[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010110329A1 - Offshore wind power plant and construction method thereof - Google Patents

Offshore wind power plant and construction method thereof Download PDF

Info

Publication number
WO2010110329A1
WO2010110329A1 PCT/JP2010/055106 JP2010055106W WO2010110329A1 WO 2010110329 A1 WO2010110329 A1 WO 2010110329A1 JP 2010055106 W JP2010055106 W JP 2010055106W WO 2010110329 A1 WO2010110329 A1 WO 2010110329A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
floating body
wind power
offshore wind
power generation
Prior art date
Application number
PCT/JP2010/055106
Other languages
French (fr)
Japanese (ja)
Inventor
小林 修
郁 佐藤
禎久 野本
耕作 村野
山中 典幸
Original Assignee
戸田建設株式会社
日本ヒューム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田建設株式会社, 日本ヒューム株式会社 filed Critical 戸田建設株式会社
Publication of WO2010110329A1 publication Critical patent/WO2010110329A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/048Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with hull extending principally vertically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • B63B5/18Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced built-up from elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • B63B5/22Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced with reinforcing members external to shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • B63B77/10Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms specially adapted for electric power plants, e.g. wind turbines or tidal turbine generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B2001/044Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with a small waterline area compared to total displacement, e.g. of semi-submersible type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/915Mounting on supporting structures or systems on a stationary structure which is vertically adjustable
    • F05B2240/9151Mounting on supporting structures or systems on a stationary structure which is vertically adjustable telescopically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/916Mounting on supporting structures or systems on a stationary structure with provision for hoisting onto the structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • Patent Document 2 a plurality of floating body portions on which articles are placed, and a longitudinal shape that connects each floating body portion to an outer end extending in a horizontal radial direction by connecting an inner end to a predetermined center.
  • a floating body structure including a connecting portion made of a rigid body and a tension portion that generates a tensile force between the floating body portions.
  • JP 2001-165032 A JP 2007-160965 A JP 2007-331414 A JP 2009-18671 A
  • a plurality of precast cylindrical bodies made of concrete are stacked in the height direction, and each precast cylindrical body is fastened and integrated with PC steel, and the upper end is opened.
  • a spar type floating body structure having a bottomed hollow portion is provided. Then, the tower can be moved up and down by a tower lifting facility provided on the deck at the time of construction, and can be accommodated inside the floating body.
  • the floating body is divided into blocks for each of one or a plurality of precast cylindrical bodies in the height direction, and in each block, a precast cylindrical body having the same outer diameter cross section is used in the member axial direction.
  • the nacelle and the wind turbine blade can be attached in a state where the tower is lowered, so that the work at a high place can be reduced and the construction can be performed safely.
  • FIG. 1 is a schematic view of an offshore wind power generation facility 1 according to the present invention.
  • 2 is a longitudinal sectional view of a floating body 2.
  • FIG. The precast cylindrical body 12 (13) is shown, (A) is a longitudinal sectional view, (B) is a plan view (a view taken along the line B-B), and (C) is a bottom view (a view taken along the line C-C).
  • FIG. 4 is a schematic diagram (A) and (B) of the tight connection between precast cylindrical bodies 12 (13).
  • the boundary part precast cylindrical body 14 is shown, (A) is a longitudinal sectional view, (B) is a plan view (a view taken along the line B-B), and (C) is a bottom view (a view taken along the line C-C).
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a tightly coupled structure of a boundary part precast tubular body 14. It is construction procedure figure (the 1) of offshore wind power generation equipment. It is construction procedure figure (the 2) of offshore wind power generation equipment. It is construction procedure figure (the 3) of offshore wind power generation equipment. It is construction procedure figure (the 4) of offshore wind power generation equipment. It is construction procedure figure (the 5) of offshore wind power generation equipment. It is construction procedure figure (the 6) of offshore wind power generation equipment. It is a construction procedure figure (the 1) of the 2nd construction method. It is a construction procedure figure (the 2) of the 2nd construction method. It is a construction procedure figure (the 3) of a 2nd construction method. It is a construction procedure figure (the 4) of the 2nd construction method. It is a construction procedure figure (the 5) of a 2nd construction method. It is a construction procedure figure (the 6) of a 2nd construction method.
  • the floating body 2 is constructed by stacking a plurality of precast cylindrical bodies 10 and 12 to 13 made of concrete in the height direction, and connecting the precast cylindrical bodies 10 and 12 to 13 with a PC steel material so as to be integrated. It is a spar type floating body structure having a bottomed hollow part with an open upper end, and the tower 5 can be raised and lowered at least by a tower lifting facility provided on the deck 3 at the time of construction, and can be accommodated inside the floating body 2. It is what has become.
  • the flooded water L of the floating body 2 is set to approximately 80 m or more in the case of 2 MW class power generation equipment.
  • the precast cylindrical bodies 12... 13 are circular cylindrical precast members having the same cross section in the axial direction, and are each manufactured using the same formwork?
  • a hollow precast member manufactured by centrifugal molding is used.
  • sheaths 21, 21... For inserting the PC steel bars 16 are embedded in the wall surface at appropriate intervals in the circumferential direction.
  • a sheath enlarged diameter portion 21a is formed at the lower end portion of the sheaths 21, 21... So that a coupler for connecting the PC steel bars 16 can be inserted, and a fixing anchor plate is fitted on the upper portion.
  • a box opening portion 22 is provided for installation.
  • a plurality of suspension fittings 23 are provided on the upper surface.
  • unbonded PC steel rods 28, 28 fixed by anchor plates 30 and nuts 29 on the lower surface side of the boundary precast cylindrical body 14 at appropriate intervals in the circumferential direction. are embedded in advance.
  • the upper end of the unbonded PC steel bar 28 is formed so as to protrude from the upper surface of the boundary precast cylindrical body 14.
  • the positions of the outer sheaths 21, 21... And the unbonded PC steel bars 28, 28... are arranged in a staggered manner in order to equalize the tension stress.
  • the tight part structure of the boundary part precast tubular body 14, the lower stage precast tubular body 12, and the upper stage precast tubular body 13 includes the PC steel material 14 extended from the lower stage precast tubular body 12 side.
  • PC steel material unbonded PC steel rod 28
  • extending to the upper stage side precast cylindrical body 13 side is fixed to the outer peripheral part of the upper surface of the boundary part precast cylindrical body 14 on the lower surface inner peripheral part of the boundary part precast cylindrical body 14 Try to fix.
  • the coupler 33 is screwed to the upper end portion of the unbonded PC steel rod 28 and the upper PC steel rods 16, 16,... Are connected, the PC steel is attached to the sheaths 21, 21 ... of the precast tubular body 13.
  • the rods 16 are stacked while being inserted, and the PC steel rod 16 is fixed in the manner described above, and the upper precast tubular body 13 is integrally coupled to the boundary precast tubular body 14.
  • the upper end of the uppermost precast cylindrical body 13 is left open, and a hollow portion for accommodating the tower 5 is formed.
  • the unbonded PC steel rod 28 may be a bond.
  • the tower 5 is made of steel, concrete, or PRC (prestressed reinforced concrete), but is preferably made of steel so as to reduce the total weight.
  • the nacelle 6 is a device equipped with a generator that converts the rotation of the windmill into electricity, a controller that can automatically change the angle of the blade, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Disclosed is an offshore wind power plant having such advantages that the offshore wind power plant can be easily and safely assembled on the sea, maintenance can be facilitated, and safety can be ensured at the time of strong wind or a surge. An offshore wind power plant comprises a floating body (2), a deck (3) which is installed above the floating body (2), mooring cables (4, 4,...) connected to the deck (3), a tower (5) installed upright on the deck (3), and a naselle (6) and a plurality of wind turbine blades (7, 7,...) provided at the top of the tower (5), wherein the floating body (2) has a spar-type floating structure with a bottomed hollow portion opened at the upper end thereof in which precast cylindrical bodies (10-14) made of concrete are stacked multiple stages in the height direction and fastened tightly by means of a PC steel material and integrated, the tower (5) can be elevated or lowered freely by a tower hoist (8) provided on the deck (3) during construction, and can be housed in the floating body (2).

