[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010125867A1 - 電気化学デバイスおよびその製造方法 - Google Patents

電気化学デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2010125867A1
WO2010125867A1 PCT/JP2010/054385 JP2010054385W WO2010125867A1 WO 2010125867 A1 WO2010125867 A1 WO 2010125867A1 JP 2010054385 W JP2010054385 W JP 2010054385W WO 2010125867 A1 WO2010125867 A1 WO 2010125867A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
positive electrode
negative electrode
sheet
width
Prior art date
Application number
PCT/JP2010/054385
Other languages
English (en)
French (fr)
Inventor
直人 萩原
克英 石田
和志 八幡
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to CN2010800090243A priority Critical patent/CN102326218B/zh
Priority to US13/203,663 priority patent/US8802268B2/en
Priority to JP2011511349A priority patent/JP4964350B2/ja
Publication of WO2010125867A1 publication Critical patent/WO2010125867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Definitions

  • the present invention relates to an electrochemical device including a laminated element in which a positive electrode and a negative electrode are alternately laminated with a separator interposed therebetween.
  • an electrochemical device for example, an electric double layer capacitor or a lithium ion capacitor is known.
  • Patent Document 1 proposes a solid electrolytic capacitor having an increased capacity without impairing the feature of being small and lightweight.
  • the capacitor element 120 disclosed in Patent Document 1 includes an anode body 102 in which an oxide film layer 104 and a solid electrolyte layer 106 are formed in units of a plurality of small regions, and a conductor.
  • the surface of 112 is covered with an insulating layer 114 to provide flexibility, and a wiring conductor 110 with the conductor 112 exposed at a portion overlapping the solid electrolyte layer 106 is provided.
  • the wiring conductor 110 is sandwiched between the solid electrolyte layers 106 formed by folding the anode body 102, and the exposed conductor 112 and the solid electrolyte layer 106 are electrically connected via the conductor 118. Composed.
  • the capacitor element 120 has a large internal resistance because one end of the folded wiring conductor is used as a lead terminal.
  • Patent Document 2 proposes an electric double layer capacitor having a large capacitance and a low internal resistance. As shown in FIG. 8, this electric double layer capacitor is formed on a laminated surface of a pair of current collectors and current collectors, in which two strip-shaped conductors 219a and 219b are alternately folded.
  • the device includes a polarizable electrode 212 and a separator 203 disposed between adjacent polarizable electrodes 212.
  • the electric double layer capacitor having this structure requires a process of stacking each element, and is not suitable for mass production. *
  • Patent Document 3 proposes a foldable lithium ion battery that can be manufactured by a simple process and a method for manufacturing the same.
  • an active material 304 is applied to a strip-shaped uncoated portion 307 provided on both sides of a long negative electrode current collector, and a negative electrode sheet is formed. 301 is created.
  • the active material coating edge part of a negative electrode is positioned and laminated
  • the obtained capacity per current collector of the obtained battery is small, it is necessary to increase the number of layers to obtain a large capacity, and as a result, it is difficult to reduce the thickness. Moreover, internal resistance is large.
  • An object of the present invention is to provide an electrochemical device that has a large acquisition capacity per current collector, a low internal resistance, and is easy to assemble. Moreover, an object of this invention is to provide the manufacturing method which can produce said electrochemical device stably efficiently.
  • an electrochemical device includes an element formed of a laminate in which positive and negative electrodes are alternately laminated with a separator interposed therebetween.
  • the positive electrode has a rectangular plate-shaped first current collector main body having a width dimension XA and a length dimension YA, and projects from one side of the first current collector main body in the width direction.
  • a plurality of first current collectors having a first tab portion having a width dimension smaller than the width dimension of the body body, and a first surface formed on at least one main surface of the first current collector body.
  • An active material layer, and the plurality of first current collectors are arranged such that the first current collector main bodies are the sides in the width direction of the current collector main bodies, and the first tab portions are By being alternately connected in the length direction at the side of the tab portion in the width direction, by valley-folding at the side in the width direction of the first current collector body, and by mountain-folding at the side in the width direction of the tab portion
  • the first tab portions are overlapped and conductively connected to each other.
  • the negative electrode has a rectangular plate-like second current collector body having a width dimension XB larger than the width dimension XA of the first current collector body and a length dimension YB, and the second current collector body A plurality of second current collectors, each having a second tab portion projecting from one side in the width direction of the current collector body and having a width smaller than the width of the second current collector body; A second active material layer formed on each main surface of the two current collector bodies, and the second current collector is adjacent to each other by connecting the first current collector bodies to each other. Between the first current collectors to be connected to each other and between the first current collectors adjacent to each other where the first tab portions are connected to each other, and the second tab portions are respectively exposed. The tab portions are overlapped and conductively connected.
  • the separator has a width dimension XC that is the same as the width dimension XB of the second current collector body, and a length dimension YC that is at least twice the length dimension YB of the second current collector body. And is folded between approximately the center of the length dimension YC and disposed between the positive electrode and the negative electrode so as to wrap around the other side in the width direction of the current collector body of the negative electrode.
  • the electrochemical device according to an embodiment of the present invention may further include an insulating layer that covers the surface on the base end side of the first tab portion of the positive electrode.
  • the electrochemical device according to an embodiment of the present invention is configured by interposing a separator between a positive electrode and a negative electrode, and each of the positive electrodes has a rectangular plate shape having an active material layer on at least one surface.
  • a first positive electrode current collector, a second positive electrode current collector, and a third positive electrode current collector including a positive electrode current collector main body and a positive electrode tab formed on a part of one side of the positive electrode current collector main body
  • the second positive electrode current collector is electrically connected to the first positive electrode current collector through respective positive electrode tabs
  • the positive electrode current collector body is a positive electrode of the first positive electrode current collector It arrange
  • a positive current collector body of the first positive current collector is electrically connected through a side facing the positive current collector.
  • the negative electrode is arranged so as to face the surface of the main body, and each of the negative electrodes has a rectangular plate-shaped negative electrode current collector main body portion having active material layers on both sides and one side of the negative electrode current collector main body portion.
  • a first negative electrode current collector including a negative electrode tab formed in part; and a second negative electrode current collector, wherein the first negative electrode current collector includes the first positive electrode current collector and the second positive electrode current collector.
  • the second negative electrode current collector is disposed between the first positive electrode current collector and the third positive electrode current collector, and the first negative electrode current collector is disposed between the current collector and the second negative electrode current collector.
  • the separator is electrically connected via a negative electrode tab, and the separator includes a first sheet portion covering a surface of the negative electrode current collector main body portion of the first negative electrode current collector, and a second sheet portion covering the back surface.
  • a first separator having a connecting part for connecting the first sheet part and the second sheet part, and a negative electrode current collector of the second negative electrode current collector
  • the method for manufacturing an electrochemical device includes a rectangular plate-shaped first current collector having a width dimension XA and a length dimension YA in which first active material layers are formed on both main surfaces.
  • a first current collector having a main body and a first tab portion projecting on one side in the width direction of the first current collector main body and having a width smaller than the width of the first current collector main body;
  • a step of obtaining a positive electrode by valley folding and folding at the connecting portion between the first tab portions and folding, and a width of the first current collector body in which a second active material layer is formed on both main surfaces A rectangular plate-like second current collector body having a width dimension XB larger than the dimension and a length dimension YB, and a width direction of the second current collector body.
  • a plurality of separators having a width dimension XC that is the same as the width dimension XB of the second current collector body and a length dimension YC that is at least twice the length dimension of the second current collector body are continuous in the width direction.
  • a step of preparing a separator sheet to be formed a step of obtaining a negative electrode continuum by folding the separator sheet in the length direction with the negative electrode sheet sandwiched therebetween, and a plurality of positive electrodes arranged in the width direction apart from each other
  • a negative electrode continuum between first current collectors that are connected to each other and between the first current collectors that are adjacent to each other, and between the first current collectors that are connected to each other and that are adjacent to each other.
  • the manufacturing method of the electrochemical device in one Embodiment of this invention can adhere the said separator sheet and the said negative electrode sheet mutually in the process of obtaining a negative electrode continuous body.
  • the manufacturing method of the electrochemical device in one Embodiment of this invention can perform the conductive connection of a tab part and an extraction conductor simultaneously with the conductive connection of tab parts.
  • the positive electrode is folded and folded at the side in the width direction of the first current collector body and at the side in the width direction of the first tab portion.
  • the first current collector main bodies are connected to each other between the first current collectors adjacent to each other, and the first current collectors are connected to each other between the first current collectors adjacent to each other.
  • a negative electrode current collector is disposed so that the tab portion is exposed, and a separator folded in half at the center of the length dimension is disposed between the positive electrode and the negative electrode so as to wrap the negative electrode current collector body. It is arranged. For this reason, both the main surfaces of the plurality of stacked current collectors contribute to the acquisition of capacitance except for both outer sides of the stacked body.
  • the connection position also contributes to the acquisition of the capacitance.
  • capacitance per electrical power collector can be enlarged, and the electrochemical device with a large acquisition capacity
  • the positive electrode is folded at the side in the width direction of the first current collector body and folded at the side in the width direction of the first tab portion, the surface of the current collector is oxidized. However, the increase in internal resistance is suppressed.
  • width dimension XB of the second current collector body of the negative electrode is larger than the width dimension XA of the first current collector body of the positive electrode, generation of gas due to the non-opposing portion of the positive electrode is suppressed. Can do. *
  • the electrochemical device in one embodiment of the present invention since the insulating layer that covers the surface on the base end side of the first tab portion of the positive electrode is provided, the occurrence of erroneous contact between the positive electrode and the negative electrode is prevented. be able to. *
  • a first plate-shaped first current collector having a width dimension XA and a length dimension YA in which first active material layers are formed on both main surfaces.
  • a first current collector having a main body and a first tab portion projecting on one side in the width direction of the first current collector main body and having a width smaller than the width of the first current collector main body;
  • the positive electrode is obtained by folding and folding the first tab portions at the connecting portion.
  • the second active material layer is formed on both main surfaces, and the second current collector in the form of a square plate having a width dimension XB larger than the width dimension of the first current collector body and a length dimension YB.
