[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010038257A1 - プログラマブルデバイス、およびデータ書込方法 - Google Patents

プログラマブルデバイス、およびデータ書込方法 Download PDF

Info

Publication number
WO2010038257A1
WO2010038257A1 PCT/JP2008/002748 JP2008002748W WO2010038257A1 WO 2010038257 A1 WO2010038257 A1 WO 2010038257A1 JP 2008002748 W JP2008002748 W JP 2008002748W WO 2010038257 A1 WO2010038257 A1 WO 2010038257A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating electrode
insulating film
wiring
programmable device
circuit
Prior art date
Application number
PCT/JP2008/002748
Other languages
English (en)
French (fr)
Inventor
岡安俊幸
渡邊大輔
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2010531654A priority Critical patent/JPWO2010038257A1/ja
Priority to PCT/JP2008/002748 priority patent/WO2010038257A1/ja
Priority to TW098133035A priority patent/TW201015857A/zh
Publication of WO2010038257A1 publication Critical patent/WO2010038257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Definitions

  • the present invention relates to a programmable device and a data writing method.
  • Programmable logic circuits such as PLD (Programmable Logic Device) and FPGA (Field Programmable Gate Array) have a plurality of logic blocks, and the connection relationship between these logic blocks or logic elements can be switched by user programming (for example, , See Patent Document 1).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Patent Document 1 JP-A-8-204543
  • the switching state of the switching transistor changes according to data programmed by the user. For example, a voltage corresponding to program data is applied to the gate terminal of each switching transistor. Thereby, the connection relationship of each logical block can be changed according to a user's program. Data programmed by the user is stored in a memory provided in the device.
  • a voltage corresponding to a user program is supplied to the gate terminal of each switching transistor.
  • a wiring for supplying the voltage to each switching transistor is provided, and a region where a logic block or the like can be formed becomes narrow.
  • the programmable logic circuit is provided with a memory for storing a user program. This also narrows the area where logic blocks and the like can be formed.
  • an object of the present invention is to provide a programmable device and a data writing method that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • a programmable device in which the logical relationship of output logic data to input logic data changes according to predetermined program data, which can be irradiated with an electron beam.
  • the logical relationship of the output logic data to the input logic data depending on the amount of charge that is provided and stores the program data by storing the charge by irradiating the electron beam and the program data is stored
  • a programmable device is provided comprising a programmable logic array that varies.
  • the charge corresponding to the predetermined program data is held in each floating electrode, and the program data is written to the programmable device that functions according to the program data stored in the floating electrode.
  • a data writing method for irradiating a floating electrode with an electron beam according to program data to be written is provided.
  • FIG. 2 is a schematic diagram illustrating an example of an internal configuration of a programmable logic array 12.
  • FIG. 3 is a diagram illustrating a configuration example of a circuit connection unit 107.
  • FIG. 3 is a diagram illustrating a configuration example of a switching unit 102.
  • FIG. It is a figure which shows the other structural example of the programmable logic array.
  • 3 is a diagram illustrating a configuration example of an individual connection unit 109.
  • FIG. 6 is a diagram illustrating another configuration example of the circuit connection unit 107.
  • FIG. 2 is a top view of a transistor 101.
  • FIG. FIG. 9 is a cross-sectional view taken along a line AA ′ in FIG.
  • FIG. 10 is a cross-sectional view illustrating another structural example of the transistor 101.
  • 12 is a cross-sectional view illustrating still another configuration example of the transistor 101.
  • FIG. 12 is a cross-sectional view illustrating still another configuration example of the transistor 101.
  • DESCRIPTION OF SYMBOLS 10 ... Programmable device, 11 ... Data input terminal, 12 ... Programmable logic array, 13 ... Cache memory, 14 ... Data output terminal, 15 ... Input / output circuit, 20 ... Circuit block 31... Row direction wiring 32... Column direction wiring 51 .. input wiring 52 .. output wiring 71 .. individual wiring 81 .. buffer circuit 91. Input driver circuit, 92 ... Output driver circuit, 101 ... Transistor, 102 ... Switching unit, 107 ... Circuit connection unit, 108 ... Wiring connection unit, 109 ... Individual connection unit, DESCRIPTION OF SYMBOLS 110 ... Semiconductor substrate, 111 ... Source region, 113 ... Drain region, 115 ...
  • Isolation region 121 ... Insulating film, 122 ... Insulating film, 123 ... Insulating film, 131 ... Rotating electrode, 151 ... via, 161 ... pattern wiring, 162 ... pattern wiring, 164 ... pattern wiring, 171 ... guard ring, 172 ... guard ring, 184 ... guard Terminal, 191 ... through hole, 200 ... package part
  • FIG. 1 shows a functional block diagram of a programmable device 10 according to an embodiment of the present invention.
  • the programmable device 10 is a device in which the logical relationship of output logical data with respect to input logical data changes according to given program data, and includes a data input terminal 11, a programmable logic array 12, a cache memory 13, and a data output terminal. 14.
  • the programmable device 10 may be a PLD, an FPGA, or the like, for example.
  • the logical relationship of the output logical data with respect to the input logical data may be a relationship indicating the value of the output logical data with respect to each value of the input logical data.
  • the program data may be given from the user, manufacturer, etc. of the programmable device 10.
  • the programmable logic array 12 is a logic operation circuit that outputs output logic data corresponding to input logic data given from the outside via the data input terminal 11 to the cache memory 13, and by writing predetermined program data, The logical structure can be changed to a predetermined one.
  • the cache memory 13 stores output logic data from the programmable logic array 12.
  • the cache memory 13 outputs a part or all of stored data to the outside through the data output terminal 14 by accepting access from the outside, for example.
  • FIG. 2 is a schematic diagram showing an example of the internal configuration of the programmable logic array 12.
  • the programmable logic array 12 includes an input / output circuit 15, a plurality of circuit blocks 20, a plurality of column direction wirings 32, a plurality of row direction wirings 31, a plurality of circuit connection units 107, and a plurality of wiring connection units 108.
  • each of the circuit connection unit 107 and the wiring connection unit 108 may include a plurality of transistors 101.
  • the plurality of transistors 101 select whether or not to connect each circuit block 20 to each other circuit block 20.
  • the plurality of transistors 101 include at least a first circuit block 20-1 and a second circuit block 20-2, a first circuit block 20-1 and a third circuit block 20-3, and a second circuit. For each of the block 20-2 and the third circuit block 20-3, it may be selected whether or not the circuit blocks 20 are connected.
  • connection relationship of the plurality of circuit blocks 20 is selected according to the state of the plurality of transistors 101. For example, by controlling on / off of the transistor 101 in accordance with program data given by a user, a circuit having a logical structure corresponding to the program data can be formed.
  • the transistor 101 in this example has a floating electrode as a gate terminal. That is, each transistor 101 switches between an on state and an off state in accordance with the amount of charge accumulated in the floating electrode.
  • each floating electrode is provided so as to be able to irradiate an electron beam at least before or after packaging of the programmable device 10.
  • the programmable device 10 may be manufactured such that at least a part of the surface of each floating electrode is exposed before packaging.
  • each floating electrode by irradiating each floating electrode with an electron beam according to the program data given by the user, the on / off state of each transistor 101 is directly controlled by the amount of charge injected into the floating electrode by the electron beam. Can be controlled. Therefore, a wiring for applying a gate voltage to the transistor 101 is not necessarily provided. Therefore, the area where the circuit block 20 and the like can be formed can be enlarged.
  • the on / off state of the transistor is changed by applying a voltage corresponding to user program data to the gate terminal of each transistor 101.
  • a wiring for supplying a gate voltage is provided for each transistor, and a memory area for storing user program data is provided. For this reason, a region where the circuit block 20 and the like can be formed becomes narrow.
  • the programmable device 10 in this example can form the circuit blocks 20 and the like with higher density.
  • the row direction wiring 31 and the column direction wiring 32 are examples of common connection wiring provided in common to the plurality of circuit blocks 20.
  • the plurality of circuit blocks 20 are arranged in a matrix, for example.
  • a predetermined number of row-direction wirings 31 are provided between the circuit blocks 20 adjacent in the column direction, and a predetermined number of column directions are provided between the circuit blocks 20 adjacent in the row direction.
  • a wiring 32 is provided.
  • four row direction wirings 31 and four column direction wirings 32 are provided between each circuit block 20, but the number of these wirings is not limited to four.
  • the total number of row direction wirings 31 and column direction wirings 32 provided adjacent to each circuit block 20 is preferably larger than the number of input / output terminals of the circuit block 20.
  • Each circuit block 20 has a predetermined number of input terminals In and a predetermined number of output terminals Out.
  • the input terminal In is connected to one of a predetermined number of column-directional wirings 32 provided adjacent to each other via the input wiring 51.
  • the circuit connection unit 107 is provided corresponding to each circuit block 20. The plurality of transistors 101 in each circuit connection unit 107 select which column direction wiring 32 and row direction wiring 31 the input terminal In and the output terminal Out of the corresponding circuit block 20 are connected to.
  • the transistor 101 is provided in one-to-one correspondence with a predetermined number of column-directional wirings 32 provided adjacent to each of the input wirings 51 (for example, the transistors 101-1, 101-2, 101-3, 101-4).
  • each input wiring 51 is electrically connected to the column-directional wiring 32 corresponding to the transistor 101 set to the on state.
  • the output terminal Out of this example is connected to one of a predetermined number of row-directional wirings 31 provided adjacent to each other via the output wiring 52.
  • the plurality of transistors 101 in the circuit connection unit 107 determine which row-direction wiring 31 each output wiring 52 is electrically connected to.
  • the transistors 101 are provided in one-to-one correspondence with a predetermined number of row-directional wirings 31 provided adjacent to each other in each output wiring 52.
  • each output wiring 52 is electrically connected to the row direction wiring 31 corresponding to the transistor 101 set to the on state.
  • Each row direction wiring 31 is provided so as to intersect with a plurality of column direction wirings 32.
  • each row direction wiring 31 may be provided so as to cross all the column direction wirings 32.
  • each row direction wiring 31 may be electrically connected to a predetermined column direction wiring 32 among the column direction wirings 32 that intersect.
  • each row direction wiring 31 may be electrically connected to any one column direction wiring 32.
  • the wiring connection unit 108 selects which column direction wiring 32 to connect each row direction wiring 31 to.
  • the wiring connection unit 108 may electrically connect each row direction wiring 31 to a predetermined column direction wiring 32 by a previously fixed wiring.
  • the wiring connection unit 108 may include a plurality of switching units 102 that select which column-direction wiring 32 is electrically connected to each row-direction wiring 31.
  • the switching unit 102 in this example uses a transistor 101.
  • the switching unit 102 may be provided at each intersection of each row direction wiring 31 and each column direction wiring 32. In this case, each switching unit 102 selects whether the corresponding row direction wiring 31 and column direction wiring 32 are electrically connected.
  • an arbitrary input wiring 51 and an output wiring 52 can be connected between arbitrary circuit blocks 20.
  • the output wiring 52-a of the circuit block 20-1 is connected to the input wiring 51-b of the circuit block 20-4 will be described.
  • the state of each switching unit 102 is controlled so that the output wiring 52-a and the input wiring 51-b are connected to the corresponding wiring.
  • the corresponding wiring may be a combination of the row direction wiring 31 and the column direction wiring 32 electrically connected by the switching unit 102.
  • the switching unit 102-a in FIG. 2 is in the ON state
  • the row direction wiring 31a-4 and the column direction wiring 32b-4 electrically connected via the switching unit 102-a are connected to the corresponding wiring.
  • the corresponding wiring may be the same wiring.
  • the transistor 101 corresponding to the output wiring 52-a the transistor 101-a corresponding to the row direction wiring 31a-4 is turned on. Further, among the transistors 101 corresponding to the input wiring 51-b, the transistor 101-b corresponding to the column direction wiring 32b-4 is turned on. With such a configuration, the output wiring 52-a and the input wiring 51-b can be electrically connected. In this manner, by controlling the state of each transistor 101, it is possible to connect any input wiring 51 and output wiring 52 between any circuit blocks 20.
  • the input / output circuit 15 receives a signal to be processed in the programmable logic array 12 via the data input terminal 11 and supplies the signal to the programmable logic array 12.
  • the input / output circuit 15 may supply the signal to any one of the row direction wirings 31 or the column direction wirings 32. Which row direction wiring 31 or column direction wiring 32 the input / output circuit 15 supplies a signal corresponds to the plurality of row direction wirings 31 or the plurality of column direction wirings 32 with respect to the input terminal of the input / output circuit 15.
  • a plurality of transistors 101 provided may be selected.
  • the input / output circuit 15 receives the signal processed in the programmable logic array 12 and stores it in the cache memory 13.
  • the input / output circuit 15 may receive the signal from any one of the row direction wirings 31 or the column direction wirings 32. Which row direction wiring 31 or column direction wiring 32 the input / output circuit 15 supplies a signal to corresponds to the plurality of row direction wirings 31 or the plurality of column direction wirings 32 for the output terminal of the input / output circuit 15.
  • a plurality of transistors 101 provided may be selected.
  • the input terminal and output terminal of the input / output circuit 15 can be connected to an arbitrary circuit block 20 by controlling the on / off state of each transistor 101.
  • the programmable logic array 12 may include a plurality of input / output circuits 15. In this case, each transistor 101 may be controlled such that a terminal of each input / output circuit 15 is connected to a row direction wiring 31 or a column direction wiring 32 different from the other input / output circuits 15.
  • the programmable logic array 12 includes a large number of transistors 101.
  • the transistor 101 of this example does not need to be provided with a wiring for supplying a gate voltage. That is, in the programmable logic array 12, the ratio of the area occupied by the wiring can be reduced. For this reason, the circuit blocks 20 and the like can be formed with higher density.
  • FIG. 3 is a diagram illustrating a configuration example of the circuit connection unit 107.
  • the circuit connection unit 107 includes the plurality of transistors 101 for each of the input terminal In and the output terminal Out of the circuit block 20.
  • the plurality of transistors 101 are provided in one-to-one correspondence with the plurality of row direction wirings 31 or the plurality of column direction wirings 32 provided between the circuit blocks 20.
  • Each transistor 101 is provided between a corresponding terminal of the circuit block 20 and a corresponding row direction wiring 31 or column direction wiring 32, and selects whether or not to connect the terminal and the wiring. With such a structure, each terminal of the circuit block 20 can be selectively connected to an arbitrary wiring.
  • the wiring connection unit 108 may include a plurality of transistors 101 for each row-directional wiring 31 that passes through the wiring connection unit 108.
  • the plurality of transistors 101 are provided in one-to-one correspondence with the plurality of column-direction wirings 32 that pass through the wiring connection unit 108.
  • Each transistor 101 is provided between a corresponding row direction wiring 31 and a corresponding column direction wiring 32, and it may be selected whether or not these wirings are connected.
  • one transistor 101 is turned on in one circuit connection unit 107 or wiring connection unit 108, but in another example, a plurality of transistors 101 are connected in one circuit connection unit 107 or wiring connection unit 108.
  • the transistor 101 may be controlled to be on.
  • the logic of the value transmitted by the plurality of column-direction wirings 32 selected by the transistor 101 is input to the input terminal In.
  • the sum is entered.
  • the plurality of transistors 101 are set to the ON state in the circuit connection unit 107 corresponding to the output terminal Out
  • the logical value output from the output terminal Out is parallel to the plurality of row direction wirings 31 selected by the transistor 101. Given to.
  • FIG. 4 is a diagram illustrating a configuration example of the switching unit 102.
  • the switching unit 102 may be provided at each intersection of the column direction wiring 32 and the row direction wiring 31.
  • the upper column direction wiring 32 is the column direction wiring 32-u
  • the lower column direction wiring 32 is the column direction wiring 32-d
  • the right row direction wiring 31 is the row direction wiring with respect to the intersection of the wirings. 31-r
  • the left row direction wiring 31 will be described as a row direction wiring 31-l.
  • the switching unit 102 selects whether or not to electrically connect the column direction wirings 32-u, the column direction wirings 32-d, the row direction wirings 31-r, and the row direction wirings 31-l.
  • a transistor 101 is included.
  • the switching unit 102 is arranged between the column direction wiring 32-u and the column direction wiring 32-d, between the column direction wiring 32-u and the row direction wiring 31-l, and between the column direction wiring 32-u and the row direction.
  • Between the wiring 31-r, between the column-directional wiring 32-d and the row-directional wiring 31-r, between the column-directional wiring 32-d and the row-directional wiring 31-l, and between the row-directional wiring 31-r And the row direction wiring 31-l have transistors 101 respectively.
  • the switching unit 102 can connect any wiring.
  • the transistor 101 in the switching unit 102 may also be a transistor whose on / off state is switched according to the amount of charge accumulated in the floating electrode by the electron beam. Accordingly, since it is not necessary to provide a wiring for supplying a gate voltage to the transistor 101 in the switching unit 102, the ratio of the area occupied by the wiring in the programmable logic array 12 can be reduced.
  • FIG. 5 is a diagram showing another configuration example of the programmable logic array 12.
  • the programmable logic array 12 of this example further includes an individual connection unit 109 and an individual wiring 71 in addition to the configuration of the programmable logic array 12 described with reference to FIG.
  • the individual connection unit 109 electrically connects terminals of a predetermined circuit block 20 and other circuit blocks 20 using the individual wiring 71 without using the common connection wiring, the circuit connection unit 107, and the wiring connection unit 108. Connecting.
  • the individual connection unit 109 and the individual wiring 71 will be described using an example in which any input terminal of the circuit block 20-3 is connected to a predetermined output terminal of the circuit block 20-4.
  • the individual connection unit 109 selects any of the input wirings 51 of the circuit block 20-3 between the circuit block 20-3 and the circuit connection unit 107 corresponding to the input terminal of the circuit block 20-3.
  • the individual connection unit 109 may select one of the input wirings 51 using a plurality of transistors 101.
  • the individual connection unit 109 electrically connects the selected input wiring 51 to the individual wiring 71.
  • the individual wiring 71 converts the input wiring 51 selected by the individual connection unit 109 into a predetermined output wiring 52 between the circuit block 20-4 and the circuit connection unit 107 corresponding to the output terminal of the circuit block 20-4. Connect electrically. As a result, the predetermined circuit blocks 20 can be connected without using the row direction wiring 31 and the column direction wiring 32.
  • the row direction wiring 31 and the column direction wiring 32 are common connection wirings used in common by a plurality of circuit blocks 20, when a certain circuit block 20 uses a predetermined common connection wiring, the other circuit blocks 20 Connection wiring may not be used. For this reason, in order to increase the degree of freedom of connection between the circuit blocks 20, it is preferable to provide many common connection wirings in advance. However, if many common connection wirings are provided, an area where the circuit block 20 can be arranged becomes narrow.
  • the programmable logic array 12 of the present example is provided with the individual connection portions 109 and the individual wirings 71 between the circuit blocks 20 that are presumed to be relatively likely to be connected, for example. Thereby, since these circuit blocks 20 can be connected without using the common connection wiring, the degree of freedom of connection between the circuit blocks 20 can be ensured even if the number of common connection wirings is reduced.
  • FIG. 6 is a diagram illustrating a configuration example of the individual connection unit 109.
  • the individual connection unit 109 may include a plurality of transistors 101 that correspond one-to-one with the plurality of input wirings 51 in the predetermined circuit block 20. Each transistor 101 selects whether or not to electrically connect the corresponding input wiring 51 and a predetermined output wiring 52 in another circuit block 20 via the individual wiring 71. For example, each transistor 101 may be provided between the corresponding input wiring 51 and the individual wiring 71.
  • the transistor 101 in the individual connection unit 109 may also be a transistor whose on / off state is switched according to the amount of charge accumulated in the floating electrode by the electron beam. Accordingly, since it is not necessary to provide a wiring for supplying a gate voltage to the transistor 101 in the individual connection unit 109, the ratio of the area occupied by the wiring in the programmable logic array 12 can be reduced.
  • FIG. 7 is a diagram illustrating another configuration example of the circuit connection unit 107.
  • the circuit connection unit 107 connected to the input wiring 51 further includes a plurality of buffer circuits 81 and a plurality of input driver circuits 91 in addition to the configuration of the circuit connection unit 107 described with reference to FIG.
  • a plurality of buffer circuits 81 are provided for each input terminal In of the circuit block 20.
  • the buffer circuit 81 is provided between each transistor 101 and the corresponding column direction wiring 32, and transmits a signal received from the column direction wiring 32 to the transistor 101.
  • One input driver circuit 91 is provided for each input terminal In of the circuit block 20.
  • the input driver circuit 91 may be provided on the input wiring 51 between each transistor 101 and the input terminal In.
  • the input driver circuit 91 amplifies the signal output from the corresponding plurality of buffer circuits 81 and inputs the amplified signal to the circuit block 20.
  • Each transistor 101 is provided corresponding to a plurality of buffer circuits 81, and switches between outputting a signal to the corresponding buffer circuit 81 or setting the output of the corresponding buffer circuit 81 to a high impedance state.
  • any one of the plurality of transistors 101 corresponding to one input terminal In is turned on. Therefore, the number of driver circuits can be reduced by providing a common input driver circuit 91 for each input terminal as in this example, without providing a driver circuit for each transistor 101.
  • the circuit connection unit 107 connected to the output wiring 52 further includes a plurality of buffer circuits 81 and a plurality of output driver circuits 92 in addition to the configuration of the circuit connection unit 107 described with reference to FIG. Similar to the transistor 101, a plurality of buffer circuits 81 are provided for each output terminal Out of the circuit block 20.
  • the buffer circuit 81 transmits a signal received from the circuit block 20 via the output driver circuit 92 to the corresponding row direction wiring 31.
  • One output driver circuit 92 is provided for each output terminal Out of the circuit block 20.
  • the output driver circuit 92 may be provided on the output wiring 52 between each transistor 101 and the output terminal Out.
  • the output driver circuit 92 amplifies the signal received from the circuit block 20 and supplies the amplified signal to the plurality of buffer circuits 81.
  • the transistor 101 in the circuit connection unit 107 of this example may also be a transistor that is switched on / off according to the amount of charge accumulated in the floating electrode by the electron beam. Accordingly, since it is not necessary to provide a wiring for supplying a gate voltage to the transistor 101 in the circuit connection unit 107, the ratio of the area occupied by the wiring in the programmable logic array 12 can be reduced.
  • the transistor 101 of the programmable logic array 12 will be described with reference to a more specific configuration example.
  • FIG. 8 is a top view of the transistor 101.
  • FIG. 9 is a cross-sectional view taken along the line AA ′ in FIG.
  • the transistor 101 may be formed on the semiconductor substrate 110 by a predetermined semiconductor process, for example, and has P-type or N-type channel characteristics. Note that in the following description, the transistor 101 has N-type channel characteristics.
  • the transistor 101 is provided in a region partitioned by a plurality of isolation regions 115 formed of an insulating material such as silicon dioxide on the semiconductor substrate 110, and includes a source region 111, a drain region 113, a floating electrode 131, a via 151, And a guard ring 171.
  • the source region 111 and the drain region 113 are formed in the surface layer portion of the semiconductor substrate 110 so as to be separated from each other.
  • the source region 111 and the drain region 113 may be formed, for example, by implanting phosphorus ions from the upper surface of the polysilicon semiconductor substrate 110 to a predetermined depth.
  • the semiconductor substrate 110 may be a P-type substrate, while the source region 111 and the drain region 113 may be N-type regions.
  • the floating electrode 131 is provided to face the source region 111 and the drain region 113 with an insulating film 121 formed by laminating an insulating material such as silicon dioxide on the semiconductor substrate 110.
  • the floating electrode 131 may be provided between the source region 111 and the drain region 113 in the surface direction of the semiconductor substrate 110.
  • the insulating film 122 may be provided so as to cover the surface of the floating electrode 131.
  • the insulating film 123 formed on the insulating film 122 may be formed on the uppermost layer on the semiconductor substrate 110 on which the programmable logic array 12 is formed.
  • a pattern wiring or the like to be described later may be formed between the insulating film 122 and the insulating film 123.
  • the via 151 is formed of a conductive material, and is provided so as to penetrate from the surface of the insulating film 123 to the floating electrode 131.
  • an insulating film 122 and an insulating film 123 in which insulating materials are stacked are formed on the floating electrode 131, and the via 151 is provided through the insulating films 122 and 123, and one end thereof Is exposed on the surface of the insulating film 123.
  • One end of the via 151 is preferably exposed in the uppermost layer among the layers formed on the semiconductor substrate 110.
  • the pattern wiring 161 and the pattern wiring 162 are provided between the insulating film 122 and the insulating film 123.
  • the pattern wiring 161 electrically connects the source terminal 181 provided on the semiconductor substrate 110 and the source region 111.
  • the pattern wiring 162 electrically connects the drain terminal 182 provided on the semiconductor substrate 110 and the drain region 113.
  • the guard ring 171 is formed of, for example, a conductive metal material, and is provided so as to surround the via 151 on the surface of the insulating film 123.
  • the guard ring 171 is electrically connected to the guard terminal 184 connected to the reference potential via the pattern wiring 164.
  • the guard ring 171 is not limited to the form formed in the annular
  • the guard terminal 184 may be connected to the ground potential via the GND terminal of the programmable logic array 12, for example.
  • charges can be accumulated in the floating electrode 131 by irradiating the surface of the via 151 with an electron beam. That is, charge can be directly accumulated by an electron beam to the floating electrode 131 functioning as the gate electrode of the transistor 101 without using a wiring or the like, and the transistor 101 is controlled to be in an on state or an off state. Can do.
  • a user, a manufacturer, or the like may irradiate the floating electrode 131 of the transistor 101 to be controlled to the on state (or the off state) with an electron beam having a predetermined intensity for a predetermined time.
  • the programmable logic array 12 easily changes the circuit configuration of the programmable logic array 12 to a setting corresponding to the program data by irradiating each transistor 101 with an electron beam according to the program data. can do.
  • the via 151 when the via 151 is irradiated with an electron beam, a part of the electrons contained in the irradiated electron beam may be scattered around the via 151.
  • the conductive guard ring 171 is provided around the via 151 as described above, the scattered electrons are trapped by the guard ring 171. Therefore, in the transistor 101, for example, the scattered electrons are captured in the insulating film 123, whereby charge can be prevented from being accumulated in the insulating film 123 over time.
  • the charge accumulated in the floating electrode 131 of the transistor 101 can be erased by irradiating the floating electrode 131 with ultraviolet rays. That is, by irradiating the floating electrode of the transistor 101 for which stored data is to be erased with, for example, ultraviolet rays using an ultraviolet irradiation device or the like, the charges accumulated in the floating electrode 131 are discharged, thereby bringing the transistor 101 into an initial state. Can be reset to
  • the above erasing operation may be performed on the entire programmable logic array 12, that is, a plurality of transistors 101, or by using an ultraviolet laser, an ultraviolet lamp, a mask, or the like that can reduce the spot diameter to a minimum. This may be implemented for a specific transistor 101 by limiting the irradiation site.
  • the transistor 101 is irradiated with ultraviolet rays to the floating electrode 131 of the transistor 101. After the accumulated charge is discharged, the transistor 101 may be irradiated with an electron beam with a dose corresponding to new data to be written, and the charge corresponding to the data may be newly accumulated in the floating electrode 131.
  • FIG. 10 is a cross-sectional view illustrating another configuration example of the transistor 101.
  • the transistor 101 of this example has a through hole 191 formed by, for example, pattern etching instead of the via 151 in the transistor 101 described with reference to FIG.
  • the rest of the configuration is the same as that of the transistor 101 described above, and thus description thereof is omitted.
  • the transistor 101 of the transistor 101 since the transistor 101 of the transistor 101 includes the through hole 191, the floating electrode 131 can be irradiated with an electron beam through the through hole 191.
  • the transistor 101 described with reference to FIGS. 9 and 10 is provided with the via 151 or the through hole 191 above the floating electrode 131, so that the charge given by the electron beam irradiation can be reliably ensured by the floating electrode 131. It was set as the structure injected. However, for example, the thickness of the insulating film 122 and the insulating film 123 on the floating electrode 131 is set so that the electron beam tunnels through the insulating film 122 and the insulating film 123 when the floating electrode 131 is irradiated with the electron beam.
  • FIG. 11 is a cross-sectional view showing still another configuration example of the transistor 101.
  • the transistor 101 of this example includes a guard ring 172 instead of the guard ring 171 in the transistor 101 described with reference to FIG. Note that the configuration other than the guard ring 172 is the same as that of the transistor 101 described above, and thus description thereof is omitted.
  • the guard ring 172 is formed by, for example, pattern-etching the peripheral portion of the via 151 in the insulating film 123 and then depositing a conductive material in an etching groove formed by the etching.
  • 11 shows only a sectional view of the guard ring 172, the shape of the guard ring 172 at the peripheral edge of the via 151 may be the same as that of the guard ring 171 described above.
  • the guard ring can be prevented from being peeled off due to external contact with the programmable logic array 12 or the like.
  • FIG. 12 is a cross-sectional view showing still another configuration example of the transistor 101.
  • the insulating film 122 is provided so as to cover at least a part of the surface of the floating electrode 131 while covering the surface of the floating electrode 131.
  • a guard ring 171 is provided on the peripheral edge of the floating electrode 131 on the insulating film 122.
  • the package unit 200 is formed on the uppermost layer on the semiconductor substrate 110 so as to cover the upper surfaces of the pattern wirings 161 and 162, the guard ring 171, and the floating electrode 131 provided on the insulating film 122. It is formed.
  • each floating electrode 131 may be irradiated with an electron beam to a region not covered with the insulating film 122.
  • the package unit 200 may be provided so as to include the programmable logic array 12 after the electric charge corresponding to the program data is accumulated in the floating electrode 131.
  • an insulating resin material is preferably used for the package part 200.
  • the programmable logic array 12 shown in FIG. 12 may have a via that connects the upper surface of the package unit 200 and the floating electrode 131 of the transistor 101.
  • the charge corresponding to the new program data is written to the floating electrode 131 of the transistor 101 by irradiating the via with an electron beam. Can do.
  • the second package part may be provided so as to cover the via provided in the package part 200.
  • the second package part is preferably detachable. As a result, when new program data is written to the programmable logic array 12, the second package portion can be removed to expose the via.
  • each floating electrode 131 may be irradiated with an electron beam.
  • the floating electrode 131 may be provided so as to be able to irradiate an electron beam in the process.
  • the entire surface of the floating electrode 131 may be covered with an insulating film.
  • the step of irradiating the electron beam is preferably after the step using ultraviolet rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)

Abstract

 所定のプログラムデータに応じて入力論理データに対する出力論理データの論理関係が変化するプログラマブルデバイスであって、電子ビームが照射可能に設けられ、電子ビームが照射されることで電荷を蓄積してプログラムデータを記憶する複数のフローティング電極と、複数のフローティング電極が蓄積した電荷量に応じて、入力論理データに対する出力論理データの論理関係が変化するプログラマブル論理アレイとを備えるプログラマブルデバイスが提供される。

Description

プログラマブルデバイス、およびデータ書込方法
 本発明は、プログラマブルデバイス、およびデータ書込方法に関する。
 PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のプログラマブル論理回路は、複数の論理ブロックを有し、それらの論理ブロックまたは論理素子の接続関係をユーザのプログラミングにより切り替えることができる(例えば、特許文献1参照)。プログラマブル論理回路において、それぞれの論理ブロック間を接続するか否かは、例えば複数の論理ブロック間を繋ぐ配線上に設けられたスイッチングトランジスタにより制御される。
 特許文献1:特開平8-204543号公報
 当該スイッチングトランジスタは、ユーザによりプログラムされたデータによりスイッチング状態が変化する。例えば、それぞれのスイッチングトランジスタのゲート端子には、プログラムデータに応じた電圧が与えられる。これにより、ユーザのプログラムに応じて、各論理ブロックの接続関係を変更することができる。また、ユーザによりプログラムされたデータは、デバイス内に設けられたメモリに記憶される。
 上記の通り、それぞれのスイッチングトランジスタのゲート端子には、ユーザのプログラムに応じた電圧が供給される。このため、プログラマブル論理回路には、それぞれのスイッチングトランジスタに当該電圧を供給する配線が設けられ、論理ブロック等を形成できる領域が狭くなってしまう。また、プログラマブル論理回路には、ユーザのプログラムを格納するメモリが設けられる。これによっても、論理ブロック等を形成できる領域が狭くなってしまう。
 そこで本発明は、上記の課題を解決することのできるプログラマブルデバイス、およびデータ書込方法を提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 上記課題を解決するために、本発明の第1の形態においては、所定のプログラムデータに応じて入力論理データに対する出力論理データの論理関係が変化するプログラマブルデバイスであって、電子ビームが照射可能に設けられ、電子ビームが照射されることで電荷を蓄積してプログラムデータを記憶する複数のフローティング電極と、複数のフローティング電極が蓄積した電荷量に応じて、入力論理データに対する出力論理データの論理関係が変化するプログラマブル論理アレイとを備えるプログラマブルデバイスが提供される。
 また、本発明の第2の形態においては、所定のプログラムデータに応じた電荷を各フローティング電極に保持し、フローティング電極に記憶したプログラムデータに応じて機能するプログラマブルデバイスに対して、プログラムデータを書き込むデータ書込方法であって、書き込むべきプログラムデータに応じて、フローティング電極に電子ビームを照射するデータ書込方法が提供される。
 なお、上記の発明の概要は、発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の実施形態に係るプログラマブルデバイス10の機能ブロック図を示す。 プログラマブル論理アレイ12の内部構成の一例を示す概略図である。 回路接続部107の構成例を示す図である。 切替部102の構成例を示す図である。 プログラマブル論理アレイ12の他の構成例を示す図である。 個別接続部109の構成例を示す図である。 回路接続部107の他の構成例を示す図である。 トランジスタ101の上面図である。 図8にA-A'で示す断面における断面図である。 トランジスタ101の他の構成例を示す断面図である。 トランジスタ101のさらに他の構成例を示す断面図である。 トランジスタ101のさらに他の構成例を示す断面図である。
符号の説明
10・・・プログラマブルデバイス、11・・・データ入力端子、12・・・プログラマブル論理アレイ、13・・・キャッシュメモリ、14・・・データ出力端子、15・・・入出力回路、20・・・回路ブロック、31・・・行方向配線、32・・・列方向配線、51・・・入力配線、52・・・出力配線、71・・・個別配線、81・・・バッファ回路、91・・・入力ドライバ回路、92・・・出力ドライバ回路、101・・・トランジスタ、102・・・切替部、107・・・回路接続部、108・・・配線接続部、109・・・個別接続部、110・・・半導体基板、111・・・ソース領域、113・・・ドレイン領域、115・・・分離領域、121・・・絶縁膜、122・・・絶縁膜、123・・・絶縁膜、131・・・フローティング電極、151・・・ビア、161・・・パターン配線、162・・・パターン配線、164・・・パターン配線、171・・・ガードリング、172・・・ガードリング、184・・・ガード端子、191・・・貫通孔、200・・・パッケージ部
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の実施形態に係るプログラマブルデバイス10の機能ブロック図を示す。プログラマブルデバイス10は、与えられるプログラムデータに応じて入力論理データに対する出力論理データの論理関係が変化するデバイスであって、データ入力端子11と、プログラマブル論理アレイ12と、キャッシュメモリ13と、データ出力端子14とを備える。プログラマブルデバイス10は、例えばPLD、FPGA等であってよい。また、入力論理データに対する出力論理データの論理関係とは、入力論理データのそれぞれの値に対する、出力論理データの値を示す関係であってよい。また、プログラムデータは、プログラマブルデバイス10のユーザ、製造者等から与えられてよい。
 プログラマブル論理アレイ12は、外部からデータ入力端子11を介して与えられる入力論理データに対応する出力論理データをキャッシュメモリ13に出力する論理演算回路であり、所定のプログラムデータを書き込むことにより内部回路の論理構造を所定に変更することができる。キャッシュメモリ13は、プログラマブル論理アレイ12からの出力論理データを格納する。キャッシュメモリ13は、例えば外部からのアクセスを受け付けることにより、格納するデータの一部乃至全部を、データ出力端子14を介して外部に出力する。
 図2は、プログラマブル論理アレイ12の内部構成の一例を示す概略図である。なお図2では、プログラマブル論理アレイ12の一部を示す。プログラマブル論理アレイ12は、入出力回路15、複数の回路ブロック20、複数の列方向配線32、複数の行方向配線31、複数の回路接続部107、および、複数の配線接続部108を有する。また、回路接続部107および配線接続部108は、それぞれ複数のトランジスタ101を有してよい。
 複数のトランジスタ101は、それぞれの回路ブロック20と、他のそれぞれの回路ブロック20とを接続するか否かを選択する。例えば複数のトランジスタ101は、少なくとも第1の回路ブロック20-1および第2の回路ブロック20-2、第1の回路ブロック20-1および第3の回路ブロック20-3、ならびに、第2の回路ブロック20-2および第3の回路ブロック20-3のそれぞれについて、回路ブロック20間を接続するか否かを選択してよい。
 本例のプログラマブル論理アレイ12では、複数のトランジスタ101の状態に応じて、複数の回路ブロック20の接続関係が選択される。例えば、ユーザから与えられるプログラムデータに応じてトランジスタ101のオン/オフを制御することで、プログラムデータに応じた論理構造を有する回路を形成することができる。
 なお、本例におけるトランジスタ101は、ゲート端子としてフローティング電極を有する。つまり、それぞれのトランジスタ101は、フローティング電極に蓄積された電荷量に応じて、オン状態およびオフ状態を切り替える。
 本例において、それぞれのフローティング電極は、プログラマブルデバイス10のパッケージ前、または、パッケージ後の少なくともいずれかにおいて、電子ビームが照射可能に設けられる。例えばプログラマブルデバイス10は、パッケージ前において、それぞれのフローティング電極における表面の少なくとも一部が表出するように製造されてよい。
 ここで、ユーザから与えられるプログラムデータに応じて、それぞれのフローティング電極に電子ビームを照射することで、それぞれのトランジスタ101のオン/オフ状態を、電子ビームでフローティング電極に注入した電荷量で直接的に制御することができる。このため、トランジスタ101にゲート電圧を印加する配線を設けなくてよい。従って、回路ブロック20等を形成できる領域を拡大することができる。
 これに対し、一般のプログラマブルデバイスでは、当該トランジスタのオン/オフ状態のきりかえは、ユーザのプログラムデータに応じた電圧を、それぞれのトランジスタ101のゲート端子に印加することで行われる。しかし、係るプログラマブルデバイスでは、ゲート電圧を供給する配線が、それぞれのトランジスタについて設けられ、また、ユーザのプログラムデータを記憶するメモリ領域が設けられる。このため、回路ブロック20等を形成できる領域が狭くなってしまう。
 このように、本例におけるプログラマブルデバイス10は、回路ブロック20等を、より高密度に形成することができる。以下では、プログラマブル論理アレイ12の構成例を説明する。なお、行方向配線31および列方向配線32は、複数の回路ブロック20に対して共通に設けられる共通接続配線の一例である。
 複数の回路ブロック20は、例えばマトリクス状に配置される。また、列方向において隣接するそれぞれの回路ブロック20の間には、所定の本数の行方向配線31が設けられ、行方向において隣接するそれぞれの回路ブロック20の間には、所定の本数の列方向配線32が設けられる。本例では、それぞれの回路ブロック20の間には、4本の行方向配線31、および、4本の列方向配線32が設けられるが、これらの配線の本数は、4本に限定されない。ただし、それぞれの回路ブロック20に隣接して設けられる行方向配線31および列方向配線32の総数は、当該回路ブロック20の入出力端子の数より多いことが好ましい。
 それぞれの回路ブロック20は、所定数の入力端子In、および、所定数の出力端子Outを有する。本例において入力端子Inは、入力配線51を介して、隣接して設けられた所定本数の列方向配線32のいずれかに接続される。回路接続部107は、それぞれの回路ブロック20に対応して設けられる。それぞれの回路接続部107における複数のトランジスタ101は、対応する回路ブロック20の入力端子Inおよび出力端子Outを、いずれの列方向配線32および行方向配線31に接続するかを選択する。
 例えばトランジスタ101は、それぞれの入力配線51について、隣接して設けられた所定本数の列方向配線32と一対一に対応して設けられる(例えば、トランジスタ101-1、101-2、101-3、101-4)。このような構造により、それぞれの入力配線51は、オン状態に設定されたトランジスタ101に対応する列方向配線32と電気的に接続される。
 同様に本例の出力端子Outは、出力配線52を介して、隣接して設けられた所定本数の行方向配線31のいずれかに接続される。本例では、回路接続部107の複数のトランジスタ101が、それぞれの出力配線52を、いずれの行方向配線31に電気的に接続するかを決定する。
 例えばトランジスタ101は、それぞれの出力配線52において、隣接して設けられた所定本数の行方向配線31と一対一に対応して設けられる。このような構造により、それぞれの出力配線52は、オン状態に設定されたトランジスタ101に対応する行方向配線31と電気的に接続される。
 なお、それぞれの行方向配線31は、複数の列方向配線32と交差して設けられる。例えば、それぞれの行方向配線31は、全ての列方向配線32と交差して設けられてよい。また、それぞれの行方向配線31は、交差する列方向配線32のうち、所定の列方向配線32と電気的に接続されてよい。例えばそれぞれの行方向配線31は、いずれか一つの列方向配線32と電気的に接続されてよい。
 配線接続部108は、それぞれの行方向配線31を、いずれの列方向配線32に接続するかを選択する。例えば配線接続部108は、予め固定された配線により、それぞれの行方向配線31を、所定の列方向配線32と電気的に接続してよい。また、図2に示すように、配線接続部108は、それぞれの行方向配線31を、いずれの列方向配線32と電気的に接続するかを選択する複数の切替部102を有してよい。本例の切替部102は、トランジスタ101を用いる。
 切替部102は、それぞれの行方向配線31と、それぞれの列方向配線32との交差点ごとに設けられてよい。この場合、それぞれの切替部102は、対応する行方向配線31および列方向配線32を電気的に接続するかを選択する。
 このような構造により、任意の回路ブロック20間において、任意の入力配線51および出力配線52を接続することができる。例えば、回路ブロック20-1の出力配線52-aと、回路ブロック20-4の入力配線51-bとを接続する場合を説明する。
 この場合、出力配線52-aおよび入力配線51-bを、対応する配線に接続するように、それぞれの切替部102の状態を制御する。ここで、対応する配線とは、切替部102により電気的に接続された行方向配線31および列方向配線32の組み合わせの配線であってよい。例えば、図2における切替部102-aがオン状態の場合、当該切替部102-aを介して電気的に接続される行方向配線31a-4および列方向配線32b-4が、対応する配線となる。また他の例では、対応する配線とは、同一の配線であってもよい。
 この場合、出力配線52-aに対応するトランジスタ101のうち、行方向配線31a-4に対応するトランジスタ101-aをオン状態にする。また、入力配線51-bに対応するトランジスタ101のうち、列方向配線32b-4に対応するトランジスタ101-bをオン状態にする。このような構成により、出力配線52-aおよび入力配線51-bを、電気的に接続することができる。このように、それぞれのトランジスタ101の状態を制御することで、任意の回路ブロック20間において、任意の入力配線51および出力配線52を接続することができる。
 また、入出力回路15は、プログラマブル論理アレイ12において処理すべき信号を、データ入力端子11を介して受け取り、プログラマブル論理アレイ12に供給する。例えば入出力回路15は、いずれかの行方向配線31または列方向配線32に対して、当該信号を供給してよい。入出力回路15が、いずれの行方向配線31または列方向配線32に信号を供給するかは、入出力回路15の入力端子について、複数の行方向配線31または複数の列方向配線32に対応して設けた複数のトランジスタ101を用いて選択してよい。
 また、入出力回路15は、プログラマブル論理アレイ12において処理した信号を受け取り、キャッシュメモリ13に記憶する。例えば入出力回路15は、いずれかの行方向配線31または列方向配線32から、当該信号を受け取ってよい。入出力回路15が、いずれの行方向配線31または列方向配線32に信号を供給するかは、入出力回路15の出力端子について、複数の行方向配線31または複数の列方向配線32に対応して設けた複数のトランジスタ101を用いて選択してよい。
 このような構成において、それぞれのトランジスタ101のオン/オフ状態を制御することで、入出力回路15の入力端子および出力端子を、任意の回路ブロック20に接続することができる。また、プログラマブル論理アレイ12は、複数の入出力回路15を有してもよい。この場合、それぞれの入出力回路15の端子が、他の入出力回路15とは異なる行方向配線31または列方向配線32と接続されるように、それぞれのトランジスタ101を制御してよい。
 このように、プログラマブル論理アレイ12には、多数のトランジスタ101が設けられるが、本例のトランジスタ101に対しては、ゲート電圧を供給する配線を設けなくともよい。つまり、プログラマブル論理アレイ12において、配線が占める面積の割合を小さくすることができる。このため、回路ブロック20等を、より高密度に形成することができる。
 図3は、回路接続部107の構成例を示す図である。上述したように、回路接続部107は、回路ブロック20の入力端子Inおよび出力端子Out毎に複数のトランジスタ101を有する。当該複数のトランジスタ101は、回路ブロック20間に設けられた複数の行方向配線31または複数の列方向配線32と一対一に対応して設けられる。それぞれのトランジスタ101は、回路ブロック20の対応する端子と、対応する行方向配線31または列方向配線32との間に設けられ、当該端子と当該配線とを接続するか否かを選択する。このような構造により、回路ブロック20の各端子を、任意の配線に選択的に接続することができる。
 また、配線接続部108も同様に、配線接続部108を通過する行方向配線31毎に複数のトランジスタ101を有してよい。当該複数のトランジスタ101は、当該配線接続部108を通過する複数の列方向配線32と一対一に対応して設けられる。それぞれのトランジスタ101は、対応する行方向配線31と、対応する列方向配線32との間に設けられ、これらの配線を接続するか否かを選択してよい。
 なお上述した例では、一つの回路接続部107または配線接続部108においてオン状態となるトランジスタ101は一つであったが、他の例では、一つの回路接続部107または配線接続部108において複数のトランジスタ101がオン状態に制御されてよい。例えば、入力端子Inに対応する回路接続部107において複数のトランジスタ101がオン状態に設定される場合、入力端子Inには、トランジスタ101により選択された複数の列方向配線32が伝送する値の論理和が入力される。また、出力端子Outに対応する回路接続部107において複数のトランジスタ101がオン状態に設定される場合、出力端子Outが出力する論理値が、トランジスタ101により選択された複数の行方向配線31に並列に与えられる。
 図4は、切替部102の構成例を示す図である。上述したように、切替部102は、列方向配線32および行方向配線31のそれぞれの交差点に設けられてよい。本例では、配線の交差点に対して、上側の列方向配線32を列方向配線32-u、下側の列方向配線32を列方向配線32-d、右側の行方向配線31を行方向配線31-r、左側の行方向配線31を行方向配線31-lとして説明する。
 切替部102は、これらの列方向配線32-u、列方向配線32-d、行方向配線31-r、および、行方向配線31-lを、それぞれ電気的に接続するか否かを選択するトランジスタ101を有する。つまり、切替部102は、列方向配線32-uと列方向配線32-dとの間、列方向配線32-uと行方向配線31-lとの間、列方向配線32-uと行方向配線31-rとの間、列方向配線32-dと行方向配線31-rとの間、列方向配線32-dと行方向配線31-lとの間、および、行方向配線31-rと行方向配線31-lとの間に、それぞれトランジスタ101を有する。
 これらのトランジスタ101の状態を制御することで、切替部102は、任意の配線を接続することができる。なお、切替部102におけるトランジスタ101も、電子ビームによりフローティング電極に蓄積された電荷量に応じてオン/オフの状態が切り替わるトランジスタであってよい。これにより、切替部102におけるトランジスタ101に、ゲート電圧を供給する配線を設けなくともよいので、プログラマブル論理アレイ12において、配線が占める面積の割合を小さくすることができる。
 図5は、プログラマブル論理アレイ12の他の構成例を示す図である。本例のプログラマブル論理アレイ12は、図2に関連して説明したプログラマブル論理アレイ12の構成に加え、個別接続部109および個別配線71を更に有する。個別接続部109は、共通接続配線、回路接続部107、および、配線接続部108を介さずに、所定の回路ブロック20および他の回路ブロック20の端子を、個別配線71を用いて電気的に接続する。
 本例では、個別接続部109および個別配線71が、回路ブロック20-3のいずれかの入力端子と、回路ブロック20-4の所定の出力端子とを接続する例を用いて説明する。この場合、個別接続部109は、回路ブロック20-3と、回路ブロック20-3の入力端子に対応する回路接続部107との間において、回路ブロック20-3の入力配線51のいずれかを選択する。個別接続部109は、複数のトランジスタ101を用いて、いずれかの入力配線51を選択してよい。個別接続部109は、選択した入力配線51を、個別配線71に電気的に接続する。
 個別配線71は、個別接続部109により選択された入力配線51を、回路ブロック20-4と、回路ブロック20-4の出力端子に対応する回路接続部107との間における所定の出力配線52に電気的に接続する。これにより、所定の回路ブロック20間を、行方向配線31および列方向配線32を介さずに接続することができる。
 行方向配線31および列方向配線32は、複数の回路ブロック20で共通に用いる共通接続配線であるので、ある回路ブロック20が所定の共通接続配線を用いる場合、他の回路ブロック20は、当該共通接続配線を用いることができない場合がある。このため、回路ブロック20間の接続の自由度を高めるには、多くの共通接続配線を予め設けることが好ましい。しかし、共通接続配線を多く設けると、回路ブロック20を配置できる領域が狭くなってしまう。
 これに対し本例のプログラマブル論理アレイ12は、例えば接続される可能性が比較的に高いことが予め想定される回路ブロック20間に、個別接続部109および個別配線71を設ける。これにより、これらの回路ブロック20は、共通接続配線を用いずに接続できるので、共通接続配線の本数を減少させても、回路ブロック20間の接続の自由度を確保することができる。
 図6は、個別接続部109の構成例を示す図である。個別接続部109は、所定の回路ブロック20における複数の入力配線51と一対一に対応する、複数のトランジスタ101を有してよい。それぞれのトランジスタ101は、対応する入力配線51と、他の回路ブロック20における所定の出力配線52とを、個別配線71を介して電気的に接続するか否かを選択する。例えばそれぞれのトランジスタ101は、対応する入力配線51と、個別配線71との間に設けられてよい。
 個別接続部109におけるトランジスタ101も、電子ビームによりフローティング電極に蓄積された電荷量に応じてオン/オフの状態が切り替わるトランジスタであってよい。これにより、個別接続部109におけるトランジスタ101に、ゲート電圧を供給する配線を設けなくともよいので、プログラマブル論理アレイ12において、配線が占める面積の割合を小さくすることができる。
 図7は、回路接続部107の他の構成例を示す図である。入力配線51に接続される回路接続部107は、図3に関連して説明した回路接続部107の構成に加え、複数のバッファ回路81および複数の入力ドライバ回路91を更に有する。
 バッファ回路81は、トランジスタ101と同様に、回路ブロック20の入力端子In毎に複数ずつ設けられる。バッファ回路81は、それぞれのトランジスタ101と、対応する列方向配線32との間に設けられ、列方向配線32から受け取った信号を、トランジスタ101に伝送する。
 入力ドライバ回路91は、回路ブロック20の入力端子In毎に一つ設けられる。例えば入力ドライバ回路91は、各トランジスタ101と、入力端子Inとの間の入力配線51上に設けられてよい。入力ドライバ回路91は、対応する複数のバッファ回路81が出力する信号を増幅して回路ブロック20に入力する。
 それぞれのトランジスタ101は、複数のバッファ回路81に対応して設けられ、対応するバッファ回路81に信号を出力させるか、または、対応するバッファ回路81の出力をハイインピーダンス状態にするか、を切り替える。プログラマブル論理アレイ12では、一つの入力端子Inに対応する複数のトランジスタ101のうち、いずれか一つがオン状態となる。このため、各トランジスタ101に対してドライバ回路を設けずとも、本例のように共通の入力ドライバ回路91を入力端子毎に設けることで、ドライバ回路の個数を低減することができる。
 また、出力配線52に接続される回路接続部107は、図3に関連して説明した回路接続部107の構成に加え、複数のバッファ回路81および複数の出力ドライバ回路92を更に有する。バッファ回路81は、トランジスタ101と同様に、回路ブロック20の出力端子Out毎に複数ずつ設けられる。バッファ回路81は、出力ドライバ回路92を介して回路ブロック20から受け取った信号を、対応する行方向配線31に伝送する。
 出力ドライバ回路92は、回路ブロック20の出力端子Out毎に一つ設けられる。例えば出力ドライバ回路92は、各トランジスタ101と、出力端子Outとの間の出力配線52上に設けられてよい。出力ドライバ回路92は、回路ブロック20から受け取った信号を増幅して、複数のバッファ回路81に供給する。
 なお、本例の回路接続部107におけるトランジスタ101も、電子ビームによりフローティング電極に蓄積された電荷量に応じてオン/オフの状態が切り替わるトランジスタであってよい。これにより、回路接続部107におけるトランジスタ101に、ゲート電圧を供給する配線を設けなくともよいので、プログラマブル論理アレイ12において、配線が占める面積の割合を小さくすることができる。次に、プログラマブル論理アレイ12のトランジスタ101について、より具体的な構成例を図示して説明する。
 図8は、トランジスタ101の上面図である。また、図9は、図8にA-A'で示す断面における断面図である。トランジスタ101は、例えば半導体基板110上に所定の半導体プロセスにより形成されてよく、P型あるいはN型のチャネル特性を有する。なお、以下の説明では、トランジスタ101は、N型のチャネル特性を有するものとする。
 トランジスタ101は、半導体基板110上に二酸化シリコン等の絶縁性の物質により形成される複数の分離領域115により仕切られた領域に設けられ、ソース領域111、ドレイン領域113、フローティング電極131、ビア151、およびガードリング171を含む。
 ソース領域111およびドレイン領域113は、半導体基板110の表層部に互いに離間して形成される。ソース領域111およびドレイン領域113は、例えばポリシリコンの半導体基板110の上面から所定の深さまでリンイオンを注入することにより形成されてよい。トランジスタ101がN型のチャネル特性を有する場合、半導体基板110はP型の基板であるのに対し、ソース領域111およびドレイン領域113は、N型の領域であってよい。
 フローティング電極131は、半導体基板110上に二酸化シリコン等の絶縁性の物質を積層して形成される絶縁膜121を挟んでソース領域111およびドレイン領域113と対向して設けられる。本例において、フローティング電極131は、半導体基板110の面方向においてソース領域111とドレイン領域113との間に設けられてよい。
 絶縁膜122は、フローティング電極131の表面を覆うように設けられてよい。また、絶縁膜122の上層に形成される絶縁膜123は、プログラマブル論理アレイ12が形成される半導体基板110上において、最上層に形成されてよい。絶縁膜122および絶縁膜123の間には、後述するパターン配線等が形成されてよい。
 ビア151は、導電性の物質により形成され、絶縁膜123の表面からフローティング電極131まで貫通して設けられる。本例において、フローティング電極131上には、絶縁性の物質を積層した絶縁膜122および絶縁膜123が形成されており、ビア151は、これら絶縁膜122、123を貫通して設けられ、その一端が絶縁膜123の表面に露出する。ビア151の一端は、半導体基板110上に形成された層のうち、最上層に表出することが好ましい。
 パターン配線161およびパターン配線162は、絶縁膜122と絶縁膜123との間に設けられる。パターン配線161は、半導体基板110上に設けられるソース端子181とソース領域111とを電気的に接続する。パターン配線162は、半導体基板110上に設けられるドレイン端子182とドレイン領域113とを電気的に接続する。
 ガードリング171は、例えば導電性の金属材料により形成され、絶縁膜123の表面においてビア151を囲むように設けられる。本例において、ガードリング171は、基準電位に接続されるガード端子184とパターン配線164を介して電気的に接続する。なお、ガードリング171は、本例のようにビア151の周囲に円環状に形成される形態に限定されず、例えば方形あるいは多角形状に形成されてもよい。また、ガード端子184は、例えばプログラマブル論理アレイ12のGND端子を介して接地電位に接続されてよい。
 このような構造により、ビア151の表面に電子ビームを照射することで、フローティング電極131に電荷を蓄積することができる。つまり、トランジスタ101のゲート電極として機能するフローティング電極131に対して、配線等を介さずに、電子ビームにより直接的に電荷を蓄積することができ、トランジスタ101をオン状態またはオフ状態に制御することができる。
 ユーザまたは製造者等は、オン状態(またはオフ状態)に制御したいトランジスタ101のフローティング電極131に、所定の強度の電子ビームを所定の時間照射してよい。このように、プログラマブル論理アレイ12は、それぞれのトランジスタ101に対して、プログラムデータに応じてそれぞれ電子ビームを照射することで、プログラマブル論理アレイ12の回路構成をプログラムデータに応じた設定に容易に変更することができる。
 なお、本例において、ビア151に対して電子ビームを照射したときに、照射された電子ビームに含まれる電子の一部がビア151の周囲に散乱することがある。しかしながら、上記のようにビア151の周囲に導電性のガードリング171が設けられているので、散乱した電子はガードリング171によりトラップされる。したがって、トランジスタ101において、散乱した電子が例えば絶縁膜123に取り込まれることにより、絶縁膜123に経時的に電荷が蓄積されるのを防ぐことができる。
 一方、トランジスタ101のフローティング電極131に蓄積させた電荷は、当該フローティング電極131に紫外線を照射することにより消去することができる。すなわち、記憶させたデータを消去したいトランジスタ101のフローティング電極に対して例えば紫外線照射装置等を用いて紫外線を照射して当該フローティング電極131に蓄積した電荷を放電させることにより、当該トランジスタ101を初期状態にリセットすることができる。
 なお、上記の消去動作は、プログラマブル論理アレイ12全体、すなわち複数のトランジスタ101について一括して実施してもよく、また、スポット径を極小さく絞ることのできる紫外線レーザ、あるいは紫外線ランプおよびマスク等により、照射部位を限定することにより、特定のトランジスタ101について実施してもよい。
 なお、既にフローティング電極131に電荷が蓄積されている(データが書き込まれている)トランジスタ101に対して新たなデータを書き込む場合、当該トランジスタ101に紫外線を照射して当該トランジスタ101のフローティング電極131に蓄積した電荷を放電させてから、書き込むべき新たなデータに応じた照射量で当該トランジスタ101に電子ビームを照射して当該フローティング電極131に当該データに応じた電荷を新たに蓄積させてよい。
 図10は、トランジスタ101の他の構成例を示す断面図である。本例のトランジスタ101は、図10に示すように、図9を参照して説明した上記のトランジスタ101におけるビア151に替えて、例えばパターンエッチングにより形成される貫通孔191を有する。その他については、上記のトランジスタ101と同じ構成を有するので説明を省略する。本例のように、トランジスタ101のトランジスタ101が貫通孔191を有することにより、フローティング電極131に対して貫通孔191を介して電子ビームを照射することができる。
 なお、図9および図10を参照して説明したトランジスタ101は、何れもフローティング電極131の上方にビア151あるいは貫通孔191を設けることにより電子ビームの照射により与えられる電荷がフローティング電極131により確実に注入される構成としていた。しかしながら、例えばフローティング電極131上における絶縁膜122および絶縁膜123の厚さを、フローティング電極131に対して電子ビームが照射されたときにその電子ビームが絶縁膜122および絶縁膜123をトンネルしてフローティング電極131まで十分到達できる程度に小さくすることにより、フローティング電極131と絶縁膜123の表面とを繋ぐビア151あるいは貫通孔191を設けなくても、電子ビームの照射によりフローティング電極131に電荷を蓄積させることができる。
 図11は、トランジスタ101のさらに他の構成例を示す断面図である。本例のトランジスタ101は、図11に示すように、図9を参照して説明した上記のトランジスタ101におけるガードリング171に替えて、ガードリング172を有する。なお、ガードリング172以外の構成については、上記のトランジスタ101と同じであるので説明を省略する。
 ガードリング172は、例えば、絶縁膜123におけるビア151の周縁部をパターンエッチングした後、当該エッチングにより形成されたエッチング溝に導電材料を堆積させることにより形成される。なお、図11にはガードリング172の断面図のみを示すが、ビア151の周縁部におけるガードリング172の形状については、上記のガードリング171と同様であってよい。トランジスタ101が本例のようなガードリング172を有することにより、プログラマブル論理アレイ12に対する外部からの接触等によりガードリングが剥離するのを防ぐことができる。
 図12は、トランジスタ101のさらに他の構成例を示す断面図である。本例のトランジスタ101において、絶縁膜122は、フローティング電極131の表面を覆いつつ当該フローティング電極131の表面の少なくとも一部が表出するように設けられる。また、絶縁膜122上におけるフローティング電極131の周縁部にガードリング171が設けられる。また、絶縁膜122上には、当該絶縁膜122上に設けられるパターン配線161、162、ガードリング171、およびフローティング電極131の上面を覆うように、半導体基板110上における最上層にパッケージ部200が形成される。
 この場合、パッケージ部200を形成する前に、それぞれのフローティング電極131に対して、絶縁膜122で覆われていない領域に電子ビームを照射してよい。パッケージ部200は、フローティング電極131にプログラムデータに応じた電荷を蓄積させた後、当該プログラマブル論理アレイ12を内包するように設けられてよい。パッケージ部200には、絶縁性の樹脂材料が好ましく用いられる。
 また、図12に示すプログラマブル論理アレイ12において、パッケージ部200の上面とトランジスタ101のフローティング電極131とを接続するビアを有してもよい。この場合、プログラマブル論理アレイ12をパッケージ部200でパッケージングした後で、当該ビアに対して電子ビームを照射することによりトランジスタ101のフローティング電極131に対して新たなプログラムデータに応じた電荷を書き込むことができる。
 この場合、パッケージ部200に設けられたビアを覆うように第2のパッケージ部を設けてよい。第2のパッケージ部は、着脱できることが好ましい。これにより、プログラマブル論理アレイ12に新たなプログラムデータを書き込む場合、第2のパッケージ部を取り外してビアを表出させることができる。
 また、パッケージ前におけるプログラマブルデバイス10を形成する半導体プロセスのいずれかの工程において、それぞれのフローティング電極131に電子ビームが照射してもよい。この場合、フローティング電極131は、当該工程において電子ビームが照射可能に設けられていればよい。他の工程では、フローティング電極131は、全面が絶縁膜で覆われていてよい。また、半導体プロセスのいずれかの工程において紫外線を用いる工程が有る場合、電子ビームを照射する工程は、紫外線を用いる工程より後であることが好ましい。
 以上、発明を実施の形態を用いて説明したが、発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。

