WO2010126039A1 - 回生機構を備えた電動補助自転車 - Google Patents
回生機構を備えた電動補助自転車 Download PDFInfo
- Publication number
- WO2010126039A1 WO2010126039A1 PCT/JP2010/057453 JP2010057453W WO2010126039A1 WO 2010126039 A1 WO2010126039 A1 WO 2010126039A1 JP 2010057453 W JP2010057453 W JP 2010057453W WO 2010126039 A1 WO2010126039 A1 WO 2010126039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- way clutch
- reverse input
- axle
- clutch
- battery
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D41/00—Freewheels or freewheel clutches
- F16D41/24—Freewheels or freewheel clutches specially adapted for cycles
- F16D41/30—Freewheels or freewheel clutches specially adapted for cycles with hinged pawl co-operating with teeth, cogs, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M11/00—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
- B62M11/04—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
- B62M11/14—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
- B62M11/16—Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
- B62M6/55—Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
Definitions
- This invention relates to a battery-assisted bicycle that adds an auxiliary force to a human-powered drive system by an electric motor.
- a battery is mounted on a motor-assisted bicycle that adds an assisting force to a human-powered driving system by an electric motor as a motor power source for applying the assisting force. Since it is desirable for this battery to be able to run for a long time with a single charge, a battery-assisted bicycle equipped with a function of charging the battery effectively by utilizing energy during self-running and regenerative power generation during the self-running Has been developed.
- Patent Literature 1 discloses a technology of a regeneration control device that detects an operation of a brake lever and commands a regeneration operation to the regeneration device (see, for example, Patent Literature 1). ).
- Patent Document 4 discloses a battery-assisted bicycle that is a center motor type and has a power regeneration function.
- a first one-way clutch is provided between the motor output shaft and the drive sprocket
- a second one-way clutch is provided between the pedal crankshaft to which the pedal force is input and the drive sprocket, and further for brake operation. Accordingly, by providing direct coupling means for locking the first one-way clutch, power regeneration during braking is realized.
- the rear hub and the rear sprocket are directly connected so that reverse input torque from the tire can be transmitted to the motor during regeneration.
- Patent Document 5 discloses a battery-assisted bicycle equipped with a power regeneration function.
- a two-way clutch capable of switching the lock direction in conjunction with the brake operation is provided on the output shaft of the motor in the center motor unit to realize power regeneration during braking.
- the output of the motor can be transmitted to the axle by locking the two-way clutch in the forward rotation direction, and motor assist becomes possible.
- the two-way clutch lock direction is switched in conjunction with the occupant's brake operation and the two-way clutch is locked in the reverse rotation direction, the reverse input torque (forward rotation direction) from the axle side can be transmitted to the motor.
- This makes it possible to perform regenerative power generation and brake assist.
- the reverse input torque from the axle side needs to be transmitted to the motor side during regeneration, the rear hub and the rear sprocket are directly connected.
- JP-A-8-140212 JP 2003-166563 A Japanese Patent Laid-Open No. 10-250673 JP 2001-213383 A JP 2004-268843 A
- battery-assisted bicycles can be roughly classified into a center motor system in which the motor is provided around the crankshaft and a hub motor system in which the motor is built in the front hub or the rear hub.
- a general bicycle speed change mechanism is a system in which a multistage sprocket is provided on the same axis of either the crankshaft or the rear axle or both, and the chain is moved between sprockets by a derailleur (exterior)
- a system internal transmission
- a one-way clutch is usually provided in the internal transmission, and the reverse input from the tire is not transmitted from the rear hub to the rear sprocket.
- the exterior transmission has a simple structure and is lightweight, but it causes wear of the sprocket and chain and also causes the chain to come off.
- internal transmissions are often used for city cycling because they are dustproof and waterproof and maintenance-free. At present, power-assisted bicycles are developed mainly for city cycle bicycles, most of which employ internal transmissions.
- an object of the present invention is to enable regenerative charging without complicating the device as much as possible in a center-motor-type battery-assisted bicycle equipped with an internal transmission.
- the present invention attaches a secondary battery and an auxiliary drive motor to a frame connecting the front wheel and the rear wheel, and applies a pedaling force transmitted from the crankshaft or a driving force based on the output of the motor.
- the battery-assisted bicycle having a regenerative mechanism that is capable of transmitting to the drive wheel and that regenerates electric power generated by reverse input from the drive wheel to the output shaft of the motor when the vehicle is not driven forward.
- a hub provided on the wheel is provided with a speed change mechanism, a reverse input one-way clutch, and a clutch switching device, and the speed change mechanism is constituted by a planetary gear mechanism and has at least one sun gear, and the pedal force or the output of the motor
- the sun gear is rotated around the axle against the driving force from the sprocket.
- a reverse control one-way clutch is provided between at least one sun gear and an axle, and the drive wheel is driven by the clutch switching device.
- the sun gear has a function of switching between being rotatable or non-rotatable around the axle with respect to the reverse input from the wheel, and during driving, the driving force from the sprocket is transmitted to the driving wheel through the speed change mechanism.
- the driving force when driving forward, the driving force is transmitted from the sprocket of the driving wheel to the hub via the speed change mechanism, and the bicycle moves forward.
- the reverse input from the hub of the drive wheel is transmitted to the sprocket via the reverse input one-way clutch, and regenerative power generation is possible by transmitting torque from the sprocket to the motor driven sprocket through the power transmission element. It becomes.
- the one-way clutch for reverse input always idles with respect to the driving force, the state of the clutch switching device is not limited during driving. In this way, by disposing the one-way clutch for reverse input between the sun gear and the axle, transmission of driving force can be achieved without complicating the device in a center motor type electric bicycle equipped with an internal transmission. And reverse input transmission.
- a well-known one-way clutch can be used.
- a ratchet clutch can be used.
- the clutch switching device for example, it has a rod-like operation part, and one end of the operation part is pulled out to the outside through the inside of the axle and can be operated in the axial direction from the outside.
- the shaft By moving the shaft in the axial direction, it is possible to adopt a configuration in which the sun gear in the reverse input one-way clutch can be switched to be rotatable or non-rotatable with respect to the axle.
- the clutch switching device having another configuration includes, for example, a rotating member that can rotate around the axle, and the rotating member is pulled out of the hub case along the axle and can be rotated from the outside.
- a rotating member that can rotate around the axle, and the rotating member is pulled out of the hub case along the axle and can be rotated from the outside.
- a well-known one-way clutch can be adopted.
- a roller clutch using a roller as an engagement element can be adopted.
- a sprag clutch using a sprag as the engagement element can be employed.
- the one-way clutch for reverse input is an engaging clutch that holds an engaging member with a cage
- the clutch switching device includes a rotating member that can rotate around the axle, One end is pulled out of the hub case along the axle and can be rotated from the outside, and the other end is connected to the retainer of the one-way clutch for reverse input, and the rotating member is rotated around the axle. Therefore, it is possible to adopt a configuration in which the sun gear can be rotated or unrotatable with respect to the axle of the reverse input one-way clutch.
- the clutch switching device may employ a configuration in which the sun gear and the axle can be rotated or not rotated in response to a reverse input from the driving wheel in conjunction with a brake operation. it can.
- a center one-way clutch that transmits only the driving force and idles during reverse input can be incorporated to prevent the pedal from forcibly rotating due to reverse input. That is, it is a center one-way clutch that locks in the direction in which the driving force is transmitted to the driving wheel and idles in response to the reverse input from the driving wheel.
- a roller clutch, a sprag clutch, a ratchet clutch, or the like can be employed as this center one-way clutch.
- a secondary battery and an auxiliary drive motor are attached to the frame connecting the front wheel and the rear wheel, and the pedaling force transmitted from the crankshaft or the driving force by the output of the motor can be transmitted to the driving wheel.
- reverse input to the speed change mechanism is provided in a hub provided in the drive wheel.
- a one-way clutch, and the transmission mechanism has a function of transmitting the pedal force or a driving force generated by the output of the motor to the driving wheel through a sprocket, and the reverse input one-way clutch is configured to transmit the pedaling force or the motor. It has a function of idling when driven by an output and capable of transmitting reverse input from the driving wheel to the sprocket when not driven. Adopting the configuration of the motor-assisted bicycle with a raw mechanism.
- the speed change mechanism includes a sun gear provided on the outer periphery of the axle, a planetary gear that meshes with the sun gear, a planet carrier that holds the planetary gear, and an outer ring gear that meshes with the planetary gear.
- the sun gear is a fixed member
- the outer ring gear is an input member
- the planet carrier is an output member
- it is composed of a two-stage planetary gear reducer using the outer ring gear as an input / output member. can do.
- a well-known means that can change the meshing of the gear between the input member and the output member can be adopted.
- a slide member that is movable in the axial direction with respect to the axle of the drive wheel may be provided, and the shift switching of the speed change mechanism may be performed by moving the slide member in the axial direction. In this way, since the slide member can be pulled out through the axle, the shifting operation from the outside can be easily realized through the slide member.
- the transmission mechanism includes a plurality of sun gears, and any one of the plurality of sun gears is a fixing member, the outer ring gear is an input member, and the planetary carrier is an output member. It is possible to employ a configuration that includes a speed reducer that includes a plurality of gear combinations, and that includes a speed change control mechanism that has a function of selecting any one of the plurality of sun gears as the fixed member.
- the transmission mechanism includes a plurality of the sun gears, and any one of the plurality of sun gears is a fixing member, the planetary carrier is an input member, and the outer ring gear is an output member. It is possible to adopt a configuration including a speed change mechanism including a gearbox having a plurality of gear combinations, and having a function of selecting any one of the plurality of sun gears as the fixed member.
- any one of the plurality of sun gears rotatably supported around the axle is rotated around the axle with respect to both the driving force and the reverse input from the tire. It is possible to adopt a configuration having a function of performing a shift by switching between possible and non-rotatable.
- the shift control mechanism includes a snap key, and the shift switching of the shift mechanism is performed by moving the snap key in the axial direction from outside through the axle, and any of the sun gears with which the snap key meshes. It is possible to employ a configuration in which rotation around the axle is impossible with respect to both the driving force and the reverse input from the tire.
- the reverse input one-way clutch can be locked (engaged) and released in conjunction with the brake operation.
- the reverse input one-way clutch is not locked, and the reverse input can be cut off as in the forward drive.
- a well-known one-way clutch can be adopted, for example, a roller clutch or a sprag clutch can be adopted.
- the driving force and the torque in both directions can be transmitted by directly connecting the motor output shaft and the motor drive sprocket.
- the pedal can be forced to rotate by reverse input. Can be prevented.
- a well-known one-way clutch can be employed.
- a roller clutch, a sprag clutch, or a ratchet clutch can be employed.
- a secondary battery and a motor for auxiliary driving are attached to the frame connecting the front wheel and the rear wheel, and the pedaling force transmitted from the crankshaft or the driving force by the output of the motor can be transmitted to the driving wheel.
- reverse input to the speed change mechanism is provided in a hub provided in the drive wheel.
- a rotation resistance applying means functioning as a clutch switching device, and the speed change mechanism is constituted by a planetary gear mechanism capable of shifting in two or more stages, and the axle is provided for both driving force and reverse input.
- a shift control mechanism that enables switching of the shift by arbitrarily switching one of the sun gears to be non-rotatable and the other to be rotatable,
- the reverse input one-way clutch rotates idly when driven by the pedal force or the output of the motor, and is driven when not driven.
- the reverse input one-way clutch has a function of transmitting a reverse input from a wheel to the sprocket, and the rotation resistance applying means shifts the engagement member of the one-way clutch for reverse input to an engageable state.
- An electrically assisted bicycle equipped with a regenerative mechanism is provided that has a function of imparting a rotational resistance required when the reverse input one-way clutch is engaged to the engagement element holding means provided in the above.
- the one-way clutch (reverse input one-way clutch) that transmits reverse input provided between the sprocket and the hub
- rotational resistance is applied to the engagement element holding means by the rotational resistance applying means provided in the hub. Since the engagement and disengagement are controlled by this, the device is housed inside the hub, that is, in the hub case, and the one-way clutch engaging means is corroded by external water or mud, or it is unnecessary from the outside. By a simple input, the engaging member holding means is not damaged or deformed.
- the rotation resistance can be applied to the engagement element holding means by the rotation resistance applying means in conjunction with a brake operation.
- Regenerative power generation is mainly required in the non-driving state, so that the brake operation frequently used in such a non-driving state is interlocked with the application of rotational resistance to the engagement element holding means. Effective regenerative power generation is possible.
- the rotation resistance applying means has a function of detecting the interruption of the input and automatically applying the rotational resistance to the engaging element holding means. May be. That is, it is conceivable that when a driving force is input, the rotation resistance is not applied, and when the driving force is not input, a function of automatically applying a rotation resistance is provided.
- the rotation resistance applying means includes an operation portion that is movable forward and backward in the axial direction with respect to the axle, and a friction portion that is provided so as to be movable forward and backward integrally with the operation portion.
- the rotation resistance applying means having a function of applying a rotation resistance to the engagement element holding means
- various configurations that can be arranged inside the hub can be adopted.
- the rotation resistance can be stably applied to the engaging member holding means while avoiding the intrusion of water and mud and the situation in which the engaging member holding means is damaged or deformed.
- this operation unit for example, a configuration in which an operation unit formed of a cylindrical member is coaxially arranged on the outer peripheral side of the axle is conceivable, but other than that, for example, it extends in the axial direction inside the axle.
- a configuration is conceivable in which a hole is formed and an operation part formed of a shaft-like member is coaxially inserted in the hole. If the operation unit is located inside the axle, it is possible to prevent the operation unit from being damaged by a foreign object due to an unexpected accident or the like.
- the said friction part can be used as the flange-shaped member which stands
- the friction part is not limited to the flange-shaped member, and for example, it can be opposed to the contact surface provided in the engagement element holding means in the axial direction.
- a projection or a bulging portion that is formed at one end of the operation portion in the axial direction and protrudes in the outer diameter direction can be used.
- the reverse input one-way clutch includes a roller clutch in which a roller as the engagement element is held in a circumferential direction by an annular retainer as the engagement element holding means.
- the reverse input one-way clutch adopts a configuration including a sprag clutch in which a sprag as the engagement element is held in a circumferential direction by an annular cage as the engagement element holding means. Can do.
- the one-way clutch for reverse input includes a ratchet clutch provided with a clutch pawl (ratchet pawl) as the engagement element and a ratchet groove with which the clutch pawl meshes
- the engagement element holding means includes Further, it is possible to employ a configuration that is a shutter that can enter and leave between the clutch pawl and the ratchet groove.
- the retainer rises in the radial direction from the annular portion including a plurality of pocket portions along the circumferential direction for holding the engagement element. It is possible to employ a configuration including an end face plate portion, and the friction portion contacting the end face plate portion.
- the cage is composed of a thin member in the radial direction, there is a problem that it is difficult to ensure a large contact area when the rotational resistance is applied by the friction portion of the rotational resistance applying means. Therefore, as described above, by providing the end face plate portion that rises in the radial direction from the annular portion, the contact surface can be expanded in the radial direction, and a stable frictional resistance can be generated between the two.
- the end face plate portion may rise from the annular portion in the outer diameter direction or may rise in the inner diameter direction, but the configuration of rising in the inner diameter direction provides a contact surface with the friction portion. Since it can be brought closer to the axle center of the axle, it is advantageous in terms of downsizing the members and devices.
- the friction portion when a predetermined rotational resistance can be applied between the friction portion and the cage, the friction portion is not brought into contact with the end face plate portion of the cage, but the axial end of the annular portion of the cage. It can also be set as the structure which makes a friction part contact with a part. At this time, the end face plate portion can be omitted.
- the inner ring of the one-way clutch for reverse input and the retainer are supported so as to be relatively rotatable via a bearing portion, and the bearing portion supports the retainer with the retainer. It can be set as the structure currently supported by the end surface board part. Since the end face plate portion rises in the radial direction from the annular portion, when the friction portion of the rotation resistance applying means hits the end face plate portion, an axial force acts on the end face plate portion. For this reason, if a bearing portion is provided between the end face plate portion and the inner ring, the bearing portion functions as a bearing in a so-called thrust direction, and the end face plate portion counters the axial force received from the friction portion. can do. Thereby, the enlargement of a cage can be avoided.
- the shutter includes a circumferential member that can enter and leave between the clutch pawl and the ratchet groove, and a radial direction from the circumferential member. It is possible to employ a configuration in which the end surface plate portion rises to the end, and the friction portion contacts the end surface plate portion. The effect of providing the end face plate portion is the same as that of the cage. Further, in the configuration in which the shutter is provided with an end face plate portion, the inner ring of the one-way clutch for reverse input and the shutter are supported so as to be relatively rotatable via a bearing portion, and the bearing portion supports the shutter with the end face plate. It can also be set as the structure currently supported by the part.
- the shift control mechanism includes a snap key, and the shift of the shift mechanism is switched by moving the snap key in the axial direction by an external operation through the axle.
- the snap key When the snap key is engaged with one of the sun gears, one of the sun gears can be rotated with respect to the axle so that the other can not rotate with respect to both the driving force and the reverse input from the tire. It is possible to adopt a configuration that switches arbitrarily.
- the motor output shaft and the motor drive sprocket can be directly connected to transmit the driving force and the torque in both directions, and the crankshaft and the crank sprocket (manpower driven sprocket).
- a center one-way clutch that transmits only the driving force and idles during reverse input can be incorporated to prevent the pedal from forcibly rotating due to reverse input.
- a roller clutch, a sprag clutch, a ratchet clutch, or the like can be employed as this center one-way clutch.
- a secondary battery and an auxiliary drive motor are attached to the frame connecting the front wheel and the rear wheel, so that the pedaling force transmitted from the crankshaft or the driving force by the output of the motor can be transmitted to the drive wheel.
- a battery-assisted bicycle equipped with a regenerative mechanism for returning regenerative power generated by reverse input from the drive wheel to the output shaft of the motor to the secondary battery when not driven, a shift is made to a hub provided on the drive wheel.
- a transmission mechanism including a mechanism, a two-way clutch, and a rotation resistance applying means.
- the transmission mechanism is constituted by a planetary gear mechanism that can change gears in two or more stages.
- a shift control mechanism that enables switching of the shift by arbitrarily switching one of them to be non-rotatable and the other to be rotatable, and depending on the pedaling force or the output of the motor
- the two-way clutch has a function of transmitting power to the driving wheel through a sprocket, and the two-way clutch is engaged when driven by the pedaling force or the output of the motor and transmits the driving force to the driving wheel.
- the rotation resistance applying means has a function of transmitting a reverse input from a wheel to the sprocket, and the rotation resistance applying means is applied to a cage that holds the engagement element of the two-way clutch along a circumferential direction when the two-way clutch is engaged.
- the rotation resistance can be applied to the cage by the rotation resistance applying means in conjunction with a brake operation.
- Regenerative power generation is mainly required in the non-driven state, so it is effective by linking the brake operation frequently used in such a non-driven state with the application of rotational resistance to the cage. Regenerative power generation is possible.
- the rotational resistance is applied to the cage by the rotational resistance applying means except during the brake operation.
- the rotation resistance applying means may be provided with a function of detecting the interruption of the input and automatically applying the rotation resistance to the cage. Good. That is, it is conceivable that when a driving force is input, the rotation resistance is not applied, and when the driving force is not input, a function of automatically applying a rotation resistance is provided.