  • a second current collector having a body main body and a second tab portion projecting on one side in the width direction of the second current collector main body and having a width smaller than the width of the second current collector main body
  • a separator having a width dimension XC that is the same as the width dimension XB of the second current collector body and a length dimension YC that is at least twice the length dimension of the second current collector body is a width direction.
  • a plurality of continuous separator sheets are prepared.
  • the separator sheet is folded in the length direction by sandwiching the negative electrode sheet therebetween to obtain a negative electrode continuum.
  • the first current collector bodies are connected to each other, and the first tab portions are connected to each other, and the first tab portions are connected to the plurality of positive electrodes arranged apart from each other in the width direction.
  • a negative electrode continuous body is inserted between the first current collectors adjacent to each other so as to be erected, thereby obtaining a sheet laminate.
  • the first tab portions of the positive electrodes of the sheet laminate and the second tab portions of the negative electrodes are electrically connected to each other.
  • the negative electrode continuum of the sheet laminate is cut into the width of the element unit to obtain a plurality of laminates of the element unit.
  • the laminated body is sealed in a package together with the electrolytic solution. For this reason, an electrochemical device having a large acquisition capacity per current collector can be efficiently and stably produced.
  • the separator sheet and the negative electrode sheet are fixed to each other. Misalignment between the separator sheet and the negative electrode sheet in the negative electrode continuum and the occurrence of falling off of the negative electrode sheet can be prevented, and assembly work can be performed stably and efficiently.
  • the man-hour at the time of assembly is reduced and the lead time is reduced. Can be shortened.
  • an acquisition capacity per current collector can be increased, and a thin electrochemical device having a large capacity can be provided. Further, according to the method for manufacturing an electrochemical device in one embodiment of the present invention, there is an advantage that an electrochemical device having a large acquisition capacity per current collector can be efficiently and stably produced.
  • FIG. 2A and 2B are diagrams illustrating an internal structure of an electrochemical device according to an embodiment of the present invention, in which FIG. 2A is a schematic diagram of a cross section taken along line AA in FIG. 1 and FIG. It is a schematic diagram of the cross section in the -B line.
  • FIG. 3A is a perspective view showing a positive electrode sheet
  • FIG. 3B is an exploded perspective view showing a positive electrode in a method for producing an electrochemical device according to an embodiment of the present invention. It is.
  • FIG. 3A is a perspective view showing a positive electrode sheet
  • FIG. 3B is an exploded perspective view showing a positive electrode in a method for producing an electrochemical device according to an embodiment of the present invention. It is.
  • FIG. 4A is a diagram showing a step of obtaining a negative electrode continuum in the method for producing an electrochemical device according to one embodiment of the present invention
  • FIG. 4A is a perspective view showing a negative electrode sheet and a separator sheet constituting the negative electrode continuum.
  • 4 (B) is a perspective view showing a negative electrode continuum. It is a perspective view which shows the process of obtaining a sheet laminated body in the manufacturing method of the electrochemical device in one embodiment of this invention. It is a disassembled perspective view which shows the sheet
  • the electrochemical device 10 includes an element composed of a laminate 16 in which positive electrodes 11A and negative electrodes 11B are alternately stacked with separators 15 interposed therebetween.
  • the positive electrode 11A includes a rectangular plate-shaped first current collector body 12a1 having a width dimension XA and a length dimension YA (in this specification or in the claims, the first current collector body is referred to as “positive electrode current collector body”).
  • a plurality of first current collectors 12a each having a first tab portion (sometimes referred to as a “positive electrode tab”) (the first tab portion in the present specification or claims)
  • the positive electrode 11A is configured by alternately connecting a plurality of (for example, three) first current collectors 12a in the length direction.
  • the positive electrode 11A connects a plurality of first current collectors 12a at the side F1 in the width direction of the first current collector main body 12a1, and further connects the first current collectors 12a thus connected.
  • the first tab portion 12a2 is connected to the first tab portion 12a2 of the other current collector 12a by the side F2 in the width direction.
  • the positive electrode 11A configured in this way is valley-folded at the side F1 in the width direction of the first current collector body 12a1, and crested at the side F2 in the width direction of the tab portion 12a2.
  • the first tab portions 12a2 facing each other are folded and electrically connected to each other.
  • the negative electrode 11B includes a rectangular plate-shaped second current collector body 12b1 having a width dimension XB and a length dimension YB larger than the width dimension XA of the first current collector body 12a1 (this specification or claim).
  • the second current collector body may be referred to as a “negative electrode current collector body”) and the second current collector protruding from one side in the width direction of the second current collector body 12b1
  • a plurality of second tab portions 12b2 having a width dimension smaller than the width dimension of the main body 12b1 (in the present specification or claims, the second tab portion may be referred to as a “negative electrode tab”).
  • the current collector 12b is formed on both main surfaces of the current collector 12b (in the present specification or claims, the second current collector may be referred to as a “negative electrode current collector”) and the second current collector body 12b1. And a second active material layer 13b.
  • One negative electrode 11B is inserted so that the second tab portion 12b2 is exposed between the first current collectors 12a connected at the side F1, and the other negative electrode 11B is connected to the first current collector 12a at the side F2.
  • the second tab portion 12b2 is inserted between the current collectors 12a so as to be exposed, and the opposing second tab portions 12b2 are conductively connected to each other.
  • the separator 15 is a rectangular member having a width dimension that is the same as the width dimension XB of the second current collector body 12b1 and a length dimension that is at least twice the length dimension YB of the second current collector body 12b1. , And is folded in half at the center of the length dimension YC. The separator 15 folded in half is disposed between the positive electrode 11A and the negative electrode 11B so as to enclose the current collector body 12b1 of the negative electrode 11B. That is, the separator 15 includes a sheet-like member that covers the surface of the current collector main body 12b1 of the negative electrode 11B, a sheet-like member that covers the back surface, and a connecting portion that connects these sheet-like members. *
  • the electrochemical device 10 includes an insulating layer 14a that covers the surface on the base end side of the first tab portion 12a2 of the positive electrode 11A, and an insulating layer that covers the surface on the base end side of the second tab portion 12b2 of the negative electrode 11B. Layer 14b. *
  • a method for manufacturing an electrochemical device according to an embodiment of the present invention will be described with reference to FIGS.
  • a first active material layer 13a is formed on at least one of the front side and the back side of the main surface, and the width dimension XA, length
  • a first current collector body 12a1 formed in a rectangular plate shape having a dimension YA and a width dimension of the first current collector body 12a1 protruding from one side in the width direction of the first current collector body 12a1
  • a positive electrode sheet 11AS configured by connecting a plurality of first current collectors 12a having a first tab portion 12a2 having a small width dimension is prepared.
  • the positive electrode sheet 11AS is configured by, for example, connecting three first current collectors 12a in the length direction.
  • the first current collector body 12a1 of the first current collector 12a disposed in the center of the first current collector body 12a1 and the side F1 of the other first current collector 12a disposed forward.
  • the first tab portion 12a2 of the other first current collector 12a in which the first tab portion 12a2 of the first current collector 12a disposed at the center is disposed rearward and the side in the width direction thereof. It is configured by connecting at F2.
  • the first current collector body 12a1 of the first current collector 12a having the positive electrode sheet 11AS disposed in the center and the first current collector 12a disposed in front of the first current collector 12a.
  • the first current collector body 12a1 is connected to the first current collector body 12a1 (side F1 in the width direction) and is folded at the bottom, and the first current collector 12a disposed at the center and the first tab portion 12a2 disposed rearward.
  • the positive electrode 11A is obtained by folding and folding at the connecting portion (side F2 in the width direction) of the current collector 12a with the first tab portion 12a2.
  • a negative electrode sheet 11BS is prepared in which a second current collector 12b having a second current collector body 12b1 and a second tab portion 12b2 is connected in the width direction.
  • the second current collector body 12b1 has a second active material layer 13b formed on the front side and the back side of the main surface, and the width dimension XA of the first current collector body 12a1. It has a larger width dimension XB and a length dimension YB, and is formed in a rectangular plate shape.
  • the second tab portion 12b2 protrudes from one side in the width direction of the second current collector body 12a1, and has a width dimension smaller than the width dimension XB of the second current collector body 12a1.
  • the width of the separator 15 having the same width dimension XC as the width dimension XB of the second current collector body 12b1 and the length dimension YC twice as long as the length dimension YB of the second current collector body 12b1 is widened.
  • a separator sheet 15 ⁇ / b> S configured by connecting a plurality in the direction is prepared. Separator sheet 15S is folded in two in the length direction with negative electrode sheet 11BS interposed therebetween, and negative electrode continuum 11BW shown in FIG. 4B is obtained. A plurality of negative electrode continuous bodies 11BW are prepared. Next, as shown in FIG.
  • the negative electrode continuum 11BW is joined to a plurality of positive electrodes 11A arranged in the width direction so as to be separated from each other, thereby obtaining a sheet laminate 16S shown in FIG.
  • one negative electrode continuum 11BW is inserted between the first current collector 12a disposed at the center and the first current collector 12a disposed at the front, and the other negative electrode continuum 11BW is disposed at the center. It is inserted between the first current collector 12a arranged and the first current collector 12a arranged behind. After the insertion, the first tab portions 12a2 of the positive electrode 11A are electrically connected to each other, and the second tab portions 12b2 of the negative electrode 11B are electrically connected to each other.
  • the negative electrode continuum 11 ⁇ / b> BW of the sheet laminate 16 ⁇ / b> S is cut along the planned cutting line C so as to have a width dimension in unit of elements to obtain a plurality of laminates 16.
  • the laminate 16 is sealed in the package 18 together with the electrolytic solution E to obtain the electrochemical device 10 shown in FIG. *
  • the separator sheet 15S and the negative electrode sheet 11BS may be fixed to each other by the adhesive A as shown in FIG. *
  • the conductive connection between the first tab portion 12a2 and the lead conductor 17a may be simultaneously performed.
  • the conductive connection between the second tab portion 12b2 and the lead conductor 17b may be simultaneously performed.
  • the first current collector 12a can be formed using a foil made of a metal such as aluminum, copper, nickel, and stainless steel, for example.
  • a foil made of a metal such as aluminum or stainless steel can be used.
  • the thickness of the foil can be in the range of 10 ⁇ m to 50 ⁇ m, for example.
  • the first current collector body 12a1 can be formed in a rectangular plate shape. A square or a rectangle is not limited to a square in a geometrically strict sense.
  • the first current collector main body 12a1 can be formed with a rounded surface or a C surface at the corners from the viewpoint of workability or the like, and can have a recess or a protrusion on each side.
  • the first tab portion 12a2 protrudes from one side in the width direction of the first current collector body 12a1.
  • the second current collector 12b can be formed using a foil made of a metal such as aluminum, copper, nickel, and stainless steel, for example.
  • the material of the first current collector 12a and the material of the second current collector 12b may be the same or different.
  • a foil made of a metal such as copper, nickel, and stainless steel can be used.
  • the thickness of the foil can be in the range of 10 ⁇ m to 50 ⁇ m, for example.
  • the second current collector body 12b1 can be formed in a rectangular plate shape.
  • the square plate shape is not limited to a square shape in a geometrically strict sense.
