WO2010119760A1 - スイッチング電源装置 - Google Patents
スイッチング電源装置 Download PDFInfo
- Publication number
- WO2010119760A1 WO2010119760A1 PCT/JP2010/055339 JP2010055339W WO2010119760A1 WO 2010119760 A1 WO2010119760 A1 WO 2010119760A1 JP 2010055339 W JP2010055339 W JP 2010055339W WO 2010119760 A1 WO2010119760 A1 WO 2010119760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- circuit
- power supply
- switching element
- switch circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/342—Active non-dissipative snubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a switching power supply that outputs a predetermined voltage signal by alternately turning on and off a plurality of switching elements such as a resonance power supply and a half-bridge power supply.
- Patent Document 1 discloses a switching power source that alternately turns on and off the first switching element and the second switching element, and the transformer magnetic flux caused by the turn-off of the first switching element. Using the change as a trigger, the second switching element is turned on. In addition, the first switching element is turned on using a change in the magnetic flux of the transformer due to the turn-off of the second switching element as a trigger. By performing such switching control, it is possible to prevent the first switching element and the second switching element from being turned on at the same time.
- the time constant circuit is designed with the dead time taken into account, the dead time of the same time is set for the entire load region, that is, the transient state and the steady state. It is difficult to say that an optimum dead time is set in a steady state that does not require a long dead time. Therefore, although it is highly reliable, it was not the best in terms of efficiency.
- An object of the present invention is to realize a switching power supply capable of preventing a plurality of switching elements from being turned on at the same time while keeping a switching frequency constant, and capable of performing switching with an optimum dead time.
- the present invention includes a DC power supply input unit to which a DC input voltage Vi is input, and a first primary winding np and a first secondary winding that are magnetically coupled with one magnetic component.
- a parallel circuit of a transformer T having at least a line ns1, an inductor Lr connected in series with the first primary winding np, a first switching element Q1, a first capacitor C1, and a first diode D1
- a first rectifying / smoothing configured to operate so as to be repeatedly turned on and off in a complementary manner with a certain period (dead time) interposed therebetween, and rectifies and smoothes the AC voltage output from the first secondary winding ns1.
- the present invention relates to a switching power supply device including a power conversion circuit configured to output an output voltage Vout to a secondary side through a circuit. In this switching power supply device, the voltage based on the equivalent circuit of the power conversion circuit generated when the switch circuit in the on state of the first switch circuit S1 or the second switch circuit S2 is turned off.
- the digital control circuit sets the ON time of the first switching element Q1 and the second switching element Q2 by arithmetic processing at a timing based on the clock signal, and the start time of the ON time is input using a monitor signal as a trigger.
- the control signal for turning on the first switching element Q1 or the second switching element Q2 is generated based on the timing based on the clock signal, and the on-time stop timing is set by arithmetic processing.
- the control signal for turning off the first switching element Q1 or the second switching element Q2 is generated based on the timing determined based on the clock signal according to the ON time.
- the ON times of the first and second switching elements are determined by calculation by the digital IC. At this time, each on-time is determined based on the timing of a predetermined clock signal. For this reason, since the turn-on of the switching element to be turned on is performed from the start timing consisting of a predetermined delay amount set based on the timing of the magnetic flux change caused by the turn-off of the switching element that was on immediately before, The switching elements are not turned on at the same time.
- the switching power supply device of the present invention includes an output voltage detecting means for detecting the output voltage Vout, and the on-time of either the first switching element Q1 or the second switching element Q2 is It is determined based on the value detected by the output voltage detection means.
- This configuration specifically shows a method of determining the on-time of a specific switching element, and the on-time is set according to the output voltage as a switching power supply. Thereby, a stable output voltage can be obtained as a switching power supply.
- the other ON time of the first switching element Q1 or the second switching element Q2 of the switching power supply device according to the present invention is determined from the settable switching period Ts by the first switching element Q1 or the second switching element Q2. It is determined by subtracting the ON time of either one of the two switching elements Q2.
- the on-time of a specific switching element is determined as described above, the on-time of other switching elements is determined by a subtraction process that can be processed simply and at high speed.
- the first primary winding with respect to the direction of the current that flows when the first switch circuit S1 is conductive or the second switch circuit S2 is conductive.
- the magnetic polarity of the line np and the first secondary winding ns1 is reversed.
- This configuration indicates that the switching power supply is an isolated flyback converter. Even with such a configuration, the switching control characteristic of the present invention can be realized.
- the first primary winding with respect to the direction of the current that flows when the first switch circuit S1 is in the conductive state or the second switch circuit S2 is in the conductive state.
- the line np and the first secondary winding ns1 have the same magnetic polarity.
- This configuration indicates that the switching power supply is an insulated forward converter. Even with such a configuration, the switching control characteristic of the present invention can be realized.
- the transformer T further includes a second secondary winding ns2, and the first secondary winding ns1 and the second secondary winding ns2 are connected in series.
- the first rectifying and smoothing circuit includes at least one center tap type full-wave rectifying circuit and at least one It consists of two filter inductors Lo and at least one smoothing capacitor Co.
- the transformer T further includes the second secondary winding ns2, and the first secondary winding ns1 and the second secondary winding ns2 are connected in series.
- the cathode side of the rectifying element is connected to both ends of the secondary winding ns2, the anode side of the rectifying element is commonly connected, and one end of at least one filter inductor Lo is connected to the other end of the first secondary winding ns1.
- the other end of the filter inductor Lo and the rectifier element A configuration in which at least one smoothing capacitor Co is connected between the over-de.
- an insulated switching power supply having first and second secondary windings and capable of transmitting power over almost the entire period is realized.
- the above switching control can also be applied to the switching power supply having such a configuration, and a more efficient switching power supply is realized.
- the secondary leakage magnetic flux of the transformer T is used as the filter inductor Lo.
- the turns ratio of the first secondary winding ns1 and the second secondary winding ns2 is 1: 2.
- the transformer T further includes a second primary winding nb, and one end of the second primary winding nb is connected to the low potential side of the DC input power supply Vi. The other end is supplied as a DC power supply voltage for the digital control circuit via the second rectifying and smoothing circuit.
- the drive power for the control digital IC can be easily supplied within the apparatus by using the bias winding.
- the present invention also provides a DC power supply input unit to which a DC input voltage Vi is input, an inductor Lp formed of one magnetic component, a first switching element Q1, a first capacitor C1, and a first A first switch circuit S1 composed of a parallel circuit of the diode D1, a second switch circuit S2 composed of a parallel circuit of the second switching element Q2, the second capacitor C2, and the second diode D2, and a third switch circuit S2.
- the switch circuit S2 is configured to operate so as to repeat ON / OFF complementarily with a period in which both are OFF, and an anode is connected to a connection point between the inductor Lp and the first switch circuit S1.
- One end is connected to the rectifier element and the cathode of the rectifier element, and the output voltage Vout is output via the first rectification smoothing circuit including the fourth capacitor Co connected in parallel to the inductor Lp.
- the present invention relates to a switching power supply device.
- a voltage or current change based on an equivalent circuit of a power conversion circuit generated by turning off one of the first switch circuit S1 and the second switch circuit S2 which is in an on state.
- a digital control circuit that controls the first switching element Q1 and the second switching element Q2, and the digital control circuit includes
- the ON time of the switching element Q1 and the second switching element Q2 is set by calculation processing at a timing based on the clock signal, and the start timing of the ON time is input by using the monitor signal as a trigger and based on the clock signal.
- the first switching element Q1 or the second switching element A control signal for turning on the switching element Q2 is generated, and the stop time of the ON time is determined at a timing based on the clock signal according to the ON time set by the arithmetic processing, and based on this, the first switching element is determined.
- a control signal for turning off Q1 or the second switching element Q2 is generated.
- the switching power supply device is a non-insulated buck-boost converter including a polarity inversion chopper circuit.
- the above switching control can also be applied to such a non-insulated switching power supply.
- the rectifying element of the first rectifying / smoothing circuit is a field effect transistor.
- the rectifying element of the first rectifying / smoothing circuit is on / off controlled by the digital control circuit.
- This configuration shows an example in which an FET is used as the rectifying element of the rectifying and smoothing circuit, and an example in which the FET is controlled together with the first and second switching elements described above.
- the above switching control can also be applied to such a switching power supply device.
- the DC power supply input unit to which the DC input voltage Vi is input, the inductor Lp formed of one magnetic component, the capacitors C1 of the first switching elements Q1 and 1, the first A first switch circuit S1 composed of a parallel circuit of a diode D1, a second switch circuit S2 composed of a parallel circuit of a second switching element Q2, a second capacitor C2, and a second diode D2, and a DC power supply input section Are connected to a series circuit composed of a first switch circuit S1 and a second switch circuit S2, and one end of an inductor Lp is connected to a connection point between the first switch circuit S1 and the second switch circuit S2.
- the non-insulated type is configured so that the output voltage Vout is output from the other end via a third capacitor Co connected in parallel to the first switch circuit S1.
- the present invention relates to switching power supply.
- the first switch circuit S1 and the second switch circuit S2 are configured to operate so as to repeat ON / OFF complementarily with a period in which both are OFF,
- a monitor signal is generated by detecting a voltage or current change based on an equivalent circuit of the power conversion circuit generated by turning off the switch circuit in the ON state of the switch circuit S1 or the second switch circuit S2.
- First monitor signal generation means is provided.
- a digital control circuit that controls the first switching element Q1 and the second switching element Q2, and the digital control circuit determines the on-time of the first switching element Q1 and the second switching element Q2 as a clock signal.
- the on-time start timing is determined by the timing based on the clock signal by inputting the monitor signal as a trigger, and based on this, the first switching element Q1 or the second switching timing is set.
- a control signal for turning on the element Q2 is generated, and the stop timing of the ON time is determined at a timing based on the clock signal according to the ON time set by the arithmetic processing, and based on this, the first switching element is determined. Turn off Q1 or the second switching element Q2. Generating a control signal for.
- This configuration indicates that the switching power supply is a half-bridge type non-insulated step-down converter.
- the above switching control can also be applied to such a non-insulated switching power supply device.
- the switching power supply device of the present invention includes output voltage detection means for detecting the output voltage Vout, and the on-time of either the first switching element Q1 or the second switching element Q2 is It is determined based on the value detected by the output voltage detection means.
- This configuration shows a method for specifically determining the on-time of a specific switching element in an insulated switching power supply device, and the on-time is set according to the output voltage as the switching power supply. . Thereby, a stable output voltage can be obtained as a switching power supply.
- the other on-time of the first switching element Q1 or the second switching element Q2 is determined from the settable switching cycle Ts, based on the first switching element Q1 or It is determined by subtracting the ON time of either one of the second switching elements Q2.
- the on-time of a specific switching element is determined as described above, the on-time of other switching elements is determined by a subtraction process that can be processed simply and at high speed.
- the first switch circuit S1 or the second switch circuit S2 is a field effect transistor.
- This configuration indicates that the first and second switch circuits are specifically FETs.
- the above switching control can also be applied to such a switching power supply device. Furthermore, a high-speed switching operation is possible by using an FET.
- the switching element Q1 or Q2 is turned on after the voltage across the switch circuit is reduced to 0V or near 0V in the first switch circuit S1 or the second switch circuit S2. It is driven by zero voltage switching operation.
- This configuration specifically shows a configuration in which so-called zero voltage switching (ZVS) is realized. Thereby, the loss generated when the switching element is turned on can be effectively suppressed.
- ZVS zero voltage switching
- the first monitor signal generating means is a current transformer for detecting a current flowing through the inductor Lr.
- the first monitor signal generating means utilizes a change in the drain-source voltage of at least one of the first switching element Q1 or the second switching element Q2. Yes.
- the first monitor signal generating means utilizes a change in the current between the drain and the source of at least one of the first switching element Q1 or the second switching element Q2. Yes.
- the first monitor signal generating means uses a voltage change generated at both ends of the second primary winding nb.
- the digital control circuit is a DSP (Digital Signal Processor).
- the digital control circuit is an FPGA (Field Programmable Gate Array).
- the present invention since switching can be performed with an optimum dead time without simultaneously turning on a plurality of switching elements, a highly reliable and highly efficient switching power supply can be realized. Further, at this time, since the switching frequency is constant, countermeasures against noise caused by the switching frequency are facilitated, and a switching power supply excellent in EMI characteristics can be realized.
- 2 is a circuit diagram showing a configuration of an internal block of the control digital IC 10 and a logic block diagram of a voltage compensation unit 132. It is a flowchart which shows the switching control flow of digital IC10 for control. It is a wave form diagram which shows the time relationship of the state of each signal.
- It is a circuit diagram of the switching power supply which consists of another circuit structure concerning a 1st embodiment. It is a circuit diagram of the switching power supply of 2nd Embodiment. It is a circuit diagram of the switching power supply of 3rd Embodiment. It is a circuit diagram of the switching power supply which consists of another circuit structure concerning 3rd Embodiment.
- FIG. 1 is a circuit diagram of a switching power supply according to the present embodiment.
- the first switch circuit S1 includes a first switching element Q1, a diode D1, and a capacitor C1.
- the first switching element Q1 is composed of an FET, the drain terminal is connected to the primary winding np of the transformer T, and the source terminal is connected to the input power source Vi.
- the diode D1 and the capacitor C1 are connected in parallel between the drain and source of the first switching element Q1, and can be substituted by a parasitic diode and a parasitic capacitance of the first switching element Q1, which is an FET.
- the first switching element Q1 is turned on / off by a first switching control signal Vgs1 provided from the control digital IC 10 via the drive circuit 103.
- the second switch circuit S2 and the capacitor Cr are connected so as to form a closed circuit with the primary winding np of the transformer T and the inductor Lr.
- the second switch circuit S2 includes a second switching element Q2, which is an FET, a diode D2, and a capacitor C2.
- the second switching element Q2 has a drain terminal connected to the capacitor Cr and a source terminal connected to the primary winding np of the transformer T.
- the diode D2 and the capacitor C2 are connected in parallel between the drain and the source of the second switching element Q2, and can be substituted by a parasitic diode and a parasitic capacitance of the second switching element Q2 that is an FET.
- the second switching element Q2 is turned on / off by a second switching control signal Vgs2 provided from the control digital IC 10 via the drive circuit 103.
- a bias winding nb is disposed separately from the primary winding np described above, and one end of the bias winding nb is connected to the input power source Vi.
- the anode of the diode D3 is connected to the other end of the bias winding nb.
- a capacitor C3 is connected to the cathode of the diode D3.
- connection side of the primary winding np of the transformer T to the first switch circuit S1 is connected to the control digital IC 10 via a resistance voltage dividing circuit (not shown), and the voltage dividing point of this resistance voltage dividing circuit Is applied to the control digital IC 10 as the monitor signal Vm.
- the control digital IC 10 is configured by a DSP or FPGA, for example.
- the control digital IC 10 is driven by the drive voltage Vcc described above, and the first switching for driving the first switching element Q1 based on the monitor signal Vm and the detection voltage signal Vo obtained from the secondary side circuit of the transformer T.
- a control signal Vgs1 and a second switching control signal Vgs2 for driving the second switching element Q2 are generated.
- a specific configuration and control of the control digital IC 10 will be described later.
- the drive circuit 103 is configured by, for example, a high-side driver IC or the like, and receives the first switching control signal Vgs1 and the second switching control signal Vgs2, and boosts the signal to a signal that can drive at least the second switching element Q2.
- the drive circuit 103 outputs the first switching control signal Vgs1 to the first switching element Q1, and outputs the second switching control signal Vgs2 to the second switching element Q2.
- the secondary winding ns1 of the transformer T is wound so as to have a reverse polarity with respect to the primary winding np, and both ends of the secondary winding ns1 are connected to voltage output terminals Vout (+), Vout ( ⁇ ).
- the anode of the diode Ds is connected to one end of the secondary winding ns1 on the voltage output terminal Vout (+) side, and the cathode of the diode Ds is connected to the voltage output terminal Vout (+).
- a capacitor Co is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- a voltage detector 101 composed of a series resistance circuit or the like is connected between the voltage output terminals Vout (+) and Vout ( ⁇ ), and the voltage output terminals Vout (+) and Vout ( ⁇ ) are connected.
- the detection voltage signal Vo corresponding to the output voltage level is generated and output to the insulation transmission means 102.
- the insulation transmission means 102 includes a photocoupler or the like, and transmits the detection voltage signal Vo generated by the secondary side voltage detection unit 101 to the primary side control digital IC 10.
- the flyback type isolated switching power supply is configured as described above.
- the control digital IC 10 is composed of, for example, a DSP or FPGA, and the first switching control signal Vgs1 and the second switching for controlling on / off of the first switching element Q1 based on the input monitor signal Vm and detection voltage signal Vo.
- a second switching control signal Vgs2 for controlling on / off of the element Q2 is generated.
- the control digital IC 10 allows the first switching element Q1 and the second switching element Q2 to be turned on at the same time so as to obtain a desired output voltage level while maintaining a constant switching cycle Ts.
- One switching control signal Vgs1 and a second switching control signal Vgs2 are generated.
- the generated first switching control signal Vgs1 and second switching control signal Vgs2 are output to the drive circuit 103.
- FIG. 2A is a circuit diagram showing a configuration of an internal block of the control digital IC 10
- FIG. 2B is a logic block diagram of the voltage compensator 132.
- the control digital IC 10 includes comparators 111 and 112, an ADC (analog / digital converter) 12, a CPU 13, and drive pulse generators 141 and 142.
- the CPU 13 includes an adder 131, a voltage compensation unit 132, and a difference circuit 133.
- the comparator 121 compares the monitor signal Vm with a preset threshold value V1, and outputs a trigger signal that becomes Hi level when the monitor signal Vm is equal to or lower than the threshold value V1 and becomes Low level when the monitor signal Vm is higher than the threshold value V1.
- the comparator 122 compares the monitor signal Vm with a preset threshold value V2 (> threshold value V1), and becomes a high level when the monitor signal Vm is equal to or higher than the threshold value V2, and becomes a low level when it is lower than the threshold value V2. Is output.