- the rotation resistance applying means includes an operation portion that is movable forward and backward in the axial direction with respect to the axle, and a friction portion that is provided so as to be movable forward and backward integrally with the operation portion.
- the rotation resistance can be obtained by applying (contacting) an appropriate member to the cage in the exposed portion. It is possible to relatively easily impart.
- the addressing member a member that can move in the axial direction with respect to the axle or a member that can move in the radial direction can be adopted outside the hub case.
- the hub rotates as it travels, so there is a problem of how to apply rotation resistance or block the application. It becomes.
- an operation portion that extends in the axial direction together with the axle is provided, and the operation portion can be advanced and retracted in the axial direction with respect to the axle.
- the operation unit is pulled out of the hub together with the axle, so that stable rotation resistance can be applied to the cage while avoiding water and mud from entering the hub and causing damage and deformation to the cage. it can.
- the configuration in which the operation portion can be moved back and forth in the axial direction with respect to the axle can also be adopted in a configuration in which the cage is exposed outside the hub case.
- this operation unit for example, a configuration in which an operation unit formed of a cylindrical member is coaxially arranged on the outer peripheral side of the axle is conceivable, but other than that, for example, it extends in the axial direction inside the axle.
- a configuration is conceivable in which a hole is formed and an operation part formed of a shaft-like member is coaxially inserted in the hole. If the operation unit is located inside the axle, it is possible to prevent the operation unit from being damaged by a foreign object due to an unexpected accident or the like.
- the said friction part can be made into the flange-shaped member which stands
- the friction part is not limited to the flange-shaped member, for example, so as to be able to face the contact surface provided in the cage in the axial direction.
- a protrusion or a bulging portion that is formed at one end portion in the axial direction of the operation portion and protrudes in the outer diameter direction can be used.
- retainer has the annular part provided with two or more pocket parts along the circumferential direction which hold
- the contact surface can be expanded in the radial direction, and a stable frictional resistance can be generated between the two.
- the end face plate portion may rise from the annular portion in the outer diameter direction or may rise in the inner diameter direction, but the configuration of rising in the inner diameter direction provides a contact surface with the friction portion. Since it can be brought closer to the axle center of the axle, it is advantageous in terms of downsizing the members and devices.
- a predetermined rotational resistance can be applied between the friction portion and the cage, the friction portion is not brought into contact with the end face plate portion of the cage, but the axial end of the annular portion of the cage. It can also be set as the structure which makes a friction part contact with a part. At this time, the end face plate portion can be omitted.
- the inner ring of the two-way clutch and the retainer are supported so as to be relatively rotatable via a bearing portion, and the bearing portion attaches the retainer to the end face plate portion.
- It can be set as the structure supported by. Since the end face plate portion rises in the radial direction from the annular portion, when the friction portion of the rotation resistance applying means hits the end face plate portion, an axial force acts on the end face plate portion. For this reason, if a bearing portion is provided between the end face plate portion and the inner ring, the bearing portion functions as a bearing in a so-called thrust direction, and the end face plate portion counters the axial force received from the friction portion. can do. Thereby, the enlargement of a cage can be avoided.
- the two-way clutch As the two-way clutch, a configuration including a roller clutch in which a roller as an engagement member is held in a circumferential direction by an annular cage can be adopted. Further, the two-way clutch may be configured by a sprag clutch in which a sprag as an engagement member is held in a circumferential direction by an annular cage.
- the shift control mechanism includes a snap key, and the shift of the shift mechanism is switched by moving the snap key in the axial direction through an operation from the outside through the axle.
- the snap key When the snap key is engaged with one of the sun gears, one of the sun gears can be rotated with respect to the axle so that the other can not rotate with respect to both the driving force and the reverse input from the tire. It is possible to adopt a configuration that switches arbitrarily.
- the motor output shaft and the motor drive sprocket can be directly connected to transmit the driving force and the torque in both directions, and the crankshaft and the crank sprocket (manpower driven sprocket).
- a center one-way clutch that transmits only the driving force and idles during reverse input can be incorporated to prevent the pedal from forcibly rotating due to reverse input.
- a roller clutch, a sprag clutch, a ratchet clutch, or the like can be employed as this center one-way clutch.
- This invention can store regenerative energy in the secondary battery, and can greatly extend the cruising distance per charge as compared with the case where regenerative charging is not performed.
- the current battery-assisted bicycle with a regenerative function has a heavy motor arranged in the front or rear hub, but according to the present invention, the motor can be arranged near the crankshaft near the center of gravity. Good maneuverability of the entire bicycle.
- the speed change mechanism is provided, less pedaling force is required at the start, the balance is not easily lost, the assist power can be saved, and the cruising distance is further extended.
- the reverse input one-way clutch can be arranged on the axle fixed to the frame by providing the reverse input one-way clutch between the sun gear and the axle. That is, by disposing the one-way clutch for reverse input between the sun gear and the axle, in the center-motor-type battery-assisted bicycle equipped with the internal transmission, the driving force transmission is reversed without complicating the device. Input transmission can be realized.
- the braking force can be increased if the operation of the one-way clutch for reverse input is linked with the brake operation.
- a one-way clutch that transmits reverse input between the sprocket and the hub (one-way clutch for reverse input) is provided with rotational resistance applied to the engaging member holding means by the rotational resistance applying means provided inside the hub. Since the engagement and disengagement are controlled, all the devices are arranged inside the hub, and the engagement means holding means of the clutch is corroded by external water and mud, and unnecessary input from the outside causes engagement. There is no damage or deformation on the holding means.
- FIG. 1A is a cross-sectional view taken along line AA of FIG. 1B
- FIG. FIG. 2 shows a state in which reverse input torque can be transmitted in the first embodiment, wherein (a) is a cross-sectional view taken along line AA in (b), and (b) is a front view.
- 2A and 2B are cross-sectional views taken along line AA of FIG. 2B
- FIG. FIG. 5 shows a state in which reverse input torque can be transmitted in the second embodiment, where (a) is a cross-sectional view taken along line AA in (b), and (b) is a front view.
- FIG. 4 shows a third embodiment, (a) is a cross-sectional view taken along line AA of (b), (b) is a front view.
- FIG. 6 shows a state in which reverse input torque can be transmitted in the third embodiment, wherein (a) is a cross-sectional view taken along the line AA in (b), and (b) is a front view.
- 4A and 4B show a fourth embodiment, wherein FIG. 4A is a cross-sectional view taken along line AA of FIG. 4B, and FIG. FIG. 5A is a cross-sectional view taken along line AA of FIG. 5B, and FIG.
- the direct connection state of 6th Embodiment is shown, (a) is front sectional drawing, (b) is a side view.
- the deceleration state of 6th Embodiment is shown, (a) is front sectional drawing, (b) is a side view.
- the direct connection state of 7th Embodiment is shown, (a) is front sectional drawing, (b) is a side view.
- the deceleration state of 7th Embodiment is shown, (a) is front sectional drawing, (b) is a side view.
- Side view showing the eighth embodiment Side view showing the ninth embodiment
- the eleventh embodiment is shown, (a) is a side view, (b) is a front view.
- the state where rotation resistance was given to the cage of the 11th embodiment is shown, (a) is a side view, (b) is a front view. 16 is an enlarged view of the main part of FIG.
- the twelfth embodiment is shown, (a) is a side view, (b) is a front view.
- FIG. 12 The state with which engagement with the ratchet clutch of the 12th embodiment was blocked is shown, (a) is a side view, (b) is a front view.
- Front view showing the thirteenth embodiment 14th Embodiment is shown, (a) is a side view, (b) is a front view.
- retainer of the 14th embodiment is shown, (a) is a side view, (b) is a front view.
- the battery-assisted bicycle has a center motor in which a secondary battery and an auxiliary drive motor (center motor unit C) are attached to a frame connecting the front wheel and the rear wheel in the vicinity of the center between the front wheel and the rear wheel. It is a method.
- FIG. 27 is a side view showing an example of the battery-assisted bicycle B in each of the following embodiments.
- the battery-assisted bicycle B transmits a pedaling force acting on the pedal 70 to the axle 5 of the rear wheel 75 through a driving force transmission element from the crankshaft 71 to the front sprocket 74, the chain 73, and the rear sprocket 4.
- the driving force transmission element the pedaling force and the output from the motor are combined to assist the traveling.
- the center motor unit C is provided in the vicinity of the crankshaft 71 as shown in FIG. 27, and the battery 76 for driving the motor is often arranged along the vertical pipe of the frame F of the battery-assisted bicycle B.
- crank sprocket (the front sprocket 74) of the center motor unit C and the driving wheel are used.
- a driving force is transmitted to the rear wheel 75 through a chain 73 that connects a rear sprocket (sprocket) 4 of a certain rear wheel 75.
- a regenerative mechanism that reduces regenerative power generated by reverse input from the rear hub (hub) 1 of the rear wheel 75 to the output shaft of the motor to a secondary battery in the center motor unit C. It has.
- the rear hub 1 includes a speed change mechanism 5 and a reverse input one-way clutch 2 for reverse input transmission in a hub case 12 provided coaxially with the axle 5 of the rear wheel.
- the speed change mechanism 5 is constituted by a planetary gear mechanism capable of a total of three speeds including direct connection and two speeds.
- the configuration is that two sun gears 5a (referred to as a first sun gear 5a-1 and a second sun gear 5a-2) provided on the outer periphery of the axle 5 are respectively connected to a first one-way clutch 5e-1 and a second sun gear 5a-1. It can be connected to the axle 11 via the one-way clutch 5e-2.
- the first one-way clutch 5e-1 and the second one-way clutch 5e-2 employ ratchet clutches, but it is possible to employ one-way clutches having other configurations such as roller clutches and sprag clutches. There is no problem.
- the transmission mechanism 5 includes a planetary gear 5b having two gears meshed with the first sun gear 5a-1, the second sun gear 5a-2, the planet carrier 5c holding the planetary gear 5b, and An outer ring gear 5d that meshes with the planetary gear 5b, a one-way clutch 5f for shifting provided between the planet carrier 5c and the hub case 12 is provided.
- the outer ring gear 5d is formed integrally with the hub case 12.
- the one-way clutch 5f for shifting employs a ratchet clutch, and a clutch pawl (ratchet pawl) 5g provided in the ratchet clutch includes a planet carrier 5c, a hub case 12, and the like. Is engaged between the outer periphery of the planet carrier 5c and the inner periphery of the hub case 12, and when the relative rotation is performed in the other direction, the engagement is released. ing.
- a one-way clutch having another configuration such as a roller clutch or a sprag clutch may be adopted as the one-way clutch for shifting 5f.
- bearing portions 13 are provided between the planet carrier 5c and the axle 11 and between the hub case 12 and the axle 11, respectively.
- the planetary carrier 5c and the axle 11, and the hub case 12 and the axle 11 are supported by the bearing portion 13 so as to be relatively rotatable.
- a bearing portion 14 is also provided between the planet carrier 5 c and the hub case 7.
- the planetary carrier 5c, the hub case 12, and the axle 11 are supported by the bearing portion 14 so as to be relatively rotatable.
- the first sun gear 5a-1 and the second sun gear 5a-2 are either operated by operating the shift control mechanism 10 with the corresponding first and second one-way clutches 5e-1 and 5e-2.
- One can be selectively fixed to the axle 11 or all can be free.
- the planetary gear mechanism Is not directly involved in the acceleration of the driving force, and the driving force is directly transmitted from the planetary carrier 5c to the hub case 12 via the shifting one-way clutch 5f (directly connected state). In this case, the rotational speed from the rear sprocket 7 is transmitted to the hub case 12 without being shifted.
- the speed increasing ratio from the planet carrier 5c to the outer ring gear 5d is [(A ⁇ b) / (c ⁇ d)] + 1 It becomes.
- the first sun gear 5a-1 is idling and does not participate in torque transmission.
- the sun gears 5a-1 and 5a-2 have different numbers of teeth, and all the gears are free or one of them is fixed to the axle 11 to change the speed increasing ratio. it can.
- the one-way clutch 2 for reverse input is constituted by a ratchet clutch, and is provided between the second sun gear 5a-2 and the axle 11.
- the reverse input one-way clutch 2 has a clutch pawl 2a swingably supported around the clutch pawl shaft 2j.
- the clutch pawl 2a is moved around the clutch pawl shaft 2j by an elastic member (not shown). It rotates and is urged
- the rotation of the clutch pawl 2a is restricted at the other end 2h by the drive member 9b of the clutch switching device 9, that is, the clutch pawl 2a is forcibly tilted. It has become.
- the drive member 9b is biased to one axial side (the right side in the figure) by the elastic force of the elastic member 9c.
- the drive member 9b is connected to an axial operation portion 9a extending to one side.
- the operation portion 9 a is drawn out from the end portion of the axle 11 through the hollow portion in the axle 11.
- the structure for pulling out the operation unit 9a to the outside of the axle 11 is not limited to this embodiment, and other structures such as a structure passing through the outer periphery of the axle 11 may be adopted.
- the reverse input one-way clutch 2 has a function that the clutch switching device 9 can switch the second sun gear 5a-2 to be rotatable or non-rotatable around the axle 11 with respect to the reverse input from the drive wheels. It has.
- the second sun gear 5 a-2 is fixed for reverse input regardless of which gear of the three-speed shift is selected, so that the gear ratio at the time of reverse input is selected. Regardless of the gear being operated, the reduction ratio is [(a ⁇ b) / (c ⁇ d)] + 1 It becomes.
- the movement of the operation unit 9a in the axial direction can be interlocked with the brake operation.
- the drive member 9b moves to the other side in the axial direction (left side in the figure) via the operation portion 9a, and the second sun gear 5a-2 is for reverse input with respect to reverse input. It is fixed to the axle 11 via the one-way clutch 2, and the reverse input torque from the tire is transmitted to the rear sprocket 7.
- the drive member 9b When the brake is released, the drive member 9b tends to move to the original position by the biasing force of the elastic member 9c. However, in a state where reverse input torque is applied, the tapered surface 9e of the drive member 9b contacts the clutch pawl 2a of the reverse input one-way clutch 2, and the drive member 9b cannot move to one side in the axial direction. For this reason, the reverse input one-way clutch 2 is not unlocked.
- the driving force from the rear sprocket 7 is directly connected or increased and transmitted to the tire.
- the reverse input torque from the tire is decelerated and transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the speed change control mechanism 10 includes a rotating member 10 a provided on the outer periphery of the axle 11 so as to be relatively rotatable, and the planetary gear is operated by rotating the rotating member 10 a in the circumferential direction with respect to the axle 11. Selection of the first sun gear 5a-1 and the second sun gear 5a-2 with which 5b meshes can be performed.
- the shift control mechanism 10 has a rod-like operation part, like the clutch switching device 9 of the present embodiment, and one end of the operation part is drawn outside through the axle 11 and moved axially from the outside.
- the first and second one-way clutches 5e-1 and 5e-2 are switched between rotatable and non-rotatable with respect to the axle 11 of the sun gear 5a by moving the operation portion in the axial direction.
- a possible configuration can also be adopted.
- the one-way clutch 2 for reverse input is provided between the second sun gear 5 a-2 and the axle 11, but may be provided between the first sun gear 5 a-1 and the axle 11.
- the planetary gear 5b has two stages, but one or three or more planetary gears may be used.
- a center one-way clutch is provided between the crankshaft and the crank sprocket that locks in the direction in which the driving force is transmitted and idles with respect to the reverse input. For this reason, the driving force is not transmitted to the crankshaft, the pedal, and the like by reverse input.
- a well-known one-way clutch such as a roller clutch, a sprag clutch or a ratchet clutch can be adopted.
- FIGS. A second embodiment of the present invention is shown in FIGS.
- the reverse input one-way clutch 2 is configured by a ratchet clutch as in the first embodiment, but the clutch switching device 9 is mainly configured by a rotating member 9 d disposed along the axle 5. Yes.
- Other main configurations are the same as those in the first embodiment.
- the rotating member 9d is a cylindrical member provided along the outer periphery of the axle 5, and the rotating member 9d can rotate relative to the axle 11 around the axis.
- the rotating member 9d is provided with a slit 9f in the circumferential direction.
- the rotation operation of the rotating member 9d in the circumferential direction can be linked to the brake operation as in the case of the first embodiment.
- the rotating member 9d rotates in the circumferential direction, and the reverse input one-way clutch 2 is locked.
- the rotating member 9d is provided with an elastic member in the circumferential direction (not shown), and the rotating member 9d attempts to return to the original position by the elastic force of the elastic member.
- the clutch pawl 2a of the reverse input one-way clutch 2 meshes with the irregularities on the inner surface of the second sun gear 5a-2, and the rotating member 9d is the reverse input one-way clutch. Since the second clutch pawl 2a cannot contact and rotate, the lock is not released. When the reverse input torque disappears, the rotating member 9d can rotate and returns to the original position, and the lock is released.
- the driving force from the rear sprocket 7 is directly connected or increased and transmitted to the tire.
- the reverse input torque from the tire is decelerated and transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the reverse input one-way clutch 2 is provided between the second sun gear 5a-2 and the axle 11.
- the reverse input one-way clutch 2 may be provided between the first sun gear 5a-1 and the axle 11. Is the same.
- the planetary gear 5b has two stages, but one or three or more planetary gears may be used.
- FIGS. A third embodiment of the present invention is shown in FIGS.
- the reverse input one-way clutch 2 is constituted by a roller clutch.
- Other main configurations are the same as those of the second embodiment.
- the second sun gear 5a-2 is the outer ring 2d of the roller clutch
- the axle 11 is the inner ring 2c
- the side of the axle 11 as the inner ring 2c.
- the cam surface 2i with which the roller 2a 'engages is provided.
- the cage 2d of the roller 2c is directly connected to the rotating member 9d of the clutch switching device 9.
- the roller 2a ′ is located at a position where the wedge is expanded in a wedge section formed by the cam surface 2i of the inner ring 2c and the inner peripheral surface of the outer ring 2b (FIG. 5A).
- the position of the cage 2d is determined by the rotating member 9d so as to be the circumferential portion of the cam surface 2i shown.
- the one-way clutch 2 for reverse input idles with respect to both the driving force from the rear sprocket 7 and the reverse input from the hub case 12.
- the rotating member 9d rotates in the circumferential direction, and the roller 2c moves toward the narrowing of the wedge, so that the one-way clutch 2 for reverse input is locked.
- the rotating member 9d is provided with an elastic member in the circumferential direction (not shown), and the rotating member 9d attempts to return to the original position by the elastic force of the elastic member.
- the driving force from the rear sprocket 7 is directly connected or increased and transmitted to the tire.
- the reverse input torque from the tire is decelerated and transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the one-way clutch 2 for reverse input is provided between the second sun gear 5a-2 and the axle 11, but may be provided between the first sun gear 5a-1 and the axle 11.
- the planetary gear 5b has two stages, a planetary gear having one or more stages may be used.
- a sprag clutch can be used instead of a roller clutch.
- FIG. 5 A fourth embodiment of the present invention is shown in FIG.
- the planetary gear 5b of the transmission mechanism 5 is a three-stage speed-up transmission mechanism in which the planetary gear 5b is in three stages.
- a gear for shifting is provided between the planet carrier 5c and the hub case 12.
- the one-way clutch 5f is not provided.
- the speed change mechanism 5 includes three sun gears 5a (first sun gear 5a-1, second sun gear 5a-2, and third sun gear 5a-3) provided on the outer periphery of the axle 11, respectively. It can be connected to the axle 11 via a one-way clutch 5e-1, a second one-way clutch 5e-2, and a third one-way clutch 5e-3.
