)이 설치된다. 또한, 각각의 공정 챔버(200A,200B)에는 분배 챔버(410)와 연결되어 기판(G)이 반입 또는 반출되는 제 1, 제 2 게이트(511/611,512/612)가 상호 이격되어 형성된다. 이때, 제 1, 제 2 게이트트(511/611,512/612)는 슬릿 밸브(slit valve)로 구성될 수 있다.Each of the process chambers 200A and 200B is formed in a rectangular box shape, and a predetermined reaction space for processing the substrates G1, G2, G3, and G4 is provided therein. In the reaction space, first and second substrate holders 520/620, 530/630 supporting the substrates G1, G2, G3, and G4 in a vertical state are installed to be spaced apart from each other, and the first and second substrate holders 520. Injection units 540 and 640 are installed between / 620, 530 and 630. In addition, first and second gates 511/611, 512/612 are formed in the process chambers 200A and 200B to be connected to the distribution chamber 410 so that the substrate G is loaded or taken out. In this case, the first and second gates 511/611 and 512/612 may be configured as slit valves.
상기 제 1, 제 2 기판 홀더(520/620,530/630) 각각은 기판(G1,G2,G3,G4)의 배면을 지지하는 지지대(521)와, 상기 지지대(521)에 설치되어 기판(G)을 고정하는 클램프(clamp)(522) 및 기판 온도를 제어하는 온도 제어부(523)를 포함한다. 상기 온도 제어부(523)는 상기 지지대(521)의 내부 또는 하부에 설치되어 지지대(521) 상에 안착된 기판(G1/G2,G3/G4)이 공정 수행에 적합한 온도로 유지될 수 있도록 제어한다. 이러한 온도 제어 수단(521)은 기판(G1/G2,G3/G4)을 냉각시켜주는 냉각 수단 및 기판(G1/G2,G3/G4)을 가열시켜주는 가열 수단 중 적어도 어느 하나의 조합으로 구성될 수 있다. 본 실시예에서는 지지대(521)의 몸체에 냉각 유로가 형성되어 기판 온도가 공정 온도로 일정하게 유지됨으로써, 기판(G1/G2,G3/G4) 상면에 증착되는 증착 물질과의 반응성을 향상시켜준다.Each of the first and second substrate holders 520/620, 530/630 is provided with a support 521 for supporting a rear surface of the substrates G1, G2, G3, and G4, and the substrate G is provided on the support 521. And a temperature controller 523 for controlling the substrate temperature. The temperature controller 523 is installed inside or under the support 521 to control the substrates G1 / G2 and G3 / G4 mounted on the support 521 to be maintained at a temperature suitable for performing a process. . The temperature control means 521 may be composed of a combination of at least one of cooling means for cooling the substrates G1 / G2, G3 / G4 and heating means for heating the substrates G1 / G2, G3 / G4. Can be. In this embodiment, a cooling passage is formed in the body of the support 521 so that the substrate temperature is kept constant at the process temperature, thereby improving reactivity with the deposition material deposited on the upper surfaces of the substrates G1 / G2 and G3 / G4. .
상기 클램프(522)는 기판(G1,G2,G3,G4)의 가장자리를 잡아줌으로써 지지대(521) 상에 안착된 기판(G1,G2,G3,G4)이 공정 중에 유동하는 것을 방지한다. 본 실시예의 경우는 기판(G1,G2,G3,G4) 상에 형성되는 박막 패턴을 규제하기 위하여 기판(G1,G2,G3,G4) 상에 증착 마스크(M1,M2,M3,M4)가 배치되므로, 상기 클램프(522)는 기판(G1,G2,G3,G4)과 증착 마스크(M1,M2,M3,M4)를 모두 지지대(521) 상에 고정시킬 수 있도록 구성되는 것이 바람직하다.The clamp 522 holds the edges of the substrates G1, G2, G3, and G4 to prevent the substrates G1, G2, G3, and G4 seated on the support 521 from flowing during the process. In this embodiment, the deposition masks M1, M2, M3, and M4 are disposed on the substrates G1, G2, G3, and G4 to regulate the thin film patterns formed on the substrates G1, G2, G3, and G4. Therefore, the clamp 522 may be configured to fix the substrates G1, G2, G3, and G4 and the deposition masks M1, M2, M3, and M4 on the support 521.
