[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010116688A1 - 無線基地局、無線リソース割り当て方法および無線通信システム - Google Patents

無線基地局、無線リソース割り当て方法および無線通信システム Download PDF

Info

Publication number
WO2010116688A1
WO2010116688A1 PCT/JP2010/002335 JP2010002335W WO2010116688A1 WO 2010116688 A1 WO2010116688 A1 WO 2010116688A1 JP 2010002335 W JP2010002335 W JP 2010002335W WO 2010116688 A1 WO2010116688 A1 WO 2010116688A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
radio resource
difference information
terminals
wireless
Prior art date
Application number
PCT/JP2010/002335
Other languages
English (en)
French (fr)
Inventor
昌英 片山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009095212A external-priority patent/JP5312161B2/ja
Priority claimed from JP2009248140A external-priority patent/JP5371696B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/263,436 priority Critical patent/US8761820B2/en
Publication of WO2010116688A1 publication Critical patent/WO2010116688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor

Definitions

  • the present invention relates to a radio base station, a radio resource allocation method, and a radio communication system.
  • scheduling information including data size waiting for transmission and difference information Ph (Power Headroom) of current transmission power with respect to the maximum transmission power that can be transmitted is transmitted from the wireless terminal to the wireless base station.
  • Ph Power Headroom
  • a radio base station Based on this scheduling information, a radio base station is known that determines the transmission power of the radio terminal and performs scheduling for controlling the data rate of transmission.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • a transmission band (resource block) having a plurality of subcarriers is allocated as an uplink radio resource (see, for example, Non-Patent Document 1). Therefore, in LTE, similarly to the conventional radio communication system, the radio base station determines the transmission power of the radio terminal based on the scheduling information including the difference information Ph from the radio terminal, and sets the transmission data rate. It is assumed that scheduling to control is performed.
  • the wireless state changes from one wireless resource to another due to frequency selective fading. Therefore, in a wireless communication system, there may be a radio resource with a good radio state and a radio resource with a deteriorated radio state.
  • the transmission power is determined based on the difference information Ph from the wireless terminal, and the transmission data rate is set.
  • a radio terminal using a radio resource with a good radio state generally has a margin in transmission power.
  • an object of the present invention made in view of such a point is to provide a radio base station, a radio resource allocation method, and a radio communication system that can appropriately control transmission power of a plurality of radio terminals and can stably maintain a radio link. It is to provide.
  • the invention of the radio base station is as follows: In a radio base station that performs radio communication by assigning different radio resources to a plurality of radio terminals, A measurement unit that measures a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and A difference information acquisition unit for acquiring difference information of a current transmission power with respect to a maximum transmission power transmitted from each of the plurality of wireless terminals; A communication type information acquisition unit for acquiring communication type information indicating the communication type of each of the plurality of wireless terminals; Based on the propagation loss in each radio resource measured by the measurement unit, the plurality of radio resources are classified into at least two radio resource groups, and for each of the plurality of radio terminals, the difference information acquisition unit A control unit that controls to allocate radio resources of the corresponding radio resource group based on the difference information acquired in step 1 and the communication type information acquired by the communication type information acquisition unit; It is characterized by providing.
  • the invention according to the second aspect is the radio base station according to the first aspect,
  • the controller is Classifying the plurality of radio resources into at least two or more radio resource groups based on a comparison between a propagation loss in each radio resource measured by the measurement unit and a preset threshold; It is characterized by this.
  • the invention according to a third aspect is the radio base station according to the first aspect,
  • the controller is After determining the radio resource group to which radio resources are allocated based on the difference information acquired by the difference information acquisition unit for each radio terminal, based on the communication type information acquired by the communication type information acquisition unit And, in the determined radio resource group, control is performed so as to allocate a radio resource having a relatively large or small propagation loss measured by the measurement unit, It is characterized by this.
  • the invention according to a fourth aspect is the radio base station according to the first aspect,
  • the controller is After determining the radio resource group to which radio resources are allocated based on the communication type information acquired by the communication type information acquisition unit for each radio terminal, based on the difference information acquired by the difference information acquisition unit And, in the determined radio resource group, control is performed so as to allocate a radio resource having a relatively large or small propagation loss measured by the measurement unit, It is characterized by this.
  • the invention of the radio base station is as follows: In a radio base station that performs radio communication by assigning different radio resources to a plurality of radio terminals, A measurement unit that measures a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and A difference information acquisition unit for acquiring difference information of a current transmission power with respect to a maximum transmission power transmitted from each of the plurality of wireless terminals; A moving speed acquisition unit that acquires the moving speed of each of the plurality of wireless terminals; A radio resource allocation standard corresponding to the moving speed acquired by the moving speed acquisition unit is set for each of the radio terminals, the radio resource allocation standard, the propagation loss measured by the measuring unit, and the difference information report acquisition A control unit that controls allocation of the radio resource to each of the plurality of radio terminals based on the difference information acquired by the unit; It is characterized by providing.
  • the invention according to a sixth aspect is the radio base station according to the fifth aspect,
  • the moving speed acquisition unit acquires the moving speed of the wireless terminal based on a received signal from the wireless terminal.
  • the invention according to a seventh aspect is the radio base station according to the fifth aspect,
  • the controller is Propagation measured by the measurement unit for the radio terminal in which the difference information acquired by the difference information acquisition unit is less than a first threshold indicating the radio resource allocation criterion set for each radio terminal. Assigning the radio resource having a relatively small loss to the radio terminal in which the difference information acquired by the difference information acquisition unit is equal to or higher than a first threshold indicating the radio resource allocation criteria set in each radio terminal In this case, a resource having a relatively large propagation loss measured by the measurement unit is allocated.
  • the invention according to an eighth aspect is the radio base station according to the fifth aspect, A communication type information acquisition unit for acquiring communication type information indicating the communication type of each of the plurality of wireless terminals;
  • the controller is Propagation loss measured by the measurement unit, difference information acquired by the difference information acquisition unit, the radio resource allocation standard set for each of the wireless terminals, propagation loss measured by the measurement unit, and difference information Controlling the allocation of the radio resource to each of the plurality of radio terminals based on the difference information acquired by the acquisition unit and the communication type information acquired by the communication type information acquisition unit It is.
  • the invention according to a ninth aspect is the radio base station according to the eighth aspect,
  • the controller is Based on the propagation loss in each radio resource measured by the measurement unit, classify the plurality of radio resources into at least two radio resource groups, Based on the wireless resource allocation criteria set for each of the wireless terminals, the difference information acquired by the difference information acquisition unit, and the communication type information acquired by the communication type information acquisition unit, the plurality of wireless terminals Control is performed so as to allocate radio resources of the corresponding radio resource group to each.
  • the invention according to a tenth aspect is the radio base station according to the ninth aspect,
  • the controller is Classifying the plurality of radio resources into at least two or more radio resource groups based on a comparison between a propagation loss in each radio resource measured by the measurement unit and a preset second threshold; It is characterized by this.
  • the invention according to an eleventh aspect is the radio base station according to the ninth aspect,
  • the controller is For each of the radio terminals, after determining the radio resource group to which radio resources are allocated based on the radio resource allocation criteria set for each of the radio terminals and the difference information acquired by the difference information acquisition unit, Based on the communication type information acquired by the communication type information acquisition unit, control is performed to allocate a radio resource having a relatively large or small propagation loss measured by the measurement unit within the determined radio resource group. , It is characterized by this.
  • the invention according to a twelfth aspect is the radio base station according to the ninth aspect,
  • the controller is After determining the radio resource group to which radio resources are allocated to the radio terminals based on the communication type information acquired by the communication type information acquisition unit, the radio resource allocation criteria set for each of the radio terminals Based on the difference information acquired by the difference information acquisition unit, control is performed so as to allocate a radio resource having a relatively large or small propagation loss measured by the measurement unit within the determined radio resource group. , It is characterized by this.
  • an invention of a radio resource allocation method is as follows: A radio resource allocation method in a radio base station that performs radio communication by allocating different radio resources to a plurality of radio terminals, Measuring a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and Obtaining difference information of current transmission power with respect to maximum transmission power transmitted from each of the plurality of wireless terminals; Obtaining communication type information indicating the communication type of each of the plurality of wireless terminals; Based on the measured propagation loss in each radio resource, classify the plurality of radio resources into at least two radio resource groups, and for each of the plurality of radio terminals, the acquired difference information and the Controlling to allocate the radio resource of the corresponding radio resource group based on the acquired communication type information; It is characterized by including.
  • the invention of a radio resource allocation method is a radio resource allocation method in a radio base station that performs radio communication by allocating different radio resources to a plurality of radio terminals, Measuring a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and Obtaining difference information of current transmission power with respect to maximum transmission power transmitted from each of the plurality of wireless terminals; Obtaining a moving speed of each of the plurality of wireless terminals; A radio resource allocation standard corresponding to the moving speed acquired by the moving speed acquisition unit is set for each of the radio terminals, the radio resource allocation standard, the propagation loss measured by the measuring unit, and the difference information report acquisition Controlling the allocation of the radio resource to each of the plurality of radio terminals based on the difference information acquired by the unit; It is characterized by including.
  • the invention of a wireless communication system is In a wireless communication system in which different wireless resources are allocated to a plurality of wireless terminals by a wireless base station, and wireless communication is performed between the wireless base station and the plurality of wireless terminals,
  • Each of the plurality of wireless terminals is A calculation unit that calculates a difference between the current transmission power and the maximum transmission power that can be transmitted by the wireless terminal, and outputs difference information;
  • the radio base station is A measurement unit that measures a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and
  • a difference information acquisition unit for acquiring difference information of a current transmission power with respect to a maximum transmission power transmitted from each of the plurality of wireless terminals;
  • a communication type information acquisition unit for acquiring communication type information indicating the communication type of each of the plurality of wireless terminals; Based on the propagation loss in each radio resource measured by the measurement unit, the plurality of
  • the invention of a wireless communication system is In a wireless communication system in which different wireless resources are allocated to a plurality of wireless terminals by a wireless base station, and wireless communication is performed between the wireless base station and the plurality of wireless terminals,
  • Each of the plurality of wireless terminals is A calculation unit that calculates a difference between the current transmission power and the maximum transmission power that can be transmitted by the wireless terminal, and outputs difference information;
  • the radio base station is A measurement unit that measures a propagation loss in the radio resources allocated to the plurality of radio terminals at each predetermined timing; and
  • a difference information acquisition unit for acquiring difference information of a current transmission power with respect to a maximum transmission power transmitted from each of the plurality of wireless terminals;
  • a moving speed acquisition unit that acquires the moving speed of each of the plurality of wireless terminals;
  • a radio resource allocation standard corresponding to the moving speed acquired by the moving speed acquiring unit is set for each of the radio
  • a base station measures a propagation state in a plurality of radio resources at a predetermined timing, classifies the plurality of radio resources into two or more radio resource groups based on the propagation state, Control is performed so that the radio resources of the corresponding radio resource group are allocated to the terminal based on the acquired difference information and communication type information. Therefore, it is possible to appropriately control the transmission power of a plurality of wireless terminals, and it is possible to stably maintain the wireless link between each wireless terminal and the wireless base station.
  • the base station acquires the moving speed of each wireless terminal, sets the wireless resource allocation reference for each wireless terminal according to the acquired moving speed, and wirelessly at each predetermined timing. Measure the propagation state of the resource, acquire the difference information of the current transmission power with respect to the maximum transmission power from each wireless terminal, based on these set radio resource allocation criteria, the measured propagation state, and the acquired difference information, Controls allocation of radio resources to a plurality of radio terminals. Therefore, it is possible to appropriately control the transmission power of a plurality of wireless terminals, and it is possible to stably maintain the wireless link between each wireless terminal and the wireless base station.