- the first one-way clutch 5e-1, the second one-way clutch 5e-2, and the third one-way clutch 5e-3 employ a ratchet clutch.
- a roller clutch and a sprag clutch are used. It may be adopted.
- the speed change mechanism 5 includes a planetary gear 5b having three gears meshing with the first sun gear 5a-1, the second sun gear 5a-2, and the third sun gear 5a-3, and the planetary gear 5b.
- the planetary carrier 5c to be held and the outer ring gear 5d that meshes with the planetary gear 5b are provided.
- the planet carrier 5c and the rear sprocket 7 can rotate together.
- the outer ring gear 5d is formed integrally with the hub case 12.
- one of the first to third one-way clutches 5e-1, 5e-2, 5e-3 is locked against the driving force from the rear sprocket 7 using the shift control mechanism 10.
- the speed is changed by selectively fixing any one of the sun gears 5a-1, 5a-2, 5a-3 to the axle 11. That is, there is no direct shift mode when all of the first to third one-way clutches 5e-1, 5e-2, 5e-3 are free.
- the speed change mechanism other than the direct connection is the same as in the first to third embodiments.
- the one-way clutch 2 for reverse input is provided between the third sun gear 5a-3 and the axle 11, but the first sun gear 5a-1 or the second sun gear 5a-2 and the axle are provided. 11 may be provided.
- the reverse input one-way clutch 2 employs a mechanism using the operation portion 9a and the drive member 9b, similar to the first embodiment, but in the second and third embodiments.
- a mechanism using such a rotating member 9d can also be employed.
- the planetary gear 3f has three stages. However, two or more planetary gears may be used.
- FIG. 5 A fifth embodiment of the present invention is shown in FIG.
- the planetary gear 5b of the speed change mechanism 5 is a three-speed reduction speed change mechanism having three speeds.
- the transmission mechanism 5 includes a planetary gear 5b having three gears meshed with the first sun gear 5a-1, the second sun gear 5a-2, and the third sun gear 5a-3, and the planetary gear 5b.
- the planetary carrier 5c to be held and the outer ring gear 5d meshing with the planetary gear 5b are provided.
- the outer ring gear 5d and the rear sprocket 7 can rotate together.
- the reverse input one-way clutch 2 has a locking direction opposite to that of the first to fourth embodiments (see FIG. 8A).
- the first sun gear 5a-1, the second sun gear 5a-2, and the third sun gear 5a-3 use the shift control mechanism 10 to correspond to the first one-way clutch 5e-1 and the second sun gear 5e-1, respectively.
- Any one of the one-way clutch 5e-2 and the third one-way clutch 5e-3 can be selectively fixed to the axle 11. That is, any one of the sun gears 5a-1, 5a-2, 5a-3 is fixed to the axle 11 by the corresponding one-way clutches 5e-1, 5e-2, 5e-3, thereby reducing the speed.
- the ratio can be changed.
- the sun gear 5a which is not fixed is the same in that the sun gear 5a rotates idly with respect to the axle 11.
- the planet carrier 5c is meshed with the hub case 12 by a spline or the like so as to be integrally rotatable.
- the planet carrier 5c can be integrally formed.
- the one-way clutch 2 for reverse input is provided between the third sun gear 5a-3 and the axle 11, but the first sun gear 5a-1 or the second sun gear 5a-2 You may provide between the axles 11.
- the reverse input one-way clutch 2 employs a mechanism using the operation unit 9a and the drive member 9b similar to the first embodiment, but the rotating member 9d as in the second and third embodiments. A mechanism using can also be adopted.
- the planetary gear has three stages, two or more planetary gears may be used.
- the battery-assisted bicycle of this embodiment has a center motor system in which a secondary battery and an auxiliary drive motor (center motor unit) are attached to a frame connecting the front wheel and the rear wheel in the vicinity of the center between the front wheel and the rear wheel. It is.
- the crank sprocket of the center motor unit (not shown) and the rear sprocket of the rear wheel as the driving wheel (
- the driving force can be transmitted to the rear wheel via a power transmission element such as a chain connecting the sprocket 7.
- a regenerative mechanism is provided that, when not driven, regenerates regenerative power generated by reverse input from the rear wheel rear hub 1 to the output shaft of the motor to the secondary battery of the center motor unit.
- the rear hub 1 includes a speed change mechanism 5 and a reverse input one-way clutch 2 in a hub case 12 provided coaxially with the rear wheel axle 11.
- the configuration of the reverse input one-way clutch 2 is such that an inner ring 2c and an outer ring 2b arranged on the same axis are relatively rotatable around an axis, and an outer peripheral surface of the inner ring 2c and an outer ring
- a roller 2a ′ is arranged in a wedge space extending between the groove 2f of 2b and extending in the circumferential direction.
- the roller 2a ' is held in the circumferential direction by an annular cage 2d, and is urged by the elastic member 2e through the cage 2d in the direction in which the wedge space expands.
- a bearing portion 15 is provided between the cage 2d and the inner ring 2c and can be rotated relative to each other.
- the inner ring 2c is supported so as to be rotatable integrally with the rear sprocket 7.
- the outer ring 2b is rotatably provided integrally with the hub case 12.
- Bearing portions 13 are provided between the inner ring 2c and the axle 11 and between the hub case 12 and the axle 11, and are supported so as to be rotatable relative to each other.
- a bearing portion 14 is also provided between the inner ring 2c and the hub case 12 so as to be relatively rotatable.
- the roller 2a is wedge-engaged between the inner ring 2c and the groove 2f of the outer ring 2b, and the inner ring 2c and the outer ring 2b of the first one-way clutch 2 are coupled and locked. .
- the reverse input one-way clutch 2 is idled during forward drive, and can transmit reverse input torque from the tire to the rear sprocket 7 during forward non-drive.
- the transmission mechanism 5 includes a sun gear 5a that rotates integrally with the axle 11, a planetary gear 5b that meshes with the sun gear 5a, a planet carrier 5c that holds the planetary gear 5b, and an outer ring that meshes with the planetary gear 5b. And a gear 5d.
- a speed change one-way clutch 5f (hereinafter referred to as a speed change first one-way clutch 5f-1) is incorporated between the outer ring gear 5d and the hub case 12.
- a shift one-way clutch 5f (hereinafter referred to as a shift second one-way clutch 5f-2) is also incorporated between the inner ring 2c and the outer ring gear 5d.
- a ratchet clutch is employed as the structure of the first one-way clutch 5f-1 for shifting and the second one-way clutch 5f-2 for shifting.
- one-way clutches having other structures such as a roller clutch and a sprag clutch. It is safe to adopt.
- the speed change mechanism 5 is configured so that the forward torque input to the sprocket 7 -2 is transmitted from the sprocket 7 side to the tire side, but functions so that torque in the reverse direction is not transmitted from the sprocket 7 side to the tire side.
- the speed change mechanism 5 is switched between deceleration and direct connection (constant speed) by moving (sliding) the slide member 18 provided on the axle 11 in the axial direction. Done.
- a shaft hole 11 a is formed in the axle 11, and the slide member 18 can be moved along the axial direction of the axle 11 by an operation member (not shown) inserted from the opening of the shaft hole 11 a. I can do it.
- the clutch pawl 5g of the second one-way clutch for shifting 5f-2 is pressed along the tapered portion 18a of the slide member 18, and the state shown in FIG. 10A is changed to the state shown in FIG. 9A. And fall in the circumferential direction.
- the clutch pawl 5g falls down, the clutch pawl 5g is released from the groove provided in the inner periphery of the case 12 that has been bitten, so that the shift second one-way clutch 5f-2 runs idle.
- the speed change mechanism 5 uses the sun gear 5a as a fixed member, the outer ring gear 5d as an input member, and the planet carrier 5c as an output member in the deceleration state, and the outer ring gear 5d as an input / output member in the direct connection state. It is a functioned two-speed planetary gear reducer that is directly connected to the reduction gear.
- the forward drive torque input from the rear sprocket 7 causes the inner ring 2c and the outer ring gear 5d integrated with the rear sprocket 7 to move. Rotate in the forward direction.
- the sun gear 5a is fixed to the axle 11, and the planetary gear 5b revolves while rotating in the forward direction of the outer ring gear 5d to guide the planetary gear 5b. 5c also rotates in synchronization with the revolution of the planetary gear 5b.
- the reduction ratio of the reduction gear is (a + d) / d It becomes.
- a first speed change one-way clutch 5f-1 is incorporated between the planet carrier 5c and the hub case 12, and the rotation of the planet carrier 5c is transmitted to the case 12 at this reduction ratio.
- clutch switching means having a function of switching the sun gear 5a between a rotatable state around the axle 11 and a non-rotatable state with respect to the reverse input from the drive wheels. 9, a friction member 19 that contacts and separates from the cage 2d is provided.
- the reverse input one-way clutch 2 incorporated between the inner ring 2c and the hub case 12 is not locked because the retainer 2d biased by the elastic body 2e presses the roller 2a toward the deep side of the groove 2f. .
- the cage 2d overcomes the bias of the elastic body 2e and rotates relative to the outer ring 2b in the backward direction. Even if the roller 2a ′ enters a standby state at a shallow position of the outer ring groove 2f due to this relative rotation, the rotation speed of the inner ring 2c is equal to the rotation speed of the outer ring 2b (the direct connection (constant speed) state), and the roller 2a. Since 'does not bite into the wedge formed by the groove 2f of the inner ring 2c and the outer ring 2b, the one-way clutch 2 for reverse input is not locked.
- the reverse input one-way clutch 2 is in a normal state because the cage 2d biased by the elastic body 2e presses the roller 2a ′ toward the deeper groove 2f (in the direction in which the wedge space spreads). In a state where no external force is applied to the cage 2d, the cage is idling.
- the cage 2d overcomes the bias of the elastic body 2e and rotates relative to the outer ring 2b in the backward direction.
- the rotation speed of the outer ring 2b is faster (non-driven state) than the rotation speed of the inner ring 2c.
- the groove 2f of the outer ring 2b are engaged with each other, the reverse input one-way clutch 2 is locked, and the hub case 12 and the rear sprocket 7 are directly connected.
- the reverse input torque from the tire of the rear wheel which is the drive wheel, is transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- a center one-way clutch is provided between the crankshaft and the crank sprocket that locks in the direction in which the driving force is transmitted and idles with respect to the reverse input. For this reason, the driving force is not transmitted to the crankshaft, the pedal, and the like by reverse input.
- a well-known one-way clutch such as a roller clutch, a sprag clutch or a ratchet clutch can be adopted.
- an external force is applied from the friction member 19 to the cage 2d by the brake operation performed by the driver as an external force applied to the cage 2d.
- the external force is not limited to the brake operation. You may assume the external force by an element.
- the shift first one-way clutch 5 f-1 is locked in the deceleration state
- the shift second one-way clutch 5 f-2 is locked in the direct connection state.
- the one-way clutch 2 for reverse input is always idling.
- the speed change mechanism 5 has a function of transmitting the stepping force or the driving force generated by the motor output to the hub case 12, that is, the rear wheel as the driving wheel through the rear sprocket 7,
- the one-way clutch 2 has a function of idling when driven by the pedaling force or the output of the motor and transmitting reverse input from the rear wheel to the rear sprocket 7 when not driven.
- FIGS. A seventh embodiment of the present invention is shown in FIGS.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speeds.
- the reverse input one-way clutch 2 is constituted by a roller clutch disposed between the inner ring 2c meshing with the outer ring gear 5d and the hub case 12.
- the transmission mechanism 5 includes three sun gears 5a-1, 5a-2, and 5a-3 that are coaxially and rotatably supported on the outer periphery of the axle 11. Further, a planetary gear 5b having a three-stage gear meshing with the sun gears 5a-1, 5a-2, 5a-3, a planet carrier 5c holding the planetary gear 5b, and an outer ring gear 5d meshing with the planetary gear 5b. And.
- a shift one-way clutch 5f is incorporated between the outer ring gear 5d and the hub case 12.
- the inner ring 2c and the outer ring gear 5d are engaged with each other by a spline or the like.
- Any one of the sun gears 5a-1, 5a-2, 5a-3 can be selectively made non-rotatable with respect to the axle 11 by the transmission control device 30, and the transmission mechanism 5 The speed can be changed by selecting the sun gears 5a-1, 5a-2, 5a-3.
- the third sun gear 5a-3 is not rotatable with respect to the axle 11, the number of teeth of the third sun gear 5a-3 is a and the number of teeth of the outer ring gear 5d is d.
- the speed increasing ratio to the gear 5d is (a + d) / d.
- the first sun gear 5a-1 and the second sun gear 5a-2 are idle, and the first sun gear 5a-1 and the second sun gear 5a-2 are not involved in torque transmission.
- each of the sun gears 5a-1, 5a-2, 5a-3 has a different number of teeth, and by making any one non-rotatable with respect to the axle 11, the speed increasing ratio can be changed.
- the reverse input one-way clutch 2 incorporated between the inner ring 2c and the hub case 12 is urged by the elastic body 2e as in FIGS. 9A and 10A showing the above-described embodiment. Since the cage 2d presses the roller 2a toward the deeper side of the groove 2f (the direction in which the wedge space expands), the cage 2d is normally in an idle state.
- the one-way clutch 2 for reverse input is in an idling state.
- a normal state a state where no external force is applied to the cage 2d
- the cage 2d urged by the elastic body 2e presses the roller 2a ′ toward the deeper side of the groove 2f (the direction in which the wedge space expands). This is because the reverse input one-way clutch 2 is not locked against rotational input in both directions.
- the reverse input one-way clutch 2 is in a normal state (the cage 2d urged by the elastic body 2e presses the roller 2a toward the deeper side of the groove 2f (the direction in which the wedge space spreads). In a state where no external force is applied to the cage 2d), the cage is idling.
- the cage 2d overcomes the bias of the elastic body 2e and is relative to the outer ring 2b in the backward direction. Rotate.
- the rotation speed of the outer ring 2b is higher than the rotation speed of the inner ring 2c (non-driven state).
- the reverse input one-way clutch 2 locks into the wedge space formed by the groove 2f of 2b, and the hub case 12 and the rear sprocket 7 are directly connected.
- the reverse input torque from the tire of the rear wheel which is the drive wheel, is transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the structure of the said speed change control apparatus 30 has employ
- Each of the sun gears 5a-1, 5a-2, 5a-3 has a plurality of grooves 5i along the circumferential direction as shown in FIGS. 11 (a) and 12 (a). Is formed.
- the snap key 30a can selectively engage with any one of the sun gears via the groove 5i, and any one of the sun gears 5a-1, 5a-2, 5a-3 can be used as an axle. 11 is not rotatable.
- FIG. 11A shows a state when the driving force is transmitted from the rear sprocket 7, while FIG. 12A shows a case where the reverse input from the tire is transmitted. Shows the state. Since the direction of the torque applied to the sun gear 5a is reversed when the driving force and the input are reversed, the grooves 5i of the sun gears 5a-1, 5a-2, and 5a-3 and the snap key 30a are applied to the torques in both directions. It is structured to lock.
- the reverse input from the tire is the hub case 12, the reverse input one-way clutch 2, the inner ring 2c, the outer ring gear 5d, the planetary gear 5b, the planet carrier 5c, and the rear sprocket 7. It is transmitted in order and transmitted to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the selection of the sun gears 5a-1, 5a-2, 5a-3 with which the planetary gear 5b meshes is performed by passing the shaft member 30b and the snap key 30a with respect to the axle 11 through the shaft hole 11a of the axle 11 from the outside.
- the relative movement in the direction can be performed by changing the sun gears 5a-1, 5a-2, 5a-3 with which the snap key 30a is engaged.
- FIG. 8 An eighth embodiment is shown in FIG.
- the outer ring gear 5d and the inner ring 2c of the reverse input one-way clutch 2 are formed as an integral member.
- the basic operation is the same as in the seventh embodiment.
- FIG. 1 A ninth embodiment is shown in FIG.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speed reductions
- the reverse input one-way clutch 2 is constituted by a roller clutch between the hub case 12 and the inner ring 2c.
- the inner ring 2c meshes with the planet carrier 5c through a spline.
- the driving force from the pedal is transmitted from the rear sprocket 7 of the rear hub 1 while being decelerated in the order of the outer ring gear 5d, the planetary gear 5e, the planet carrier 5c, the shifting one-way clutch 5f, and the hub case 12.
- Other basic operations are the same as those in the seventh embodiment.
- FIG. 15 A tenth embodiment of the invention is shown in FIG.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speeds.
- the reverse input one-way clutch 2 is constituted by a roller clutch between the hub case 12 and the outer ring gear 5d.
- Other basic operations are the same as those in the seventh embodiment.
- the illustration of the friction member 19 as the clutch switching device 9 is omitted.
- the battery-assisted bicycle of this embodiment has a center motor system in which a secondary battery and an auxiliary drive motor (center motor unit) are attached to a frame connecting the front wheel and the rear wheel in the vicinity of the center between the front wheel and the rear wheel. It is.
- the crank sprocket of the center motor unit (not shown) and the rear sprocket of the rear wheel as the driving wheel (
- the driving force can be transmitted to the rear wheel via a power transmission element such as a chain connecting the sprocket 7.
- a regenerative mechanism is provided that, when not driven, regenerates regenerative power generated by reverse input from the rear wheel rear hub 1 to the output shaft of the motor to the secondary battery of the center motor unit.
- the rear hub 1 includes an engagement between the transmission mechanism 5, the reverse input one-way clutch 2, and the reverse input one-way clutch 2 in a hub case 12 provided coaxially with the rear axle 11.
- the clutch switching means 9 having a function of controlling the disengagement includes a rotation resistance applying means 60 and the like.
- symbol 8 in a figure has shown the hub flange.
- the configuration of the reverse input one-way clutch 2 can use a known engagement clutch.
- a roller clutch is employed, and an inner ring 2c and an outer ring 2b arranged on the same axis are relatively rotatable around an axis, and an outer peripheral surface of the inner ring 2c and an outer ring
- a roller 2a ′ is arranged in a wedge space extending between the groove 2f of 2b and extending in the circumferential direction.
- the roller 2a ' is held in the circumferential direction by an annular cage 2d, and is urged by the elastic body 2e through the cage 2d in the direction in which the wedge space is expanded.
- the cage 2d has an annular portion 2m provided with a plurality of pocket portions for accommodating the roller 2a 'along the circumferential direction, and a flange-like shape rising from the annular portion 2m in the inner diameter direction over the entire circumference. And an end face plate portion 2k.
- a bearing portion 15 is provided between the inner side surface of the end face plate portion 2k of the cage 2d and the end surface of the inner ring 2c to support both in the axial direction.
- the cage 2d and the inner ring 2c are supported via the bearing portion 15 so as to be relatively rotatable around the axis.
- bearing portions 13 are provided at both ends in the axial direction, and are supported so as to be relatively rotatable around the axis. Further, the outer ring gear 5 d provided so as to be rotatable integrally with the rear sprocket 7 and the hub case 12 are relatively rotatable via a bearing portion 14. The outer ring gear 5d constitutes a part of the speed change mechanism 5.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speeds, and the speed change mechanism 5 includes three sun gears that are coaxially and rotatably supported on the outer periphery of the axle 11. 5a-1, 5a-2, 5a-3. Further, a planetary gear 5b having a three-stage gear meshing with the sun gears 5a-1, 5a-2, 5a-3, a planet carrier 5c holding the planetary gear 5b, and an outer ring gear 5d meshing with the planetary gear 5b. And.