상기 분사 유닛(540,640)은 제 1, 제 2 기판 홀더(520/620,530/630) 사이에 설치되어 제 1 기판 홀더 방향 또는 제 2 기판 홀더 방향으로 기화 상태의 원료 물질을 분사한다. 이때, 도시되지는 않았지만, 각각의 분사 유닛((540,640)은 원료 물질이 저장되는 도가니와, 상기 원료 물질을 기화시키는 가열부 및 기화된 원료 물질을 분사하는 분사부를 포함하며, 분사부는 점형(point-type), 선형(line-type) 및 면형(plane-type) 중 어느 하나의 분사 구조를 갖는다. 예를 들어, 본 실시예는 다수의 점형 증착원을 일렬로 배치시켜 구성한 선형 증착원(540)을 사용하며, 이러한 선형 증착원(540,640)은 왕복 구동 부재(미도시)에 의해 좌/우로 왕복하면서 기판(G1,G2,G3,G4)의 전체 면적에 원료 물질을 균일하게 분사한다.The injection units 540 and 640 are installed between the first and second substrate holders 520/620, 530/630 to inject a raw material in a vaporized state toward the first substrate holder direction or the second substrate holder direction. At this time, although not shown, each injection unit (540,640) includes a crucible in which the raw material is stored, a heating part for vaporizing the raw material and an injection part for injecting the vaporized raw material, and the injection part has a point (point) point. -type, line-type, and plane-type (plane-type) has a spray structure of any one, for example, this embodiment is a linear deposition source 540 configured by arranging a plurality of point deposition sources in a row The linear deposition sources 540 and 640 uniformly inject raw materials to the entire area of the substrates G1, G2, G3, and G4 while reciprocating left and right by a reciprocating driving member (not shown).
특히, 본 실시예의 분사 유닛(540,640)은 제 1 기판 홀더(520,620)를 기준으로 180도 회전되어 제 2 기판 홀더(530,630) 방향으로 원료 물질을 분사하거나, 또는 반대로 180도 회전되어 제 1 기판 홀더(520,620) 방향으로 원료 물질을 분사하도록 구성된다. 이에 따라, 단일 챔버(200A 또는 200B)의 내부 양측에 마련된 다수의 기판(G1/G2,G3/G4)에 대한 박막 공정을 하나의 분사 유닛을 이용하여 순차적으로 수행할 수 있다.In particular, the spray units 540 and 640 of the present embodiment are rotated 180 degrees with respect to the first substrate holders 520 and 620 to spray the raw materials toward the second substrate holders 530 and 630, or vice versa. And to spray the raw material in the direction of (520,620). Accordingly, the thin film process for the plurality of substrates G1 / G2, G3 / G4 provided on both sides of the single chamber 200A or 200B may be sequentially performed using one injection unit.
이와 같은 구성된 박막 증착 시스템을 이용한 박막 증착 공정에 대해 도 1을 참조하여 간략히 설명하면 다음과 같다.The thin film deposition process using the thin film deposition system configured as described above will be briefly described with reference to FIG. 1.
먼저, 선행 공정을 통해 양극이 형성된 기판(G)은 대기압 상태에서 로딩 챔버(110)로 반입되고, 로딩 챔버(110) 내부는 진공 상태로 전환된다. 이어, 진공 상태의 기판(G)은 로딩 챔버(110)와 일렬로 연결된 다수의 반송 챔버(410,420)로 순차적으로 이송되고, 일부의 반송 챔버 즉, 분배 챔버(410)와 연결된 각각의 공정 챔버들(211/221/231/241/251/261,212/222/232/242/252/262)에 투입되어 단위 공정이 수행된다. 즉, 기판(G)은 진공 상태에서 정공 주입층 형성 챔버(211,212), 정공 수송층 형성 챔버(221,222) 및 발광층 형성 챔버(231,232)에 순차적으로 투입된다. 이에 따라, 기판(G)의 양극 상에는 정공 주입층, 정공 수송층 및 발광층이 순차적으로 형성된다. 이후, 전자 수송층 형성 챔버(241,242), 전자 주입층 형성 챔버(251,252), 음극 형성 챔버(261,262)에 순차적으로 투입된다. 이에 따라, 기판(G)의 발광층 상에는 전자 수송층, 전자 주입층 및 다층의 음극이 형성되어 유기 발광 소자가 제작된다. 이후, 소자 공정을 마친 기판(G)은 언로딩 챔버(120)로 이송되어 대기압 상태에서 외부로 반출된다.First, the substrate G on which the anode is formed through the preceding process is loaded into the loading chamber 110 at atmospheric pressure, and the inside of the loading chamber 110 is converted into a vacuum state. Subsequently, the substrate G in a vacuum state is sequentially transferred to a plurality of transfer chambers 410 and 420 connected in series with the loading chamber 110, and each of the process chambers connected to some of the transfer chambers ie, the distribution chamber 410. The unit process is performed by adding to (211/221/231/241/251 / 261,212 / 222/232/242/252/262). That is, the substrate G is sequentially introduced into the hole injection layer forming chambers 211 and 212, the hole transport layer forming chambers 221 and 222, and the light emitting layer forming chambers 231 and 232 in a vacuum state. Accordingly, the hole injection layer, the hole