  • the second current collector main body 12b1 can be formed with an R-shape or a C-surface at the corners from the viewpoint of workability or the like, and can have some recesses or protrusions on each side.
  • the second tab portion 12b2 protrudes from one side in the width direction of the second current collector body 12b1.
  • the first active material layer 13a and the second active material layer 13b can contain an active material made of a carbon-based material such as activated carbon, polyacene, or graphite, or a lithium transition metal oxide.
  • an active material made of a carbon-based material such as activated carbon, polyacene, or graphite, or a lithium transition metal oxide.
  • any substance capable of reversibly occluding lithium ions and / or anions can be used as the active material, such as activated carbon, conductive polymer,
  • a heat-treated product of an aromatic condensation polymer, such as a polyacene organic semiconductor (PAS) having a polyacene skeleton can be used.
  • PAS polyacene organic semiconductor
  • a lithium-containing metal oxide represented by a general formula of Li x M y O z (M represents one or more metals) such as LiCoO 2 , Li x NiO 2 , Li x MnO 2 , and Li x FeO 2 .
  • fiber metal oxides such as cobalt, manganese, and nickel can also be used.
  • the active material material of the first active material layer 13a and the active material material of the second active material layer 13b may be the same or different.
  • the active material is not particularly limited as long as it can reversibly store lithium ions.
  • the active material layer is formed by dispersing a powder of the active material, a binder and, if necessary, a conductive powder in an aqueous or organic solvent to form a slurry, which is applied to a current collector and then dried. be able to. It is also possible to form the slurry by pasting the slurry into a sheet shape on the current collector.
  • the binder for example, a rubber binder such as styrene butadiene rubber (SBR), or a thermoplastic resin such as polypropylene or polyethylene can be used.
  • the binder is a rubber-based binder such as SBR, a fluorine-based resin such as polytetrafluoroethylene or polyvinylidene fluoride, or polypropylene or polyethylene.
  • a thermoplastic resin or the like can be used.
  • the conductive powder acetylene black, graphite, metal powder, or the like can be used.
  • a method for forming each active material layer 13a or 13b on the surface of each current collector body 12a1 or 12b1 for example, a coating method, a sheet pasting method, or the like can be used.
  • the positive electrode sheet 11AS can be configured by connecting three or more first current collectors 12a in the length direction. As the number of connections increases, the average acquisition capacity per current collector can be increased. Further, the number of connections is not limited to an odd number, and an even number may be connected. Further, in the positive electrode 11A, the first active material layer 13a is formed on each of the current collector main bodies 12a1 of the plurality of first current collectors 12a except for the first current collector 12a located on the outermost side. Can be configured. From the viewpoint of workability and other aspects, the first active material layer 13a may also be formed on the outermost surface of the current collector body 12a1 of the plurality of first current collectors 12a.
  • the active material layer on the outermost surface of each set may be omitted.
  • one slit that is continuous with a part in the width direction or intermittently is connected to the portion where the current collector main bodies 12a1 of the first current collector 12a folded of the positive electrode 11A are connected.
  • a plurality of slits provided may be formed, or grooves may be formed.
  • a slit or a groove may be formed in the portion where the first tab portions 12a2 of the first current collector 12a folded of the positive electrode 11A are connected to each other.
  • the negative electrode sheet 11BS can be configured by connecting two or more second current collectors 12b in the width direction. As the number of connections increases, the number of laminates 16 obtained per assembly process increases, and the electrochemical device 10 in one embodiment can be efficiently produced. Moreover, the negative electrode 11B can form the active material layer 13b on both front and back surfaces of the main surface of the current collector body 12b1 of the second current collector 12b. In the case where a negative electrode is further arranged on the outermost surface of the positive electrode 11A, an active material layer may be provided only on the surface facing the positive electrode. *
  • the separator 15 can be formed of a porous body made of a material such as polyethylene, polytetrafluoroethylene (PTFE), cellulose, aramid resin, or a mixture thereof.
  • the separator 15 can be formed of a porous body made of a material such as cellulose, polyethylene, or polypropylene.
  • the thickness of the separator 15 can be in the range of 20 ⁇ m to 50 ⁇ m, for example.
  • the separator sheet 15S can be formed by connecting two or more separators 15 in the width direction. *
  • the negative electrode continuum 11BW can be formed by folding the separator sheet 15S sandwiched between the negative electrode sheets 11BS into two in the length direction. Further, the negative electrode sheet 11BS and the separator sheet 15S are fixed to each other by, for example, adhesion using the adhesive A or fusion using heat. *
  • the insulating layer 14a is formed so as to cover the surface on the base end side of the first tab portion 12a2 of the positive electrode 11A.
  • the insulating layer 14b is formed so as to cover the surface on the base end side of the second tab portion 12b2 of the negative electrode 11B.
  • the stacked body 16 includes a positive electrode 11A, a first current collector 12a disposed at the center, a first current collector 12a disposed at the front and disposed at the center, and a first current collector 12a connected by a side F1.
  • a first negative electrode 11B inserted between the first current collector 12a, a first current collector 12a disposed in the center, a first current collector 12a disposed rearward and connected to the first current collector 12a by a side F2.
  • Another negative electrode 11B inserted between the current collector 12a and a separator 15 that is folded in half and disposed between the positive electrode 11A and the negative electrode 11B can be configured.
  • the negative electrode 11B may be disposed on the outermost side of the plurality of first current collectors 12a folded of the positive electrode 11A via a separator 15. *
  • the lead conductor 17a can be formed from a foil made of a metal such as aluminum, copper, nickel, and stainless steel.
  • the thickness of the foil is, for example, in the range of 20 ⁇ m to 200 ⁇ m.
  • lead conductors 17a and 17b are respectively connected to the first tab portion 12a2 of the positive electrode 11A that is conductively connected to each other and the second tab portion 12b2 of the negative electrode 11B that is conductively connected to each other. Conductive connection.
  • the tab portions 12a2 and 12b2 and the lead conductors 17a and 17b can be electrically connected using a method such as an ultrasonic welding method, a resistance welding method, or a laser welding method. *
  • the package 18 can be formed using, for example, a synthetic resin film laminated with a metal foil.
  • the metal foil can be formed using aluminum or the like.
  • the synthetic resin film is, for example, polypropylene, nylon, polyethylene terephthalate (PET), polyethylene, ethylene vinyl acetate copolymer resin, or a laminate thereof (for example, a laminate in which polypropylene is laminated as a base material with nylon as a sealant). For example, it can be formed by fusing the sides overlapped in two by heat sealing. *
  • the electrolyte used as the electrolytic solution E is made of, for example, tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) or a compound represented by the following formula (1).
  • Et 4 NBF 4 tetraethylammonium tetrafluoroborate
  • X ⁇ (1) (wherein R1 to R4 are an alkyl group having 1 to 6 carbon atoms which may have an unsaturated bond, an ether bond, an amide bond or an ester bond, or a molecule thereof.
  • the electrolyte is, for example, propylene carbonate (PC), acetonitrile, methoxy acetonitrile, 3-methoxy propionitrile, .gamma.-butyrolactone, butylene carbonate, dimethyl
  • PC propylene carbonate
  • acetonitrile methoxy acetonitrile
  • 3-methoxy propionitrile .gamma.-butyrolactone
  • butylene carbonate dimethyl
  • an electrolyte made of a lithium salt such as LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , Li (C 2 F 5 SO 2 ) 2 N is used as ethylene.
  • a solvent such as carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyl lactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride or sulfolane, or a mixture of two or more of these solvents.
  • the obtained electrolytic solution E is used as an example.
  • an active material material paste containing activated carbon, carboxymethylcellulose, styrene butadiene rubber and acetylene black is applied to the front and back opposing positions of the main surface of a 25 ⁇ m thick aluminum foil by screen printing. Dry for 10 minutes to form an active material layer 13a having a thickness of 10 ⁇ m.
  • a rectangular plate-shaped first current collector body 12a1 having a width dimension XA of 14 mm and a length dimension YA of 17 mm, and the first current collector body are formed from the aluminum foil on which the active material layer 13a is formed.
  • two positive electrode sheets AS are obtained by punching out with a mold in a state where three are connected in the length direction. *
  • the positive electrode sheet AS is valley-folded at the portion where the current collector main bodies 12a1 are connected to each other, and the first tab portions 12a2 are
  • the positive electrode 11 ⁇ / b> A is obtained by carrying out mountain folding at the connected portions.
  • the active material layer 13b is formed on the aluminum foil in the same manner as the active material layer 13a.
  • a rectangular plate-shaped second current collector body 12b1 having a width dimension XB of 16 mm and a length dimension YB of 17 mm and one side in the width direction of the second current collector body 12b1
  • a second current collector 12b having a second tab portion 12b2 that is protruded and has a width dimension 5 mm smaller than the width dimension of the second current collector body and a length dimension 4 mm.
  • Two negative sheets 11BS are obtained by punching out from the mold in a state where two are connected in the width direction.
  • separator sheet 15S in which two separators 15 having a width dimension XC of 16 mm and a length dimension YC of 36 mm are connected in the width direction is punched out from a 30 ⁇ m-thick cellulose using a mold to obtain two separator sheets 15S. It is done.
  • the separator sheet 15S is folded in half in the length direction, and the negative electrode sheet 11BS is sandwiched between the two folded surfaces of the separator sheet 15S, whereby two sets of negative electrode continuums 11BW are obtained.
  • One negative electrode continuum 11BW is inserted between the connected front current collector 12a, the first current collector 12a disposed in the center, the first current collector 12a disposed in the center, and the first current collector 12a.
  • a sheet laminate 16S is obtained by inserting another negative electrode continuum 11BW between the first current collector 12a and the first current collector 12a arranged at the back connected by the side F2 of the one tab portion 12a2.
  • the first tab portions 12a2 of the positive electrode of the sheet laminate obtained above are overlapped with each other, and further, one end side of the lead conductor 17a made of an aluminum strip having a width of 3 mm, a length of 40 mm, and a thickness of 100 ⁇ m.
  • the first tab portions 12a2 of the positive electrode 11A and the lead conductor 17a are conductively connected by overlapping and welding with ultrasonic waves.
  • the second tab portions 12b2 of the negative electrode 11B of the sheet laminate 16S obtained above are overlapped with each other, and further, one end side of the lead conductor 17b is overlapped and welded in the same manner as described above, whereby the first tab 11b of the negative electrode 11B is overlapped.
  • the two tab portions 12b2 and the lead conductor 17b are conductively connected.
  • the negative electrode continuum 11BW of the sheet laminate 16S thus obtained is cut into two so as to have a width in element units, and two laminates 16 in element units are obtained.
  • the electric double layer capacitor thus obtained was subjected to a constant current discharge method using an electrochemical measurement system HZ-5000 and a charge / discharge device HJ-2010 manufactured by Hokuto Denko Corporation, headquartered in Meguro-ku, Tokyo, Japan.
  • the electrical performance (capacitance, internal resistance) was measured with AC impedance (1 kHz). As a result, the capacitance was 0.2 F, and the internal resistance was 200 m ⁇ .
  • the electric double layer capacitor has been described as an example, but the present invention is not limited to this.
  • an electric electrode such as a so-called lithium ion capacitor or lithium ion battery in which lithium ions are supported on one electrode. It can also be applied to chemical devices.
  • Electrochemical device 11A Positive electrode 11AS: Positive electrode sheet 11B: Negative electrode 11BS: Negative electrode sheet 11BW: Negative electrode continuum 12a: First current collector 12a1: First current collector body 12a2: First tab portion 12b: Second current collector 12b1: Second current collector body 12b2: Second tab portions 13a, 13b: Active material layers 14a, 14b: Insulating layer 15: Separator 15S: Separator sheet 16: Laminate 16S: Sheet lamination Body 17a, 17b: Lead conductor 18: Package C: Planned cutting line E: Electrolyte F1: Side (valley fold) F2: Side (mountain fold) XA: Width dimension XB of first current collector body XB: Second Current collector body width dimension XC: Separator width dimension YA: First current collector body length dimension YB: Second current collector body length dimension YC: Separator length dimension

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】集電体当たりの取得容量が大きく、内部抵抗が低く、かつ組み立てが容易な電気化学デバイスを提供する。【解決手段】幅方向に互いに離間して配列された複数の正極11Aに対し、第1の集電体本体12a1同士が連結され互いに隣接する第1の集電体12a,12a間と、第1のタブ部12a2同士が連結され互いに隣接する第1の集電体12a,12a間とに、負極連続体11BWをそれぞれ架設するように挿入してシート積層体16Sを準備し、シート積層体の負極連続体を素子単位の幅寸法に切断して複数の積層体16を得る。

Description

電気化学デバイスおよびその製造方法
本発明は、正極と負極とがセパレータを間に挟んで交互に積層された積層素子を備えた電気化学デバイスに関する。
近年、携帯型電話機やノート型パーソナルコンピュータ等の携帯型の電子機器に用いることができる小型で大容量の電気化学デバイスが注目されている。このような電気化学デバイスとしては、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等が知られている。 
このような電気化学デバイスとして、例えば特開平6-176979号公報(特許文献1)では、小型で軽量であるという特長を損なうことなく、容量の増大を図った固体電解コンデンサが提案されている。特許文献1に開示されているコンデンサ素子120は、図7に示されるように、複数に区画された小領域を単位として酸化皮膜層104及び固体電解質層106が形成された陽極体102と、導体112の表面を絶縁層114で被覆して可撓性を備え、固体電解質層106に重ね合わせる部分に導体112を露出させた配線導体110とを備える。このコンデンサ素子120は、陽極体102を折り畳んで形成した固体電解質層106間に配線導体110を挟み込み、露出させた導体112と固体電解質層106とを導電体118を介して電気的に接続して構成される。このコンデンサ素子120は、折り畳まれた配線導体の一端が引出端子として用いられるので、内部抵抗が大きい。 
特開平9-7893号公報(特許文献2)には、静電容量が大きく、かつ内部抵抗の低い電気二重層キャパシタが提案されている。この電気二重層キャパシタは、図8に示されるように、2枚の帯状の導電体219a,219bが交互に重なるように折り畳まれてなる一対の集電体、集電体の積層面に形成された分極性電極212、および隣接する分極性電極212間に配されたセパレータ203からなる素子を具備する。この構造の電気二重層キャパシタは、素子毎に積層する工程が必要であり、大量生産に不向きである。 
特開2002-157997号公報(特許文献3)には、簡単な工程で製造できる折り畳み型のリチウムイオン電池及びその製造方法が提案されている。この特許文献3に記載の製造方法においては、図9に示されるように、長尺の負極集電体の両面に設けられた帯状未塗工部307に活物質304を塗工して負極シート301が作成される。その両面には、セパレータ309が接着剤を介して積層され、さらにその上に負極の帯状未塗工部307より幅広の活物質の帯状未塗工部308が設けられた短冊状の正極シート302が接着剤を介して積層される。また、負極の活物質塗工端部は、正極の活物質未塗工の部分に張り出すように位置付けられて積層される。続いて、隣接する正極シート302の間313を切断して正負の電極ターミナルを取り付け、帯状未塗工部307,308において折り畳むことで、折り畳み型リチウム電池が作成される。この特許文献3の製造方法においては、得られる電池の集電体当りの取得容量が小さいので、大きな容量を取得するためには積層数を多くする必要があり、その結果、薄型化が難しい。また、内部抵抗が大きい。
特開平6-176979号公報 特開平9-7893号公報 特開2002-157997号公報
上記従来の電気化学デバイスは、いずれも、(1)集電体当たりの取得容量が大きく、(2)内部抵抗が小さく、(3)組み立てが容易という3つの要請を同時に満足するものではなかった。本発明は、集電体当たりの取得容量が大きく、内部抵抗が小さく、かつ組み立てが容易な電気化学デバイスを提供することを目的とする。また、本発明は、上記の電気化学デバイスを効率よく安定して生産することが可能な製造方法を提供することを目的とする。
前記目的を達成するため、本発明の一実施形態における電気化学デバイスは、正極と負極とがセパレータを間に挟んで交互に積層された積層体からなる素子を備える。前記正極は、幅寸法XA、長さ寸法YAの四角形の板状の第1の集電体本体と、該第1の集電体本体の幅方向の一辺に突設され前記第1の集電体本体の幅寸法より小さい幅寸法の第1のタブ部と、を有する複数の第1の集電体と、前記第1の集電体本体の少なくとも一方の主面に形成された第1の活物質層と、を有し、前記複数の第1の集電体は、第1の集電体本体同士が該集電体本体の幅方向の辺で、また第1のタブ部同士が該タブ部の幅方向の辺で、長さ方向に交互に連結されるとともに、前記第1の集電体本体の幅方向の辺で谷折り、タブ部の幅方向の辺で山折りすることにより折り重ねられ、前記第1のタブ部同士が重ね合わされて導電接続されている。 また、前記負極は、前記第1の集電体本体の幅寸法XAより大きな幅寸法XBと、長さ寸法YBとを有する四角形の板状の第2の集電体本体と、該第2の集電体本体の幅方向の一辺に突設され前記第2の集電体本体の幅寸法より小さい幅寸法の第2のタブ部と、を有する複数の第2の集電体と、該第2の集電体本体の両主面にそれぞれ形成された第2の活物質層と、を有し、前記第2の集電体が、前記第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ部同士が連結され互いに隣接する第1の集電体間とに、第2のタブ部が露出するように、それぞれ配設され、第2のタブ部同士が重ね合わされて導電接続されている。 また、前記セパレータは、前記第2の集電体本体の幅寸法XBと同一の幅寸法XCと、前記第2の集電体本体の長さ寸法YBの2倍以上の長さ寸法YCとを有し、前記長さ寸法YCのほぼ中央で二つ折りにされて前記負極の集電体本体の幅方向の他辺側を包むように正極と負極との間に配設されている。 
また、本発明の一実施形態における電気化学デバイスは、さらに、前記正極の第1のタブ部の基端側の表面を被覆する絶縁層を有することができる。また、本発明の一実施形態における電気化学デバイスは、正極と負極との間にセパレータを介在させて構成され、前記正極は、それぞれが、活物質層を少なくとも一方の面に有する矩形板状の正極集電体本体部と当該正極集電体本体部の1辺の一部に形成された正極タブとを含む第1正極集電体、第2正極集電体、及び第3正極集電体を有し、前記第2正極集電体は、前記第1正極集電体とそれぞれの正極タブを介して電気的に接続され、その正極集電体本体が前記第1正極集電体の正極集電体本体の裏面と対向するように配置されており、前記第3正極集電体は、前記第1正極集電体とそれぞれの正極集電体本体部の正極タブが形成された1辺と対向する辺を介して電気的に接続され、その正極集電体本体が前記第1正極集電体の正極集電体本体の表面と対向するように配置されており、前記負極は、それぞれが、活物質層を両面に有する矩形板状の負極集電体本体部と該当該負極集電体本体部の1辺の一部に形成された負極タブとを含む第1負極集電体、及び第2負極集電体を有し、前記第1負極集電体は、前記第1正極集電体と前記第2正極集電体との間に配置され、前記第2負極集電体は、前記第1正極集電体と前記第3正極集電体との間に配置されるとともに、前記第1負極集電体とそれぞれの負極タブを介して電気的に接続され、前記セパレータは、前記第1負極集電体の負極集電体本体部の表面を覆う第1シート部と、裏面を覆う第2シート部と、当該第1シート部と第2シート部とを連絡する連絡部とを有する第1セパレータと、前記第2負極集電体の負極集電体本体部の表面を覆う第1シート部と、裏面を覆う第2シート部と、当該第1シート部と第2シート部とを連絡する連絡部とを有する第2セパレータと、を含んで構成される。 
また、本発明の一実施形態における電気化学デバイスの製造方法は、両主面に第1の活物質層が形成され幅寸法XA,長さ寸法YAの四角形の板状の第1の集電体本体と該第1の集電体本体の幅方向の一辺に突設され該第1の集電体本体の幅寸法より小さい幅寸法の第1のタブ部とを有する第1の集電体が、第1の集電体本体同士、第1のタブ部同士が長さ方向に交互に複数連結された正極シートを準備する工程と、正極シートを第1の集電体本体同士の連結部で谷折り、第1のタブ部同士の連結部で山折りして折り重ねることにより正極を得る工程と、両主面に第2の活物質層が形成され前記第1の集電体本体の幅寸法より大きな幅寸法XBと、長さ寸法YBとを有する四角形の板状の第2の集電体本体と該第2の集電体本体の幅方向の一辺に突設され前記第2の集電体本体の幅寸法より小さい幅寸法の第2のタブ部とを有する第2の集電体が幅方向に複数連続する負極シートを準備する工程と、前記第2の集電体本体の幅寸法XBと同一の幅寸法XCと、該第2の集電体本体の長さ寸法の2倍以上の長さ寸法YCとを有するセパレータが幅方向に複数連続するセパレータシートを準備する工程と、負極シートを間に挟んでセパレータシートを長さ方向に2つ折りすることにより負極連続体を得る工程と、幅方向に互いに離間して配列された複数の正極に対し、第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ部同士が連結され互いに隣接する第1の集電体間とに、負極連続体をそれぞれ架設するように挿入してシート積層体を得る工程と、シート積層体の正極の第1のタブ部同士、負極の第2のタブ部同士を、それぞれ導電接続する工程と、シート積層体の負極連続体を素子単位の幅寸法に切断して素子単位の複数の積層体を得る工程と、積層体を電解液とともにパッケージ内に封止する工程と、を有する。 
また、本発明の一実施形態における電気化学デバイスの製造方法は、負極連続体を得る工程において、前記セパレータシートと前記負極シートとを相互に固着することができる。 
また、本発明の一実施形態における電気化学デバイスの製造方法は、タブ部と引出導体との導電接続を、タブ部同士の導電接続と同時に行なうことができる。 
本発明の一実施形態における電気化学デバイスによれば、第1の集電体本体の幅方向の辺で谷折り、第1のタブ部の幅方向の辺で山折りされて折り重ねられた正極に対し、第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ同士が連結され互いに隣接する第1の集電体間とに、第2のタブ部が露出するようにそれぞれ負極の集電体が配設されるとともに、長さ寸法のほぼ中央で二つ折りにされたセパレータが負極の集電体本体を包むように正極と負極との間に配設されている。このため、積層された複数の集電体の両主面が、積層体の両外側を除いて、静電容量の取得に寄与する。例えば、第1の集電体が第1の集電体本体の幅方向の辺により接続されているので、当該接続位置も静電容量の取得に寄与する。これにより、集電体当りの取得容量を大きくすることができ、薄型で取得容量が大きな電気化学デバイスを提供することができる。また、正極は第1の集電体本体の幅方向の辺で谷折り、第1のタブ部の幅方向の辺で山折りされて折り重ねられているので、集電体の表面が酸化されても内部抵抗の増加が抑制される。また正極の第1の集電体本体の幅寸法XAに対して、負極の第2の集電体本体の幅寸法XBが大きいので、正極の非対向部分に起因するガスの発生を抑制することができる。 
また、本発明の一実施形態における電気化学デバイスによれば、正極の第1のタブ部の基端側の表面を被覆する絶縁層を有するので、正極と負極との誤接触の発生を防止することができる。 
本発明の一実施形態における電気化学デバイスの製造方法によれば、両主面に第1の活物質層が形成され幅寸法XA,長さ寸法YAの四角形の板状の第1の集電体本体と該第1の集電体本体の幅方向の一辺に突設され該第1の集電体本体の幅寸法より小さい幅寸法の第1のタブ部とを有する第1の集電体が、第1の集電体本体同士、第1のタブ部同士が長さ方向に交互に複数連
結された正極シートを準備し、正極シートを第1の集電体本体同士の連結部で谷折り、第1のタブ部同士の連結部で山折りして折り重ねることにより正極を得る。また、両主面に第2の活物質層が形成され前記第1の集電体本体の幅寸法より大きな幅寸法XBと、長さ寸法YBとを有する四角形の板状の第2の集電体本体と該第2の集電体本体の幅方向の一辺に突設され前記第2の集電体本体の幅寸法より小さい幅寸法の第2のタブ部とを有する第2の集電体が幅方向に複数連続する負極シートを準備する。また、前記第2の集電体本体の幅寸法XBと同一の幅寸法XCと、該第2の集電体本体の長さ寸法の2倍以上の長さ寸法YCとを有するセパレータが幅方向に複数連続するセパレータシートを準備する。次に、負極シートを間に挟んでセパレータシートを長さ方向に2つ折りすることにより負極連続体を得る。次に、幅方向に互いに離間して配列された複数の正極に対し、第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ部同士が連結され互いに隣接する第1の集電体間とに、負極連続体をそれぞれ架設するように挿入してシート積層体を得る。次に、シート積層体の正極の第1のタブ部同士、負極の第2のタブ部同士を、それぞれ導電接続する。次に、シート積層体の負極連続体を素子単位の幅寸法に切断して素子単位の複数の積層体を得る。次に、積層体を電解液とともにパッケージ内に封止する。このため、集電体当りの取得容量が大きな電気化学デバイスを効率よく安定生産することができる。 
本発明の一実施形態における電気化学デバイスの製造方法によれば、前記負極連続体を得る工程において、前記セパレータシートと前記負極シートとを相互に固着するので、シート積層体を準備する際に、負極連続体におけるセパレータシートと負極シートとの位置ズレや負極シートの抜け落ちの発生を防止でき、組み立て作業を安定して効率良く行うことができる。 
本発明の一実施形態における電気化学デバイスの製造方法によれば、前記タブ部と引出導体との導電接続を、タブ部同士の導電接続と同時に行なうので、組立時の工数を削減してリードタイムを短縮することができる。
本発明の一実施態様における電気化学デバイスによれば、集電体当りの取得容量を大きくすることができ、薄型で容量が大きな電気化学デバイスを提供することができるという利点がある。 また、本発明の一実施態様における電気化学デバイスの製造方法によれば、集電体当りの取得容量が大きな電気化学デバイスを効率よく安定生産することができるという利点がある。
本発明の一実施態様における電気化学デバイスのパッケージの内部を透視した模式図である。 本発明の一実施態様における電気化学デバイスの内部構造を示す図であり、図2(A)は上記図1のA-A線における断面の模式図、図2(B)は上記図1のB-B線における断面の模式図である。 本発明の一実施態様における電気化学デバイスの製造方法において、正極を得る工程を示す図であり、図3(A)は正極シートを示す斜視図、図3(B)は正極を示す分解斜視図である。 本発明の一実施態様における電気化学デバイスの製造方法において、負極連続体を得る工程を示す図であり、図4(A)は負極連続体を構成する負極シートとセパレータシートを示す斜視図、図4(B)は負極連続体を示す斜視図である。 本発明の一実施態様における電気化学デバイスの製造方法において、シート積層体を得る工程を示す斜視図である。 本発明の一実施態様における電気化学デバイスのシート積層体を示す分解斜視図である。 背景技術の一例を示す図である。 背景技術の他の例を示す図である。 背景技術の他の例を示す図である。
以下、本発明の電気化学デバイスの様々な実施形態について、図1ないし図6を参照して説明する。 
一実施形態における電気化学デバイス10は、正極11Aと負極11Bとがセパレータ15を介在させて交互に積層された積層体16からなる素子を備えている。正極11Aは、幅寸法XA、長さ寸法YAの四角形の板状の第1の集電体本体12a1(本明細書又は請求の範囲において、第1の集電体本体を「正極集電体本体」と称することがある))、第1の集電体本体12a1の幅方向の一辺に突設され第1の集電体本体12a1の幅寸法XAより小さい幅寸法の第1のタブ部12a2(本明細書又は請求の範囲において、第1のタブ部を「正極タブ」と称することがある))をそれぞれ有する複数の第1の集電体12a(本明細書又は請求の範囲において、第1の集電体を「正極集電体」と称することがある)、及び第1の集電体本体12a1の主面の表側と裏側の少なくとも一方に形成された第1の活物質層13aを有する。正極11Aは、複数(例えば3つ)の第1の集電体12aを長さ方向に交互に連結して構成される。一例として、正極11Aは、複数の第1の集電体12aを第1の集電体本体12a1の幅方向の辺F1で連結し、さらに、このように連結された第1の集電体12aの一方の第1のタブ部12a2を他の集電体12aの第1のタブ部12a2とその幅方向の辺F2で連結して構成される。このように構成された正極11Aは、図3(B)に示されるように、第1の集電体本体12a1の幅方向の辺F1で谷折り、タブ部12a2の幅方向の辺F2で山折りすることにより折り重ねられ、対向する第1のタブ部12a2同士が導電接続される。また、負極11Bは、第1の集電体本体12a1の幅寸法XAより大きな幅寸法XBと長さ寸法YBとを有する四角形の板状の第2の集電体本体12b1(本明細書又は請求の範囲において、第2の集電体本体を「負極集電体本体」と称することがある)及び第2の集電体本体12b1の幅方向の一辺に突設された第2の集電体本体12b1の幅寸法より小さい幅寸法を有する第2のタブ部12b2(本明細書又は請求の範囲において、第2のタブ部を「負極タブ」と称することがある)を含む複数の第2の集電体12b(本明細書又は請求の範囲において、第2の集電体を「負極集電体」と称することがある)並びに第2の集電体本体12b1の両主面にそれぞれ形成された第2の活物質層13bを有する。1つの負極11Bは、辺F1で連結された第1の集電体12aの間に第2のタブ部12b2が露出するように挿入され、他の負極11Bは、辺F2で連結された第1の集電体12aの間に第2のタブ部12b2が露出するように挿入され、対向する第2のタブ部12b2同士が導電接続される。セパレータ15は、幅寸法が第2の集電体本体12b1の幅寸法XBと同一であり、長さ寸法が第2の集電体本体12b1の長さ寸法YBの2倍以上である矩形部材を、長さ寸法YCのほぼ中央で二つ折りにして構成される。この二つ折りにされたセパレータ15は、負極11Bの集電体本体12b1を包むように正極11Aと負極11Bとの間に配設される。つまり、セパレータ15は、負極11Bの集電体本体12b1の表面を覆うシート状部材と裏面を覆うシート状部材と、これらのシート状部材同士を連絡する連絡部とを有する。 
また、電気化学デバイス10は、正極11Aの第1のタブ部12a2の基端側の表面を被覆する絶縁層14aと、負極11Bの第2のタブ部12b2の基端側の表面を被覆する絶縁層14bとを有する。 
次に、本発明の一実施形態における電気化学デバイスの製造方法について、図1~図5を参照して説明する。一実施形態における電気化学デバイスの製造方法は、まず、図3(A)に示すように、主面の表側と裏側の少なくとも一方に第1の活物質層13aが形成され幅寸法XA,長さ寸法YAの四角形の板状に形成された第1の集電体本体12a1と、第1の集電体本体12a1の幅方向の一辺に突設され第1の集電体本体12a1の幅寸法より小さい幅寸法を有する第1のタブ部12a2と、を有する第1の集電体12aを複数連結して構成される正極シート11ASを準備する。正極シート11ASは、例えば、3つの第1の集電体12aを長さ方向に連結して構成される。この場合、中央に配置した第1の集電体12aの第1の集電体本体12a1を前方に配置した他の第1の集電体12aの第1の集電体本体12a1と辺F1において連結し、さらに、中央に配置した第1の集電体12aの第1のタブ部12a2を後方に配置した他の第1の集電体12aの第1のタブ部12a2とその幅方向の辺F2において連結することで構成される。次に、図3(B)に示すように、正極シート11ASを中央に配置した第1の集電体12aの第1の集電体本体12a1と前方に配置した第1の集電体12aの第1の集電体本体12a1との連結部(幅方向の辺F1)で谷折りにし、中央に配置した第1の集電体12aの第1のタブ部12a2と後方に配置した第1の集電体12aの第1のタブ部12a2との連結部(幅方向の辺F2)で山折りして折り重ねることにより正極11Aが得られる。また、第2の集電体本体12b1と第2のタブ部12b2とを有する第2の集電体12bを、幅方向に連結した負極シート11BSを準備する。図4(A)に示すように、第2の集電体本体12b1は、主面の表側と裏側に第2の活物質層13bが形成され、第1の集電体本体12a1の幅寸法XAより大きな幅寸法XBと、長さ寸法YBとを有し、四角形の板状に形成される。第2のタブ部12b2は、第2の集電体本体12a1の幅方向の一辺に突設され、第2の集電体本体12a1の幅寸法XBより小さい幅寸法を有する。また、第2の集電体本体12b1の幅寸法XBと同一の幅寸法XCと、第2の集電体本体12b1の長さ寸法YBの2倍の長さ寸法YCとを有するセパレータ15を幅方向に複数連結して構成されるセパレータシート15Sを準備する。セパレータシート15Sは、負極シート11BSを間に挟んで長さ方向に2つ折りされ、図4(B)に示される負極連続体11BWが得られる。負極連続体11BWは複数準備される。次に、負極連続体11BWは、図5に示すように、幅方向に互いに離間して配列された複数の正極11Aと接合され、図6に示すシート積層体16Sが得られる。例えば、1の負極連続体11BWは、中央に配置した第1の集電体12aと前方に配置した第1の集電体12aとの間に挿入され、他の負極連続体11BWは、中央に配置した第1の集電体12aと後方に配置した第1の集電体12aとの間に挿入される。挿入後に、正極11Aの第1のタブ部12a2同士が電気的に接続され、負極11Bの第2のタブ部12b2同士が電気的に接続される。続いて、シート積層体16Sの負極連続体11BWを素子単位の幅寸法になるように切断予定線Cで切断して複数の積層体16を得る。最後に、積層体16を電解液Eとともにパッケージ18内に封止して図2に示される電気化学デバイス10が得られる。 
また、上述した製造方法においては、負極連続体11BSを得る工程において、図4(B)に示すように、セパレータシート15Sと負極シート11BSとが接着材Aにより相互に固着しても良い。 
また、上述した製造方法においては、第1のタブ部11a2同士を導電接続する際に、第1のタブ部12a2と引出導体17aとの導電接続を同時に行なうようにしても良い。同様に、第2のタブ部11b2同士を導電接続する際に、第2のタブ部12b2と引出導体17bとの導電接続を同時に行なうようにしても良い。 
第1の集電体12aは、例えば、アルミニウム、銅、ニッケル、ステンレス等の金属を材料とする箔を用いて形成することができる。一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合には、アルミニウム、ステンレス等の金属を材料とする箔を用いることができる。上記箔の厚さは、例えば10μmから50μmの範囲にすることができる。第1の集電体本体12a1は、四角形の板状に形成することができる。四角形又は矩形とは、幾何学的に厳密な意味で
の四角形に限られない。例えば、第1の集電体本体12a1には、作業性その他の観点から角部にR付けやC面を形成することができ、また、各辺に凹部や突部を有することができる。第1のタブ部12a2は、例えば、第1の集電体本体12a1の幅方向の一辺に突設される。 
第2の集電体12bは、例えば、アルミニウム、銅、ニッケル、ステンレス等の金属を材料とする箔を用いて形成することができる。第1の集電体12aの材料と第2の集電体12bの材料とは同じであってもよく、異なっていてもよい。電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合、銅、ニッケル、ステンレス等の金属を材料とする箔を用いることができる。上記箔の厚さは、例えば10μmから50μmの範囲にすることができる。第2の集電体本体12b1は、四角形の板状に形成することができる。ここで四角形の板状とは、幾何学的に厳密な意味での四角形に限られない。例えば、第2の集電体本体12b1は、作業性その他の観点から角部にR付けやC面を形成することができ、また、各辺に多少の凹部や突部を有することができる。第2のタブ部12b2は、第2の集電体本体12b1の幅方向の一辺に突設される。 
第1の活物質層13a及び第2の活物質層13bは、活性炭、ポリアセン、グラファイト等のカーボン系材料、リチウム遷移金属酸化物等を材料とする活物質を含有することができる。一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合、リチウムイオンおよび/またはアニオンを可逆的に吸蔵できるあらゆる物質を活物質の材料として用いることができ、例えば活性炭、導電性高分子、芳香族系縮合ポリマーの熱処理物であってポリアセン系骨格を有するポリアセン系有機半導体(PAS)等を用いることができる。また、LiCoO,LiNiO,LiMnO,LiFeO等のLi(Mは1又は複数の金属を示す。)の一般式で表わされるリチウム含有金属酸化物、またはコバルト、マンガン、ニッケル等の繊維金属酸化物を用いることもできる。第1の活物質層13aの活物質材料と第2の活物質層13bの活物質材料とは同じであってもよく、異なっていてもよい。一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合、活物質としては、リチウムイオンを可逆的に吸蔵できるものであれば特に限定されず、例えば黒鉛、難黒鉛化炭素、活性炭、芳香族系縮合ポリマーの熱処理物であってポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等を挙げることができる。上記活物質層は、上記活物質の粉末、バインダおよび必要に応じて導電性粉末を水系または有機系溶媒中に分散させてスラリーとし、このスラリーを集電体に塗布後乾燥させることによって成型することができる。スラリーを予めシート状に成形したものを集電体に貼り付けることによって成形することもできる。バインダとしては、例えばスチレンブタジエンゴム(SBR)等のゴム系バインダ又はポリプロピレン若しくはポリエチレン等の熱可塑性樹脂等を用いることができる。また、一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合、バインダとして、SBR等のゴム系バインダ、ポリ四フッ化エチレン若しくはポリフッ化ビニリデン等のフッ素系樹脂、又はポリプロピレン若しくはポリエチレン等の熱可塑性樹脂等を用いることができる。また、上記導電性粉末としては、アセチレンブラック、グラファイト、金属粉末等を用いることができる。上記各活物質層13a又は13bの上記各集電体本体12a1又は12b1の表面上への形成方法は、例えば塗工法、シート貼り付け法等を用いることができる。 
正極シート11ASは、第1の集電体12aが長さ方向に3つ以上連結して構成することができる。連結数が増すほど、集電体当りの平均取得容量を高めることができる。また、連結数は奇数に限定するものではなく、偶数連結してもよい。また、正極11Aは、最も外側に位置する第1の集電体12aを除いて、複数の第1の集電体12aの集電体本体12a1のそれぞれに第1の活物質層13aが形成されるように構成することができる。作業性その他の観点から、複数の第1の集電体12aの集電体本体12a1の最も外側の面にも第1の活物質層13aを形成してもよい。また、積層体16を複数組に分割形成する場合等においては、組毎の最外側面の活物質層を省略してもよい。正極11Aの折り重ねられた第1の集電体12aの集電体本体12a1同士が連結される部分に、作業性その他の観点から、幅方向の一部に連続する1つのスリット又は間欠的に設けられる複数のスリットを形成してもよく、また、溝を形成してもよい。また、正極11Aの折り重ねられた第1の集電体12aの第1のタブ部12a2同士が連結される部分に、同様に、スリット又は溝を形成してもよい。 
負極シート11BSは、第2の集電体12bを幅方向に2つ以上連結して構成することができる。連結数が増すほど、組み立て工程当りに得られる積層体16の数が増加し、一実施形態における電気化学デバイス10を効率よく生産することができる。また、負極11Bは、第2の集電体12bの集電体本体12b1の主面の表裏両面にそれぞれ活物質層13bを形成することができる。正極11Aの最も外側の面にさらに負極を配置する場合においては、正極と対向する面だけに活物質層を設けたものであってもよい。 
セパレータ15は、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、セルロース、アラミド樹脂等の材料又はそれらの混合物からなる多孔質体によって形成することができる。一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合は、セパレータ15は、セルロース、ポリエチレン、ポリプロピレン等の材料からなる多孔質体によって形成することができる。セパレータ15の厚さは、例えば20μmから50μmの範囲にすることができる。また、セパレータシート15Sは、セパレータ15を幅方向に2つ以上連結して形成することができる。 
負極連続体11BWは、負極シート11BSが挟まれたセパレータシート15Sを長さ方向に2つ折りして形成することができる。また、負極シート11BSとセパレータシート15Sとは、例えば接着剤Aを用いた接着又は熱を用いた融着等により相互に固着される。 
絶縁層14aは、一例として、正極11Aの第1のタブ部12a2の基端側の表面を被覆するように形成される。また、絶縁層14bは、一例として、負極11Bの第2のタブ部12b2の基端側の表面を被覆するように形成される。 
積層体16は、正極11Aと、中央に配置した第1の集電体12aと前方に配置され中央に配置した第1の集電体12aと辺F1で連結された第1の集電体12aとの間に挿入された1の負極11Bと、中央に配置した第1の集電体12aと後方に配置され中央に配置した第1の集電体12aと辺F2で連結された第1の集電体12aとの間に挿入された他の負極11Bと、二つ折りにされ正極11Aと負極11Bとの間に配設されたセパレータ15と、を有するように構成することができる。正極11Aの折り重ねられた複数の第1の集電体12aの最外側にさらにセパレータ15を介して負極11Bを配設したものであってもよい。 
引出導体17aは、例えばアルミニウム、銅、ニッケル、ステンレス等の金属を材料とする箔から形成することができる。箔の厚さは、例えば20μmから200μmの範囲である。一例として、正極11Aの互いに重ね合わされて導電接続された第1のタブ部12a2と、負極11Bの互いに重ね合わされて導電接続された第2のタブ部と12b2とに、それぞれ引出導体17a及び17bが導電接続される。上記タブ部12a2及び12b2と上記引出導体17a及び17bとは、超音波溶接法、抵抗溶接法、レーザー溶接法等の方法を用いて電気的に接続することができる。 
パッケージ18は、例えば金属箔がラミネートされた合成樹脂フィルムなどを用いて形成することができる。金属箔は、アルミニウム等を用いて形成することができる。合成樹脂フィルムは、例えばポリプロピレン、ナイロン、ポリエチレンテレフタレート(PET)、ポリエチレン、エチレン酢酸ビニル共重合樹脂、又はこれらの積層物(例えば、ナイロンをベース材とし、シーラントとしてポリプロピレンを積層させた積層物)を用い、例えば二つ折りにして重ね合わせた辺をヒートシールにより融着することにより形成することができる。 
電解液Eとして用いるための電解質は、例えばテトラエチルアンモニウムテトラフルオロボレート(EtNBF)又は下式(1)で示される化合物等からなる。[R1R2R3R4N]+X-・・・(1)(式中、R1~R4は、不飽和結合,エーテル結合,アミド結合もしくはエステル結合を有してもよい炭素数1~6のアルキル基又は分子中に窒素原子を有してもよい炭素数4~6のシクロアルキル基を表し、X-は、ClO-、BF-、PF-、(CFSON-、CFSO-、CSO-のような陰イオンを表す。)上記電解質が、例えば、プロピレンカーボネート(PC)、アセトニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、γ-ブチロラクトン、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、スルホラン、3-メチルスルホラン等の溶媒により溶解されることにより、電解液Eが形成される。一実施形態における電気化学デバイス10がリチウムイオンキャパシタとして用いられる場合、LiClO,LiAsF,LiBF,LiPF,Li(CSON等のリチウム塩からなる電解質を、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチルラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン若しくはスルホラン等の溶媒又はこれらの溶媒の二種以上を混合した混合液に溶解することで得られる電解液Eが一例として用いられる。 
次に、本発明の一実施形態における電気化学デバイス10を応用した電気二重層キャパシタについて、適宜図1ないし図5を参照し、電気二重層キャパシタに含まれる要素のうち上述した電気化学デバイス10に含まれる要素と対応する要素には同じ参照符番を用いて説明を行なう。まず、厚さ25μmのアルミニウム箔の主面の表側及び裏側の対向する位置に、活性炭、カルボキシメチルセルロース、スチレンブタジエンゴム及びアセチレンブラックを含む活物質材料ペーストをスクリーン印刷法により塗布し、100℃で1分間乾燥し、厚さ10μmの活物質層13aを形成する。次に、活物質層13aが形成されたアルミニウム箔から、幅寸法XAが14mm、長さ寸法YAが17mmの四角形の板状の第1の集電体本体12a1と、第1の集電体本体12a1の幅方向の一辺に突設され第1の集電体本体の幅寸法より小さい幅寸法5mm、長さ寸法4mmの第1のタブ部12a2とを有する第1の集電体12aを、図3(A)に示すように長さ方向に3つ連結された状態で金型により打ち抜くことで、2枚の正極シートASが得られる。 
次に、この正極シートASを、図3(A)及び図3(B)に示すように、集電体本体12a1同士が連結されている部分で谷折りにし、第1のタブ部12a2同士が連結されている部分部で山折りにすることで、正極11Aが得られる。 
また、活物質層13aと同様の手法で、アルミニウム
箔に活物質層13bが形成される。次に、このアルミニウム箔から、幅寸法XBが16mm、長さ寸法YBが17mmの四角形の板状の第2の集電体本体12b1と、第2の集電体本体12b1の幅方向の一辺に突設され第2の集電体本体の幅寸法より小さい幅寸法5mm、長さ寸法4mmの第2のタブ部12b2とを有する第2の集電体12bを、図4(A)に示すように幅方向に2つ連結された状態で金型から打ち抜き、2枚の負極シート11BSが得られる。 
また、厚さ30μmのセルロースから、幅寸法XCが16mm、長さ寸法YCが36mmのセパレータ15が幅方向に2つ連結されたセパレータシート15Sを金型により打ち抜き、2枚のセパレータシート15Sが得られる。 
次に、セパレータシート15Sを長さ方向に二つ折りにし、セパレータシート15Sの二つ折りにされた各面の間に負極シート11BSを挟みこむことで、2組の負極連続体11BWが得られる。 
次に、上記で得られた正極11Aの中央に配置した第1の集電体12aと前方に配置され中央に配置した第1の集電体12aと第1の集電体12aの辺F1で接続された前方の集電体12aとの間に1の負極連続体11BWを挿入し、さらに、中央に配置した第1の集電体12aと中央に配置した第1の集電体12aと第1のタブ部12a2の辺F2で接続された後方に配置した第1の集電体12aとの間に、他の負極連続体11BWを挿入することで、シート積層体16Sが得られる。 
次に、上記で得られたシート積層体の正極の第1のタブ部12a2同士を重ね合わせ、さらに、幅3mm、長さ40mm、厚さ100μmのアルミニウム製帯状体からなる引出導体17aの一端側を重ねて超音波により溶接することにより、正極11Aの第1のタブ部12a2同士と引出導体17aとが導電接続される。 
同様に上記で得られたシート積層体16Sの負極11Bの第2のタブ部12b2同士を重ね合わせ、さらに、上記と同様に引出導体17bの一端側を重ねて溶接することにより、負極11Bの第2のタブ部12b2同士と引出導体17bとが導電接続される。 
このようにして得られたシート積層体16Sの負極連続体11BWを素子単位の幅寸法になるように2つに切断し、素子単位の2つの積層体16が得られる。 
次に、幅38mm、長さ26mmのアルミラミネートフィルムを幅方向で二つ折りにし、この間に素子単位に切断された積層体16を前記引出導体17a、17bが露出するように挟み、重ね合わせた3辺のうちの2辺を220℃で1秒間0.5MPaの条件でヒートシールにより融着した。 
次に、前工程において二つ折りにして重ね合わされたアルミラミネートフィルムの開口部から、TEMA-BF4(トリエチルメチルアンモニウム-テトラフルオロボレート)/PC(プロピレンカーボネート)1.5mol/lからなる電解液を0.07g注液し、さらに、残りの一辺を上記と同じ条件でヒートシールにより融着してパッケージを封止することで、電気二重層キャパシタが得られる。 
このようにして得られた電気二重層キャパシタについて、日本国東京都目黒区に本社を有する北斗電工株式会社製の電気化学測定システムHZ-5000および充放電装置HJ-2010を用い、定電流放電法、交流インピーダンス(1kHz)で電気性能(静電容量、内部抵抗)を測定した。その結果、静電容量は0.2F、内部抵抗は200mΩであった。 
上記実施形態においては、電気二重層キャパシタを例に説明したが、本発明はこれに限定するものではなく、例えば、一方の電極にリチウムイオンを担持させる所謂リチウムイオンキャパシタやリチウムイオン電池等の電気化学デバイスにも適用できる。
10:電気化学デバイス11A:正極11AS:正極シート11B:負極11BS:負極シート11BW:負極連続体12a:第1の集電体12a1:第1の集電体本体12a2:第1のタブ部12b:第2の集電体12b1:第2の集電体本体12b2:第2のタブ部13a,13b:活物質層14a,14b:絶縁層15:セパレータ15S:セパレータシート16:積層体16S:シート積層体17a,17b:引出導体18:パッケージC:切断予定線E:電解液F1:辺(谷折り)F2:辺(山折り)XA:第1の集電体本体の幅寸法XB:第2の集電体本体の幅寸法XC:セパレータの幅寸法YA:第1の集電体本体の長さ寸法YB:第2の集電体本体の長さ寸法YC:セパレータの長さ寸法

Claims (7)

  1. 正極と負極とがセパレータを間に挟んで交互に積層された積層体からなる素子を備えた電気化学デバイスであって、 前記正極は、幅寸法XA、長さ寸法YAの四角形の板状の第1の集電体本体と、該第1の集電体本体の幅方向の一辺に突設され前記第1の集電体本体の幅寸法より小さい幅寸法の第1のタブ部と、を有する複数の第1の集電体と、 前記複数の第1の集電体のそれぞれの前記第1の集電体本体の少なくとも一方の主面に形成された第1の活物質層と、を有し、 前記複数の第1の集電体は、第1の集電体本体同士が該集電体本体の幅方向の辺で、また第1のタブ部同士が該タブ部の幅方向の辺で、長さ方向に交互に連結されるとともに、前記第1の集電体本体の幅方向の辺で谷折り、前記タブ部の幅方向の辺で山折りすることにより折り重ねられ、前記第1のタブ部同士が重ね合わされて導電接続されており、 前記負極は、 前記第1の集電体本体の幅寸法XAより大きな幅寸法XBと、長さ寸法YBとを有する四角形の板状の第2の集電体本体と、該第2の集電体本体の幅方向の一辺に突設され前記第2の集電体本体の幅寸法より小さい幅寸法の第2のタブ部と、を有する複数の第2の集電体と、 該第2の集電体本体の両主面にそれぞれ形成された第2の活物質層と、を有し、 前記第2の集電体が、前記第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ部同士が連結され互いに隣接する第1の集電体間とに、第2のタブ部が露出するように、それぞれ配設され、第2のタブ部同士が重ね合わされて導電接続されており、前記セパレータは、前記第2の集電体本体の幅寸法XBと同一の幅寸法XCと、前記第2の集電体本体の長さ寸法YBの2倍以上の長さ寸法YCとを有し、前記長さ寸法YCのほぼ中央で二つ折りにされて前記負極の集電体本体の幅方向の他辺側を包むように正極と負極との間に配設されていることを特徴とする電気化学デバイス。
  2. 前記正極の第1のタブ部の基端側の表面を被覆する絶縁層を有することを特徴とする請求項1記載の電気化学デバイス。
  3. 両主面に第1の活物質層が形成され幅寸法XA,長さ寸法YAの四角形の板状の第1の集電体本体と該第1の集電体本体の幅方向の一辺に突設され該第1の集電体本体の幅寸法より小さい幅寸法の第1のタブ部とを有する第1の集電体が、第1の集電体本体同士、第1のタブ部同士が長さ方向に交互に複数連結された正極シートを準備する工程と、正極シートを第1の集電体本体同士の連結部で谷折り、第1のタブ部同士の連結部で山折りして折り重ねることにより正極を得る工程と、両主面に第2の活物質層が形成され前記第1の集電体本体の幅寸法より大きな幅寸法XBと、長さ寸法YBとを有する四角形の板状の第2の集電体本体と該第2の集電体本体の幅方向の一辺に突設され前記第2の集電体本体の幅寸法より小さい幅寸法の第2のタブ部とを有する第2の集電体が幅方向に複数連続する負極シートを準備する工程と、前記第2の集電体本体の幅寸法XBと同一の幅寸法XCと、該第2の集電体本体の長さ寸法の2倍以上の長さ寸法YCとを有するセパレータが幅方向に複数連続するセパレータシートを準備する工程と、負極シートを間に挟んでセパレータシートを長さ方向に2つ折りすることにより負極連続体を得る工程と、幅方向に互いに離間して配列された複数の正極に対し、第1の集電体本体同士が連結され互いに隣接する第1の集電体間と、第1のタブ部同士が連結され互いに隣接する第1の集電体間とに、負極連続体をそれぞれ架設するように挿入してシート積層体を得る工程と、シート積層体の正極の第1のタブ部同士、負極の第2のタブ部同士を、それぞれ導電接続する工程と、シート積層体の負極連続体を素子単位の幅寸法に切断して素子単位の複数の積層体を得る工程と、タブ部に引出導体を導電接続する工程と、積層体を電解液とともにパッケージ内に封止する工程と、を有することを特徴とする電気化学デバイスの製造方法。
  4. 前記負極連続体を得る工程において、前記セパレータシートと前記負極シートとを相互に固着することを特徴とする請求項3記載の電気化学デバイスの製造方法。
  5. 前記タブ部と引出導体との導電接続を、タブ部同士の導電接続と同時に行なうことを特徴とする請求項3記載の電気化学デバイスの製造方法。
  6. 正極と負極との間にセパレータを介在させた電気化学デバイスであって、 前記正極は、 それぞれが、活物質層を少なくとも一方の面に有する矩形板状の正極集電体本体部と当該正極集電体本体部の1辺の一部に形成された正極タブとを含む第1正極集電体、第2正極集電体、及び第3正極集電体を有し、 前記第2正極集電体は、前記第1正極集電体とそれぞれの正極タブを介して電気的に接続され、その正極集電体本体が前記第1正極集電体の正極集電体本体の裏面と対向するように配置されており、 前記第3正極集電体は、前記第1正極集電体とそれぞれの正極集電体本体部の正極タブが形成された1辺と対向する辺を介して電気的に接続され、その正極集電体本体が前記第1正極集電体の正極集電体本体の表面と対向するように配置されており、 前記負極は、 それぞれが、活物質層を両面に有する矩形板状の負極集電体本体部と該当該負極集電体本体部の1辺の一部に形成された負極タブとを含む第1負極集電体、及び第2負極集電体を有し、 前記第1負極集電体は、前記第1正極集電体と前記第2正極集電体との間に配置され、 前記第2負極集電体は、前記第1正極集電体と前記第3正極集電体との間に配置されるとともに、前記第1負極集電体とそれぞれの負極タブを介して電気的に接続され、 前記セパレータは、 前記第1負極集電体の負極集電体本体部の表面を覆う第1シート部と、裏面を覆う第2シート部と、当該第1シート部と第2シート部とを連絡する連絡部とを有する第1セパレータと、 前記第2負極集電体の負極集電体本体部の表面を覆う第1シート部と、裏面を覆う第2シート部と、当該第1シート部と第2シート部とを連絡する連絡部とを有する第2セパレータと、 を含んで構成される、 電気化学デバイス。
  7. 前記負極集電体本体部が、前記正極集電体本体部の全面よりも幅広に形成された請求項6に記載の電気化学デバイス。
PCT/JP2010/054385 2009-04-28 2010-03-16 電気化学デバイスおよびその製造方法 WO2010125867A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800090243A CN102326218B (zh) 2009-04-28 2010-03-16 电化学器件及其制造方法
US13/203,663 US8802268B2 (en) 2009-04-28 2010-03-16 Electrochemical device and manufacturing method thereof
JP2011511349A JP4964350B2 (ja) 2009-04-28 2010-03-16 電気化学デバイスおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-108587 2009-04-28
JP2009108587 2009-04-28

Publications (1)

Publication Number Publication Date
WO2010125867A1 true WO2010125867A1 (ja) 2010-11-04

Family

ID=43032020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054385 WO2010125867A1 (ja) 2009-04-28 2010-03-16 電気化学デバイスおよびその製造方法

Country Status (4)

Country Link
US (1) US8802268B2 (ja)
JP (1) JP4964350B2 (ja)
CN (1) CN102326218B (ja)
WO (1) WO2010125867A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129477A (ja) * 2010-12-17 2012-07-05 Ud Trucks Corp 蓄電セル
US8248756B2 (en) 2007-07-24 2012-08-21 Taiyo Yuden Co., Ltd. Electrochemical device and method of manufacturing the same
JP2012221589A (ja) * 2011-04-04 2012-11-12 Rohm Co Ltd ラミネート型エネルギーデバイス
JP2013115179A (ja) * 2011-11-28 2013-06-10 Sumitomo Electric Ind Ltd リチウムイオンキャパシタ
JP2013153013A (ja) * 2012-01-24 2013-08-08 Tdk Corp 蓄電装置及び蓄電装置用電極
EP2736057A4 (en) * 2011-07-20 2015-07-22 Nichicon Corp ELECTRIC DOUBLE LAYER CAPACITOR
JP2016139608A (ja) * 2015-01-23 2016-08-04 株式会社半導体エネルギー研究所 二次電池および二次電池の作製方法
JP2016143491A (ja) * 2015-01-30 2016-08-08 株式会社豊田自動織機 電極組立体及び電池セル
JP2017073462A (ja) * 2015-10-07 2017-04-13 太陽誘電株式会社 電気化学デバイス
JP2020155416A (ja) * 2013-11-15 2020-09-24 株式会社半導体エネルギー研究所 可撓性を有する非水系二次電池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5958555B2 (ja) * 2012-11-29 2016-08-02 株式会社村田製作所 蓄電デバイス
WO2014178590A1 (ko) * 2013-04-29 2014-11-06 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
EP2822085B1 (en) 2013-05-07 2018-03-07 LG Chem, Ltd. Cable-type secondary battery
CN204464387U (zh) 2013-05-07 2015-07-08 株式会社Lg化学 线缆型二次电池
WO2014182060A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
EP2846381B1 (en) 2013-05-07 2018-02-28 LG Chem, Ltd. Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
US20150104695A1 (en) * 2013-10-14 2015-04-16 Lenovo (Singapore) Pte. Ltd. Folded lithium-ion cell stack
JP6405613B2 (ja) * 2013-10-16 2018-10-17 Tdk株式会社 電気化学デバイス
US20170110255A1 (en) * 2015-10-14 2017-04-20 Pacesetter, Inc. Cathode subassembly with integrated separator
KR102465163B1 (ko) * 2016-06-22 2022-11-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지, 및 전지의 제작 방법
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
US10665901B2 (en) 2017-02-24 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method with folded construction
US11462791B2 (en) * 2018-12-31 2022-10-04 Chongqing Jinkang Powertrain New Energy Co., Ltd. Electric vehicle battery cell structure
CN112164589B (zh) * 2020-08-28 2021-11-05 福建国光新业科技有限公司 一种固态铝电解电容器及其制备方法
JP2024501547A (ja) * 2021-11-23 2024-01-12 寧徳時代新能源科技股▲分▼有限公司 電極アセンブリおよびその製造方法、電池セル、電池ならびに電力消費装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097893A (ja) * 1995-06-23 1997-01-10 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ及びその製造方法
JP2001250742A (ja) * 2000-03-07 2001-09-14 Nec Corp 電気二重層コンデンサとその製造方法
JP2002124435A (ja) * 2000-10-13 2002-04-26 Ngk Insulators Ltd 電気化学キャパシタ
WO2004084244A1 (ja) * 2003-03-19 2004-09-30 Nippon Chemi-Con Corporation 積層コンデンサおよび積層コンデンサの製造方法
WO2007063742A1 (ja) * 2005-12-01 2007-06-07 Matsushita Electric Industrial Co., Ltd. 巻回形電気二重層コンデンサ
JP2008186943A (ja) * 2007-01-29 2008-08-14 Nissan Diesel Motor Co Ltd 電気二重層キャパシタの製造方法
JP2009032727A (ja) * 2007-07-24 2009-02-12 Taiyo Yuden Co Ltd 電気化学デバイス及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334199B2 (ja) 1992-12-05 2002-10-15 日本ケミコン株式会社 固体電解コンデンサ
JP4737817B2 (ja) 2000-11-16 2011-08-03 トータル ワイヤレス ソリューショオンズ リミテッド 折り畳み型リチウム電池の製造方法
CN1309105C (zh) * 2003-12-24 2007-04-04 松下电器产业株式会社 卷式电化学元件用极板组和电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097893A (ja) * 1995-06-23 1997-01-10 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ及びその製造方法
JP2001250742A (ja) * 2000-03-07 2001-09-14 Nec Corp 電気二重層コンデンサとその製造方法
JP2002124435A (ja) * 2000-10-13 2002-04-26 Ngk Insulators Ltd 電気化学キャパシタ
WO2004084244A1 (ja) * 2003-03-19 2004-09-30 Nippon Chemi-Con Corporation 積層コンデンサおよび積層コンデンサの製造方法
WO2007063742A1 (ja) * 2005-12-01 2007-06-07 Matsushita Electric Industrial Co., Ltd. 巻回形電気二重層コンデンサ
JP2008186943A (ja) * 2007-01-29 2008-08-14 Nissan Diesel Motor Co Ltd 電気二重層キャパシタの製造方法
JP2009032727A (ja) * 2007-07-24 2009-02-12 Taiyo Yuden Co Ltd 電気化学デバイス及びその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248756B2 (en) 2007-07-24 2012-08-21 Taiyo Yuden Co., Ltd. Electrochemical device and method of manufacturing the same
JP2012129477A (ja) * 2010-12-17 2012-07-05 Ud Trucks Corp 蓄電セル
JP2012221589A (ja) * 2011-04-04 2012-11-12 Rohm Co Ltd ラミネート型エネルギーデバイス
US9443663B2 (en) 2011-07-20 2016-09-13 Nichicon Corporation Electric double-layer capacitor
EP2736057A4 (en) * 2011-07-20 2015-07-22 Nichicon Corp ELECTRIC DOUBLE LAYER CAPACITOR
JP2013115179A (ja) * 2011-11-28 2013-06-10 Sumitomo Electric Ind Ltd リチウムイオンキャパシタ
JP2013153013A (ja) * 2012-01-24 2013-08-08 Tdk Corp 蓄電装置及び蓄電装置用電極
JP2020155416A (ja) * 2013-11-15 2020-09-24 株式会社半導体エネルギー研究所 可撓性を有する非水系二次電池
JP7130016B2 (ja) 2013-11-15 2022-09-02 株式会社半導体エネルギー研究所 非水系二次電池
US11769902B2 (en) 2013-11-15 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Nonaqueous secondary battery
JP2016139608A (ja) * 2015-01-23 2016-08-04 株式会社半導体エネルギー研究所 二次電池および二次電池の作製方法
KR20170105037A (ko) * 2015-01-23 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 이차 전지의 제작 방법
US10720662B2 (en) 2015-01-23 2020-07-21 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for manufacturing secondary battery
KR102614348B1 (ko) * 2015-01-23 2023-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 이차 전지의 제작 방법
JP2016143491A (ja) * 2015-01-30 2016-08-08 株式会社豊田自動織機 電極組立体及び電池セル
JP2017073462A (ja) * 2015-10-07 2017-04-13 太陽誘電株式会社 電気化学デバイス

Also Published As

Publication number Publication date
JPWO2010125867A1 (ja) 2012-10-25
US8802268B2 (en) 2014-08-12
CN102326218A (zh) 2012-01-18
CN102326218B (zh) 2013-01-02
US20120040231A1 (en) 2012-02-16
JP4964350B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4964350B2 (ja) 電気化学デバイスおよびその製造方法
CN101304104B (zh) 电化学装置及其制造方法
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
JP6618677B2 (ja) 電極組み立て体及びこれを備える二次電池
JP4293501B2 (ja) 電気化学デバイス
WO2011093164A1 (ja) 電気化学デバイス
JP2002298825A (ja) 電気化学デバイスの製造方法、および電気化学デバイス
JP2011049065A (ja) 非水電解質電池およびその製造方法
JP6273665B2 (ja) 電気化学デバイス
JP2011076838A (ja) 積層式電池
JP2000260417A (ja) 積層型電池
WO2014141640A1 (ja) ラミネート外装電池
JP7405243B2 (ja) 集電体、蓄電素子及び蓄電モジュール
US20210020895A1 (en) Secondary battery and manufacturing method thereof
JP2020030899A (ja) 二次電池
JP6619594B2 (ja) リチウムイオン二次電池及びその製造方法
JP2002260601A (ja) 電気化学デバイスおよびその製造方法
JP2005166353A (ja) 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
JP6487716B2 (ja) 蓄電デバイス及び蓄電モジュール
JP6738565B2 (ja) 蓄電素子、及び蓄電素子の製造方法
JP2012059863A (ja) 蓄電素子
JP6285513B1 (ja) 蓄電モジュール
JP6955693B2 (ja) 蓄電素子、及び蓄電素子の製造方法
JP2010073342A (ja) 双極型電池、およびこれを用いた組電池、組電池の製造方法、並びに車両
JP7317877B2 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009024.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13203663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769567

Country of ref document: EP

Kind code of ref document: A1