- the inner ring 2c of the one-way clutch for reverse input 2 is rotatably provided integrally with the outer ring gear 5d of the transmission mechanism 5, and the outer ring 2b is press-fitted and fixed to the inner diameter side of the hub case 12.
- the outer ring gear 5d and the inner ring 2c are an integral member.
- a shift one-way clutch 5f is incorporated between the planetary gear 5b and the hub case 12.
- a ratchet clutch is employed here, but a one-way clutch having another configuration such as a roller clutch or a sprag clutch may be employed.
- the sun gears 5 a-1, 5 a-2, and 5 a-3 can be shifted by selectively making any one of the sun gears 5 a-1, 5 a-2, 5 a-3 non-rotatable with respect to the axle 11 by the shift control mechanism 40.
- the third sun gear 5a-3 is not rotatable with respect to the axle 11, the number of teeth of the third sun gear 5a-3 is a and the number of teeth of the outer ring gear 5d is d.
- the speed increasing ratio to the gear 5d is (a + d) / d It becomes.
- the other first sun gear 5a-1 and the second sun gear 5a-2 are idle, and do not participate in torque transmission.
- each of the sun gears 5a-1, 5a-2, 5a-3 has a different number of teeth, and by making any one non-rotatable with respect to the axle 11, the speed increasing ratio can be changed.
- the speed change control mechanism 40 includes an operation shaft 40b inserted into an axial hole 11b provided in the axle 11, a snap key 40a provided on the operation shaft 40b, and an elastic member 40c.
- the snap key 40a protrudes radially outward from the outer surface of the operation shaft 40b, and the elastic member 40c is housed in the inner portion 11c of the axial hole 11b and is engaged with the locking portion 40d at one end of the operation shaft 40b. It has been stopped. Further, the operation shaft 40b and the snap key 40a are urged by the elastic member 40c from the back part 11c of the axial hole 11b to the opening part 11d (from the right side to the left side shown in FIG. 16B). ing.
- the selection of the sun gears 5a-1, 5a-2, 5a-3 with which the planetary gear 5b is engaged can be performed by operating the snap key 40a in the axial direction from the outside through the axle 11.
- the snap key 40a moves in the axial direction through an operation from the outside through the operation shaft 40b and meshes with any one of the sun gears 5a-1, 5a-2, 5a-3.
- the two sun gears 5a are selectively made non-rotatable with respect to the axle 11. Therefore, any one of the sun gears 5a-1, 5a-2, 5a-3 can be made non-rotatable with respect to the axle 11 with respect to both driving force and reverse input.
- the reverse input one-way clutch 2 cannot transmit the forward torque input to the rear sprocket 7, but can transmit the reverse torque (including the reverse input torque when the forward drive is not driven).
- an external force that is, a rotational resistance is applied to the cage 2d from the rotation resistance applying means 60 provided in the hub case 12, and the cage 2d overcomes the urging force of the elastic body 2e and moves backward with respect to the outer ring 2b.
- the roller 2a ' rotates relative to the direction, the roller 2a' enters a standby state at a shallow position in the wedge space of the outer ring 2b.
- the roller 2a ' is wedge-engaged between the inner ring 2c and the groove 2f of the outer ring 2b, and the inner ring 2c and the outer ring 2b of the one-way clutch 2 for reverse input are coupled and locked. It is.
- the rotation resistance provision means 60 it is set as the structure shown in FIG.16 (b) and FIG. 17 in this implementation.
- the configuration is such that a locking portion 63 is provided on the outer periphery of the axle 11, and a flange-like member that protrudes to the outer diameter side over the entire circumference at a predetermined distance from the locking portion 63 in the axial direction.
- a friction portion 61a (hereinafter referred to as “friction plate 61a”) is provided.
- locking part 63 is comprised by the step part, you may comprise by the flange which protrudes to an outer-diameter side other than that, for example.
- An elastic member 62 is disposed between the locking portion 63 and the friction plate 61a.
- the elastic member 62 employs a coil spring, and the coil spring is fitted to the outer periphery of the axle 11 and is sandwiched between the locking portion 63 and the friction plate 61a.
- an elastic member 62 other than the coil spring is used. It is also possible to arrange in the hole 11a provided in the axle 11 along the axial direction.
- the friction part 61a has a flange shape that protrudes to the outer diameter side over the entire circumference.
- the rotational resistance that can overcome the urging force of the elastic body 2e can be given, it may be a rod shape or the like. It is.
- the friction plate 61a is provided at one end in the axial direction of a shaft-like operating portion 61 that is inserted into the hole 11a provided in the axle 11 along the axial direction so as to be movable back and forth in the axial direction.
- the friction plate 61a and the operation unit 61 are integrally formed, but members formed separately may be fixed. It is desirable that the operation part 61 is inserted into the hole 11 a without any rattling, and the axis of the operation part 61 coincides with the axis of the axle 11.
- the operation portion 61 is controlled to advance and retreat in the axial direction with respect to the axle 11 by an operation from a clutch switching device (not shown) provided outside the axle 11.
- the friction plate 61 a at one axial end of the operating portion 61 moves in a direction approaching the one-way clutch 2 for reverse input.
- the friction resistance due to the contact causes the cage 2d to A rotation resistance is applied so as to suppress the rotation.
- the control of the axial movement of the operation unit 61 by the switching device is performed in conjunction with the brake operation performed by the driver.
- the brake is operated by pulling the brake lever or the like (when the brake is effective)
- a pressing force is applied to the operation unit 61 by the function of the clutch switching device, and the operation unit 61 and the friction plate 61a are It moves in the direction approaching the one-way clutch 2 for reverse input, and the end surface of the friction plate 61a comes into contact with the cage 2d.
- the brake operation is released (when the brake is not effective)
- the pressing force to the operation unit 61 is released, and the friction plate 61a is detached from the cage 2d by the elastic force of the elastic member 62. In other words, the state returns to a state where no frictional resistance is applied.
- a shaft portion that protrudes in the outer diameter direction is provided in the operation portion 61, and a long hole that penetrates the outer periphery of the axle 11 and the space in the hole portion 11a in the radial direction is formed.
- the long hole is formed so as to extend along the axial direction. If the shaft portion protruding in the outer diameter direction from the operation portion 61 is pulled out of the axle 11 from the long hole, the shaft portion is pressed in the axial direction with respect to the axle 11 by an appropriate means. The part moves in the long hole, and the axial movement of the operation part 61 relative to the axle 11 can be controlled. If the pressing force is maintained, the contact between the cage 2d and the friction plate 61a is also maintained. Further, when the pressing force is released, the operation portion 61 is moved in the axial direction in the direction of detachment from the cage 2d by the elastic force of the elastic member 62 described above.
- the other axial end portion of the operation portion 61 is drawn further outward in the axial direction than the axial end portion of the axle 11, and the extracted axial direction end portion of the operation portion 61 is interposed therebetween. A pressing force necessary for the axial movement may be applied.
- the elastic member 62 since the elastic member 62 is disposed between the locking portion 63 and the friction plate 61a, the elastic plate 62a can be detached from the cage 2d so that the elastic force can be used.
- the installation of the elastic member 62 may be omitted, and the above-described clutch switching device may be provided with a function of pressing the operation portion 61 in a direction in which the friction plate 61a is detached from the cage 2d.
- the reverse input one-way clutch 2 runs idle during forward drive, and transmits the reverse input torque from the tire to the rear sprocket 7 when the rotational resistance applying means 60 is operated by a brake operation during forward non-drive. can do.
- the first sun gear 5a-1 When the reverse input one-way clutch 2 is locked at the time of non-drive, for example, the first sun gear 5a-1 is fixed, the number of teeth of the first sun gear 5a-1 is a, and the number of teeth of the outer ring gear 5d is If d, the reduction ratio from the planet carrier 5c to the outer ring gear 5d is (a + d) / d It becomes. With this reduction ratio, the rotation is transmitted from the hub case 12 to the outer ring gear 5d, the planet carrier 5c, and the rear sprocket 7.
- the speed change mechanism 5 of this embodiment uses any one of the sun gears 5a-1, 5a-2, 5a-3 as a fixed member, the outer ring gear 5d as an input member, the planetary gear 5e, and the planet carrier 5c.
- a speed increase provided with a combination of gears in which the gear ratio becomes a plurality of gear ratios by meshing the sun gears 5a-1, 5a-2, 5a-3 with the three-stage planetary gear 5b.
- the reverse input torque from the tire is decelerated and is transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the speed change mechanism 5 also functions during driving, and transmits the input from the sprocket 7 to the hub case 12 with the set speed increasing ratio.
- rotation resistance is applied to the cage 2d by the rotation resistance applying means 30 provided in the hub case 12, and engagement and disengagement are controlled by the application of the rotation resistance. Therefore, all the devices are arranged in the hub case 12, and the retainer 2d of the clutch is corroded by external water or mud, or the retainer 2d is damaged or deformed due to unnecessary external input. There is no.
- the cage 2d overcomes the bias of the elastic body 2e and is relative to the outer ring 2b in the backward direction. Rotate. As a result of this relative rotation, even if the roller 2a ′ is in a standby state at a shallow position in the groove 2f of the outer ring 2b, the roller 2a ′ is as long as the rotation speed of the inner ring 2c is higher than the rotation speed of the outer ring 2b.
- the reverse input one-way clutch 2 is not locked because it is out of the wedge space formed by the groove 2f of the inner ring 2c and the outer ring 2b.
- the forward drive torque input from the rear sprocket 7 is transmitted from the outer ring gear 5d to the hub case 12 through the shift one-way clutch 5f at the speed increase ratio described above.
- the reverse input one-way clutch 2 is not locked because the cage 2d biased by the elastic body 2e presses the roller 2a 'toward the deeper side of the groove 2f.
- the reverse input one-way clutch 2 is in a normal state because the cage 2d biased by the elastic body 2e presses the roller 2a ′ toward the deeper groove 2f (in the direction in which the wedge space spreads). In a state where no external force is applied to the cage 2d, the cage is idling.
- the reverse input torque is transmitted from the tire side in the order of the hub case 12, the reverse input one-way clutch 2, the planet carrier 5c, the planetary gear 5e, the outer ring gear 5d, and the rear sprocket 7. At this time, the reverse input torque is decelerated by the transmission mechanism 5 and transmitted to the rear sprocket 7.
- the reverse input torque from the tire of the rear wheel which is the drive wheel, is transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- a center one-way clutch is provided between the crankshaft and the crank sprocket that locks in the direction in which the driving force is transmitted and idles with respect to the reverse input. For this reason, the driving force is not transmitted to the crankshaft, the pedal, and the like by reverse input.
- a well-known one-way clutch such as a roller clutch, a sprag clutch or a ratchet clutch can be adopted.
- the roller clutch employed as the reverse input one-way clutch 2 in the eleventh embodiment is changed to a ratchet clutch. Since the basic configuration of the speed change mechanism 5 and the like is the same as that of the eleventh embodiment, the following description will focus on the configuration of the reverse input one-way clutch 2 and the rotational resistance applying means 60 that functions as the clutch switching means 9. .
- the one-way clutch 2 for reverse input has a ratchet groove 21 formed in an inner ring 2c integrated with the outer ring gear 5d, and a clutch pawl (ratchet) as an engaging element in the outer ring 2b integrated with the hub case 12.
- the claw) 20 is disposed so as to be swingable around the swing shaft 23.
- the ratchet pawl 20 engages with the ratchet groove 21 by swinging around the swing shaft 23 in one direction, and couples the inner and outer rings 2c and 2b, and can be released by swinging in the opposite direction. is there.
- a shutter 22 as an engaging member holding means is provided in an annular space sandwiched between the inner and outer rings 2c and 2b.
- the shutter 22 includes a circumferential member 22a that can enter and leave between the clutch pawl 20 and the ratchet groove 21, and a protrusion 22b that rises in the radial direction from the circumferential member 22a.
- the circumferential member 22a has a cross-sectional C-shape formed by cutting off a part of the annular member in the axial orthogonal cross section. Although the cross section extends in the axial direction by a predetermined length, other shapes may be used as long as the same function is exhibited.
- the shutter 22 is normally configured so that the clutch pawl 20 does not mesh with the ratchet groove 21 through the projection 22b by the elastic body 24 housed in the recess 25 formed on the inner periphery of the outer ring 2b. It is urged to enter between 20 and the ratchet groove 21.
- the basic configuration of the rotation resistance applying means 60 is the same as that of the above-described embodiment, and a locking portion 63 is provided on the outer periphery of the axle 11, and a predetermined distance in the axial direction is provided from the locking portion 63.
- a friction part 61a (hereinafter, referred to as “friction plate 61a”) made of a flange-like member that protrudes to the outer diameter side over the entire circumference is provided.
- An elastic member 62 is disposed between the locking portion 63 and the friction plate 61a.
- the friction plate 61a is provided at one end in the axial direction of the shaft-like operation portion 61 that is inserted in the hole 11a provided along the axial direction inside the axle 11 so as to be capable of moving back and forth in the axial direction.
- the operation unit 61 is controlled to advance and retreat in the axial direction with respect to the axle 11 by an operation from a clutch switching device (not shown) provided outside the axle 11.
- the axial movement of the operation unit 61 relative to the axle 11 causes the friction plate 61a at one end in the axial direction of the operation unit 61 to move in a direction approaching the one-way clutch 2 for reverse input. Then, when the end surface of the friction plate 61a comes into contact with the outer surface of the end surface plate portion 22c provided so as to protrude in the inner diameter direction from the circumferential member 22a of the shutter 22, the friction resistance due to the contact causes the shutter 22 to A rotation resistance is applied so as to suppress the rotation.
- the shutter 22 When rotation resistance is applied to the shutter 22 by the friction plate 61 a during forward non-drive, the shutter 22 is delayed with respect to the rotation of the hub case 12.
- the rotational resistance provided by the friction plate 61a overcomes the elastic force of the elastic body 24, the shutter 22 opens, that is, the shutter 22 is detached from between the clutch pawl 20 and the ratchet groove 21 (see FIG. 20 (a)), the clutch pawl 20 is engaged with the ratchet groove 21, and the reverse input from the tire is the hub case 12, the reverse input one-way clutch 2, the outer ring gear 5d, the planetary gear 5e, the planetary carrier 5c, and the rear sprocket 7. Is transmitted to the motor through the chain and regenerative power is generated.
- the speed change mechanism 5 is constituted by a planetary gear mechanism with three-speed reduction switching. That is, three sun gears 5a-1, 5a-2, 5a-3 rotatably supported on the outer periphery of the axle 11 and the sun gears 5a-1, 5a-2, 5a-3
- a planetary gear 5b having three gears that mesh with each other, a planet carrier 5c that holds the planetary gear 5b, and an outer ring gear 5d that meshes with the planetary gear 5b are provided.
- the reverse input one-way clutch 2 is constituted by a roller clutch between the hub case 12 and the outer ring gear 5d.
- the reverse input one-way clutch 2 can be a sprag clutch, or a ratchet clutch employed in the twelfth embodiment.
- bearing portions 13 are provided at both ends in the axial direction, and are supported so as to be rotatable relative to each other, as in the eleventh and twelfth embodiments.
- a one-way clutch 5f for shifting is incorporated between the planetary gear 5b and the hub case 12.
- a ratchet clutch is used here, but the same is true in that a one-way clutch having another configuration such as a roller clutch or a sprag clutch may be used.
- the outer ring gear 5d provided so as to be rotatable integrally with the rear sprocket 7 and the hub case 12 are rotated relative to each other via a bearing portion 14. It is possible.
- the outer ring gear 5d constitutes a part of the speed change mechanism 5.
- the sun gears 5a-1, 5a-2, 5a-3 can be shifted by selectively making one of the sun gears 5a-1, 5a-2, 5a-3 non-rotatable with respect to the axle 11 by the shift control mechanism 40. Since the structure of the speed change control mechanism 40 is the same as that of the above-mentioned embodiment, description thereof is omitted.
- the roller 2a 'of the one-way clutch 2 for reverse input moves in the groove 2f in a direction in which the wedge space is narrowed.
- the inner ring 2c and the outer ring 2b are coupled and locked by moving.
- the shift one-way clutch 5f is idling. Since the configuration of the rotation resistance applying means 60 is the same as that of the above-described embodiment, the description thereof is omitted.
- the reverse input one-way clutch 2 cannot transmit the forward torque input to the rear sprocket 7, but can transmit the reverse torque (including the reverse input torque when the forward drive is not driven).
- the friction between the friction plate 31a and the retainer 4 due to the operation of the rotational resistance applying means 60 is performed.
- the resistance is applied and the frictional resistance is applied to the brake operation performed by the driver.
- the application of the frictional force is not limited to the brake operation, and may be interlocked with other elements.
- the application and release of frictional resistance may be linked to a dedicated manual operation other than the brake operation performed by the driver.
- the battery-assisted bicycle of this embodiment has a center motor system in which a secondary battery and an auxiliary drive motor (center motor unit) are attached to a frame connecting the front wheel and the rear wheel in the vicinity of the center between the front wheel and the rear wheel. It is.
- the crank sprocket of the center motor unit (not shown) and the rear sprocket of the rear wheel as the driving wheel (
- the driving force can be transmitted to the rear wheel via a power transmission element such as a chain connecting the sprocket 7.
- a regenerative mechanism is provided that, when not driven, regenerates regenerative power generated by reverse input from the rear wheel rear hub 1 to the output shaft of the motor to the secondary battery of the center motor unit.
- the rear hub 1 includes a speed change mechanism 5 and a speed change control mechanism 40, a driving force transmission and a reverse input transmission two-way clutch 50, in a hub case 12 provided coaxially with the rear axle 11. And a rotational resistance applying means 60 as a clutch switching means 9 having a function of controlling the engagement and disengagement of the two-way clutch 50.
- symbol 8 in a figure has shown the hub flange.
- a well-known engagement clutch can be used.
- a roller clutch is employed, and an inner ring 50c and an outer ring 50b arranged on the same axis are relatively rotatable about an axis, and an outer peripheral surface of the inner ring 50c and an outer ring A roller 50a is disposed in a wedge space extending between both sides in the circumferential direction provided between the groove 50f of the 50b.
- the groove 50f of the outer ring 50b is V-shaped in a side view that is convex in the outer diameter direction, and the wedge space is the bottom portion of the V-shaped groove 50f, that is, the center in the circumferential direction. The width in the radial direction is reduced as it goes in the forward and reverse rotational directions from the part.
- the roller 50a is held in the circumferential direction by an annular cage 50d, and the elastic member 50e enables transmission of driving force to the positive rotation direction (to be described later to the rear wheel) via the cage 50d.
- the direction of the wedge is biased toward the narrowing side.
- the cage 50d includes an annular portion 50m having a plurality of pocket portions for accommodating the rollers 50a along the circumferential direction, and a flange-shaped end that rises from the annular portion 50m in the inner diameter direction over the entire circumference. And a face plate portion 50k.
- a bearing portion 15 is provided between the inner side surface of the end face plate portion 50k of the cage 50d and the end surface of the inner ring 50c to support both in the axial direction.
- the cage 50d and the inner ring 50c are supported via the bearing portion 15 so as to be relatively rotatable around the axis.