transport layer, and the light emitting layer are sequentially formed on the anode of the substrate G. Thereafter, the electron transport layer forming chambers 241 and 242, the electron injection layer forming chambers 251 and 252, and the cathode forming chambers 261 and 262 are sequentially input. As a result, an electron transporting layer, an electron injection layer, and a multilayer cathode are formed on the light emitting layer of the substrate G, thereby producing an organic light emitting device. Subsequently, the substrate G, which has completed the device process, is transferred to the unloading chamber 120 and is carried out to the outside at atmospheric pressure.
한편, 상기 박막 증착 공정에서 기판(G)은 수직 상태 또는 수평 상태로 반송되고, 수직 상태에서 박막 공정이 수행된다. 이때, 기판 반송이 수평 상태로 이루어지는 경우에는 각각의 반송 챔버(410) 내에서 수평 상태의 기판(G)을 수직 상태로 전환시키는 과정이 필요하다. 하기에서는 수평 상태의 기판(G)을 수직 상태로 전환시켜 단위 공정을 수행하는 과정에 대해 도 3 내지 도 8을 참조하여 보다 상세히 설명한다. 여기서, 도 3 내지 도 8은 본 발명의 실시예에 따른 박막 증착 시스템의 단위 공정을 설명하기 위한 평면도이다.In the thin film deposition process, the substrate G is conveyed in the vertical state or the horizontal state, and the thin film process is performed in the vertical state. At this time, when the substrate transfer is in a horizontal state, a process of switching the substrate G in the horizontal state to the vertical state is required in each transfer chamber 410. Hereinafter, a process of performing a unit process by converting the substrate G in a horizontal state to a vertical state will be described in more detail with reference to FIGS. 3 to 8. 3 to 8 are plan views illustrating a unit process of a thin film deposition system according to an exemplary embodiment of the present invention.
먼저, 도 3 및 도 4와 같이, 수평 상태의 제 1, 제 2 기판(G1,G2)은 분배 챔버(410)의 내부로 반입된 후 수직 상태로 전환되고, 제 1, 제 2 공정 챔버(200A,200B)의 내부로 반입된 후 각각의 기판 홀더(520,630)에 고정된다. 이때, 제 1, 제 2 기판(G1,G2)의 반송은 동시에, 또는 소정의 시간차를 두어 실시할 수 있다. 이어, 제 1, 제 2 공정 챔버(200A,200B) 각각에 연결된 마스크 챔버(311,322)로부터 증착 마스크(M1,M2)가 제공되고, 제공된 증착 마스크(M1,M2)는 제 1, 제 2 기판(G1,G2)의 증착면 앞쪽에 배치되어 정렬된다. 이어, 도 5와 같이, 분사 유닛(540,640)의 분사 방향이 제 1, 제 2 기판(G1,G2)의 증착면과 상호 대향되도록 위치시키고, 분사 유닛(540,640)을 통해 제 1, 제 2 기판(G1,G2)의 증착면으로 기화 상태의 원료 물질을 분사시켜 제 1, 제 2 기판(G1,G2)에 대한 제 1 박막 공정을 수행한다.First, as shown in FIGS. 3 and 4, the first and second substrates G1 and G2 in a horizontal state are loaded into the distribution chamber 410 and then converted into a vertical state, and the first and second process chambers ( After being loaded into the inside of the 200A and 200B, the substrate 200 is fixed to the substrate holders 520 and 630. At this time, conveyance of the 1st, 2nd board | substrate G1 and G2 can be performed simultaneously or by predetermined time difference. Subsequently, deposition masks M1 and M2 are provided from mask chambers 311 and 322 connected to the first and second process chambers 200A and 200B, and the deposition masks M1 and M2 are provided on the first and second substrates. G1, G2) is arranged in front of the deposition surface and aligned. Subsequently, as shown in FIG. 5, the injection directions of the injection units 540 and 640 are positioned to face the deposition surfaces of the first and second substrates G1 and G2, and the first and second substrates are disposed through the injection units 540 and 640. The first thin film process is performed on the first and second substrates G1 and G2 by spraying a vaporized raw material onto the deposition surfaces of G1 and G2.