  • FIG. 2 is a schematic diagram showing radio resource block allocation by the radio base station shown in FIG. 1. It is a flowchart which shows the allocation scheduling operation
  • FIG. 1 is a diagram showing a schematic configuration of a radio communication system having a radio base station according to the first embodiment of the present invention.
  • This radio communication system is based on, for example, LTE, and a radio base station 10 according to the present embodiment assigns different radio resource blocks to a plurality of radio terminals 20 (only one is shown in FIG. 1). Allocating and performing wireless communication between the wireless base station 10 and the plurality of wireless terminals 20.
  • the radio base station 10 includes a radio communication unit 11, a propagation loss measurement unit 12, a Ph acquisition unit 13, a communication type information acquisition unit 14, and a control unit 15.
  • the wireless communication unit 11 performs wireless communication with a plurality of wireless terminals 20.
  • the propagation loss measurement unit 12 measures the propagation loss in each radio resource block assigned to the plurality of radio terminals 20 at predetermined timing based on the received signal obtained from the radio communication unit 11, and the measurement result Is supplied to the control unit 15.
  • the predetermined timing for measuring the propagation loss is, for example, a processing unit time defined by the system, for example, a subframe (1 ms) in a radio frame. Further, the propagation loss is measured based on, for example, the received electric field strength and packet loss in each radio resource block.
  • the Ph acquisition unit 13 constitutes a difference information acquisition unit, and based on the received signal obtained from the wireless communication unit 11, the difference information Ph (Power of current transmission power with respect to the maximum transmission power transmitted from each wireless terminal 20 Get Headroom). Then, the Ph acquisition unit 13 supplies the acquired difference information Ph to the control unit 15.
  • the communication type information acquisition unit 14 recognizes the type of communication with each wireless terminal 20, acquires the communication type information, and supplies the communication type information to the control unit 15.
  • the communication type information acquisition unit 14 determines the communication type information as a communication type (T1) for which real-time performance such as voice communication or streaming is required, and other communication types for data communication such as browsing ( And is supplied to the control unit 15.
  • the control unit 15 controls the operation of the entire radio base station.
  • the control unit 15 then transmits the propagation loss measured by the propagation loss measurement unit 12, the difference information Ph acquired by the Ph acquisition unit 13, and the communication type information acquired by the communication type information acquisition unit 14 at predetermined timings. Based on the above, allocation (scheduling) of radio resource blocks to a plurality of radio terminals 20 is controlled. Further, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20 via the wireless communication unit 11.
  • the radio base station 10 may configure the propagation loss measurement unit 12, the Ph acquisition unit 13, the communication type information acquisition unit 14, and the control unit 15 with a single CPU (central processing unit). Further, the propagation loss measurement unit 12, the Ph acquisition unit 13, the communication type information acquisition unit 14, and the control unit 15 may be configured to share and execute each process by a plurality of CPUs.
  • each wireless terminal 20 includes a wireless communication unit 21, a Ph calculation unit 22, and a control unit 23.
  • the radio communication unit 21 includes a transmission unit and a reception unit, and performs communication with the radio base station 10 using the allocated radio resource block.
  • the Ph calculation unit 22 calculates the difference between the current transmission power and the maximum transmission power that can be transmitted by the wireless terminal 20, and supplies the difference information Ph to the control unit 23.
  • the control unit 23 controls the operation of the entire wireless terminal. Then, the control unit 23 transmits (notifies) the difference information Ph obtained from the Ph calculation unit 22 to the radio base station 10 via the radio communication unit 21 periodically or at a timing requested from the radio base station 10. )
  • FIG. 2 is a flowchart showing a radio resource block allocation scheduling operation by the radio base station 10 according to the present embodiment.
  • the control unit 15 acquires the propagation loss of all radio resource blocks from the propagation loss measurement unit 12 at every predetermined timing (step S11). Then, the control unit 15 classifies the plurality of radio resource blocks into a plurality of radio resource groups based on a comparison between the acquired propagation loss of each radio resource block and a preset threshold value.
  • the propagation loss threshold is one, and the propagation loss is less than the threshold, that is, the group A in which the radio state is good, and the propagation loss is greater than the threshold, that is, the group B in which the radio state is relatively bad. Classify into radio resource groups (step S12).
  • control unit 15 acquires the difference information Ph of each wireless terminal 20 from the Ph acquisition unit 13 at every predetermined timing (step S13), and the communication of each wireless terminal 20 classified from the communication type information acquisition unit 14 Type information is acquired (step S14).
  • control part 15 compares the difference information Ph of the said radio
  • the control unit 15 preferentially assigns a radio resource block with a smaller propagation loss among the radio resource blocks of the group A to the radio terminal 20.
  • Block allocation is scheduled (step S17). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 allocates a radio resource block with a large propagation loss among the radio resource blocks of group A to the radio terminal 20.
  • the allocation of radio resource blocks is scheduled (step S18). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • Step S15 determines whether or not the communication type is T1 (Step S19).
  • the control unit 15 sets the radio resource block so that the radio resource block with the small propagation loss among the radio resource blocks of the group B is preferentially assigned to the radio terminal 20.
  • the allocation is scheduled (step S20). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 assigns radio resource blocks to the radio terminal 20 so that radio resource blocks having a large propagation loss among radio resource blocks of group B are assigned. Scheduling is performed (step S21). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • control unit 15 assigns the radio resource block assigned to each radio terminal 20 to each radio terminal 20 at each predetermined timing according to the radio status of each radio resource block that changes from time to time. Scheduling is performed according to the difference information Ph of the wireless terminal and the communication type.
  • FIG. 3 is a schematic diagram showing radio resource block allocation by the radio base station 10 according to the present embodiment.
  • the horizontal axis indicates time and the vertical axis indicates frequency.
  • the processing unit time corresponds to a predetermined timing for scheduling the allocation of radio resource blocks.
  • the allocation state of the radio resource blocks to the plurality of radio terminals indicated by the users 1 to n is the radio status of each radio resource block and the radio terminals in the sequential processing unit time (predetermined timing). Is changed according to the difference information Ph and the communication type.
  • FIG. 3 shows a case where one radio resource block is assigned to each user (wireless terminal). However, when the number of connected terminals is small, a plurality of radio resource blocks are assigned to one radio terminal. There is also a case of scheduling.
  • the radio terminal 20 having a margin of transmission power whose difference information Ph is less than the threshold Phref has a small propagation loss, that is, in a radio state.
  • a good group A radio resource block is selected.
  • a wireless resource block with a small propagation loss in the group A that is, a wireless state with a better wireless state is preferentially allocated. It is done. Therefore, a wireless link can be more stably maintained with respect to the wireless terminal 20 performing communication of the communication type T1, and QoS (Quality of Service) of the communication type T1 can be ensured.
  • the radio resource block of the group B having a large propagation loss, that is, a bad radio state is selected for the radio terminal 20 having the difference information Ph exceeding the threshold Phref.
  • the radio link can be maintained by appropriately controlling the transmission power.
  • a radio resource block having a small propagation loss in the group B, that is, a radio resource block having a good radio state is given priority to the radio terminal 20 performing communication of the communication type T1 requiring real-time performance. Therefore, QoS of the communication type T1 can be secured more stably.
  • the radio base station 10 it is possible to appropriately control the transmission power of each radio terminal 20 and to stabilize the radio link between each radio terminal 20 and the radio base station 10. Can be maintained.
  • the radio base station 10 since the radio base station 10 can know the propagation loss of all radio resource blocks at every predetermined timing, the radio base station 10 follows the temporal change in the radio state, and performs the downlink modulation scheme, antenna beamforming, etc. It is also possible to control.
  • the radio base station according to the second embodiment of the present invention has a radio resource block of group A with a small propagation loss for the radio terminal 20 of the communication type T1 that requires real-time performance in the configuration shown in FIG.
  • the radio resource block allocation is scheduled so as to be allocated.
  • FIG. 4 is a flowchart showing radio resource block allocation scheduling operation by the radio base station according to the present embodiment. The operation will be described below with reference to FIG.
  • the control unit 15 acquires the propagation loss of all radio resource blocks from the propagation loss measurement unit 12 at every predetermined timing (step S31). Then, the control unit 15 classifies the plurality of radio resource blocks into a plurality of radio resource groups based on the acquired propagation loss of each radio resource block and a preset threshold regarding propagation loss.
  • the radio resource block is divided into a group A having a relatively good radio state with a propagation loss less than the threshold and a group having a relatively bad radio state having a propagation loss equal to or greater than the threshold.
  • B is classified into two radio resource groups B (step S32).
  • control unit 15 acquires the difference information Ph of each wireless terminal 20 from the Ph acquisition unit 13 at every predetermined timing (step S33), and the communication of each wireless terminal 20 classified from the communication type information acquisition unit 14 Type information is acquired (step S34).
  • the control unit 15 first determines whether the communication type of the wireless terminal 20 is a communication type T1 for which real-time property is required, as opposed to the case of the first embodiment. It is determined whether or not (step S35). As a result, in the case of the communication type T1, the control unit 15 further compares the difference information Ph of the wireless terminal 20 with a preset threshold Phref in order to reliably maintain the wireless link (step S36).
  • the control unit 15 has a radio resource block with a large propagation loss among the radio resource blocks of group A with a small propagation loss with respect to the radio terminal 20. So as to allocate radio resource blocks (step S37). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 gives priority to a radio resource block with a smaller propagation loss among the radio resource blocks of group A to the radio terminal 20.
  • the radio resource block allocation is scheduled so as to be allocated (step S38). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 compares the difference information Ph with the threshold Phref (step S39), and if Ph> Phref, the wireless Radio resource block allocation is scheduled so as to allocate radio resource blocks having a large propagation loss among radio resource blocks of group B to terminal 20 (step S40). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 preferentially assigns a radio resource block with a small propagation loss among the radio resource blocks of the group B to the radio terminal 20. Is assigned (step S41). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • control unit 15 assigns the radio resource block to be assigned to each radio terminal 20 at each predetermined timing according to the radio status of each radio resource block that changes from time to time. Scheduling is performed according to the communication type of the wireless terminal and the difference information Ph.
  • the wireless terminal 20 performing communication of the communication type T1 requiring real-time performance has a small propagation loss, that is, a wireless state. Since a good radio resource block of group A is selected, QoS for each communication type can be secured.
  • the communication type T1 and the difference information Ph is Ph ⁇ Phref, among the radio resource blocks in group A, radio resource blocks with smaller propagation loss are preferentially assigned. Therefore, as in the case of the first embodiment, it is possible to maintain a wireless link more stably for the wireless terminal 20 performing communication of the communication type T1, and ensure QoS of the communication type T1. can do.
  • the group B radio resource block is selected for the wireless terminal 20 performing communication of the communication type T2.
  • radio resource blocks in group B radio resource blocks with a small propagation loss are preferentially assigned to the radio terminals 20 having a margin of transmission power where the difference information Ph is equal to or less than the threshold Phref.
  • a radio resource block having a large propagation loss among the radio resource blocks of group B is allocated to the radio terminal 20 having sufficient transmission power with the difference information Ph exceeding the threshold Phref.
  • the transmission power of each radio terminal 20 can be appropriately controlled, and the radio between each radio terminal 20 and the radio base station 10 can be controlled.
  • the link can be maintained stably.
  • the radio base station 10 since the radio base station 10 can know the propagation loss of all radio resource blocks at every predetermined timing, the radio base station 10 follows the temporal change in the radio state, and performs the downlink modulation scheme, antenna beamforming, etc. It is also possible to control.
  • FIG. 5 is a diagram showing a schematic configuration of a radio communication system having a radio base station according to the third embodiment of the present invention.
  • the radio base station 30 according to the present embodiment includes a moving speed acquisition unit 31 in place of the communication type information acquisition unit 14 in the radio base station 10 of the radio communication system shown in FIG.
  • the moving speed acquisition unit 31 acquires the moving speed of each wireless terminal 20.
  • the moving speed of each wireless terminal 20 is acquired by, for example, periodically acquiring the power value of the received signal from each wireless terminal 20 and grasping the fluctuation state of the propagation path. Then, the moving speed acquisition unit 31 determines whether or not the acquired moving speed is greater than or equal to a predetermined threshold, and supplies the determination result to the control unit 15.
  • the control unit 15 sets, for example, the radio resource allocation reference Phref for the radio terminal 20 whose movement speed is equal to or higher than a predetermined threshold according to the determination result by the movement speed acquisition unit 31 to a high value.
  • the radio resource allocation reference Phref for the radio terminal 20 that is less than the value is set to a low value.
  • the control unit 15 may determine whether the moving speed is equal to or higher than a predetermined threshold by acquiring moving speed information from the moving speed acquiring unit 31.