- bearing portions 13 are provided at both ends in the axial direction, and are supported so as to be relatively rotatable around the axis. Further, the planet carrier 5 c provided so as to be rotatable integrally with the rear sprocket 7 and the hub case 12 are rotatable relative to each other via a bearing portion 14. The planet carrier 5 c constitutes a part of the speed change mechanism 5.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speeds, and the speed change mechanism 5 includes three sun gears that are coaxially and rotatably supported on the outer periphery of the axle 11. 5a-1, 5a-2, 5a-3.
- a planetary gear 5b having a three-stage gear meshing with the sun gears 5a-1, 5a-2, 5a-3, a planet carrier 5c holding the planetary gear 5b, and an outer ring gear 5d meshing with the planetary gear 5b.
- the two-way clutch 50 is incorporated between the outer ring gear 5d and the hub case 12.
- the inner ring 50c of the two-way clutch 50 is formed integrally with the external gear 5d.
- the outer ring 50 b of the two-way clutch 50 is press-fitted and fixed to the inner diameter surface of the hub case 12.
- the sun gears 5 a-1, 5 a-2, and 5 a-3 can be shifted by selectively making any one of the sun gears 5 a-1, 5 a-2, 5 a-3 non-rotatable with respect to the axle 11 by the shift control mechanism 40.
- the third sun gear 5a-3 is not rotatable with respect to the axle 11, the number of teeth of the third sun gear 5a-3 is a and the number of teeth of the outer ring gear 5d is d.
- the speed increasing ratio to the gear 5d is (a + d) / d It becomes.
- the first sun gear 5a-1 and the second sun gear 5a-2 are idling and do not participate in torque transmission.
- each of the sun gears 5a-1, 5a-2, 5a-3 has a different number of teeth, and by making any one non-rotatable with respect to the axle 11, the speed increasing ratio can be changed.
- the speed change control mechanism 40 includes an operation shaft 40b inserted into an axial hole 11b provided in the axle 11, a snap key 40a provided on the operation shaft 40b, and an elastic member 40c.
- the snap key 40a protrudes radially outward from the outer surface of the operation shaft 40b, and the elastic member 40c is housed in the inner portion 11c of the axial hole 11b and is engaged with the locking portion 40d at one end of the operation shaft 40b. It has been stopped. Further, the operation shaft 40b and the snap key 40a are urged by the elastic member 40c from the back part 11c of the axial hole 11b to the opening part 11d (from the right side to the left side shown in FIG. 22B). ing.
- the selection of the sun gears 5a-1, 5a-2, 5a-3 with which the planetary gear 5b is engaged can be performed by operating the snap key 40a in the axial direction from the outside through the axle 11.
- the snap key 40a moves in the axial direction through an operation from the outside through the operation shaft 40b and meshes with any one of the sun gears 5a-1, 5a-2, 5a-3.
- the two sun gears 5a are selectively made non-rotatable with respect to the axle 11. Therefore, any one of the sun gears 5a-1, 5a-2, 5a-3 can be made non-rotatable with respect to the axle 11 with respect to both driving force and reverse input.
- the roller 50a is urged in advance by the elastic member 50e toward the side where the wedge in the forward rotation direction shown on the right side in the drawing is narrowed.
- the inner ring 50c and the outer ring 50b are engaged with the space and locked.
- the driving force from the rear sprocket 7 is transmitted to the rear wheels, which are driving wheels.
- the state in which the outer ring 50b rotates in the reverse rotation direction with respect to the inner ring 50c is equal to the state in which the inner ring 50c rotates in the forward rotation direction with respect to the outer ring 50b. Accordingly, in both states, the two-way clutch 50 is locked and torque is transmitted.
- the two-way clutch 50 normally functions as a one-way clutch that transmits the driving force input to the rear sprocket 7.
- the roller 50a wedges between the inner ring 50c and the groove 50f of the outer ring 50b, and the inner ring 50c and the outer ring 50b of the two-way clutch 50 are coupled and locked.
- the two-way clutch 50 transmits the driving force to the rear wheels during forward driving, and from the rotational resistance applying means 30 during forward non-driving (a situation where the bicycle goes down a hill without striking the pedal). Under a state where rotational resistance is applied to the cage 50d, reverse input torque from the tire can be transmitted to the rear sprocket 7.
- the rotation resistance provision means 60 it is set as the structure shown in FIG.22 and FIG.23 in this embodiment.
- the configuration is such that a locking portion 63 is provided on the outer periphery of the axle 11, and a flange-like member that protrudes to the outer diameter side over the entire circumference at a predetermined distance from the locking portion 63 in the axial direction.
- a friction portion 61a (hereinafter referred to as “friction plate 61a”) is provided.
- locking part 63 is comprised by the step part, you may comprise by the flange which protrudes to an outer-diameter side other than that, for example.
- An elastic member 62 is disposed between the locking portion 63 and the friction plate 61a.
- the elastic member 62 employs a coil spring, and the coil spring is fitted to the outer periphery of the axle 11 and is sandwiched between the locking portion 63 and the friction plate 61a.
- an elastic member 62 other than the coil spring is used. It is also possible to arrange in the hole 11a provided in the axle 11 along the axial direction.
- the friction plate 61a has a flange shape that protrudes to the outer diameter side over the entire circumference. However, if the rotational resistance can be given to overcome the urging force of the elastic body 50e, the friction plate 61a can be a rod shape. It is.
- the friction plate 61a is provided at one end in the axial direction of the shaft-like operation portion 61 that is inserted into the hole 11a provided along the axial direction inside the axle 11 so as to be movable back and forth in the axial direction.
- the friction plate 61a and the operation unit 61 are integrally formed, but members formed separately may be fixed. It is desirable that the operation part 61 is inserted into the hole 11 a without any rattling, and the axis of the operation part 61 coincides with the axis of the axle 11.
- the operation portion 61 is controlled to advance and retreat in the axial direction with respect to the axle 11 by an operation from a clutch switching device (not shown) provided outside the axle 11.
- the friction plate 61 a at one axial end of the operating portion 61 moves in a direction approaching the two-way clutch 50.
- the end surface of the friction plate 61a comes into contact with the outer surface of the end surface plate portion 50k provided so as to protrude in the inner diameter direction from the annular portion 50m of the cage 50d as shown in FIG.
- the frictional resistance is applied to the cage 50d so as to suppress the rotation.
- the rotation of the cage 50d is suppressed, the cage 50d overcomes the bias of the elastic body 50e, and rotates relative to the outer ring 50b in the backward direction, so that the roller 50a is in the standby state. (Standing at a shallow position of the wedge space on the reverse rotation side).
- the control of the axial movement of the operation unit 61 by the switching device is performed in conjunction with a brake operation performed by the driver.
- a brake operation performed by the driver.
- the brake is operated by pulling the brake lever or the like (when the brake is effective)
- a pressing force is applied to the operation unit 61 by the function of the clutch switching device, and the operation unit 61 and the friction plate 61a are It moves in the direction approaching the two-way clutch 50, and the end surface of the friction plate 61a comes into contact with the cage 50d.
- the brake operation is released (when the brake is not effective)
- the pressing force to the operation unit 61 is released, and the friction plate 61a is detached from the cage 50d by the elastic force of the elastic member 62. In other words, the state returns to a state where no frictional resistance is applied.
- a shaft portion that protrudes in the outer diameter direction is provided in the operation portion 61, and a long hole that penetrates the outer periphery of the axle 11 and the space in the hole portion 11a in the radial direction is formed.
- the long hole is formed so as to extend along the axial direction. If the shaft portion protruding in the outer diameter direction from the operation portion 61 is pulled out of the axle 11 from the long hole, the shaft portion is pressed in the axial direction with respect to the axle 11 by an appropriate means. The part moves in the long hole, and the axial movement of the operation part 61 relative to the axle 11 can be controlled. Further, if the pressing force is maintained, the contact between the cage 50d and the friction plate 61a is also maintained. Further, when the pressing force is released, the operating portion 61 is moved in the axial direction in the direction of detachment from the cage 50d by the elastic force of the elastic member 62 described above.
- the other axial end portion of the operation portion 61 is drawn further outward in the axial direction than the axial end portion of the axle 11, and the extracted axial direction end portion of the operation portion 61 is interposed therebetween. A pressing force necessary for the axial movement may be applied.
- the elastic member 62 since the elastic member 62 is disposed between the locking portion 63 and the friction plate 61a, the elastic plate 62a can be detached from the cage 50d so that the elastic force can be used.
- the installation of the elastic member 62 may be omitted, and the above-described clutch switching device may be provided with a function of pressing the operating portion 61 in a direction in which the friction plate 61a is detached from the cage 50d.
- the rotation resistance applying means 60 when the rotation resistance applying means 60 is operated by a brake operation or the like during forward non-drive, the reverse input torque from the tire is converted to the hub case 12, the two-way clutch 50 (the outer ring 50b, the roller 50a, the inner ring 50c), the outer ring gear 5d, The planetary gear 5b, the planet carrier 5c, and the rear sprocket 7 can be transmitted in this order.
- the third sun gear 5a-3 When the two-way clutch 50 is locked at the time of forward non-drive, for example, the third sun gear 5a-3 is fixed, the number of teeth of the third sun gear 5a-3 is a, and the number of teeth of the outer ring gear 5d is d. Then, the reduction ratio from the outer ring gear 5d to the planet carrier 5c is (a + d) / d It becomes. With this reduction ratio, rotation is transmitted from the hub case 12 to the outer ring gear 5d, the planetary gear 5b, the planet carrier 5c, and the rear sprocket 7.
- the planetary gear 5b and the planet carrier 5c are input members
- the outer ring gear 5d is an output member
- any one of the sun gears 5a-1, 5a-2, 5a-3 is fixed.
- the driving force from the rear sprocket 7 is increased and transmitted to the tire.
- the reverse input torque from the tire is decelerated and transmitted from the rear sprocket 7 to the motor shaft through a power transmission element such as a chain, so that regenerative charging is possible.
- the two-way clutch 50 functioning for driving force transmission and reverse input transmission is provided with rotational resistance applied to the cage 50d by the rotational resistance applying means 60 provided in the hub case 12, and the rotation Engagement and disengagement are controlled by the application of resistance, so that all devices are arranged in the hub case 12 and the clutch retainer 50d is corroded by external water or mud, or unnecessary input from the outside. Thus, the cage 50d is not damaged or deformed.
- a center one-way clutch is provided between the crankshaft and the crank sprocket that locks in the direction in which the driving force is transmitted and idles with respect to the reverse input. For this reason, the driving force is not transmitted to the crankshaft, the pedal, and the like by reverse input.
- a well-known one-way clutch such as a roller clutch, a sprag clutch or a ratchet clutch can be adopted.
- the speed change mechanism 5 is constituted by a planetary gear mechanism that switches between three speed reduction modes.
- the two-way clutch 50 for driving force transmission and reverse input transmission is constituted by a roller clutch between the hub case 12 and the planet carrier 5c (rotated integrally with the inner ring 50c).
- the two-way clutch 50 is the same as the first embodiment in that a two-way clutch having another structure such as a sprag clutch in addition to the roller clutch may be employed.
- the bearing parts 13 are provided between the hub case 12 and the axle 11 at both axial ends thereof, and are supported so as to be relatively rotatable with each other, as in the fourteenth embodiment.
- the outer ring gear 5d provided to rotate integrally with the rear sprocket 7 and the hub case 12 are relatively rotatable via the bearing portion 14.
- the outer ring gear 5d constitutes a part of the speed change mechanism 5.
- the transmission mechanism 5 includes a planetary gear 5b having a three-stage gear meshing with the sun gears 5a-1, 5a-2, and 5a-3, the planet carrier 5c that holds the planetary gear 5b, and the planetary gear.
- the outer ring gear 5d meshing with 5b.
- the sun gears 5a-1, 5a-2, 5a-3 can be shifted by selectively making any one of the sun gears 5a-1, 5a-2, 5a-3 non-rotatable with respect to the axle 11 by the shift control mechanism 40.
- the structure of the transmission control mechanism 40 is the same as that in the fourteenth embodiment.
- the inner ring 50c of the two-way clutch 50 is provided so as to be rotatable integrally with the planet carrier 5c of the transmission mechanism 5, and the outer ring 50b is provided by being press-fitted and fixed to the inner diameter side of the hub case 12. It has been. Further, the engaging element is constituted by the roller 50a disposed between the inner ring 2c and the outer ring 2b. Furthermore, in this embodiment, the planet carrier 5c and the inner ring 50c are an integral member.
- the two-way clutch 50 has a function of transmitting the forward torque input to the rear sprocket 7 to the tire, and when resistance is given to the cage 50d by the rotation resistance applying means 60, the two-way clutch 50 It has a function of transmitting torque (including reverse input torque during forward non-drive) to the rear sprocket 7.
- FIG. 25 A sixteenth embodiment of the present invention is shown in FIG. 25, and a seventeenth embodiment is shown in FIG.
- the main structures of the speed change mechanism 5, the two-way clutch 50, and the speed change control mechanism 40 are the same as those of the fourteenth embodiment and the fifteenth embodiment, respectively.
- the inner ring 50c of the two-way clutch 50 for driving force transmission and reverse input transmission The outer ring gear 5d of the transmission mechanism 5 is formed as a separate body and meshed with the gears so that they can rotate integrally.
- the inner ring 50c of the two-way clutch 50 for driving force transmission and reverse input transmission and the planet carrier 5c of the speed change mechanism 5 are formed separately, and these are formed by gears. By meshing, it can rotate as a unit.
- the inner ring 50c of the two-way clutch 50 is supported relative to the hub case 12 by a bearing portion 16 disposed between the inner ring 2c and the hub case 12.
- the cage 50d that holds the engagement element 50a (roller or the like) of the two-way clutch 50 is pulled out so that its axial end is exposed to the outside of the hub case 12, and is a bearing disposed between the inner ring 2c.
- the portion 15 is supported so as to be rotatable relative to the inner ring 50c.
- rotational resistance applying means 60 (such as the friction portion 61a) for applying an external force, that is, rotational resistance, to the cage 50d is disposed outside the hub case 12.
- Reference numeral 60a shown in FIGS. 25 and 26 is a seal.
- the rotational resistance applying means 60 as the clutch switching means 9 is brought into contact with and separated from the cage 50d by an external operation. It is possible.
- the rotation resistance provision means 60 is moved to the holder
- the frictional resistance between the friction plate and the cage 50d by the operation of the rotational resistance imparting means 60 is used, and the frictional resistance is imparted.
- the application of the frictional force is not limited to the brake operation, and may be linked to other elements.