이어, 도 5 및 도 6와 같이, 제 1 박막 공정의 수행 중에 제 3, 제 4 기판(G3,G4)이 분배 챔버(410)의 내부로 반입된다. 상기 제 3, 제 4 기판(G3,G4)은 분배 챔버(410)에서 수직 상태로 전환되고, 제 1, 제 2 공정 챔버(200A,200B)의 내부로 반입된 후 각각의 기판 홀더(520,630)에 고정된다. 이어, 제 1, 제 2 공정 챔버(200A,200B) 각각에 연결된 마스크 챔버(312,321)로부터 증착 마스크(M3,M4)가 제공되고, 제공된 증착 마스크(M3,M4)는 제 3, 제 4 기판(G3,G4)의 증착면 앞쪽에 배치되어 정렬된다. 이처럼, 제 3, 제 4 기판(G3,G4)의 반입/고정 작업 및 이를 위한 증착 마스크(M3,M4)의 배치/정렬 작업은 제 1 박막 공정의 수행 중에 실시하는 것이 바람직하다. 따라서, 다음의 제 2 박막 공정을 수행하기 위한 대기 시간을 단축하여 생산성을 향상시킬 수 있다.5 and 6, the third and fourth substrates G3 and G4 are loaded into the distribution chamber 410 during the first thin film process. The third and fourth substrates G3 and G4 are converted into the vertical state in the distribution chamber 410, and are loaded into the first and second process chambers 200A and 200B, respectively, and then the substrate holders 520 and 630. Is fixed to. Subsequently, deposition masks M3 and M4 are provided from the mask chambers 312 and 321 connected to the first and second process chambers 200A and 200B, respectively. G3, G4) are arranged in front of the deposition surface and aligned. As such, the loading / fixing operation of the third and fourth substrates G3 and G4 and the placement / alignment operation of the deposition masks M3 and M4 therefor are preferably performed during the first thin film process. Thus, productivity can be improved by shortening the waiting time for performing the next second thin film process.
이어, 도 7과 같이, 제 1 박막 공정이 종료되면, 분사 유닛(540,640)의 분사 방향을 반대로 180도 회전시킨다. 이에 따라, 제 3, 제 4 기판(G3,G4)의 증착면과 분사 유닛(540,640)의 분사 방향이 상호 대향되면, 분사 유닛(540,640)을 통해 제 3, 제 4 기판(G3,G4)의 증착면에 기화 상태의 원료 물질을 분사시켜 제 3, 제 4 기판(G3,G4)에 대한 제 2 박막 공정을 수행한다.Subsequently, as shown in FIG. 7, when the first thin film process is completed, the spray directions of the spray units 540 and 640 are rotated 180 degrees in the opposite direction. Accordingly, when the deposition surfaces of the third and fourth substrates G3 and G4 and the spraying directions of the injection units 540 and 640 face each other, the third and fourth substrates G3 and G4 may be disposed through the injection units 540 and 640. A second thin film process is performed on the third and fourth substrates G3 and G4 by spraying a vaporized raw material on the deposition surface.
이어, 도 7 및 도 8과 같이, 제 2 박막 공정의 수행 중에 제 1 박막 공정을 마친 제 1, 제 2 기판(G1,G2)에서 증착 마스크(M1,M2)가 분리되고, 증착 마스크(M1,M2)가 분리된 제 1, 제 2 기판(G1,G2)은 다시 분배 챔버(410)의 내부로 반입된다. 이어, 제 1, 제 2 기판(G1,G2)은 분배 챔버(410)에서 수평 상태로 전환된 후 수평 반송되어 일련의 소자 공정을 수행하는 후속 공정 챔버들에 순차적으로 투입된다. 이처럼, 제 1, 제 2 기판(G1,G2)의 반출/분리 작업 및 이에 사용되는 증착 마스크(M1,M2)의 분리 작업은 제 2 박막 공정의 수행 중에 실시하는 것이 바람직하다. 따라서, 다음의 제 1 박막 공정을 수행하기 위한 대기 시간을 단축하여 생산성을 향상시킬 수 있다.Subsequently, as illustrated in FIGS. 7 and 8, the deposition masks M1 and M2 are separated from the first and second substrates G1 and G2 that have completed the first thin film process while the second thin film process is being performed, and the deposition mask M1 is performed. The first and second substrates G1 and G2 from which M2 is separated are brought back into the distribution chamber 410. Subsequently, the first and second substrates G1 and G2 are converted into a horizontal state in the distribution chamber 410 and then sequentially transferred to subsequent process chambers that perform horizontal transfer to perform a series of device processes. As such, the carrying out / separating operation of the first and second substrates G1 and G2 and the separating operation of the deposition masks M1 and M2 used therein are preferably performed during the performance of the second thin film process. Therefore, it is possible to shorten the waiting time for performing the next first thin film process to improve productivity.