Description

洋上風力発電設備及びその施工方法Offshore wind power generation facility and its construction method
 本発明は、比較的水深の深い海上に設置されるスパー型の洋上風力発電設備及びその施工方法に関する。 The present invention relates to a spar-type offshore wind power generation facility installed on a relatively deep sea and a construction method thereof.
 従来より、主として水力、火力及び原子力発電等の発電方式が採用されてきたが、近年は環境や自然エネルギーの有効活用の点から自然風を利用して発電を行う風力発電が注目されている。この風力発電設備には、陸上設置式と、水上(主として海上)設置式とがあるが、沿岸域から後背に山岳地形をかかえる我が国の場合は、沿岸域に安定した風が見込める平野が少ない状況にある。一方、日本は四方を海で囲まれており、海上は発電に適した風が容易に得られるとともに、設置の制約が少ないなどの利点を有する。そこで、近年は洋上風力発電設備又は浮体構造が多く提案されている。 Conventionally, power generation methods such as hydropower, thermal power, and nuclear power generation have been mainly employed, but in recent years, wind power generation that generates power using natural wind has attracted attention in terms of effective use of the environment and natural energy. There are two types of wind power generation facilities: land-based and water-based (mainly sea-based). In Japan, where mountainous landforms are located behind the coast, there are few plains where stable wind can be expected in the coast. It is in. On the other hand, Japan is surrounded on all sides by the sea, and it has the advantage that the wind suitable for power generation can be easily obtained and there are few restrictions on installation. In recent years, therefore, many offshore wind power generation facilities or floating structures have been proposed.
 例えば、下記特許文献1では、中空四角柱状の構造物を組み合わせて平面三角形状の水に浮く浮体を構成し、この上に発電用風車を設けた風力発電装置が提案されている。この浮体は水面に浮かぶため「ポンツーン型」と呼ばれている。 For example, in Patent Document 1 below, a wind power generator is proposed in which a floating body that floats on a plane triangular water is formed by combining hollow square columnar structures, and a wind turbine for power generation is provided thereon. This floating body floats on the surface of the water and is called “pontoon type”.
 また、下記特許文献2では、上部に物品が載置される複数の浮体部と、所定中心に内端を連結して水平放射方向に延在した外端に前記各浮体部を連結する長手状の剛体からなる連結部と、前記浮体部の間に引張力を生じる引張部とを備えた浮体構造が提案されている。 Further, in Patent Document 2 below, a plurality of floating body portions on which articles are placed, and a longitudinal shape that connects each floating body portion to an outer end extending in a horizontal radial direction by connecting an inner end to a predetermined center. There has been proposed a floating body structure including a connecting portion made of a rigid body and a tension portion that generates a tensile force between the floating body portions.
 下記特許文献3では、水に浮遊する複数の浮体部と、前記浮体部を環状に連結する剛体からなる連結部と、環状のほぼ中央部を水底に係留する係留手段と、前記浮体部の位置を検出する位置検出手段と、潮流を検出する潮流検出手段と、潮流に対して角度を可変する態様で複数の浮体部に取り付けた舵と、各舵の角度を潮流に対して調整することによって環状のほぼ中央部を中心とした各浮体部の位置を可変する位置制御部とを備えた浮体構造が提案されている。前記特許文献2,3に係る浮体構造は、浮体を水面下に沈めた状態で浮くため「セミサブ型」と呼ばれている。 In the following Patent Document 3, a plurality of floating body portions floating in water, a connecting portion made of a rigid body that connects the floating body portions in an annular shape, mooring means for anchoring an annular substantially central portion on the water bottom, and the position of the floating body portion A position detecting means for detecting a tidal current, a tidal current detecting means for detecting a tidal current, a rudder attached to a plurality of floating bodies in a manner in which the angle is variable with respect to the tidal current, and adjusting the angle of each rudder with respect to the tidal current There has been proposed a floating body structure including a position control unit that varies the position of each floating body centering around an annular substantially central portion. The floating structure according to Patent Documents 2 and 3 is called a “semi-sub type” because it floats in a state where the floating body is submerged below the water surface.
 更に、下記特許文献4では、上下の蓋体と、これらの間に連続的に設置された筒状のプレキャストコンクリートブロックとがPC鋼材で一体接合されてなる下部浮体と、該下部浮体にPC鋼材で一体接合された、上記プレキャストコンクリートブロックよりも小径なプレキャストコンクリートブロックと上蓋とからなる上部浮体とから構成され、下部浮体の下部内側に隔壁によって複数のバラストタンクが形成され、上部浮体の内側には隔壁によって複数の水密区画部が形成された洋上風力発電の浮体構造が提案されている。この特許文献4は、釣浮きのように起立状態で浮くため「スパー型」と呼ばれている。 Furthermore, in the following Patent Document 4, a lower floating body in which upper and lower lids and a cylindrical precast concrete block continuously installed between them are integrally joined with a PC steel material, and the lower floating body with a PC steel material. The upper float is composed of a precast concrete block having a smaller diameter than the precast concrete block and the upper lid, and a plurality of ballast tanks are formed inside the lower float by a partition wall inside the upper float. Has proposed a floating structure for offshore wind power generation in which a plurality of watertight compartments are formed by partition walls. This patent document 4 is called a “spar type” because it floats in a standing state like a fishing float.
特開2001-165032号公報JP 2001-165032 A 特開2007-160965号公報JP 2007-160965 A 特開2007-331414号公報JP 2007-331414 A 特開2009-18671号公報JP 2009-18671 A
 前記スパー型浮体は、1つの浮体に1基の風車しか取付けできないが、他のポンツーン型やセミサブ型に比べて、経済性に優れており、浮体の安定性に優れているという利点を有する。 The spar type floating body can attach only one wind turbine to one floating body, but has the advantages that it is more economical than the other pontoon type and semi-sub type, and has excellent floating body stability.
 しかしながら、浮体の長さ寸法は約80m以上にも及ぶため、陸上で組立を行うには、広大な施工ヤードを必要とするなどの問題があるとともに、組み立てた浮体を洋上まで移送するのにも多大な輸送コストが掛かるなどの問題があった。
また、ナセルや風車ブレードの取付けが高所作業となり危険性が高いとともに、これらのメンテナンスも高所作業となるなどの問題があった。更には、強風又は波浪時における揺動が大きく損傷のおそれがあるなどの問題もあった。
However, since the length of the floating body is about 80m or more, there are problems such as requiring a vast construction yard to assemble on land, and the assembled floating body is also transported to the ocean. There were problems such as enormous transportation costs.
In addition, there is a problem that the installation of the nacelle and the windmill blade is a high place work and the danger is high, and these maintenance work is also a high place work. Furthermore, there has been a problem that there is a risk of damage due to large fluctuations in strong winds or waves.
 そこで本発明の主たる課題は、洋上で容易かつ安全に組立が行えるようにするとともに、メンテナンスが容易に行える、強風又は波浪時における安定性を確保し得るなどの利点を備えた洋上風力発電設備とその施工方法を提供することにある。 Accordingly, the main problem of the present invention is that the offshore wind power generation equipment has advantages such as easy and safe assembly on the sea, easy maintenance, and ensuring stability in strong winds or waves. It is to provide the construction method.
 前記課題を解決するために請求項1に係る本発明として、浮体と、この浮体の上部に設置されるデッキと、このデッキに繋がれた係留索と、前記デッキの上に立設されるタワーと、このタワーの頂部に設備されるナセル及び複数の風車ブレードからなる洋上風力発電設備であって、
 前記浮体は、コンクリート製のプレキャスト筒状体を高さ方向に複数段積み上げ、各プレキャスト筒状体をPC鋼材により緊結し一体化を図るとともに、上端部を開口させた有底中空部を有するスパー型の浮体構造とし、少なくとも施工時に前記タワーは前記デッキ上に設けたタワー昇降設備によって昇降自在とされ、前記浮体内部に収容可能とされることを特徴とする洋上風力発電設備が提供される。