- the application and release of frictional resistance may be linked to a dedicated manual operation other than the brake operation performed by the driver.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Structure Of Transmissions (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
しかし、このハブモータ方式の場合、モータから二次電池までの距離が遠くなりがちであり、その二次電池までの配線の取り回しが煩雑になる傾向がある。また、モータをフロントの車軸に配置すると操作性が悪化し、リア側に配置すると変速機との両立が困難になるという問題もある。
この電動補助自転車では、モータ出力軸と駆動スプロケットとの間に第一ワンウェイクラッチを設け、踏力が入力されるペダルクランク軸と駆動スプロケットとの間に第二のワンウェイクラッチを設け、さらにブレーキ操作に応じて第一ワンウェイクラッチをロックする直結手段を設けることで、制動時の電力回生を実現している。なお、リアハブとリアスプロケットとは、回生時にタイヤからの逆入力トルクをモータに伝えることができるように直結されている。
この電動補助自転車では、センタモータユニット内で、モータの出力軸にブレーキ操作に連動してロック方向を切り替えることが出来るツーウェイクラッチを設け、制動時の電力回生を実現している。
外装変速機は構造が簡単で軽量であるが、スプロケットやチェーンが摩耗する原因になり、チェーン外れの原因にもなる。一方、内装変速機は防塵、防水性があり、メンテナンスフリーであるためシティサイクルに使われることが多い。現在のところ、電動アシスト自転車はシティサイクル自転車を中心に展開しており、その殆どが内装変速機を採用している。
逆入力に対応するため、例えば、車軸からクランク軸、及び車軸からモータ軸をそれぞれ別々の動力伝達要素で結合することも可能であるが、2本の伝達要素を用いることはレイアウト的にもコスト的にも商品価値の大幅な低下を招く。
このように、逆入力用ワンウェイクラッチを太陽歯車と車軸との間に配置することで、内装変速機を備えたセンタモータ方式の電動補助自転車において、装置を複雑化することなく、駆動力の伝達と逆入力の伝達とを実現できる。
このセンタワンウェイクラッチとしては、ローラクラッチ、スプラグクラッチ、ラチェットクラッチ等を採用することができる。
なお、ブレーキ操作時以外において、前記回転抵抗付与手段による前記係合子保持手段に対する回転抵抗の付与を行う構成とすることも可能である。例えば、踏力やモータによる駆動力の入力が遮断された段階で、その入力の遮断を検知して自動的に前記係合子保持手段に対する回転抵抗の付与を行う機能を前記回転抵抗付与手段に備えさせてもよい。すなわち、駆動力の入力がある場合には、回転抵抗の付与を行わないようにし、駆動力の入力が無くなれば、自動的に回転抵抗を付与する機能を備えさせたものが考えられる。
そこで、上記のように、車軸とともに軸方向に伸びる操作部を設け、その操作部を車軸に対して軸方向へ進退可能とすれば、操作部は車軸とともにハブ外へ引き出されるから、ハブ内部への水や泥の侵入や、係合子保持手段に傷や変形を生じさせる事態を回避しつつ、安定的に係合子保持手段に対する回転抵抗の付与を実現できる。
なお、重量の制限やスペースの問題等を克服できる場合は、摩擦部はフランジ状の部材に限定されず、例えば、係合子保持手段に設けられた当たり面に対して軸方向に対向し得るように、操作部の軸方向一端部に形成され、外径方向に突出する突起や膨出部とすることができる。
そこで、上記のように、環状部から径方向へ立ち上がる端面板部を備えることで、接触面を径方向に拡大し、両者の間に安定した摩擦抵抗を発生させることができる。なお、端面板部は、環状部から外径方向に立ち上がるようにしてもよいし、内径方向に立ち上がるようにしてもよいが、内径方向に立ち上がる構成とする方が、摩擦部との当たり面をより車軸の軸心に近づけることができるので、部材や装置のコンパクト化の面で有利である。
もちろん、摩擦部と保持器との間において、所定の回転抵抗の付与が可能である場合は、保持器の端面板部に摩擦部を接触させるのではなく、保持器の環状部の軸方向端部に対して、摩擦部を接触させる構成とすることもできる。このとき、端面板部は省略することもできる。
端面板部は、環状部から径方向に立ち上がっているから、ここに回転抵抗付与手段の摩擦部が当たると、その端面板部に軸方向力が作用する。このため、その端面板部と内輪との間に軸受部を備えておけば、その軸受部が、いわゆるスラスト方向への軸受として機能して、端面板部は摩擦部から受ける軸方向力に対抗することができる。これにより、保持器の大型化を回避することができる。
さらに、そのシャッターに端面板部を設けた構成において、前記逆入力用ワンウェイクラッチの内輪と前記シャッターとが軸受部を介して相対回転可能に支持され、その軸受部が、前記シャッターを前記端面板部で支持している構成とすることもできる。
このセンタワンウェイクラッチとしては、ローラクラッチ、スプラグクラッチ、ラチェットクラッチ等を採用することができる。
このように、ツーウェイクラッチを採用することで、駆動力の伝達と逆入力の伝達とを一つのクラッチで果たすことができるから、その構造を単純化することができる。
なお、ブレーキ操作時以外において、前記回転抵抗付与手段による前記保持器に対する回転抵抗の付与を行う構成とすることも可能である。例えば、踏力やモータによる駆動力の入力が遮断された段階で、その入力の遮断を検知して自動的に前記保持器に対する回転抵抗の付与を行う機能を前記回転抵抗付与手段に備えさせてもよい。すなわち、駆動力の入力がある場合には、回転抵抗の付与を行わないようにし、駆動力の入力が無くなれば、自動的に回転抵抗を付与する機能を備えさせたものが考えられる。
しかし、ツーウェイクラッチの保持器がハブケース内に収容されているような場合は、走行とともにハブが回転するため、どのようにして、回転抵抗を付与したり、その付与を遮断したりするかが問題となる。
なお、重量の制限やスペースの問題等を克服できる場合は、摩擦部はフランジ状の部材に限定されず、例えば、保持器に設けられた当たり面に対して軸方向に対向し得るように、操作部の軸方向一端部に形成され、外径方向に突出する突起や膨出部とすることができる。
一般に、保持器は径方向に薄い部材で構成されるから、回転抵抗付与手段の摩擦部によって回転抵抗を付与するに際し、その接触面積を大きく確保しにくいという問題がある。
そこで、上記のように、環状部から径方向へ立ち上がる端面板部を備えることで、接触面を径方向に拡大し、両者の間に安定した摩擦抵抗を発生させることができる。なお、端面板部は、環状部から外径方向に立ち上がるようにしてもよいし、内径方向に立ち上がるようにしてもよいが、内径方向に立ち上がる構成とする方が、摩擦部との当たり面をより車軸の軸心に近づけることができるので、部材や装置のコンパクト化の面で有利である。
もちろん、摩擦部と保持器との間において、所定の回転抵抗の付与が可能である場合は、保持器の端面板部に摩擦部を接触させるのではなく、保持器の環状部の軸方向端部に対して、摩擦部を接触させる構成とすることもできる。このとき、端面板部は省略することもできる。
端面板部は、環状部から径方向に立ち上がっているから、ここに回転抵抗付与手段の摩擦部が当たると、その端面板部に軸方向力が作用する。このため、その端面板部と内輪との間に軸受部を備えておけば、その軸受部が、いわゆるスラスト方向への軸受として機能して、端面板部は摩擦部から受ける軸方向力に対抗することができる。これにより、保持器の大型化を回避することができる。
また、前記ツーウェイクラッチとして、係合子としてのスプラグを、環状の保持器によって周方向に保持したスプラグクラッチからなる構成を採用することもできる。
このセンタワンウェイクラッチとしては、ローラクラッチ、スプラグクラッチ、ラチェットクラッチ等を採用することができる。
すなわち、逆入力用ワンウェイクラッチを太陽歯車と車軸との間に配置することで、内装変速機を備えたセンタモータ方式の電動補助自転車において、装置を複雑化することなく、駆動力の伝達と逆入力の伝達とを実現できる。
この発明の第1の実施形態を、図1及び図2に基づいて説明する。この実施形態の電動補助自転車は、前輪と後輪間の中央部付近において、その前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータ(センタモータユニットC)を取り付けたセンタモータ方式である。
その構成は、前記車軸5の外周に設けられた二つの太陽歯車5a(第一太陽歯車5a-1,第二太陽歯車5a-2と称する)が、それぞれ第一ワンウェイクラッチ5e-1、第二ワンウェイクラッチ5e-2を介してその車軸11に接続可能とされている。
また、遊星キャリア5cとハブケース7との間にも、軸受部14が設けられている。この軸受部14によって、遊星キャリア5cとハブケース12と車軸11とは相対回転可能に支持されている。
例えば、前記第一太陽歯車5a-1、第二太陽歯車5a-2を、いずれも車軸11に対してフリーの状態とした場合に、リアスプロケット7から駆動力が伝達されると、遊星歯車機構は駆動力の増速には直接関与せず、遊星キャリア5cから変速用ワンウェイクラッチ5fを介してハブケース12に直接駆動力が伝達される(直結状態)。この場合、リアスプロケット7からの回転速度は変速されずにハブケース12に伝達される。
(a+d)/d
となる。このとき、第二太陽歯車5a-2は空転状態であり、トルク伝達に関与しない。
[(a×b)/(c×d)]+1
となる。
このとき、第一太陽歯車5a-1は空転状態であり、トルク伝達に関与しない。
[(a×b)/(c×d)]+1
となる。
この場合、ブレーキが操作されると、操作部9aを介して駆動部材9bが軸方向他方側(図の左側)に移動し、逆入力に対して第二太陽歯車5a-2は、逆入力用ワンウェイクラッチ2を介して車軸11に固定され、タイヤからの逆入力トルクはリアスプロケット7へと伝達される。
しかしながら、逆入力トルクがかかっている状態では、駆動部材9bのテーパー面9eが逆入力用ワンウェイクラッチ2のクラッチ爪2aに接触し、駆動部材9bは、軸方向一方側へ移動できない。このため、逆入力用ワンウェイクラッチ2のロックがはずれることはない。
この実施形態において、変速制御機構10は、車軸11の外周に相対回転可能に設けた回転部材10aを備え、その回転部材10aを車軸11に対して円周方向へ回転操作することによって、遊星歯車5bが噛み合う前記第一太陽歯車5a-1、第二太陽歯車5a-2の選択を行うことができる。また、変速制御機構10は、本実施形態のクラッチ切替装置9のように、棒状の操作部を有し、その操作部の一端が車軸11内を通って外部に引き出されて外部から軸方向移動の操作が可能であり、その操作部を軸方向に移動させることによって、前記第一及び第二ワンウェイクラッチ5e-1,5e-2における前記太陽歯車5aの車軸11に対する回転可能又は回転不能を切り替えできる構成を採用することもできる。
この発明の第2の実施形態を、図3及び図4に示す。この実施形態では、逆入力用ワンウェイクラッチ2は、第1の実施形態と同様ラチェットクラッチで構成しているが、クラッチ切替装置9を車軸5に沿って配置した回転部材9dによって主に構成している。他の主要な構成は、第1の実施形態と同様である。
このとき、ハブケース12側から逆入力トルクが伝達されると、第二太陽歯車5a-2は逆入力に対して車軸11に固定される。すなわち、前進非駆動時において、逆入力用ワンウェイクラッチ2をロックした場合、タイヤからの逆入力トルクは、ハブケース12、遊星歯車5b、遊星キャリア5c、リアスプロケット7へと伝達される。
この場合、ブレーキをかけた時に回転部材9dが円周方向に回転し、逆入力用ワンウェイクラッチ2がロックする。ブレーキを解除した場合、回転部材9dには円周方向に弾性部材が設けられており(図示せず)、その弾性部材の弾性力によって回転部材9dが元の位置に戻ろうとする。
この発明の第3の実施形態を、図5及び図6に示す。この実施形態は、逆入力用ワンウェイクラッチ2をローラクラッチで構成したものである。他の主要な構成は、第2の実施形態と同様である。
この発明の第4の実施形態を、図7に示す。この実施形態は、変速機構5の遊星歯車5bを3段とした3段増速の変速機構としており、また、前述の各実施形態とは異なり、遊星キャリア5cとハブケース12との間に変速用ワンウェイクラッチ5fは設けていない。
すなわち、第一~第三ワンウェイクラッチ5e-1,5e-2,5e-3を全てフリーとした場合の直結の変速モードは存在しない。その直結以外の変速機構は、第一~第三の実施形態の場合と同様である。
また、この実施形態では、遊星歯車3fを3段としているが、2段もしくは4段以上の遊星歯車を用いても差し支えない。
この発明の第5の実施形態を、図8に示す。この実施形態では、変速機構5の遊星歯車5bを3段とした3段減速の変速機構としている。
すなわち、前記各太陽歯車5a-1,5a-2,5a-3のいずれか一つを、対応するワンウェイクラッチ5e-1,5e-2,5e-3により車軸11に対し固定することで、減速比を変化させることができる。このとき、固定されていない太陽歯車5aは車軸11に対し空転する点は同様である。
さらに、逆入力用ワンウェイクラッチ2は、第一の実施形態と同様の操作部9a及び駆動部材9bを用いた機構を採用しているが、第二、第三の実施形態のような回転部材9dを用いた機構を採用することもできる。また、遊星歯車を3段としているが、2段もしくは4段以上の遊星歯車を用いても差し支えない。
この発明の第6の実施形態を、図9及び図10に基づいて説明する。この実施形態の電動補助自転車は、前輪と後輪間の中央部付近において、その前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータ(センタモータユニット)を取り付けたセンタモータ方式である。
内輪2cと車軸11との間、及びハブケース12と車軸11との間には、それぞれ軸受部13が設けられ、互いに相対回転可能に支持されている。内輪2cとハブケース12との間にも、軸受部14が設けられて相対回転可能となっている。
これにより、リアスプロケット7に入力された前進方向のトルクは伝えられないが、後退方向のトルク(前進非駆動時の逆入力トルクを含む)は伝えられるのである。
このため、リアスプロケット7から入力された回転トルクは、内輪2cを通じて、外輪歯車5dから遊星歯車5b、遊星キャリア5cへと伝わり、変速用第一ワンウェイクラッチ5f-1がロックして、最終的に、ハブケース12に伝えられる。このとき、回転数は外輪歯車5dから遊星キャリア5cへと伝わる間に減速するのである(減速状態)。
(a+d)/d
となる。遊星キャリア5cとハブケース12との間には、変速用第一ワンウェイクラッチ5f-1が組み込まれており、この減速比で、遊星キャリア5cの回転をケース12に伝達する。
この相対回転により、ローラ2a’が、外輪2bの溝2fの浅い位置でスタンバイ状態となったとしても、内輪2cの回転速度が外輪2bの回転速度より速い状態(前記減速状態)である限り、ローラ2a’は、内輪2cと外輪2bの溝2fで形成される楔空間から外れるため、逆入力用ワンウェイクラッチ2はロックしない。
この相対回転により、ローラ2a’が外輪の溝2fの浅い位置でスタンバイ状態となったとしても、内輪2cの回転速度が外輪2bの回転速度と等しく(前記直結(等速)状態)、ローラ2a’が内輪2cと外輪2bの溝2fで形成される楔に噛み込んでいかないため、逆入力用ワンウェイクラッチ2はロックしない。
この相対回転により、ローラ2a’が外輪の溝2fの浅い位置でスタンバイ状態となると、内輪2cの回転速度より外輪2bの回転速度の方が速い(非駆動状態)ため、ローラ2a’が内輪2cと外輪2bの溝2fとで形成される楔空間に噛み込み、逆入力用ワンウェイクラッチ2がロックして、ハブケース12とリアスプロケット7とが直結される。
この発明の第7の実施形態を図11及び図12に示す。この第二の実施形態は、第一の実施形態との差異点を中心に説明すると、まず、変速機構5を、3段増速切り替えの遊星歯車機構で構成している。
(a+d)/dとなる。
このとき、第一太陽歯車5a-1及び第二太陽歯車5a-2は空転状態であり、その第一太陽歯車5a-1及び第二太陽歯車5a-2はトルク伝達に関与しない。
このとき、逆入力用ワンウェイクラッチ2は、空転状態である。通常状態(保持器2dに外力を加えない状態)では、弾性体2eによって付勢された保持器2dが、ローラ2a’を溝2fの深い方(楔空間の拡がる方向)へ押し付けているため、その逆入力用ワンウェイクラッチ2は、両方向の回転入力に対してロックすることはないからである。
この相対回転により、ローラ2aが外輪の溝2fの浅い位置でスタンバイ状態となると、内輪2cの回転速度より外輪2bの回転速度の方が速い(非駆動状態)ため、ローラ2aが内輪2cと外輪2bの溝2fとで形成される楔空間に噛み込み、逆入力用ワンウェイクラッチ2がロックして、ハブケース12とリアスプロケット7とが直結される。
駆動力と逆入力では太陽歯車5aにかかるトルクの方向が逆転するため、各太陽歯車5a-1,5a-2,5a-3の溝5i、及びスナップキー30aは、その両方向のトルクに対してロックする構造となっている。
第8の実施形態を図13に示す。この実施形態は、外輪歯車5dと逆入力用ワンウェイクラッチ2の内輪2cとを一体の部材で構成したものである。その基本的な作動については、第7の実施形態と同じである。
第9の実施形態を、図14に示す。この実施形態は、変速機構5を、3段減速切り替えの遊星歯車機構で構成し、逆入力用ワンウェイクラッチ2を、ハブケース12と内輪2cとの間のローラクラッチで構成している。
この発明の第10の実施形態を図15に示す。この第10の実施形態は、第9の実施形態と同様、変速機構5を、3段減速切り替えの遊星歯車機構で構成している。また、逆入力用ワンウェイクラッチ2を、ハブケース12と外輪歯車5dの間のローラクラッチで構成している。その他の基本的な作動については、第7の実施形態と同じである。なお、図15では、クラッチ切替装置9としての摩擦部材19は、その図示を省略している。
この発明の第11の実施形態を、図16~図18に基づいて説明する。この実施形態の電動補助自転車は、前輪と後輪間の中央部付近において、その前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータ(センタモータユニット)を取り付けたセンタモータ方式である。
例えば、第三太陽歯車5a-3を車軸11に対して回転不能とした場合、第三太陽歯車5a-3の歯数をa、外輪歯車5dの歯数をdとすると、遊星キャリア5cから外輪歯車5dへの増速比は
(a+d)/d
となる。このとき、他の第一太陽歯車5a-1、第二太陽歯車5a-2は空転状態であり、トルク伝達に関与しない。
また、その操作軸40b及びスナップキー40aは、前記弾性部材40cによって、軸方向穴11bの奥部11cから開口部11d側へと(図16(b)に示す右側から左側へと)付勢されている。
したがって、駆動力と逆入力の両者に対して、太陽歯車5a-1,5a-2,5a-3のいずれか一つを車軸11に対して回転不能とすることができる。
その構成は、車軸11の外周に係止部63が設けられており、その係止部63から軸方向へ所定距離隔てたところに、全周に亘って外径側に突出するフランジ状の部材からなる摩擦部61a(以下、「摩擦板61a」と称する。)が設けられている。この実施形態では、係止部63は段部で構成されているが、それ以外にも、例えば、外径側に突出するフランジで構成してもよい。
また、係止部63と摩擦板61aとの間には、弾性部材62を配置している。この実施形態では、弾性部材62はコイルバネを採用し、そのコイルバネを車軸11の外周に嵌めて前記係止部63と摩擦板61aとの間に挟んでいるが、コイルバネ以外の弾性部材62を用いることや車軸11の内部に軸方向に沿って設けられた孔部11a内に配置することも可能である。また、前記摩擦部61aを全周に亘って外径側に突出するフランジ状としているが、前記弾性体2eの付勢に打ち勝つだけの回転抵抗を与えることができれば、棒状等にすることも可能である。
この回転抵抗の付与により保持器2dの回転が抑えられ、その保持器2dが弾性体2eの付勢に打ち勝って、外輪2bに対して後退方向に相対回転することで、ローラ2a’は前記スタンバイ状態(外輪2bの楔空間の浅い位置で待機する状態)となるのである。
操作部61から外径方向に突出する軸部を、その長孔から車軸11外に引き出しておけば、その軸部を、適宜の手段で車軸11に対して軸方向へ押圧することで、軸部が長孔内を移動して、操作部61の車軸11に対する軸方向移動が制御できる。また、その押圧力を維持すれば、保持器2dと摩擦板61aとの接触も維持される。
また、その押圧力を解除すれば、前述の弾性部材62の弾性力で、操作部61が保持器2dから離脱する方向へ軸方向移動するようにする。
(a+d)/d
となる。この減速比で、ハブケース12から、外輪歯車5d、遊星キャリア5c、リアスプロケット7へと回転が伝達される。
また、その変速機構5は、駆動時においても機能し、その設定された増速比で、スプロケット7からの入力をハブケース12に伝達するのである。
いま、内輪2cとハブケース12との間に組み込まれた逆入力用ワンウェイクラッチ2は、弾性体2eに付勢された保持器2dが、ローラ2a’を溝2fの深い方(楔空間の拡がる方向)へ押し付けているため、空転状態となっているとする。
この相対回転により、ローラ2a’が、外輪2bの溝2fの浅い位置でスタンバイ状態となったとしても、内輪2cの回転速度が外輪2bの回転速度より速い状態である限り、ローラ2a’は、内輪2cと外輪2bの溝2fで形成される楔空間から外れるため、逆入力用ワンウェイクラッチ2はロックしない。
この発明の第12の実施形態を図19及び図20に示す。この第12の実施形態は、第11の実施形態で逆入力用ワンウェイクラッチ2として採用されていたローラクラッチを、ラチェットクラッチに変更した構成である。
変速機構5等の基本構成は、第11の実施形態と同様であるので、以下、逆入力用ワンウェイクラッチ2と、クラッチ切替手段9として機能する回転抵抗付与手段60等の構成を中心に説明する。
その操作部61は、車軸11外に設けたクラッチ切り換え装置(図示せず)からの操作により、その車軸11に対して軸方向への進退が制御されるようになっている。
前記摩擦板61aによって与えられる回転抵抗が前記弾性体24の弾性力に打ち勝つと、前記シャッター22が開いて、すなわち、前記シャッター22がクラッチ爪20とラチェット溝21との間から離脱して(図20(a)に示す状態)、クラッチ爪20がラチェット溝21と噛み合い、タイヤからの逆入力がハブケース12、逆入力用ワンウェイクラッチ2、外輪歯車5d、遊星歯車5e、遊星キャリア5c、リアスプロケット7と伝達され、チェーンを介してモータに伝わり回生発電される。
この発明の第13の実施形態を図21に示す。この第13の実施形態は、変速機構5を、3段減速切り替えの遊星歯車機構で構成している。すなわち、前記車軸11の外周に同軸上に回転可能に支持された三つの太陽歯車5a-1,5a-2,5a-3と、前記各太陽歯車5a-1,5a-2,5a-3に噛み合う3段の歯車を有する遊星歯車5b、その遊星歯車5bを保持する遊星キャリア5c、及び前記遊星歯車5bに噛み合う外輪歯車5dとを備えている。
なお、この逆入力用ワンウェイクラッチ2をスプラグクラッチとすることも可能であるし、第12の実施形態で採用したラチェットクラッチとすることも可能である。
また、前記遊星歯車5bとハブケース12との間に、変速用ワンウェイクラッチ5fが組み込まれている点も同様である。この変速用ワンウェイクラッチ5fに関しても、ここではラチェットクラッチを採用しているが、ローラクラッチ、スプラグクラッチ等、他の構成からなるワンウェイクラッチを採用することは差し支えない点も同様である。
この発明の第14の実施形態を、図22及び図23に基づいて説明する。この実施形態の電動補助自転車は、前輪と後輪間の中央部付近において、その前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータ(センタモータユニット)を取り付けたセンタモータ方式である。
この実施形態では、外輪50bの溝50fは外径方向に向かって凸状を成す側面視V字状であり、楔空間は、そのV字状の溝50fの底の部分、すなわち、周方向中央部から正逆両回転方向に向かうにつれて、それぞれ半径方向の幅が縮小する形状となっている。
例えば、第三太陽歯車5a-3を車軸11に対して回転不能とした場合、第三太陽歯車5a-3の歯数をa、外輪歯車5dの歯数をdとすると、遊星キャリア5cから外輪歯車5dへの増速比は
(a+d)/d