한편, 상기 제 1, 제 2 박막 공정에서 사용된 증착 마스크(M1,M2,M3,M4)는 해당 챔버에 머무르면서 다음의 박막 공정에 사용되고, 오염, 파손 등의 교체 요인이 발생할 경우에 해당하는 마스크 챔버(311,312,313,314)로 이송되어 대기 중으로 꺼내진다. 이후, 상기 증착 마스크는 세정, 수리 등의 작업을 통해 재사용된다. 물론, 마스크 챔버(311,312,313,314)에 사용된 증착 마스크와 교체 사용할 여분의 증착 마스크들이 저장되어, 교체 작업시의 공정 중단 시간을 최소화시킬 수 있다.Meanwhile, the deposition masks M1, M2, M3, and M4 used in the first and second thin film processes are used in the next thin film process while staying in the chamber, and masks corresponding to replacement factors such as contamination and breakage occur. It is transferred to the chambers 311, 312, 313, 314 and taken out to the atmosphere. Thereafter, the deposition mask is reused through operations such as cleaning and repairing. Of course, the deposition masks used in the mask chambers 311, 312, 313, 314 and the spare deposition masks for replacement are stored, thereby minimizing the process downtime during the replacement operation.
이처럼, 본 발명의 실시예에 따른 박막 처리 시스템은 반송 챔버(400)의 양쪽에 동일 공정을 수행하는 다수의 공정 챔버(200A,200B)가 연결됨으로써, 다수의 기판(G1/G2,G3/G4)에 대한 박막 공정을 병행적으로 실시하여 공정 속도를 높일 수 있다. 또한, 공정 챔버(200A 또는 200B)에는 다수의 기판 홀더(520/530,620/630)를 향해 순차적으로 원료 물질을 분사하는 단일의 분사 유닛(540,640)이 마련됨으로써, 단일의 분사 유닛(540,640)을 통해 다수의 기판(G1/G2,G3/G4)에 대한 박막 공정을 순차적으로 실시하여 비용 절감 및 생산성 향상을 동시에 달성할 수 있다. 또한, 공정 챔버(200A 또는 200B)에는 내부 양쪽에 다수의 공정 수단(520/530, 620/630)이 마련됨으로써, 일측의 공정이 수행되는 동안에 타측 공정에 대한 사전 준비 작업 예를 들어, 기판의 반입/고정 작업 및 증착 마스크의 배치/정렬 작업을 수행하거나, 또는 사후 정리 작업 예를 들어, 기판의 반출/분리 작업 및 증착 마스크의 분리 작업을 수행할 수 있다. 따라서, 전체적인 작업 대기 시간을 단축하여 생산성을 크게 향상시킬 수 있다.As such, in the thin film processing system according to the exemplary embodiment of the present invention, a plurality of substrates G1 / G2 and G3 / G4 may be connected by connecting a plurality of process chambers 200A and 200B to perform the same process on both sides of the transfer chamber 400. The thin film process for) may be performed in parallel to increase the process speed. In addition, the process chamber 200A or 200B is provided with a single injection unit 540, 640 for sequentially injecting raw materials toward the plurality of substrate holders 520/530, 620/630, thereby providing a single injection unit 540, 640. By sequentially performing a thin film process on a plurality of substrates G1 / G2 and G3 / G4, cost reduction and productivity improvement may be simultaneously achieved. In addition, the process chamber 200A or 200B is provided with a plurality of process means 520/530 and 620/630 on both sides thereof, so that the preliminary preparatory work for the other process is performed during one process, for example, The import / fix operation and the deposition / arrangement operation of the deposition mask may be performed, or the post-cleaning operation may be performed, for example, the carrying out / separation operation of the substrate and the separation operation of the deposition mask. Therefore, the overall work waiting time can be shortened and productivity can be greatly improved.
이상, 본 발명에 대하여 전술한 실시예 및 첨부된 도면을 참조하여 설명하였으나, 본 발명은 이에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명이 다양하게 변형 및 수정될 수 있음을 알 수 있을 것이다.As mentioned above, although this invention was demonstrated with reference to the above-mentioned Example and an accompanying drawing, this invention is not limited to this, It is limited by the following claims. Therefore, it will be apparent to those skilled in the art that the present invention may be variously modified and modified without departing from the technical spirit of the following claims.