In order to solve the above-mentioned problems, the present invention according to claim 1 includes a floating body, a deck installed above the floating body, a mooring line connected to the deck, and a tower standing on the deck. And an offshore wind power generation facility consisting of a nacelle and a plurality of windmill blades installed at the top of this tower,
The floating body is a spar having a bottomed hollow portion in which a plurality of precast cylindrical bodies made of concrete are stacked in the height direction, and each precast cylindrical body is tightly coupled with a PC steel material to be integrated. There is provided an offshore wind power generation facility characterized by having a floating structure of a mold, and at the time of construction, the tower can be moved up and down by a tower lifting device provided on the deck, and can be accommodated inside the floating body.
 上記請求項1記載の発明では、浮体をコンクリート製のプレキャスト筒状体を高さ方向に複数段積み上げ、各プレキャスト筒状体をPC鋼材により緊結し一体化を図るとともに、上端部を開口させた有底中空部を有するスパー型の浮体構造とするものである。そして、施工時に前記タワーを前記デッキ上に設けたタワー昇降設備によって昇降自在とし、前記浮体内部に収容可能とするものである。 In the first aspect of the present invention, a plurality of precast cylindrical bodies made of concrete are stacked in the height direction, and each precast cylindrical body is fastened and integrated with PC steel, and the upper end is opened. A spar type floating body structure having a bottomed hollow portion is provided. Then, the tower can be moved up and down by a tower lifting facility provided on the deck at the time of construction, and can be accommodated inside the floating body.
 従って、後述の請求項3に示す施工手順により洋上にてプレキャスト筒状体を積み上げるようにしながら組立が可能になるとともに、タワーを昇降自在として浮体内部に収容可能としてあるため、組立時はタワーを下降させてナセルや風車ブレードの取付けができるようになり高所作業が減って安全に施工できるようになる。また、供用後のメンテナンスにタワーを下降させることにより安全に作業が行えるようになるとともに、強風や波浪時にも、タワーを下降させることにより安定性が増し損傷のおそれも少なくなる。 Therefore, it is possible to assemble while precast cylindrical bodies are stacked on the ocean according to the construction procedure described in claim 3 described later, and the tower can be raised and lowered and can be accommodated inside the floating body. The nacelle and windmill blades can be attached by lowering, so that the work at high places is reduced and the construction can be performed safely. In addition, the work can be safely performed by lowering the tower for maintenance after service, and the stability is increased and the risk of damage is reduced by lowering the tower even during strong winds and waves.
 請求項2に係る本発明として、前記浮体は、高さ方向に1又は複数のプレキャスト筒状体毎にブロック分けされ、各ブロック内では部材軸方向に同外径断面のプレキャスト筒状体を使用する条件の下で前記プレキャスト筒状体を積み上げ、高さ方向に段階的に外径寸法が縮小される変断面形状としてある請求項1記載の洋上風力発電設備が提供される。 As the present invention according to claim 2, the floating body is divided into blocks for each of one or a plurality of precast cylindrical bodies in the height direction, and in each block, a precast cylindrical body having the same outer diameter cross section is used in the member axial direction. The offshore wind power generation facility according to claim 1, wherein the precast cylindrical body is piled up under such a condition that the outer diameter dimension is gradually reduced in the height direction.
 上記請求項2記載の発明は、浮体に関して、高さ方向に1又は複数のプレキャスト筒状体毎にブロック分けし、各ブロック内では部材軸方向に同外径断面のプレキャスト筒状体を使用する条件の下で前記プレキャスト筒状体を積み上げ、高さ方向に段階的に外径寸法が縮小される変断面形状としたものである。従って、重心が低くなり強風や波浪に対する安定性が増すようになるとともに、上部側を相対的に小径断面としたことにより平常時に波の影響を受けづらくなる。 In the invention according to the second aspect, with respect to the floating body, the block is divided into one or a plurality of precast cylindrical bodies in the height direction, and the precast cylindrical body having the same outer diameter cross section is used in the member axial direction in each block. The precast cylindrical body is stacked under conditions to form a variable cross-sectional shape in which the outer diameter dimension is gradually reduced in the height direction. Accordingly, the center of gravity is lowered and stability against strong winds and waves is increased, and the upper side is relatively small in diameter so that it is less likely to be affected by waves in normal times.
 請求項3に係る本発明として、請求項1、2いずれかに記載の洋上風力発電設備を洋上において組み立てるための施工方法であって、
 洋上において、最下段のプレキャスト筒状体を浮かべた後、バラスト投入により吃水を調整しながら、順次高さ方向にプレキャスト筒状体をPC鋼材により緊結しつつ積み上げる第1手順と、
 浮体上部にデッキを設置した後、デッキ上にタワーを立設するとともに、タワー昇降設備を設置する第2手順と、
 前記タワー昇降設備によってタワーを下降させた状態でナセルを設置するとともに、風車ブレードを設置する第3手順と、
 前記タワー昇降設備によってタワーを引き上げた後、正規の高さ位置に固定する第4手順とからなる洋上風力発電設備の施工方法が提供される。
As the present invention according to claim 3, a construction method for assembling the offshore wind power generation facility according to any one of claims 1 and 2,
On the ocean, after floating the lowermost precast cylindrical body, adjusting the flooding by throwing in the ballast, sequentially stacking the precast cylindrical body in the height direction while tightly binding with PC steel,
After installing the deck on the top of the floating body, set up the tower on the deck and install the tower lifting equipment,
A third step of installing the nacelle while lowering the tower by the tower lifting equipment and installing the windmill blade;
After the tower is lifted by the tower lifting and lowering equipment, there is provided a method for constructing an offshore wind power generation facility comprising a fourth procedure for fixing the tower to a normal height position.
 上記請求項3記載の発明によれば、洋上で順次プレキャスト筒状体を積み上げるようにして浮体を構築した後、立設したタワーを下降させた状態でナセルや風車ブレードの取付けが行えるため、洋上で容易かつ安全に組立が可能となる。 According to the third aspect of the present invention, since the floating body is constructed by sequentially stacking the precast tubular bodies on the ocean, the nacelle and the windmill blade can be attached while the standing tower is lowered. This makes it possible to assemble easily and safely.
 請求項4に係る本発明として、請求項1、2いずれかに記載の洋上風力発電設備を洋上に設置するための施工方法であって、
 浮体内部にタワーを収容させた状態で海上に横向きで浮かべ、洋上設置場所まで曳航する第1手順と、
 洋上設置場所において、バラストを投入することによって浮体を直立状態に起立させる第2手順と、
 前記タワー昇降設備によってタワーを任意の高さ位置まで引き上げた状態で、前記ナセルを設置するとともに、風車ブレードを設置する第3手順と、
 タワーを正規の高さ位置まで引き上げ固定する第4手順とからなる洋上風力発電設備の施工方法が提供される。
The present invention according to claim 4 is a construction method for installing the offshore wind power generation facility according to any of claims 1 and 2 on the ocean,
A first step of floating sideways on the sea with the tower housed inside the floating body and towing to the offshore installation location;
A second procedure for raising the floating body in an upright state by inserting ballast at an offshore installation location;
A third step of installing the nacelle and the wind turbine blade in a state where the tower is raised to an arbitrary height position by the tower lifting equipment;