  • control unit 15 sets the wireless loss set according to the propagation loss measured by the propagation loss measurement unit 12, the difference information Ph acquired by the Ph acquisition unit 13, and the moving speed of the wireless terminal 20 at every predetermined timing. Based on the resource allocation criterion Phref, radio resource block allocation to a plurality of radio terminals 20 is controlled (scheduled). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20 via the wireless communication unit 11.
  • the other configuration of the radio base station 30 is the same as that of the radio base station 10 shown in FIG.
  • the wireless terminal 20 is also the same as that shown in FIG.
  • the radio base station 30 uses the single CPU (central processing unit) to transmit the propagation loss measurement unit 12, the Ph acquisition unit 13, the movement speed acquisition unit 31, and the control unit 15. It may be configured. Further, the propagation loss measurement unit 12, the Ph acquisition unit 13, the movement speed acquisition unit 31, and the control unit 15 may be configured to share and execute each process by a plurality of CPUs.
  • FIG. 6 is a flowchart showing radio resource block allocation scheduling operation by the radio base station 30 according to the present embodiment.
  • the control unit 15 acquires the propagation loss of all radio resource blocks from the propagation loss measurement unit 12 at every predetermined timing (step S51). Moreover, the control part 15 acquires the difference information Ph of each radio
  • control unit 15 changes the radio resource block allocated to each radio terminal 20 at each predetermined timing according to the radio status of each radio resource block, which changes from time to time, and the radio status of each radio resource block, Scheduling is performed according to the moving speed of each wireless terminal and the difference information Ph of each wireless terminal.
  • the allocation state of the radio resource blocks to the plurality of radio terminals indicated by the users 1 to n is changed to the radio status of each radio resource block in the sequential processing unit time (predetermined timing). It is changed according to the moving speed of each wireless terminal and the difference information Ph of each wireless terminal.
  • scheduling may be performed so that a plurality of radio resource blocks are allocated to one radio terminal.
  • the radio communication system having the radio base station 30 sets the radio resource allocation reference Phref based on the moving speed of each radio terminal 20. For example, Phref is set high for the wireless terminal 20 whose moving speed is equal to or higher than a predetermined threshold, and Phref is set low for the wireless terminal 20 whose moving speed is less than the predetermined threshold. Therefore, when the difference information Ph and Phref are compared for each wireless terminal 20, the wireless terminal 20 having a fast moving speed has a higher probability that it is determined that Phref is larger than the difference information Ph.
  • the radio terminal 20 has no transmission power, and a radio resource block with a small propagation loss, that is, a radio state with a good radio state is preferentially assigned. Thereby, the radio link of the radio terminal 20 can be reliably maintained.
  • a radio resource block with a large propagation loss that is, a bad radio state is preferentially assigned to the radio terminal 20 whose difference information Ph is equal to or higher than the radio resource allocation reference Phref.
  • the radio terminal 20 since the radio terminal 20 has a sufficient transmission power, the radio link can be maintained by appropriately controlling the transmission power. Therefore, the transmission power of each radio terminal 20 can be controlled appropriately, and the radio link between each radio terminal 20 and the radio base station 30 can be stably maintained.
  • the radio base station 30 can know the propagation loss of all radio resource blocks at every predetermined timing, the radio base station 30 follows the temporal change of the radio state, and performs the downlink modulation method, antenna beamforming, etc. It is also possible to control.
  • FIG. 7 is a diagram showing a schematic configuration of a radio communication system having a radio base station according to the fourth embodiment of the present invention.
  • the radio base station 40 according to the present embodiment is obtained by providing the radio base station 30 shown in FIG. 5 with the communication type information acquisition unit 14 shown in FIG.
  • the communication type information acquisition unit 14 recognizes the type of communication with each wireless terminal 20, acquires the communication type information, and supplies the communication type information to the control unit 15.
  • the communication type information acquisition unit 14 sets the communication type information as the communication type (T1) for which real-time properties such as voice communication and streaming are required.
  • T2 communication types
  • data communication such as browsing and the like
  • the control unit 15 is acquired by the propagation loss measured by the propagation loss measurement unit 12, the difference information Ph acquired by the Ph acquisition unit 13, the moving speed acquisition unit 31, and the communication type information acquisition unit 14 at every predetermined timing. Based on the received communication type information, allocation (scheduling) of radio resource blocks to a plurality of radio terminals 20 is controlled. Further, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20 via the wireless communication unit 11. Other configurations and operations are the same as those in FIG.
  • FIG. 8 is a flowchart showing a radio resource block allocation scheduling operation by the radio base station 40 according to the present embodiment.
  • the control unit 15 acquires the propagation loss of all radio resource blocks from the propagation loss measurement unit 12 at every predetermined timing (step S61), and each radio from the Ph acquisition unit 13 The difference information Ph of the terminal 20 is acquired (step S62).
  • the control unit 15 acquires the movement speed (determination result) of each wireless terminal 20 from the movement speed acquisition unit 31, and determines the wireless resource allocation reference Phref (step S63).
  • the control part 15 acquires the communication classification information of each radio
  • control part 15 compares the difference information Ph of the said radio
  • the control unit 15 schedules the allocation of radio resource blocks so as to preferentially allocate radio resource blocks with small propagation loss to the radio terminal 20 (step S67).
  • the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 assigns a radio resource to the radio terminal 20 so that a radio resource block with an intermediate propagation loss is preferentially assigned.
  • Block allocation is scheduled (step S68). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • Step S65 when Ph ⁇ Phref, there is a margin in transmission power.
  • the control unit 15 transmits a propagation loss to the radio terminal 20. Radio resource block allocation is scheduled so that a radio resource block having a large size is preferentially allocated (step S69). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the radio resource block allocated to each radio terminal 20 is assigned to each radio terminal 20 at a predetermined timing according to the radio status of each radio resource block that changes from moment to moment by the control unit 15. Scheduling is performed according to terminal difference information Ph, moving speed, and communication type.
  • the difference information Ph is less than the radio resource allocation reference Phref set based on the moving speed of each radio terminal 20, and real-time performance is required.
  • the radio terminal 20 that performs communication of the communication type T1 is preferentially assigned a radio resource block with a small propagation loss, that is, a good radio state. Therefore, in addition to the effect of the third embodiment, it is possible to more stably maintain the wireless link of the communication type T1 that requires real-time performance, and the QoS (Quality of Service) of the communication type T1. Can be secured.
  • Step S65 of FIG. 8 when Ph ⁇ Phref, it is determined whether or not the communication type is T1, and in the case of the communication type T1, a radio resource block with a small propagation loss is preferentially assigned, and the communication type T2 In this case, a radio resource block with a large propagation loss can be preferentially allocated.
  • control unit 15 can also compare Ph and Phref after determining the communication type by reversing the processing order of steps S65 and S66. That is, in step S65, the control unit 15 determines whether or not the communication type of the wireless terminal 20 is a communication type T1 for which real-time property is required, and in step S66, for each wireless terminal 20, The difference information Ph of the wireless terminal 20 and the wireless resource allocation reference Phref set based on the moving speed acquired by the moving speed acquisition unit 31 can also be compared.
  • the difference information Ph is further compared with the radio resource allocation reference Phref. If Ph ⁇ Phref, the propagation loss is large. A radio resource block is allocated, and when Ph ⁇ Phref, a radio resource block with a small propagation loss can be preferentially allocated.
  • the radio base station according to the fifth embodiment of the present invention is configured such that, in the radio base station 40 shown in FIG. 7, the control unit 15 uses a plurality of radio resource blocks based on the obtained propagation loss of each radio resource block. Are allocated to a plurality of radio resource groups, and allocation of radio resource blocks is scheduled based on the comparison result between the difference information Ph of each radio terminal 20 and the radio resource allocation reference Phref and the communication type of each radio terminal 20.
  • FIG. 9 is a flowchart showing radio resource block allocation scheduling operation by the radio base station 40 according to the fifth embodiment of the present invention.
  • the control unit 15 acquires the propagation loss of all radio resource blocks from the propagation loss measurement unit 12 at every predetermined timing (step S71). Then, the control unit 15 classifies the plurality of radio resource blocks into a plurality of radio resource groups based on a comparison between the acquired propagation loss of each radio resource block and a preset threshold for propagation loss.
  • the propagation loss threshold is one, and the propagation loss is less than the threshold value, that is, the group A in which the radio condition is relatively good, and the propagation loss is greater than the threshold value, that is, the group B in which the radio condition is relatively bad. Classify into two radio resource groups (step S72).
  • control unit 15 acquires the moving speed (determination result) of each wireless terminal 20 from the moving speed acquisition unit 31, and determines the wireless resource allocation reference Phref for each wireless terminal 20 (step S73). And the control part 15 acquires the difference information Ph of each radio
  • control part 15 compares the difference information Ph of the said radio
  • the control unit 15 preferentially assigns a radio resource block with a smaller propagation loss among the radio resource blocks of the group A to the radio terminal 20.
  • Block allocation is scheduled (step S78). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 allocates a radio resource block with a large propagation loss among the radio resource blocks of group A to the radio terminal 20. In this manner, radio resource block allocation is scheduled (step S79). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • Step S80 determines whether or not the communication type is T1 (Step S80).
  • the control unit 15 sets the radio resource block so that the radio resource block with the small propagation loss among the radio resource blocks of the group B is preferentially assigned to the radio terminal 20.
  • the allocation is scheduled (step S81). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • the control unit 15 assigns radio resource blocks to the radio terminal 20 so that radio resource blocks having a large propagation loss among radio resource blocks of group B are assigned. Scheduling is performed (step S82). Then, the control unit 15 transmits the scheduling result to the corresponding wireless terminal 20.
  • control unit 15 assigns the radio resource block to be assigned to each radio terminal 20 at each predetermined timing according to the radio status of each radio resource block that changes from time to time. Scheduling is performed according to the difference information Ph of the wireless terminal, the moving speed, and the communication type.
  • the radio terminal 20 whose difference information Ph is equal to or higher than the radio resource allocation reference Phref set based on the moving speed of each radio terminal 20 has a large propagation loss, that is, in the radio state.
  • a bad group B radio resource block is selected.
  • the radio terminal 20 since the radio terminal 20 has a sufficient transmission power, the radio link can be maintained by appropriately controlling the transmission power.
  • a radio resource block having a small propagation loss in the group B that is, a radio resource block having a good radio state is given priority to the radio terminal 20 performing communication of the communication type T1 requiring real-time performance. Therefore, QoS of the communication type T1 can be secured more stably.
  • the transmission power of each radio terminal 20 can be appropriately controlled, and the radio link between each radio terminal 20 and the radio base station 40 can be stabilized. Can be maintained. Further, since the radio base station 40 can know the propagation loss of all radio resource blocks at every predetermined timing, the radio base station 40 follows the temporal change of the radio state, and performs the downlink modulation method, antenna beamforming, etc. It is also possible to control.
  • the control unit 15 can also compare Ph and Phref after determining the communication type by reversing the processing order of steps S76 and S77 and S80. That is, in step S76, the control unit 15 determines whether or not the communication type of the wireless terminal 20 is a communication type T1 that requires real-time characteristics, and in each of steps S77 and S80, each wireless terminal 20 On the other hand, the difference information Ph of the radio terminal 20 and the radio resource allocation reference Phref set based on the movement speed acquired by the movement speed acquisition unit 31 can be compared. As a result, for example, in a certain radio terminal 20, if the communication type is T1 and Ph ⁇ Phref, the control unit 15 allocates a radio resource having a large propagation loss in the group A to the communication terminal 20. .
  • the radio resource block can be classified into three or more radio resource groups by setting a plurality of thresholds for propagation loss.
  • the communication type is not limited to two, and can be classified into three or more. In this way, if the radio resource group is classified into three or more or the communication type is classified into three or more, the radio resource block for each radio terminal is changed to the difference information Ph of the radio terminal, the communication type, More appropriate and efficient scheduling can be performed according to the moving speed.
  • the moving speed of the wireless terminal is obtained by using, for example, the position information and time information of the wireless terminal acquired by the GPS or the like provided in the wireless terminal to move the wireless base station. It can also be obtained at a predetermined timing in the speed acquisition unit and calculated based on such information.
  • the present invention not only acquires the moving speed of the wireless terminal by performing processing on the wireless base station side as described above, but also includes, for example, the position information for each predetermined time acquired by the GPS or the like on the wireless terminal side. Based on this, the moving speed of the terminal itself may be detected, and the detected moving speed may be transmitted together when transmitting the transmission power difference information Ph to the radio base station.
  • the present invention is not limited to LTE, WiMAX (Worldwide Interoperability for Microwave Access), UMB (Ultra Mobile Broadband), Next Generation PHS (Personal Handy-phone System), IMT-Advanced, etc.
  • the present invention can be widely applied to a wireless communication system in which resources are allocated and wireless communication is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の無線端末20に異なる無線リソースを割り当てて無線通信する無線基地局10において、所定タイミング毎に、各無線端末20に割り当てた無線リソースにおける伝播損失を測定する測定部12と、各無線端末20から送信される最大送信電力に対する現在送信電力の差分情報Phを取得する差分情報取得部13と、各無線端末20の通信種別を示す通信種別情報を取得する通信種別情報取得部14と、各無線リソースにおける伝播損失に基づいて、複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、各無線端末20に対して、取得した差分情報および通信種別情報に基づいて、対応する無線リソースグループの無線リソースを割り当てるように制御する制御部15とを備える。これにより、複数の無線端末の送信電力を適切に制御するとともに、無線リンクを安定して維持する。