Claims (12)

  1. 기판이 이송되는 반송 챔버; 및A transfer chamber through which the substrate is transferred; And
    상기 반송 챔버의 양쪽에 각각 결합된 제 1, 제 2 공정 챔버; 를 포함하고,First and second process chambers coupled to both sides of the transfer chamber, respectively; Including,
    상기 제 1, 제 2 공정 챔버 각각은,Each of the first and second process chambers,
    상호 이격되어 설치되는 제 1, 제 2 기판 홀더; 및First and second substrate holders spaced apart from each other; And
    상기 제 1, 제 2 기판 홀더 사이에 설치되어 상기 제 1, 제 2 기판 홀더 방향으로 순차적으로 증착 원료를 공급하는 분사 유닛; 을 포함하는 박막 증착 장치.An injection unit provided between the first and second substrate holders to sequentially supply deposition raw materials toward the first and second substrate holders; Thin film deposition apparatus comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1, 제 2 기판 홀더는 기판을 수직 상태로 지지하는 박막 증착 장치.And the first and second substrate holders support the substrate in a vertical state.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 반송 챔버에는 기판을 회전시켜 수직 상태로 세우거나 수평 상태로 눕혀주는 기판 회전 부재가 마련되는 박막 증착 장치.The transfer chamber is provided with a substrate rotating member for rotating the substrate to stand in a vertical state or lying down in a horizontal state.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 분사 유닛은 제 1 기판 홀더와 제 2 기판 홀더 사이에서 회전 가능한 박막 증착 장치.And the spray unit is rotatable between the first substrate holder and the second substrate holder.
  5. 청구항 1에서,In claim 1,
    상기 분사 유닛은 점형, 선형 및 면형 중 어느 하나의 분사 구조를 갖는 박막 증착 장치. The spray unit is a thin film deposition apparatus having a spray structure of any one of the point, linear and planar.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1, 제 2 공정 챔버 각각에는,In each of the first and second process chambers,
    상기 제 1, 제 2 기판 홀더 각각에 증착 마스크를 제공하거나, 또는 증착 마스크를 교체하기 위한 마스크 챔버가 연결되는 박막 증착 장치.And a mask chamber connected to each of the first and second substrate holders or to replace a deposition mask.
  7. 일렬로 연결되어 기판이 이송되는 다수의 반송 챔버; 및A plurality of transfer chambers connected in line to transfer the substrates; And
    상기 다수의 반송 챔버 중 적어도 하나의 양쪽에 각각 결합된 제 1, 제 2 공정 챔버; 를 포함하고,First and second process chambers respectively coupled to at least one of the plurality of transfer chambers; Including,
    상기 제 1, 제 2 공정 챔버 각각은,Each of the first and second process chambers,
    상호 이격되어 설치되는 제 1, 제 2 기판 홀더; 및First and second substrate holders spaced apart from each other; And
    상기 제 1, 제 2 기판 홀더 사이에 설치되어 상기 제 1, 제 2 기판 홀더 방향으로 순차적으로 증착 원료를 공급하는 분사 유닛; 을 포함하는 박막 증착 시스템.An injection unit provided between the first and second substrate holders to sequentially supply deposition raw materials toward the first and second substrate holders; Thin film deposition system comprising a.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 다수의 반송 챔버는,The plurality of transfer chambers,
    상기 제 1, 제 2 공정 챔버에 연결되어 기판을 분배하는 다수의 분배 챔버; 및A plurality of distribution chambers connected to the first and second process chambers to distribute the substrate; And
    이웃한 분배 챔버들 사이에 연결되어 기판이 일시 대기되는 다수의 완충 챔버; 를 포함하는 박막 증착 시스템.A plurality of buffer chambers connected between neighboring distribution chambers to suspend the substrate temporarily; Thin film deposition system comprising a.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 다수의 반송 챔버 중 선단에 연결되어 외부로부터 기판이 반입되는 로딩 챔버; 및A loading chamber connected to a front end of the plurality of transfer chambers to which a substrate is loaded from the outside; And
    상기 다수의 반송 챔버 중 후단에 연결되어 기판이 외부로 반출되는 언로딩 챔버; 를 포함하는 박막 증착 시스템.An unloading chamber connected to a rear end of the plurality of transfer chambers, the substrate being carried out to the outside; Thin film deposition system comprising a.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 제 1, 제 2 기판 홀더는 기판을 수직 상태로 지지하는 박막 증착 시스템.And the first and second substrate holders support the substrate in a vertical state.
  11. 청구항 7에 있어서,The method according to claim 7,
    상기 반송 챔버에는 기판을 회전시켜 수직 상태로 세우거나 수평 상태로 눕혀주는 기판 회전 부재가 마련되는 박막 증착 시스템.The transfer chamber is provided with a substrate rotating member for rotating the substrate to stand in a vertical state or lying down in a horizontal state.
  12. 청구항 7에 있어서,The method according to claim 7,
    상기 분사 유닛은 제 1 기판 홀더와 제 2 기판 홀더 사이에서 회전 가능한 박막 증착 시스템.And the spraying unit is rotatable between the first substrate holder and the second substrate holder.
PCT/KR2010/002887 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system comprising same WO2010128811A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012509732A JP5506917B2 (en) 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system including the same
CN201080020337.9A CN102421933B (en) 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0039826 2009-05-07
KR1020090039826A KR101119853B1 (en) 2009-05-07 2009-05-07 Apparatus for depositing film and system for depositing film having the same

Publications (2)

Publication Number Publication Date
WO2010128811A2 true WO2010128811A2 (en) 2010-11-11
WO2010128811A3 WO2010128811A3 (en) 2011-03-17

Family

ID=43050634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002887 WO2010128811A2 (en) 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system comprising same

Country Status (5)

Country Link
JP (1) JP5506917B2 (en)
KR (1) KR101119853B1 (en)
CN (1) CN102421933B (en)
TW (1) TWI386500B (en)
WO (1) WO2010128811A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034255A1 (en) * 2017-08-17 2019-02-21 Applied Materials, Inc. Method for handling several masks, method for processing substrates and apparatus for coating substrates

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151234B1 (en) * 2010-03-30 2012-06-14 주식회사 케이씨텍 Upright type deposition apparatus and transfer method for substrate
KR101700608B1 (en) * 2011-04-15 2017-02-01 이찬용 Substrate treatment system
JP5846780B2 (en) * 2011-06-30 2016-01-20 株式会社アルバック Vacuum processing apparatus, vacuum processing method, and method for manufacturing lithium ion secondary battery
KR101467195B1 (en) * 2013-05-14 2014-12-01 주식회사 아바코 Gas sprayer and thin film depositing apparatus having the same
KR102426712B1 (en) * 2015-02-16 2022-07-29 삼성디스플레이 주식회사 Apparatus and method of manufacturing display apparatus
JP6602457B2 (en) * 2017-03-17 2019-11-06 アプライド マテリアルズ インコーポレイテッド Method for handling mask device in decompression system, mask handling apparatus, and decompression system
CN110998869B (en) * 2017-08-09 2022-12-27 株式会社钟化 Method for manufacturing photoelectric conversion element
KR101921648B1 (en) * 2017-12-28 2018-11-26 주식회사 올레드온 Cluster type manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
KR20210081597A (en) * 2019-12-24 2021-07-02 캐논 톡키 가부시키가이샤 Film forming system, and manufacturing method of electronic device
KR102407505B1 (en) * 2020-04-29 2022-06-13 주식회사 선익시스템 Deposition apparatus and in-line deposition system
CN111663104A (en) * 2020-06-24 2020-09-15 武汉华星光电半导体显示技术有限公司 Vapor deposition system and vapor deposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088238A (en) * 2003-04-09 2004-10-16 (주)네스디스플레이 System and Method for vacuum deposition
JP2007077493A (en) * 2005-09-15 2007-03-29 Applied Materials Gmbh & Co Kg Coating machine and method for operating a coating machine
JP2007239071A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Vacuum vapor deposition apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299959U (en) * 1989-01-24 1990-08-09
JPH051378A (en) * 1991-03-25 1993-01-08 Shin Meiwa Ind Co Ltd Substrate holder conveyor for in-line film forming device
JPH0941142A (en) * 1995-07-26 1997-02-10 Balzers & Leybold Deutsche Holding Ag Device for alternately positioning substrates to be coated in vacuo
JP2000277585A (en) * 1999-03-23 2000-10-06 Hitachi Ltd Substrate conveyor and vacuum treatment apparatus
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
WO2004028214A1 (en) * 2002-09-20 2004-04-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
JP4397655B2 (en) * 2003-08-28 2010-01-13 キヤノンアネルバ株式会社 Sputtering apparatus, electronic component manufacturing apparatus, and electronic component manufacturing method
JP2008019477A (en) * 2006-07-13 2008-01-31 Canon Inc Vacuum vapor deposition apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088238A (en) * 2003-04-09 2004-10-16 (주)네스디스플레이 System and Method for vacuum deposition
JP2007077493A (en) * 2005-09-15 2007-03-29 Applied Materials Gmbh & Co Kg Coating machine and method for operating a coating machine
JP2007239071A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Vacuum vapor deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034255A1 (en) * 2017-08-17 2019-02-21 Applied Materials, Inc. Method for handling several masks, method for processing substrates and apparatus for coating substrates

Also Published As

Publication number Publication date
TW201107507A (en) 2011-03-01
JP2012526199A (en) 2012-10-25
WO2010128811A3 (en) 2011-03-17
KR20100120941A (en) 2010-11-17
KR101119853B1 (en) 2012-02-28
JP5506917B2 (en) 2014-05-28
TWI386500B (en) 2013-02-21
CN102421933A (en) 2012-04-18
CN102421933B (en) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2010128811A2 (en) Thin film deposition apparatus and thin film deposition system comprising same
KR101097737B1 (en) Apparatus for depositing film and method for depositing film and system for depositing film
WO2011155652A1 (en) Thin film deposition device and thin film deposition system
JP5676175B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5611718B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
CN102286727B (en) Film deposition equipment, the method manufacturing organic light-emitting display device and display unit
US8833294B2 (en) Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
KR101174883B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
CN102332539A (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
KR101146981B1 (en) Apparatus of evaporation and control method the same
JP2017506703A (en) System for depositing one or more layers on a substrate supported by a carrier and method of using the system
CN103474447A (en) Thin film deposition apparatus, method of manufacturing organic light-emitting display device, and display device
KR20100132517A (en) Coating apparatus with rotation module
KR20110054043A (en) Organic thin film deposition device, organic el element manufacturing device, and organic thin film deposition method
KR101027509B1 (en) Apparatus for depositing film
KR20190072373A (en) Deposition System
JP2004241319A (en) Film forming device
KR20130021262A (en) Multiple evaporation system sharing an evaporator
KR101802392B1 (en) Substrate process system
KR20120023169A (en) Apparatus of evaporation and control method the same
KR20120054778A (en) Substrate processing system
KR20060055485A (en) Board alignment device of organic electroluminescent devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020337.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772271

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012509732

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10772271

Country of ref document: EP

Kind code of ref document: A2