A construction method of an offshore wind power generation facility is provided, which includes a fourth step of lifting and fixing the tower to a normal height position.
 上記請求項4記載の発明によれば、タワーを下降させた状態でナセルや風車ブレードの取付けができるようになり高所作業が減って安全に施工できるようになる。 According to the invention described in claim 4, the nacelle and the wind turbine blade can be attached in a state where the tower is lowered, so that the work at a high place can be reduced and the construction can be performed safely.
 以上詳説のとおり本発明によれば、洋上で容易かつ安全に組立が行えるようになるとともに、メンテナンスが容易に行える、強風又は波浪時における安定性を確保し得るなどの利点を備えた洋上風力発電設備とすることができる。 As described above in detail, according to the present invention, offshore wind power generation has advantages such as easy and safe assembly on the ocean, easy maintenance, and stability during strong winds or waves. It can be equipment.
本発明に係る洋上風力発電設備1の概略図である。1 is a schematic view of an offshore wind power generation facility 1 according to the present invention. 浮体2の縦断面図である。2 is a longitudinal sectional view of a floating body 2. FIG. プレキャスト筒状体12(13)を示す、(A)は縦断面図、(B)は平面図(B-B線矢視図)、(C)は底面図(C-C線矢視図)である。The precast cylindrical body 12 (13) is shown, (A) is a longitudinal sectional view, (B) is a plan view (a view taken along the line B-B), and (C) is a bottom view (a view taken along the line C-C). プレキャスト筒状体12(13)同士の緊結要領図(A)(B)である。FIG. 4 is a schematic diagram (A) and (B) of the tight connection between precast cylindrical bodies 12 (13). 境界部プレキャスト筒状体14を示す、(A)は縦断面図、(B)は平面図(B-B線矢視図)、(C)は底面図(C-C線矢視図)である。The boundary part precast cylindrical body 14 is shown, (A) is a longitudinal sectional view, (B) is a plan view (a view taken along the line B-B), and (C) is a bottom view (a view taken along the line C-C). 境界部プレキャスト筒状体14の緊結部構造を示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a tightly coupled structure of a boundary part precast tubular body 14. 洋上風力発電設備1の施工手順図(その1)である。It is construction procedure figure (the 1) of offshore wind power generation equipment. 洋上風力発電設備1の施工手順図(その2)である。It is construction procedure figure (the 2) of offshore wind power generation equipment. 洋上風力発電設備1の施工手順図(その3)である。It is construction procedure figure (the 3) of offshore wind power generation equipment. 洋上風力発電設備1の施工手順図(その4)である。It is construction procedure figure (the 4) of offshore wind power generation equipment. 洋上風力発電設備1の施工手順図(その5)である。It is construction procedure figure (the 5) of offshore wind power generation equipment. 洋上風力発電設備1の施工手順図(その6)である。It is construction procedure figure (the 6) of offshore wind power generation equipment. 第2施工方法の施工手順図(その1)である。It is a construction procedure figure (the 1) of the 2nd construction method. 第2施工方法の施工手順図(その2)である。It is a construction procedure figure (the 2) of the 2nd construction method. 第2施工方法の施工手順図(その3)である。It is a construction procedure figure (the 3) of a 2nd construction method. 第2施工方法の施工手順図(その4)である。It is a construction procedure figure (the 4) of the 2nd construction method. 第2施工方法の施工手順図(その5)である。It is a construction procedure figure (the 5) of a 2nd construction method. 第2施工方法の施工手順図(その6)である。It is a construction procedure figure (the 6) of a 2nd construction method.
 以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示されるように、洋上風車発電設備1は、浮体2と、この浮体2の上部に設置されるデッキ3と、このデッキ3に繋がれた係留索4、4…と、前記デッキ3の上に立設されるタワー5と、このタワー5の頂部に設備されるナセル6及び複数の風車ブレード7,7…からなるものである。 As shown in FIG. 1, the offshore wind turbine power generation facility 1 includes a floating body 2, a deck 3 installed on the top of the floating body 2, mooring lines 4, 4... Connected to the deck 3, and the deck 3. The tower 5 is provided on the top of the tower 5, and the nacelle 6 and the plurality of windmill blades 7, 7.
 そして、前記浮体2は、コンクリート製のプレキャスト筒状体10、12~13を高さ方向に複数段積み上げ、各プレキャスト筒状体10、12~13をPC鋼材により緊結し一体化を図るとともに、上端部を開口させた有底中空部を有するスパー型の浮体構造とし、前記タワー5は少なくとも施工時に前記デッキ3上に設けたタワー昇降設備によって昇降自在とされ、前記浮体2内部に収容可能となっているものである。前記浮体2の吃水Lは、2MW級発電設備の場合、概ね80m以上に設定される。 The floating body 2 is constructed by stacking a plurality of precast cylindrical bodies 10 and 12 to 13 made of concrete in the height direction, and connecting the precast cylindrical bodies 10 and 12 to 13 with a PC steel material so as to be integrated. It is a spar type floating body structure having a bottomed hollow part with an open upper end, and the tower 5 can be raised and lowered at least by a tower lifting facility provided on the deck 3 at the time of construction, and can be accommodated inside the floating body 2. It is what has become. The flooded water L of the floating body 2 is set to approximately 80 m or more in the case of 2 MW class power generation equipment.
 以下、更に具体的に詳述する。 The details will be described in more detail below.
 前記浮体2は、図2に示されるように、有底円筒形状のバラスト部10と、このバラスト部10の上面に連設された変断面円筒部11とからなる。これらバラスト部10と変断面円筒部11はすべてコンクリート製のプレキャスト部材とされる。前記変断面円筒部11は、高さ方向に1又は複数の、図示例では高さ方向に2つのブロックB,Bにブロック分けされ、各ブロックB~B内では部材軸方向に同断面のプレキャスト筒状体12…,13…を使用する条件の下で、前記プレキャスト筒状体12、13を積み上げるとともに、ブロック分けされた境界部に境界部プレキャスト筒状体14を介在させることにより、高さ方向に段階的に外径寸法が徐々に縮小される変断面形状としたものである。 As shown in FIG. 2, the floating body 2 includes a bottomed cylindrical ballast portion 10 and a variable cross-section cylindrical portion 11 connected to the upper surface of the ballast portion 10. The ballast portion 10 and the variable cross-section cylindrical portion 11 are all made of a concrete precast member. The variable cross-section cylindrical portion 11 is divided into one or a plurality of blocks B 1 and B 2 in the height direction, in the illustrated example, in the height direction, and in each of the blocks B 1 to B 2 in the member axial direction. The precast cylindrical bodies 12 and 13 are stacked under the condition of using the precast cylindrical bodies 12 to 13 having the same cross section, and the boundary portion precast cylindrical body 14 is interposed in the boundary portion divided into blocks. Thus, the outer diameter dimension is gradually reduced in a stepwise manner in the height direction.
 前記プレキャスト筒状体12…,13…は、図3に示されるように、軸方向に同一断面とされる円形筒状のプレキャスト部材であり、それぞれが同一の型枠を用いて製作されるか、遠心成形により製造された中空プレキャスト部材が用いられる。 As shown in FIG. 3, the precast cylindrical bodies 12... 13 are circular cylindrical precast members having the same cross section in the axial direction, and are each manufactured using the same formwork? A hollow precast member manufactured by centrifugal molding is used.
 壁面内には鉄筋20の他、周方向に適宜の間隔でPC鋼棒16を挿通するためのシース21、21…が埋設されている。このシース21、21…の下端部にはPC鋼棒16同士を連結するためのカップラーを挿入可能とするためにシース拡径部21aが形成されているとともに、上部には定着用アンカープレートを嵌設するための箱抜き部22が形成されている。また、上面には吊り金具23が複数設けられている。 In addition to the reinforcing bars 20, sheaths 21, 21... For inserting the PC steel bars 16 are embedded in the wall surface at appropriate intervals in the circumferential direction. A sheath enlarged diameter portion 21a is formed at the lower end portion of the sheaths 21, 21... So that a coupler for connecting the PC steel bars 16 can be inserted, and a fixing anchor plate is fitted on the upper portion. A box opening portion 22 is provided for installation. In addition, a plurality of suspension fittings 23 are provided on the upper surface.