Description

無線基地局、無線リソース割り当て方法および無線通信システム 関連出願の相互参照
 本出願は、2009年4月9日に出願された日本国特許出願2009-95212号、および2009年10月28日に出願された日本国特許出願2009-248140号の優先権を主張するものであり、これら先の出願の開示全体をここに参照のために取り込む。
 本発明は、無線基地局、無線リソース割り当て方法および無線通信システムに関するものである。
 従来の無線通信システムには、無線端末から無線基地局に対して、送信待ちのデータサイズと、送信可能な最大送信電力に対する現在送信電力の差分情報Ph(Power Headroom)とを含むスケジューリング情報を送信するものがある。そして、このスケジューリング情報に基づいて、無線基地局は、当該無線端末の送信電力を決定して、送信のデータレートを制御するスケジューリングを行うものが知られている。
 また、最近では、例えば、3GPP(3rd Generation Partnership Project)においてLTE(Long Term Evolution)の標準化が進められている。LTEでは、上り回線の無線リソースとして複数のサブキャリアを有する送信帯域(リソースブロック)が割り当てられる(例えば、非特許文献1参照)。したがって、LTEにおいても、従来の無線通信システムと同様に、無線基地局は、無線端末からの差分情報Phを含むスケジューリング情報に基づいて、無線端末の送信電力を決定して、送信のデータレートを制御するスケジューリングを行うことが想定される。
3GPP TR25.814
 ところで、複数の無線端末にそれぞれ異なる周波数の無線リソースを割り当てて通信を実行する無線通信システムでは、周波数選択性フェージング等の影響で、無線リソース毎に無線状態が時々刻々変化している。そのため、無線通信システムでは、無線状態の良好な無線リソースと、無線状態が悪化している無線リソースとが存在する場合がある。この場合、無線状態が悪化した無線リソースを使用している無線端末に対しては、上述したように、当該無線端末からの差分情報Phに基づいて送信電力を決定して、送信のデータレートを制御するスケジューリングを行うことにより、所望の通信品質を確保することが可能となる。
 しかし、無線端末の送信電力に余裕がない場合は、当該無線端末に割り当てられている無線リソースの無線状態がさらに悪化すると、もはや、送信電力を上げる制御ができなくなる。この場合、無線端末は、無線基地局との無線リンクを維持することが困難になる。その一方で、無線状態が良好な無線リソースを使用している無線端末は、一般に、送信電力に余裕があることが多い。
 このように、複数の無線端末にそれぞれ異なる周波数の無線リソースを割り当てて通信を実行する無線通信システムでは、無線基地局において、無線端末からの差分情報Phに基づいて送信電力を制御しても、無線端末によっては送信電力に余裕がないために、無線基地局との無線リンクの維持が困難になる場合が生じることが懸念される。
 したがって、かかる点に鑑みてなされた本発明の目的は、複数の無線端末の送信電力を適切に制御できるとともに、無線リンクを安定して維持できる無線基地局、無線リソース割り当て方法および無線通信システムを提供することにある。
 上記目的を達成する第1の観点に係る無線基地局の発明は、
 複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局において、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
 前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部と、
 前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記差分情報取得部で取得された差分情報および前記通信種別情報取得部で取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御する制御部と、
 を備えることを特徴とするものである。
 第2の観点に係る発明は、第1の観点に係る無線基地局において、
 前記制御部は、
 前記測定部で測定された各無線リソースにおける伝播損失と、予め設定した閾値との比較に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類する、
 ことを特徴とするものである。
 第3の観点に係る発明は、第1の観点に係る無線基地局において、
 前記制御部は、
 前記各無線端末に対して、前記差分情報取得部で取得された差分情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記通信種別情報取得部で取得された通信種別情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
 ことを特徴とするものである。
 第4の観点に係る発明は、第1の観点に係る無線基地局において、
 前記制御部は、
 前記各無線端末に対して、前記通信種別情報取得部で取得された通信種別情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記差分情報取得部で取得された差分情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
 ことを特徴とするものである。
 さらに、上記目的を達成する第5の観点に係る無線基地局の発明は、
 複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局において、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
 前記複数の無線端末の各々の移動速度を取得する移動速度取得部と、
 前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する制御部と、
 を備えることを特徴とするものである。
 第6の観点に係る発明は、第5の観点に係る無線基地局において、
 前記移動速度取得部は、前記無線端末からの受信信号に基づいて、当該無線端末の移動速度を取得することを特徴とするものである。
 第7の観点に係る発明は、第5の観点に係る無線基地局において、
 前記制御部は、
 前記差分情報取得部で取得された差分情報が、各々の無線端末に設定された前記無線リソース割り当て基準を示す第1の閾値未満の前記無線端末に対しては、前記測定部で測定された伝播損失が相対的に小さい前記無線リソースを割り当て、前記差分情報取得部で取得された差分情報が各々の無線端末に設定された前記無線リソース割当て基準を示す第1の閾値以上の前記無線端末に対しては、前記測定部で測定された伝播損失が相対的に大きいリソースを割り当てる、ことを特徴とするものである。
 第8の観点に係る発明は、第5の観点に係る無線基地局において、
 前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部を、さらに備え、
 前記制御部は、
 前記測定部で測定された伝播損失、前記差分情報取得部で取得された差分情報、および前記無線端末の各々に設定した前記無線リソース割り当て基準、前記測定部で測定された伝播損失、前記差分情報取得部で取得された差分情報、および前記通信種別情報取得部で取得された通信種別情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する、ことを特徴とするものである。
 第9の観点に係る発明は、第8の観点に係る無線基地局において、
 前記制御部は、
 前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、
 前記無線端末の各々に設定した前記無線リソース割り当て基準、前記差分情報取得部で取得された差分情報、および前記通信種別情報取得部で取得された通信種別情報に基づいて、前記複数の無線端末の各々に、対応する前記無線リソースグループの無線リソースを割り当てるように制御する、ことを特徴とするものである。
 第10の観点に係る発明は、第9の観点に係る無線基地局において、
 前記制御部は、
 前記測定部で測定された各無線リソースにおける伝播損失と、予め設定した第2の閾値との比較に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類する、
 ことを特徴とするものである。
 第11の観点に係る発明は、第9の観点に係る無線基地局において、
 前記制御部は、
 前記各無線端末に対して、前記無線端末の各々に設定した前記無線リソース割り当て基準および前記差分情報取得部で取得された差分情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記通信種別情報取得部で取得された通信種別情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
 ことを特徴とするものである。
 第12の観点に係る発明は、第9の観点に係る無線基地局において、
 前記制御部は、
 前記各無線端末に対して、前記通信種別情報取得部で取得された通信種別情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記無線端末の各々に設定した前記無線リソース割り当て基準及び前記差分情報取得部で取得された差分情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
 ことを特徴とするものである。
 さらに、上記目的を達成する第13の観点に係る無線リソース割り当て方法の発明は、
 複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局における無線リソース割り当て方法であって、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定するステップと、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得するステップと、
 前記複数の無線端末の各々の通信種別を示す通信種別情報を取得するステップと、
 前記測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記取得された差分情報および前記取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御するステップと、
 を含むことを特徴とするものである。
 さらに、上記目的を達成する第14の観点に係る無線リソース割り当て方法の発明は、複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局における無線リソース割り当て方法であって、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定するステップと、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得するステップと、
 前記複数の無線端末の各々の移動速度を取得するステップと、
 前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御するステップと、
 を含むことを特徴とするものである。
 さらに、上記目的を達成する第15の観点に係る無線通信システムの発明は、
 無線基地局により複数の無線端末にそれぞれ異なる無線リソースを割り当てて、前記無線基地局と前記複数の無線端末との間で無線通信する無線通信システムにおいて、
 前記複数の無線端末の各々は、
 現在の送信電力と当該無線端末が送信可能な最大送信電力との差分を算出して差分情報を出力する算出部と、
 前記算出部から出力される差分情報を前記無線基地局へ送信する送信部とを備え、
 前記無線基地局は、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
 前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部と、
 前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記差分情報取得部で取得された差分情報および前記通信種別情報取得部で取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御する制御部と、
 を含むことを特徴とするものである。
 さらに、上記目的を達成する第16の観点に係る無線通信システムの発明は、
 無線基地局により複数の無線端末にそれぞれ異なる無線リソースを割り当てて、前記無線基地局と前記複数の無線端末との間で無線通信する無線通信システムにおいて、
 前記複数の無線端末の各々は、
 現在の送信電力と当該無線端末が送信可能な最大送信電力との差分を算出して差分情報を出力する算出部と、
 前記算出部から出力される差分情報を前記無線基地局へ送信する送信部とを備え、
 前記無線基地局は、
 所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
 前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
 前記複数の無線端末の各々の移動速度を取得する移動速度取得部と、
 前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する制御部と、
 を含むことを特徴とするものである。
 本発明によれば、基地局において、所定タイミング毎に、複数の無線リソースにおける伝播状態を測定して、その伝播状態に基づいて複数の無線リソースを2以上の無線リソースグループに分類し、各無線端末に対して、取得した差分情報および通信種別情報に基づいて、対応する無線リソースグループの無線リソースを割り当てるように制御する。したがって、複数の無線端末の送信電力を適切に制御できるとともに、各無線端末と無線基地局との無線リンクを安定して維持することが可能となる。
 また、本発明によれば、基地局において、各無線端末の移動速度を取得して、取得した移動速度に応じて各無線端末に対して無線リソース割り当て基準を設定するとともに、所定タイミング毎に無線リソースの伝播状態を測定し、各無線端末から最大送信電力に対する現在送信電力の差分情報を取得して、これら設定した無線リソース割り当て基準、測定した伝播状態、及び、取得した差分情報に基づいて、複数の無線端末に対する無線リソースの割り当てを制御する。したがって、複数の無線端末の送信電力を適切に制御できるとともに、各無線端末と無線基地局との無線リンクを安定して維持することが可能となる。
本発明の第1実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。 図1に示した無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。 図1に示した無線基地局による無線リソースブロックの割り当てを示す模式図である。 本発明の第2実施の形態に係る無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。 本発明の第3実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。 図5に示した無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。 本発明の第4実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。 本発明の第4実施の形態に係る無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。 本発明の第5実施の形態に係る無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。
 以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。この無線通信システムは、例えばLTEに準拠するもので、本実施の形態に係る無線基地局10により複数の無線端末20(図1では1つのみを示す)に対して、それぞれ異なる無線リソースブロックを割り当てて、無線基地局10と複数の無線端末20との間で無線通信を行うものである。
 無線基地局10は、無線通信部11、伝播損失測定部12、Ph取得部13、通信種別情報取得部14、および制御部15を有する。無線通信部11は、複数の無線端末20との間で無線通信を実行する。伝播損失測定部12は、無線通信部11から得られる受信信号に基づいて、所定タイミング毎に、複数の無線端末20に割り当てられている各無線リソースブロックにおける伝播損失を測定して、その測定結果を制御部15に供給する。
 ここで、伝播損失を測定する所定タイミングは、例えばシステムで規定された処理単位時間、例えば無線フレームにおけるサブフレーム(1ms)とする。また、伝播損失は、例えば、各無線リソースブロックにおける受信電界強度やパケットロス等に基づいて測定する。
 Ph取得部13は、差分情報取得部を構成するもので、無線通信部11から得られる受信信号に基づいて、各無線端末20から送信される最大送信電力に対する現在送信電力の差分情報Ph(Power Headroom)を取得する。そして、Ph取得部13は、その取得した差分情報Phを制御部15に供給する。
 通信種別情報取得部14は、各無線端末20との通信の種別を認識して通信種別情報を取得し、その通信種別情報を制御部15に供給する。本実施の形態では、通信種別情報取得部14において、通信種別情報を、例えば音声通信やストリーミング等のリアルタイム性が求められる通信種別(T1)と、それ以外のブラウジング等のデータ通信の通信種別(T2)とに分類して、制御部15に供給する。
 制御部15は、当該無線基地局全体の動作を制御する。そして、制御部15は、所定タイミング毎に、伝播損失測定部12で測定された伝播損失、Ph取得部13で取得された差分情報Ph、および通信種別情報取得部14で取得された通信種別情報に基づいて、複数の無線端末20に対する無線リソースブロックの割り当てを制御(スケジューリング)する。また、制御部15は、このスケジューリング結果を、無線通信部11を介して対応する無線端末20に送信する。
 なお、無線基地局10は、一つのCPU(中央処理装置)により、伝播損失測定部12、Ph取得部13、通信種別情報取得部14、および制御部15を構成してもよい。また、伝播損失測定部12、Ph取得部13、通信種別情報取得部14、および制御部15は複数のCPUにより各処理を分担して実行するように構成してもよい。
 一方、各無線端末20は、無線通信部21、Ph算出部22、および制御部23を有する。無線通信部21は、送信部および受信部を含み、無線基地局10との間で、割り当てられた無線リソースブロックを用いて通信を実行する。Ph算出部22は、当該無線端末20が送信可能な最大送信電力に対する現在送信電力の差分を算出して、その差分情報Phを制御部23に供給する。制御部23は、当該無線端末全体の動作を制御する。そして、制御部23は、Ph算出部22から得られる差分情報Phを、定期的に、または無線基地局10から要求されたタイミングで、無線通信部21を介して無線基地局10に送信(通知)する。
 図2は、本実施の形態に係る無線基地局10による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。制御部15は、所定タイミング毎に、全ての無線リソースブロックの伝播損失を伝播損失測定部12から取得する(ステップS11)。そして、制御部15は、その取得した各無線リソースブロックの伝播損失と、予め設定した閾値との比較に基づいて、複数の無線リソースブロックを複数の無線リソースグループに分類する。本実施の形態では、伝播損失の閾値を一つとして、伝播損失が閾値未満、すなわち無線状態の良好なグループAと、伝播損失が閾値以上、すなわち無線状態が比較的悪いグループBとの二つの無線リソースグループに分類する(ステップS12)。
 また、制御部15は、所定タイミング毎に、Ph取得部13から各無線端末20の差分情報Phを取得するとともに(ステップS13)、通信種別情報取得部14から分類された各無線端末20の通信種別情報を取得する(ステップS14)。
 そして、制御部15は、各無線端末20に対して、当該無線端末20の差分情報Phと、予め設定した閾値Phrefとを比較する(ステップS15)。その結果、Ph<Phrefの場合は、送信電力に余裕がないので、制御部15は、さらに、当該無線端末20の通信種別が、リアルタイム性が要求される通信種別T1であるか否かを判別する(ステップS16)。
 その結果、通信種別がT1の場合、制御部15は、当該無線端末20に対して、グループAの無線リソースブロックの中で伝播損失のより小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS17)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、通信種別がT2の場合は、リアルタイム性が要求されないので、制御部15は、当該無線端末20に対して、グループAの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS18)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 一方、ステップS15において、Ph≧Phrefの場合、送信電力に余裕があるので、制御部15は、通信種別がT1であるか否かを判別する(ステップS19)。その結果、通信種別T1の場合、制御部15は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS20)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、通信種別T2の場合、制御部15は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS21)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 このようにして、制御部15は、時々刻々変化する各無線リソースブロックの無線状態に応じて、所定タイミング毎に、各無線端末20に割り当てる無線リソースブロックを、各無線リソースブロックの無線状態、各無線端末の差分情報Phおよび通信種別に応じてスケジューリングする。
 図3は、本実施の形態に係る無線基地局10による無線リソースブロックの割り当てを示す模式図である。図3において、横軸は時間を示し、縦軸は周波数を示す。また、処理単位時間は、無線リソースブロックの割り当てをスケジューリングする所定タイミングに相当する。図3から明らかなように、ユーザ1~ユーザnで示す複数の無線端末に対する無線リソースブロックの割り当て状態は、順次の処理単位時間(所定タイミング)において、各無線リソースブロックの無線状態、各無線端末の差分情報Phおよび通信種別に応じて変更される。なお、図3は、各ユーザ(無線端末)に1つの無線リソースブロックを割り当てた場合を示しているが、接続端末数が少ない場合は、1つの無線端末に複数の無線リソースブロックを割り当てるようにスケジューリングする場合もある。
 本実施の形態に係る無線基地局10を有する無線通信システムによれば、差分情報Phが閾値Phref未満の送信電力に余裕のない無線端末20に対しては、伝播損失の小さい、つまり無線状態のよいグループAの無線リソースブロックが選択される。しかも、リアルタイム性が要求される通信種別T1の通信を行っている無線端末20に対しては、グループAの中で伝播損失の小さい、つまり、より無線状態のよい無線リソースブロックが優先的に割り当てられる。したがって、通信種別T1の通信を行っている無線端末20に対して、より安定して無線リンクを維持することが可能となり、通信種別T1のQoS(Quality of Service)を確保することができる。
 また、差分情報Phが閾値Phrefを超える無線端末20に対しては、伝播損失の大きい、つまり無線状態の悪いグループBの無線リソースブロックが選択される。しかし、当該無線端末20は、送信電力に余裕があるので、送信電力を適切に制御することにより、無線リンクを維持することができる。しかも、この場合も、リアルタイム性が要求される通信種別T1の通信を行っている無線端末20に対しては、グループBの中で伝播損失の小さい、つまり、無線状態のよい無線リソースブロックが優先的に割り当てられるので、通信種別T1のQoSをより安定して確保することができる。
 したがって、本実施の形態に係る無線基地局10を有する無線通信システムによれば、各無線端末20の送信電力を適切に制御できるとともに、各無線端末20と無線基地局10との無線リンクを安定して維持することができる。また、無線基地局10は、所定タイミング毎に全ての無線リソースブロックの伝播損失を知ることができるので、無線状態の時間的な変化に追従して、下りの変調方式やアンテナのビームフォーミング等を制御することも可能となる。
(第2実施の形態)
 本発明の第2実施の形態に係る無線基地局は、図1に示した構成において、リアルタイム性が要求される通信種別T1の無線端末20に対して、伝播損失の小さいグループAの無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする。
 図4は、本実施の形態に係る無線基地局による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。以下、図1を参照しながら、動作を説明する。制御部15は、第1実施の形態の場合と同様に、所定タイミング毎に、全ての無線リソースブロックの伝播損失を伝播損失測定部12から取得する(ステップS31)。そして、制御部15は、その取得した各無線リソースブロックの伝播損失と、予め設定した伝播損失に関する閾値とに基づいて、複数の無線リソースブロックを複数の無線リソースグループに分類する。本実施の形態では、伝播損失の閾値を一つとして、無線リソースブロックを、伝播損失が閾値未満の無線状態が比較的良好なグループAと、伝播損失が閾値以上の無線状態が比較的悪いグループBとの二つの無線リソースグループに分類する(ステップS32)。
 また、制御部15は、所定タイミング毎に、Ph取得部13から各無線端末20の差分情報Phを取得するとともに(ステップS33)、通信種別情報取得部14から分類された各無線端末20の通信種別情報を取得する(ステップS34)。
 そして、制御部15は、各無線端末20に対して、第1実施の形態の場合とは逆に、先ず、当該無線端末20の通信種別が、リアルタイム性が要求される通信種別T1であるか否かを判別する(ステップS35)。その結果、通信種別T1の場合、制御部15は、無線リンクを確実に維持するため、さらに、当該無線端末20の差分情報Phと、予め設定した閾値Phrefとを比較する(ステップS36)。
 その結果、Ph>Phrefの場合、送信電力に余裕があるので、制御部15は、当該無線端末20に対して、伝播損失の小さいグループAの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS37)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、Ph≦Phrefの場合、送信電力に余裕がないので、制御部15は、当該無線端末20に対して、グループAの無線リソースブロックの中でより伝播損失の小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS38)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 一方、ステップS35において、通信種別が、リアルタイム性が要求されない通信種別T2の場合、制御部15は、差分情報Phと閾値Phrefとを比較し(ステップS39)、Ph>Phrefの場合は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS40)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、Ph≦Phrefの場合、制御部15は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS41)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 このようにして、制御部15により、時々刻々変化する各無線リソースブロックの無線状態に応じて、所定タイミング毎に、各無線端末20に割り当てる無線リソースブロックを、各無線リソースブロックの無線状態、各無線端末の通信種別および差分情報Phに応じてスケジューリングする。
 本実施の形態に係る無線基地局10を有する無線通信システムによれば、リアルタイム性が要求される通信種別T1の通信を行っている無線端末20に対しては、伝播損失の小さい、つまり無線状態のよいグループAの無線リソースブロックが選択されるので、通信種別毎のQoSを確保することが可能となる。しかも、通信種別T1で、差分情報PhがPh≦Phrefの場合は、グループAの無線リソースブロックの中でより伝播損失の小さい無線リソースブロックが優先的に割り当てられる。したがって、第1実施の形態の場合と同様に、通信種別T1の通信を行っている無線端末20に対して、より安定して無線リンクを維持することが可能となり、通信種別T1のQoSを確保することができる。
 また、通信種別T2の通信を行っている無線端末20に対しては、グループBの無線リソースブロックが選択される。しかも、差分情報Phが閾値Phref以下の送信電力に余裕のない無線端末20に対しては、グループBの無線リソースブロックの中で、伝播損失の小さい無線リソースブロックが優先的に割り当てられる。これに対し、差分情報Phが閾値Phref超える送信電力に余裕のある無線端末20に対しては、グループBの無線リソースブロックの中で、伝播損失の大きい無線リソースブロックが割り当てられる。これにより、通信種別T2の通信を行っている無線端末20においても、安定して無線リンクを維持することが可能となる。
 したがって、第1実施の形態に係る無線基地局10を有する無線通信システムの場合と同様に、各無線端末20の送信電力を適切に制御できるとともに、各無線端末20と無線基地局10との無線リンクを安定して維持することができる。また、無線基地局10は、所定タイミング毎に全ての無線リソースブロックの伝播損失を知ることができるので、無線状態の時間的な変化に追従して、下りの変調方式やアンテナのビームフォーミング等を制御することも可能となる。
(第3実施の形態)
 図5は、本発明の第3実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。本実施の形態に係る無線基地局30は、図1に示した無線通信システムの無線基地局10において、通信種別情報取得部14に代えて移動速度取得部31を備えるものである。
 移動速度取得部31は、各無線端末20の移動速度を取得する。各無線端末20の移動速度は、例えば、各無線端末20からの受信信号の電力値を定期的に取得し、その伝播路の変動状況を把握することにより取得する。そして、移動速度取得部31は、取得した移動速度が所定の閾値以上であるか否か判定して、その判定結果を制御部15に供給する。
 制御部15は、移動速度取得部31による判定結果に応じて、例えば、移動速度が所定の閾値以上である無線端末20に対する無線リソース割り当て基準Phrefを高い値に設定し、移動速度が所定の閾値未満である無線端末20に対する無線リソース割り当て基準Phrefを低い値に設定する。なお、移動速度が所定の閾値以上であるか否かの判定は、制御部15において、移動速度取得部31から移動速度情報を取得して行ってもよい。
 また、制御部15は、所定タイミング毎に、伝播損失測定部12で測定された伝播損失、Ph取得部13で取得された差分情報Ph、および無線端末20の移動速度に応じて設定された無線リソース割り当て基準Phrefに基づいて、複数の無線端末20に対する無線リソースブロックの割り当てを制御(スケジューリング)する。そして、制御部15は、そのスケジューリング結果を、無線通信部11を介して対応する無線端末20に送信する。無線基地局30のその他の構成は、図1に示した無線基地局10と同様であるので、説明を省略する。また、無線端末20も、図1と同様であるので、説明を省略する。
 なお、無線基地局30は、上記実施の形態の場合と同様に、一つのCPU(中央処理装置)により、伝播損失測定部12、Ph取得部13、移動速度取得部31、および制御部15を構成してもよい。また、伝播損失測定部12、Ph取得部13、移動速度取得部31、および制御部15は、複数のCPUにより各処理を分担して実行するように構成してもよい。
 図6は、本実施の形態に係る無線基地局30による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。制御部15は、所定タイミング毎に、全ての無線リソースブロックの伝播損失を伝播損失測定部12から取得する(ステップS51)。また、制御部15は、Ph取得部13から各無線端末20の差分情報Phを取得する(ステップS52)。また、制御部15は、移動速度取得部31から各無線端末20の移動速度(判定結果)を取得し、無線リソース割り当て基準Phrefを決定する(ステップS53)。そして、制御部15は、Ph取得部13から取得した差分情報Phと、移動速度取得部31から取得した各端末の移動速度に基づいて決定した無線リソース割り当て基準Phrefとを比較する(ステップS54)。
 その結果、Ph≧Phrefの場合、送信電力に余裕があるので、制御部15は、当該無線端末20に対しては伝播損失の大きい無線リソースブロックを優先して割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS55)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。これに対し、Ph<Phrefの場合、送信電力に余裕がないので、制御部15は、当該無線端末20に対しては伝播損失の小さい無線リソースブロックを優先して割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS56)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 このようにして、制御部15により、時々刻々変化する、各無線リソースブロックの無線状態に応じて、所定タイミング毎に、各無線端末20に割り当てる無線リソースブロックを、各無線リソースブロックの無線状態、各無線端末の移動速度および各無線端末の差分情報Phに応じてスケジューリングする。
 これにより、図3に示したように、ユーザ1~ユーザnで示す複数の無線端末に対する無線リソースブロックの割り当て状態が、順次の処理単位時間(所定タイミング)において、各無線リソースブロックの無線状態、各無線端末の移動速度、および各無線端末の差分情報Phに応じて変更される。なお、図3において説明したように、接続端末数が少ない場合は、1つの無線端末に複数の無線リソースブロックを割り当てるようにスケジューリングする場合もある。
 このように、本実施の形態に係る無線基地局30を有する無線通信システムは、各無線端末20の移動速度に基づいて、無線リソース割り当て基準Phrefを設定する。たとえば、移動速度が所定の閾値以上である無線端末20については、Phrefを高く、移動速度が所定の閾値未満である無線端末20については、Phrefを低く設定する。したがって、各無線端末20について、差分情報PhとPhrefとを比較すると、移動速度が速い無線端末20は、差分情報PhよりもPhrefのほうが大きいと判定される確率が高まる。その結果、当該無線端末20は、送信電力に余裕がないと判定されて、伝播損失の小さい、つまり無線状態のよい無線リソースブロックが優先的に割り当てられる。これにより、当該無線端末20の無線リンクを確実に維持することができる。
 また、差分情報Phが無線リソース割り当て基準Phref以上の無線端末20に対しては、伝播損失の大きい、つまり無線状態の悪い無線リソースブロックを優先的に割り当てる。しかし、当該無線端末20は、送信電力に余裕があるので、送信電力を適切に制御することにより、無線リンクを維持することができる。したがって、各無線端末20の送信電力を適切に制御できるとともに、各無線端末20と無線基地局30との無線リンクを安定して維持することができる。また、無線基地局30は、所定タイミング毎に全ての無線リソースブロックの伝播損失を知ることができるので、無線状態の時間的な変化に追従して、下りの変調方式やアンテナのビームフォーミング等を制御することも可能となる。
(第4実施の形態)
 図7は、本発明の第4実施の形態に係る無線基地局を有する無線通信システムの概略構成を示す図である。本実施の形態に係る無線基地局40は、図5に示した無線基地局30に、さらに、図1に示した通信種別情報取得部14を設けたものである。通信種別情報取得部14は、各無線端末20との通信の種別を認識して通信種別情報を取得し、その通信種別情報を制御部15に供給する。本実施の形態では、第1実施の形態および第2実施の形態と同様に、通信種別情報取得部14において、通信種別情報を、例えば音声通信やストリーミング等のリアルタイム性が求められる通信種別(T1)と、それ以外のブラウジング等のデータ通信の通信種別(T2)とに分類して、制御部15に供給する。
 制御部15は、所定タイミング毎に、伝播損失測定部12で測定された伝播損失、Ph取得部13で取得された差分情報Ph、移動速度取得部31、および通信種別情報取得部14で取得された通信種別情報に基づいて、複数の無線端末20に対する無線リソースブロックの割り当てを制御(スケジューリング)する。また、制御部15は、このスケジューリング結果を、無線通信部11を介して対応する無線端末20に送信する。その他の構成および動作は、図5と同様である。
 図8は、本実施の形態に係る無線基地局40による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。制御部15は、上記実施の形態の場合と同様に、所定タイミング毎に、全ての無線リソースブロックの伝播損失を伝播損失測定部12から取得するとともに(ステップS61)、Ph取得部13から各無線端末20の差分情報Phを取得する(ステップS62)。また、制御部15は、移動速度取得部31から各無線端末20の移動速度(判定結果)を取得し、無線リソース割り当て基準Phrefを決定する(ステップS63)。さらに、制御部15は、所定タイミング毎に、通信種別情報取得部14から各無線端末20の通信種別情報を取得する(ステップS64)。
 そして、制御部15は、各無線端末20に対して、当該無線端末20の差分情報Phと、移動速度取得部31が取得した移動速度に基づいて設定した無線リソース割り当て基準Phrefとを比較する(ステップS65)。その結果、Ph<Phrefの場合は、送信電力に余裕がないので、制御部15は、さらに、当該無線端末20の通信種別が、リアルタイム性が要求される通信種別T1であるか否かを判別する(ステップS66)。 
 その結果、通信種別がT1の場合、制御部15は、当該無線端末20に対して伝播損失の小さい無線リソースブロックを優先して割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS67)そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、通信種別がT2の場合は、リアルタイム性が要求されないので、制御部15は、当該無線端末20に対して、伝播損失が中間の無線リソースブロックを優先して割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS68)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 一方、ステップS65において、Ph≧Phrefの場合は、送信電力に余裕があるので、この場合は、第3実施の形態の場合と同様に、制御部15は、当該無線端末20に対して伝播損失の大きい無線リソースブロックを優先して割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS69)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 このようにして、制御部15により、時々刻々変化する各無線リソースブロックの無線状態応じて、所定タイミング毎に、各無線端末20に割り当てる無線リソースブロックを、各無線リソースブロックの無線状態、各無線端末の差分情報Ph、移動速度、および通信種別に応じてスケジューリングする。
 本実施の形態に係る無線基地局40を有する無線通信システムによれば、差分情報Phが各無線端末20の移動速度に基づいて設定された無線リソース割り当て基準Phref未満で、かつリアルタイム性が要求される通信種別T1の通信を行っている無線端末20に対しては、伝播損失の小さい、つまり無線状態のよい無線リソースブロックが優先的に割り当てられる。したがって、第3実施の形態の場合の効果に加えて、リアルタイム性が要求される通信種別T1の無線リンクを、より安定して維持することが可能となり、通信種別T1のQoS(Quality of Service)を確保することができる。
 なお、図8のステップS65において、Ph≧Phrefの場合、通信種別T1か否かを判別して、通信種別T1の場合は、伝播損失の小さい無線リソースブロックを優先して割り当て、通信種別T2の場合は、伝播損失の大きい無線リソースブロックを優先して割り当てるようにすることもできる。
 さらには、図8において、制御部15は、ステップS65とS66の処理の順番を逆にして、通信種別の判別を行った後に、PhおよびPhrefの比較を行うこともできる。すなわち、制御部15は、ステップS65において、無線端末20の通信種別がリアルタイム性が要求される通信種別T1であるか否かを判別し、そして、ステップS66において、各無線端末20に対して、当該無線端末20の差分情報Phと、移動速度取得部31が取得した移動速度に基づいて設定した無線リソース割り当て基準Phrefとを比較することもできる。
 なお、この場合であっても、通信種別がT1ではないと判別された場合に、さらに、差分情報Phと無線リソース割り当て基準Phrefとの比較を行い、Ph≧Phrefの場合には伝播損失の大きい無線リソースブロックを割り当て、Ph<Phrefの場合には、伝播損失の小さい無線リソースブロックを優先して割り当てるようにすることもできる。
(第5実施の形態)
 本発明の第5実施の形態に係る無線基地局は、図7に示した無線基地局40において、制御部15は、その取得した各無線リソースブロックの伝播損失に基づいて、複数の無線リソースブロックを複数の無線リソースグループに分類し、各無線端末20の差分情報Phと無線リソース割り当て基準Phrefの比較結果と、各無線端末20の通信種別とに基づいて、無線リソースブロックの割り当てをスケジューリングする。
 図9は、本発明の第5実施の形態に係る無線基地局40による無線リソースブロックの割り当てスケジューリング動作を示すフローチャートである。制御部15は、所定タイミング毎に、全ての無線リソースブロックの伝播損失を伝播損失測定部12から取得する(ステップS71)。そして、制御部15は、その取得した各無線リソースブロックの伝播損失と、予め設定した伝播損失に関する閾値との比較に基づいて、複数の無線リソースブロックを複数の無線リソースグループに分類する。本実施の形態では、伝播損失の閾値を一つとして、伝播損失が閾値未満、すなわち無線状態が比較的良好なグループAと、伝播損失が閾値以上、すなわち無線状態が比較的悪いグループBとの二つの無線リソースグループに分類する(ステップS72)。
 また、制御部15は、移動速度取得部31から各無線端末20の移動速度(判定結果)を取得し、各無線端末20について無線リソース割り当て基準Phrefを決定する(ステップS73)。そして、制御部15は、所定タイミング毎に、Ph取得部13から各無線端末20の差分情報Phを取得するとともに(ステップS74)、通信種別情報取得部14から各無線端末20の通信種別情報を取得する(ステップS75)。
 そして、制御部15は、各無線端末20に対して、当該無線端末20の差分情報Phと、移動速度取得部31が取得した移動速度に基づいて設定した無線リソース割り当て基準Phrefとを比較する(ステップS76)。その結果、Ph<Phrefの場合は、送信電力に余裕がないので、制御部15は、さらに、当該無線端末20の通信種別が、リアルタイム性が要求される通信種別T1であるか否かを判別する(ステップS77)。
 その結果、通信種別がT1の場合、制御部15は、当該無線端末20に対して、グループAの無線リソースブロックの中で伝播損失のより小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS78)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、通信種別がT2の場合は、リアルタイム性が要求されないので、制御部15は、当該無線端末20に対して、グループAの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS79)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 一方、ステップS76において、Ph≧Phrefの場合、送信電力に余裕があるので、制御部15は、通信種別がT1であるか否かを判別する(ステップS80)。その結果、通信種別T1の場合、制御部15は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の小さい無線リソースブロックを優先的に割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS81)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 これに対し、通信種別T2の場合、制御部15は、当該無線端末20に対して、グループBの無線リソースブロックの中で伝播損失の大きい無線リソースブロックを割り当てるように、無線リソースブロックの割り当てをスケジューリングする(ステップS82)。そして、制御部15は、そのスケジューリング結果を対応する無線端末20に送信する。
 このようにして、制御部15により、時々刻々変化する各無線リソースブロックの無線状態に応じて、所定タイミング毎に、各無線端末20に割り当てる無線リソースブロックを、各無線リソースブロックの無線状態、各無線端末の差分情報Ph、移動速度、および通信種別に応じてスケジューリングする。
 このようなスケジューリング動作によれば、差分情報Phが各無線端末20の移動速度に基づいて設定された無線リソース割り当て基準Phref以上の無線端末20に対しては、伝播損失の大きい、つまり無線状態の悪いグループBの無線リソースブロックが選択される。しかし、当該無線端末20は、送信電力に余裕があるので、送信電力を適切に制御することにより、無線リンクを維持することができる。しかも、この場合も、リアルタイム性が要求される通信種別T1の通信を行っている無線端末20に対しては、グループBの中で伝播損失の小さい、つまり、無線状態のよい無線リソースブロックが優先的に割り当てられるので、通信種別T1のQoSをより安定して確保することができる。
 したがって、本実施の形態に係る無線基地局40を有する無線通信システムによれば、各無線端末20の送信電力を適切に制御できるとともに、各無線端末20と無線基地局40との無線リンクを安定して維持することができる。また、無線基地局40は、所定タイミング毎に全ての無線リソースブロックの伝播損失を知ることができるので、無線状態の時間的な変化に追従して、下りの変調方式やアンテナのビームフォーミング等を制御することも可能となる。
 さらには、図9において、制御部15は、ステップS76と、S77およびS80の処理の順番を逆にして、通信種別の判別を行った後に、PhおよびPhrefの比較を行うこともできる。すなわち、制御部15は、ステップS76において、無線端末20の通信種別がリアルタイム性が要求される通信種別T1であるか否かを判別し、そして、ステップS77およびS80のそれぞれにおいて、各無線端末20に対して、当該無線端末20の差分情報Phと、移動速度取得部31が取得した移動速度に基づいて設定した無線リソース割り当て基準Phrefとを比較することもできる。その結果、例えば、ある無線端末20において、通信種別がT1であり、Ph≧Phrefの場合であれば、制御部15は、グループAの中で伝播損失の大きい無線リソースを当該通信端末20に割り当てる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、無線リソースブロックは、伝播損失に対して複数の閾値を設定して、三つ以上の無線リソースグループに分類することもできる。同様に、通信種別も二つに限らず、三つ以上に分類することもできる。このように、無線リソースグループを三つ以上に分類したり、通信種別を三つ以上に分類したりすれば、各無線端末に対する無線リソースブロックを、当該無線端末の差分情報Ph、および通信種別や移動速度に応じて、より適切かつ効率よくスケジューリングすることができる。
 また、第3~5実施の形態において、無線端末の移動速度は、例えば、無線端末に備えられたGPS等により取得された、当該無線端末の位置情報と時間情報とを、無線基地局の移動速度取得部において所定タイミングごとに取得し、これらの情報に基づいて算出することもできる。
 また、本発明は、上述したように無線基地局側で処理を行って無線端末の移動速度を取得するだけでなく、例えば、無線端末側において、GPS等により取得した所定時間ごとの位置情報に基づいて自端末の移動速度を検出し、その検出した移動速度を、送信電力の差分情報Phを無線基地局に送信する際に一緒に送信してもよい。
 また、本発明は、LTEに限らず、WiMAX(Worldwide Interoperabilityfor Microwave Access)、UMB(Ultra Mobile Broadband)、次世代PHS(Personal Handy-phone System)、IMT-Advanced等、複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信を実行する無線通信システムに広く適用することができる。
 10 無線基地局
 11 無線通信部
 12 伝播損失測定部
 13 Ph取得部
 14 通信種別情報取得部
 15 制御部
 20 無線端末
 21 無線通信部
 22 Ph算出部
 23 制御部
 30 無線基地局
 31 移動速度取得部
 40 無線基地局

Claims (16)

  1.  複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局において、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
     前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部と、
     前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記差分情報取得部で取得された差分情報および前記通信種別情報取得部で取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御する制御部と、
     を備えることを特徴とする無線基地局。
  2.  前記制御部は、
     前記測定部で測定された各無線リソースにおける伝播損失と、予め設定した閾値との比較に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類する、
     ことを特徴とする請求項1に記載の無線基地局。
  3.  前記制御部は、
     前記各無線端末に対して、前記差分情報取得部で取得された差分情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記通信種別情報取得部で取得された通信種別情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
     ことを特徴とする請求項1に記載の無線基地局。
  4.  前記制御部は、
     前記各無線端末に対して、前記通信種別情報取得部で取得された通信種別情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記差分情報取得部で取得された差分情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
     ことを特徴とする請求項1に記載の無線基地局。
  5.  複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局において、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
     前記複数の無線端末の各々の移動速度を取得する移動速度取得部と、
     前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する制御部と、
     を備えることを特徴とする無線基地局。
  6.  前記移動速度取得部は、前記無線端末からの受信信号に基づいて、当該無線端末の移動速度を取得する、
     ことを特徴とする請求項5に記載の無線基地局。
  7.  前記制御部は、
     前記差分情報取得部で取得された差分情報が、各々の無線端末に設定された前記無線リソース割り当て基準を示す第1の閾値未満の前記無線端末に対しては、前記測定部で測定された伝播損失が相対的に小さい前記無線リソースを割り当て、前記差分情報取得部で取得された差分情報が各々の無線端末に設定された前記無線リソース割当て基準を示す第1の閾値以上の前記無線端末に対しては、前記測定部で測定された伝播損失が相対的に大きいリソースを割り当てる、
     ことを特徴とする請求項5に記載の無線基地局。
  8.  前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部を、さらに備え、
     前記制御部は、
     前記測定部で測定された伝播損失、前記差分情報取得部で取得された差分情報、および前記無線端末の各々に設定した前記無線リソース割り当て基準、前記測定部で測定された伝播損失、前記差分情報取得部で取得された差分情報、および前記通信種別情報取得部で取得された通信種別情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する、
     ことを特徴とする請求項5に記載の無線基地局。
  9.  前記制御部は、
     前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、
     前記無線端末の各々に設定した前記無線リソース割り当て基準、前記差分情報取得部で取得された差分情報、および前記通信種別情報取得部で取得された通信種別情報に基づいて、前記複数の無線端末の各々に、対応する前記無線リソースグループの無線リソースを割り当てるように制御する、
     ことを特徴とする請求項8に記載の無線基地局。
  10.  前記制御部は、
     前記測定部で測定された各無線リソースにおける伝播損失と、予め設定した第2の閾値との比較に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類する、
     ことを特徴とする請求項9に記載の無線基地局。
  11.  前記制御部は、
     前記各無線端末に対して、前記無線端末の各々に設定した前記無線リソース割り当て基準および前記差分情報取得部で取得された差分情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記通信種別情報取得部で取得された通信種別情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
     ことを特徴とする請求項9に記載の無線基地局。
  12.  前記制御部は、
     前記各無線端末に対して、前記通信種別情報取得部で取得された通信種別情報に基づいて無線リソースを割り当てる前記無線リソースグループを決定した後、前記無線端末の各々に設定した前記無線リソース割り当て基準及び前記差分情報取得部で取得された差分情報に基づいて、前記決定された無線リソースグループ内で、前記測定部で測定された伝播損失が相対的に大きいまたは小さい無線リソースを割り当てるように制御する、
     ことを特徴とする請求項9に記載の無線基地局。
  13.  複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局における無線リソース割り当て方法であって、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定するステップと、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得するステップと、
     前記複数の無線端末の各々の通信種別を示す通信種別情報を取得するステップと、
     前記測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記取得された差分情報および前記取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御するステップと、
     を含むことを特徴とする無線リソース割り当て方法。
  14.  複数の無線端末にそれぞれ異なる無線リソースを割り当てて無線通信する無線基地局における無線リソース割り当て方法であって、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定するステップと、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得するステップと、
     前記複数の無線端末の各々の移動速度を取得するステップと、
     前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御するステップと、
     を含むことを特徴とする無線リソース割り当て方法。
  15.  無線基地局により複数の無線端末にそれぞれ異なる無線リソースを割り当てて、前記無線基地局と前記複数の無線端末との間で無線通信する無線通信システムにおいて、
     前記複数の無線端末の各々は、
     現在の送信電力と当該無線端末が送信可能な最大送信電力との差分を算出して差分情報を出力する算出部と、
     前記算出部から出力される差分情報を前記無線基地局へ送信する送信部とを備え、
     前記無線基地局は、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
     前記複数の無線端末の各々の通信種別を示す通信種別情報を取得する通信種別情報取得部と、
     前記測定部で測定された各無線リソースにおける伝播損失に基づいて、前記複数の無線リソースを少なくとも2以上の無線リソースグループに分類し、前記複数の無線端末の各々に対して、前記差分情報取得部で取得された差分情報および前記通信種別情報取得部で取得された通信種別情報に基づいて、対応する前記無線リソースグループの無線リソースを割り当てるように制御する制御部と、
     を含むことを特徴とする無線通信システム。
  16.  無線基地局により複数の無線端末にそれぞれ異なる無線リソースを割り当てて、前記無線基地局と前記複数の無線端末との間で無線通信する無線通信システムにおいて、
     前記複数の無線端末の各々は、
     現在の送信電力と当該無線端末が送信可能な最大送信電力との差分を算出して差分情報を出力する算出部と、
     前記算出部から出力される差分情報を前記無線基地局へ送信する送信部とを備え、
     前記無線基地局は、
     所定タイミング毎に、前記複数の無線端末にそれぞれ割り当てた前記無線リソースにおける伝播損失を測定する測定部と、
     前記複数の無線端末の各々から送信される最大送信電力に対する現在送信電力の差分情報を取得する差分情報取得部と、
     前記複数の無線端末の各々の移動速度を取得する移動速度取得部と、
     前記移動速度取得部で取得された移動速度に応じた無線リソース割当基準を前記無線端末の各々に設定し、当該無線リソース割り当て基準、前記測定部で測定された伝播損失、および前記差分情報報取得部で取得された差分情報に基づいて、前記複数の無線端末の各々に対する前記無線リソースの割り当てを制御する制御部と、
     を含むことを特徴とする無線通信システム。
PCT/JP2010/002335 2009-04-09 2010-03-30 無線基地局、無線リソース割り当て方法および無線通信システム WO2010116688A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/263,436 US8761820B2 (en) 2009-04-09 2010-03-30 Radio base station, radio resource allocation method and radio communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-095212 2009-04-09
JP2009095212A JP5312161B2 (ja) 2009-04-09 2009-04-09 無線基地局、無線リソース割り当て方法および無線通信システム
JP2009248140A JP5371696B2 (ja) 2009-10-28 2009-10-28 無線基地局、無線リソース割当方法及び無線通信システム
JP2009-248140 2009-10-28

Publications (1)

Publication Number Publication Date
WO2010116688A1 true WO2010116688A1 (ja) 2010-10-14

Family

ID=42935986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002335 WO2010116688A1 (ja) 2009-04-09 2010-03-30 無線基地局、無線リソース割り当て方法および無線通信システム

Country Status (2)

Country Link
US (1) US8761820B2 (ja)
WO (1) WO2010116688A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507492A (en) * 2012-10-30 2014-05-07 Toshiba Res Europ Ltd Normalised path loss model
US20140321388A1 (en) 2011-02-21 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
KR101838205B1 (ko) * 2011-02-21 2018-03-13 삼성전자 주식회사 무선 통신 시스템에서 신호 측정 방법 및 장치
US10098076B2 (en) 2011-02-15 2018-10-09 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US10165527B2 (en) 2011-02-21 2018-12-25 Samsung Electronics Co., Ltd. Method of efficiently reporting user equipment transmission power and apparatus thereof
US11240146B2 (en) 2019-10-30 2022-02-01 Kabushiki Kaisha Toshiba Service request routing
US11493644B2 (en) 2019-03-15 2022-11-08 Kabushiki Kaisha Toshiba Identification of selected items through radiolocation and movement detection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10440520B2 (en) * 2016-05-12 2019-10-08 Sharp Kabushiki Kaisha Method and apparatus for selecting radio resources for vehicle (V2X) communications from an overlapping resource pool
KR102606781B1 (ko) * 2016-09-02 2023-11-27 삼성전자 주식회사 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치
CN110036648B (zh) 2016-12-05 2021-11-05 Kddi株式会社 飞行装置、控制装置、通信控制方法以及控制方法
WO2021003585A1 (en) * 2019-07-05 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and network device for signal resource configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518812A (ja) * 1999-12-20 2003-06-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動体の上り回線における送信電力情報を使用して無線ネットワークを制御する方法
WO2006049123A1 (ja) * 2004-11-02 2006-05-11 Nec Corporation Ofdm通信システム
JP2006237897A (ja) * 2005-02-23 2006-09-07 Ntt Docomo Inc 送信局、移動通信システムおよび送信電力制御方法
JP2007336498A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 移動通信システムにおける基地局及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004465A1 (en) * 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems
WO2007119591A1 (ja) 2006-03-31 2007-10-25 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置および無線通信移動局装置
KR101314876B1 (ko) 2008-03-19 2013-10-04 닛본 덴끼 가부시끼가이샤 무선 통신 시스템, 무선 통신의 설정 방법, 기지국, 이동국 및 프로그램이 기록된 기록매체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518812A (ja) * 1999-12-20 2003-06-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動体の上り回線における送信電力情報を使用して無線ネットワークを制御する方法
WO2006049123A1 (ja) * 2004-11-02 2006-05-11 Nec Corporation Ofdm通信システム
JP2006237897A (ja) * 2005-02-23 2006-09-07 Ntt Docomo Inc 送信局、移動通信システムおよび送信電力制御方法
JP2007336498A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 移動通信システムにおける基地局及び方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10575265B2 (en) 2011-02-15 2020-02-25 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US10098076B2 (en) 2011-02-15 2018-10-09 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US20180310259A1 (en) 2011-02-15 2018-10-25 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of ue
US10182453B2 (en) 2011-02-21 2019-01-15 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
KR101838205B1 (ko) * 2011-02-21 2018-03-13 삼성전자 주식회사 무선 통신 시스템에서 신호 측정 방법 및 장치
US20140321388A1 (en) 2011-02-21 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
US10165527B2 (en) 2011-02-21 2018-12-25 Samsung Electronics Co., Ltd. Method of efficiently reporting user equipment transmission power and apparatus thereof
US10638432B2 (en) 2011-02-21 2020-04-28 Samsung Electronics, Co., Ltd. Method of efficiently reporting user equipment transmission power and apparatus thereof
US10667223B2 (en) 2011-02-21 2020-05-26 Samsung Electronics Co., Ltd. Method of efficiently reporting user equipment transmission power and apparatus thereof
US11166245B2 (en) 2011-02-21 2021-11-02 Samsung Electronics Co., Ltd. Method of efficiently reporting user equipment transmission power and apparatus thereof
US9680580B2 (en) 2012-10-30 2017-06-13 Kabushiki Kaisha Toshiba Wireless communication methods and apparatus
GB2507492B (en) * 2012-10-30 2014-11-19 Toshiba Res Europ Ltd Wireless communication methods and apparatus
GB2507492A (en) * 2012-10-30 2014-05-07 Toshiba Res Europ Ltd Normalised path loss model
US11493644B2 (en) 2019-03-15 2022-11-08 Kabushiki Kaisha Toshiba Identification of selected items through radiolocation and movement detection
US11240146B2 (en) 2019-10-30 2022-02-01 Kabushiki Kaisha Toshiba Service request routing

Also Published As

Publication number Publication date
US8761820B2 (en) 2014-06-24
US20120046060A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2010116688A1 (ja) 無線基地局、無線リソース割り当て方法および無線通信システム
CN109565762B (zh) 用于独立链路的功率控制的方法和装置
CN110268780B (zh) 动态的资源共享
CN108496399B (zh) 移动通信中用于多上行链路载波数据传输的方法及其装置
KR102412327B1 (ko) 전이중 다운링크 및 업링크 디렉션
US8694042B2 (en) Method and apparatus for determining a base station's transmission power budget
US10264592B2 (en) Method and radio network node for scheduling of wireless devices in a cellular network
US20160183281A1 (en) Methods for improving on-time throughput in wireless networks
US20120028665A1 (en) Method for selecting an adaptive comp scheme
US20110177821A1 (en) System and Method for Scheduling Users on a Wireless Network
KR20050038977A (ko) 무선 통신 시스템에서 자원 할당 정보 송수신 시스템 및방법
WO2010087138A1 (ja) 無線基地局および通信制御方法
EP2734005A1 (en) Method of allocating resource, wireless communication system, base station, and program
EP2888911B1 (en) Self adaptive multi-level downlink power control for noise-limited wireless cellular networks
CN106537990A (zh) 针对接入信号广播的网络设备、用户设备和方法
US10264582B2 (en) Network device and user device and methods thereof
CN113475033A (zh) 5g无线通信系统中用于传输物理下行链路控制信道的基于位置的corset配置
CN106572497B (zh) 一种基于比例公平算法的启发式d2d资源分配方法
JP5312161B2 (ja) 無線基地局、無線リソース割り当て方法および無線通信システム
CN107534984B (zh) 一种分量载波组的配置方法及设备
JP5371696B2 (ja) 無線基地局、無線リソース割当方法及び無線通信システム
WO2010073679A1 (ja) 無線基地局、無線リソース割り当て方法および無線通信システム
JP7423121B2 (ja) 無線通信システムにおけるリソース割り当て方法及び装置
CN104521300B (zh) 一种控制服务质量的方法及装置
EP3340672B1 (en) Method and apparatus for cooperative communication in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761394

Country of ref document: EP

Kind code of ref document: A1