Claims (18)

  1.  与えられるプログラムデータに応じて入力論理データに対する出力論理データの論理関係が変化するプログラマブルデバイスであって、
     電子ビームが照射可能に設けられ、前記電子ビームが照射されることで電荷を蓄積して前記プログラムデータを記憶する複数のフローティング電極と、
     複数の前記フローティング電極が蓄積した電荷量に応じて、入力論理データに対する出力論理データの論理関係が変化するプログラマブル論理アレイと
     を備えるプログラマブルデバイス。
  2.  前記プログラマブル論理アレイは、
     複数の回路ブロックと、
     それぞれの前記回路ブロックと、他のいずれの前記回路ブロックとを接続するかを、複数の前記フローティング電極に蓄積された電荷量に応じて選択する複数のトランジスタと
     を有する
     請求項1に記載のプログラマブルデバイス。
  3.  前記フローティング電極は、前記トランジスタのゲート電極として設けられる
     請求項2に記載のプログラマブルデバイス。
  4.  複数の前記トランジスタは、第1の回路ブロックおよび第2の回路ブロック、第1の回路ブロックおよび第3の回路ブロック、ならびに、第2の回路ブロックおよび第3の回路ブロックを接続するか否かを、それぞれの前記フローティング電極に電子ビームにより蓄積された電荷量に応じて選択する
     請求項3に記載のプログラマブルデバイス。
  5.  前記プログラマブル論理アレイは、
     それぞれの前記回路ブロックに対して共通に設けられる複数の共通接続配線と、
     それぞれの前記回路ブロックに対応して設けられ、対応する前記回路ブロックの入力および出力を、いずれの前記共通接続配線に接続するかを選択する複数の回路接続部と
     を更に有し、
     前記回路接続部は、前記回路ブロックの入力および出力ごとに、複数の共通接続配線に対応する複数の前記トランジスタを有し、前記回路ブロックの入力および出力の各端子を、いずれの前記共通接続配線に接続するかを選択する
     請求項4に記載のプログラマブルデバイス。
  6.  前記プログラマブル論理アレイは、
     所定の前記回路ブロックを、他の所定の前記回路ブロックに接続するか否かを、前記共通接続配線および前記回路接続部を介さずに切り替える個別接続部を更に有し、
     前記個別接続部は、所定の前記回路ブロックと、他の所定の前記回路ブロックとを接続するか否かを、前記フローティング電極に電子ビームにより蓄積された電荷量に応じて選択する前記トランジスタを有する
     請求項5に記載のプログラマブルデバイス。
  7.  前記共通接続配線は、複数の行方向配線、および、複数の前記行方向配線と交差する複数の列方向配線を含み、
     前記プログラマブル論理アレイは、それぞれの前記行方向配線を、いずれの前記列方向配線に接続するかを選択する配線接続部を更に有し、
     前記配線接続部は、それぞれの前記フローティング電極に電子ビームにより蓄積された電荷量に応じて、それぞれの前記行方向配線を、いずれの前記列方向配線に接続するかを選択する複数の前記トランジスタを有する
     請求項5または6に記載のプログラマブルデバイス。
  8.  それぞれの前記フローティング電極の表面を覆う絶縁膜と、
     前記絶縁膜の表面から前記フローティング電極まで貫通する導電材料のビアと
     を更に備える請求項1から7のいずれかに記載のプログラマブルデバイス。
  9.  前記絶縁膜の表面において前記ビアを囲むように設けられ、基準電位に接続されるガードリングを更に備える
     請求項8に記載のプログラマブルデバイス。
  10.  それぞれの前記フローティング電極の表面を覆う絶縁膜を更に備え、
     前記絶縁膜には、前記絶縁膜の表面から前記フローティング電極まで貫通する貫通孔が形成される
     請求項1から7のいずれかに記載のプログラマブルデバイス。
  11.  それぞれの前記フローティング電極の表面の少なくとも一部が表出するように、前記フローティング電極の表面を覆う絶縁膜を更に備える
     請求項1から7のいずれかに記載のプログラマブルデバイス。
  12.  前記プログラマブルデバイスは、半導体基板上に所定の材料を積層して形成され、
     前記絶縁膜は、前記半導体基板上における最上層に形成される
     請求項8から11のいずれかに記載のプログラマブルデバイス。
  13.  所定のプログラムデータに応じた電荷を各フローティング電極に保持し、前記フローティング電極に記憶したプログラムデータに応じて機能するプログラマブルデバイスに対して、前記プログラムデータを書き込むデータ書込方法であって、
     書き込むべき前記プログラムデータに応じて、前記フローティング電極に電子ビームを照射するデータ書込方法。
  14.  前記フローティング電極の表面は絶縁膜で覆われており、
     前記電子ビームを前記絶縁膜に照射し、前記絶縁膜をトンネルする電子により、前記フローティング電極に電荷を蓄積する
     請求項13に記載のデータ書込方法。
  15.  前記フローティング電極の表面は絶縁膜で覆われており、前記絶縁膜には、前記絶縁膜の表面から前記フローティング電極まで貫通する導電材料のビアが形成され、
     前記絶縁膜の表面に表出した前記ビアに前記電子ビームを照射して、前記フローティング電極に電荷を蓄積する
     請求項13または14に記載のデータ書込方法。
  16.  前記フローティング電極の表面は絶縁膜で覆われており、前記絶縁膜には、前記絶縁膜の表面から前記フローティング電極まで貫通する貫通孔が形成され、
     前記貫通孔を介して前記フローティング電極に前記電子ビームを照射する
     請求項13または14に記載のデータ書込方法。
  17.  前記フローティング電極の表面の一部は絶縁膜で覆われており、
     前記絶縁膜で覆われていない前記フローティング電極の表面に前記電子ビームを照射する
     請求項13または14に記載のデータ書込方法。
  18.  前記フローティング電極に紫外線を照射することで、前記フローティング電極に蓄積した電荷を放電させ、前記プログラマブルデバイスに書き込んだデータを消去する
     請求項13から17のいずれかに記載のデータ書込方法。
PCT/JP2008/002748 2008-09-30 2008-09-30 プログラマブルデバイス、およびデータ書込方法 WO2010038257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010531654A JPWO2010038257A1 (ja) 2008-09-30 2008-09-30 プログラマブルデバイス、およびデータ書込方法
PCT/JP2008/002748 WO2010038257A1 (ja) 2008-09-30 2008-09-30 プログラマブルデバイス、およびデータ書込方法
TW098133035A TW201015857A (en) 2008-09-30 2009-09-29 Programmable device and data writing-in method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002748 WO2010038257A1 (ja) 2008-09-30 2008-09-30 プログラマブルデバイス、およびデータ書込方法

Publications (1)

Publication Number Publication Date
WO2010038257A1 true WO2010038257A1 (ja) 2010-04-08

Family

ID=42073053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002748 WO2010038257A1 (ja) 2008-09-30 2008-09-30 プログラマブルデバイス、およびデータ書込方法

Country Status (3)

Country Link
JP (1) JPWO2010038257A1 (ja)
TW (1) TW201015857A (ja)
WO (1) WO2010038257A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011226689B2 (en) * 2010-03-11 2016-09-01 Kronos Bio, Inc. Imidazopyridines Syk inhibitors
JP2020010354A (ja) * 2014-01-17 2020-01-16 株式会社半導体エネルギー研究所 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145576A (ja) * 1982-11-09 1984-08-21 ザイトレツクス・コ−ポレ−シヨン プログラム可能なmosトランジスタ
JPS61198499A (ja) * 1985-02-28 1986-09-02 Toshiba Corp 半導体メモリ素子の書込み方法
JPS6321868A (ja) * 1986-07-16 1988-01-29 Canon Inc メモリ方法
JPH08204543A (ja) * 1984-09-26 1996-08-09 Xilinx Inc 単一チップ形態適合可能論理アレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145576A (ja) * 1982-11-09 1984-08-21 ザイトレツクス・コ−ポレ−シヨン プログラム可能なmosトランジスタ
JPH08204543A (ja) * 1984-09-26 1996-08-09 Xilinx Inc 単一チップ形態適合可能論理アレイ
JPS61198499A (ja) * 1985-02-28 1986-09-02 Toshiba Corp 半導体メモリ素子の書込み方法
JPS6321868A (ja) * 1986-07-16 1988-01-29 Canon Inc メモリ方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011226689B2 (en) * 2010-03-11 2016-09-01 Kronos Bio, Inc. Imidazopyridines Syk inhibitors
AU2016219585B2 (en) * 2010-03-11 2018-02-08 Kronos Bio, Inc. Imidazopyridines Syk inhibitors
US10092583B2 (en) 2010-03-11 2018-10-09 Gilead Connecticut, Inc. Imidazopyridines Syk inhibitors
US10842803B2 (en) 2010-03-11 2020-11-24 Kronos Bio, Inc. Imidazopyridines Syk inhibitors
JP2020010354A (ja) * 2014-01-17 2020-01-16 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
JPWO2010038257A1 (ja) 2012-02-23
TW201015857A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
JP6813838B2 (ja) 有機発光ダイオードディスプレイのための電力及びデータ経路指定構造物
US7508238B2 (en) Semiconductor integrated circuit device
US9601500B2 (en) Array of non-volatile memory cells with ROM cells
US7256446B2 (en) One time programmable memory cell
CN110036484B (zh) 电阻式随机存取存储器单元
JPH11191614A (ja) アンチフューズを有する半導体記憶デバイス
US20200411107A1 (en) Memory device and operating method thereof
JP2011077159A (ja) 半導体記憶装置および半導体記憶装置の制御方法
JP2012064891A (ja) 半導体装置及びその製造方法
KR20140010273A (ko) 반도체 소자의 안티퓨즈, 그 반도체 소자를 포함하는 반도체 모듈 및 시스템 그리고 그 안티퓨즈 형성 방법
WO2010038257A1 (ja) プログラマブルデバイス、およびデータ書込方法
US20150206595A1 (en) Antifuse array architecture
JP2003309177A (ja) 半導体装置
US9437815B1 (en) Resistive switching memory device architecture for reduced cell damage during processing
KR20100010724A (ko) 퓨즈를 구비하는 반도체 장치 및 그 제조방법
US7522444B2 (en) Memory circuit, method for operating a memory circuit, memory device and method for producing a memory device
JP6088152B2 (ja) 不揮発性メモリ、及び半導体装置
WO2010029618A1 (ja) メモリデバイス、メモリデバイスの製造方法、およびデータ書込方法
CN112447744B (zh) 半导体存储装置
JP2007035724A (ja) メモリ
US20160019965A1 (en) Semiconductor memory device
US7805687B2 (en) One-time programmable (OTP) memory cell
KR20120121690A (ko) 반도체 메모리 장치
KR101079285B1 (ko) 반도체 장치의 전기적 퓨즈 및 그 구동방법
KR101173479B1 (ko) 퓨즈회로 및 이를 이용한 리페어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531654

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877127

Country of ref document: EP

Kind code of ref document: A1