となる。このとき、第一太陽歯車5a-1及び第二太陽歯車5a-2は空転状態であり、トルク伝達に関与しない。
また、その操作軸40b及びスナップキー40aは、前記弾性部材40cによって、軸方向穴11bの奥部11cから開口部11d側へと(図22(b)に示す右側から左側へと)付勢されている。
したがって、駆動力と逆入力の両者に対して、太陽歯車5a-1,5a-2,5a-3のいずれか一つを車軸11に対して回転不能とすることができる。
このとき、リアスプロケット7からの駆動力の入力によって、ツーウェイクラッチ2の内輪2cが外輪2bに対して正回転方向、すなわち、図22(a)に示す時計回りに回転する。
これにより、リアスプロケット7からの駆動力が、駆動輪である後輪に伝達される。
その構成は、車軸11の外周に係止部63が設けられており、その係止部63から軸方向へ所定距離隔てたところに、全周に亘って外径側に突出するフランジ状の部材からなる摩擦部61a(以下、「摩擦板61a」と称する。)が設けられている。この実施形態では、係止部63は段部で構成されているが、それ以外にも、例えば、外径側に突出するフランジで構成してもよい。
また、係止部63と摩擦板61aとの間には、弾性部材62を配置している。この実施形態では、弾性部材62はコイルバネを採用し、そのコイルバネを車軸11の外周に嵌めて前記係止部63と摩擦板61aとの間に挟んでいるが、コイルバネ以外の弾性部材62を用いることや車軸11の内部に軸方向に沿って設けられた孔部11a内に配置することも可能である。また、前記摩擦板61aを全周に亘って外径側に突出するフランジ状としているが、前記弾性体50eの付勢に打ち勝つだけの回転抵抗を与えることができれば、棒状等にすることも可能である。
この回転抵抗の付与により保持器50dの回転が抑えられ、その保持器50dが弾性体50eの付勢に打ち勝って、外輪50bに対して後退方向に相対回転することで、ローラ50aは前記スタンバイ状態(逆回転側における楔空間の浅い位置で待機する状態)となるのである。
操作部61から外径方向に突出する軸部を、その長孔から車軸11外に引き出しておけば、その軸部を、適宜の手段で車軸11に対して軸方向へ押圧することで、軸部が長孔内を移動して、操作部61の車軸11に対する軸方向移動が制御できる。また、その押圧力を維持すれば、保持器50dと摩擦板61aとの接触も維持される。
また、その押圧力を解除すれば、前述の弾性部材62の弾性力で、操作部61が保持器50dから離脱する方向へ軸方向移動するようにする。
(a+d)/d
となる。この減速比で、ハブケース12から、外輪歯車5d、遊星歯車5b、遊星キャリア5c、リアスプロケット7へと回転が伝達される。
この発明の第15の実施形態を図24に示す。この第二の実施形態は、変速機構5を、3段減速切り替えの遊星歯車機構で構成している。また、駆動力伝達用及び逆入力伝達用のツーウェイクラッチ50を、ハブケース12と遊星キャリア5c(内輪50cと一体に回転)との間のローラクラッチで構成している。
このツーウェイクラッチ50の構成として、ローラクラッチの他、スプラグクラッチ等、他の構成からなるツーウェイクラッチを採用することは差し支えない点は、第一の実施形態と同様である。
しかし、ここでは、第14の実施形態とは異なり、リアスプロケット7と一体に回転可能に設けられた外輪歯車5dと前記ハブケース12とが、軸受部14を介して相対回転可能となっている。この外輪歯車5dは、変速機構5の一部を構成する。
この発明の第16の実施形態を図25に、第17の実施形態を図26に示す。この第16の実施形態及び第17の実施形態は、変速機構5を及びツーウェイクラッチ50、変速制御機構40の主たる構成は、それぞれ、第14の実施形態、第15の実施形態と同様である。
2 逆入力用ワンウェイクラッチ
2a クラッチ爪(ラチェット爪)(係合子)
2a’ ローラ(係合子)
2b 外輪
2c 内輪
2d 保持器
2e 弾性体
2f 溝
2g 一端
2h 他端
2j クラッチ爪軸
2k 端面板部
2m 環状部
5 変速機構
5a 太陽歯車
5a-1 第一太陽歯車
5a-2 第二太陽歯車
3a-3 第三太陽歯車
5b 遊星歯車
5c 遊星キャリア
5d 外輪歯車
5e-1 第一ワンウェイクラッチ
5e-2 第二ワンウェイクラッチ
5e-3 第三ワンウェイクラッチ
5f 変速用ワンウェイクラッチ
5f-1 変速用第一ワンウェイクラッチ
5f-2 変速用第二ワンウェイクラッチ
5g クラッチ爪(ラチェット爪)(係合子)
7 スプロケット(リアスプロケット)
8 ハブフランジ
9 クラッチ切替装置
9a 操作部
9b 駆動部材
9c 弾性部材
9d 回転部材
9e テーパー面
10 変速制御機構
10a 回転部材
11 車軸
11a 軸穴
11e 弾性部材
12 ハブケース
13,14,15,16 軸受部
18 スライド部材
19 摩擦部材
19a シール
20 クラッチ爪(ラチェット爪)(係合子)
21 ラチェット溝
22 シャッター
23 揺動軸
24 弾性体
25 凹部
30,40 変速制御機構
30a,40a スナップキー
30b,40b 操作軸
30c,40c 弾性部材
50 ツーウェイクラッチ
50a ローラ(係合子)
50b 外輪
50c 内輪
50d 保持器
50e 弾性体
50f 溝
50k 端面板部
50m 環状部
60 回転抵抗付与手段
61 操作部
61a 摩擦板(摩擦部)
62 弾性部材
63 係止部
Claims (44)
- 前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータを取り付け、クランク軸から伝達された踏力又は前記モータの出力による駆動力を駆動輪に伝達可能とし、前進非駆動時には、前記駆動輪から前記モータの出力軸への逆入力により生じた回生電力を前記二次電池に還元する回生機構を備えた電動補助自転車において、
前記駆動輪に設けたハブ(1)に変速機構(5)と逆入力用ワンウェイクラッチ(2)とクラッチ切替装置(9)とを備え、
前記変速機構(5)は遊星歯車機構によって構成されて、少なくとも一つの太陽歯車(5a)を有し、前記踏力又は前記モータの出力による駆動力をスプロケット(7)を通じて前記駆動輪に伝達する機能を有して、そのスプロケット(7)からの駆動力に対して、前記太陽歯車を車軸(11)回りに回転可能又は回転不能とに切り替えて変速を行う変速制御機構(10)を備えており、
前記逆入力用ワンウェイクラッチ(2)は少なくとも一つの太陽歯車(5a)と車軸(11)との間に設けられて、前記クラッチ切替装置(9)によって、前記駆動輪からの逆入力に対して、前記太陽歯車(5a)が車軸(11)回りに回転可能又は回転不能とに切り替えられる機能を有しており、
駆動時には、前記スプロケット(7)からの駆動力は前記変速機構(5)を通じて駆動輪に伝達され、前進非駆動時には、前記クラッチ切替装置(9)により前記逆入力用ワンウェイクラッチ(2)における前記太陽歯車(5a)と車軸(11)とを逆入力に対して回転不能とすることによって、前記駆動輪からの逆入力トルクを前記スプロケット(7)に伝達できる機能を有することを特徴とする回生機構を備えた電動補助自転車。 - 前記逆入力用ワンウェイクラッチ(2)はラチェットクラッチからなることを特徴とする請求項1に記載の回生機構を備えた電動補助自転車。
- 前記クラッチ切替装置(9)は棒状の操作部(9a)を有し、その操作部(9a)の一端が車軸(5)内を通って外部に引き出されて外部から軸方向移動の操作が可能であり、その操作部(9a)を軸方向に移動させることによって、前記逆入力用ワンウェイクラッチ(2)における前記太陽歯車(5a)の車軸(11)に対する回転可能又は回転不能を切り替えできることを特徴とする請求項1又は2に記載の回生機構を備えた電動補助自転車。
- 前記クラッチ切替装置(9)は前記車軸(11)周りに回転可能な回転部材(9d)を有し、その回転部材(9d)が前記車軸(11)に沿ってハブケース(12)外に引き出され外部より回転操作が可能であり、その回転部材(9d)を車軸(11)周りに回転させることによって、前記逆入力用ワンウェイクラッチ(2)における前記太陽歯車の車軸(5)に対する回転可能又は回転不能を切り替えできることを特徴とする請求項1又は2に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、係合子(2a’)としてローラを用いたローラクラッチからなることを特徴とする請求項1に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、係合子(2a’)としてスプラグを用いたスプラグクラッチからなることを特徴とする請求項1に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)は係合子(2a’)を保持器(2d)で保持した係合子クラッチであり、前記クラッチ切替装置(9)は前記車軸(11)周りに回転可能な回転部材(9d)を有し、その回転部材(9d)の一端が前記車軸(11)に沿ってハブケース(12)外に引き出され外部より回転操作が可能であり、その他端が前記逆入力用ワンウェイクラッチ(2)の前記保持器(2d)に連結されており、その回転部材(9d)を車軸(11)周りに回転させることによって、前記逆入力用ワンウェイクラッチ(2)における前記太陽歯車(5a)の車軸(11)に対する回転可能又は回転不能を切り替えできることを特徴とする請求項1に記載の回生機構を備えた電動補助自転車。
- 前記クラッチ切替装置(9)による、前記駆動輪からの逆入力に対する前記太陽歯車と車軸(11)の回転可能又は回転不能との切り替えは、ブレーキ操作に連動して行われることを特徴とする請求項1乃至7のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータを取り付け、クランク
軸から伝達された踏力又は前記モータの出力による駆動力を駆動輪に伝達可能とし、非駆
動時には、前記駆動輪から前記モータの出力軸への逆入力により生じた回生電力を前記二
次電池に還元する回生機構を備えた電動補助自転車において、
前記駆動輪に設けたハブ(1)内部に変速機構(5)と逆入力用ワンウェイクラッチ(2)とを備え、前記変速機構(5)は、前記踏力又は前記モータの出力による駆動力をスプロケット(7)を通じて前記駆動輪に伝達する機能を有し、前記逆入力用ワンウェイクラッチ(2)は、前記踏力又は前記モータの出力による駆動時には空転し、非駆動時には、前記駆動輪からの逆入力を前記スプロケット(7)に伝達できる機能を有することを特徴とする回生機構を備えたことを特徴とする電動補助自転車。 - 前記変速機構(5)は、前記車軸(11)の外周に設けた太陽歯車(5a)と、その太陽歯車(5a)に噛み合う遊星歯車(5b)、その遊星歯車(5b)を保持する遊星キャリア(5c)、及び前記遊星歯車(5b)に噛み合う外輪歯車(5d)とを備え、減速時には、前記太陽歯車(5a)を固定部材、前記外輪歯車(5d)を入力部材、前記遊星キャリア(5c)を出力部材とし、等速時には、前記外輪歯車(5d)を入出力部材とした2段変速の遊星歯車減速機からなることを特徴とする請求項9に記載の回生機構を備えた電動補助自転車。
- 前記駆動輪の車軸(11)に対し軸方向へ移動可能なスライド部材(18)を設け、前記変速機構(5)の変速切り替えを、前記スライド部材(18)の軸方向への移動により行うことを特徴とする請求項10に記載の回生機構を備えた電動補助自転車。
- 前記変速機構(5)が複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)を備え、その複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)のいずれかを固定部材、前記外輪歯車(5d)を入力部材、前記遊星キャリア(5c)を出力部材とすることで、これらの歯数比が複数となるギアの組み合わせを備えた減速機からなり、複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)のうちいずれかを前記固定部材に選択する機能を有する変速制御機構(30)を備えることを特徴とする請求項9に記載の回生機構を備えた電動補助自転車。
- 前記変速機構(5)が複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)を備え、その複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)のいずれかを固定部材、前記遊星キャリア(5c)を入力部材、前記外輪歯車(5d)を出力部材とすることで、これらの歯数比が複数となるギアの組み合わせを備えた増速機からなり、複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)のうちいずれかを前記固定部材に選択する機能を有する変速制御機構(30)を備えることを特徴とする請求項9に記載の回生機構を備えた電動補助自転車。
- 前記変速制御機構(30)は、前記車軸(11)周りに回転可能に支持されている複数の前記太陽歯車(5a;5a-1,5a-2,5a-3)のいずれかを、駆動力及びタイヤからの逆入力の両者に対して、前記車軸(11)周りに回転可能または回転不能とに切り替えて変速を行う機能を有していることを特徴とする請求項12又は13に記載の回生機構を備えた電動補助自転車。
- 前記変速制御機構(30)はスナップキー(30a)を備え、前記変速機構(5)の変速切り替えを、前記車軸(11)内を通って外部から前記スナップキー(30a)を軸方向へ移動させることにより行い、前記スナップキー(30a)が噛み合う太陽歯車(5a;5a-1,5a-2,5a-3)のいずれかは、駆動力及びタイヤからの逆入力の両者に対して、車軸(11)周りに回転不能とされることを特徴とする請求項14に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、ブレーキ操作と連動して係合することを特徴とする請求項9乃至15のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、ローラクラッチからなることを特徴とする請求項9乃至16のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、スプラグクラッチからなることを特徴とする請求項9乃至16のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータを取り付け、クランク
軸から伝達された踏力又は前記モータの出力による駆動力を駆動輪に伝達可能とし、非駆
動時には、前記駆動輪から前記モータの出力軸への逆入力により生じた回生電力を前記二
次電池に還元する回生機構を備えた電動補助自転車において、
前記駆動輪に設けたハブ(1)内部に変速機構(5)と逆入力用ワンウェイクラッチ(2)と、クラッチ切替装置(9)として機能する回転抵抗付与手段(60)とを備え、前記変速機構(5)は、2段階以上に変速可能な遊星歯車機構によって構成され、駆動力及び逆入力の両者に対して、車軸(11)に対し太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つを回転不能に及び他を回転可能に任意に切り替えることにより前記変速の切り替えを可能とする変速制御機構(40)を備え、前記踏力又は前記モータの出力による駆動力をスプロケット(7)を通じて前記駆動輪に伝達する機能を有し、前記逆入力用ワンウェイクラッチ(2)は、前記踏力又は前記モータの出力による駆動時には空転し、非駆動時には、前記駆動輪からの逆入力を前記スプロケット(7)に伝達できる機能を有し、前記回転抵抗付与手段(60)は、前記逆入力用ワンウェイクラッチ(2)の係合子を係合可能な状態に移行させるために、その逆入力用ワンウェイクラッチ(2)が備える係合子保持手段に対して、その第一ワンウェイクラッチの係合の際に必要となる回転抵抗を付与する機能を有することを特徴とする回生機構を備えた電動補助自転車。 - 前記回転抵抗付与手段(60)による前記係合子保持手段に対する回転抵抗の付与が、ブレーキ操作と連動して行われることを特徴とする請求項19に記載の回生機構を備えた電動補助自転車。
- 前記回転抵抗付与手段(60)は、車軸(11)に対して軸方向へ進退自在の操作部(61)と、その操作部(61)と一体に進退可能に設けられた摩擦部(61a)とを備え、その操作部(61)が前記摩擦部(61a)とともに車軸(11)に対して軸方向一方相対移動することにより、前記摩擦部(61a)が前記係合子保持手段に接触して前記回転抵抗が付与されることを特徴とする請求項19又は20に記載の回生機構を備えた電動補助自転車。
- 前記操作部(61)は、前記車軸(11)内に形成された軸方向に伸びる孔部(11a)に同軸に挿通されていることを特徴とする請求項21に記載の回生機構を備えた電動補助自転車。
- 前記摩擦部(61a)は、前記車軸(11)の外周面よりも外径側に立ち上がるフランジ状の部材であることを特徴とする請求項21又は22に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、前記係合子(2a’)としてのローラを、前記係合子保持手段としての環状の保持器(2d)によって周方向に保持したローラクラッチからなることを特徴とする請求項19乃至23のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、前記係合子(2a’)としてのスプラグを、前記係合子保持手段としての環状の保持器(4)によって周方向に保持したスプラグクラッチからなることを特徴とする請求項19乃至23のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)が、前記係合子としてのラチェット爪(20)とそのラチェット爪(20)が噛み合うラチェット溝(21)とを備えたラチェットクラッチからなり、前記係合子保持手段は、前記ラチェット爪(20)と前記ラチェット溝(21)との間に侵入及び離脱自在のシャッター(22)であることを特徴とする請求項19乃至23のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記保持器(2d)は、前記係合子(2a’)を保持するポケット部を周方向に沿って複数備える環状部(2m)と、その環状部(2m)から径方向へ立ち上がる端面板部(2k)とを備え、前記摩擦部(61a)は、前記端面板部(2k)に接触することを特徴とする請求項24又は25に記載の回生機構を備えた電動補助自転車。
- 前記逆入力用ワンウェイクラッチ(2)の内輪(2c)と前記保持器(2d)とは、軸受部(15)を介して相対回転可能に支持されており、その軸受部(15)は、前記保持器(2d)を前記端面板部(2k)で支持していることを特徴とする請求項24,25,27のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記シャッター(22)は、前記ラチェット爪(20)と前記ラチェット溝(21)との間に侵入及び離脱自在の周方向部材(22a)と、その周方向部材(22a)から径方向へ立ち上がる端面板部(22c)とを備え、前記摩擦部(31a)は、前記端面板部(22c)に接触することを特徴とする請求項26に記載の回生機構を備えた電動補助自転車。
- 前記変速制御機構(40)は、スナップキー(40a)を備え、前記変速機構(5)の変速の切り替えを、前記車軸(11)内を通って外部からの操作で前記スナップキー(40a)を軸方向へ移動させることにより行い、前記スナップキー(40a)が前記太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つに噛み合うことにより、駆動力及びタイヤからの逆入力の両者に対して、車軸(11)に対し前記太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つを回転不能に他を回転可能に任意に切り替えることを特徴とする請求項19乃至29のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前輪と後輪とを結ぶフレームに二次電池及び補助駆動用のモータを取り付け、クランク軸から伝達された踏力又は前記モータの出力による駆動力を駆動輪に伝達可能とし、非駆動時には、前記駆動輪から前記モータの出力軸への逆入力により生じた回生電力を前記二次電池に還元する回生機構を備えた電動補助自転車において、
前記駆動輪に設けたハブ(1)に変速機構(5)とツーウェイクラッチ(50)と回転抵抗付与手段(60)とを備え、前記変速機構(5)は、2段階以上に変速可能な遊星歯車機構によって構成され、駆動力及び逆入力の両者に対して、車軸(11)に対し太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つを回転不能に他を回転可能に任意に切り替えることにより前記変速の切り替えを可能とする変速制御機構(40)を備え、前記踏力又は前記モータの出力による駆動力をスプロケット(7)を通じて前記駆動輪に伝達する機能を有し、前記ツーウェイクラッチ(50)は、前記踏力又は前記モータの出力による駆動時には係合してその駆動力を駆動輪に伝達し、非駆動時には、前記駆動輪からの逆入力を前記スプロケット(7)に伝達できる機能を有し、前記回転抵抗付与手段(60)は、前記ツーウェイクラッチ(50)の係合子(50a)を周方向に沿って保持する保持器(50d)に対し、そのツーウェイクラッチ(50)の係合の際に必要となる回転抵抗を付与する機能を有することを特徴とする回生機構を備えた電動補助自転車。 - 前記回転抵抗付与手段(60)による前記保持器(50d)に対する回転抵抗の付与が、ブレーキ操作と連動して行われることを特徴とする請求項31に記載の回生機構を備えた電動補助自転車。
- 前記回転抵抗付与手段(60)は、車軸(11)に対して軸方向へ進退自在の操作部(61)と、その操作部(61)と一体に進退可能に設けられた摩擦部(61a)とを備え、その操作部(61)が前記摩擦部(61a)とともに車軸(11)に対して軸方向一方へ相対移動することにより、前記摩擦部(61a)が保持器(50d)に接触して前記回転抵抗が付与されることを特徴とする請求項31又は32に記載の回生機構を備えた電動補助自転車。
- 前記操作部(61)は、前記車軸(11)内に形成された軸方向に伸びる孔部(11a)に同軸に挿通されていることを特徴とする請求項33に記載の回生機構を備えた電動補助自転車。
- 前記摩擦部(61a)は、前記車軸(11)の外周面よりも外径側に立ち上がるフランジ状の部材であることを特徴とする請求項33又は34に記載の回生機構を備えた電動補助自転車。
- 前記保持器(50d)は、前記係合子(50a)を保持するポケット部を周方向に沿って複数備える環状部(50m)と、その環状部(50m)から径方向へ立ち上がる端面板部(50k)とを備え、前記摩擦部(61a)は、前記端面板部(50k)に接触することを特徴とする請求項33乃至35のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記ツーウェイクラッチ(50)の内輪(50c)と前記保持器(50d)とは、軸受部(15)を介して相対回転可能に支持されており、その軸受部(15)は、前記保持器(50d)を前記端面板部(50k)で支持していることを特徴とする請求項33乃至36のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記ツーウェイクラッチ(50)が、係合子(50a)としてのローラを、環状の保持器(50d)によって周方向に保持したローラクラッチからなることを特徴とする請求項31乃至37のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記ツーウェイクラッチ(50)が、係合子としてのスプラグを、環状の保持器(50d)によって周方向に保持したスプラグクラッチからなることを特徴とする請求項31乃至37のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記変速制御機構(40)は、スナップキー(40a)を備え、前記変速機構(5)の変速の切り替えを、前記車軸(11)内を通って外部からの操作で前記スナップキー(40a)を軸方向へ移動させることにより行い、前記スナップキー(40a)が前記太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つに噛み合うことにより、駆動力及びタイヤからの逆入力の両者に対して、車軸(11)に対し前記太陽歯車(5a;5a-1,5a-2,5a-3)の何れか一つを回転不能に他を回転可能に任意に切り替えることを特徴とする請求項31乃至39に記載の回生機構を備えた電動補助自転車。
- クランク軸とクランクスプロケットの間に、駆動輪に対して駆動力を伝達する方向にロックし、駆動輪からの逆入力に対して空転するセンタワンウェイクラッチを設けたことを特徴とする請求項1乃至40のいずれか一つに記載の回生機構を備えた電動補助自転車。