- the comparators 121 and 122 are provided in the control digital IC 10. However, the comparators 121 and 122 may be formed separately from the control digital IC 10.
- the ADC 12 is an analog-digital converter, converts the detection voltage signal Vo from an analog signal to a digital signal, and outputs it to the adder 13. At this time, the ADC 12 starts analog-to-digital conversion with the timing at which the trigger signals from the comparators 121 and 122 transition from the Low level to the Hi level as a trigger.
- the ADC 12 starts analog-to-digital conversion with the timing at which the trigger signals from the comparators 121 and 122 transition from the Low level to the Hi level as a trigger.
- at least a trigger signal from the comparator 121 may be input, and which trigger signal is used may be appropriately set according to the start timing of analog-digital conversion.
- the adder 131 calculates a difference voltage ev between the digitally converted detection voltage signal Vo and a reference voltage level Vref which is a desired voltage level, and supplies the voltage difference unit ev to the voltage compensation unit 132.
- the voltage compensation unit 132 includes a PI controller as shown in FIG. 2B, for example, and outputs a control value u1 indicating the on-time Ton1 of the first switching element Q1 based on the differential voltage ev.
- the voltage compensator 132 provides the control value u1 to the difference circuit 133 and the drive pulse generator 141.
- the difference circuit 133 subtracts the ON time Ton1 of the first switching element Q1 based on the control value u1 from the predetermined switching period Ts for the drive pulse generators 141 and 142 set in advance, thereby turning on the second switching element Q2.
- Time Ton2 is calculated.
- the difference circuit 133 outputs the first switching control signal Vgs1 after each drive pulse generation unit 141, 142 detects the timing at which the trigger signal from the comparators 121, 122 transitions from the Low level to the Hi level.
- the subtraction process is executed in consideration of the delay time to the timing (TF1, TF2 in FIG. 4). Note that these delay times TF1 and TF2 are extremely short compared to the on-times Ton1 and Ton2 so that the switching elements Q1 and Q2 can be surely not turned on at the same time and can be reliably ZVS-operated. It is set as a fixed value in advance offline.
- the difference circuit 133 provides the control value u2 corresponding to the calculated on-time Ton2 to the drive pulse generator 142.
- the drive pulse generator 141 is a so-called digital PWM circuit, and is triggered by the timing when the trigger signal from the comparator 121 transitions to the Hi level, that is, the timing when the level of the monitor signal Vm decreases and reaches the threshold value V1.
- the switching control signal Vgs1 is shifted to the Hi level.
- the drive pulse generation unit 141 includes a counter that counts up to a predetermined value with the time length of the switching period Ts, and continues counting while refreshing the counter value every switching period Ts.
- the refresh timing is made coincident with the transition timing of the first switching control signal Vgs1 to the Hi level.
- the drive pulse generator 141 When the drive pulse generator 141 counts up to a count value corresponding to the given control value u1, the first switching control signal Vgs1 is shifted to the Low level. Accordingly, the drive pulse generator 141 can output the first switching control signal Vgs1 that is at the Hi level during the desired on-time Ton1.
- the drive pulse generation unit 141 performs the first switching control so that the timing at which the first switching control signal Vgs1 is transitioned to the Hi level always coincides with the refresh timing of the counter set by the switching cycle Ts as described above.
- the signal Vgs1 is output.
- the drive pulse generator 141 continuously outputs the first switching control signal Vgs1 at a predetermined switching period Ts.
- the drive pulse generator 142 is also a so-called digital PWM circuit, and is triggered by the timing at which the trigger signal from the comparator 122 transitions to the Hi level, that is, the timing at which the level of the monitor signal Vm rises and reaches the threshold V2.
- the switching control signal Vgs2 is shifted to the Hi level.
- the drive pulse generator 142 also includes a counter that counts up, and continues counting while refreshing the counter value every switching period Ts.
- the refresh timing coincides with the transition timing of the second switching control signal Vgs2 to the Hi level.
- the drive pulse generator 142 When the drive pulse generator 142 counts up to a count value corresponding to the given control value u2, the drive pulse generator 142 transitions the second switching control signal Vgs2 to the Low level. As a result, the drive pulse generator 142 performs the second switching control that is at the Hi level during the on-time Ton2 that is approximately equal to the value obtained by subtracting the on-time Ton1 of the first switching element Q1 from the switching cycle Ts.
- the signal Vgs2 can be output.
- FIG. 3 is a flowchart showing a switching control flow of the control digital IC 10.
- FIG. 4 is a waveform diagram showing the temporal relationship of the state of each signal.
- the control digital IC 10 continuously detects the polarity of the transformer voltage Vt of the transformer T using the monitor signal Vm (S101), and the change in magnetic flux due to the rise of the transformer voltage Vt is detected by the voltage level of the monitor signal Vm. Detected by decreasing and reaching the threshold value V1 (S102: Yes). At this time, a delay time TN1 is generated for a time length from when the voltage level of the monitor signal Vm starts to decrease until the threshold value V1 is reached. This delay time TN1 is determined by the load state. Since the control digital IC 10 does not detect the polarity inversion until such timing t0, the polarity of the transformer voltage Vt is continuously detected using the monitor signal Vm (S102: No ⁇ S101).
- the second switching control signal Vgs2 is The magnetic flux change of the transformer voltage Vt caused by the transition to the Low level is detected, and the second switching control signal Vgs2 is set to the Low level by causing the first switching control signal Vgs1 to transition to the Hi level after the minute delay time TF1.
- the second switching control signal Vgs2 and the first switching control signal Vgs1 are simultaneously set to the Hi level, that is, the first switching element Q1 and the second switching element Q2 are prevented from being simultaneously turned on. Can do. Further, by setting the threshold value V1 to a voltage of approximately low level of the monitor signal Vm, at the timing when the first switching control signal Vgs1 is applied to the switching element Q1, the drain-source voltage of the switching element Q1 is “0” potential or approximately. The potential becomes “0”, and zero voltage switching (ZVS) can be realized.
- the transition timing of the first switching control signal Vgs1 to the Hi level is controlled by the threshold value V1
- the first switching control signal Vgs1 can be transitioned to the Hi level at an optimal timing according to the load state.
- the minute delay time TF1 it is possible to ensure more reliable simultaneous ON and ZVS operation while maintaining an appropriate timing.
- the control digital IC 10 performs AD conversion on the detection voltage signal Vo and calculates a difference value ev from the reference voltage level Vref that gives a desired voltage level ( S103 ′).
- the control digital IC 10 calculates the ON time Ton1 of the first switching control signal Vgs1 based on the difference value ev, and calculates and determines the control value u1 that gives the ON time Ton1 as a counter value. At the same time, the control digital IC 10 calculates the on-time Ton2 of the second switching control signal Vgs2 by subtracting the on-time Ton1 of the first switching control signal Vgs1 from a preset constant switching period Ts. Then, a control value u2 that gives the on-time Ton2 as a counter value is calculated and determined (S104 ′). At this time, the subtraction process is performed in consideration of the above-described minute delay time TF1 and the later-described minute delay time TF2.
- the subtraction process may be performed in consideration of the delay time Tdead1 including the minute delay time TF1 and the delay time Tdead2 including the minute delay time TF2. Since these delay times are extremely short with respect to the on times Ton1 and Ton2 of the switching elements Q1 and Q2, a substantially constant switching cycle Ts is substantially maintained.
- the time length Tcal required to calculate and determine the control values u1 and u2 is usually very short. Therefore, the determination timing Tcal of the control values u1 and u2 based on the timing at which the first switching control signal Vgs1 is changed to the Hi level ends the on-time Ton1 of the first switching control signal Vgs1 given by the control value u1.
- the timing (timing t3 in FIG. 4) is much earlier than the timing (timing t4 in FIG. 4). Thereby, the timing which makes the 1st switching control signal Vgs1 change to a Low level can be set reliably.
- the control digital IC 10 detects the polarity reversal due to the fall of the transformer voltage Vt when the voltage level of the monitor signal Vm increases and reaches the threshold value V2 (S106: Yes). At this time, a delay time TN2 is generated for a time length from when the voltage level of the monitor signal Vm starts to rise until the threshold value V2 is reached. This delay time TN2 is determined by the load state. Since the control digital IC 10 does not detect the polarity reversal until such timing t4, it continuously detects the polarity of the transformer voltage Vt using the monitor signal Vm (S106: No). .
- the first switching control signal Vgs1 is By detecting a change in the magnetic flux of the transformer voltage Vt caused by the transition to the Low level and causing the second switching control signal Vgs2 to transition to the Hi level after the minute delay time TF2, the first switching control signal Vgs1 is brought to the Low level.
- the first switching control signal Vgs1 and the second switching control signal Vgs2 are simultaneously set to the Hi level, that is, the first switching element Q1 and the second switching element Q2 are prevented from being simultaneously turned on. be able to.
- the threshold value V2 is set to a voltage of approximately the Hi level of the monitor signal Vm
- the drain-source voltage of the switching element Q2 is set to the “0” potential or approximately at the timing when the second switching control signal Vgs2 is applied to the switching element Q2.
- the potential becomes “0”, and zero voltage switching (ZVS) can be realized.
- the second switching control signal Vgs2 since the transition timing of the second switching control signal Vgs2 to the Hi level is controlled by the threshold value V2, the second switching control signal Vgs2 can be transitioned to the Hi level at an optimal timing according to the load situation. Furthermore, by providing the minute delay time TF2, it is possible to ensure more reliable simultaneous ON and ZVS operation while maintaining an appropriate timing.
- the control digital IC 10 detects that the count value of the timer for the second switching control signal Vgs2 has reached the count value set by the control value u2 calculated in the period Tp3, the second switching control signal Vgs2 is shifted to the Low level (S108). As a result, the control digital IC 10 performs the second switching of the second switching control signal Vgs2 at the Hi level over the on time Ton2 appropriately set by the constant switching cycle Ts and the on time Ton1 of the first switching control signal Vgs1. It can be supplied to the element Q2.
- the on-time Ton1 of the first switching control signal Vgs1 can be set so as to obtain a desired output voltage, and the first switching control signal Vgs1.
- the ON time Ton1 and the ON time Ton2 of the second switching control signal Vgs2 can be prevented from overlapping on the time axis. Thereby, damage to the switching element due to a short circuit can be prevented, and a highly reliable switching power supply can be realized.
- the delay times Tdead1 and Tdead2 include appropriate delay delays TF1 and TF2 so that the on times Ton1 and Ton2 are separated on the time axis. Since it is set to a value, a highly efficient switching power supply can be realized.
- the switching cycle Ts is controlled to be constant, countermeasures against noise caused by the switching cycle Ts are facilitated, and a low EMI switching power supply can be realized.
- FIG. 5 is a circuit diagram of a switching power supply having another circuit configuration shown in the first embodiment. Even with such a configuration, the above-described switching control can be applied, and similar effects can be obtained.
- FIG. 6 is a circuit diagram of the switching power supply according to the present embodiment.
- the switching power supply of this embodiment is wound so that the primary winding np and the secondary winding ns1 of the transformer T have the same polarity.
- the circuit pattern on the primary side of the transformer T and the insulation transmission means 102 are the same as the switching power supply shown in FIG. 1, and the circuit pattern on the secondary side is different from the switching power supply shown in FIG.
- the anode of the diode Ds is connected to one end of the secondary winding ns1 of the switching power supply of this embodiment, and the cathode of the diode Ds is connected to the voltage output terminal Vout (+) via the inductor Lo.
- the other end of the secondary winding ns1 is connected to the voltage output terminal Vout ( ⁇ ).
- a diode Df is connected in parallel between both terminals of the secondary winding ns1. At this time, the cathode of the diode Df is connected to an inductor Lo that functions as a filter inductor.
- a capacitor Co is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- a rectifying and smoothing circuit including the diodes Ds and Df, the inductor Lo, and the capacitor Co is formed.
- a voltage detection unit 101 composed of a series resistance circuit or the like is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ), and the voltage output terminals Vout (+) and Vout ( ⁇ ) are connected.
- a detection voltage signal Vo corresponding to the output voltage level between both terminals is generated and output to the insulation transmission means 102.
- the forward type isolated switching power supply is configured as described above. And even if it is such a structure, the switching control shown in the above-mentioned 1st Embodiment can be applied, and the same effect can be obtained.
- FIG. 7 is a circuit diagram of the switching power supply according to the present embodiment. As shown in FIG. 7, the switching power supply of the present embodiment is the same as the switching power supply shown in FIG. The circuit pattern on the next side is different from the switching power supply shown in FIG.
- the transformer T is a composite transformer in which two secondary windings ns1 and ns2 are arranged for one primary winding np.
- the first secondary winding ns1 of the transformer T is wound with a reverse polarity with respect to the primary winding np, and the second secondary winding ns2 is wound with the same polarity with respect to the primary winding np.
- Secondary winding ns2 is formed.
- the voltage output terminal Vout (+) is connected to one end of the first secondary winding ns1 through the inductor Lo.
- the cathode of the diode Ds is connected to the other end of the first secondary winding ns1, and the anode of the diode Ds is connected to the voltage output terminal Vout ( ⁇ ).
- the one end of the second secondary winding ns2 is connected to the other end of the first secondary winding ns1.
- the cathode of the diode Df is connected to one end of the second secondary winding ns2, and the anode of the diode Df is also connected to the voltage output terminal Vout ( ⁇ ).
- a capacitor Co is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- a rectifying and smoothing circuit including the diodes Ds and Df, the inductor Lo, and the capacitor Co is formed.
- a voltage detection unit 101 composed of a series resistance circuit or the like is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ), and the voltage output terminals Vout (+) and Vout ( ⁇ ) are connected.
- a detection voltage signal Vo corresponding to the output voltage level between both terminals is generated and output to the insulation transmission means 102.
- the transformer Energy transmission can be performed from the primary side of T to the secondary side. That is, energy can be transmitted from the primary side of the transformer T to the secondary side over substantially the entire period of the switching cycle Ts.
- the same output voltage level can be obtained both in the ON period of S1 (OFF period of the second switch circuit S2) and in the OFF period of the first switch circuit S1 (ON period of the second switch circuit S2). .
- the ripple component of the output voltage can be suppressed.
- FIG. 8 is a circuit diagram of a switching power supply having another circuit configuration shown in the third embodiment.
- FIG. 9 a circuit configuration in which a series circuit of the second switch circuit S2 and the capacitor Cr is connected in parallel to the first switch circuit S1 may be employed.
- FIG. 9 is a circuit diagram of a switching power supply having another circuit configuration shown in the third embodiment. Even with such a configuration, the above-described switching control can be applied, and similar effects can be obtained.
- FIG. 10 is a circuit diagram of the switching power supply according to the present embodiment. As shown in FIG. 10, the switching power supply according to the present embodiment is the same as the switching power supply shown in FIG. The circuit pattern on the next side is different from the switching power supply shown in FIG.
- the transformer T is a composite transformer in which two secondary windings ns1 and ns2 are arranged for one primary winding np.
- the first secondary winding ns1 of the transformer T is wound with the same polarity with respect to the primary winding np, and the second secondary winding ns2 is also wound with the same polarity with respect to the primary winding np. Has been.
- the anode of the diode Ds is connected to one end of the first secondary winding ns1, and the voltage output terminal Vout (+) is connected to the cathode of the diode Ds via the inductor Lo.
- the other end of the first secondary winding ns1 is connected to the voltage output terminal Vout ( ⁇ ).
- the one end of the second secondary winding ns2 is connected to the other end of the first secondary winding ns1.
- the cathode of the diode Df is connected to the other end of the second secondary winding ns2, and the anode of the diode Df is also connected to the voltage output terminal Vout (+) via the inductor Lo.
- a capacitor Co is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- a rectifying and smoothing circuit including the diodes Ds and Df, the inductor Lo, and the capacitor Co is formed.
- a voltage detection unit 101 composed of a series resistance circuit or the like is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ), and the voltage output terminals Vout (+) and Vout ( ⁇ ) are connected.
- a detection voltage signal Vo corresponding to the output voltage level between both terminals is generated and output to the insulation transmission means 102.
- FIG. 11 is a circuit diagram of a switching power supply having another circuit configuration shown in the fourth embodiment.
- FIG. 12 a circuit configuration in which a series circuit of the second switch circuit S2 and the capacitor Cr is connected in parallel with the first switch circuit S1 may be employed.
- FIG. 12 is a circuit diagram of a switching power supply having another circuit configuration shown in the fourth embodiment. Even with such a configuration, the above-described switching control can be applied, and similar effects can be obtained.
- FIG. 13 is a circuit diagram of the switching power supply according to the present embodiment.
- the switching power supply of the present embodiment is the same as the switching power supply shown in FIG. 10 of the fourth embodiment described above, the transformer T, the circuit pattern on the secondary side of the transformer T, and the insulation transmission means 102.
- the primary side bias winding nb is not arranged.
- the switching power supply forms a current transformer circuit 104 having an inductor Lr connected in series to the primary winding np as a primary winding.
- a resistance element R is connected to the secondary winding of the current transformer circuit 104, and one end of the resistance element R is connected to the anode of the diode D3.
- the monitor signal Vm is given to the control digital IC 10 by connecting the cathode of the diode D3 to the switch control digital IC 10.
- FIG. 13 shows the case of a switching power supply using a center tap type full-wave rectifier circuit, the current of the present embodiment can be applied to other types of switching power supplies shown in the above embodiments.
- a configuration using a transformer circuit can be applied.
- FIG. 14 is a circuit diagram of the switching power supply according to the present embodiment.
- the switching power supply of this embodiment includes a transformer T, a circuit pattern on the secondary side of the transformer T, and the insulation transmission means 102 on the primary side shown in FIG. 13 of the fifth embodiment. This is the same as the switching power supply having a configuration in which the bias winding nb is not disposed.
- the switching power supply of this embodiment does not use a current transformer circuit as shown in FIG. 13 of the fifth embodiment. For this reason, the switching power supply of the present embodiment obtains the monitor signal Vm from one end of the primary winding np via the resistance voltage dividing circuit, as in the first embodiment described above.
- FIG. 14 shows the case of a switching power supply using a center tap type full-wave rectifier circuit, but the configuration of this embodiment is applicable to other types of switching power supplies shown in the above-described embodiments. Can be applied.
- FIG. 15 is a circuit diagram of the switching power supply according to the present embodiment.
- an insulating switching power supply using the transformer T has been described as an example.
- a case where the above-described switching control is applied to a non-insulating converter will be described as an example. To do.
- a voltage output terminal Vout ( ⁇ ) is connected to one end (Vi (+)) of an input power source Vi to which a DC input voltage is applied.
- the other end (Vi ( ⁇ )) of the input power source Vi is connected to the voltage output terminal Vout (+) through a series circuit of the first switch circuit Q1 and the diode Ds.
- An inductor Lp is connected to the input power source Vi side of the diode Ds between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ). Further, the voltage output terminal Vout (+), A capacitor Co is connected to the Vout ( ⁇ ) side.
- a series circuit of the capacitor Cr and the second switch circuit S2 is connected in parallel to the inductor Lp.
- the first switch circuit S1 includes a first switching element Q1, which is an FET, a diode D1, and a capacitor C1.
- the diode D1 and the capacitor C1 are connected in parallel between the drain and source of the first switching element Q1, and can be substituted by a parasitic diode and a parasitic capacitance of the first switching element Q1, which is an FET.
- the first switching element Q1 is turned on / off by a first switching control signal Vgs1 provided from the control digital IC 10 via the drive circuit 103.
- the second switch circuit S2 includes a second switching element Q2, which is an FET, a diode D2, and a capacitor C2.
- the diode D2 and the capacitor C2 are connected in parallel between the drain and the source of the second switching element Q2, and can be substituted by a parasitic diode and a parasitic capacitance of the second switching element Q2 that is an FET.
- the second switching element Q2 is turned on / off by a second switching control signal Vgs2 provided from the control digital IC 10 via the drive circuit 103.
- a voltage detection unit 101 composed of a series resistance circuit or the like is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- the voltage detection unit 101 generates a detection voltage signal Vo corresponding to the output voltage level between the voltage output terminals Vout (+) and Vout ( ⁇ ), and supplies the detection voltage signal Vo to the control digital IC 10.
- the output voltage between the voltage output terminals Vout (+) and Vout ( ⁇ ) is supplied to the control digital IC 10 as the drive voltage Vcc of the control digital IC 10.
- control digital IC 10 is driven by the drive voltage Vcc, and the output voltage is controlled to a predetermined voltage level based on the monitor signal Vm and the detection voltage signal Vo from the voltage detection unit 101.
- the first switching control signal Vgs1 and the second switching control signal Vgs2 are generated.
- the drive circuit 103 receives the first switching control signal Vgs1 and the second switching control signal Vgs2, and boosts the signal to a signal that can drive at least the second switching element Q2.
- the drive circuit 103 outputs the first switching control signal Vgs1 to the first switching element Q1, and outputs the second switching control signal Vgs2 to the second switching element Q2.
- the first switching element Q1 of the first switch circuit S1 is a control switching element
- the second switching element Q2 of the second switch circuit S2 and the capacitor Cr are clamp circuits.
- a non-insulated buck-boost converter called an inverting chopper circuit can be configured. And even if it is such a structure, a highly reliable and highly efficient non-insulation type buck-boost converter is realizable by using the above-mentioned switching control.
- the capacitor Cr connected in series to the second switch circuit S2 is connected in series to the input power source Vi and the inductor Lp, as in the above-described isolated type.
- the present invention can be applied to a structure or a structure in which a series circuit of a second switch circuit S2 and a capacitor Cr is connected in parallel to the first switch circuit S1.
- FIG. 16 is a circuit diagram of the switching power supply according to this embodiment.
- a case where the above switching control is applied to a non-insulated converter will be described as an example, similarly to the switching power supply shown in the seventh embodiment.
- a voltage output terminal Vout (+) is connected to one end (Vi (+)) of the input power source Vi to which the DC input voltage is applied, through a series circuit of the second switch circuit Q2 and the inductor Lp. .
- the other end (Vi ( ⁇ )) of the input power source Vi is connected to the voltage output terminal Vout ( ⁇ ).
- the second switch circuit S2 includes a second switching element Q2, which is an FET, a diode D2, and a capacitor C2.
- the diode D2 and the capacitor C2 are connected in parallel between the drain and the source of the second switching element Q2, and can be substituted by a parasitic diode and a parasitic capacitance of the second switching element Q2 that is an FET.
- the second switching element Q2 is turned on / off by a second switching control signal Vgs2 provided from the control digital IC 10 via the drive circuit 103.
- the first switch circuit S1 is connected between the connection point between the second switch circuit S2 and the inductor Lp and the voltage output terminal Vout ( ⁇ ).
- the first switch circuit S1 includes a first switching element Q1, which is an FET, a diode D1, and a capacitor C1.
- the diode D1 and the capacitor C1 are connected in parallel between the drain and source of the first switching element Q1, and can be substituted by a parasitic diode and a parasitic capacitance of the first switching element Q1, which is an FET.
- the first switching element Q1 is turned on / off by a first switching control signal Vgs1 provided from the control digital IC 10 via the drive circuit 103.
- a capacitor Co is connected to the voltage output terminals Vout (+) and Vout ( ⁇ ) side of the inductor Lp between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- a voltage detection unit 101 composed of a series resistance circuit or the like is connected between both terminals of the voltage output terminals Vout (+) and Vout ( ⁇ ).
- the voltage detection unit 101 generates a detection voltage signal Vo corresponding to the output voltage level between the voltage output terminals Vout (+) and Vout ( ⁇ ), and supplies the detection voltage signal Vo to the control digital IC 10.
- the output voltage between the voltage output terminals Vout (+) and Vout ( ⁇ ) is supplied to the control digital IC 10 as the drive voltage Vcc of the control digital IC 10.
- the control digital IC 10 is driven by the drive voltage Vcc, and the output voltage is based on the first monitor signal Vm1, the second monitor signal Vm2, and the detection voltage signal Vo from the voltage detection unit 101.
- the first switching control signal Vgs1 and the second switching control signal Vgs2 are generated.
- the drive circuit 103 receives the first switching control signal Vgs1 and the second switching control signal Vgs2, and boosts the signal to a signal that can drive at least the second switching element Q2.
- the drive circuit 103 outputs the first switching control signal Vgs1 to the first switching element Q1, and outputs the second switching control signal Vgs2 to the second switching element Q2.
- a so-called half-bridge type in which the second switching element Q2 of the second switch circuit S2 is used as a control switching element and the first switching element Q1 of the first switch circuit S1 is used instead of a diode.
- a non-insulated step-down converter can be configured. Even with such a configuration, a highly reliable and highly efficient non-insulated step-down converter can be realized by using the switching control described above.
- FIG. 17 is a circuit diagram of the switching power supply according to this embodiment.
- the switching power supply of the present embodiment is obtained by replacing the secondary side diode Ds with the switching element Qs in the flyback switching power supply shown in FIG. 1 of the first embodiment.
- the control digital IC 10 also generates the switch control signal Vgss for the switching element Qs together with the first switching element Q1 of the first switch circuit S1 and the second switching element Q2 of the second switch circuit S2.
- the control digital IC 10 generates the switch control signal Vgss so that the switching element Qs operates in the same manner as the diode Ds shown in the first embodiment.
- the switch control signal Vgss generated by the control digital IC 10 is given to the switching element Qs via the second insulation transmission means 102 ′.
- the switch control signal Vgss is given to the switching element Qs after being boosted by a drive circuit or the like as necessary, like the first switching control signal Vgs1 and the second switching control signal Vgs2.
- FIG. 18 is a circuit diagram of a switching power supply having another circuit configuration shown in the ninth embodiment.
- FIG. 19 is a circuit diagram of the switching power supply according to this embodiment.
- the switching power supply of this embodiment is a forward type switching power supply shown in FIG. 6 of the second embodiment in which the secondary-side diode Ds is replaced with the switching element Qs and the diode Df is replaced with the switching element Qf. is there.
- the switching element Qs corresponding to the rectifying side synchronous rectifying element and the switching element Qf corresponding to the commutation side synchronous rectifying element are complementarily turned on / off in accordance with the magnetic flux change of the secondary winding ns of the transformer T.
- a self-driven synchronous rectifier circuit that performs off-drive is configured.
- FIG. 20 is a circuit diagram of the switching power supply according to this embodiment.
- the switching power supply of this embodiment is obtained by replacing the secondary side diode Ds with the switching element Qs and replacing the diode Df with the switching element Qf in the switching power supply shown in FIG. 7 of the third embodiment.
- the control digital IC 10 includes the first switching element Q1 of the first switch circuit S1 and the second switching element Q2 of the second switch circuit S2, as well as the switch control signal Vgss for the switching element Qs and the switching element Qf.
- a switch control signal Vgsf is also generated.
- the control digital IC 10 generates the switch control signal Vgss so that the switching element Qs operates in the same manner as the diode Ds described in the first embodiment.
- the control digital IC 10 generates the switch control signal Vgsf so that the switching element Qf operates in the same manner as the diode Df shown in the first embodiment.
- the switch control signals Vgss and Vgsf generated by the control digital IC 10 are given to the switching elements Qs and Qf via the second insulation transmission means 102 ′.
- the switch control signals Vgss and Vgsf are given to the switching elements Qs and Qf after being boosted by a drive circuit or the like as necessary, like the first switching control signal Vgs1 and the second switching control signal Vgs2.
- FIG. 21 is a circuit diagram of a switching power supply having another circuit configuration shown in the eleventh embodiment.
- FIG. 22 is a circuit diagram of the switching power supply according to this embodiment.
- the switching power supply of this embodiment is a switching power supply including the center tap type full-wave rectifier circuit shown in FIG. 10 of the fourth embodiment.
- the secondary side diode Ds is replaced with a switching element Qs, and the diode Df is switched. This is replaced with the element Qf.
- the control digital IC 10 includes the first switching element Q1 of the first switch circuit S1 and the second switching element Q2 of the second switch circuit S2, as well as the switch control signal Vgss for the switching element Qs and the switching element Qf.
- a switch control signal Vgsf is also generated.
- the control digital IC 10 generates the switch control signal Vgss so that the switching element Qs operates in the same manner as the diode Ds shown in the first embodiment.
- the control digital IC 10 generates the switch control signal Vgsf so that the switching element Qf operates in the same manner as the diode Df shown in the first embodiment.
- the switch control signals Vgss and Vgsf generated by the control digital IC 10 are given to the switching elements Qs and Qf via the second insulation transmission means 102 ′.
- the switch control signals Vgss and Vgsf are given to the switching elements Qs and Qf after being boosted by a drive circuit or the like as necessary, like the first switching control signal Vgs1 and the second switching control signal Vgs2.
- FIG. 23 is a circuit diagram of a switching power supply having another circuit configuration shown in the twelfth embodiment.
- FIG. 24 is a circuit diagram of the switching power supply according to this embodiment.
- the switching power supply of this embodiment is obtained by replacing the primary-side diode Ds with a switching element Qs in the non-insulated buck-boost converter shown in FIG. 15 of the seventh embodiment.
- the control digital IC 10 also generates the switch control signal Vgss for the switching element Qs together with the first switching element Q1 of the first switch circuit S1 and the second switching element Q2 of the second switch circuit S2. At this time, the control digital IC 10 generates the switch control signal Vgss so that the switching element Qs operates in the same manner as the diode Ds shown in the seventh embodiment. In this way, the switch control signal Vgss generated by the control digital IC 10 is given to the switching element Qs. Note that the switch control signal Vgss is given to the switching element Qs after being boosted by a drive circuit or the like as necessary, like the first switching control signal Vgs1 and the second switching control signal Vgs2.
- Each of the above-described embodiments shows a typical circuit example to which the switching control of the present invention can be applied, and a switching power supply including a circuit that can be easily inferred from a combination of these embodiments, etc. Naturally, the effects as described above can be obtained.
- an example is shown using a monitor signal based on a change in the drain-source voltage of the switching element.
- a monitor signal may be set, and a threshold value may be set for each monitor signal. At this time, as long as the bias winding is arranged, the output from the bias winding may be used for the monitor signal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
磁性部品の磁束変化をトリガとしてスイッチ制御を行うことで、短絡が生じず、且つ一定のスイッチング周期での駆動が可能な共振型電源を実現する。 トランスTの磁束変化を検出する(S102:Yes)と、第1スイッチング制御信号Vgs1をHiレベルに遷移させる(S103)。次に、検出電圧信号VoをAD変換し(S103')、このレベルからオン時間Ton1を決定し、一定のスイッチング周期Tsからオン時間Ton1を減算してオン時間Ton2を算出する(S104')。オン時間Ton1に基づいて第1スイッチング制御信号Vgs1がLowレベルに遷移されると(S105)、トランスTの磁束変化を検出し(S106:Yes)、第2スイッチング制御信号Vgs2をHiレベルに遷移させ(S107)、オン時間Ton2の経過後にLowレベルに遷移させる(S108)。
Description
この発明は、例えば共振型電源やハーフブリッジ型電源のような、複数のスイッチング素子を交互にオン、オフさせることで所定の電圧信号を出力するスイッチング電源に関するものである。
従来、複数のスイッチング素子を交互にオン、オフすることで所定の電圧信号を出力するスイッチング電源が各種考案されている。例えば、ハーフブリッジ型コンバータのPWM方式のスイッチング電源では、一定のスイッチング周波数において時比率を調整することで、所望の出力電圧信号を得ている。しかしながら、このような複数のスイッチング素子を交互オン、オフさせるスイッチング電源では、一瞬でも複数のスイッチング素子が同時にオンする期間が存在すると、大きな短絡電流が流れ、電源を破壊する可能性があるので、複数のスイッチング素子の双方がオフとなる所謂デッドタイムが設けられている。
このようなデッドタイムを設けるため、特許文献1では、第1のスイッチング素子と第2のスイッチング素子とを交互にオン、オフさせるスイッチング電源であって、第1のスイッチング素子のターンオフによるトランスの磁束変化をトリガにして、第2のスイッチング素子をターンオンする。また、第2のスイッチング素子のターンオフによるトランスの磁束変化をトリガにして、第1のスイッチング素子をターンオンする。このような、スイッチング制御を行うことで、第1のスイッチング素子と第2のスイッチング素子とが同時にオン状態になる状態が生じることを防止している。
しかしながら、上述の特許文献1のスイッチング電源では、第2のスイッチング素子のオン時間を、抵抗とコンデンサからなる時定数回路で決定しているので、スイッチング周波数が可変してしまい、スイッチングノイズがスイッチング周波数の変動に応じて広範囲に発生してしまう。
また、時定数回路はデッドタイムを加味して設計されているが、全負荷領域、すなわち過渡状態であっても定常状態であっても同じ時間のデッドタイムが設定されているため、過渡状態ほど長いデッドタイムを必要としない定常状態において最適なデッドタイムが設定されているとは言い難い。したがって、高信頼性ではあるものの、効率の面では最善なものではなかった。
本発明の目的は、スイッチング周波数を一定に保ちながら、複数のスイッチング素子が同時にオンになることを防止し、且つ最適なデッドタイムでスイッチングを行えるスイッチング電源を実現することにある。
(1)この発明は、直流入力電圧Viが入力される直流電源入力部と、一つの磁性部品で構成され、磁気的に結合された第1の1次巻線npおよび第1の2次巻線ns1を少なくとも備えたトランスTと、第1の1次巻線npに直列に接続されたインダクタLrと、第1のスイッチング素子Q1と第1のキャパシタC1と第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、第2のスイッチング素子Q2と第2のキャパシタC2と第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、第3のキャパシタCrと、直流電源入力部の両端に接続され、第1の1次巻線npと第1のスイッチ回路S1とが直列に接続された第1の直列回路と、第1のスイッチ回路S1の両端、または第1の1次巻線npの両端に接続され、第2のスイッチ回路S2と第3のコンデンサCrとが直列に接続された第2の直列回路と、を備え、第1のスイッチ回路S1と第2のスイッチ回路S2は、共にオフである期間(デッドタイム)を挟んで互いに相補的にオン・オフを繰り返すように動作するように構成され、第1の2次巻線ns1から出力される交流電圧を整流平滑する第1の整流平滑回路を介して2次側に出力電圧Voutが出力されるように構成された電力変換回路を備えたスイッチング電源装置に関するものである。そして、このスイッチング電源装置は、第1のスイッチ回路S1または第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する前記電力変換回路の等価回路に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段と、第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2を制御するデジタル制御回路と、を有する。デジタル制御回路は、第1のスイッチング素子Q1及び第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、オン時間の開始タイミングは、モニタ信号をトリガとして入力し、クロック信号に基づくタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、オン時間の停止タイミングは、演算処理により設定されたオン時間にしたがって前記クロック信号に基づいたタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオフさせるための制御信号を生成する。
この構成では、第1、第2のスイッチング素子のオン時間がデジタルICにより演算で決定される。この際、所定のクロック信号のタイミングを基準に各オン時間が決定される。このため、オンすべきスイッチング素子のターンオンが、直前にオン状態であったスイッチング素子のターンオフに起因する磁束変化のタイミングを基点にして設定された所定の遅延量からなる開始タイミングより行われるので、各スイッチング素子が同時にオン状態にはならない。
(2)また、この発明のスイッチング電源装置は、出力電圧Voutを検出するための出力電圧検出手段を備え、第1のスイッチング素子Q1または第2のスイッチング素子Q2のどちらか一方のオン時間は、出力電圧検出手段によって検出された値に基づいて決定される。
この構成では、具体的に特定のスイッチング素子のオン時間を決定する方法を示すものであり、当該オン時間は、スイッチング電源としての出力電圧に応じて設定される。これにより、スイッチング電源として安定した出力電圧が得られる。
(3)また、この発明のスイッチング電源装置の第1のスイッチング素子Q1または第2のスイッチング素子Q2のうち、他方のオン時間は、設定可能なスイッチング周期Tsから、第1のスイッチング素子Q1または第2のスイッチング素子Q2のどちらか一方のオン時間を減算することによって決定される。
この構成では、上述のように特定のスイッチング素子のオン時間が決定された場合に、他のスイッチング素子のオン時間が、単純且つ高速で処理可能な減算処理により決定される。
(4)また、この発明のスイッチング電源装置では、第1のスイッチ回路S1が導通状態、または第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、第1の1次巻線npと第1の2次巻線ns1は、その磁気極性を逆極性としている。
この構成では、スイッチング電源装置が絶縁型のフライバックコンバータであることを示している。そして、このような構成を用いても、本発明の特徴とするスイッチング制御を実現することができる。
(5)また、この発明のスイッチング電源装置では、第1のスイッチ回路S1が導通状態、または第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、第1の1次巻線npと第1の2次巻線ns1は、その磁気極性を同極性としている。
この構成では、スイッチング電源装置が絶縁型のフォワードコンバータであることを示している。そして、このような構成を用いても、本発明の特徴とするスイッチング制御を実現することができる。
(6)また、この発明のスイッチング電源装置では、トランスTはさらに第2の2次巻線ns2を備え、第1の2次巻線ns1と第2の2次巻線ns2は直列に接続されており、第1のスイッチ回路S1が導通状態、または第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、第1の1次巻線npと第1の2次巻線ns1、及び第1の1次巻線npと第2の2次巻線ns2は、その磁気極性を同極性とし、第1の整流平滑回路は、センタータップ型の全波整流回路と、少なくとも1つのフィルタインダクタLoと、少なくとも1つの平滑コンデンサCoからなる。
この構成では、センタータップ方式の絶縁型スイッチング電源が実現される。そして、このような構成のスイッチング電源においても、上述のスイッチング制御を適用することができる。
(7)また、この発明のスイッチング電源装置では、トランスTはさらに第2の2次巻線ns2を備え、第1の2次巻線ns1と第2の2次巻線ns2は直列に接続されており、第1のスイッチ回路S1が導通状態、または第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、第1の1次巻線npと第1の2次巻線ns1は、その磁気極性を逆極性とし、第1の1次巻線npと第2の2次巻線ns2は、その磁気極性を同極性とし、第1の整流平滑回路は、第2の2次巻線ns2の両端にそれぞれ整流素子のカソード側が接続され、整流素子のアノード側は共通接続されており、第1の2次巻線ns1の他端に少なくとも1つのフィルタインダクタLoの一端が接続され、フィルタインダクタLoの他端と整流素子のアノードとの間に少なくとも1つの平滑コンデンサCoが接続される構成である。
この構成では、第1、第2の2次巻線を有し、ほぼ全期間で電力伝送が可能な絶縁型スイッチング電源が実現される。そして、このような構成のスイッチング電源においても、上述のスイッチング制御を適用することができ、より一層効率の良いスイッチング電源が実現される。
(8)また、この発明のスイッチング電源装置では、フィルタインダクタLoとして、トランスTの2次側漏れ磁束を利用している。
この構成では、スイッチング電源の構成要素となる素子を省略することができるので、上述のような特徴を有するスイッチング電源の回路構成を簡略化することができる。
(9)また、この発明のスイッチング電源装置では、第1の2次巻線ns1と第2の2次巻線ns2の巻数比が1:2である。
この構成では、上述のほぼ全期間で電力伝送が可能な絶縁型スイッチング電源において、ほぼ全期間での出力電圧が安定しリップルが改善される。
(10)また、この発明のスイッチング電源装置では、トランスTはさらに第2の1次巻線nbを備え、第2の1次巻線nbの一端は前記直流入力電源Viの低電位側に接続され、他端は第2の整流平滑回路を介してデジタル制御回路用の直流電源電圧として供給されるようにしている。
この構成では、バイアス巻線を用いることで、制御用デジタルIC用の駆動電源を、自装置内で容易に供給することができる。
(11)また、この発明は、直流入力電圧Viが入力される直流電源入力部と、一つの磁性部品で構成されたインダクタLpと、第1のスイッチング素子Q1と第1のキャパシタC1と第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、第2のスイッチング素子Q2と第2のキャパシタC2と第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、第3のキャパシタCrと、直流電源入力部の両端に接続され、インダクタLpと第1のスイッチ回路S1とが直列に接続された第1の直列回路と、第1のスイッチ回路S1の両端またはインダクタLpの両端に接続され、第2のスイッチ回路S2と第3のコンデンサCrとが直列に接続された第2の直列回路と、を備え、第1のスイッチ回路S1と前記第2のスイッチ回路S2は、共にオフである期間を挟んで互いに相補的にオン/オフを繰り返すように動作するように構成され、インダクタLpと第1のスイッチ回路S1との接続点にアノードが接続される整流素子と、整流素子のカソードに一端が接続され、インダクタLpに対して並列に接続される第4のキャパシタCoからなる第1の整流平滑回路を介して出力電圧Voutが出力されるように構成されたスイッチング電源装置に関するものである。このスイッチング電源装置では、第1のスイッチ回路S1または第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する電力変換回路の等価回路に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段と、第1のスイッチング素子Q1及び第2のスイッチング素子Q2を制御するデジタル制御回路と、を有し、デジタル制御回路は、第1のスイッチング素子Q1及び第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、オン時間の開始タイミングは、モニタ信号をトリガとして入力し、クロック信号に基づくタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、オン時間の停止タイミングは、演算処理により設定されたオン時間にしたがってクロック信号に基づいたタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオフさせるための制御信号を生成している。
この構成では、スイッチング電源装置が極性反転型チョッパ回路からなる非絶縁型昇降圧コンバータであることを示している。そして、このような非絶縁型のスイッチング電源においても、上述のスイッチング制御を適用することができる。
(12)また、この発明のスイッチング電源装置では、第1の整流平滑回路の整流素子は電界効果トランジスタである。
この構成では、整流平滑回路の整流素子として、FETを用いた例を示している。そして、このようなスイッチング電源装置においても、上述のスイッチング制御を適用することができる。
(13)また、この発明のスイッチング電源装置では、第1の整流平滑回路の整流素子が、デジタル制御回路によってオン/オフ制御される。
この構成では、整流平滑回路の整流素子として、FETを用いた例を示しており、当該FETが上述の第1、第2のスイッチング素子とともに制御される例を示している。そして、このようなスイッチング電源装置においても、上述のスイッチング制御を適用することができる。
(14)また、この発明は、直流入力電圧Viが入力される直流電源入力部と、一つの磁性部品で構成されたインダクタLpと、第1のスイッチング素子Q1と1のキャパシタC1と第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、第2のスイッチング素子Q2と第2のキャパシタC2と第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、直流電源入力部の両端に第1のスイッチ回路S1と第2のスイッチ回路S2からなる直列回路が接続され、第1のスイッチ回路S1と第2のスイッチ回路S2との接続点にインダクタLpの一端が接続され、他端からは第1のスイッチ回路S1に対して並列に接続される第3のキャパシタCoを介して出力電圧Voutが出力されるように構成された非絶縁型スイッチング電源装置に関するものである。このスイッチング電源装置では、第1のスイッチ回路S1と第2のスイッチ回路S2は、共にオフである期間を挟んで互いに相補的にオン・オフを繰り返すように動作するように構成され、第1のスイッチ回路S1または第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する電力変換回路の等価回路に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段を備える。第1のスイッチング素子Q1及び第2のスイッチング素子Q2を制御するデジタル制御回路と、を有し、デジタル制御回路は、第1のスイッチング素子Q1及び第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、オン時間の開始タイミングは、モニタ信号をトリガとして入力し、クロック信号に基づくタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、オン時間の停止タイミングは、前記演算処理により設定されたオン時間にしたがってクロック信号に基づいたタイミングで決定され、これに基づいて第1のスイッチング素子Q1または第2のスイッチング素子Q2をターンオフさせるための制御信号を生成する。
この構成では、スイッチング電源装置がハーフブリッジ型の非絶縁型降圧コンバータであることを示している。そして、このような非絶縁型のスイッチング電源装置においても、上述のスイッチング制御を適用することができる。
(15)また、この発明のスイッチング電源装置は、出力電圧Voutを検出するための出力電圧検出手段を備え、第1のスイッチング素子Q1または第2のスイッチング素子Q2のどちらか一方のオン時間は、出力電圧検出手段によって検出された値に基づいて決定される。
この構成では、被絶縁型のスイッチング電源装置において、具体的に特定のスイッチング素子のオン時間を決定する方法を示すものであり、当該オン時間は、スイッチング電源としての出力電圧に応じて設定される。これにより、スイッチング電源として安定した出力電圧が得られる。
(16)また、この発明のスイッチング電源装置では、第1のスイッチング素子Q1または第2のスイッチング素子Q2のうち、他方のオン時間は、設定可能なスイッチング周期Tsから、第1のスイッチング素子Q1または第2のスイッチング素子Q2のどちらか一方のオン時間を減算することによって決定される。
この構成では、上述のように特定のスイッチング素子のオン時間が決定された場合に、他のスイッチング素子のオン時間が、単純且つ高速で処理可能な減算処理により決定される。
(17)また、この発明のスイッチング電源装置では、第1のスイッチ回路S1または第2のスイッチ回路S2は電界効果トランジスタである。
この構成では、第1、第2のスイッチ回路が具体的にFETであることを示している。そして、このようなスイッチング電源装置においても、上述のスイッチング制御を適用することができる。さらに、FETを用いることで高速なスイッチング動作が可能となる。
(18)また、この発明のスイッチング電源装置では、第1のスイッチ回路S1または第2のスイッチ回路S2はスイッチ回路両端の電圧が0Vまたは0V付近まで低下してからスイッチング素子Q1またはQ2がターンオンする動作となるゼロ電圧スイッチング動作にて駆動される。
この構成では、具体的に、所謂ゼロ電圧スイッチング(ZVS)が実現される構成を示している。これにより、スイッチング素子のターンオン時に発生する損失が効果的に抑圧できる。
(19)また、この発明のスイッチング電源装置では、第1のモニタ信号生成手段は、インダクタLrに流れる電流を検出するためのカレントトランスである。
(20)また、この発明のスイッチング電源装置では、第1のモニタ信号生成手段は、第1のスイッチング素子Q1または第2のスイッチング素子Q2の少なくとも1つのドレイン-ソース間電圧の変化を利用している。
(21)また、この発明のスイッチング電源装置では、第1のモニタ信号生成手段は、第1のスイッチング素子Q1または第2のスイッチング素子Q2の少なくとも1つのドレイン-ソース間電流の変化を利用している。
(22)また、この発明のスイッチング電源装置では、第1のモニタ信号生成手段は、第2の1次巻線nbの両端に生じる電圧変化を利用している。
これらの構成では、第1のモニタ信号生成手段の具体的な構成を示すものであり、上述のいずれの構成を用いても、本発明の特徴とするスイッチング制御を実現することができる。
(23)また、この発明のスイッチング電源装置では、デジタル制御回路はDSP(DigitalSignal Processor)である。
(24)また、この発明のスイッチング電源装置では、デジタル制御回路はFPGA(Field Programmable Gate Array)である。
これらの構成では、デジタル制御回路の現実的な形態を示すものである。
この発明によれば、複数のスイッチング素子を同時にオンにさせることなく、最適なデッドタイムでスイッチングを行うことができるので、高信頼性で且つ高効率なスイッチング電源を実現することができる。さらに、この際、スイッチング周波数が一定であるので、スイッチング周波数に起因するノイズ対策が容易となり、EMI特性に優れるスイッチング電源を実現することができる。
[第1実施形態]
第1の実施形態に係るスイッチング電源について、図を参照して説明する。図1は、本実施形態のスイッチング電源の回路図である。
第1の実施形態に係るスイッチング電源について、図を参照して説明する。図1は、本実施形態のスイッチング電源の回路図である。
(トランスTの1次側回路構成)
直流入力電圧が印加される入力電源Viの両端には、インダクタLr、トランスTの1次巻線np、第1スイッチ回路S1が直列接続されている。第1スイッチ回路S1は、第1スイッチング素子Q1、ダイオードD1、キャパシタC1を備える。第1スイッチング素子Q1は、FETからなり、ドレイン端子がトランスTの1次巻線npに接続され、ソース端子が入力電源Viに接続されている。ダイオードD1、およびキャパシタC1は、第1スイッチング素子Q1のドレイン-ソース間に並列に接続されており、FETである第1スイッチング素子Q1の寄生ダイオードおよび寄生容量により代用することが可能である。第1スイッチング素子Q1は、駆動回路103を介して制御用デジタルIC10から与えられる第1スイッチング制御信号Vgs1によってオン・オフ動作する。
直流入力電圧が印加される入力電源Viの両端には、インダクタLr、トランスTの1次巻線np、第1スイッチ回路S1が直列接続されている。第1スイッチ回路S1は、第1スイッチング素子Q1、ダイオードD1、キャパシタC1を備える。第1スイッチング素子Q1は、FETからなり、ドレイン端子がトランスTの1次巻線npに接続され、ソース端子が入力電源Viに接続されている。ダイオードD1、およびキャパシタC1は、第1スイッチング素子Q1のドレイン-ソース間に並列に接続されており、FETである第1スイッチング素子Q1の寄生ダイオードおよび寄生容量により代用することが可能である。第1スイッチング素子Q1は、駆動回路103を介して制御用デジタルIC10から与えられる第1スイッチング制御信号Vgs1によってオン・オフ動作する。
また、第2スイッチ回路S2とキャパシタCrとは、トランスTの1次巻線np、インダクタLrと閉回路を形成するように接続されている。第2スイッチ回路S2は、FETからなる第2スイッチング素子Q2、ダイオードD2、キャパシタC2を備える。第2スイッチング素子Q2は、ドレイン端子がキャパシタCrに接続され、ソース端子がトランスTの1次巻線npに接続されている。ダイオードD2、およびキャパシタC2は、第2スイッチング素子Q2のドレイン-ソース間に並列に接続されており、FETである第2スイッチング素子Q2の寄生ダイオードおよび寄生容量により代用することが可能である。第2スイッチング素子Q2は、第1スイッチング素子Q1と同様に、駆動回路103を介して制御用デジタルIC10から与えられる第2スイッチング制御信号Vgs2によってオン・オフ動作する。
トランスTの1次側には、上述の1次巻線npとは別に、バイアス巻線nbが配置されており、当該バイアス巻線nbの一方端は、入力電源Viに接続している。バイアス巻線nbの他方端には、ダイオードD3のアノードが接続されている。ダイオードD3のカソードにはキャパシタC3が接続される。この構成により、ダイオードD3とキャパシタC3とにより整流平滑回路が形成され、制御用デジタルIC10の駆動電圧Vccが制御用デジタルIC10へ与えられる。
また、トランスTの1次巻線npの第1スイッチ回路S1との接続側は、図示しない抵抗分圧回路を介して制御用デジタルIC10に接続されており、この抵抗分圧回路の分圧点の電圧レベルが、モニタ信号Vmとして制御用デジタルIC10へ与えられる。
制御用デジタルIC10は、例えばDSPやFPGAによって構成される。制御用デジタルIC10は、上述の駆動電圧Vccにより駆動し、モニタ信号Vm、トランスTの2次側回路から得られる検出電圧信号Voに基づいて、第1スイッチング素子Q1を駆動するための第1スイッチング制御信号Vgs1および第2スイッチング素子Q2を駆動するための第2スイッチング制御信号Vgs2を生成する。なお、制御用デジタルIC10の具体的な構成および制御については後述する。
駆動回路103は、例えばハイサイドドライバIC等により構成され、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を入力し、少なくとも第2スイッチング素子Q2を駆動可能なレベルの信号に昇圧する。駆動回路103は、第1スイッチング制御信号Vgs1を第1スイッチング素子Q1へ出力し、第2スイッチング制御信号Vgs2を第2スイッチング素子Q2へ出力する。
(トランスTの2次側回路構成)
トランスTの2次巻線ns1は、1次巻線npに対して逆極性となるように巻回されており、2次巻線ns1の両端は、電圧出力端子Vout(+),Vout(-)となっている。2次巻線ns1の電圧出力端子Vout(+)側の一方端には、ダイオードDsのアノードが接続され、当該ダイオードDsのカソードが電圧出力端子Vout(+)に接続されている。また、電圧出力端子Vout(+)、Vout(-)の両端子間には、キャパシタCoが接続されている。このような構成により、ダイオードDsとキャパシタCoとによる整流平滑回路が形成される。
トランスTの2次巻線ns1は、1次巻線npに対して逆極性となるように巻回されており、2次巻線ns1の両端は、電圧出力端子Vout(+),Vout(-)となっている。2次巻線ns1の電圧出力端子Vout(+)側の一方端には、ダイオードDsのアノードが接続され、当該ダイオードDsのカソードが電圧出力端子Vout(+)に接続されている。また、電圧出力端子Vout(+)、Vout(-)の両端子間には、キャパシタCoが接続されている。このような構成により、ダイオードDsとキャパシタCoとによる整流平滑回路が形成される。
また、電圧出力端子Vout(+)、Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されており、電圧出力端子Vout(+)、Vout(-)間の出力電圧レベルに応じた検出電圧信号Voを生成し、絶縁伝達手段102へ出力する。
絶縁伝達手段102は、フォトカプラ等からなり、2次側の電圧検出部101で生成された検出電圧信号Voを、1次側の制御用デジタルIC10へ伝達する。
以上のような構成により、フライバック方式の絶縁型スイッチング電源が構成される。
(スイッチング制御回路の具体的構成)
制御用デジタルIC10は、例えばDSPやFPGA等からなり、入力されるモニタ信号Vm、検出電圧信号Voに基づいて、第1スイッチング素子Q1をオン・オフ制御する第1スイッチング制御信号Vgs1および第2スイッチング素子Q2をオン・オフ制御する第2スイッチング制御信号Vgs2を生成する。この際、制御用デジタルIC10は、一定のスイッチング周期Tsを保ちながら、所望の出力電圧レベルを得られるように、且つ第1スイッチング素子Q1と第2スイッチング素子Q2とが同時にオンしないように、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を生成する。生成された第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2は、駆動回路103へ出力される。
制御用デジタルIC10は、例えばDSPやFPGA等からなり、入力されるモニタ信号Vm、検出電圧信号Voに基づいて、第1スイッチング素子Q1をオン・オフ制御する第1スイッチング制御信号Vgs1および第2スイッチング素子Q2をオン・オフ制御する第2スイッチング制御信号Vgs2を生成する。この際、制御用デジタルIC10は、一定のスイッチング周期Tsを保ちながら、所望の出力電圧レベルを得られるように、且つ第1スイッチング素子Q1と第2スイッチング素子Q2とが同時にオンしないように、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を生成する。生成された第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2は、駆動回路103へ出力される。
図2(A)は制御用デジタルIC10の内部ブロックの構成を示す回路図であり、図2(B)は電圧補償部132の論理ブロック図である。
制御用デジタルIC10は、コンパレータ111,112、ADC(アナログデジタルコンバータ)12、CPU13、駆動パルス生成部141,142を備える。CPU13は、加算器131、電圧補償部132、差分回路133を備える。
コンパレータ121は、モニタ信号Vmと、予め設定した閾値V1とを比較して、モニタ信号Vmが閾値V1以下となる期間でHiレベルとなり閾値V1より高い期間でLowレベルとなるトリガ信号を出力する。コンパレータ122は、モニタ信号Vmと、予め設定した閾値V2(>閾値V1)とを比較して、モニタ信号Vmが閾値V2以上の期間でHiレベルとなり閾値V2未満の期間でLowレベルとなるトリガ信号を出力する。なお、本実施形態では、コンパレータ121,122を制御用デジタルIC10内に備える例を示したが、これらコンパレータ121,122は、制御用デジタルIC10と別に形成してもよい。
ADC12は、アナログデジタルコンバータであり、検出電圧信号Voをアナログ信号からデジタル信号へ変換して、加算器13へ出力する。この際、ADC12は、コンパレータ121,122からのトリガ信号がLowレベルからHiレベルに遷移したタイミングをトリガにして、アナログデジタル変換を開始する。なお、本実施形態の構成では、少なくともコンパレータ121からのトリガ信号が入力されればよく、アナログデジタル変換の開始タイミングに応じて、いずれのトリガ信号を利用するか等は適宜設定すればよい。
加算器131は、デジタル変換された検出電圧信号Voと、所望とする電圧レベルであるリファレンス電圧レベルVrefとの差分電圧evを算出し、電圧補償部132へ与える。
電圧補償部132は、例えば図2(B)に示すようなPIコントローラからなり、差分電圧evに基づいて、第1スイッチング素子Q1のオン時間Ton1を示す制御値u1を出力する。電圧補償部132は、制御値u1を、差分回路133と駆動パルス生成部141とに与える。
差分回路133は、制御値u1に基づく第1スイッチング素子Q1のオン時間Ton1を、予め設定した駆動パルス生成部141,142に対する一定のスイッチング周期Tsから減算することで、第2スイッチング素子Q2のオン時間Ton2を算出する。
この際、差分回路133は、各駆動パルス生成部141,142がコンパレータ121,122からのトリガ信号がLowレベルからHiレベルに遷移するタイミングを検出してから、第1スイッチング制御信号Vgs1を出力するタイミングまでの遅延時間(図4におけるTF1,TF2)を加味した上で、減算処理を実行する。なお、これらの遅延時間TF1,TF2は、それぞれのスイッチング素子Q1,Q2が確実に同時オンしないとともに、確実にZVS動作させることができる程度に、オン時間Ton1,Ton2と比較して極短い時間長であり、予めオフラインで固定値として設定する。
すなわち、差分回路133は、スイッチング周期Ts、第1スイッチング素子Q1のオン時間Ton1に対して、第2スイッチング素子Q2のオン時間をTon2として、Ton2=Ts-Ton1-(TF1+TF2)の式を用いて、第2スイッチング素子Q2のオン時間をTon2を算出する。差分回路133は、算出されたオン時間Ton2に応じた制御値u2を駆動パルス生成部142へ与える。
駆動パルス生成部141は、所謂デジタルPWM回路からなり、コンパレータ121からのトリガ信号がHiレベルに遷移するタイミングすなわちモニタ信号Vmのレベルが低下していき閾値V1に達したタイミングをトリガとして、第1スイッチング制御信号Vgs1をHiレベルに遷移させる。
駆動パルス生成部141は、スイッチング周期Tsの時間長で所定値までカウントアップするカウンタを備えており、スイッチング周期Ts毎にカウンタ値をリフレッシュしながらカウントを継続する。そして、このリフレッシュのタイミングは、第1スイッチング制御信号Vgs1のHiレベルへの遷移タイミングに一致させている。
駆動パルス生成部141は、与えられた制御値u1に応じたカウント値までカウントアップすると、第1スイッチング制御信号Vgs1をLowレベルに遷移させる。これにより、駆動パルス生成部141は、所望とするオン時間Ton1の間、Hiレベルとなる第1スイッチング制御信号Vgs1を出力することができる。
また、駆動パルス生成部141は、上述のようにスイッチング周期Tsにより設定されたカウンタのリフレッシュタイミングに、第1スイッチング制御信号Vgs1をHiレベルに遷移させるタイミングを常に一致させるように、第1スイッチング制御信号Vgs1を出力している。これにより、駆動パルス生成部141は、第1スイッチング制御信号Vgs1を、予め設定された一定のスイッチング周期Tsで継続的に出力する。
駆動パルス生成部142も、所謂デジタルPWM回路からなり、コンパレータ122からのトリガ信号がHiレベルに遷移するタイミングすなわちモニタ信号Vmのレベルが上昇していき閾値V2に達したタイミングをトリガとして、第2スイッチング制御信号Vgs2をHiレベルに遷移させる。
駆動パルス生成部142も、カウントアップするカウンタを備えており、スイッチング周期Ts毎にカウンタ値をリフレッシュしながらカウントを継続する。そして、このリフレッシュのタイミングは、第2スイッチング制御信号Vgs2のHiレベルへの遷移タイミングに一致させている。
駆動パルス生成部142は、与えられた制御値u2に応じたカウント値までカウントアップすると、第2スイッチング制御信号Vgs2をLowレベルに遷移させる。これにより、駆動パルス生成部142は、上述のスイッチング周期Tsから第1スイッチング素子Q1のオン時間Ton1を差分して得られた値に程等しいオン時間Ton2の間、Hiレベルとなる第2スイッチング制御信号Vgs2を出力することができる。
次に、上述の処理制御について、フローチャートおよび波形図を用いて説明する。
図3は制御用デジタルIC10のスイッチング制御フローを示すフローチャートである。図4は各信号の状態の時間的関係を示す波形図である。
なお、以下に説明する制御はスイッチング周期Tsで繰り返し行われるものであるが、説明上、特定の期間(以下の説明では、第2スイッチング制御信号Vgs2がLowレベルに遷移するタイミングをt0として、当該タイミングt0からスイッチング周期Tsの一周期分)の制御処理について説明する。
(1)状態1[期間Tp1:タイミングt0~t1]
図4におけるタイミングt0に示すように、第2スイッチング制御信号Vgs2がLowレベルに遷移されると、トランス電圧Vtは立ち上がる。これに応じて、モニタ信号Vmは立ち下がる。
図4におけるタイミングt0に示すように、第2スイッチング制御信号Vgs2がLowレベルに遷移されると、トランス電圧Vtは立ち上がる。これに応じて、モニタ信号Vmは立ち下がる。
制御用デジタルIC10は、トランスTのトランス電圧Vtの極性を、モニタ信号Vmを用いて、継続的に検出しており(S101)、トランス電圧Vtの立ち上がりによる磁束変化を、モニタ信号Vmの電圧レベルが低下していき閾値V1に達したことにより検出する(S102:Yes)。この際、モニタ信号Vmの電圧レベルが低下し始めてから閾値V1に達するまでの時間長だけ遅延時間TN1が生じる。この遅延時間TN1は、負荷状態により決まるものである。なお、制御用デジタルIC10は、このようなタイミングt0までは極性反転を検出していないので、継続的にトランス電圧Vtの極性を、モニタ信号Vmを用いて検出し続けている(S102:No→S101)。
(2)状態2[期間Tp2:タイミングt1~t2]
図4におけるタイミングt1に示すように、制御用デジタルIC10は、モニタ信号Vmが閾値V1に達したことによって、トランス電圧Vtの磁束変化を検出すると、予め設定した微小遅延時間TF1の後、第1スイッチング制御信号Vgs1をHiレベルに遷移させる(S103)。これにより、第1スイッチング制御信号Vgs1は、モニタ信号Vmが閾値V1に達したことに検出したタイミングから、さらに、極短い遅延時間TF1後のタイミングt2でHiレベルに遷移する。
図4におけるタイミングt1に示すように、制御用デジタルIC10は、モニタ信号Vmが閾値V1に達したことによって、トランス電圧Vtの磁束変化を検出すると、予め設定した微小遅延時間TF1の後、第1スイッチング制御信号Vgs1をHiレベルに遷移させる(S103)。これにより、第1スイッチング制御信号Vgs1は、モニタ信号Vmが閾値V1に達したことに検出したタイミングから、さらに、極短い遅延時間TF1後のタイミングt2でHiレベルに遷移する。
以上の状態1、状態2に示すように、モニタ信号VmがLowレベルと同程度に設定された所定レベルの閾値V1に達した時点(遅延時間TN1に相当)で、第2スイッチング制御信号Vgs2がLowレベルに遷移したことに起因するトランス電圧Vtの磁束変化を検出して、微小遅延時間TF1後に第1スイッチング制御信号Vgs1をHiレベルに遷移させることで、第2スイッチング制御信号Vgs2がLowレベルに遷移するタイミングと第1スイッチング制御信号Vgs1がHiレベルに遷移するタイミングとの間に、遅延時間Tdead1(=TN1+TF1)が強制的に生じる。これにより、このタイミングで、第2スイッチング制御信号Vgs2と第1スイッチング制御信号Vgs1とが同時にHiレベルになること、すなわち、第1スイッチング素子Q1と第2スイッチング素子Q2との同時オンを防止することができる。また、閾値V1をモニタ信号Vmの略Lowレベルの電圧に設定することで、第1スイッチング制御信号Vgs1がスイッチング素子Q1に与えられるタイミングでは、スイッチング素子Q1のドレインソース電圧は「0」電位もしくは略「0」電位となり、ゼロ電圧スイッチング(ZVS)を実現することができる。また、閾値V1により第1スイッチング制御信号Vgs1のHiレベルへの遷移タイミングを制御するので、負荷状況に応じた最適なタイミングで第1スイッチング制御信号Vgs1をHiレベルに遷移させることができる。さらに、微小遅延時間TF1を設けることで、適するタイミングを保ちながら、より確実な同時オンおよびZVS動作を保証することができる。
(3)状態3[期間Tp3:タイミングt2~t3]
制御用デジタルIC10は、第1スイッチング制御信号Vgs1がHiレベルに遷移するタイミングで、第1スイッチング制御信号Vgs1用タイマのカウント値をクリアして、カウントアップを開始する。
制御用デジタルIC10は、第1スイッチング制御信号Vgs1がHiレベルに遷移するタイミングで、第1スイッチング制御信号Vgs1用タイマのカウント値をクリアして、カウントアップを開始する。
同時に、制御用デジタルIC10は、第1スイッチング制御信号Vgs1をHiレベルに遷移させると、検出電圧信号VoをAD変換して、所望電圧レベルを与えるリファレンス電圧レベルVrefとの差分値evを算出する(S103’)。
制御用デジタルIC10は、当該差分値evに基づいて、第1スイッチング制御信号Vgs1のオン時間Ton1を算出し、当該オン時間Ton1をカウンタ値で与える制御値u1を算出して決定する。これと同時に、制御用デジタルIC10は、予め設定された一定値のスイッチング周期Tsから第1スイッチング制御信号Vgs1のオン時間Ton1を減算することで、第2スイッチング制御信号Vgs2のオン時間Ton2を算出し、当該オン時間Ton2をカウンタ値で与える制御値u2を算出し、決定する(S104’)。なお、この際、上述の微小遅延時間TF1,および後述の微小遅延時間TF2を加味した上で、当該減算処理を行う。さらに、当該微小遅延時間TF1を含む遅延時間Tdead1および当該微小遅延時間TF2を含む遅延時間Tdead2を加味した上で減算処理を行ってよい。なお、これらの遅延時間は、スイッチング素子Q1,Q2のオン時間Ton1,Ton2に対して極短いものであるので、実質的には、略一定のスイッチング周期Tsが維持される。
このような制御値u1,u2の算出および決定にかかる時間長Tcalは、通常、非常に短い。このため、第1スイッチング制御信号Vgs1をHiレベルに遷移させたタイミングを基点とした制御値u1,u2の決定タイミングTcalは、制御値u1で与えられる第1スイッチング制御信号Vgs1のオン時間Ton1が終了するタイミング(図4のタイミングt4)よりも、極早いタイミング(図4のタイミングt3)となる。これにより、第1スイッチング制御信号Vgs1をLowレベルに遷移させるタイミングを、確実に設定できる。
(4)状態4[期間Tp4:タイミングt3~t4]
制御用デジタルIC10は、制御値u1により設定されたカウント値に、第1スイッチング制御信号Vgs1用タイマのカウント値が達したことを検出すると、図4のタイミングt4に示すように、第1スイッチング制御信号Vgs1をLowレベルに遷移させる(S105)。これにより、制御用デジタルIC10は、第1スイッチング制御信号Vgs1を、所望とするオン時間Ton1に亘り、Hiレベルで第1スイッチング素子Q1へ供給することができる。
制御用デジタルIC10は、制御値u1により設定されたカウント値に、第1スイッチング制御信号Vgs1用タイマのカウント値が達したことを検出すると、図4のタイミングt4に示すように、第1スイッチング制御信号Vgs1をLowレベルに遷移させる(S105)。これにより、制御用デジタルIC10は、第1スイッチング制御信号Vgs1を、所望とするオン時間Ton1に亘り、Hiレベルで第1スイッチング素子Q1へ供給することができる。
(5)状態5[期間Tp5:タイミングt4~t5]
図4におけるタイミングt4に示すように、第1スイッチング制御信号Vgs1がLowレベルに遷移されると、トランス電圧Vtは立ち下がる。これに応じて、トランスTの第1スイッチ回路S1側の端部から取得されたモニタ信号Vmは立ち上がる。
図4におけるタイミングt4に示すように、第1スイッチング制御信号Vgs1がLowレベルに遷移されると、トランス電圧Vtは立ち下がる。これに応じて、トランスTの第1スイッチ回路S1側の端部から取得されたモニタ信号Vmは立ち上がる。
制御用デジタルIC10は、トランス電圧Vtの立ち下がりによる極性反転を、モニタ信号Vmの電圧レベルが上昇していき閾値V2に達したことにより検出する(S106:Yes)。この際、モニタ信号Vmの電圧レベルが上昇し始めてから閾値V2に達するまでの時間長だけ遅延時間TN2が生じる。この遅延時間TN2は、負荷状態により決まるものである。なお、制御用デジタルIC10は、このようなタイミングt4までは極性反転を検出していないので、継続的にトランス電圧Vtの極性を、モニタ信号Vmを用いて検出し続けている(S106:No)。
(6)状態6[期間Tp6:タイミングt5~t6]
図4におけるタイミングt5に示すように、制御用デジタルIC10は、モニタ信号Vmが閾値V2に達したことによって、トランス電圧Vtの磁束変化を検出すると、予め設定した微小遅延時間TF2の後、第2スイッチング制御信号Vgs2をHiレベルに遷移させる(S108)。この際、第2スイッチング制御信号Vgs2は、モニタ信号Vmが閾値V2に達したことに検出したタイミングから、さらに、極短い遅延時間TF2後のタイミングt6でHiレベルに遷移する。
図4におけるタイミングt5に示すように、制御用デジタルIC10は、モニタ信号Vmが閾値V2に達したことによって、トランス電圧Vtの磁束変化を検出すると、予め設定した微小遅延時間TF2の後、第2スイッチング制御信号Vgs2をHiレベルに遷移させる(S108)。この際、第2スイッチング制御信号Vgs2は、モニタ信号Vmが閾値V2に達したことに検出したタイミングから、さらに、極短い遅延時間TF2後のタイミングt6でHiレベルに遷移する。
以上の状態5、状態6に示すように、モニタ信号VmがHiレベルと同程度に設定された所定レベルの閾値V2に達した時点(遅延時間TN2に相当)で、第1スイッチング制御信号Vgs1がLowレベルに遷移したことに起因するトランス電圧Vtの磁束変化を検出して、微小遅延時間TF2後に第2スイッチング制御信号Vgs2をHiレベルに遷移させることで、第1スイッチング制御信号Vgs1がLowレベルに遷移するタイミングと第2スイッチング制御信号Vgs2がHiレベルに遷移するタイミングとの間に、遅延時間Tdead2(=TN2+TF2)が強制的に生じる。これにより、このタイミングでの、第1スイッチング制御信号Vgs1と第2スイッチング制御信号Vgs2とが同時にHiレベルになること、すなわち、第1スイッチング素子Q1と第2スイッチング素子Q2との同時オンを防止することができる。また、閾値V2をモニタ信号Vmの略Hiレベルの電圧に設定することで、第2スイッチング制御信号Vgs2がスイッチング素子Q2に与えられるタイミングでは、スイッチング素子Q2のドレインソース電圧は「0」電位もしくは略「0」電位となり、ゼロ電圧スイッチング(ZVS)を実現することができる。また、閾値V2により第2スイッチング制御信号Vgs2のHiレベルへの遷移タイミングを制御するので、負荷状況に応じた最適なタイミングで第2スイッチング制御信号Vgs2をHiレベルに遷移させることができる。さらに、微小遅延時間TF2を設けることで、適するタイミングを保ちながら、より確実な同時オンおよびZVS動作を保証することができる。
(7)状態7[期間Tp7:タイミングt7~t0]
制御用デジタルIC10は、第2スイッチング制御信号Vgs2がHiレベルに遷移するタイミングで、第2スイッチング制御信号Vgs2用タイマのカウント値をクリアして、カウントアップを開始する。
制御用デジタルIC10は、第2スイッチング制御信号Vgs2がHiレベルに遷移するタイミングで、第2スイッチング制御信号Vgs2用タイマのカウント値をクリアして、カウントアップを開始する。
そして、制御用デジタルIC10は、上述の期間Tp3で算出した制御値u2により設定されたカウント値に、第2スイッチング制御信号Vgs2用タイマのカウント値が達したことを検出すると、第2スイッチング制御信号Vgs2をLowレベルに遷移させる(S108)。これにより、制御用デジタルIC10は、第2スイッチング制御信号Vgs2を、一定のスイッチング周期Tsおよび第1スイッチング制御信号Vgs1のオン時間Ton1により適宜設定されたオン時間Ton2に亘り、Hiレベルで第2スイッチング素子Q2へ供給することができる。
以上のように、本実施形態の構成および処理を用いることで、所望の出力電圧を得るように第1スイッチング制御信号Vgs1のオン時間Ton1を設定することができるとともに、当該第1スイッチング制御信号Vgs1のオン時間Ton1と、第2スイッチング制御信号Vgs2のオン時間Ton2とが、時間軸上で重なり合うことを防止することができる。これにより、短絡によるスイッチング素子の破損を防止でき、高信頼性のスイッチング電源を実現することができる。
また、オン時間Ton1,Ton2が時間軸上で離間されるように、微小遅延時間TF1,TF2を含み、遅延時間Tdead1,Tdead2がトランス電圧Vtの磁束変化に基づいて、負荷状態に応じた適切な値に設定されるので、高効率なスイッチング電源を実現することができる。
さらに、スイッチング周期Tsが一定に制御されているので、スイッチング周期Tsに起因するノイズ対策が容易になり、低EMIのスイッチング電源を実現することができる。
なお、本実施形態では、トランスTの一次側で、1次巻線np、インダクタL1およびスイッチ回路S2とともに閉回路を構成するキャパシタCrが、入力電源Viに並列に接続されている例を示したが、図5に示すように、入力電源Viに対して直列接続されるような回路構成であってもよい。図5は、第1の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。このような構成であっても、上述のスイッチング制御を適用することができ、同様の作用効果を得ることができる。
また、上述の説明では、オン時間Ton1,Ton2の制御のためにそれぞれ個別にタイマを設けた例を示したが、遅延時間Tdead1及び遅延時間Tdead2が同じであるとみなして、予め固定値に設定しておくことで、一つのタイマで、オン時間Ton1,Ton2を制御することができる。
[第2実施形態]
次に、第2の実施形態に係るスイッチング電源について図を参照して説明する。図6は、本実施形態のスイッチング電源の回路図である。
図6に示すように、本実施形態のスイッチング電源は、トランスTの1次巻線npと2次巻線ns1が同極性となるように巻回されている。トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであり、2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
次に、第2の実施形態に係るスイッチング電源について図を参照して説明する。図6は、本実施形態のスイッチング電源の回路図である。
図6に示すように、本実施形態のスイッチング電源は、トランスTの1次巻線npと2次巻線ns1が同極性となるように巻回されている。トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであり、2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
本実施形態のスイッチング電源の2次巻線ns1の一方端には、ダイオードDsのアノードが接続され、当該ダイオードDsのカソードがインダクタLoを介して電圧出力端子Vout(+)に接続されている。2次巻線ns1の他方端は、電圧出力端子Vout(-)に接続されている。
また、2次巻線ns1の両端子間にはダイオードDfが並列接続されている。この際、ダイオードDfのカソードはフィルタインダクタとして機能するインダクタLoに接続させる。
また、電圧出力端子Vout(+),Vout(-)の両端子間には、キャパシタCoが接続されている。このような構成により、ダイオードDs,Df、インダクタLoおよびキャパシタCoによる整流平滑回路が形成される。また、電圧出力端子Vout(+),Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されており、電圧出力端子Vout(+),Vout(-)の両端子間の出力電圧レベルに応じた検出電圧信号Voを生成し、絶縁伝達手段102へ出力する。
以上のような構成により、フォワード方式の絶縁型スイッチング電源が構成される。そして、このような構成であっても、上述の第1の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第3実施形態]
次に、第3の実施形態に係るスイッチング電源について図を参照して説明する。図7は、本実施形態のスイッチング電源の回路図である。
図7に示すように、本実施形態のスイッチング電源は、トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであるが、トランスTおよび2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
次に、第3の実施形態に係るスイッチング電源について図を参照して説明する。図7は、本実施形態のスイッチング電源の回路図である。
図7に示すように、本実施形態のスイッチング電源は、トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであるが、トランスTおよび2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
トランスTは、一つの1次巻線npに対して二つの2次巻線ns1,ns2が配置された複合型トランスである。トランスTの第1の2次巻線ns1は1次巻線npに対して逆極性に巻回さており、第2の2次巻線ns2は1次巻線npに対して同極性に巻回されている。この際、第1の2次巻線ns1と第2の2次巻線ns2との巻線比が、ns1:ns2=1:2となるように、第1の2次巻線ns1および第2の2次巻線ns2が形成されている。
第1の2次巻線ns1の一方端には、インダクタLoを介して電圧出力端子Vout(+)が接続されている。第1の2次巻線ns1の他方端にはダイオードDsのカソードが接続されており、当該ダイオードDsのアノードは電圧出力端子Vout(-)に接続されている。
第2の2次巻線ns2の一方端は第1の2次巻線ns1の他方端に接続されている。第2の2次巻線ns2の一方端にはダイオードDfのカソードが接続されており、当該ダイオードDfのアノードも電圧出力端子Vout(-)に接続されている。
また、電圧出力端子Vout(+),Vout(-)の両端子間には、キャパシタCoが接続されている。このような構成により、ダイオードDs,Df、インダクタLoおよびキャパシタCoによる整流平滑回路が形成される。また、電圧出力端子Vout(+),Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されており、電圧出力端子Vout(+),Vout(-)の両端子間の出力電圧レベルに応じた検出電圧信号Voを生成し、絶縁伝達手段102へ出力する。
このような構成のスイッチング電源では、第1のスイッチ回路S1がオン且つ第2のスイッチ回路S2がオフの期間においては、電圧出力端子Vout(-)→ダイオードDf→第2の2次巻線ns2→第1の2次巻線ns1→インダクタLo→電圧出力端子Vout(+)というループで電流が流れ、第1のスイッチ回路S1がオフ且つ第2のスイッチ回路S2がオンの期間においては、電圧出力端子Vout(-)→ダイオードDs→第1の2次巻線ns1→インダクタLo→電圧出力端子Vout(+)というループで電流が流れる。このため、第1のスイッチ回路S1のオン期間(第2のスイッチ回路S2のオフ期間)および第1のスイッチ回路S1のオフ期間(第2のスイッチ回路S2のオン期間)のいずれにおいても、トランスTの1次側から2次側へエネルギー伝送を行うことができる。すなわち、実質的にスイッチング周期Tsのほぼ全期間に亘ってトランスTの1次側から2次側へエネルギー伝送を行うことができる。
ここで、スイッチング素子が切り替わる期間はエネルギー伝送が行われないが、上述のスイッチング制御を適用することで、遅延時間Tdead1,Tdead2が最適化されるので、スイッチング周期Tsのほぼ全期間に亘って非常に効率良くエネルギー伝送を行うことができる。
さらに、本実施形態に示すように、第1の2次巻線ns1と第2の2次巻線ns2との巻線比をns1:ns2=1:2とすることで、第1のスイッチ回路S1のオン期間(第2のスイッチ回路S2のオフ期間)および第1のスイッチ回路S1のオフ期間(第2のスイッチ回路S2のオン期間)のいずれにおいても、同じ出力電圧レベルを得ることができる。これにより、出力電圧のリップル成分を抑圧することができる。
なお、本実施形態の図7のスイッチング電源では、トランスTの一次側で、1次巻線np、インダクタL1およびスイッチ回路S2とともに閉回路を構成するキャパシタCrが、入力電源Viに並列に接続されている例を示したが、図8に示すように、入力電源Viに対して直列接続されるような回路構成であってもよい。図8は、第3の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。また、図9に示すように、第2スイッチ回路S2とキャパシタCrとの直列回路が、第1スイッチ回路S1と並列接続されるような回路構成であってもよい。図9は、第3の実施形態に示すまた他の回路構成からなるスイッチング電源の回路図である。このような構成であっても、上述のスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第4実施形態]
次に、第4の実施形態に係るスイッチング電源について図を参照して説明する。図10は、本実施形態のスイッチング電源の回路図である。
図10に示すように、本実施形態のスイッチング電源は、トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであるが、トランスTおよび2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
次に、第4の実施形態に係るスイッチング電源について図を参照して説明する。図10は、本実施形態のスイッチング電源の回路図である。
図10に示すように、本実施形態のスイッチング電源は、トランスTの1次側の回路パターンおよび絶縁伝達手段102は、上述の図1に示したスイッチング電源と同じであるが、トランスTおよび2次側の回路パターンが上述の図1に示したスイッチング電源と異なる。
トランスTは、一つの1次巻線npに対して二つの2次巻線ns1,ns2が配置された複合型トランスである。トランスTの第1の2次巻線ns1は1次巻線npに対して同極性に巻回さており、第2の2次巻線ns2も1次巻線npに対して同極性に巻回されている。
第1の2次巻線ns1の一方端には、ダイオードDsのアノードが接続され、当該ダイオードDsのカソードは、インダクタLoを介して電圧出力端子Vout(+)が接続されている。第1の2次巻線ns1の他方端は電圧出力端子Vout(-)に接続されている。
第2の2次巻線ns2の一方端は第1の2次巻線ns1の他方端に接続されている。第2の2次巻線ns2の他方端にはダイオードDfのカソードが接続されており、当該ダイオードDfのアノードもインダクタLoを介して電圧出力端子Vout(+)に接続されている。
また、電圧出力端子Vout(+),Vout(-)の両端子間には、キャパシタCoが接続されている。このような構成により、ダイオードDs,Df、インダクタLoおよびキャパシタCoによる整流平滑回路が形成される。また、電圧出力端子Vout(+),Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されており、電圧出力端子Vout(+),Vout(-)の両端子間の出力電圧レベルに応じた検出電圧信号Voを生成し、絶縁伝達手段102へ出力する。
このような構成を用いることで、所謂センタータップ型の全波整流回路を用いたスイッチング電源を構成することができる。そして、このような構成であっても、上述の第1の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
なお、本実施形態の図10のスイッチング電源では、トランスTの一次側で、1次巻線np、インダクタL1およびスイッチ回路S2とともに閉回路を構成するキャパシタCrが、入力電源Viに並列に接続されている例を示したが、図11に示すように、入力電源Viに対して直列接続されるような回路構成であってもよい。図11は、第4の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。また、図12に示すように、第2スイッチ回路S2とキャパシタCrとの直列回路が、第1スイッチ回路S1と並列接続されるような回路構成であってもよい。図12は、第4の実施形態に示すまた他の回路構成からなるスイッチング電源の回路図である。このような構成であっても、上述のスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第5実施形態]
次に、第5の実施形態に係るスイッチング電源について図を参照して説明する。図13は、本実施形態のスイッチング電源の回路図である。
図13に示すように、本実施形態のスイッチング電源は、トランスT、トランスTの2次側の回路パターンおよび絶縁伝達手段102は、上述の第4実施形態の図10に示したスイッチング電源と同じであるが、1次側のバイアス巻線nbを配置しない構成からなる。
次に、第5の実施形態に係るスイッチング電源について図を参照して説明する。図13は、本実施形態のスイッチング電源の回路図である。
図13に示すように、本実施形態のスイッチング電源は、トランスT、トランスTの2次側の回路パターンおよび絶縁伝達手段102は、上述の第4実施形態の図10に示したスイッチング電源と同じであるが、1次側のバイアス巻線nbを配置しない構成からなる。
本実施形態のスイッチング電源は、1次巻線npに直列接続されるインダクタLrを1次巻線とするカレントトランス回路104を形成する。このカレントトランス回路104の2次巻線には、抵抗素子Rが接続されており、当該抵抗素子Rの一方端がダイオードD3のアノードに接続されている。そして、当該ダイオードD3のカソードがスイッチ制御用デジタルIC10へ接続されることで、モニタ信号Vmが制御用デジタルIC10へ与えられる。
このような構成とすることで、トランスTの1次巻線npに流れる電流の変化に基づくモニタ信号を生成することができる。また、このような構成とすることで、制御用デジタルIC10の駆動電圧Vccを外部等から供給すれば、バイアス巻線nbを用いない構成であっても、上述の実施形態に示したようなスイッチング制御を行うことができる。なお、図13では、センタータップ方式の全波整流回路を用いたスイッチング電源の場合を示したが、上述の各実施形態に示した他の方式のスイッチング電源であっても、本実施形態のカレントトランス回路を用いる構成を適用することができる。
[第6実施形態]
次に、第6の実施形態に係るスイッチング電源について図を参照して説明する。図14は、本実施形態のスイッチング電源の回路図である。
図14に示すように、本実施形態のスイッチング電源は、トランスT、トランスTの2次側の回路パターンおよび絶縁伝達手段102は、上述の第5実施形態の図13に示した1次側のバイアス巻線nbを配置しない構成からなるスイッチング電源と同じである。
次に、第6の実施形態に係るスイッチング電源について図を参照して説明する。図14は、本実施形態のスイッチング電源の回路図である。
図14に示すように、本実施形態のスイッチング電源は、トランスT、トランスTの2次側の回路パターンおよび絶縁伝達手段102は、上述の第5実施形態の図13に示した1次側のバイアス巻線nbを配置しない構成からなるスイッチング電源と同じである。
本実施形態のスイッチング電源は、さらに、上述の第5実施形態の図13に示すようなカレントトランス回路も用いない。このため、本実施形態のスイッチング電源は、モニタ信号Vmを、上述の第1実施形態と同じように、1次巻線npの一端から抵抗分圧回路を介して得る。
このような構成であっても、制御用デジタルIC10の駆動電圧Vccを外部等から供給できるような場合には、バイアス巻線nbを用いずに、上述の実施形態に示したようなスイッチング制御を行うことができる。なお、図14では、センタータップ方式の全波整流回路を用いたスイッチング電源の場合を示したが、上述の各実施形態に示した他の方式のスイッチング電源であっても、本実施形態の構成を適用することができる。
[第7実施形態]
次に、第7の実施形態に係るスイッチング電源について図を参照して説明する。図15は、本実施形態のスイッチング電源の回路図である。
上述の各実施形態では、トランスTを用いた絶縁型のスイッチング電源を例に示したが、本実施形態では、非絶縁型のコンバータに対して、上述のスイッチング制御を適用する場合を例に説明する。
次に、第7の実施形態に係るスイッチング電源について図を参照して説明する。図15は、本実施形態のスイッチング電源の回路図である。
上述の各実施形態では、トランスTを用いた絶縁型のスイッチング電源を例に示したが、本実施形態では、非絶縁型のコンバータに対して、上述のスイッチング制御を適用する場合を例に説明する。
直流入力電圧が印加される入力電源Viの一方端(Vi(+))には、電圧出力端子Vout(-)が接続されている。入力電源Viの他方端(Vi(-))は、第1スイッチ回路Q1とダイオードDsとの直列回路を介して電圧出力端子Vout(+)に接続されている。
電圧出力端子Vout(+)、Vout(-)の両端子間におけるダイオードDsよりも入力電源Vi側には、インダクタLpが接続されており、さらに、ダイオードDsよりも電圧出力端子Vout(+)、Vout(-)側には、キャパシタCoが接続されている。また、インダクタLpの入力電源Vi側には、キャパシタCrと第2スイッチ回路S2との直列回路が、インダクタLpに対して並列接続されている。
第1スイッチ回路S1は、FETからなる第1スイッチング素子Q1、ダイオードD1、キャパシタC1を備える。ダイオードD1、およびキャパシタC1は、第1スイッチング素子Q1のドレイン-ソース間に並列に接続されており、FETである第1スイッチング素子Q1の寄生ダイオードおよび寄生容量により代用することが可能である。第1スイッチング素子Q1は、駆動回路103を介して制御用デジタルIC10から与えられる第1スイッチング制御信号Vgs1によってオン・オフ動作する。
第2スイッチ回路S2は、FETからなる第2スイッチング素子Q2、ダイオードD2、キャパシタC2を備える。ダイオードD2、およびキャパシタC2は、第2スイッチング素子Q2のドレイン-ソース間に並列に接続されており、FETである第2スイッチング素子Q2の寄生ダイオードおよび寄生容量により代用することが可能である。第2スイッチング素子Q2は、駆動回路103を介して制御用デジタルIC10から与えられる第2スイッチング制御信号Vgs2によってオン・オフ動作する。
また、電圧出力端子Vout(+)、Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されている。電圧検出部101は、電圧出力端子Vout(+)、Vout(-)の両端子間の出力電圧レベルに応じた検出電圧信号Voを生成し、制御用デジタルIC10へ供給する。
また、電圧出力端子Vout(+),Vout(-)間の出力電圧は、制御用デジタルIC10の駆動電圧Vccとして、制御用デジタルIC10へ供給される。
制御用デジタルIC10は、上述の実施形態に示すように、駆動電圧Vccにより駆動し、モニタ信号Vm、電圧検出部101からの検出電圧信号Voに基づいて、出力電圧が所定電圧レベルに制御されるように、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を生成する。
駆動回路103は、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を入力し、少なくとも第2スイッチング素子Q2を駆動可能なレベルの信号に昇圧する。駆動回路103は、第1スイッチング制御信号Vgs1を第1スイッチング素子Q1へ出力し、第2スイッチング制御信号Vgs2を第2スイッチング素子Q2へ出力する。
このような構成とすることで、第1スイッチ回路S1の第1スイッチング素子Q1を制御用スイッチング素子とし、第2スイッチ回路S2の第2スイッチング素子Q2とキャパシタCrとをクランプ回路とした、所謂極性反転型チョッパ回路と称される非絶縁型の昇降圧コンバータを構成することができる。そして、このような構成であっても、上述のスイッチング制御を用いることで、高信頼且つ高効率の非絶縁型の昇降圧コンバータを実現することができる。
なお、本実施形態のような非絶縁型であっても、上述の絶縁型と同様に、第2スイッチ回路S2に直列接続されるキャパシタCrが、入力電源ViとインダクタLpとに直列接続される構造や、第2スイッチ回路S2とキャパシタCrとの直列回路が第1スイッチ回路S1に並列接続される構造に適用することができる。
[第8実施形態]
次に、第8の実施形態に係るスイッチング電源について図を参照して説明する。図16は、本実施形態のスイッチング電源の回路図である。
本実施形態では、第7実施形態に示したスイッチング電源と同様に、非絶縁型のコンバータに対して、上述のスイッチング制御を適用する場合を例に説明する。
次に、第8の実施形態に係るスイッチング電源について図を参照して説明する。図16は、本実施形態のスイッチング電源の回路図である。
本実施形態では、第7実施形態に示したスイッチング電源と同様に、非絶縁型のコンバータに対して、上述のスイッチング制御を適用する場合を例に説明する。
直流入力電圧が印加される入力電源Viの一方端(Vi(+))には、第2スイッチ回路Q2とインダクタLpとの直列回路を介して、電圧出力端子Vout(+)が接続されている。一方、入力電源Viの他方端(Vi(-))は、電圧出力端子Vout(-)に接続されている。
第2スイッチ回路S2は、FETからなる第2スイッチング素子Q2、ダイオードD2、キャパシタC2を備える。ダイオードD2、およびキャパシタC2は、第2スイッチング素子Q2のドレイン-ソース間に並列に接続されており、FETである第2スイッチング素子Q2の寄生ダイオードおよび寄生容量により代用することが可能である。第2スイッチング素子Q2は、駆動回路103を介して制御用デジタルIC10から与えられる第2スイッチング制御信号Vgs2によってオン・オフ動作する。
第2スイッチ回路S2とインダクタLpとの接続点と、電圧出力端子Vout(-)の間には、第1スイッチ回路S1が接続されている。
第1スイッチ回路S1は、FETからなる第1スイッチング素子Q1、ダイオードD1、キャパシタC1を備える。ダイオードD1、およびキャパシタC1は、第1スイッチング素子Q1のドレイン-ソース間に並列に接続されており、FETである第1スイッチング素子Q1の寄生ダイオードおよび寄生容量により代用することが可能である。第1スイッチング素子Q1は、駆動回路103を介して制御用デジタルIC10から与えられる第1スイッチング制御信号Vgs1によってオン・オフ動作する。
また、電圧出力端子Vout(+),Vout(-)の両端子間におけるインダクタLpよりも電圧出力端子Vout(+),Vout(-)側には、キャパシタCoが接続されている。
また、電圧出力端子Vout(+),Vout(-)の両端子間には、直列抵抗回路等からなる電圧検出部101が接続されている。電圧検出部101は、電圧出力端子Vout(+)、Vout(-)の両端子間の出力電圧レベルに応じた検出電圧信号Voを生成し、制御用デジタルIC10へ供給する。
また、電圧出力端子Vout(+),Vout(-)間の出力電圧は、制御用デジタルIC10の駆動電圧Vccとして、制御用デジタルIC10へ供給される。
制御用デジタルIC10は、上述の実施形態に示すように、駆動電圧Vccにより駆動し、第1モニタ信号Vm1、第2モニタ信号Vm2、電圧検出部101からの検出電圧信号Voに基づいて、出力電圧が所定電圧レベルに制御されるように、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を生成する。
駆動回路103は、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2を入力し、少なくとも第2スイッチング素子Q2を駆動可能なレベルの信号に昇圧する。駆動回路103は、第1スイッチング制御信号Vgs1を第1スイッチング素子Q1へ出力し、第2スイッチング制御信号Vgs2を第2スイッチング素子Q2へ出力する。
このような構成とすることで、第2スイッチ回路S2の第2スイッチング素子Q2を制御用スイッチング素子とし、第1スイッチ回路S1の第1スイッチング素子Q1をダイオードの代わりに利用した、所謂ハーフブリッジ型の非絶縁型降圧コンバータを構成することができる。そして、このような構成であっても、上述のスイッチング制御を用いることで、高信頼且つ高効率の非絶縁型の降圧コンバータを実現することができる。
[第9実施形態]
次に、第9の実施形態に係るスイッチング電源について図を参照して説明する。図17は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第1の実施形態の図1に示したフライバック方式のスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgssは、第2の絶縁伝達手段102’を介して、スイッチング素子Qsへ与えられる。なお、スイッチ制御信号Vgssは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qsへ与えられる。
次に、第9の実施形態に係るスイッチング電源について図を参照して説明する。図17は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第1の実施形態の図1に示したフライバック方式のスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgssは、第2の絶縁伝達手段102’を介して、スイッチング素子Qsへ与えられる。なお、スイッチ制御信号Vgssは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qsへ与えられる。
なお、本実施形態においても、上述の第1の実施形態と同様に、図18に示すように、入力電源Viに対してキャパシタCrが直列接続されるような回路構成であってもよい。図18は、第9の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。
これらのような構成であっても、上述の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第10実施形態]
次に、第10の実施形態に係るスイッチング電源について図を参照して説明する。図19は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第2の実施形態の図6に示したフォワード方式のスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、整流側同期整流素子に相当するスイッチング素子Qsおよび転流側同期整流素子に相当するスイッチング素子Qfは、トランスTの2次巻線nsの磁束変化にしたがって相補的にオン・オフ駆動を行うような自己駆動型同期整流回路を構成している。
次に、第10の実施形態に係るスイッチング電源について図を参照して説明する。図19は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第2の実施形態の図6に示したフォワード方式のスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、整流側同期整流素子に相当するスイッチング素子Qsおよび転流側同期整流素子に相当するスイッチング素子Qfは、トランスTの2次巻線nsの磁束変化にしたがって相補的にオン・オフ駆動を行うような自己駆動型同期整流回路を構成している。
このような構成であっても、上述の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第11実施形態]
次に、第11の実施形態に係るスイッチング電源について図を参照して説明する。図20は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第3の実施形態の図7に示したスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssおよびスイッチング素子Qfに対するスイッチ制御信号Vgsfも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。また、制御用デジタルIC10は、スイッチング素子Qfを、第1の実施形態に示したダイオードDfと同様の動作となるようにスイッチ制御信号Vgsfを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgss,Vgsfは、第2の絶縁伝達手段102’を介して、スイッチング素子Qs,Qfへ与えられる。なお、スイッチ制御信号Vgss,Vgsfは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qs,Qfへ与えられる。
次に、第11の実施形態に係るスイッチング電源について図を参照して説明する。図20は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第3の実施形態の図7に示したスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssおよびスイッチング素子Qfに対するスイッチ制御信号Vgsfも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。また、制御用デジタルIC10は、スイッチング素子Qfを、第1の実施形態に示したダイオードDfと同様の動作となるようにスイッチ制御信号Vgsfを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgss,Vgsfは、第2の絶縁伝達手段102’を介して、スイッチング素子Qs,Qfへ与えられる。なお、スイッチ制御信号Vgss,Vgsfは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qs,Qfへ与えられる。
なお、本実施形態においても、上述の第3の実施形態と同様に、図21に示すように、入力電源Viに対してキャパシタCrが直列接続されるような回路構成であってもよい。図21は、第11の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。
これらのような構成であっても、上述の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第12実施形態]
次に、第12の実施形態に係るスイッチング電源について図を参照して説明する。図22は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第4の実施形態の図10に示したセンタータップ型の全波整流回路を備えるスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssおよびスイッチング素子Qfに対するスイッチ制御信号Vgsfも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。また、制御用デジタルIC10は、スイッチング素子Qfを、第1の実施形態に示したダイオードDfと同様の動作となるようにスイッチ制御信号Vgsfを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgss,Vgsfは、第2の絶縁伝達手段102’を介して、スイッチング素子Qs,Qfへ与えられる。なお、スイッチ制御信号Vgss,Vgsfは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qs,Qfへ与えられる。
次に、第12の実施形態に係るスイッチング電源について図を参照して説明する。図22は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第4の実施形態の図10に示したセンタータップ型の全波整流回路を備えるスイッチング電源において、2次側のダイオードDsをスイッチング素子Qsに置き換え、ダイオードDfをスイッチング素子Qfに置き換えたものである。このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssおよびスイッチング素子Qfに対するスイッチ制御信号Vgsfも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第1の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。また、制御用デジタルIC10は、スイッチング素子Qfを、第1の実施形態に示したダイオードDfと同様の動作となるようにスイッチ制御信号Vgsfを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgss,Vgsfは、第2の絶縁伝達手段102’を介して、スイッチング素子Qs,Qfへ与えられる。なお、スイッチ制御信号Vgss,Vgsfは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qs,Qfへ与えられる。
なお、本実施形態においても、上述の第4の実施形態と同様に、図23に示すように、入力電源Viに対してキャパシタCrが直列接続されるような回路構成であってもよい。図23は、第12の実施形態に示す他の回路構成からなるスイッチング電源の回路図である。
これらのような構成であっても、上述の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
[第13実施形態]
次に、第13の実施形態に係るスイッチング電源について図を参照して説明する。図24は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第7の実施形態の図15に示した非絶縁型の昇降圧コンバータにおいて、1次側のダイオードDsをスイッチング素子Qsに置き換えたものである。
次に、第13の実施形態に係るスイッチング電源について図を参照して説明する。図24は、本実施形態のスイッチング電源の回路図である。
本実施形態のスイッチング電源は、第7の実施形態の図15に示した非絶縁型の昇降圧コンバータにおいて、1次側のダイオードDsをスイッチング素子Qsに置き換えたものである。
このような構成では、制御用デジタルIC10は、第1スイッチ回路S1の第1スイッチング素子Q1および第2スイッチ回路S2の第2スイッチング素子Q2とともに、スイッチング素子Qsに対するスイッチ制御信号Vgssも生成する。この際、制御用デジタルIC10は、スイッチング素子Qsを、第7の実施形態に示したダイオードDsと同様の動作となるようにスイッチ制御信号Vgssを生成する。このように、制御用デジタルIC10で生成されたスイッチ制御信号Vgssは、スイッチング素子Qsへ与えられる。なお、スイッチ制御信号Vgssは、第1スイッチング制御信号Vgs1および第2スイッチング制御信号Vgs2と同様に、必要に応じて駆動回路等により昇圧した後に、スイッチング素子Qsへ与えられる。
このような構成であっても、上述の実施形態に示したスイッチング制御を適用することができ、同様の作用効果を得ることができる。
なお、上述の各実施形態は、本発明のスイッチング制御を適用可能な代表的な回路例を示したものであり、これら実施形態の組み合わせ等から容易に類推される回路からなるスイッチング電源についても、上述のような作用効果を当然に得られるものである。
また、上述の実施形態では、スイッチング素子のドレインソース間電圧の変化に基づくモニタ信号を用いて例を示したが、例えば、第1の実施形態の1次側回路の構成において、スイッチング素子Q1と1次巻線npのスイッチング素子側とを接続する伝送ラインにホールセンサを設け、当該ホールセンサからの出力をモニタ信号として利用することもできる。これにより、スイッチング素子に流れる電流の変化に基づくモニタ信号を生成することもできる。
また、上述の各実施形態では、一つのモニタ信号に対して、第1スイッチング制御信号Vgs1用と第2スイッチング制御信号Vgs2用の二つの閾値を設定する例を示したが、スイッチング制御信号毎にモニタ信号を設定し、各モニタ信号に対してそれぞれ閾値を設定するようにしてもよい。この際、バイアス巻線が配置されている形態であれば、バイアス巻線からの出力をモニタ信号に利用しても良い。
10-制御用デジタルIC、111,112-コンパレータ、12-ADC、13-CPU、131-加算器、132-電圧補償部、133-差分回路、141,142-駆動パルス生成部、101-電圧検出部、102,102’-絶縁伝達手段、103-駆動回路、104-カレントトランス回路
Claims (24)
- 直流入力電圧Viが入力される直流電源入力部と、
一つの磁性部品で構成され、磁気的に結合された第1の1次巻線npと、第1の2次巻線ns1と、を少なくとも備えたトランスTと、
前記第1の1次巻線npに直列に接続されたインダクタLrと、
第1のスイッチング素子Q1と、第1のキャパシタC1と、第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、
第2のスイッチング素子Q2と、第2のキャパシタC2と、第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、
第3のキャパシタCrと、
前記直流電源入力部の両端に接続され、前記第1の1次巻線npと前記第1のスイッチ回路S1とが直列に接続された第1の直列回路と、
前記第1のスイッチ回路S1の両端、または前記第1の1次巻線npの両端に接続され、前記第2のスイッチ回路S2と前記第3のコンデンサCrとが直列に接続された第2の直列回路と、を備え、
前記第1のスイッチ回路S1と前記第2のスイッチ回路S2は、共にオフである期間を挟んで互いに相補的にオン・オフを繰り返すように動作するように構成され、
前記第1の2次巻線ns1から出力される交流電圧を整流平滑する第1の整流平滑回路を介して2次側に出力電圧Voutが出力されるように構成された電力変換回路を備えたスイッチング電源装置であって、
前記第1のスイッチ回路S1または前記第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する前記電力変換回路の等価回路の変化に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段と、
前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2を制御するデジタル制御回路と、を有し、
前記デジタル制御回路は、前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、
前記オン時間の開始タイミングは、前記モニタ信号をトリガとして入力し、前記クロック信号に基づくタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、
前記オン時間の停止タイミングは、前記演算処理により設定されたオン時間にしたがって前記クロック信号に基づいたタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオフさせるための制御信号を生成することを特徴とするスイッチング電源装置。 - 前記スイッチング電源装置は、出力電圧Voutを検出するための出力電圧検出手段を備え、
前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のどちらか一方のオン時間は、前記出力電圧検出手段によって検出された値に基づいて決定されることを特徴とする請求項1に記載のスイッチング電源装置。 - 前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のうち、他方のオン時間は、設定可能なスイッチング周期Tsから、前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のどちらか一方のオン時間を減算することによって決定されることを特徴とする請求項2に記載のスイッチング電源装置。
- 前記第1のスイッチ回路S1が導通状態、または前記第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、前記第1の1次巻線npと前記第1の2次巻線ns1は、その磁気極性を逆極性としたことを特徴とする請求項1乃至3に記載のスイッチング電源装置。
- 前記第1のスイッチ回路S1が導通状態、または前記第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、前記第1の1次巻線npと前記第1の2次巻線ns1は、その磁気極性を同極性としたことを特徴とする請求項1乃至3に記載のスイッチング電源装置。
- 前記トランスTはさらに第2の2次巻線ns2を備え、前記第1の2次巻線ns1と前記第2の2次巻線ns2は直列に接続されており、前記第1のスイッチ回路S1が導通状態、または前記第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、前記第1の1次巻線npと前記第1の2次巻線ns1、及び前記第1の1次巻線npと前記第2の2次巻線ns2は、その磁気極性を同極性とし、
前記第1の整流平滑回路は、センタータップ型の全波整流回路と、少なくとも1つのフィルタインダクタLoと、少なくとも1つの平滑コンデンサCoからなることを特徴とする請求項1乃至3に記載のスイッチング電源装置。 - 前記トランスTはさらに第2の2次巻線ns2を備え、前記第1の2次巻線ns1と前記第2の2次巻線ns2は直列に接続されており、前記第1のスイッチ回路S1が導通状態、または前記第2のスイッチ回路S2が導通状態のときに流れる電流の向きに対して、前記第1の1次巻線npと前記第1の2次巻線ns1は、その磁気極性を逆極性とし、前記第1の1次巻線npと前記第2の2次巻線ns2は、その磁気極性を同極性とし、
前記第1の整流平滑回路は、前記第2の2次巻線ns2の両端にそれぞれ整流素子のカソード側が接続され、前記整流素子のアノード側は共通接続されており、前記第1の2次巻線ns1の他端に少なくとも1つのフィルタインダクタLoの一端が接続され、前記フィルタインダクタLoの他端と前記整流素子のアノードとの間に少なくとも1つの平滑コンデンサCoが接続される構成であることを特徴とする請求項1乃至3に記載のスイッチング電源装置。 - 前記フィルタインダクタLoとして、前記トランスTの2次側漏れ磁束を利用することを特徴とする請求項7に記載のスイッチング電源装置。
- 前記第1の2次巻線ns1と前記第2の2次巻線ns2の巻数比が1:2であることを特徴とする請求項7または8のいずれかに記載のスイッチング電源装置。
- 前記トランスTはさらに第2の1次巻線nbを備え、前記第2の1次巻線nbの一端は前記直流入力電源Viの低電位側に接続され、他端は第2の整流平滑回路を介して前記デジタル制御回路用の直流電源電圧として供給されるようにしたことを特徴とする請求項1乃至9に記載のスイッチング電源装置。
- 直流入力電圧Viが入力される直流電源入力部と、
一つの磁性部品で構成されたインダクタLpと、
第1のスイッチング素子Q1と、第1のキャパシタC1と、第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、
第2のスイッチング素子Q2と、第2のキャパシタC2と、第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、
第3のキャパシタCrと、
前記直流電源入力部の両端に接続され、前記インダクタLpと前記第1のスイッチ回路S1とが直列に接続された第1の直列回路と、
前記第1のスイッチ回路S1の両端、または前記インダクタLpの両端に接続され、前記第2のスイッチ回路S2と前記第3のコンデンサCrとが直列に接続された第2の直列回路と、を備え、
前記第1のスイッチ回路S1と前記第2のスイッチ回路S2は、共にオフである期間を挟んで互いに相補的にオン・オフを繰り返すように動作するように構成され、
前記インダクタLpと前記第1のスイッチ回路S1との接続点にアノードが接続される整流素子と、前記整流素子のカソードに一端が接続され、前記インダクタLpに対して並列に接続される第4のキャパシタCoからなる第1の整流平滑回路を介して出力電圧Voutが出力されるように構成されたスイッチング電源装置であって、
前記第1のスイッチ回路S1または前記第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する前記電力変換回路の等価回路の変化に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段と、
前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2を制御するデジタル制御回路と、を有し、
前記デジタル制御回路は、前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、
前記オン時間の開始タイミングは、前記モニタ信号をトリガとして入力し、前記クロック信号に基づくタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、
前記オン時間の停止タイミングは、前記演算処理により設定されたオン時間にしたがって前記クロック信号に基づいたタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオフさせるための制御信号を生成することを特徴とするスイッチング電源装置。 - 前記第1の整流平滑回路の整流素子は電界効果トランジスタであることを特徴とする請求項1乃至11に記載の絶縁型スイッチング電源装置。
- 前記第1の整流平滑回路の整流素子が、前記デジタル制御回路によってオン・オフ制御されることを特徴とする請求項14に記載の絶縁型スイッチング電源装置。
- 直流入力電圧Viが入力される直流電源入力部と、