 プレキャスト筒状体12(13)同士の緊結は、図4(A)に示されるように、下段側プレキャスト筒状体12(13)から上方に延長されたPC鋼棒16,16…をシース21、21…に挿通させながらプレキャスト筒状体12…(13…)を積み重ねたならば、アンカープレート24を箱抜き部22に嵌設し、ナット部材25によりPC鋼棒16に張力を導入し一体化を図る。また、グラウト注入孔27からグラウト材をシース21内に注入する。なお、前記アンカープレート24に形成された孔24aはグラウト注入確認孔であり、該確認孔からグラウト材が吐出されたことをもってグラウト材の充填を終了する。 As shown in FIG. 4 (A), the precast cylindrical bodies 12 (13) are joined together by connecting the PC steel rods 16, 16,... , 21..., 21..., 21. Plan Further, a grout material is injected into the sheath 21 from the grout injection hole 27. The hole 24a formed in the anchor plate 24 is a grout injection confirmation hole, and the filling of the grout material is completed when the grout material is discharged from the confirmation hole.
 次に、図4(B)に示されるように、PC鋼棒16の突出部に対してカップラー26を螺合し、上段側のPC鋼棒16、16…を連結したならば、上段となるプレキャスト筒状体12(13)のシース21、21…に前記PC鋼棒16、16…を挿通させながら積み重ね、前記要領によりPC鋼棒16の定着を図る手順を順次繰り返すことにより高さ方向に積み上げられる。この際、下段側プレキャスト筒状体と上段側プレキャスト筒状体との接合面には止水性確保及び合わせ面の接合のためにエポキシ樹脂系などの接着剤15やシール材が塗布される。 Next, as shown in FIG. 4 (B), if the coupler 26 is screwed into the protruding portion of the PC steel bar 16, and the upper PC steel bars 16, 16,. The PC steel rods 16, 16 ... are stacked while being inserted through the sheaths 21, 21 ... of the precast cylindrical body 12 (13), and the procedure for fixing the PC steel rod 16 according to the above procedure is sequentially repeated in the height direction. Stacked. At this time, an adhesive 15 such as an epoxy resin or a sealing material is applied to the joint surface between the lower-stage precast tubular body and the upper-stage precast tubular body in order to ensure waterproofness and join the mating surfaces.
 一方、前記境界部プレキャスト筒状体14は、図5に示されるように、前記プレキャスト筒状体12,13と同様に、部材軸方向に同一断面とされる筒状のプレキャスト部材であり、それぞれの同一の型枠を用いて製作されるか、遠心成形により製造された中空プレキャスト部材が用いられるが、下段側プレキャスト筒状体とほぼ同じ外径寸法とされるとともに、上段側プレキャスト筒状体とほぼ同じ内径寸法とされる断面形状を成す。 On the other hand, as shown in FIG. 5, the boundary portion precast cylindrical body 14 is a cylindrical precast member having the same cross section in the member axial direction, similarly to the precast cylindrical bodies 12 and 13. A hollow precast member manufactured using the same formwork or by centrifugal molding is used, but has the same outer diameter as the lower precast cylindrical body, and the upper precast cylindrical body. And has a cross-sectional shape that is approximately the same inner diameter.
 壁面内には鉄筋20の他、相対的に外周側には周方向に適宜の間隔でPC鋼棒を挿通するためのシース21、21…が埋設されている。このシース21、21…の下端部はシース拡径部21aが形成されているとともに、上部には定着用アンカープレートを嵌設するための箱抜き部22が形成されている。また、上面には吊り金具(図示せず)が複数設けられている。 In the wall surface, in addition to the reinforcing bars 20, sheaths 21, 21. A sheath diameter-enlarged portion 21 a is formed at the lower end portion of the sheaths 21, 21... In addition, a plurality of suspension fittings (not shown) are provided on the upper surface.
 また、壁面の相対的に内周側には、周方向に適宜の間隔で、境界部プレキャスト筒状体14の下面側にアンカープレート30及びナット29により定着されたアンボンドPC鋼棒28、28…が予め埋設されている。このアンボンドPC鋼棒28の上端は境界部プレキャスト筒状体14の上面から突出して形成されている。また、前記外周側のシース21、21…の位置と、前記アンボンドPC鋼棒28、28…との配置は緊張応力の均等化を図るために千鳥状配置とされる。 Further, on the relatively inner peripheral side of the wall surface, unbonded PC steel rods 28, 28 fixed by anchor plates 30 and nuts 29 on the lower surface side of the boundary precast cylindrical body 14 at appropriate intervals in the circumferential direction. Are embedded in advance. The upper end of the unbonded PC steel bar 28 is formed so as to protrude from the upper surface of the boundary precast cylindrical body 14. Also, the positions of the outer sheaths 21, 21... And the unbonded PC steel bars 28, 28... Are arranged in a staggered manner in order to equalize the tension stress.
 前記境界部プレキャスト筒状体14と、下段側プレキャスト筒状体12と、上段側プレキャスト筒状体13との緊結部構造は、下段側プレキャスト筒状体12側から延長されるPC鋼材14を該境界部プレキャスト筒状体14の上面外周部に定着させるとともに、上段側プレキャスト筒状体13側に延びるPC鋼材(アンボンドPC鋼棒28)を該境界部プレキャスト筒状体14の下面内周部に定着させるようにする。 The tight part structure of the boundary part precast tubular body 14, the lower stage precast tubular body 12, and the upper stage precast tubular body 13 includes the PC steel material 14 extended from the lower stage precast tubular body 12 side. PC steel material (unbonded PC steel rod 28) extending to the upper stage side precast cylindrical body 13 side is fixed to the outer peripheral part of the upper surface of the boundary part precast cylindrical body 14 on the lower surface inner peripheral part of the boundary part precast cylindrical body 14 Try to fix.
 具体的には図6に示されるように、下段側のプレキャスト筒状体12から上方に延長されたPC鋼棒16、16…をシース21、21…に挿通させながら境界部プレキャスト筒状体14を積み重ねたならば、アンカープレート24を箱抜き部22に嵌設し、ナット部材25によりPC鋼棒16、16…に緊張力を導入し一体化を図る。この際、プレキャスト筒状体12,14同士の合わせ面には接着剤15又はシール材を塗布し、緊張導入力は断面作用力に対して常時ではフルプレストレスになるようにし、暴風時はパーシャルプレストレスとする。また、グラウト注入孔32からグラウト材をシース21内に注入するとともに、露出するナット25部にはキャップ材31を被せ、内部に防錆処理のためグリース等を充填する。 Specifically, as shown in FIG. 6, the boundary portion precast tubular body 14 is inserted into the sheaths 21, 21... While the PC steel bars 16, 16. Are stacked, the anchor plate 24 is fitted into the box removing portion 22, and the nut member 25 introduces tension to the PC steel bars 16, 16. At this time, the adhesive 15 or the sealing material is applied to the mating surfaces of the precast cylindrical bodies 12 and 14 so that the tension introduction force is always full prestress with respect to the cross-sectional action force, and the partial pre- Stress. In addition, a grout material is injected into the sheath 21 from the grout injection hole 32, and the exposed nut 25 is covered with a cap material 31 and filled with grease or the like for rust prevention treatment.
 次に、アンボンドPC鋼棒28の上端部にカップラー33を螺合し、上段側のPC鋼棒16、16…を連結したならば、プレキャスト筒状体13のシース21、21…に前記PC鋼棒16、16…を挿通させながら積み重ね、前述した要領によりPC鋼棒16の定着を図り、上段側のプレキャスト筒状体13を境界部プレキャスト筒状体14に対して一体的に結合する。前記浮体2では、最上部のプレキャスト筒状体13の上端は開口のままとしておき、タワー5を収容可能とするための中空部が形成されている。なお、前記アンボンドPC鋼棒28はボンドとしてもよい。 Next, when the coupler 33 is screwed to the upper end portion of the unbonded PC steel rod 28 and the upper PC steel rods 16, 16,... Are connected, the PC steel is attached to the sheaths 21, 21 ... of the precast tubular body 13. The rods 16 are stacked while being inserted, and the PC steel rod 16 is fixed in the manner described above, and the upper precast tubular body 13 is integrally coupled to the boundary precast tubular body 14. In the floating body 2, the upper end of the uppermost precast cylindrical body 13 is left open, and a hollow portion for accommodating the tower 5 is formed. The unbonded PC steel rod 28 may be a bond.
 一方、前記タワー5は、鋼材、コンクリート又はPRC(プレストレスト鉄筋コンクリート)から構成されるものが使用されるが、好ましいのは総重量が小さくなるように鋼材によって製作されたものを用いるのが望ましい。また、前記ナセル6は、風車の回転を電気に変換する発電機やブレードの角度を自動的に変えることができる制御器などが搭載された装置である。 On the other hand, the tower 5 is made of steel, concrete, or PRC (prestressed reinforced concrete), but is preferably made of steel so as to reduce the total weight. The nacelle 6 is a device equipped with a generator that converts the rotation of the windmill into electricity, a controller that can automatically change the angle of the blade, and the like.
〔第1施工手順〕
 以下、図7~図12に基づき、前記洋上風力発電設備1の施工手順について詳述する。
(第1手順)
 洋上において、図7(A)に示されるように、先ず最下段のプレキャスト筒状体であるバラスト部10を浮かべる。次いで、図7~図9に示されるように、バラスト(海水又は水)の投入により吃水を調整しながら、順次高さ方向にプレキャスト筒状体12…、14,13…をPC鋼材により緊結しつつ積み上げる。図9は浮体2の組立を完了した状態を示したものである。
[First construction procedure]
Hereinafter, the construction procedure of the offshore wind power generation facility 1 will be described in detail with reference to FIGS.
(First procedure)
On the ocean, as shown in FIG. 7A, first, the ballast portion 10 which is the lowermost precast cylindrical body is floated. Next, as shown in FIG. 7 to FIG. 9, the precast cylindrical bodies 12, 14, 13, etc. are sequentially fastened with PC steel in the height direction while adjusting the flooding by adding ballast (seawater or water). Stack up. FIG. 9 shows a state where the assembly of the floating body 2 is completed.
(第2手順)
 図10に示されるように、浮体2の上部にデッキ3を設置した後、タワー5を立設するとともに、タワー昇降設備8を設置する。前記タワー昇降設備8は、例えば同図に示されるように、タワー5の基部周囲に所定の間隔でセンターホールジャッキ9,9…を配置するとともに、PC鋼線10の一端をシーブ11を巻回させた後、センターホールジャッキ9を通してタワー5の下端に緊結し、前記センターホールジャッキ9の伸縮操作により、タワー5の下降と上昇とを可能とした設備である。また、前記デッキ3に係留索4の一端を繋ぎ止めるとともに、他端を海底に沈設したアンカーに繋ぎ留めて浮体2の安定を図る。
(Second procedure)
As FIG. 10 shows, after installing the deck 3 in the upper part of the floating body 2, while setting up the tower 5, the tower raising / lowering equipment 8 is installed. The tower lifting / lowering equipment 8 has center hole jacks 9, 9,... Arranged at predetermined intervals around the base of the tower 5 as shown in the figure, and one end of the PC steel wire 10 is wound around a sheave 11. Then, the center hole jack 9 is tightly connected to the lower end of the tower 5, and the tower 5 can be lowered and raised by the expansion / contraction operation of the center hole jack 9. Further, one end of the mooring cable 4 is tied to the deck 3 and the other end is tied to an anchor sunk on the seabed to stabilize the floating body 2.
(第3手順)
 図11に示されるように、前記タワー昇降設備8によってタワー5を下降させた状態で、ナセル6の取付けを行うとともに、2枚の風車ブレード7,7の取付けを行い、次いで図8に示されるように、若干タワー5を引き上げた状態としてから残りの風車ブレード7を取り付ける。
(第4手順)
 前記タワー昇降設備8によってタワー5を正規の位置まで上昇させたならば、図1に示すように、タワー固定用ベース金具34等によりタワー5を正規の高さ位置に固定し施工を完了する。
(Third procedure)
As shown in FIG. 11, the nacelle 6 is attached while the tower 5 is lowered by the tower elevating equipment 8, and the two wind turbine blades 7 and 7 are attached, and then, as shown in FIG. 8. Thus, after the tower 5 is slightly lifted, the remaining wind turbine blades 7 are attached.
(4th procedure)
When the tower 5 is raised to the regular position by the tower lifting / lowering equipment 8, the tower 5 is fixed at the regular height position by the tower fixing base bracket 34 or the like as shown in FIG.
〔第2施工手順〕
 以下、図13~図18に基づき、前記洋上風力発電設備1の第2施工手順について詳述する。
(第1手順)
 製作ヤードに隣接した洋上において、図13に示されるように、浮体2内部にタワー5を収容した状態で海上に横向きで浮かべ、バラスト水31を注水し吃水を調整した後、曳航船18により洋上設置場所まで曳航する。なお、浮体2内部にタワー5を収容した状態で、最上部のプレキャスト筒状体13の上端開口は塞がれている。
[Second construction procedure]
Hereinafter, the second construction procedure of the offshore wind power generation facility 1 will be described in detail with reference to FIGS.
(First procedure)
On the ocean adjacent to the production yard, as shown in FIG. 13, the tower 5 is accommodated inside the floating body 2 and floated sideways on the ocean. Tow to installation location. In the state where the tower 5 is accommodated inside the floating body 2, the upper end opening of the uppermost precast cylindrical body 13 is closed.
(第2手順)
 図14に示されるように、洋上設置場所に到着したならば、バラスト水31を注水するとともに、前記バランス調整用浮体32上のウインチ33からワイヤを徐々に繰り出すことにより、ゆっくりと浮体2を直立状態に起立させる。
(Second procedure)
As shown in FIG. 14, when arriving at the offshore installation location, the ballast water 31 is poured, and the wire 2 is gradually fed out from the winch 33 on the balance adjusting floating body 32, so that the floating body 2 is slowly upright. Stand up to the state.
 図15に示されるように、浮体2を起立させたならば、浮体2の上部にデッキ3を設置するとともに、前記デッキ3に係留索4の一端を繋ぎ止めるとともに、他端を海底に沈設したアンカーに繋ぎ留めて浮体2の安定を図る。
(第3手順)
 図16に示されるように、デッキ3上にタワー昇降設備8を設置し、タワー5の引上げ作業に入る。図17に示されるように、前記タワー昇降設備8により、タワー5を任意の高さ位置まで引き上げた状態で、前記ナセル6を設置するとともに、2枚の風車ブレード7,7を設置する。その後、図18に示されるように、若干タワー5を引き上げて、残りの風車ブレード7を取り付ける。
(第4手順)
 すべての部材取付け作業を終えたならば、前記タワー昇降設備8によってタワー5を上昇させ、タワー固定用ベース金具34等(図1参照)によりタワー5を正規の高さ位置に固定し施工を完了する。
As shown in FIG. 15, when the floating body 2 is erected, the deck 3 is installed on the top of the floating body 2, one end of the mooring cable 4 is tied to the deck 3, and the other end is set on the seabed. The floating body 2 is stabilized by being tied to the anchor.
(Third procedure)
As shown in FIG. 16, the tower elevating equipment 8 is installed on the deck 3 and the tower 5 is pulled up. As shown in FIG. 17, the nacelle 6 is installed and the two windmill blades 7 and 7 are installed while the tower 5 is pulled up to an arbitrary height position by the tower elevating equipment 8. Thereafter, as shown in FIG. 18, the tower 5 is slightly lifted and the remaining wind turbine blades 7 are attached.
(4th procedure)
When all the members have been installed, the tower 5 is raised by the tower lifting equipment 8 and the tower 5 is fixed at a normal height position by the tower fixing base bracket 34 (see FIG. 1) to complete the construction. To do.
〔他の形態例〕
(1)上記形態例では、バラストとして海水又は水を用いたが、コンクリートブロックを内部に投入しても良いし、バラスト部10の上側にコンクリート筒状体12の外周にコンクリート製のリングを外嵌させるようにしてもよい。これらは併用してもよい。
(2)上記形態例では、前記タワー昇降設備8を撤去したが、残置しておき、その後のメンテナンス時や強風、波浪時にタワー5を下降させる際に使用できるようにしてもよい。もちろん、タワー下降作業時にタワー昇降設備8を新たに設置するようにしてもよい。
[Other examples]
(1) In the above embodiment, seawater or water is used as the ballast. However, a concrete block may be put inside, or a concrete ring is attached to the outer periphery of the concrete cylindrical body 12 on the upper side of the ballast portion 10. You may make it fit. These may be used in combination.
(2) In the above embodiment, the tower elevating equipment 8 has been removed, but it may be left behind so that it can be used when the tower 5 is lowered during maintenance, strong winds, and waves. Of course, you may make it install the tower raising / lowering installation 8 newly at the time of tower lowering work.
 1…洋上風力発電設備、2…浮体、3…デッキ、4…係留索、5…タワー、6…ナセル、7…風車ブレード、8…タワー昇降設備 1 ... Offshore wind power generation equipment, 2 ... Floating body, 3 ... Deck, 4 ... Mooring line, 5 ... Tower, 6 ... Nacelle, 7 ... Windmill blade, 8 ... Tower lifting equipment

Claims (4)

  1.  浮体と、この浮体の上部に設置されるデッキと、このデッキに繋がれた係留索と、前記デッキの上に立設されるタワーと、このタワーの頂部に設備されるナセル及び複数の風車ブレードからなる洋上風力発電設備であって、
     前記浮体は、コンクリート製のプレキャスト筒状体を高さ方向に複数段積み上げ、各プレキャスト筒状体をPC鋼材により緊結し一体化を図るとともに、上端部を開口させた有底中空部を有するスパー型の浮体構造とし、少なくとも施工時に前記タワーは前記デッキ上に設けたタワー昇降設備によって昇降自在とされ、前記浮体内部に収容可能とされることを特徴とする洋上風力発電設備。
    A floating body, a deck installed on the top of the floating body, a mooring line connected to the deck, a tower standing on the deck, a nacelle and a plurality of windmill blades installed on the top of the tower An offshore wind power generation facility comprising:
    The floating body is a spar having a bottomed hollow portion in which a plurality of precast cylindrical bodies made of concrete are stacked in the height direction, and each precast cylindrical body is tightly coupled with a PC steel material to be integrated. An offshore wind power generation facility characterized in that it has a floating structure of a mold, and at the time of construction, the tower can be raised and lowered by a tower lifting device provided on the deck and can be accommodated inside the floating body.
  2.  前記浮体は、高さ方向に1又は複数のプレキャスト筒状体毎にブロック分けされ、各ブロック内では部材軸方向に同外径断面のプレキャスト筒状体を使用する条件の下で前記プレキャスト筒状体を積み上げ、高さ方向に段階的に外径寸法が縮小される変断面形状としてある請求項1記載の洋上風力発電設備。 The floating body is divided into blocks for each of one or a plurality of precast cylindrical bodies in the height direction, and the precast cylindrical bodies are used under the condition that a precast cylindrical body having the same outer diameter cross section is used in the member axial direction in each block. The offshore wind power generation facility according to claim 1, wherein the offshore wind power generation facility has a variable cross-sectional shape in which a body is stacked and an outer diameter dimension is gradually reduced in a height direction.
  3.  請求項1、2いずれかに記載の洋上風力発電設備を洋上において組み立てるための施工方法であって、
     洋上において、最下段のプレキャスト筒状体を浮かべた後、バラスト投入により吃水を調整しながら、順次高さ方向にプレキャスト筒状体をPC鋼材により緊結しつつ積み上げる第1手順と、
     浮体上部にデッキを設置した後、デッキ上にタワーを立設するとともに、タワー昇降設備を設置する第2手順と、
     前記タワー昇降設備によってタワーを下降させた状態でナセルを設置するとともに、風車ブレードを設置する第3手順と、
     前記タワー昇降設備によってタワーを引き上げた後、正規の高さ位置に固定する第4手順とからなる洋上風力発電設備の施工方法。
    A construction method for assembling the offshore wind power generation facility according to claim 1 or 2,
    On the ocean, after floating the lowermost precast cylindrical body, adjusting the flooding by throwing in the ballast, sequentially stacking the precast cylindrical body in the height direction while tightly binding with PC steel,
    After installing the deck on the top of the floating body, set up the tower on the deck and install the tower lifting equipment,
    A third step of installing the nacelle while lowering the tower by the tower lifting equipment and installing the windmill blade;
    A method for constructing an offshore wind power generation facility comprising a fourth procedure in which the tower is lifted by the tower lifting equipment and then fixed at a normal height position.
  4.  請求項1、2いずれかに記載の洋上風力発電設備を洋上に設置するための施工方法であって、
     浮体内部にタワーを収容させた状態で海上に横向きで浮かべ、洋上設置場所まで曳航する第1手順と、
     洋上設置場所において、バラストを投入することによって浮体を直立状態に起立させる第2手順と、
     前記タワー昇降設備によってタワーを任意の高さ位置まで引き上げた状態で、前記ナセルを設置するとともに、風車ブレードを設置する第3手順と、
     タワーを正規の高さ位置まで引き上げ固定する第4手順とからなる洋上風力発電設備の施工方法。
    A construction method for installing the offshore wind power generation facility according to claim 1 or 2 on the ocean,
    A first step of floating sideways on the sea with the tower housed inside the floating body and towing to the offshore installation location;
    A second procedure for raising the floating body in an upright state by inserting ballast at an offshore installation location;
    A third step of installing the nacelle and the wind turbine blade in a state where the tower is raised to an arbitrary height position by the tower lifting equipment;
    A construction method of an offshore wind power generation facility comprising a fourth step of lifting and fixing the tower to a regular height position.
PCT/JP2010/055106 2009-03-24 2010-03-24 Offshore wind power plant and construction method thereof WO2010110329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009071880A JP5330048B2 (en) 2009-03-24 2009-03-24 Installation method of offshore wind power generation equipment
JP2009-071880 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110329A1 true WO2010110329A1 (en) 2010-09-30

Family

ID=42781022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055106 WO2010110329A1 (en) 2009-03-24 2010-03-24 Offshore wind power plant and construction method thereof

Country Status (2)

Country Link
JP (1) JP5330048B2 (en)
WO (1) WO2010110329A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083021A3 (en) * 2010-01-07 2011-12-29 Vestas Wind Systems A/S Method of erecting a floating off-shore wind turbine and a floating off-shore wind turbine
WO2013093160A1 (en) 2011-12-23 2013-06-27 Universitat Politècnica De Catalunya Floating precast-concrete structure for supporting a wind turbine
CN103282274A (en) * 2010-11-04 2013-09-04 缅因大学系统理事会 Floating hybrid composite wind turbine platform and tower system
EP2639452A1 (en) * 2012-03-15 2013-09-18 Alstom Wind, S.L.U. An offshore wind turbine
US20150275850A1 (en) * 2012-11-30 2015-10-01 Mhi Vestas Offshore Wind A/S Floating-body type wind turbine power generating apparatus and method of transporting components of the same
US9238896B2 (en) 2012-12-19 2016-01-19 Universitat Politècnica De Catalunya Floating structure for supporting a wind turbine
US9394035B2 (en) 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
CN111502922A (en) * 2019-01-31 2020-08-07 西门子歌美飒可再生能源公司 Lifting device for offshore wind turbine
CN115465418A (en) * 2022-09-01 2022-12-13 大连海事大学 A platform integrating a four-floating body semi-submersible fan foundation and a foldable net cage
CN118775163A (en) * 2024-08-07 2024-10-15 湖南大学 An assembled concrete floating wind turbine and a construction method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140088499A (en) * 2011-02-03 2014-07-10 스웨이 에이에스 Offshore wind turbine generator connection arrangement and tower system
KR101213232B1 (en) * 2012-05-02 2012-12-18 부산대학교 산학협력단 Foloating-type wind power generator with block-type substructure for deep sea
KR101238864B1 (en) 2012-05-02 2013-03-04 부산대학교 산학협력단 A rotable floating type wind power generator for deep sea
KR20150091403A (en) 2013-01-21 2015-08-10 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Method for maintaining floating wind-power generation device
JP6041906B2 (en) * 2013-01-21 2016-12-14 三菱重工業株式会社 Floating wind power generator assembly method and floating wind power generator
JP6108445B2 (en) * 2013-03-13 2017-04-05 戸田建設株式会社 Floating offshore wind power generation facility
ES2671561T3 (en) 2013-04-01 2018-06-07 Nippon Steel & Sumitomo Metal Corporation Floating structure
JP5732150B1 (en) * 2014-01-29 2015-06-10 サノヤス造船株式会社 Tower-type floating structure and installation method thereof
JP6937627B2 (en) * 2016-07-13 2021-09-22 戸田建設株式会社 Offshore wind power generation equipment and its construction method
ES2716003B2 (en) * 2017-12-07 2019-10-09 Esteyco S A MARINE CONSTRUCTION WITH CONCRETE STRUCTURE
JPWO2022210358A1 (en) * 2021-03-29 2022-10-06
CN115306645B (en) * 2022-08-30 2024-11-01 中国电建集团河南工程有限公司 Wind power generation concrete tower barrel installation construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169376A1 (en) * 2001-07-06 2004-09-02 Jacques Ruer Offshore wind turbine and method for making same
WO2005028781A2 (en) * 2003-09-16 2005-03-31 Clement Hiel Composite tower for a wind turbine and method of assembly
JP2007071097A (en) * 2005-09-07 2007-03-22 Takenaka Komuten Co Ltd Construction method of wind power generation tower
JP2009013829A (en) * 2007-07-03 2009-01-22 Penta Ocean Construction Co Ltd Catamaran for offshore wind turbine generator installation method and offshore wind turbine generator installation method
WO2010023743A1 (en) * 2008-08-28 2010-03-04 三菱重工業株式会社 Construction method and construction rig of floating wind turbine generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169376A1 (en) * 2001-07-06 2004-09-02 Jacques Ruer Offshore wind turbine and method for making same
WO2005028781A2 (en) * 2003-09-16 2005-03-31 Clement Hiel Composite tower for a wind turbine and method of assembly
JP2007071097A (en) * 2005-09-07 2007-03-22 Takenaka Komuten Co Ltd Construction method of wind power generation tower
JP2009013829A (en) * 2007-07-03 2009-01-22 Penta Ocean Construction Co Ltd Catamaran for offshore wind turbine generator installation method and offshore wind turbine generator installation method
WO2010023743A1 (en) * 2008-08-28 2010-03-04 三菱重工業株式会社 Construction method and construction rig of floating wind turbine generator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083021A3 (en) * 2010-01-07 2011-12-29 Vestas Wind Systems A/S Method of erecting a floating off-shore wind turbine and a floating off-shore wind turbine
CN103282274A (en) * 2010-11-04 2013-09-04 缅因大学系统理事会 Floating hybrid composite wind turbine platform and tower system
EP2635489A2 (en) * 2010-11-04 2013-09-11 University of Maine System Board of Trustees Floating hybrid composite wind turbine platform and tower system
EP2635489A4 (en) * 2010-11-04 2015-01-28 Univ Maine Sys Board Trustees PLATFORM SYSTEM AND FLYING HYBRID COMPOSITE WIND TURBINE TOWER
US9394035B2 (en) 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
US9518564B2 (en) 2010-11-04 2016-12-13 University Of Maine System Board Of Trustee Floating hybrid composite wind turbine platform and tower system
WO2013093160A1 (en) 2011-12-23 2013-06-27 Universitat Politècnica De Catalunya Floating precast-concrete structure for supporting a wind turbine
EP2639452A1 (en) * 2012-03-15 2013-09-18 Alstom Wind, S.L.U. An offshore wind turbine
WO2013135845A1 (en) * 2012-03-15 2013-09-19 Alstom Renovables España, S.L. An offshore wind turbine
US9822767B2 (en) * 2012-11-30 2017-11-21 Mhi Vestas Offshore Wind A/S Floating-body type wind turbine power generating apparatus and method of transporting components of the same
US20150275850A1 (en) * 2012-11-30 2015-10-01 Mhi Vestas Offshore Wind A/S Floating-body type wind turbine power generating apparatus and method of transporting components of the same
US9238896B2 (en) 2012-12-19 2016-01-19 Universitat Politècnica De Catalunya Floating structure for supporting a wind turbine
CN111502922A (en) * 2019-01-31 2020-08-07 西门子歌美飒可再生能源公司 Lifting device for offshore wind turbine
CN111502922B (en) * 2019-01-31 2021-11-16 西门子歌美飒可再生能源公司 Lifting device for offshore wind turbine
US11512680B2 (en) 2019-01-31 2022-11-29 Siemens Gamesa Renewable Energy A/S Lifting apparatus for an offshore wind turbine
CN115465418A (en) * 2022-09-01 2022-12-13 大连海事大学 A platform integrating a four-floating body semi-submersible fan foundation and a foldable net cage
CN118775163A (en) * 2024-08-07 2024-10-15 湖南大学 An assembled concrete floating wind turbine and a construction method thereof

Also Published As

Publication number Publication date
JP2010223113A (en) 2010-10-07
JP5330048B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5330048B2 (en) Installation method of offshore wind power generation equipment
JP5274329B2 (en) Offshore wind power generation facility and its construction method
JP2010223114A5 (en)
US11352098B2 (en) Method of assembling a floating wind turbine platform
JP6108445B2 (en) Floating offshore wind power generation facility
CA2976943A1 (en) Method of construction, assembly, and launch of a floating wind turbine platform
JP5738643B2 (en) Installation method of offshore wind power generation equipment
JP5738642B2 (en) Installation method of offshore wind power generation equipment
JP6937627B2 (en) Offshore wind power generation equipment and its construction method
WO2023095335A1 (en) Method for mounting windmill on offshore wind power generation facility
JP7474669B2 (en) How to mount a wind turbine on an offshore wind power generation facility
JP2024179238A (en) How to build a spar-type offshore wind power generation facility
JP2025004632A (en) How to build a spar-type offshore wind power generation facility
JP2024064177A (en) Method for constructing floating spar-type floating body of offshore wind power generation facility
JP2024175445A (en) How to build a spar-type offshore wind power generation facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756125

Country of ref document: EP

Kind code of ref document: A1