- 前記センタワンウェイクラッチが、ローラクラッチからなることを特徴とする請求項41に記載の回生機構を備えた電動補助自転車。
- 前記センタワンウェイクラッチが、スプラグクラッチからなることを特徴とする請求項41に記載の回生機構を備えた電動補助自転車。
- 前記センタワンウェイクラッチが、ラチェットクラッチからなることを特徴とする請求項41に記載の回生機構を備えた電動補助自転車。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10769737.7A EP2426041B1 (en) | 2009-04-30 | 2010-04-27 | Power-assisted bicycle including regenerative mechanism |
CN201080019113.6A CN102414078B (zh) | 2009-04-30 | 2010-04-27 | 具备再生机构的电动辅助自行车 |
US13/266,581 US8684122B2 (en) | 2009-04-30 | 2010-04-27 | Power assisted bicycle with regenerative function |
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-110425 | 2009-04-30 | ||
JP2009110425 | 2009-04-30 | ||
JP2009115588 | 2009-05-12 | ||
JP2009-115588 | 2009-05-12 | ||
JP2009124163 | 2009-05-22 | ||
JP2009-124163 | 2009-05-22 | ||
JP2009172984A JP2011025808A (ja) | 2009-07-24 | 2009-07-24 | 回生機構を備えた電動補助自転車 |
JP2009-172984 | 2009-07-24 | ||
JP2009-236245 | 2009-10-13 | ||
JP2009236245A JP2010274900A (ja) | 2009-04-30 | 2009-10-13 | 回生機構を備えた電動補助自転車 |
JP2009-253960 | 2009-11-05 | ||
JP2009253960A JP2010285141A (ja) | 2009-05-12 | 2009-11-05 | 回生機構を備えた電動補助自転車 |
JP2009260729A JP5545520B2 (ja) | 2009-05-22 | 2009-11-16 | 回生機構を備えた電動補助自転車 |
JP2009-260729 | 2009-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010126039A1 true WO2010126039A1 (ja) | 2010-11-04 |
Family
ID=45541546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057453 WO2010126039A1 (ja) | 2009-04-30 | 2010-04-27 | 回生機構を備えた電動補助自転車 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8684122B2 (ja) |
EP (1) | EP2426041B1 (ja) |
CN (1) | CN102414078B (ja) |
WO (1) | WO2010126039A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012122501A (ja) * | 2010-12-06 | 2012-06-28 | Ntn Corp | 遊星歯車機構およびこれを備えた電動補助自転車用のハブモータ装置 |
CN103359254A (zh) * | 2012-03-30 | 2013-10-23 | 本田技研工业株式会社 | 电动车辆 |
CN104220326A (zh) * | 2012-02-24 | 2014-12-17 | 弗里弗劳技术有限公司 | 用于双动力自行车的传动系统 |
CN107965532A (zh) * | 2017-10-24 | 2018-04-27 | 四川大学 | 一种非摩擦式超越离合器 |
TWI752777B (zh) * | 2020-12-30 | 2022-01-11 | 太康精密股份有限公司 | 自行車內變速輪轂整合電子變速裝置 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202529107U (zh) * | 2012-03-30 | 2012-11-14 | 乐荣工业股份有限公司 | 混合动力载具离合式驱动装置 |
US8882618B2 (en) * | 2013-01-29 | 2014-11-11 | Shimano Inc. | Rear derailleur |
US9758213B2 (en) * | 2013-07-16 | 2017-09-12 | Panasonic Intellectual Property Management Co., Ltd. | Electric assist bicycle |
CN103486235B (zh) * | 2013-09-17 | 2016-01-27 | 湖南人文科技学院 | 一种弹性阻力机械制动装置 |
CN103629320B (zh) * | 2013-12-05 | 2016-05-18 | 张国召 | 一种辅助启动装置 |
JP5891363B1 (ja) * | 2014-06-06 | 2016-03-23 | パナソニックIpマネジメント株式会社 | 電動アシスト自転車 |
WO2016092455A1 (en) * | 2014-12-08 | 2016-06-16 | Yehuda Arie Leon | Electrical motor for a bicycle |
JP2016165911A (ja) * | 2015-03-09 | 2016-09-15 | パナソニックIpマネジメント株式会社 | 電動自転車 |
JP6618263B2 (ja) * | 2015-03-20 | 2019-12-11 | ヤマハ発動機株式会社 | 自転車用のセンサアセンブリ、ドライブユニットおよび自転車 |
US9783262B2 (en) | 2015-04-07 | 2017-10-10 | Tangent Motor Company | Electric drive unit |
US9802673B2 (en) * | 2015-05-18 | 2017-10-31 | GM Global Technology Operations LLC | Electric bike powertrain with dual planetary gear sets and ring gear pedal reaction torque measurement |
CN104883000B (zh) * | 2015-05-25 | 2017-06-06 | 严振华 | 电动自行车用可变减速比的轮毂电机 |
US9855994B2 (en) * | 2015-07-01 | 2018-01-02 | GM Global Technology Operations LLC | Electric bike powertrain compound planetary gear set and ring gear pedal torque reaction measurement |
US10155568B2 (en) | 2015-07-31 | 2018-12-18 | GM Global Technology Operations LLC | Internal gear hub with selectable fixed gear for electric bike regen |
US9925999B2 (en) | 2015-09-29 | 2018-03-27 | Radio Flyer Inc. | Power assist wagon |
TWI574885B (zh) * | 2015-10-08 | 2017-03-21 | 國立雲林科技大學 | With three speed shift function of the integrated variable speed gear motor |
JP6515017B2 (ja) * | 2015-11-27 | 2019-05-15 | 株式会社シマノ | 自転車用ドライブユニット |
TWI573940B (zh) * | 2016-01-21 | 2017-03-11 | Overrun clutch with delay function | |
US11492073B2 (en) * | 2016-02-05 | 2022-11-08 | Chung-Ang University Industry-Academic Cooperation Foundation | Power assisted driving system and method |
CN107128428B (zh) * | 2016-02-29 | 2020-11-17 | 株式会社岛野 | 自行车用控制装置及自行车用驱动装置 |
US9873287B2 (en) * | 2016-02-29 | 2018-01-23 | Shimano Inc. | Bicycle hub assembly and bicycle transmission system |
JP6679404B2 (ja) * | 2016-04-28 | 2020-04-15 | ヤマハ発動機株式会社 | 駆動ユニット及び電動補助自転車 |
US9950770B2 (en) * | 2016-05-19 | 2018-04-24 | GM Global Technology Operations LLC | Multispeed internally geared hub with selectable fixed gear |
WO2017198229A1 (en) * | 2016-05-20 | 2017-11-23 | Kim Leung Luk | Smart gearing system for bicycle |
JP6779044B2 (ja) * | 2016-06-10 | 2020-11-04 | ヤマハ発動機株式会社 | 駆動ユニット及び電動補助自転車 |
US10583852B2 (en) | 2016-11-02 | 2020-03-10 | Radio Flyer Inc. | Foldable wagon |
CN109421882A (zh) * | 2017-08-31 | 2019-03-05 | 北京轻客智能科技有限责任公司 | 扭力采集总成、中置电机及自行车 |
USD866676S1 (en) | 2017-11-02 | 2019-11-12 | Radio Flyer Inc. | Foldable wagon |
FR3088696B1 (fr) * | 2018-11-15 | 2020-11-06 | Mavic Sas | Dispositif d'assistance électrique pour vélo |
CN109572917A (zh) * | 2018-12-20 | 2019-04-05 | 钟德斌 | 助力与健身一体自行车之可锁死离合器的轮毂电机和组件 |
CN109973626B (zh) * | 2019-04-10 | 2022-04-19 | 西南大学 | 机械式双超越离合主轴输出的自适应自动变速主轴总成 |
CN110043619B (zh) * | 2019-04-17 | 2022-04-29 | 西南大学 | 行星系输入的双超越离合主轴输出的自动变速电驱动系统 |
CN110212697B (zh) * | 2019-06-19 | 2024-04-05 | 电子科技大学 | 一种轮式机器人轮毂驱动一体式电机 |
JP6918890B2 (ja) * | 2019-10-11 | 2021-08-11 | ヤマハ発動機株式会社 | 駆動ユニットおよび電動補助自転車 |
CN111016647B (zh) * | 2019-12-31 | 2022-03-11 | 西南大学 | 中央驱动式超大载荷智慧自适应电驱动系统 |
CN111016628B (zh) * | 2019-12-31 | 2022-04-22 | 西南大学 | 中央驱动集成化电驱动系统 |
CN112977709A (zh) * | 2021-03-19 | 2021-06-18 | 李守进 | 一种自动降级变级变速传动自行车 |
US12065215B1 (en) * | 2023-02-03 | 2024-08-20 | New Kailung Gear Co., Ltd | Control device of internal speed change device of wheel hub for indirect clutching operation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140212A (ja) | 1994-11-09 | 1996-05-31 | Yamaha Motor Co Ltd | 回生制御装置 |
JPH10250673A (ja) | 1997-03-17 | 1998-09-22 | Moriyama Kogyo Kk | 電動自転車用駆動装置 |
JP2001213383A (ja) | 2000-02-02 | 2001-08-07 | Honda Motor Co Ltd | 電動補助自転車 |
JP2002005200A (ja) * | 2000-06-20 | 2002-01-09 | Ntn Corp | 2方向クラッチ |
JP2003166563A (ja) | 2001-11-28 | 2003-06-13 | Sanyo Electric Co Ltd | 補助動力付車両用駆動装置 |
JP2004270877A (ja) * | 2003-03-11 | 2004-09-30 | Ntn Corp | クラッチユニット |
JP2004268843A (ja) | 2003-03-11 | 2004-09-30 | Ntn Corp | 電動補助自転車 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT306536B (de) * | 1968-11-05 | 1973-04-10 | Shimano Industrial Co | Freilaufnabe für Fahrräder mit Zweigangschaltung |
DE2426133C2 (de) * | 1974-05-29 | 1983-09-29 | Fichtel & Sachs Ag, 8720 Schweinfurt | Mehrgang-Übersetzungsnabe mit axialdruckerzeugender Sperrklinkenkupplung für Fahrräder o.dgl. |
CN1032797C (zh) * | 1990-07-10 | 1996-09-18 | 常殿林 | 双向三级变速飞轮 |
JP2506047B2 (ja) * | 1993-07-26 | 1996-06-12 | ヤマハ発動機株式会社 | 電動自転車 |
US6296072B1 (en) * | 1999-01-20 | 2001-10-02 | Opti-Bike Llc | Electric bicycle and methods |
US6607465B1 (en) * | 2000-03-10 | 2003-08-19 | Shimano, Inc. | Bicycle hub transmission with a guiding member for a sun gear |
WO2002033279A1 (en) * | 2000-10-13 | 2002-04-25 | Sunstar Giken Kabushiki Kaisha | One-way clutch and torque detection apparatus using same |
EP1452438B1 (en) * | 2003-02-28 | 2013-02-27 | Shimano Inc. | An internal hub transmission for a bicycle |
US7314109B2 (en) * | 2003-10-23 | 2008-01-01 | Holland Ronald A | Electric bicycle |
-
2010
- 2010-04-27 WO PCT/JP2010/057453 patent/WO2010126039A1/ja active Application Filing
- 2010-04-27 US US13/266,581 patent/US8684122B2/en not_active Expired - Fee Related
- 2010-04-27 EP EP10769737.7A patent/EP2426041B1/en not_active Not-in-force
- 2010-04-27 CN CN201080019113.6A patent/CN102414078B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140212A (ja) | 1994-11-09 | 1996-05-31 | Yamaha Motor Co Ltd | 回生制御装置 |
JPH10250673A (ja) | 1997-03-17 | 1998-09-22 | Moriyama Kogyo Kk | 電動自転車用駆動装置 |
JP2001213383A (ja) | 2000-02-02 | 2001-08-07 | Honda Motor Co Ltd | 電動補助自転車 |
JP2002005200A (ja) * | 2000-06-20 | 2002-01-09 | Ntn Corp | 2方向クラッチ |
JP2003166563A (ja) | 2001-11-28 | 2003-06-13 | Sanyo Electric Co Ltd | 補助動力付車両用駆動装置 |
JP2004270877A (ja) * | 2003-03-11 | 2004-09-30 | Ntn Corp | クラッチユニット |
JP2004268843A (ja) | 2003-03-11 | 2004-09-30 | Ntn Corp | 電動補助自転車 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2426041A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012122501A (ja) * | 2010-12-06 | 2012-06-28 | Ntn Corp | 遊星歯車機構およびこれを備えた電動補助自転車用のハブモータ装置 |
CN104220326A (zh) * | 2012-02-24 | 2014-12-17 | 弗里弗劳技术有限公司 | 用于双动力自行车的传动系统 |
JP2015508039A (ja) * | 2012-02-24 | 2015-03-16 | フリーフロー テクノロジーズ リミテッドFreeflow Technologies Limited | 乗り物用ギアシステム |
RU2666611C2 (ru) * | 2012-02-24 | 2018-09-11 | Фрифлоу Текнолоджиз Лимитед | Система передач для велосипеда с двойным приводом |
TWI646013B (zh) * | 2012-02-24 | 2019-01-01 | 飛夫羅科技有限公司 | 載具傳動系統 |
CN103359254A (zh) * | 2012-03-30 | 2013-10-23 | 本田技研工业株式会社 | 电动车辆 |
US20130284527A1 (en) * | 2012-03-30 | 2013-10-31 | Honda Motor Co., Ltd. | Electric vehicle |
US9415691B2 (en) * | 2012-03-30 | 2016-08-16 | Honda Motor Co., Ltd. | Electric vehicle |
CN107965532A (zh) * | 2017-10-24 | 2018-04-27 | 四川大学 | 一种非摩擦式超越离合器 |
TWI752777B (zh) * | 2020-12-30 | 2022-01-11 | 太康精密股份有限公司 | 自行車內變速輪轂整合電子變速裝置 |
Also Published As
Publication number | Publication date |
---|---|
US20120097467A1 (en) | 2012-04-26 |
EP2426041A4 (en) | 2012-12-05 |
EP2426041A1 (en) | 2012-03-07 |
CN102414078B (zh) | 2014-12-03 |
CN102414078A (zh) | 2012-04-11 |
EP2426041B1 (en) | 2020-07-22 |
US8684122B2 (en) | 2014-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010126039A1 (ja) | 回生機構を備えた電動補助自転車 | |
JP5561586B2 (ja) | 電動補助自転車 | |
WO2011162200A1 (ja) | 電動補助自転車 | |
JP2012025328A (ja) | 電動補助自転車 | |
JP2011126415A (ja) | 電動補助自転車用リアハブ内装変速装置 | |
JP2011126416A (ja) | 電動補助自転車用リアハブ内装変速装置 | |
JP2012116215A (ja) | 電動補助自転車及び電動二輪車 | |
JP2012086654A (ja) | 電動補助自転車 | |
JP6006963B2 (ja) | 電動補助自転車用内装変速機 | |
JP2011189877A (ja) | 回生機構を備えた電動補助自転車 | |
JP5771046B2 (ja) | 回生機構を備えた電動補助自転車 | |
JP5545520B2 (ja) | 回生機構を備えた電動補助自転車 | |
JP2010274900A (ja) | 回生機構を備えた電動補助自転車 | |
WO2012077538A1 (ja) | 電動補助自転車及び電動二輪車 | |
WO2012026325A1 (ja) | 電動補助自転車 | |
WO2012132927A1 (ja) | 自転車用ハブユニット、並びにそれを用いた電動補助自転車及び電動二輪車 | |
JP2012086628A (ja) | 電動補助自転車 | |
JP2011025808A (ja) | 回生機構を備えた電動補助自転車 | |
JP2012066723A (ja) | 回生機構を備えた電動補助自転車 | |
JP2012025332A (ja) | 電動補助自転車 | |
KR101126123B1 (ko) | 모터 및 페달링 겸용 변속방법 | |
JP2012040941A (ja) | 電動補助自転車 | |
JP2010285141A (ja) | 回生機構を備えた電動補助自転車 | |
JP5567409B2 (ja) | 電動補助自転車 | |
JP2011240732A (ja) | 回生機構を備えた電動補助自転車 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019113.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13266581 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13266581 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8781/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010769737 Country of ref document: EP |