一つの磁性部品で構成されたインダクタLpと、
第1のスイッチング素子Q1と、第1のキャパシタC1と、第1のダイオードD1の並列回路からなる第1のスイッチ回路S1と、
第2のスイッチング素子Q2と、第2のキャパシタC2と、第2のダイオードD2の並列回路からなる第2のスイッチ回路S2と、
前記直流電源入力部の両端に前記第1のスイッチ回路S1と前記第2のスイッチ回路S2からなる直列回路が接続され、
前記第1のスイッチ回路S1と前記第2のスイッチ回路S2との接続点に前記インダクタLpの一端が接続され、他端からは前記第1のスイッチ回路S1に対して並列に接続される第3のキャパシタCoを介して出力電圧Voutが出力されるように構成されたスイッチング電源装置であって、
前記第1のスイッチ回路S1と前記第2のスイッチ回路S2は、共にオフである期間を挟んで互いに相補的にオン/オフを繰り返すように動作するように構成され、
前記第1のスイッチ回路S1または前記第2のスイッチ回路S2のうち、オン状態にある方のスイッチ回路がターンオフされることによって発生する前記電力変換回路の等価回路に基づく電圧もしくは電流変化を検出してモニタ信号を生成する第1のモニタ信号生成手段と、
前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2を制御するデジタル制御回路と、を有し、
前記デジタル制御回路は、前記第1のスイッチング素子Q1及び前記第2のスイッチング素子Q2のオン時間を、クロック信号に基づくタイミングで演算処理により設定するとともに、
前記オン時間の開始タイミングは、前記モニタ信号をトリガとして入力し、前記クロック信号に基づくタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオンさせるための制御信号を生成し、
前記オン時間の停止タイミングは、前記演算処理により設定されたオン時間にしたがって前記クロック信号に基づいたタイミングで決定され、これに基づいて前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2をターンオフさせるための制御信号を生成することを特徴とするスイッチング電源装置。 - 前記スイッチング電源装置は、出力電圧Voutを検出するための出力電圧検出手段を備え、
前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のどちらか一方のオン時間は、前記出力電圧検出手段によって検出された値に基づいて決定されることを特徴とする請求項11乃至14に記載のスイッチング電源装置。 - 前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のうち、他方のオン時間は、設定可能なスイッチング周期Tsから、前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2のどちらか一方のオン時間を減算することによって決定されることを特徴とする請求項15に記載のスイッチング電源装置。
- 前記第1のスイッチ回路S1または前記第2のスイッチ回路S2は電界効果トランジスタであることを特徴とする請求項1乃至16のいずれかに記載のスイッチング電源装置。
- 前記第1のスイッチ回路S1または前記第2のスイッチ回路S2はスイッチ回路両端の電圧が0Vまたは0V付近まで低下してからスイッチング素子Q1またはQ2がターンオンする動作となるゼロ電圧スイッチング動作にて駆動されることを特徴とする請求項17に記載のスイッチング電源装置。
- 前記第1のモニタ信号生成手段は、前記インダクタLrに流れる電流を検出するためのカレントトランスであることを特徴とする請求項1乃至18に記載のスイッチング電源装置。
- 前記第1のモニタ信号生成手段は、前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2の少なくとも1つのドレイン-ソース間電圧の変化を利用したものであることを特徴とする請求項1乃至19に記載のスイッチング電源装置。
- 前記第1のモニタ信号生成手段は、前記第1のスイッチング素子Q1または前記第2のスイッチング素子Q2の少なくとも1つのドレイン-ソース間電流の変化を利用したものであることを特徴とする請求項1乃至20に記載のスイッチング電源装置。
- 前記第1のモニタ信号生成手段は、前記第2の1次巻線nbの両端に生じる電圧変化を利用したものであることを特徴とする請求項10に記載のスイッチング電源装置。
- 前記デジタル制御回路はDSPであることを特徴とする請求項1乃至22のいずれかに記載のスイッチング電源装置。
- 前記デジタル制御回路はFPGAであることを特徴とする請求項1乃至23に記載のスイッチング電源装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080016323.XA CN102396139B (zh) | 2009-04-14 | 2010-03-26 | 开关电源装置 |
EP10764345.4A EP2421136B1 (en) | 2009-04-14 | 2010-03-26 | Switching power supply unit |
JP2011509251A JP5447506B2 (ja) | 2009-04-14 | 2010-03-26 | スイッチング電源装置 |
US13/272,387 US8582326B2 (en) | 2009-04-14 | 2011-10-13 | Switching power supply apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098182 | 2009-04-14 | ||
JP2009-098182 | 2009-04-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/272,387 Continuation US8582326B2 (en) | 2009-04-14 | 2011-10-13 | Switching power supply apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119760A1 true WO2010119760A1 (ja) | 2010-10-21 |
Family
ID=42982425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055339 WO2010119760A1 (ja) | 2009-04-14 | 2010-03-26 | スイッチング電源装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8582326B2 (ja) |
EP (1) | EP2421136B1 (ja) |
JP (1) | JP5447506B2 (ja) |
CN (1) | CN102396139B (ja) |
WO (1) | WO2010119760A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013021857A1 (ja) * | 2011-08-11 | 2013-02-14 | 株式会社村田製作所 | スイッチング電源装置 |
JP2013153620A (ja) * | 2012-01-26 | 2013-08-08 | Fuji Electric Co Ltd | スイッチング電源装置 |
JP2014064359A (ja) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | スイッチング電源装置 |
JP2015039284A (ja) * | 2013-07-17 | 2015-02-26 | 富士電機株式会社 | スイッチング電源の制御装置 |
JP2017147854A (ja) * | 2016-02-17 | 2017-08-24 | 富士電機株式会社 | スイッチング電源装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825468B (zh) * | 2013-02-18 | 2018-07-10 | 台湾快捷国际股份有限公司 | 返驰式功率转换器的控制电路 |
JP5642224B2 (ja) * | 2013-04-09 | 2014-12-17 | 三菱電機株式会社 | 車両用電源装置 |
US9276483B2 (en) * | 2013-06-27 | 2016-03-01 | System General Corporation | Control circuit for active-clamp flyback power converter with programmable switching period |
TWI574499B (zh) | 2014-09-12 | 2017-03-11 | Alpha And Omega Semiconductor (Cayman) Ltd | Fixed on-time switching type switching device |
TWI556563B (zh) | 2014-09-12 | 2016-11-01 | Alpha & Omega Semiconductor Cayman Ltd | Fixed on-time switching type switching device |
TWI565211B (zh) | 2014-09-12 | 2017-01-01 | Alpha And Omega Semiconductor (Cayman) Ltd | Constant on-time switching converter means |
TWI581555B (zh) | 2014-09-12 | 2017-05-01 | Alpha And Omega Semiconductor (Cayman) Ltd | 固定導通時間切換式轉換裝置 |
TWI549412B (zh) * | 2014-09-12 | 2016-09-11 | Alpha & Omega Semiconductor Cayman Ltd | Fixed on-time switching type switching device |
CN107390578A (zh) * | 2017-07-25 | 2017-11-24 | 环球智达科技(北京)有限公司 | 显示设备的感应控制方法 |
CN109698629A (zh) * | 2019-01-07 | 2019-04-30 | 上海奥令科电子科技有限公司 | 一种大功率直流电源 |
CN111525802B (zh) * | 2019-02-01 | 2021-08-06 | 台达电子工业股份有限公司 | 变换装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0476185U (ja) * | 1990-11-15 | 1992-07-02 | ||
JP2000116147A (ja) * | 1998-07-27 | 2000-04-21 | Toshiba Lighting & Technology Corp | 電源装置、放電灯点灯装置および照明装置 |
JP2001037220A (ja) * | 1998-10-29 | 2001-02-09 | Murata Mfg Co Ltd | スイッチング電源装置 |
JP2001258569A (ja) * | 2000-03-17 | 2001-09-25 | Tosoh Corp | 腸炎ビブリオ菌検出のためのオリゴヌクレオチド |
JP2002209381A (ja) * | 2000-11-10 | 2002-07-26 | Fuji Electric Co Ltd | Dc/dcコンバータとその制御方法 |
JP2003009528A (ja) * | 2001-04-19 | 2003-01-10 | Yokogawa Electric Corp | Dc/dcコンバータ及びdc/dcコンバータの制御方法 |
JP2004312913A (ja) * | 2003-04-09 | 2004-11-04 | Fuji Electric Device Technology Co Ltd | 降圧型dc−dcコンバータ |
JP2005184964A (ja) * | 2003-12-18 | 2005-07-07 | Renesas Technology Corp | 電源装置及びその制御方法 |
WO2005076447A1 (ja) | 2004-02-03 | 2005-08-18 | Murata Manufacturing Co., Ltd. | スイッチング電源装置 |
JP2007097379A (ja) * | 2005-09-30 | 2007-04-12 | Sanken Electric Co Ltd | Dc−dcコンバータ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE8605266L (sv) * | 1986-12-09 | 1988-06-10 | Ragnar Jonsson | Switch-koppling |
JPH05252795A (ja) | 1992-03-04 | 1993-09-28 | Toshiba Corp | インバータのデジタル電流制御装置 |
US5430633A (en) * | 1993-09-14 | 1995-07-04 | Astec International, Ltd. | Multi-resonant clamped flyback converter |
US5736842A (en) * | 1996-07-11 | 1998-04-07 | Delta Electronics, Inc. | Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters |
US5808879A (en) * | 1996-12-26 | 1998-09-15 | Philips Electronics North America Corporatin | Half-bridge zero-voltage-switched PWM flyback DC/DC converter |
JP2000069746A (ja) * | 1998-08-21 | 2000-03-03 | Fujitsu Ltd | Dc−dcコンバータの制御方法、dc−dcコンバータの制御回路、及び、dc−dcコンバータ |
JP2001258269A (ja) * | 2000-03-15 | 2001-09-21 | Kawasaki Steel Corp | ソフトスイッチングdc−dcコンバータ |
US6562955B2 (en) | 2000-03-17 | 2003-05-13 | Tosoh Corporation | Oligonucleotides for detection of Vibrio parahaemolyticus and detection method for Vibrio parahaemolyticus using the same oligonucleotides |
US6466462B2 (en) | 2000-10-31 | 2002-10-15 | Yokogawa Electric Corporation | DC/DC converter having a control circuit to reduce losses at light loads |
JP3740385B2 (ja) | 2001-06-04 | 2006-02-01 | Tdk株式会社 | スイッチング電源装置 |
US20030179592A1 (en) * | 2002-03-25 | 2003-09-25 | Yokogawa Electric Corporation | DC/DC converter and method for controlling same |
JP4345839B2 (ja) * | 2007-04-16 | 2009-10-14 | 株式会社デンソー | 電力変換装置 |
US7787263B2 (en) * | 2007-05-18 | 2010-08-31 | Texas Instruments Incorporated | Methods and apparatus to control a digital power supply |
US7924579B2 (en) * | 2008-02-05 | 2011-04-12 | Cisco Technology, Inc. | Fly-forward converter power supply |
-
2010
- 2010-03-26 CN CN201080016323.XA patent/CN102396139B/zh not_active Expired - Fee Related
- 2010-03-26 EP EP10764345.4A patent/EP2421136B1/en active Active
- 2010-03-26 WO PCT/JP2010/055339 patent/WO2010119760A1/ja active Application Filing
- 2010-03-26 JP JP2011509251A patent/JP5447506B2/ja not_active Expired - Fee Related
-
2011
- 2011-10-13 US US13/272,387 patent/US8582326B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0476185U (ja) * | 1990-11-15 | 1992-07-02 | ||
JP2000116147A (ja) * | 1998-07-27 | 2000-04-21 | Toshiba Lighting & Technology Corp | 電源装置、放電灯点灯装置および照明装置 |
JP2001037220A (ja) * | 1998-10-29 | 2001-02-09 | Murata Mfg Co Ltd | スイッチング電源装置 |
JP2001258569A (ja) * | 2000-03-17 | 2001-09-25 | Tosoh Corp | 腸炎ビブリオ菌検出のためのオリゴヌクレオチド |
JP2002209381A (ja) * | 2000-11-10 | 2002-07-26 | Fuji Electric Co Ltd | Dc/dcコンバータとその制御方法 |
JP2003009528A (ja) * | 2001-04-19 | 2003-01-10 | Yokogawa Electric Corp | Dc/dcコンバータ及びdc/dcコンバータの制御方法 |
JP2004312913A (ja) * | 2003-04-09 | 2004-11-04 | Fuji Electric Device Technology Co Ltd | 降圧型dc−dcコンバータ |
JP2005184964A (ja) * | 2003-12-18 | 2005-07-07 | Renesas Technology Corp | 電源装置及びその制御方法 |
WO2005076447A1 (ja) | 2004-02-03 | 2005-08-18 | Murata Manufacturing Co., Ltd. | スイッチング電源装置 |
JP2007097379A (ja) * | 2005-09-30 | 2007-04-12 | Sanken Electric Co Ltd | Dc−dcコンバータ |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013021857A1 (ja) * | 2011-08-11 | 2013-02-14 | 株式会社村田製作所 | スイッチング電源装置 |
GB2507676A (en) * | 2011-08-11 | 2014-05-07 | Murata Manufacturing Co | Switching power supply device |
JPWO2013021857A1 (ja) * | 2011-08-11 | 2015-03-05 | 株式会社村田製作所 | スイッチング電源装置 |
US9397575B2 (en) | 2011-08-11 | 2016-07-19 | Murata Manufacturing Co., Ltd. | Switching power supply device |
GB2507676B (en) * | 2011-08-11 | 2018-05-30 | Murata Manufacturing Co | Switching power supply device |
JP2013153620A (ja) * | 2012-01-26 | 2013-08-08 | Fuji Electric Co Ltd | スイッチング電源装置 |
JP2014064359A (ja) * | 2012-09-20 | 2014-04-10 | Fuji Electric Co Ltd | スイッチング電源装置 |
JP2015039284A (ja) * | 2013-07-17 | 2015-02-26 | 富士電機株式会社 | スイッチング電源の制御装置 |
JP2017147854A (ja) * | 2016-02-17 | 2017-08-24 | 富士電機株式会社 | スイッチング電源装置 |
Also Published As
Publication number | Publication date |
---|---|
US20120033454A1 (en) | 2012-02-09 |
US8582326B2 (en) | 2013-11-12 |
JPWO2010119760A1 (ja) | 2012-10-22 |
CN102396139A (zh) | 2012-03-28 |
EP2421136A1 (en) | 2012-02-22 |
CN102396139B (zh) | 2015-11-25 |
JP5447506B2 (ja) | 2014-03-19 |
EP2421136B1 (en) | 2019-05-08 |
EP2421136A4 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5447506B2 (ja) | スイッチング電源装置 | |
JP5447507B2 (ja) | スイッチング電源装置 | |
US10250152B2 (en) | Forced zero voltage switching flyback converter | |
US9899931B1 (en) | Zero voltage switching flyback converter for primary switch turn-off transitions | |
US11870350B2 (en) | Switched-mode power controller with multi-mode startup | |
JP5088386B2 (ja) | スイッチング電源装置 | |
US9812977B2 (en) | Resonant converters with an improved voltage regulation range | |
TWI542128B (zh) | 直流至直流轉換器系統及用於直流至直流轉換的方法 | |
US20140098574A1 (en) | Switching power supply device | |
JP5991078B2 (ja) | スイッチング電源装置 | |
WO2015067202A2 (en) | Startup method and system for resonant converters | |
US8970067B2 (en) | Hybrid DC/DC converters and methods | |
US7821239B2 (en) | Switching power supply | |
WO2021176319A1 (en) | Auto-tuned synchronous rectifier controller | |
JP2013090432A (ja) | フォワード形直流−直流変換装置 | |
JP5644954B2 (ja) | 絶縁型スイッチング電源装置 | |
JP2016119776A (ja) | スイッチング電源装置 | |
Kathiresan et al. | Analysis of a ZVS DC-DC full-bridge converter with natural hold-up time | |
WO2019113893A1 (en) | Control circuits for driving power switches of isolated forward converters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080016323.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764345 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011509251 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010764345 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |