WO2010119502A1 - 金属珪素の精製方法 - Google Patents
金属珪素の精製方法 Download PDFInfo
- Publication number
- WO2010119502A1 WO2010119502A1 PCT/JP2009/057478 JP2009057478W WO2010119502A1 WO 2010119502 A1 WO2010119502 A1 WO 2010119502A1 JP 2009057478 W JP2009057478 W JP 2009057478W WO 2010119502 A1 WO2010119502 A1 WO 2010119502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- metal
- impurities
- metal silicon
- concentration
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
Definitions
- the present invention relates to a method for purifying metal silicon, which removes impurities from metal silicon in a short process and at low cost, thereby purifying the metal silicon.
- the concentration of the impurity component of silicon used in this solar cell silicon wafer is not required to be as high as that of semiconductor silicon. That is, the required purity of silicon for semiconductors is preferably as low as possible, and the purity of silicon is 99.999999999%, whereas silicon for solar cells is required 99.9999%.
- silicon for solar cells is derived from silicon for semiconductors or derivatives thereof, the amount of circulation thereof is affected by the semiconductor industry, and is unable to meet the demand for silicon for solar cells. It was. For this reason, it has been studied to improve the purity of metal silicon having an industrially sufficient production amount and use it as silicon for solar cells.
- high-purity silicon is used, and it can be used as a negative electrode active material for Li-ion batteries and high polishing speed can be achieved during polishing.
- the development of new applications is also planned by using the various physical, chemical and thermodynamic properties of silicon to form new forms that have never existed before.
- the main impurities of metallic silicon are metallic elements such as iron, aluminum, calcium and titanium, and nonmetallic elements such as boron and phosphorus which act as dopants when silicon is used as a semiconductor material.
- the solidification distribution coefficient with silicon is very small, so if you use the solidification segregation phenomenon, you can obtain a portion with a low metal impurity component concentration from the initial solidification phase to the middle phase, and acquire only that portion. Then, silicon with a low metal impurity concentration can be obtained.
- JP-A-1-56312 proposes a method for improving the purity of silicon by solid-directional solidification after filtering solid impurities in molten silicon.
- Patent Document 2 improves the purity of silicon by immersing a hollow rotating cooling body in molten silicon and crystallizing silicon on the outer peripheral surface of the cooling body. There is a proposed method. It is clear that this method is a form of unidirectional solidification in that silicon is deposited in the direction centering on the cooling body and the purity of silicon can be improved.
- Patent Document 3 contains silicon containing impurity elements such as B, C, P, Fe, Al, etc., and silica having gas blowing tuyere at the bottom as the main components.
- the amount of impurities can be reduced by blowing Ar or H 2 or a mixed gas thereof, oxidizing gas or HCl gas from the tuyere and adding SiO 2 , CaO, CaCl 2 or CaF 2.
- a method of reducing is proposed.
- Patent Document 4 JP-A-5-262512 (Patent Document 4), by irradiating a molten plasma surface with a thermal plasma gas added with water vapor and hydrogen chloride gas, and adding sodium chloride to the plasma gas, boron, A method for reducing the concentration of iron and aluminum is disclosed.
- Patent Document 5 the furnace pressure during electron beam melting is maintained at 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 Torr, and Ar gas is sprayed onto the surface of molten silicon.
- a method for reducing the concentration of phosphorus, aluminum, calcium and the like has been proposed.
- Patent Document 6 discloses that when silicon is dissolved and purified by an electron beam, an oxide such as SiO 2 or CaO is added as an oxygen source, or H 2 O, O A method of removing C and B by adding an oxidizing gas such as 2 to the bath has been proposed.
- metal silicon cannot be used as silicon for solar cells only by performing each technique separately. By combining a plurality of technical elements, silicon for solar cells can be obtained.
- the method for removing impurities in the metal silicon differs depending on the type of element to be removed.
- Technology for improving the purity of metallic silicon has been particularly studied for silicon purification for solar cells, and a method for producing silicon for solar cells from metallic silicon has been established by a combination of several technologies.
- Patent Document 7 Metallic silicon is melted under vacuum, and phosphorus contained therein is vaporized and dephosphorized, and then solidified to remove impurity components from the molten metal to obtain an ingot.
- D. The molten metal after the deoxidation is cast into a mold and solidified in one direction to obtain an ingot.
- molten metal silicon obtained by refining silicon oxide is transferred to a pan, solidified after oxidizing and removing boron and carbon in an oxidizing atmosphere, and subsequently subjected to the B, C, D, and E steps to obtain metal.
- a method for obtaining polycrystalline silicon for solar cells from silicon is disclosed.
- Patent Document 8 discloses that volatile metal is obtained by pulverizing metal silicon and using acid-treated high-purity metal silicon having a purity of 4N or more as a raw material and dissolving it with an electron beam under vacuum. Impurities are evaporated and removed as oxides, and then the crude purified raw material, in which silicon is ingot by solidification rough purification to cut and remove the concentrated portion of heavy metal impurities, is plasma-dissolved in an oxidizing atmosphere to convert nonvolatile impurities into oxides Evaporate and remove as Furthermore, a method for producing silicon for solar cells by ingoting silicon by solidification finishing purification and cutting and removing the heavy metal impurity concentration portion again has been proposed.
- Patent Document 7 the method of Japanese Patent No. 3325900 (Patent Document 7) requires many steps and complicated processing.
- Patent Document 8 the method disclosed in Japanese Patent Application Laid-Open No. 2000-327488 (Patent Document 8) requires a long process and requires pulverization of silicon, acid treatment, pH adjustment, etc., and the process is complicated and can be avoided. It includes even the desired process.
- the above prior art is not satisfactory, and further improvement has been demanded.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for refining metallic silicon which is a short process and low cost.
- the present inventor has obtained metal silicon by reducing silicon oxide, and then gas blowing the metal silicon to obtain Fe, Ti, Al, Ca, etc.
- the impurity metal element and impurities such as B and P are removed.
- This is further solidified in one direction to remove impurity metal elements such as Fe in particular, and then melted by an electron beam under reduced pressure to vaporize and remove impurities such as B and P in particular, thereby reducing the cost and cost.
- impurities other than metal components such as B and P as well as metal components such as Fe in metal silicon can be removed to obtain highly purified metal silicon, and the present invention has been achieved. It was.
- the present invention provides the following method for purifying metallic silicon.
- ⁇ 1> (1) Step of obtaining metallic silicon by reducing silicon oxide, (2) A process of removing impurities by gas blowing the metal silicon, (3) A step of melting and unidirectionally solidifying metallic silicon from which the impurities have been removed (4) a step of removing a low-purity portion from unidirectionally solidified metal silicon, and (5) a step of vaporizing and removing impurities by melting the metal silicon from which the low-purity portion has been removed under reduced pressure.
- a method for purifying metallic silicon wherein ⁇ 2> The method for purifying metal silicon according to ⁇ 1>, wherein the concentration of iron in the metal silicon obtained in the silicon oxide reduction step is 300 to 800 ppm.
- ⁇ 3> The method for purifying metal silicon according to ⁇ 1> or ⁇ 2>, wherein the concentration of boron in the metal silicon obtained in the silicon oxide reduction step is 20 ppm or less.
- ⁇ 4> The method for purifying metal silicon according to ⁇ 1>, ⁇ 2>, or ⁇ 3>, wherein the blowing gas used in the gas blowing treatment step includes at least chlorine gas and water vapor.
- the blowing gas used in the gas blowing treatment step includes at least chlorine gas and water vapor.
- one or two or more salts selected from CaO, SiO 2 , CaF 2 , Al 2 O 3 , Na 2 O and MgO are added as molten flux to the metal silicon.
- ⁇ 1> to ⁇ 4> The method for purifying metal silicon according to any one of ⁇ 4>.
- ⁇ 6> The method for purifying metal silicon according to any one of ⁇ 1> to ⁇ 5>, wherein the concentration of boron in the metal silicon obtained in the gas blowing treatment step
- the present invention it is possible to obtain highly purified metal silicon that is efficiently removed in a short process and purified at low cost, in addition to impurity metal elements such as Fe, as well as impurities other than metal components such as B and P.
- the metallic silicon obtained by the present invention can be suitably used for solar cells.
- metal silicon obtained by reducing silicon oxide is subjected to gas blowing treatment, and further, the metal silicon is unidirectionally solidified and then dissolved by electron beam under reduced pressure to remove impurities. To do.
- the production process of metallic silicon which is the first step of the present invention, involves heating and reacting in a submerged arc furnace a raw material mixture comprising silica (silicon oxide) as a silicon source and carbonaceous material (charcoal) as a reducing agent.
- the temperature in the furnace is preferably 1600 ° C. or higher, more preferably 1700 ° C. or higher. This is because the higher the temperature is, the more stable the reduction reaction in the submerged arc furnace is, so that the inclusion of solid inclusions in silicon such as silicon carbide as a reaction material or reaction intermediate decreases.
- the metallic silicon produced in this process contains impurities such as Fe, Ti, Al, Ca, B, and P.
- metal components such as Fe, Ti, Al, and Ca are impurities contained in a relatively large amount in metallic silicon, but the content concentration of B and P that are dopants in silicon is as follows. Although it is low, when silicon is used as a semiconductor, such as a solar cell, it must be present in silicon at a controlled and appropriate concentration.
- the impurity component in metal silicon which is usually the highest concentration impurity, is Fe, but it is manufactured by heating and reacting silica as a silicon source and carbonaceous material as a reducing agent in a submerged arc furnace.
- silicon called metallic silicon contains an iron component of about 1500 ppm to 5000 ppm.
- the main origin of this iron component is that the iron component present in silica, which is a silicon source, charcoal, which is a charcoal, or the like, is transferred to silicon generated by a reaction in the furnace.
- metal silica with as little impurity metal content as possible can be obtained by selecting raw materials for silica and carbon materials, which are raw materials for metal silicon, while paying attention to the amount of impurities contained therein.
- high purity can be achieved to some extent by using high-purity quartz instead of silica, chemically synthesized silicon dioxide, or charcoal from which ash has been removed by acid treatment.
- the concentration of iron contained in the metal silicon obtained in the process for producing metal silicon of the present invention is preferably 300 to 800 ppm, particularly preferably 300 to 650 ppm, and the concentrations of Ti and Al, which are the main metal impurity components next to iron.
- Ti is 800 ppm or less, particularly 100 to 600 ppm, particularly 100 to 300 ppm, and Al is 100 to 500 ppm, particularly 100 to 300 ppm.
- the impurity concentration can be measured by the ICP-AES method (manufactured by Perkin Elmer).
- Boron and phosphorus which are dopant components, are also present as components in the raw material of metal silicon, similar to the metal impurity component, and move into the metal silicon during the reduction reaction of silicon dioxide in the submerged arc furnace.
- boron is particularly a substance that has a high affinity with silicon and is difficult to remove from the silicon. Therefore, it is desirable that the concentration of metal silicon after the manufacturing process is low.
- Boron in metallic silicon produced in this submerged arc furnace is a metal with a small amount of boron impurities by selecting raw materials while paying attention to the amount of impurities contained in silica and carbonaceous materials, which are raw materials, as in the case of metallic impurity components. Silicon will be obtained.
- the concentration of boron in the metal silicon is desirably 20 ppm or less, particularly 10 ppm or less, particularly 1 to 5 ppm, in order to reduce the process load of boron removal performed in a subsequent process.
- the phosphorus concentration is preferably 40 ppm or less, particularly 30 ppm or less, particularly 5 to 20 ppm.
- the starting silica and charcoal contain a certain amount of metal impurity components such as Fe and impurities such as B and P so that the impurity concentration of the metal silicon obtained in the first step is in the above range. It is preferable to select and use one appropriately.
- Metallic silicon is usually produced by flowing out of a submerged arc furnace and solidifying in a vessel.
- molten silicon flowing out of the submerged arc furnace is continuously refined in the second step of the present invention to produce metallic silicon.
- Impurities such as Al, Ca, B are removed.
- This process oxidizes the above impurities by blowing an oxidizing gas such as water vapor, oxygen, carbon dioxide, hydrogen chloride, chlorine, or an inert gas such as nitrogen or argon into the molten metal in the state of molten metal silicon. This is a gas blowing process to be removed.
- the level of reduction in impurities is insufficient as silicon for solar cells, but it is possible to reduce the load related to high purity during processing in the subsequent process, and a large amount of silicon at a time.
- the gas blowing process of the present invention uses, for example, an electric furnace 3 having a furnace core tube 2 having a crucible 1 inside as shown in FIG. This can be done by supplying gas to the molten silicon.
- the gas used in the blowing process is, for example, a gas having a composition such as water vapor 10 to 50 vol%, chlorine 10 to 50 vol% and inert gas 20 to 80 vol%, and a flow rate of 0.4 to 5 m / second, particularly It is preferable to blow into the melt at 0.7 to 3 m / sec for 10 to 200 minutes, particularly 20 to 120 minutes.
- the treatment temperature is preferably 1450 to 1800 ° C, more preferably 1550 to 1650 ° C.
- This flux treatment is a method of increasing the purity of silicon by allowing impurities in silicon to move into the flux by allowing molten silicon and molten salt to coexist in the same container.
- a flux such as CaO, SiO 2 , CaF 2 , Al 2 O 3 , Na 2 O, MgO, or a mixture thereof can be selected according to ease of handling, melting point, effect, and the like.
- the flux is in a molten state at a temperature equal to or higher than the melting point temperature (1450 ° C.) of the molten silicon.
- the temperature of the molten silicon is preferably within the above-described range.
- the gas blowing process is performed in a state where the melt flux coexists as necessary, and among them, if steam and chlorine are used as the gas and silicon dioxide and calcium oxide are used as the flux, This is a preferable form because boron can be effectively removed.
- the use ratio of water vapor and chlorine is preferably 1: 5 to 5: 1 by volume, more preferably 1: 2 to 2: 1.
- the amount of silicon dioxide and calcium oxide to be added as a flux is preferably 58:42 to 70:30 by mass ratio, and particularly preferably 60:40 to 65:35 by mass ratio. Further, the total amount is preferably 5 to 70% by mass, particularly 10 to 40% by mass, based on the metal silicon.
- the amount of flux is too small, the amount of boron in the silicon will not be transferred to the flux, and as a result, boron removal may not be performed sufficiently.
- the initial investment and processing cost may be expensive. Performing this gas blowing process a plurality of times is more effective for removing Al, Ca, B, and the like. However, multiple removals increase the number of processes and increase costs, so it is preferable to perform the removal within three times in order to balance the effect.
- the boron concentration in the silicon after gas blowing is desirably 5 ppm or less, particularly 1 to 0.1 ppm.
- unidirectional solidification is a method in which molten silicon is solidified by moving in one direction in a furnace, and impurities components are discharged to the liquid phase side to purify the solidified silicon.
- this method requires time to dissolve silicon once, since most metal components have a very small distribution coefficient with silicon, there is an advantage that high-purity silicon can be obtained from the initial stage to the middle stage of solidification of silicon.
- the solidification segregation phenomenon at the solid phase-liquid phase interface of the impurity metal element component in silicon is determined by the solidification distribution coefficient.
- the smaller the solidification distribution coefficient the more the impurity metal component is in the solid phase. More is moved to the liquid phase side without being captured. Due to the behavior of the impurity metal, the impurity concentration of the solid phase is lowered.
- Many impurity metals in silicon have a very small solidification distribution coefficient.
- the solidification distribution coefficient of iron which is present in the largest amount as an impurity component in metallic silicon is at most 8 ⁇ 10 ⁇ 6 . Therefore, the iron concentration in the solid silicon at the start of solidification is low, and the iron concentration in the solid silicon gradually increases from the middle to the end of solidification.
- silicon having a low iron concentration can be obtained.
- impurity metal elements other than iron impurities are removed by solidification simultaneously with the removal of iron, and as a result, metal impurities are removed in the range from the initial stage of solidification to the middle stage, and a solidified ingot in which impurities are concentrated at the end of solidification. Therefore, high-purity silicon can be obtained by cutting out the impurity-concentrated portion.
- an electric furnace 12 having a crucible 11 as shown in FIG. 2 can be used in the unidirectional solidification process of the present invention.
- the electric furnace 12 is heated by energizing the heater 13, and silicon is melted by raising the temperature to 1450 ° C. or higher of the melting point of silicon.
- the molten silicon is preferably held in a molten state for a certain time so that the melt has a uniform composition. The higher the temperature at this time, the more homogenized the molten silicon is promoted. Therefore, the temperature is preferably 20 ° C. or more, particularly 50 to 100 ° C. higher than the melting temperature.
- the crucible containing the molten silicon having a uniform composition can be moved down the furnace by lowering the pulling shaft 14 and solidified by cooling from the bottom of the crucible.
- the pulling speed is preferably 1 to 50 mm / hr, more preferably 5 to 20 mm / hr. If it is too slow, it takes too much coagulation treatment time, resulting in a decrease in productivity. If it is too fast, the segregation of impurities is not sufficient, and the amount of highly purified parts obtained may be reduced.
- the heat-resistant material such as silicon dioxide, alumina, and graphite is used for the crucible material used in the unidirectional solidification process. Silicon melts and solidifies in this material, but the crucible material and silicon are fixed during solidification, and the crucible material or silicon may be damaged due to the difference in thermal expansion coefficient between the crucible material and silicon when the temperature is lowered. In order to prevent this, a mold release material is applied to the inner wall of the crucible. This release material is required not to adhere to silicon, and silicon nitride is usually selected.
- a silicon nitride powder having a particle size of about 1 ⁇ m or less is mixed with a liquid such as water or an additive to make a slurry, which is applied to a crucible and dried several times. .
- a silicon nitride powder chemically synthesized from a high-purity raw material for example, silicon nitride powder synthesized from silicon tetrachloride and ammonia, as the release agent, particularly silicon nitride.
- This silicon includes B and P as elements that have not yet been removed as impurities. This element is removed in the next step, an electron beam process.
- a vacuum chamber 22 equipped with a container (water-cooled hearth / crucible) 21 containing silicon from which metal impurity components have been removed by unidirectional solidification,
- An electron beam gun 23 installed to irradiate an electron beam toward silicon in the container, and a chamber for making the chamber a high vacuum of about 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 2 Pa.
- a vacuum evacuation facility (not shown) is the main facility.
- the chamber is first evacuated to a high vacuum of about 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 2 Pa, and then irradiated with an electron beam from an electron beam gun to dissolve silicon.
- silicon is accommodated in a container, but a water-cooled copper crucible is preferable as a container to be used from the viewpoint of energization of an electron beam and prevention of contamination from the material.
- a beam scan method that irradiates the entire surface of silicon or a beam scan method that irradiates a part of silicon and raises the silicon temperature of a specific part to a particularly high temperature. Etc. can be appropriately selected.
- the irradiation time if it is a short time of less than 20 minutes, a sufficient impurity removal effect may not be exhibited, and if it is a long time exceeding 4 hours, the amount of silicon evaporation may increase.
- the time is preferably 20 minutes to 4 hours, more preferably 30 minutes to 2 hours.
- B and P which are dopant components in silicon dissolved by an electron beam, are removed in the chamber.
- P has a higher vapor pressure at a higher temperature than silicon
- P is removed by positive vaporization in a high-temperature environment (about 1600-2200 ° C) by electron beam irradiation in a high-vacuum environment of the chamber atmosphere. Is done.
- B cannot be sufficiently removed only by the P removal atmosphere, B is oxidized or hydrogenated in an electron beam atmosphere by passing a small amount of water vapor, oxygen, etc. in the chamber. Oxides or oxyhydrides are removed by vaporization.
- the electron beam gun is premised on a high vacuum.
- the pressure in the chamber is about 1 Pa. Since it is possible to irradiate an electron beam up to the above, it can be achieved by venting the above gas together with a single substance or a mixed gas, or an inert gas such as nitrogen or argon so as to maintain this degree of vacuum. .
- the removal of B and P can be achieved in one pot with the same equipment.
- the B concentration in silicon used for the electron beam treatment is preferably 10 ppm or less, desirably 5 ppm or less, and more desirably 1 ppm or less. Since normal metal silicon has a concentration higher than the concentration of B, it is preferable to adjust and reduce the B concentration in the metal silicon by the gas blowing treatment described above.
- the metal silicon is highly purified by performing the above process on the metal silicon.
- This high-purity silicon is reworked into a form suitable for its purpose. For example, as silicon for solar cells, it is sliced after being ingot by a regular method to become a wafer for solar cells, and if it is used as an active material for batteries, it is appropriately processed for batteries. Then, after being pulverized to an appropriate size, it is mixed with a binder and used.
- Example 1 Manufacturing process of metallic silicon ⁇ Manufacturing of MG-1 900 ppm of iron in terms of Fe 2 O 3 , silica stone containing 510 ppm of titanium in terms of TiO 2 , 1% by mass of iron in terms of Fe 2 O 3 in ash, and TiO Charcoal containing 0.7% by mass of titanium in terms of 2 was charged into a submerged arc furnace to produce metallic silicon.
- concentrations of iron and titanium in the metal silicon were 800 ppm and 750 ppm, respectively.
- the electric furnace was energized, the furnace temperature was set to 1540 ° C., and silicon and flux in the furnace were melted.
- the alumina thin tube 4 is installed so that gas can be supplied into the quartz glass furnace core tube 2 from the outside, and gas is supplied from the thin tube 4 to the melt 5 in the crucible.
- the composition of the gas was Ar 50% by volume, H 2 O 25 vol%, and 2 25% by volume Cl. After this gas aeration was continued for 2 hours and blowing was performed, the temperature of the gas was decreased after the total amount of Ar was reached.
- Unidirectional solidification step 10 kg of blown silicon after multiple (twice) treatments is placed in a quartz crucible 11 having an inner dimension of 190 squares ⁇ 300 D (mm) shown in FIG. Set inside.
- Ar was introduced and returned to atmospheric pressure, and Ar was continuously introduced.
- the electric furnace 12 was energized at a set temperature of 1500 ° C. and left at that temperature for 2 hours after the furnace temperature reached 1500 ° C.
- the crucible 11 was lowered at 5 mm / hr by lowering the pulling shaft 14 to solidify the entire amount of Si.
- Step of removing low-purity portion of metallic silicon It can be seen from Table 1 that the metal impurity element component can be removed by cutting and removing the top portion of the ingot.
- Electron Beam Process An apparatus used for the electron beam process is shown in FIG. A water-cooled copper hearth 21 is installed in the vacuum chamber 22.
- the copper hearth has an internal dimension of 400 L ⁇ 140 W ⁇ 100 D (mm), and silicon after one method solidification step is appropriately reduced in size.
- a maximum output 300 kW electron beam gun 23 is installed downward from the upper part of the vacuum chamber.
- the vacuum chamber 22 is decompressed to 3 ⁇ 10 ⁇ 3 Pa by an evacuation apparatus, and then irradiated with an electron beam from an electron beam gun 23 at an output of 45 kW to dissolve the silicon, and then continue to be irradiated with the electron beam for 30 minutes. The same state was maintained. After that, by introducing water vapor into the chamber while continuing the electron beam irradiation, the degree of vacuum is set to 5 ⁇ 10 ⁇ 1 Pa, and after maintaining the molten state while the electron beam is irradiated for 30 minutes, the electron beam irradiation is performed. Was stopped to solidify the silicon.
- Example 2 Manufacturing process of metallic silicon ⁇ Manufacturing of MG-2 150 ppm of iron in terms of Fe 2 O 3 , silica stone containing 140 ppm of titanium in terms of TiO 2 , 1% by mass of iron in terms of Fe 2 O 3 in ash, and TiO Charcoal containing 0.2% by mass of titanium in terms of 2 was charged into a submerged arc furnace to produce metallic silicon. The concentrations of iron and titanium in the metal silicon were 700 ppm and 160 ppm, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
(1)酸化珪素を還元することで金属珪素を得る工程、 (2)上記金属珪素をガス吹練処理して不純物を除去する工程、 (3)上記不純物を除去した金属珪素を溶解し、一方向凝固する工程、 (4)一方向凝固した金属珪素から純度の低い部分を除去する工程、及び (5)上記低純度部分を除去した金属珪素を減圧下で電子ビーム溶解して不純物を気化・除去する工程 を含むことを特徴とする金属珪素の精製方法。 本発明によれば、Fe等の不純物金属元素はもちろんB,P等の金属成分以外の不純物も短工程で効率よく、しかも安価に除去・精製した高純度化金属珪素を得ることができる。本発明で得られる金属珪素は、太陽電池用として好適に使用することができる。
Description
本発明は、短工程で安価に金属珪素から不純物を除去し、高純度化する金属珪素の精製方法に関する。
CO2を排出する化石エネルギーが地球温暖化を促進するとして、化石エネルギーに代替するエネルギーが種々提案され、実用化されている。そのなかでも、太陽光発電は地球上に遍く分布するエネルギーによって作り出されるものであること、比較的小規模の設備でもエネルギーを取り出すことが可能であること、実用化の歴史が長いことなどから、年々その設備発電量が増加している。
太陽光発電には種々の方法があるが、なかでもシリコンウェハーを使用して電池セルを形成した太陽電池は、最も普及している太陽光発電法である。この太陽電池用シリコンウェハーに使用する珪素の不純物成分の濃度は、半導体用の珪素ほどの不純物濃度レベルまでは要求されない。即ち、半導体用珪素の必要純度は、極力低レベルとすることがよいとされ、珪素の純度が99.999999999%とされるのに対し、太陽電池用の珪素は99.9999%が必要とされる。
従来、太陽電池用珪素の不純物レベルとするために、その原料には、半導体用の99.999999999%純度品に加え、半導体珪素製造工程中で不純物濃縮や異物付着品として廃棄される、いわゆるオフグレード品を再処理、精製した物が使用されてきた。
このように、太陽電池用珪素は、半導体用の珪素或いはその派生品が原料であることから、その流通量は半導体産業の影響を受けてしまい、太陽電池用珪素の需要に対応できない状態となっていた。このため、工業的に十分な製造量を有する金属珪素の純度を向上させて、太陽電池用の珪素として使用することが検討されてきた。
更に、最近においては、高純度の珪素を使用し、Liイオン電池の負極活物質としての用途や、研磨時に高い研磨速度が達成できることから、ハードディスクドライブのメディアとしての用途など、高純度珪素を使用することを基本とし、珪素の多様な物理的、化学的、熱力学的性質を利用し、今までにない新たな形態を形成することで新規用途開発も計画されている。
ところで、金属珪素の主な不純物は、鉄、アルミニウム、カルシウム、チタンなどの金属元素と、珪素を半導体物質として利用する際にドーパントとして作用するホウ素、燐などの非金属元素である。このうち、金属元素は、珪素との凝固分配係数が非常に小さいので、凝固偏析現象を利用すれば、凝固初期から中期にわたって金属不純物成分濃度の低い部分を得ることができ、その部分だけを取得すれば低金属不純物濃度の珪素が得られる。
この方法として、例えば、特開平1-56312号公報(特許文献1)には、溶融珪素中の固形不純物を濾過した後に一方向凝固させて珪素の純度を向上させる方法が提案されている。また、特開昭63-45112号公報(特許文献2)には、溶融した珪素中に中空回転冷却体を浸漬し、この冷却体の外周面に珪素を晶出させることで珪素の純度を向上させる方法が提案されている。この方法は、珪素の析出を冷却体を中心とした方向に析出させていくという点、及び珪素の純度向上が可能となる点においても、一方向凝固の一形態であることは明確である。
以上のように、珪素の純度を向上させるために一方向凝固を実施することは、一般的に実施されてきた技術である。
しかし、ホウ素や燐は、珪素中でドーパント物質として作用するので、珪素を太陽電池用として使用する際には、濃度制御すべき物質である。ところが、ホウ素や燐は、凝固分配係数がそれぞれ0.8、0.35と、上記の金属元素の分配係数に比較して1に近い値である。このために、凝固偏析現象を利用した不純物濃縮ではほとんど偏析しないので、ホウ素、燐の除去を凝固偏析以外の方法で除去すべく、種々の方法が提案されている。
これについては、特開平4-193706号公報(特許文献3)には、B,C,P,Fe,Al等の不純物元素を含むシリコンを、底部にガス吹き込み羽口を有するシリカを主成分とする容器内で溶融し、この羽口からAr又はH2もしくはこれらの混合ガス、酸化性ガス、HClガスを吹き込むことや、SiO2、CaO、CaCl2、CaF2を添加することで不純物量を減少させる方法が提案されている。
特開平5-262512号公報(特許文献4)には、溶融したシリコン表面に水蒸気及び塩化水素ガスを添加した熱プラズマガスを照射すること、このプラズマガスに塩化ナトリウムを添加することで、ホウ素、鉄、アルミニウムの濃度を低減させる方法が開示されている。
特開平7-309614号公報(特許文献5)には、電子ビーム溶解中の炉内圧力を1×10-4~5×10-3Torrに維持し、溶融したシリコンの表面にArガスを吹き付けることで、燐、アルミニウム、カルシウムなどの濃度を低減させる方法が提案されている。
更に、特開平6-345416号公報(特許文献6)には、シリコンを電子ビームで溶解精製する際に、酸素の供給源としてSiO2やCaO等の酸化物の添加、あるいはH2O、O2等の酸化性ガスを浴中に添加することで、C、Bを除去する方法が提案されている。
しかし、これらの方法は、金属成分や、ホウ素、燐を除去する技術を開示しているが、それぞれの技術を別個に実施しただけでは、金属珪素を太陽電池用の珪素とすることはできず、複数の技術的要素を連動させることで太陽電池用珪素が得られるものである。
このように、金属珪素中の不純物を除去する方法は、除去対象である元素の種類によって異なる。金属珪素の純度向上の技術は、太陽電池用の珪素精製について特に検討されており、金属珪素から太陽電池用珪素を製造する方法は、いくつかの技術の組み合わせで成立している。
これについては、特許第3325900号公報(特許文献7)には、A.金属シリコンを真空下において溶解し、その含有する燐を気化脱燐した後、溶湯から不純物成分を除去するための凝固を行い、鋳塊を得る。B.上記鋳塊の不純物濃化部を切断、除去する。C.切断除去後の残部を再溶解し、酸化性雰囲気下で溶湯からボロン及び炭素を酸化除去し、引き続きアルゴンガスあるいはアルゴンと水素の混合ガスを溶湯に吹き込み、脱酸素する。D.上記脱酸素後の溶湯を、鋳型に鋳込み、一方向凝固を行い、鋳塊を得る。E.一方向凝固で得た鋳塊の不純物濃化部を切断、除去する。あるいは、酸化珪素の精製で得た溶融状態の金属シリコンを取鍋に移し、酸化雰囲気下でボロン及び炭素を酸化除去した後に凝固し、引き続きB,C,D,E工程を行うことで、金属珪素から太陽電池用多結晶シリコンを得る方法が開示されている。
特開2000-327488号公報(特許文献8)には、金属シリコンを粉砕し、酸処理した純度4N以上の高純度金属珪素などを原料とし、これを真空下において電子ビームで溶解して揮発性不純物を酸化物として蒸発・除去し、その後、凝固粗精製でシリコンをインゴット化して重金属不純物の濃縮部を切断除去した粗精製原料を、酸化性雰囲気下でプラズマ溶解して不揮発性不純物を酸化物として蒸発・除去する。更に、凝固仕上げ精製でシリコンをインゴット化し、再度重金属不純物濃縮部を切断除去することで太陽電池用珪素を製造する方法が提案されている。
しかし、例えば、特許第3325900号公報(特許文献7)の方法では、工程が多く煩雑な処理が要求される。また、特開2000-327488号公報(特許文献8)の方法では、工程が長い上に、珪素の粉砕、酸処理、pH調整などが必要であり、工程が煩雑であって、回避することが望ましい工程までも含んでいる。このように、上記従来技術は満足すべきものではなく、更なる改良が求められていた。
本発明は、上記事情に鑑みなされたもので、短工程でローコストな金属珪素の精製方法を提供することを目的とする。
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、酸化珪素を還元して金属珪素を得た後、この金属珪素をガス吹練処理してFe,Ti,Al,Ca等の不純物金属元素や、B,P等の不純物を除去する。そして、これを更に一方向凝固して特にFe等の不純物金属元素を除去し、次いで、減圧下で電子ビーム溶解して特にB,P等の不純物を気化・除去することで、短工程かつ安価な方法で、金属珪素中のFe等の金属成分はもちろん、B,P等の金属成分以外の不純物も除去し、高純度化した金属珪素を得ることができることを見出し、本発明をなすに至った。
即ち、本発明は、下記の金属珪素の精製方法を提供する。
〈1〉(1)酸化珪素を還元することで金属珪素を得る工程、
(2)上記金属珪素をガス吹練処理して不純物を除去する工程、
(3)上記不純物を除去した金属珪素を溶解し、一方向凝固する工程、
(4)一方向凝固した金属珪素から純度の低い部分を除去する工程、及び
(5)上記低純度部分を除去した金属珪素を減圧下で電子ビーム溶解して不純物を気化・除去する工程
を含むことを特徴とする金属珪素の精製方法。
〈2〉酸化珪素の還元工程で得られる金属珪素中の鉄の濃度が、300~800ppmであることを特徴とする〈1〉記載の金属珪素の精製方法。
〈3〉酸化珪素の還元工程で得られる金属珪素中のホウ素の濃度が、20ppm以下であることを特徴とする〈1〉又は〈2〉記載の金属珪素の精製方法。
〈4〉ガス吹練処理工程で用いる吹練ガスが、少なくとも塩素ガス及び水蒸気を含むことを特徴とする〈1〉、〈2〉又は〈3〉記載の金属珪素の精製方法。
〈5〉ガス吹練処理工程において、CaO、SiO2、CaF2、Al2O3、Na2O及びMgOより選ばれる一種又は二種以上の塩を溶融フラックスとして金属珪素に添加することを特徴とする〈1〉乃至〈4〉のいずれかに記載の金属珪素の精製方法。
〈6〉ガス吹練処理工程で得られる金属珪素中のホウ素の濃度が、5ppm以下であることを特徴とする〈1〉乃至〈5〉のいずれかに記載の金属珪素の精製方法。
〈1〉(1)酸化珪素を還元することで金属珪素を得る工程、
(2)上記金属珪素をガス吹練処理して不純物を除去する工程、
(3)上記不純物を除去した金属珪素を溶解し、一方向凝固する工程、
(4)一方向凝固した金属珪素から純度の低い部分を除去する工程、及び
(5)上記低純度部分を除去した金属珪素を減圧下で電子ビーム溶解して不純物を気化・除去する工程
を含むことを特徴とする金属珪素の精製方法。
〈2〉酸化珪素の還元工程で得られる金属珪素中の鉄の濃度が、300~800ppmであることを特徴とする〈1〉記載の金属珪素の精製方法。
〈3〉酸化珪素の還元工程で得られる金属珪素中のホウ素の濃度が、20ppm以下であることを特徴とする〈1〉又は〈2〉記載の金属珪素の精製方法。
〈4〉ガス吹練処理工程で用いる吹練ガスが、少なくとも塩素ガス及び水蒸気を含むことを特徴とする〈1〉、〈2〉又は〈3〉記載の金属珪素の精製方法。
〈5〉ガス吹練処理工程において、CaO、SiO2、CaF2、Al2O3、Na2O及びMgOより選ばれる一種又は二種以上の塩を溶融フラックスとして金属珪素に添加することを特徴とする〈1〉乃至〈4〉のいずれかに記載の金属珪素の精製方法。
〈6〉ガス吹練処理工程で得られる金属珪素中のホウ素の濃度が、5ppm以下であることを特徴とする〈1〉乃至〈5〉のいずれかに記載の金属珪素の精製方法。
本発明によれば、Fe等の不純物金属元素はもちろんB,P等の金属成分以外の不純物も短工程で効率よく、しかも安価に除去・精製した高純度化金属珪素を得ることができる。本発明で得られる金属珪素は、太陽電池用として好適に使用することができる。
本発明の金属珪素の精製方法は、酸化珪素を還元して得られた金属珪素をガス吹練処理し、更にこの金属珪素を一方向凝固した後、減圧下で電子ビーム溶解して不純物を除去するものである。
本発明の第一工程である金属珪素の製造工程は、珪素源である珪石(酸化珪素)と、還元剤としての炭材(木炭)よりなる原料混合物をサブマージアーク炉で加熱、反応させることで金属珪素を製造する工程であり、この場合、炉内の温度は1600℃以上が好ましく、より好ましくは1700℃以上である。これは、温度が高いほどサブマージアーク炉内の還元反応が安定するため、反応材料又は反応中間体である炭化珪素などの珪素中の固形介在物の混入が減少するためである。この工程で製造した金属珪素には、Fe,Ti,Al,Ca,B,P等の不純物が存在する。
これらの不純物のうち、Fe,Ti,Al,Ca等の金属成分は、金属珪素中に比較的多量に含有する不純物であるが、珪素中でドーパントとなるBやPにおいては、その含有濃度は低いものの、太陽電池など珪素を半導体として使用する際には、制御された適度な濃度で珪素中に存在することが必要である。
この金属珪素に存在する不純物濃度を低減する方法として、上述の方法が既に提案されているが、サブマージアーク炉から出湯する金属珪素そのものの不純物濃度を低減させることが、後工程での純度アップ処理の負荷を初めから低減させることができるので望ましい。
具体的には、金属珪素の原料中の不純物濃度を低減させることが有効である。これを説明すると、通常、金属珪素中の不純物成分で最も濃度の高い不純物はFeであるが、珪素源である珪石と、還元剤としての炭材をサブマージアーク炉で加熱、反応させることで製造される金属珪素と呼ばれる珪素には、通常1500ppmから5000ppm程度の鉄成分が含まれている。この鉄成分の主な由来は、珪素源である珪石や、炭材である木炭などに存在する鉄成分が、炉内反応で生成した珪素に移行することによる。したがって、金属珪素の原料である珪石と炭材について、その含有不純物量に注意して原料選択することで、極力不純物金属量の少ない金属珪素が得られることになる。例えば、珪石の代わりに高純度な水晶や、化学合成した二酸化珪素を使用したり、炭材として酸処理で灰分を除去した木炭を使用したりすれば、ある程度の高純度化は達成できる。
しかし、このような方法では、原料コストが上昇することによって、金属珪素自体の単価が上昇してしまう弊害が生じるので、本発明の珪素の精製方法においては、サブマージアーク炉より出湯した珪素中の鉄濃度を300ppm未満とするような高純度、高価な原料を使用した金属珪素は使用しないことが好ましい。本発明の金属珪素の製造工程で得られる金属珪素中に含まれる鉄濃度は、300~800ppm、特に300~650ppmであることが好ましく、鉄に次ぐ主な金属不純物成分であるTi,Alの濃度も、Tiについては800ppm以下、特に100~600ppm、とりわけ100~300ppm、Alについては100~500ppm、特に100~300ppmであることが好ましい。なお、不純物濃度は、ICP-AES法((株)Perkin Elmer製)により測定することができる。
ドーパント成分となるホウ素や燐も、金属不純物成分と同様に、金属珪素の原料中の成分として存在し、それがサブマージアーク炉中での二酸化珪素の還元反応中に金属珪素中に移動する。このドーパント物質のうち、特にホウ素は珪素との親和性が高く、珪素中より除去しづらい物質であるので、金属珪素の製造工程後の濃度としては、低濃度であることが望ましい。このサブマージアーク炉で製造した金属珪素中のホウ素は、金属不純物成分と同様に、原料である珪石と炭材について、その含有不純物量に注意して原料選択することで、ホウ素不純物量の少ない金属珪素が得られることになる。この金属珪素中のホウ素の濃度は、後工程で実施するホウ素除去の工程負荷を低減するために20ppm以下、特に10ppm以下、とりわけ1~5ppmであることが望ましい。また燐濃度も同様に、40ppm以下、特に30ppm以下、とりわけ5~20ppmであることが好ましい。
本発明においては、第一工程において得られる金属珪素の不純物濃度が上記範囲となるよう、出発原料の珪石及び木炭としては、一定量のFe等の金属不純物成分及びB,P等の不純物を含むものを適宜選定して用いることが好ましい。
金属珪素は、通常は、サブマージアーク炉より流出させ、容器中で凝固させることで製造するが、サブマージアーク炉から流出する溶融珪素を、本発明の第二工程において引き続き精錬することで、金属珪素中のAl,Ca,B等の不純物を除去する。この工程は、溶融金属珪素のままの状態で、水蒸気、酸素、二酸化炭素、塩化水素、塩素などの酸化性ガスや窒素、アルゴン等の不活性ガスを溶湯に吹き込むことで、上記の不純物を酸化除去するガス吹練工程である。
この工程による不純物除去では、太陽電池用の珪素としては、不純物の低下レベルが不十分ではあるが、後工程での処理時における高純度化にかかわる負荷を低減できることや、一回に多量の珪素を処理することができ、更に必要に応じて処理をサブマージアーク炉に直結した設備とし、溶融した珪素をそのまま処理することもできるなど、熱効率的にも、設備効率的にも合理的な手段である。
本発明のガス吹練工程は、例えば、図1に示されるような内部にるつぼ1を有する炉芯管2が中央に設置された電気炉3を用い、細管4を通して外部から炉芯管2中の溶融珪素にガスを送気することで行うことができる。吹練工程で使用するガスは、例えば、水蒸気10~50vol%、塩素10~50vol%及び不活性ガス20~80vol%のような組成のガスを使用し、流量0.4~5m/秒、特に0.7~3m/秒で、10~200分間、特に20~120分間溶湯に吹き込むことが好ましい。処理温度は1450~1800℃が好ましく、より好ましくは1550~1650℃である。これは溶湯温度が高いほど不純物の除去には効果的であるが、溶湯の温度保持のためにエネルギーを消費してしまうためである。また、流量が少なすぎると溶湯の攪拌が不十分でガスと珪素の接触が満足に実施されず、結果として不純物の除去が不十分となる場合があり、多すぎるとガスによる溶湯攪拌が強すぎることで溶湯が飛散し、珪素の回収率が低下する場合がある。また、珪素中のBの除去が迅速かつ十分になされるために、吹練処理のガスには塩素ガス及び水蒸気が含まれることが好ましい。
この処理においては、フラックスによる処理も平行して実施することができる。このフラックス処理とは、溶融珪素と溶融塩を同一容器内で共存させることによって、珪素中の不純物がフラックス中に移行することで珪素純度を上げる方法である。フラックスとしては、CaO,SiO2,CaF2,Al2O3,Na2O,MgO等の塩、或いはこれらの混合物等、扱いやすさ、融点、効果などに応じて選ぶことができる。
フラックスは、溶融珪素の融点温度(1450℃)以上の温度で溶融状態とするが、サブマージアーク炉から流出する溶融珪素を受ける取鍋中に予め投入しても、取鍋内の溶融珪素に投入してもよいが、フラックスを予め予熱したり、取鍋を電気的に加熱できる手段をとるなど、フラックスを珪素と接触した際にも溶融珪素の溶融を保持するための準備が必要である。この場合も、溶融珪素の温度は上述した範囲であることが好ましい。
ガス吹練処理は、必要に応じてこの溶融フラックスが共存した状態で実施されるが、なかでも、ガスとして水蒸気と塩素を使用し、フラックスとして二酸化珪素と酸化カルシウムからなるものを使用すれば、ホウ素の除去が効果的に実施できるので好ましい形態である。この場合、水蒸気と塩素の使用割合は、体積比で1:5~5:1が好ましく、より好ましくは1:2~2:1である。また、フラックスとして添加する二酸化珪素と酸化カルシウムの使用量は、質量比で58:42~70:30が好ましく、特には質量比で60:40~65:35が好ましい。また、金属珪素に対して合計量で、5~70質量%、特に10~40質量%用いることが好ましい。フラックスの量が少なすぎると、珪素中のホウ素がフラックスへ移行する量が取れず、結果としてホウ素除去が十分実施されない場合があり、多すぎると、昇温エネルギー量や処理設備容量がフラックスの分まで加算しなければならないので、初期投資及び処理コストが高価なものとなってしまう場合がある。このガス吹練処理を複数回行うことは、Al,Ca,B等の除去にはより効果的ある。しかし、複数回の除去は工程増となりコストアップをもたらすので、効果とのバランスから、3回以内で行うことが好ましい。
ガス吹練工程において、ホウ素は除去されるが、この工程でのホウ素除去の効率は目的とする純度に対しては十分ではなく、更に後工程でホウ素の純度を向上させる必要がある。この後工程でのホウ素除去の負荷を低減するために、ガス吹練後の珪素中のホウ素濃度は5ppm以下、特に1~0.1ppmであることが望ましい。
次いで、珪素は引き続き一方向凝固にかけられる。通常、一方向凝固とは、溶融した珪素を炉内で一方向に移動することで凝固させる方法で、不純物成分を液相側に排出させて、凝固した珪素を高純度化させるものである。この方法は、珪素をいったん溶解させる手間はあるものの、ほとんどの金属成分は珪素との分配係数が非常に小さいので、珪素の凝固初期から中期にかけて高純度の珪素が得られる長所がある。
これを説明すると、珪素中の不純物金属元素成分の固相-液相界面における凝固偏析現象は、凝固分配係数によって偏析状態が決定されるが、凝固分配係数が小さいほど不純物金属成分は固相に捕捉されずに、より多くが液相側に移動する。この不純物金属の挙動で固相の不純物濃度が低下することになる。珪素中の多くの不純物金属は、この凝固分配係数が非常に小さく、例えば金属珪素中に不純物成分として最も多量に存在する鉄の凝固分配係数は、たかだか8×10-6である。従って、凝固開始時の固体珪素中には鉄濃度が低く、凝固中期から末期にかけて固体珪素中の鉄濃度が除々に増加することとなる。
この凝固偏析現象を利用して所望の鉄濃度の部分を鋳造塊より選択すれば、低鉄濃度の珪素が得られる。鉄以外の不純物金属元素についても、鉄の除去と同時に、凝固による不純物排除が行われ、結果として凝固初期から中期に至る範囲で金属不純物が除去され、凝固末期に不純物が濃縮された凝固インゴットとなっているので、不純物濃縮部分を切除して高純度の珪素を得ることができる。
本発明の一方向凝固工程には、例えば、図2に示すようなるつぼ11が設置された電気炉12を用いることができる。電気炉12は、ヒーター13に通電することで昇温し、珪素の融点の1450℃以上まで昇温することで珪素は溶融する。溶融した珪素は、その融体が均一組成となるように一定時間溶融状態のまま保持することが好ましい。このときの温度は、それが高いほど溶融珪素の均一化が促進されるので、融点温度より20℃以上、特に50~100℃高いことが好ましい。
均一組成となった溶融珪素が入ったるつぼは、引き下げシャフト14を降下させることで炉の下方に移動させ、るつぼの底部から冷却することで溶融珪素を凝固させることができる。引き下げ速度は、1~50mm/hrが好ましく、より好ましくは5~20mm/hrである。遅すぎると凝固処理時間がかかりすぎて、生産性が低下するし、速すぎると不純物の偏析が十分ではなく、高純度化した部分の取得量が少なくなる場合がある。
一方向凝固工程で使用されるるつぼ材には、二酸化珪素、アルミナ、黒鉛などの耐熱性材料が使用される。珪素は、この材料中で溶融し、凝固するが、凝固時にるつぼ材と珪素が固着し、温度降下時にるつぼ材と珪素との熱膨張係数差によってるつぼ材乃至は珪素が破損することがある。これを防止するために、るつぼ内壁に離型材を塗布する。この離型材には珪素と固着しないことが求められ、通常は窒化珪素が選ばれる。離型剤としては、粒径1μm程度乃至はそれ以下の窒化珪素粉を、水などの液体や添加剤と調合してスラリー化し、これをるつぼに塗布、乾燥を何回か繰り返すことで作製する。
溶解・凝固時の溶湯珪素は、この離型剤と接触するので、離型剤中に不純物成分が存在する場合は、その成分が珪素に移行することがある。したがって、離型剤、特には窒化珪素は、高純度原料から化学合成した窒化珪素粉、例えば四塩化珪素とアンモニアから合成した窒化珪素粉を使用することが望ましい。
この珪素には、未だに不純物として除去されていない元素としてBやPがある。この元素は次の工程である電子ビーム工程で除去する。
電子ビーム工程で使用する設備としては、例えば、図3に示すような、内部に一方向凝固により金属不純物成分を除去した珪素を収容する容器(水冷ハース/るつぼ)21を具備した真空チャンバー22と、この容器内の珪素に向かって電子ビームを照射するように設置した電子ビームガン23と、更にチャンバーを真空度が1×10-4~1×10-2Pa程度までの高真空にするための真空排気設備(図示せず)が主要な設備である。
B,P等の除去は、まず、チャンバーを真空排気して1×10-4~1×10-2Pa程度の高真空にした後に、電子ビームガンより電子ビームを照射して珪素を溶解する。この場合、珪素は容器内に収容されるが、使用する容器としては電子ビームの通電や、材質からのコンタミネーションの防止といった点から水冷銅るつぼが好ましい。
珪素の溶解時は、容器中の珪素を広い範囲で溶解させるために、珪素全面に照射するビームスキャン法や、珪素の一部に照射して特定部位の珪素温度を特に高温にするビームスキャン法などを適宜選択することができる。照射時間については、20分未満といった短時間であると十分な不純物除去効果が発揮されない場合があり、4時間を超える長時間であると珪素の蒸発量が多くなってしまう場合があるので、照射時間は20分~4時間が好ましく、より好ましくは30分~2時間である。
電子ビームで溶解した珪素中のドーパント成分であるBとPは、チャンバー内で除去される。まず、Pは、珪素と比較して高温での蒸気圧が高いことから、チャンバー雰囲気の高真空環境において、電子ビーム照射による高温環境(1600~2200℃程度)で積極的に気化することで除去される。一方、Bは、P除去の雰囲気だけでは十分な除去を達成できないので、チャンバー内に微量の水蒸気、酸素などを流通させることで、Bが電子ビーム雰囲気で酸化され、或いは水素化され、更にこの酸化物或いは酸水素化物が気化することで除去される。
この場合、高真空を前提とした電子ビームガンであるが、ガン内の真空度を維持するために、ガン内及びガンとチャンバーとの作動排気を十分に実施すれば、チャンバー内の圧力が1Pa程度までであれば電子ビームの照射は十分可能であるので、この真空度を維持するように上記ガスを単体又は混合ガス、或いは窒素、アルゴン等の不活性ガスと共にチャンバー内に通気することで達成できる。
このように、BとPの除去は、同一の設備でワンポットで達成できるが、このB除去では、珪素中のBの濃度が高いと、B除去に長時間が必要とされ、除去時の最低濃度は、半導体用途の珪素として必要とされる濃度まで除去できないので、電子ビーム処理に供される珪素中のB濃度は10ppm以下、望ましくは5ppm以下、更に望ましくは1ppm以下とすることが好ましい。通常の金属珪素では、このBの濃度よりも高い濃度であるため、上述のガス吹練処理によって、金属珪素中のB濃度を調節、低減することがよい。
以上の工程処理を金属珪素に実施することにより、金属珪素は高純度化される。この高純度珪素は、その目的に応じた形態に再加工される。例えば、太陽電池用の珪素としては、定法によりインゴット化された後にスライスされて、太陽電池用のウェハーとなるし、電池用の活物質としての用途であれば、電池用として適切な処理を実施してから適切なサイズに粉砕された後に、バインダーなどと混合されて使用されることとなる。
以下、実施例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
1.金属珪素の製造工程
○ MG-1の製造
Fe2O3換算で900ppmの鉄と、TiO2換算で510ppmのチタンを含む珪石と、灰分にFe2O3換算で1質量%の鉄と、TiO2換算で0.7質量%のチタンを含む木炭をサブマージアーク炉にチャージし、金属珪素を製造した。この金属珪素の鉄とチタンの濃度は、それぞれ800ppm,750ppmであった。
1.金属珪素の製造工程
○ MG-1の製造
Fe2O3換算で900ppmの鉄と、TiO2換算で510ppmのチタンを含む珪石と、灰分にFe2O3換算で1質量%の鉄と、TiO2換算で0.7質量%のチタンを含む木炭をサブマージアーク炉にチャージし、金属珪素を製造した。この金属珪素の鉄とチタンの濃度は、それぞれ800ppm,750ppmであった。
2.吹練工程
<混合溶融塩の調製>
質量比で3:2としたSiO2粉とCaO粉を十分混合し、内寸160mmφ×250Lの黒鉛製るつぼに入れ、1500℃まで昇温して溶解した。溶解後に冷却した後、ダイヤモンドカッターにより適当なサイズに切断した。
<混合溶融塩の調製>
質量比で3:2としたSiO2粉とCaO粉を十分混合し、内寸160mmφ×250Lの黒鉛製るつぼに入れ、1500℃まで昇温して溶解した。溶解後に冷却した後、ダイヤモンドカッターにより適当なサイズに切断した。
<吹練処理>
図1に示すような内寸160mmφ×250Lの黒鉛製るつぼ1に金属珪素MG-1 2kgと上記混合溶融塩1330gを入れた。このるつぼを石英ガラス製の炉芯管2が縦型に設置されている電気炉3の炉芯管中に入れ、るつぼが最高温度部になるように位置を調整した。
図1に示すような内寸160mmφ×250Lの黒鉛製るつぼ1に金属珪素MG-1 2kgと上記混合溶融塩1330gを入れた。このるつぼを石英ガラス製の炉芯管2が縦型に設置されている電気炉3の炉芯管中に入れ、るつぼが最高温度部になるように位置を調整した。
電気炉に通電し、炉温を1540℃として炉内の珪素とフラックスを溶融した。
アルミナ製の細管4は外部から石英ガラス炉芯管2中にガスを送気できるように設置されており、この細管4よりるつぼ内の溶融体5にガスを供給した。ガスの組成はAr 50体積%,H2O 25体積%,Cl2 25体積%とした。このガス通気を2時間継続して吹練を実施した後にガスを全量Arとしてから降温した。
アルミナ製の細管4は外部から石英ガラス炉芯管2中にガスを送気できるように設置されており、この細管4よりるつぼ内の溶融体5にガスを供給した。ガスの組成はAr 50体積%,H2O 25体積%,Cl2 25体積%とした。このガス通気を2時間継続して吹練を実施した後にガスを全量Arとしてから降温した。
3.一方向凝固工程
複数回(2回)処理した吹練処理後の珪素10kgを、図2に示す石英製の内寸190角×300D(mm)のるつぼ11に入れ、抵抗加熱式の電気炉12中にセットした。電気炉12を真空排気した後に、Arを導入して大気圧まで戻し、そのままArを導入し続けた。電気炉12の設定温度を1500℃として通電し、炉の温度が1500℃に達した後も2時間その温度に放置した。その後、引き下げシャフト14を降下させることでるつぼ11を5mm/hrで降下させてSiを全量凝固させた。
複数回(2回)処理した吹練処理後の珪素10kgを、図2に示す石英製の内寸190角×300D(mm)のるつぼ11に入れ、抵抗加熱式の電気炉12中にセットした。電気炉12を真空排気した後に、Arを導入して大気圧まで戻し、そのままArを導入し続けた。電気炉12の設定温度を1500℃として通電し、炉の温度が1500℃に達した後も2時間その温度に放置した。その後、引き下げシャフト14を降下させることでるつぼ11を5mm/hrで降下させてSiを全量凝固させた。
得られたSiインゴットの各部をICP-AES((株)Perkin Elmer製)にて分析したところ、表1のようにインゴット上部に金属不純物が濃縮していた。なお、インゴットの頂部、中頂部、中部、低中部及び底部とは、インゴットの上端を0mmとするとそれぞれ5~15mm、30~40mm、55~65mm、80~90mm、105~115mmの範囲からのサンプリングを示す。
4.金属珪素の低純度部分の除去工程
表1より、インゴットの頂部を切断除去すれば金属不純物元素成分は除去できることがわかるので、同部を切断除去して後工程に供した。
表1より、インゴットの頂部を切断除去すれば金属不純物元素成分は除去できることがわかるので、同部を切断除去して後工程に供した。
5.電子ビーム工程
電子ビーム工程に用いられる装置を図3に示した。真空チャンバー22内には水冷銅ハース21が設置されている。銅ハースは400L×140W×100D(mm)の内寸で、その中に一方法凝固工程後の珪素が適宜サイズダウンされて入れられている。また、最大出力300kW電子ビームガン23が真空チャンバー上部より下部向きに設置されている。
電子ビーム工程に用いられる装置を図3に示した。真空チャンバー22内には水冷銅ハース21が設置されている。銅ハースは400L×140W×100D(mm)の内寸で、その中に一方法凝固工程後の珪素が適宜サイズダウンされて入れられている。また、最大出力300kW電子ビームガン23が真空チャンバー上部より下部向きに設置されている。
真空チャンバー22は真空排気装置により3×10-3Paに減圧された後に、電子ビームガン23より出力45kWで電子ビームを珪素に照射し、珪素を溶解させ、引き続き電子ビームを照射させたまま30分間同状態を維持した。その後、電子ビーム照射を継続しながらチャンバー内に水蒸気を導入することで、真空度を5×10-1Paとし、更に30分間電子ビームを照射させながらの溶融状態を維持した後に、電子ビーム照射を停止し、珪素を凝固させた。
以上の各工程でサンプリングした珪素をICP-AES((株)Perkin Elmer製)にて分析した。結果を表2に示すが、各不純物元素とも十分に低減していた。
[実施例2]
1.金属珪素の製造工程
○ MG-2の製造
Fe2O3換算で150ppmの鉄と、TiO2換算で140ppmのチタンを含む珪石と、灰分にFe2O3換算で1質量%の鉄と、TiO2換算で0.2質量%のチタンを含む木炭をサブマージアーク炉にチャージし、金属珪素を製造した。この金属珪素の鉄とチタンの濃度は、それぞれ700ppm,160ppmであった。
1.金属珪素の製造工程
○ MG-2の製造
Fe2O3換算で150ppmの鉄と、TiO2換算で140ppmのチタンを含む珪石と、灰分にFe2O3換算で1質量%の鉄と、TiO2換算で0.2質量%のチタンを含む木炭をサブマージアーク炉にチャージし、金属珪素を製造した。この金属珪素の鉄とチタンの濃度は、それぞれ700ppm,160ppmであった。
次に、実施例1と同様の工程にて金属珪素中の不純物の除去を実施した。なお、一方向凝固においては、引き下げ速度を10mm/hrとし、電子ビーム処理においては水蒸気雰囲気での処理時間を15分とした。各工程での珪素の分析結果を表3に示す。
表3のように、金属珪素あるいは工程後の不純物元素の濃度が低濃度の場合は、精錬条件を緩和しても十分な不純物除去効果が発揮されることがわかる。
Claims (6)
- (1)酸化珪素を還元することで金属珪素を得る工程、
(2)上記金属珪素をガス吹練処理して不純物を除去する工程、
(3)上記不純物を除去した金属珪素を溶解し、一方向凝固する工程、
(4)一方向凝固した金属珪素から純度の低い部分を除去する工程、及び
(5)上記低純度部分を除去した金属珪素を減圧下で電子ビーム溶解して不純物を気化・除去する工程
を含むことを特徴とする金属珪素の精製方法。 - 酸化珪素の還元工程で得られる金属珪素中の鉄の濃度が、300~800ppmであることを特徴とする請求項1記載の金属珪素の精製方法。
- 酸化珪素の還元工程で得られる金属珪素中のホウ素の濃度が、20ppm以下であることを特徴とする請求項1又は2記載の金属珪素の精製方法。
- ガス吹練処理工程で用いる吹練ガスが、少なくとも塩素ガス及び水蒸気を含むことを特徴とする請求項1、2又は3記載の金属珪素の精製方法。
- ガス吹練処理工程において、CaO、SiO2、CaF2、Al2O3、Na2O及びMgOより選ばれる一種又は二種以上の塩を溶融フラックスとして金属珪素に添加することを特徴とする請求項1乃至4のいずれか1項記載の金属珪素の精製方法。
- ガス吹練処理工程で得られる金属珪素中のホウ素の濃度が、5ppm以下であることを特徴とする請求項1乃至5のいずれか1項記載の金属珪素の精製方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/057478 WO2010119502A1 (ja) | 2009-04-14 | 2009-04-14 | 金属珪素の精製方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/057478 WO2010119502A1 (ja) | 2009-04-14 | 2009-04-14 | 金属珪素の精製方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119502A1 true WO2010119502A1 (ja) | 2010-10-21 |
Family
ID=42982186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057478 WO2010119502A1 (ja) | 2009-04-14 | 2009-04-14 | 金属珪素の精製方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010119502A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113748086A (zh) * | 2019-04-30 | 2021-12-03 | 瓦克化学股份公司 | 使用颗粒介体精炼粗硅熔体的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07309614A (ja) * | 1994-03-24 | 1995-11-28 | Kawasaki Steel Corp | シリコンの精製方法 |
WO2008035799A1 (fr) * | 2006-09-29 | 2008-03-27 | Shin-Etsu Chemical Co., Ltd. | Procédé de purification du silicium, silicium et cellule solaire |
WO2008149985A1 (ja) * | 2007-06-08 | 2008-12-11 | Shin-Etsu Chemical Co., Ltd. | 金属珪素の凝固方法 |
JP2009114026A (ja) * | 2007-11-07 | 2009-05-28 | Shin Etsu Chem Co Ltd | 金属珪素の精製方法 |
-
2009
- 2009-04-14 WO PCT/JP2009/057478 patent/WO2010119502A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07309614A (ja) * | 1994-03-24 | 1995-11-28 | Kawasaki Steel Corp | シリコンの精製方法 |
WO2008035799A1 (fr) * | 2006-09-29 | 2008-03-27 | Shin-Etsu Chemical Co., Ltd. | Procédé de purification du silicium, silicium et cellule solaire |
WO2008149985A1 (ja) * | 2007-06-08 | 2008-12-11 | Shin-Etsu Chemical Co., Ltd. | 金属珪素の凝固方法 |
JP2009114026A (ja) * | 2007-11-07 | 2009-05-28 | Shin Etsu Chem Co Ltd | 金属珪素の精製方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113748086A (zh) * | 2019-04-30 | 2021-12-03 | 瓦克化学股份公司 | 使用颗粒介体精炼粗硅熔体的方法 |
CN113748086B (zh) * | 2019-04-30 | 2024-02-06 | 瓦克化学股份公司 | 使用颗粒介体精炼粗硅熔体的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3325900B2 (ja) | 多結晶シリコンの製造方法及び装置、並びに太陽電池用シリコン基板の製造方法 | |
JP4523274B2 (ja) | 高純度金属シリコンとその製錬法 | |
JP4788925B2 (ja) | 金属珪素の精製方法 | |
JP3473369B2 (ja) | シリコンの精製方法 | |
US8329133B2 (en) | Method and apparatus for refining metallurgical grade silicon to produce solar grade silicon | |
JPH10245216A (ja) | 太陽電池用シリコンの製造方法 | |
WO2010018831A1 (ja) | シリコンの精製方法 | |
JP4966560B2 (ja) | 高純度シリコンの製造方法 | |
JP2010100508A (ja) | 高純度シリコンの製造方法 | |
JP2010116310A (ja) | シリコンの精製方法及び精製装置 | |
JPWO2008149985A1 (ja) | 金属珪素の凝固方法 | |
Yin et al. | Boron removal from molten silicon using sodium-based slags | |
JP5513389B2 (ja) | シリコンの精製方法 | |
JPH05262512A (ja) | シリコンの精製方法 | |
JP5099774B2 (ja) | シリコンの精製方法及び精製装置 | |
WO2010119502A1 (ja) | 金属珪素の精製方法 | |
RU2403299C1 (ru) | Способ вакуумной очистки кремния и устройство для его осуществления (варианты) | |
JP5572296B2 (ja) | 水冷坩堝および電子ビーム溶解炉 | |
CN112110450A (zh) | 一种冶金级硅中杂质硼去除的方法 | |
JP2000327488A (ja) | 太陽電池用シリコン基板の製造方法 | |
JP3673919B2 (ja) | 高純度チタンの回収方法 | |
JPH09309716A (ja) | シリコンの精製方法 | |
US9352970B2 (en) | Method for producing silicon for solar cells by metallurgical refining process | |
RU2381990C1 (ru) | Способ вакуумной очистки кремния | |
JP4209964B2 (ja) | 金属バナジウム又は/及び金属バナジウム合金の溶解方法並びに鋳造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09843283 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09843283 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |