WO2010033002A2 - 미세복합형상렌즈 및 그 제조방법 - Google Patents
미세복합형상렌즈 및 그 제조방법 Download PDFInfo
- Publication number
- WO2010033002A2 WO2010033002A2 PCT/KR2009/005375 KR2009005375W WO2010033002A2 WO 2010033002 A2 WO2010033002 A2 WO 2010033002A2 KR 2009005375 W KR2009005375 W KR 2009005375W WO 2010033002 A2 WO2010033002 A2 WO 2010033002A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- micro
- thin film
- film layer
- microcomposite
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/08—Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00317—Production of lenses with markings or patterns
- B29D11/00326—Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00317—Production of lenses with markings or patterns
- B29D11/00346—Production of lenses with markings or patterns having nanosize structures or features, e.g. fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
Definitions
- the present invention relates to a microcomposite lens and a method of manufacturing the same, and more particularly, to a microcomposite lens and a method of manufacturing the same, which broadly and uniformly disperse light emitted from a light source and have an increased light emission angle and light uniformity.
- LED BLUs Light Emitting Diodes
- backlight units BLUs
- the lens installed on the LED is capable of improving the emission angle, but there is a limit in controlling the light uniformity, and when converting a point light source such as an LED into a surface light source, various complex optical elements such as a separate light guide plate, prism plate, and diffusion plate There was a problem that a substrate is required. Since the manufacturing process cost of each element is high, and precise packaging is required, there is a limit in reducing the overall production cost, so an integrated optical device is required.
- the present invention has been made to solve the above-described problems of the prior art, by the micro-composite pattern and the curved structure of various forms formed on the surface, the micro-composite shape having a larger light emission angle, and also has an improved light uniformity It is to provide a lens and a method of manufacturing the same.
- the micro composite lens according to the present invention configured as described above can form a larger light emission angle by the micro composite pattern, it is possible to convert the LED light source, which is a point light source, into a surface light source having excellent light uniformity.
- the LED light source which is a point light source
- the emission angle of the LED light source close to 90 degrees can be increased by more than 160 degrees, and the uniformity of the amount of light and the emission angle of the light source can be improved through the local change of the fine pattern and the ultra fine particle mixing technology.
- Wafer-level fabrication is possible using microfluidic tube arrays based on dimensional molding technology and ultra-fine particle mixing technology.
- the number of LEDs can be reduced through a single lens having a wide light emission angle, thereby reducing manufacturing costs and reducing heat generated from the LEDs.
- the double curved structure of the micro composite lens according to the present invention not only improves the light uniformity but also improves the light emission angle than the single curved structure.
- FIG. 1 is a cross-sectional view showing the structure of a micro composite lens according to the present invention.
- FIG. 2 is a view showing embodiments of a micro composite pattern of a micro composite lens according to the present invention.
- FIG. 3 is a view showing a first embodiment of the micro composite lens according to the present invention.
- FIG. 4 is a view showing a second embodiment of the micro composite lens according to the present invention.
- FIG. 5 is a view showing a third embodiment of the micro composite lens according to the present invention.
- FIG. 6 is a view illustrating a comparison of light transmission between a general microlens and a micro composite lens according to the present invention
- FIG. 7 is a photograph of a light distribution of a general microlens and a micro composite lens according to the present invention when a white light source is incident;
- FIG. 8 is a photograph of a light intensity distribution of a general microlens and a micro composite lens according to the present invention.
- FIG. 9 is a view illustrating a light moving path of a light source and a general microlens in a dome shape and a distribution of light passing through the general microlens in a dome shape.
- FIG. 10 is a view illustrating a light moving path of a diffuser plate and a domed micro composite lens, and a view showing a distribution of light passing through the domed micro composite lens;
- FIG. 11 is a photograph showing a state of photographing a micro composite lens according to the present invention through a scanning electron microscope (SEM); FIG.
- FIG. 13 is a view illustrating a manufacturing process for explaining a method for manufacturing a micro composite lens according to the present invention.
- FIG. 14 is a view showing an apparatus capable of simultaneously making several micro-composite lenses according to the present invention.
- FIG. 15 is a view showing a micro composite lens having a double curved structure according to an embodiment of the present invention.
- 16 is a step diagram of a microcomposite lens manufacturing process of a double curved structure according to an embodiment of the present invention.
- 17 is an SEM image of a microcomposite lens having a bicurve structure, manufactured according to an embodiment of the present invention.
- FIG. 19 is a schematic view of the case where the micro-composite lens according to the present invention is applied to the LED element.
- FIG. 1 is a cross-sectional view showing the structure of a micro composite lens according to the present invention.
- a micro-composite pattern including a plurality of protrusions 10 is formed on a surface of the lens 100, and the material constituting the lens 100 is a photopolymer nano. Including particles, light passing through the lens is scattered, reflected and diffracted by the nanoparticles 20 and the protrusions 10 so that light is widely and evenly emitted to the outside of the lens. That is, in the present invention, the "micro composite lens” refers to a lens having a fine pattern formed of protrusions of various shapes on the lens surface.
- the microcomposite lens may be made of a material such as a UV curable epoxy resin, a thermosetting polymer, or a ceramic, which is a photosensitive polymer, but as long as a micropattern is formed on a surface and has a predetermined curvature, any material Also belongs to the scope of the present invention.
- FIG. 2 is a diagram illustrating embodiments of a micro composite pattern of a micro composite lens according to the present invention.
- the horizontal cross section of the protrusion of the microcomposite pattern may be configured in the form of (a) circle (b) square (c) triangle (d) hexagon (e) rhombus.
- the protrusions having the above shapes are continuously arranged to form a fine composite pattern.
- the vertical cross section of the protrusion may be formed in the shape of a rectangle, a semicircle, a triangle, or the like.
- the three-dimensional shape of the protrusion may be represented by a cylinder, hemisphere, cone, square pillar, square pyramid, triangular prism, triangular pyramid, and the like.
- the height or width of the protrusion has a variety of wavelengths or more of the light source to be irradiated for uniformity control of the light.
- the width of the protrusion is preferably equal to or greater than the wavelength of the light source.
- the present invention is not limited to the above-described form, and protrusions of various forms may be formed on the lens surface.
- the shape of the micro-composite lens is not limited to the convex lens or the concave lens, and may be manufactured in various forms, and the shape or size of the protruding portion may also be complexly arranged to form the micro-composite pattern.
- FIG. 3 is a diagram showing a first embodiment of the micro composite lens according to the present invention.
- FIG. 3A is a view showing the top view of the lens
- FIG. 3B is a cross-sectional view of the lens in a vertical direction.
- a plurality of protrusions 10 are formed in a pattern on the surface of the lens 100.
- the surface curvature of the lens 100 having the protruding portion is not limited to the convex lens or the concave lens, and is manufactured in various forms, and in one embodiment, the edge is convex, and concave toward the center of the lens. Can be.
- the thickness H1 of the center portion A of the lens is half the thickness H2 of the distance from the center portion A of the lens to the edge C of the lens. It is formed smaller.
- FIG. 4 is a diagram showing a second embodiment of the micro composite lens according to the present invention.
- FIG. 4 (a) is a diagram showing a state in which the micro-composite pattern formed on the lens surface is projected on the horizontal line, (b) is a cross-sectional view showing a vertical cross section of the micro-composite lens.
- a cylindrical protrusion 10a is formed on a surface near the center of the lens, and a hemispherical protrusion 10b is formed toward the edge of the lens. Is formed.
- the two shape protrusions are formed to form a pattern in combination.
- the shape of the protrusions is also configured such that the two types of protrusions different from each other.
- the height of the protrusion 10a is formed higher than the height of the protrusion 10b.
- the protrusions of various shapes may be arranged in a complex manner to form a microcomposite pattern.
- FIG. 5 is a view showing a third embodiment of the micro composite lens according to the present invention.
- the third embodiment of the micro composite lens according to the present invention has a height ratio with respect to the width of the protrusion 10 between the protrusions 10 of the micro composite pattern formed on the surface of the lens 100. It is configured to form the anti-reflective layer 30 of the ultra fine pattern having a larger height ratio.
- the width of each of the ultrafine patterns is preferably less than the wavelength? Of the light source to be irradiated, and the height of the ultrafine pattern is preferably. Where n is 0, 1, 2 ...
- the antireflective layer 30 may be formed on the protrusion of the microcomposite pattern.
- the anti-reflective layer is composed of a micro thin film layer covering the protrusion and the lens surface instead of the ultra fine pattern.
- the antireflective layer may be formed of one or more micro thin layers.
- one example of the thickness of the anti-reflective layer is 1/4 of the light source wavelength, has a refractive index smaller than the refractive index of the lens, and includes a material containing at least one of MgF 2 , Al 2 O 3 , ZrO 2 , and parylene. Is formed.
- the optimum refractive index of the antireflective layer is the square root of the refractive index of the lens.
- the antireflective layer 30 minimizes back reflection in the direction of the LED light source due to multiple reflections.
- FIG. 6 is a view illustrating a comparison of light transmission between a general microlens and a micro composite lens according to the present invention.
- FIG. 6 (a) is a case of a general microlens, in the case of a general microlens, the light passing through the lens is collected at the center of the lens, whereas as shown in FIG. In the case of the reflection and diffraction are performed at various angles by the protrusion to form a larger light emission angle than the general microlens.
- the micro-composite lens according to the present invention is the main curvature (P1) of the lens and the refractive index (P2) of the lens material, the shape, size, period, aspect ratio of the protrusions 10, etc. To adjust the maximum light emission angle.
- FIG. 7 is a photograph of a light distribution of a general microlens and a micro composite lens according to the present invention when a white light source is incident.
- FIG. 7A is a light distribution image of a general microlens having a convex curved surface
- FIG. 7B is a light distribution image of a microcomposite lens having a microcomposite pattern formed on a convex curved surface.
- the light distribution is wider and more uniformly distributed in the case of the micro composite lens according to the present invention than in the case of the general micro lens.
- the maximum intensity of the light is reduced by the diffraction pattern caused by the micro-composite pattern, but it can be seen that the uniformity of light passing through the lens as a whole is improved.
- FIG. 8 is a photograph of light intensity distribution of a general microlens and a micro composite lens according to the present invention.
- the light intensity distribution of the micro composite lens according to the present invention is more uniform than that of the LED light source.
- FIG 9 and 10 are diagrams showing the progress of the white light source and the light distribution after passing in the case of the general microlens in the dome form and the microcomposite lens according to the present invention.
- FIG. 9 is a view showing a general white light source going straight
- FIG. 10 is a view of photographing light passing through a general microlens, and the light passing through the lens is scattered and scattered again. In this case, the light distribution is photographed from the front of the lens, and it can be seen that the light is collected without spreading widely.
- FIG. 10 (a) the light passing through the diffraction grating is shown.
- the light passing through the micro composite lens is taken from the side. It can be seen that it spreads.
- the light is evenly distributed according to the microcomposite pattern formed on the lens surface.
- FIG. 11 is a photograph showing a state in which the micro composite lens according to the present invention is photographed through a scanning electron microscope (SEM).
- Figure 11 (a) is a photograph of the surface of the micro-composite lens through a scanning electron microscope (Scanning Electron Microscope, SEM), it can be seen that very fine protrusions form a pattern, (b) is further enlarged It can be seen that the protrusion has a micropillar shape, and the gap between the protrusion and the protrusion is about 63 ⁇ m.
- FIG. 12 is a graph showing the intensity of light according to the complex condition of the interval between the protrusions, the width of the protrusions, the width and the interval of the micro-composite lens according to the present invention.
- the microcomposite lens according to the present invention is represented by ⁇ COS-1-5 and each projection dimension is shown in white in FIG. 12.
- the distance between the protrusions and the protrusions is gradually increased while the size of the protrusions is the same. In this case, as the distance between the protrusions decreases, the light emission angle increases and the light intensity decreases.
- the width of the protrusions is increased while the spacing between the protrusions is the same. In this case, as the width of the protrusions decreases, the light emission angle increases and the light intensity decreases.
- all three micro-composite lenses having protrusions formed on the surface exhibit a uniform light intensity with a wider light emission angle than that of a general dome-shaped micro lens.
- FIG. 13 is a view illustrating a manufacturing process illustrating a method of manufacturing a micro composite lens according to the present invention.
- a template is first manufactured by patterning the micro-composite pattern 2 on the substrate 1 as shown in (a).
- the substrate 1 may be a glass substrate.
- the thin film layer 3 is formed of a material having elasticity on the template to cover the microcomposite pattern 2.
- the thin film layer 3 may generally be a polymer material having elasticity such as a synthetic resin.
- the thin film layer 3 may be formed of polydimethylsiloxane (PDMS).
- the thickness of the thin film layer 3 is larger than the height of the microcomposite pattern 2 so as to completely cover the microcomposite pattern 2.
- the thin film layer 3 is bonded to the opening of the chamber 200.
- a process of removing foreign matters may be further performed by oxygen plasma treatment of the thin film layer before adhering the thin film layer to the chamber.
- the chamber 200 has an empty space 210 formed therein, and one surface of the chamber is formed with a microfluidic channel 220 connected to the empty space therein.
- the thin film layer 3 and the templates 1 and 2 are separated.
- the thin film layer from which the template is removed has a pattern structure complementary to the microcomposite pattern.
- a negative pressure is applied through the microfluidic channel 220 so that the thin film layer 3 is recessed into the chamber.
- applying the negative pressure means that the air pressure inside the chamber is lower than the outside of the chamber, and the air inside is discharged to the outside of the chamber.
- the filler 100 containing the photopolymer nanoparticles is filled on one concave surface of the thin film layer 3, and covered with the substrate 300 thereon, and then the ultraviolet light or heat is applied to the filler.
- the filler may be an ultraviolet curing polymer, a thermosetting polymer and a ceramic.
- the filler 100 is cured, this becomes the microcomposite lens of the present invention, which is separated from the thin film layer as shown in (f).
- a micro thin film layer which is an antireflective layer, may be formed on the lens surface as necessary.
- the anti-reflective layer may be formed through a process of filling the filler 100 after forming and curing the thin film on the thin film layer 3 before filling the filler 100.
- the master used for molding the lens in the lens manufacturing process of the present invention as described above is made of the original modified lens master using a silicon-based PDMS excellent in deformation, and then replicated using an ultraviolet curable resin or a thermosetting resin and then back to the PDMS. Reproduction makes it possible to manufacture fixed masters from deforming masters.
- the lens manufacturing method according to the present invention can be designed to have the same strain under the same pressure at the same time by connecting the deformation lens master through the microfluidic tube as shown in Figure 14 during the fine molding technology, based on this Wafer level processing can be performed.
- the present inventors have a curved structure of the micro-composite lens having the above-described fine pattern formed on its surface as shown in FIG. 3B, that is, the curved structure of the concave lens and the curved structure of the convex lens. When the structure is all-inclusive, it has been found that the lens characteristics such as the light emission angle are improved compared to the single curved structure.
- the present invention provides a method of manufacturing a microcomposite lens having a bicurve structure having improved optical properties and a microcomposite lens having a bicurve structure manufactured according to the present invention, using the following drawings.
- the micro composite lens will be described.
- 15 is a schematic diagram of a micro composite lens having a double curved structure according to an embodiment of the present invention.
- the micro composite lens of the dual curved structure has a convex portion 310 of a peripheral portion and a concave portion 320 of a central portion thereof.
- the micro composite lens having a double curved structure reduces the hot spot of the LED light source through the concave curved surface of the concave portion 320 and emits light widely.
- the concave curved surface of the central portion mainly controls the angle of diffracted light, and can increase the light uniformity and the light reflection angle.
- the convex curved surface of the peripheral portion couples the light with the fine pattern, thereby controlling the amount of light reflected from the inside.
- FIG. 16 is a flowchart illustrating a process of manufacturing a micro composite lens having a double curved structure according to an exemplary embodiment of the present invention.
- the photoresist was stacked on a substrate and then patterned to fabricate a fine pattern array 2.
- the HMDS treatment improves the adhesion between the photoresist and the silicon substrate.
- a positive photoresist AZ1512 (AZ Electronic Materials) was applied onto the silicon substrate, followed by spin coating at 1500 rpm for 3 seconds and 4500 rpm for 30 seconds to deposit a 1.2 ⁇ m thick photoresist layer on the silicon substrate.
- the positive resist was then patterned in a mask aligner (MA6, SUSS MicroTec) and then developed in a developer.
- a micropattern array consisting of a plurality of protrusions, that is, a microcomposite pattern 2 has been manufactured, and the shape and dimensions of the patterned protrusions may be variously modified and changed according to a desired light emission effect, all of which are the present invention. Belongs to the scope of.
- a thin film layer 3 made of an elastic material is laminated on the microcomposite pattern 2 so as to cover the microcomposite pattern 2 on the substrate.
- the thin film layer 3 may generally be a polymer material having elasticity such as synthetic resin.
- the thin film layer 3 may be formed of PDMS (Polydimethylsiloxane).
- the thickness of the thin film layer 3 is larger than the height of the micro-composite pattern 2 so as to completely cover the micro-composite pattern 2, thereby the shape and dimensions of the micro-composite pattern 2 is the thin film layer (3) Is implemented in
- a PDMS (Sylgard 184, Dow Corning) thin film as the thin film layer (3) was applied and laminated on the microcomposite pattern (2), and spin-coated.
- an anti-stiction coating Terichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane, 97%, Sigma-Aldrich Products Incorporated, St. Louis, MO
- the separation of the thin film layer having elasticity was facilitated.
- the elastic layer (cavity, 210) of a predetermined size is formed therein (see (c) of Figure 16, 200 ) Is bonded and adhered to the thin film layer 3 (see FIG. 16 (d)), and then the substrate is removed (see FIG. 16 (e)).
- the elastic layer 3 was PDMS
- the cavity diameter was 2.6mm level
- the cavity is provided with a microchannel 240.
- the air pressure in the cavity can be freely adjusted and controlled by the microchannel.
- the cavity 210 is provided with a spherical portion 230 having a convex lens-like shape on the opposite surface 200a facing the thin film layer 3.
- the spherical portion preferably has a diameter smaller than the diameter of the microcomposite pattern 3 based on the center point of the thin film layer.
- the convex lens shape of the spherical portion 230 is then determined complementarily to the curved structure of the center of the micro-composite lens, whereby the curved structure of the center has the curved structure of the concave lens.
- the spherical portion of the material was a UV-curable epoxy resin, but this is only one example, the scope of the present invention is not limited thereto.
- a negative pressure is applied through the microfluidic channel so that the thin film layer 3 is in the cavity 210, more specifically, in the direction of the spherical portion 230 in the cavity 210.
- the application of the negative pressure means that the internal air pressure is lower than the outside of the cavity 210, and that the internal air is discharged to the outside of the cavity 210. That is, based on the cavity 210, the internal and external pressure difference moves the thin film layer 3 of the elastic material constituting one surface of the cavity 210 into the cavity 210 to enter the cavity 210.
- the thin film layer 3 is in contact with the spherical portion 230 having the curved structure of the convex lens having a predetermined height and size in the cavity, wherein the thin film layer 3 is a partial region, not an entire region, that is, Only the central region of the thin film layer 3 comes into contact with the spherical portion 230.
- the central region of the thin film layer 3 has a complementary curved structure corresponding to the curved shape of the spherical portion 230.
- the thin film layer region, that is, the peripheral region, which does not contact the spherical portion 230 still has a curved structure recessed in the direction of the cavity 210. Therefore, the curved structure of the desired center portion may be variously determined according to the contact area between the thin film layer 3 and the curved portion 230, the radius of curvature of the curved portion 230, and the like.
- the photopolymer nanoparticles are formed on the so-called double curved structure thin film layer 3 having a central portion having a spherical portion 230 shape and a peripheral portion having a shape into the cavity 210.
- the filler may be an ultraviolet curable polymer, a thermosetting polymer and a ceramic.
- the filler used photocurable in particular UV curable resin (Norland optical adhesive 63, Norland Products Incorporated, Cranbury), but the scope of the present invention is not limited thereto.
- the filler 100 When the filler 100 is cured, this becomes the micro composite lens of the present invention, and then the lens is separated from the thin film layer as shown in FIG. 13 (f) (FIG. 16 (h)).
- the curing was UV curing.
- the micro composite lens obtained through the above manufacturing process has two curved structures, that is, the center of the concave curved surface and the periphery of the convex curved surface, and a fine pattern is formed on the lens surface.
- 17 is an SEM image of a microcomposite lens having a bicurve structure, manufactured according to an embodiment of the present invention.
- the center of the micro composite lens and the periphery surrounding it are so-called double curved surfaces having different curved shapes, and fine patterns are formed on the lens surface.
- the relationship between the curved structure of the lens and the light emission angle was analyzed.
- the light emission angle of the double-curve micro composite lens was measured and analyzed using an optical power meter.
- a concave and convex lens microcomposite lens having a single curved structure was used as a LED light source as a comparative example.
- the micro composite lens having the double curved structure according to the present invention has a wider light emission angle (about ⁇ 4 °) than the micro composite lens having the single curved structure.
- the experimental results indicate that the light emission angle varies depending on the curved structure of the micro composite lens, and in particular, the dual structure is advantageous.
- the microcomposite lens of the double curved structure according to the present invention has a very advantageous effect in a point light source display device such as an LED element.
- FIG. 19 is a schematic view of the case where the micro-composite lens according to the present invention is applied to the LED element.
- a microcomposite lens (MSL) according to the present invention in particular a microcomposite lens having a double curved structure, is provided on a plurality of LED light sources (point light sources) spaced at predetermined intervals.
- the microcomposite lens of the double curved structure according to the present invention has excellent effects such as the light emission angle, the microcomposite lens of the double curved structure provided in each of the LED light sources provides light emitted from each LED light source. Effectively diffuse and release.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
본 발명은 미세복합형상렌즈 및 그 제조방법에 관한 것으로서, 본 발명에 따른 미세복합형상렌즈는 소정의 곡률을 가지는 렌즈의 일면에 돌출부가 하나 이상 배열된 미세복합패턴이 형성되고, 렌즈 내부에 광 고분자 나노입자를 포함하여 구성되어, 미세복합패턴에 의해 보다 큰 광방출각을 형성할 수 있어 점광원인 LED 광원을 광균일도가 우수한 면광원으로 전환이 가능하다. 또한, 기존의 백라이트 유닛에 사용되는 광학기판의 복합적층 없이 단일렌즈 하나로 도광판, 프리즘판 및 확산판의 역할을 대체할 수 있는 장점이 있다. 또한, 90도에 가까운 LED 광원의 방출각을 160도이상 증가시킬 수 있고, 미세패턴의 국부적 변화와 극미세입자 혼합기술을 통해 광량의 균일도와 광원의 방출각을 향상시킬 수 있는 효과가 있고, 3차원 몰딩기술과 극미세입자 혼합기술을 바탕으로 미세유체관 어레이를 이용해 웨이퍼 레벨 제작이 가능하다. 또한, 넓은 광방사각을 가지는 단일 렌즈를 통해 LED 개수를 줄일 수 있어, 제조 원가를 절감할 수 있으며, LED로부터 발생되는 발열을 줄일 수 있다. 더 나아가, 본 발명에 따른 미세복합형상 렌즈의 이중곡면 구조는 광균일도를 향상시킬 뿐만 아니라, 광방출각을 단일곡면 구조보다 향상시킬 수 있다.
Description
본 발명은 미세복합형상렌즈 및 그 제조방법에 관한 것으로서, 특히 광원에서 나온 빛을 넓고 균등하게 분산시키며, 증가된 광방출각 및 광균일도를 갖는 미세복합형상렌즈 및 그 제조방법에 관한 것이다.
현재 미세영역에서의 정교한 MEMS(MicroElectroMechanicalSystem) 공정을 이용하여, 렌즈 표면 변형을 통해 빛을 조절하는 기술들이 많이 개발되고 있다. 그 중에서도 빛을 넓고 균등하게 분산시키는 연구가 최근 크게 주목받고 있다.
특히, 기존의 LCD-TV에 사용되는 백라이트 유닛(Backlight Units, 이하 BLUs) 보다 LED(Light Emitting Diodes) BLUs의 많은 장점이 드러나면서, LED BLUs의 TV 시장 적용이 활발해지고 있다.
LCD 나 조명 BLUs용 LED 광원의 경우 빛 확산도가 중요해 렌즈 역할이 커지고 있으나 그동안 국내 LED 업체들은 LED 렌즈와 관련하여 유럽이나 일본에서 수입하거나 해외 업체와 공동 개발 방식으로 렌즈를 조달하고 있는 실정으로, 향후 LED 산업의 성장을 주도하기 위해서는 국산 렌즈 기술 개발이 시급한 실정이다. LED에서 렌즈에 따라 휘도가 좌우되는 등 기술적 비중이 매우 크며 현재는 전체 LED 생산 가격에서 렌즈가 차지하는 비중은 5%이내지만 고출력LED의 경우 다소 높아질 것으로 예상된다. 특히 LCD BLU 응용의 경우 렌즈의 역할이 매우 중요한데, 얇은 두께를 유지하면서 LED 개수를 더 줄임으로서 저가격화를 달성해야 하는 측면에서 볼 때 넓은 광방사각을 갖는 렌즈의 개발이 요구되고 있다. 종래 LED 위에 설치되는 렌즈는 방출각을 향상시키기에는 가능하나, 광균일도를 제어하는 데 한계가 있고, LED와 같은 점광원을 면광원으로 변환시 별도의 도광판, 프리즘판, 확산판과 같은 다양한 복합 광학기판이 요구되는 문제점이 있었다. 각각의 요소의 제작 공정 단가가 높고, 정밀 패키징이 요구되므로, 전반적인 생산원가 절감에 한계가 있어 일체형 광학 소자가 요구된다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 표면에 형성된 다양한 형태의 미세복합패턴 및 곡면 구조에 의하여, 보다 큰 광방출각을 가지고, 또한 개선된 광균일도를 갖는 미세복합형상렌즈 및 그 제조방법을 제공하는 데 있다.
상기와 같이 구성되는 본 발명에 따른 미세복합형상렌즈는 미세복합패턴에 의해 보다 큰 광방출각을 형성할 수 있으므로, 점광원인 LED 광원을 광균일도가 우수한 면광원으로 전환이 가능하다. 또한, 기존의 백라이트 유닛에 사용되는 광학기판의 복합적층 없이 단일렌즈 하나로 도광판, 프리즘판 및 확산판의 역할을 대체할 수 있는 장점이 있다. 또한, 90도에 가까운 LED 광원의 방출각을 160도이상 증가시킬 수 있고, 미세패턴의 국부적 변화와 극미세입자 혼합기술을 통해 광량의 균일도와 광원의 방출각을 향상시킬 수 있는 효과가 있고, 3차원 몰딩기술과 극미세입자 혼합기술을 바탕으로 미세유체관 어레이를 이용해 웨이퍼레벨 제작이 가능하다. 또한, 넓은 광방사각을 가지는 단일 렌즈를 통해 LED 개수를 줄일 수 있어, 제조 원가를 절감할 수 있으며, LED로부터 발생되는 발열을 줄일 수 있다. 더 나아가, 본 발명에 따른 미세복합형상 렌즈의 이중곡면 구조는 광균일도를 향상시킬 뿐만 아니라, 광방출각을 단일곡면 구조 보다 향상시킬 수 있다.
도 1은 본 발명에 따른 미세복합형상렌즈의 구조가 도시된 단면도,
도 2는 본 발명에 따른 미세복합형상렌즈의 미세복합패턴의 실시예들이 도시된 도,
도 3은 본 발명에 따른 미세복합형상렌즈의 제 1 실시예가 도시된 도,
도 4는 본 발명에 따른 미세복합형상렌즈의 제 2 실시예가 도시된 도,
도 5는 본 발명에 따른 미세복합형상렌즈의 제 3 실시예가 도시된 도,
도 6은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 빛 투과 모습이 비교 도시된 도,
도 7은 백색광원이 입사된 경우 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 분포가 촬영된 사진,
도 8은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 세기 분포가 촬영된 사진,
도 9는 광원과 돔 형태의 일반 미세렌즈의 광 이동경로를 표시한 것과 돔 형태의 일반 미세렌즈를 통과 한 광의 분포가 도시된 도,
도 10는 확산판과 돔 형태의 미세복합형상렌즈의 광 이동경로를 표시한 것과 돔 형태의 미세복합형상렌즈를 통과한 광의 분포가 도시된 도,
도 11은 주사전자현미경(SEM)을 통해 본 발명에 따른 미세복합형상렌즈를 촬영한 모습이 도시된 사진,
도 12는 본 발명에 따른 미세복합형상렌즈의 돌출부 간의 간격, 돌출부의 폭, 폭과 간격의 복합적인 조건에 따른 광의 세기가 도시된 그래프,
도 13은 본 발명에 따른 미세복합형상렌즈의 제조 방법을 설명하는 제조 과정이 도시된 도,
도 14는 본 발명에 따른 미세복합형상렌즈를 동시에 여러 개를 만들 수 있는 장치가 도시된 도,
도 15는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈가 도시된 도,
도 16은 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈 제조공정의 단계도,
도 17은 본 발명의 일 실시예에 따라 제조된, 이중곡면 구조의 미세복합형상 렌즈의 SEM 이미지,
도 18은 LED 광원의 광방출각을 측정한 그래프,
도 19는 LED 소자에 본 발명에 따른 미세복합형상렌즈가 적용된 경우의 모식도이다.
<도면의 주요 부분에 관한 부호의 설명>
1: 기판
2: 미세복합패턴
3: 박막층
10: 돌출부
20: 나노입자
100: 렌즈
200: 챔버
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 내용 및 실시예를 설명하면 다음과 같다.
도 1은 본 발명에 따른 미세복합형상렌즈의 구조가 도시된 단면도이다.
도 1을 참조하면, 본 발명에 따른 미세복합형상렌즈는 렌즈(100)의 표면에 다수의 돌출부(10)로 이루어진 미세복합패턴이 형성되어 있으며, 렌즈(100)를 구성하는 물질이 광 고분자 나노입자를 포함하고 있어, 렌즈 내부를 통과하는 빛이 상기 나노입자(20)와 상기 돌출부(10)에 의해 산란, 반사 및 회절되어 렌즈 외부로 빛이 넓고 균등하게 방출되도록 한다. 즉, 본 발명에서 "미세복합형상렌즈"는 렌즈 표면에 다양한 형상의 돌출부로 이루어진 미세패턴이 형성된 렌즈를 지칭한다.
상기 미세복합형상렌즈는 광감응 고분자인 자외선 경화 고분자(UV Curable epoxy resin), 열경화 고분자 또는 세라믹 등의 재료로 만들어질 수 있으나, 표면에 미세패턴이 형성되며, 소정 곡률을 갖는 한, 어떠한 물질도 본 발명의 범위에 속한다.
도 2는 본 발명에 따른 미세복합형상렌즈의 미세복합패턴의 실시예들이 도시된 도이다.
도 2를 참조하면, 미세복합패턴의 돌출부의 수평방향의 단면이 (a) 원 (b) 사각형 (c) 삼각형 (d) 육각형 (e) 마름모의 형태로 구성될 수 있다.
상기의 형태를 가진 돌출부들이 연속적으로 배열되어 미세복합패턴을 형성한다.
또한, 이 경우 상기 돌출부의 수직방향의 단면은 사각형, 반원, 삼각형 등의 형태로 구성될 수 있다.
이 경우, 상기 돌출부의 입체적인 형상은 원기둥, 반구형, 원뿔, 사각기둥, 사각뿔, 삼각기둥, 삼각뿔 등으로 표현될 수 있다.
여기서, 상기 돌출부의 높이 또는 폭은 광의 균등성 조절을 위해 조사하는 광원의 파장이상의 다양성을 가진다. 회절효율을 높이기 위해 상기 돌출부의 폭은 광원의 파장과 같거나 그 이상으로 형성되는 것이 바람직하다.
본 발명에서는 상기에서 서술한 형태에 한정되는 것은 아니며, 다양한 형태의 돌출부가 렌즈 표면에 형성될 수 있다.
또한, 미세복합형상렌즈의 형태가 볼록렌즈거나 오목렌즈에 한정되지 않으며, 다양한 형태로 제작될 수 있고, 돌출부의 형상이나 크기 등도 다양한 형태가 복합적으로 배열되어 미세복합패턴을 형성할 수도 있다.
도 3 및 도 4를 통하여 다양한 형태의 본 발명의 실시예를 설명하겠다.
도 3은 본 발명에 따른 미세복합형상렌즈의 제 1 실시예가 도시된 도이다.
도 3의 (a)는 렌즈의 위에서 바라본 모습이 도시된 도이며, 도 3의 (b)는 렌즈의 수직방향으로의 단면이 도시된 단면도이다.
렌즈(100)의 표면에는 다수의 돌출부(10)가 패턴을 이루며 형성된다.
여기서, 상기 돌출부가 형성된 렌즈(100)의 표면 곡률은 볼록렌즈거나 오목렌즈에 한정되지 않으며, 다양한 형태로 제작되고, 한 실시예로 가장자리가 볼록하게 형성되며, 렌즈의 중심부로 갈수록 오목하게 형성될 수 있다.
즉, 위의 실시예를 구체적으로 설명하면 렌즈의 중심부(A)의 두께(H1)는 렌즈의 중심부(A)에서 렌즈의 가장자리(C)까지의 거리의 1/2 되는 지점의 두께(H2)보다 작게 형성된다.
도 4는 본 발명에 따른 미세복합형상렌즈의 제 2 실시예가 도시된 도이다.
도 4의 (a)는 렌즈 표면에 형성된 미세복합패턴을 수평선을 기준으로 투영한 모습이 도시된 도이며, (b)는 미세복합형상렌즈의 수직방향의 단면이 도시된 단면도이다.
도 4를 참조하면, 본 발명에 따른 미세복합형상렌즈의 제 2 실시예는 렌즈의 중심부 부근의 표면에는 원기둥 형태의 돌출부(10a)가 형성되며, 렌즈의 가장자리로 갈수록 반구형의 돌출부(10b)가 형성된다.
즉, 두 가지 형상의 돌출부가 복합적으로 패턴을 이루도록 형성된다.
또한, 돌출부의 형상 역시 두 가지 형태의 돌출부가 서로 다르도록 구성된다.
돌출부(10a)의 높이는 돌출부(10b)의 높이보다 높게 형성된다.
상기 설명한 내용은 한 가지 실시예일 뿐이며, 본 발명은 다양한 형태의 돌출부가 복합적으로 배열되어 미세복합패턴을 형성할 수 있다.
도 5는 본 발명에 따른 미세복합형상렌즈의 제 3 실시예가 도시된 도이다.
도 5를 참조하면, 본 발명에 따른 미세복합형상렌즈의 제 3 실시예는 렌즈(100) 표면에 형성된 미세복합패턴의 돌출부(10) 사이 사이에 상기 돌출부(10)의 폭에 대한 높이비 보다 더 큰 높이비를 가지는 극미세패턴의 무반사층(30)이 형성되도록 구성된다.
여기서 상기 극미세패턴 하나 하나의 폭은 조사되는 광원의 파장(λ)보다 적게 형성되는 것이 바람직하며, 극미세패턴의 높이는 가 되는 것이 바람직하다. 여기서 n 은 0, 1, 2... 이다.
이 경우 상기 무반사층(30)은 미세복합패턴의 돌출부의 위에 형성될 수도 있다.
상기 무반사층의 또 다른 실시예는 상기 극미세패턴 대신 상기 돌출부 및 렌즈 표면을 덮는 미세박막층으로 구성되는 것이다. 이 경우 상기 무반사층은 하나 이상의 미세박막층으로 이루어질 수 있다.
여기서, 상기 무반사층의 두께의 일례는 광원 파장의 1/4 이고, 렌즈의 굴절률보다 작은 굴절률을 가지며, MgF2, Al2O3, ZrO2, 파릴렌(Parylene) 중 하나 이상을 포함하는 재료로 형성된다. 상기 무반사층의 최적의 굴절률은 상기 렌즈의 굴절률의 이제곱근이다.
상기 무반사층(30)은 다중반사로 인한 LED 광원방향으로의 후반사를 최소화시킨다.
도 6은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 빛 투과 모습이 비교 도시된 도이다.
도 6의 (a)는 일반 미세렌즈의 경우인데, 일반 미세렌즈의 경우 렌즈를 통과한 빛은 렌즈의 중심으로 모이게 되는 반면에, 도 6의 (b)와 같이 본 발명에 따른 미세복합형상렌즈의 경우에는 돌출부에 의해 다양한 각도로 반사와 회절이 이루어져 일반 미세렌즈보다 큰 광방출각을 형성한다.
도 6의 (c)를 참조하면, 본 발명에 따른 미세복합형상렌즈는 렌즈의 주곡률(P1)과 렌즈 재료의 굴절률(P2), 돌출부(10)의 모양, 크기, 돌출부의 주기, 종횡비 등을 조절하여 최대 광방출각을 만들어낼 수 있다.
도 7은 백색광원이 입사된 경우 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 분포가 촬영된 사진이다.
도 7의 (a)는 볼록한 곡면을 갖는 일반 미세렌즈의 광 분포 이미지이며, 도 7의 (b)는 볼록한 곡면상에 미세복합패턴이 형성된 미세복합형상렌즈의 광 분포 이미지이다.
일반 미세렌즈의 경우보다 본 발명에 따른 미세복합형상렌즈의 경우에 광 분포도가 더 넓고 균일하게 분포되는 것을 알 수 있다. 이 경우 미세복합패턴에 의해 유발된 회절패턴에 의해 빛의 최대 세기는 감소하지만 전체적으로 렌즈를 통과한 빛의 균등성은 향상됨을 알 수 있다.
도 8은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 세기 분포가 촬영된 사진이다.
일반 미세렌즈의 경우 LED 광원에 의한 세기 분포보다 본 발명에 따른 미세복합형상렌즈의 경우 광 세기 분포가 더 균일함을 알 수 있다.
도 9 및 도 10는 돔 형태의 일반 미세렌즈의 경우와 본 발명에 따른 미세복합형상렌즈의 경우에 백색광원의 진행과정 및 통과 후 광 분포가 비교 도시된 도이다.
도 9는 일반적인 백색광원이 직진하는 모습이 도시된 도이며, 도 10은 일반 미세렌즈를 지나는 빛을 촬영한 모습인데, 렌즈를 지난 빛이 모였다가 다시 흩어지는 것을 볼 수 있으며, (c)의 경우 렌즈의 정면에서 광 분포를 촬영한 것으로 광이 넓게 퍼지지 않고 모아지는 것을 볼 수 있다.
도 10의 (a)의 경우 회절 격자를 통과한 빛이 퍼지는 모습이 도시된 도이며, (b)의 경우 미세복합형상렌즈를 지나는 빛을 측면에서 촬영한 것으로 렌즈를 통과한 직후부터 빛이 넓게 퍼지는 것을 알 수 있다. (c)의 경우 렌즈 표면에 형성된 미세복합패턴에 따라 빛이 골고루 넓게 분포되는 것을 알 수 있다.
도 11은 주사전자현미경(SEM)을 통해 본 발명에 따른 미세복합형상렌즈를 촬영한 모습이 도시된 사진이다.
도 11의 (a)는 주사전자현미경(Scanning Electron Microscope, SEM)을 통해 미세복합형상렌즈의 표면을 촬영한 것인데, 아주 미세한 돌출부들이 패턴을 이루고 있는 것을 볼 수 있으며, (b)는 더욱 더 확대한 것으로 돌출부가 미세기둥 형상을 가지고 있는 것을 볼 수 있으며, 돌출부와 돌출부간의 간격이 63㎛ 정도됨을 알 수 있다.
도 12는 본 발명에 따른 미세복합형상렌즈의 돌출부 간의 간격, 돌출부의 폭, 폭과 간격의 복합적인 조건에 따른 광의 세기가 도시된 그래프이다. 여기에서, 본 발명에 따른 미세복합형상렌즈는 μCOS-1-5로 표시되며 각각의 돌출부 치수는 도 12에서 백색으로 표시된다.
(a)의 경우에는 돌출부의 크기는 동일하게 한 채 돌출부와 돌출부간의 간격을 점차 증가시킨 경우로써, 이 경우 돌출부 간의 간격이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다.
(b)의 경우에는 돌출부 간의 간격은 동일하게 한 채 돌출부의 폭을 증가시킨 경우로써, 이 경우 돌출부의 폭이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다.
(c)의 경우에는 돌출부 간의 간격과 폭을 모두 비교한 경우로써, 돌출부의 폭과 간격이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다.
본 발명에 따라 돌출부가 표면에 형성된 미세복합형상렌즈 세 가지 경우 모두 일반 돔 형태의 미세렌즈(dom lens)의에 비하여 넓은 광방출각과 함께, 균일할 광 세기를 나타내는 것을 알 수 있다.
도 13은 본 발명에 따른 미세복합형상렌즈의 제조 방법을 설명하는 제조 과정이 도시된 도이다.
본 발명에 따른 미세복합형상렌즈의 제조 방법은 먼저 (a)와 같이 기판(1) 상에 상기 미세복합패턴(2)을 패터닝하여 템플릿을 제작한다. 여기서 상기 기판(1)은 유리 기판이 사용될 수 있다.
다음으로 (b)와 같이 상기 미세복합패턴(2)을 덮도록 상기 템플릿 상에 탄성을 가지는 재료로 박막층(3)을 형성한다. 여기서, 상기 박막층(3)은 일반적으로 합성 수지 등과 같은 탄성을 가지는 고분자 물질이 될 수 있으며, 하나의 예로 PDMS(Polydimethylsiloxane)로 형성될 수 있다.
여기서, 상기 박막층(3)의 두께는 상기 미세복합패턴(2)을 완전히 덮을 수 있도록 상기 상기 미세복합패턴(2)의 높이보다 크게 한다.
다음으로, (c)와 같이 상기 박막층(3)을 챔버(200)의 개구부에 접착시킨다.
이 경우 상기 박막층을 상기 챔버에 접착시키기 전에 상기 박막층을 산소 플라즈마 처리하여 이물질을 제거하는 과정을 더 수행할 수 있다.
여기서, 상기 챔버(200)는 내부에 빈 공간(210)이 형성되며 챔버의 일면에는 내부의 빈공간과 연결되는 미세유체채널(220)이 형성된다.
그 후 상기 박막층(3)과 상기 템플릿(1, 2)을 분리시킨다.
여기서, 상기 템플릿이 제거된 박막층은 상기 미세복합패턴과 상보적인 패턴 구조를 가지게 된다.
다음으로, (d)와 같이 상기 미세유체채널(220)을 통해 음압을 인가하여 상기 박막층(3)이 챔버 내부로 오목하게 들어가도록 한다. 여기서, 음압을 인가한다고 하는 것은 챔버 내부의 공기압이 챔버 외부보다 낮게 하는 것으로 내부의 공기를 챔버 외부로 토출시키는 것을 의미한다.
다음으로, (e)와 같이 상기 박막층(3)의 오목하게 들어간 일면 위에 광 고분자 나노입자가 포함된 충진물(100)을 충진시키고, 그 위에 기판(300)으로 덮은 후 자외선이나 열을 가하여 상기 충진물(100)을 경화시킨다.
여기서, 상기 충진물은 자외선 경화 고분자, 열경화 고분자 및 세라믹 등이 될 수 있다. 충진물(100)이 경화되면 이것이 바로 본 발명의 미세복합형상렌즈가 되는데, 이 렌즈를 (f)와 같이 상기 박막층으로부터 분리시킨다.
그 후, 필요에 따라 상기 렌즈 표면 상에 무반사층인 미세박막층을 형성할 수 있다. 또한, 상기 무반사층은 상기 충진물(100)을 충진하기 전에 상기 박막층(3)상에 얇게 형성시켜 경화시킨 후 상기 충진물(100)을 충진하는 과정을 통해 형성될 수도 있다.
상기와 같은 본 발명의 렌즈 제작 공정 중 렌즈의 몰딩시 사용되는 마스터는 변형이 우수한 실리콘계열의 PDMS를 사용하여 원본 변형 렌즈 마스터를 제작 후 자외선 경화수지 또는 열경화수지를 이용하여 복제후 다시 PDMS로 재복제함으로써 변형마스터에서 고정마스터의 제작이 가능하다.
또한, 본 발명에 따른 렌즈 제조 방법은 미세 몰딩 기술시 변형렌즈 마스터를 미세유체관을 통해 도 14와 같이 연결함으로써 여러 개의 변형마스터를 동시에 같은 압력하에 동일 변형을 갖도록 설계할 수 있고, 이를 바탕으로 웨이퍼레벨공정화 할 수 있다.본 발명자는 표면에 상술한 미세패턴이 형성된 미세복합형상렌즈의 곡면구조를 도 3의 (b)와 같은 이중 구조, 즉, 오목렌즈의 곡면구조와 볼록렌즈의 곡면구조 모두를 포함하는 구조로 하는 경우, 광방출각 등과 같은 렌즈 특성이 단일곡면 구조에 비하여 향상되는 점을 발견하였다. 따라서, 본 발명은 개선된 광특성을 갖는 이중곡면 구조의 미세복합형상렌즈 제조방법 및 이에 따라 제조된 이중곡면 구조의 미세복합형상 렌즈를 제공하는데, 이하 도면을 이용하여 본 발명에 따른 이중 곡면 구조의 미세복합형상 렌즈를 설명한다.
도 15는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈의 모식도이다.
도 15를 참조하면, 본 발명의 상기 실시예에 따른 이중곡면 구조의 미세복합형상렌즈는 주변부의 볼록부(310), 중심부의 오목부(320)을 갖는다. 이중곡면 구조를 갖는 상기 미세복합형상렌즈는 오목부(320)의 오목 곡면을 통하여 LED 광원의 핫-스폿(hot spot)을 감소시키고, 빛을 넓게 방출시킨다. 또한 상기 중심부의 오목 곡면은 주로 회절된 빛의 각도를 제어하고, 광균일도 및 광반사각을 증가시킬 수 있다. 또한 주변부의 볼록 곡면은 빛을 미세패턴과 커플링시켜, 내부에서 반사되는 광량을 제어할 수 있다.
이하 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈의 제조방법을 상세히 설명한다.
제조예
도 16은 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈 제조공정의 단계도이다.
도 16의 (a)를 참조하면, 기판상에 포토레지스트를 적층한 후 패터닝하여, 미세패턴 어레이(2)를 제조하였다. 본 발명의 일 실시예에서는 먼저 4 인치 실리콘 기판을 세척한 후 30분간 120℃로 표면에 잔류하는 물을 증발시켰다. 이로써 화학 잔류물과 유기 오염물이 제거되었다. 또한 HMDS 처리를 해주어 포토레지스트와 실리콘 기판 사이의 접착력을 향상시켰다. 이후. 포지티브 포토레지스트인 AZ1512(AZ Electronic Materials)를 상기 실리콘 기판상에 도포한 후, 1500rpm으로 3초간, 4500rpm으로 30초간 스핀코팅하여, 1.2 ㎛ 두께의 포토레지스트층을 실리콘 기판상에 적층시켰다. 이후, 마스크 얼라이너(MA6, SUSS MicroTec)에서 상기 포지티브 레지스트는 패터닝된 후, 현상액에서 현상되었다. 이로써, 다수의 돌출부로 이루어진 미세패턴 어레이, 즉 미세복합패턴(2)가 제조되었는데, 패턴된 상기 돌출부의 형상, 치수는 원하는 광방출 효과에 따라 다양하게 변형, 변경될 수 있으며, 이는 모두 본 발명의 범위에 속한다.
도 16의 (b)를 참조하면, 상기 기판상의 미세복합패턴(2)을 덮도록, 탄성을 가지는 재료로 이루어진 박막층(3)을 미세복합패턴(2) 상에 적층한다. 여기서, 상기 박막층(3)은 일반적으로 합성수지 등과 같은 탄성을 가지는 고분자 물질이 될 수 있으며, 하나의 예로 PDMS(Polydimethylsiloxane)로 형성될 수 있다. 또한, 상기 박막층(3)의 두께는 상기 미세복합패턴(2)을 완전히 덮을 수 있도록 상기 미세복합패턴(2)의 높이보다 크게 하며, 이로써 상기 미세복합패턴의 형상, 치수가 상기 박막층(3)에 구현된다.
본 발명의 일 실시예에서, PDMS(Sylgard 184, Dow Corning) 박막을 상기 박막층(3)으로 하여, 상기 미세복합패턴(2) 상에 도포, 적층한 후, 스핀 코팅하였다. 상기 스핀코팅 전, 비점착 코팅(anti-stiction coating, Trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, 97%, Sigma-Aldrich Products Incorporated, St. Louis, MO)을 상기 미세복합패턴 템플릿(2) 상에 실시하여, 탄성을 갖는 상기 박막층의 분리를 용이하게 하였다.
도 16의 (c) 내지 (e) 를 참조하면, 상기 박막층(3)과 결합시 내부에 소정 크기의 공동부(Cavity, 210))가 형성되는 탄성층(도 16의 (c) 참조, 200)이 상기 박막층(3)에 결합, 접착되고(도 16의 (d) 참조), 이후 상기 기판은 제거된다(도 16의 (e) 참조). 본 발명의 일 실시예에서 상기 탄성층(3)은 PDMS이었으며, 상기 공동부 직경은 2.6mm 수준이었고, 또한 상기 공동에는 미세채널(240)이 구비되어 있다. 이로써, 상기 공동 내의 공기압은 상기 미세채널에 의하여 자유로이 조절, 제어될 수 있다.
본 발명의 일 실시예에서 상기 공동부(210) 내에는 상기 박막층(3)에 대향하는 대향면(200a)에 볼록 렌즈와 같은 형상의 구형부(230)가 구비된다. 상기 구형부는 상기 박막층의 중심점을 기준으로 상기 미세복합패턴(3)의 직경보다는 작은 직경을 갖는 것이 바람직하다. 상기 구형부(230)의 볼록렌즈 형상은 이후 미세복합형상렌즈 중심부의 곡면구조를 상보적으로 결정하며, 이로써 상기 중심부의 곡면구조는 오목렌즈의 곡면 구조를 갖는다. 본 발명의 일 실시예에서 상기 구형부의 재질은 UV-경화성 에폭시 수지이었으나, 이는 일 예일 뿐, 본 발명의 범위는 이에 제한되지 않는다.
도 16의 (f)를 참조하면, 상기 미세유체채널을 통해 음압을 인가하여 상기 박막층(3)이 공동부(210) 내부, 보다 구체적으로는 상기 공동부(210) 내의 구형부(230) 방향으로 들어가도록 한다. 여기서, 음압을 인가한다고 하는 것은 내부의 공기압이 공동부(210) 외부보다 낮게 하는 것으로, 내부의 공기를 공동부(210) 외부로 토출시키는 것을 의미한다. 즉, 공동부(210)를 기준으로, 내부와 외부 압력차는 상기 공동부(210)의 일 면을 이루는 탄성 재질의 박막층(3)을 공동부(210) 내로 이동시켜, 들어가게 한다. 이때, 상기 박막층(3)은 상기 공동부 내에서 소정 높이 및 크기를 갖는 볼록렌즈의 곡면구조를 갖는 구형부(230)와 접촉하게 되며, 이때 박막층(3)은 전체영역이 아닌 일부영역, 즉, 박막층(3)의 중심부 영역만이 상기 구형부(230)와 접촉하게 된다. 그 결과 상기 박막층(3) 중심부 영역은 구형부(230)의 곡면 형상에 대응하는, 상보적인 곡면 구조를 갖게 된다. 하지만, 상기 구형부(230)에 접촉하지 않는 박막층 영역, 즉, 주변부 영역은 여전히 공동부(210) 방향으로 함몰된 형태의 곡면 구조를 갖는다. 따라서, 박막층(3)과 곡면부(230)의 접촉 면적, 곡면부(230)의 곡률 반경 등에 따라 원하는 중심부의 곡면 구조를 다양하게 결정할 수 있다.
다음으로, 도 16의 (g)를 참조하면, 중심부는 구형부(230) 형상이, 주변부는 공동부(210) 내로 들어간 형상을 갖는, 소위 이중곡면 구조의 박막층(3) 상에 광 고분자 나노입자가 포함된 충진물(100)을 충진시키고, 그 위에 또 다른 기판(100), 예를 들면 유리기판으로 덮은 후 자외선이나 열을 가하여 상기 충진물(300)을 경화시킨다. 여기서, 충진물은 자외선 경화 고분자, 열경화 고분자 및 세라믹 등이 될 수 있다. 본 발명의 일 실시예에서 상기 충진물은 광경화성, 특히 UV 경화성 수지(Norland optical adhesive 63, Norland Products Incorporated, Cranbury)를 사용하였으나, 본 발명의 범위는 이에 제한되지 않는다.
충진물(100)이 경화되면 이것이 바로 본 발명의 미세복합형상렌즈가 되는데, 이후 렌즈를 도 13의 (f)와 같이 상기 박막층으로부터 분리시킨다(도 16의 (h)). 본 발명의 일 실시예에서 상기 경화는 UV 경화이었다.
이상의 제조공정을 통하여 얻어진 미세복합형상렌즈는, 두 개의 곡면 구조, 즉, 오목 곡면의 중심부, 볼록 곡면의 주변부를 가지며, 상기 렌즈 표면에는 미세패턴이 형성되어 있다.
도 17은 본 발명의 일 실시예에 따라 제조된, 이중곡면 구조의 미세복합형상 렌즈의 SEM 이미지이다.
도 17을 참조하면, 미세복합형상렌즈의 중심부와 이를 에워싸고 있는 주변부는 곡면 형상이 서로 다른, 소위 이중곡면이며, 렌즈 표면에는 미세패턴이 형성되어 있음을 알 수 있다.
실험예
본 실험결과를 통하여 렌즈의 곡면구조와 광방출각 특성 간의 관계를 분석하였다. 이중곡면 구조의 미세복합형상렌즈의 광방출각을 optical power meter를 이용하여 측정, 분석하였다. 참조예로서, LED 광원을, 비교예로서, 단일곡면 구조인 오목 및 볼록렌즈 미세복합형상렌즈를 사용하였다.
도 18은 LED 광원의 광방출각을 측정한 그래프이다.
도 18을 참조하면, 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈는 단일곡면 구조의 미세복합형상렌즈에 비하여 더 넓어진 광방출각(약 ± 4°)을 갖는 것을 알 수 있다. 상기 실험 결과는 미세복합형상 렌즈의 곡면구조에 따라 광방출각은 달라지며, 특히 이중구조가 유리하다는 점을 나타낸다.
본 발명에 따른 이중곡면 구조의 미세복합형상 렌즈는 LED 소자와 같은 점 광원 디스플레이 장치에 있어, 매우 유리한 효과를 갖는다.
도 19는 LED 소자에 본 발명에 따른 미세복합형상렌즈가 적용된 경우의 모식도이다.
도 19를 참조하면, 소정 간격으로 이격된 복수 개의 LED 광원(점광원) 상에 본 발명에 따른 미세복합형상렌즈(MSL), 특히 이중곡면 구조를 갖는 미세복합형상렌즈가 구비된다. 특히, 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈는 광방출각 등의 효과가 우수하므로, LED 광원 각각에 하나씩 구비된 이중곡면 구조의 미세복합형상렌즈는 각각의 LED 광원으로부터 조사되는 빛을 효과적으로 확산, 방출시킨다.
이상과 같이 본 발명에 의한 미세복합형상렌즈 및 미세복합형상렌즈 제조 방법을 예시된 도면을 참조로 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명은 한정되지 않고, 기술사상이 보호되는 범위 이내에서 응용될 수 있다.
Claims (26)
- 소정의 곡률을 가지는 렌즈의 일면에 돌출부가 하나 이상 배열된 미세복합패턴이 형성되고, 상기 렌즈 내부에 광 고분자 나노입자를 포함하는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 미세복합형상렌즈는 자외선 경화 고분자, 열경화 고분자 및 세라믹 중 하나 이상으로 형성되는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 돌출부 중 어느 하나의 수평방향의 단면은 원, 사각형, 삼각형, 육각형, 마름모 중 하나의 형상을 가지는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 돌출부의 수직방향의 단면은 사각형, 반원 및 삼각형 중 하나의 형상을 가지는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 돌출부는 원기둥, 반구형, 원뿔, 사각기둥, 사각뿔, 삼각기둥, 삼각뿔, 육각기둥, 육각뿔 중 하나 이상의 형상을 가지는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 돌출부의 폭은 조사하는 광원의 파장 이상인 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 돌출부는 광방출각 및 광균일도를 높이기 위해 렌즈의 가장자리에서는 반구 형태로 형성되는 것을 특징으로 하는 미세복잡형상렌즈.
- 제 1항에 있어서,상기 미세복합형상렌즈의 중심부에서 가장자리쪽으로 1/2 되는 지점에서의 렌즈 두께가 중심부에서의 두께보다 큰 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 미세복합형상렌즈는 상기 돌출부와 돌출부 사이 또는 상기 돌출부 위에 상기 돌출부보다 작은 크기로 형성된 극미세패턴의 무반사층을 더 포함하는 것을 특징으로 하는 미세복합형상렌즈.
- 제 1항에 있어서,상기 미세복합형상렌즈는 상기 돌출부 및 렌즈 표면을 덮도록 형성된 하나 이상의 미세박막층으로 이루어진 무반사층을 더 포함하는 것을 특징으로 하는 미세복합형상렌즈.
- 소정의 곡률을 가지는 렌즈의 일면에 단면이 원 또는 다각형인 돌출부가 하나 이상 배열된 미세복합패턴이 형성된 미세복합형상렌즈 제조 방법에 있어서,기판상에 상기 미세복합패턴을 패터닝하여 템플릿을 제작하는 단계;상기 미세복합패턴을 덮도록 상기 템플릿 상에 탄성을 가지는 재료로 박막층을 형성하는 단계;상기 박막층을 챔버의 개구부에 접착시킨 후 상기 박막층과 상기 템플릿을 분리시키는 단계;상기 박막층이 챔버 내부로 오목하게 들어가도록 상기 챔버에 음압을 인가하는 단계;상기 박막층의 오목하게 들어간 일면 위에 광 고분자 나노입자가 포함된 충진물을 충진시켜 렌즈를 형성하는 단계;상기 렌즈를 상기 박막층으로부터 분리시키는 단계를 포함하는 미세복합형상렌즈 제조 방법.
- 제 11항에 있어서,상기 박막층은 PDMS(Polydimethylsiloxane)로 형성되는 것을 특징으로 하는 미세복합형상렌즈 제조 방법.
- 제 13에 있어서,상기 기판은 유리 기판인 것을 특징으로 하는 미세복합형상렌즈 제조 방법.
- 제 11항에 있어서,상기 박막층의 두께는 상기 미세복합패턴의 높이보다 큰 것을 특징으로 하는 미세복합형상렌즈 제조 방법.
- 제 11항에 있어서,상기 박막층을 상기 챔버에 접착시키기 전에 상기 박막층을 산소 플라즈마 처리하는 과정을 더 수행하는 것을 특징으로 하는 미세복합형상렌즈 제조 방법.
- 제 11항에 있어서,상기 렌즈 형성 단계는 상기 박막층의 오목하게 들어간 일면 위에 자외선 경화 고분자, 열경화 고분자 및 세라믹 중 하나 이상의 충진물을 충진시키는 제 1 과정; 및상기 충진물에 자외선 또는 열을 가하여 충진물을 경화시키는 제 2 과정을 포함하여 이루어지는 미세복합형상렌즈 제조 방법.
- 기판상에 포토레지스트층을 적층한 후, 패터닝하여 미세복합패턴 어레이를 형성하는 단계;탄성을 가지는 재료를 포함하는 박막층을 상기 미세패턴 어레이 상에 도포, 적층하는 단계;내부에 소정 크기의 공동부를 가지는 탄성층의 일 면을 상기 박막층에 접촉, 결합시키는 단계;상기 공동부 내의 기압을 낮춤으로써, 상기 박막층이 상기 공동부 내부로 들어가도록 상기 공동부에 음압을 인가하는 단계;상기 박막층 상에 충진물을 충진시켜 렌즈를 형성하는 단계; 및상기 렌즈를 상기 박막층으로부터 분리시키는 단계를 포함하며, 여기에서 상기 공동부는 상기 박막층에 대향하는 대향면에 소정 높이를 갖는 구형부가 구비되는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
- 제 17항에 있어서,상기 공동부 내의 구형부는 상기 박막층 방향으로 돌출된, 볼록 렌즈 형상인 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
- 제 17항에 있어서,상기 박막층이 공동부 내부로 들어갈 때, 상기 박막층의 일부는 상기 구형부의 표면에 접촉하는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
- 제 17항에 있어서,상기 박막층의 중심 영역이 상기 구형부 표면에 접촉하며, 상기 박막층의 주변 영역은 상기 구형부 표면에 접촉하지 않는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
- 제 17항에 있어서,상기 미세복합형상렌즈는 자외선 경화 고분자, 열경화 고분자 및 세라믹 중하나 이상으로 형성되는 것을 특징으로 하는 미세복합형상렌즈.
- 제 17항에 있어서,상기 미세복합형상렌즈는 광 고분자 나노입자를 포함하는 것을 특징으로 하는 미세복합형상렌즈.
- 미세복합형상렌즈에 있어서,상기 미세복합형상렌즈는 표면상에 구비된 복수 개의 돌출부를 포함하며,상기 미세복합형상렌즈의 중심부는 오목 렌즈의 곡면 구조를, 주변부는 볼록 렌즈의 곡면 구조를 갖는, 이중곡면 구조의 미세복합형상렌즈.
- 제 23항에 따른 이중곡면 구조의 미세복합형상렌즈를 포함하는 LED 소자.
- 제 24항에 있어서,상기 이중곡면 구조의 미세복합형상렌즈는 복수 개의 LED 광원 각각에 대응되며, 각각의 LED 광원상에 하나의 미세복합형상렌즈가 구비되는 것을 특징으로 하는 LED 소자.
- 제 25항에 있어서,상기 LED 광원으로부터 방출된 빛은 대응되는 상기 이중곡면 구조의 미세복합형상렌즈를 거치면서, 확산되는 것을 특징으로 하는 LED 소자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/120,142 US20110210368A1 (en) | 2008-09-22 | 2008-09-22 | Micro-composite pattern lens, and method for manufacturing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080092814A KR101002212B1 (ko) | 2008-09-22 | 2008-09-22 | 미세복합형상렌즈 및 미세복합형상렌즈 제조 방법 |
KR10-2008-0092814 | 2008-09-22 | ||
KR1020090089314A KR101113691B1 (ko) | 2009-09-22 | 2009-09-22 | 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자 |
KR10-2009-0089314 | 2009-09-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010033002A2 true WO2010033002A2 (ko) | 2010-03-25 |
WO2010033002A3 WO2010033002A3 (ko) | 2010-06-24 |
Family
ID=42040032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/005375 WO2010033002A2 (ko) | 2008-09-22 | 2009-09-22 | 미세복합형상렌즈 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110210368A1 (ko) |
WO (1) | WO2010033002A2 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106365112A (zh) * | 2016-09-28 | 2017-02-01 | 西安交通大学 | 一种基于可重构柔性模具的曲面微米柱的制造方法 |
US11276795B2 (en) | 2010-07-13 | 2022-03-15 | S.V.V. Technology Innovations, Inc. | Light converting systems employing thin light absorbing and light trapping structures with lens arrays |
USRE49630E1 (en) | 2011-10-08 | 2023-08-29 | S.V.V. Technology Innovations, Inc. | Collimating illumination systems employing a waveguide |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130049568A (ko) * | 2011-11-04 | 2013-05-14 | 삼성전자주식회사 | 반도체 발광소자 및 그 제조방법 |
KR101389469B1 (ko) | 2012-08-27 | 2014-04-28 | (주)서영 | 이중 구조를 이용한 복합기능 나노필름 및 그의 제조 방법 |
DE102012023025A1 (de) | 2012-11-23 | 2014-05-28 | Rodenstock Gmbh | Erzeugung mikrostrukturierter Brillengläser mittels Transferschicht |
KR102277125B1 (ko) | 2014-06-09 | 2021-07-15 | 삼성전자주식회사 | 광원 모듈, 조명 장치 및 조명 시스템 |
KR102304267B1 (ko) | 2014-11-19 | 2021-09-23 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | 발광 소자 패키지 및 이를 포함하는 백 라이트 유닛 |
CN104570474A (zh) * | 2014-12-24 | 2015-04-29 | 深圳市华星光电技术有限公司 | 背光模组及显示器 |
TWI605616B (zh) * | 2015-08-12 | 2017-11-11 | 固美實國際股份有限公司 | 用於發光二極體的圖案化基板 |
CN205560624U (zh) | 2015-10-26 | 2016-09-07 | 莱迪尔公司 | 用于改变光分布的光学装置及其制造模具和照明装置 |
WO2019209708A1 (en) * | 2018-04-23 | 2019-10-31 | Cree, Inc. | Semiconductor light emitting devices including superstrates with patterned surfaces |
KR102053008B1 (ko) * | 2018-11-12 | 2019-12-06 | 주식회사 에이치엘옵틱스 | 광 확산렌즈 |
CN111964006A (zh) * | 2020-08-26 | 2020-11-20 | 天津天元海科技开发有限公司 | 一种半球形扩角透镜 |
CN112099114B (zh) * | 2020-09-29 | 2021-12-21 | 烟台睿创微纳技术股份有限公司 | 一种复合透镜及其制作方法、红外探测器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004038146A (ja) * | 2002-03-11 | 2004-02-05 | Eastman Kodak Co | 孔質ポリマー光拡散体の表面形成レンズ |
KR20080056673A (ko) * | 2006-12-18 | 2008-06-23 | 주식회사 코오롱 | 광학 시트 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06300905A (ja) * | 1993-04-14 | 1994-10-28 | Nikon Corp | 光散乱面を有する光学部品及びその製造方法 |
US6831786B2 (en) * | 2002-03-11 | 2004-12-14 | Eastman Kodak Company | Surface formed complex multi-layered polymer lenses for light diffusion |
JP2006285184A (ja) * | 2004-08-26 | 2006-10-19 | Fuji Photo Film Co Ltd | 発光ユニット、および撮影装置 |
-
2008
- 2008-09-22 US US13/120,142 patent/US20110210368A1/en not_active Abandoned
-
2009
- 2009-09-22 WO PCT/KR2009/005375 patent/WO2010033002A2/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004038146A (ja) * | 2002-03-11 | 2004-02-05 | Eastman Kodak Co | 孔質ポリマー光拡散体の表面形成レンズ |
KR20080056673A (ko) * | 2006-12-18 | 2008-06-23 | 주식회사 코오롱 | 광학 시트 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11276795B2 (en) | 2010-07-13 | 2022-03-15 | S.V.V. Technology Innovations, Inc. | Light converting systems employing thin light absorbing and light trapping structures with lens arrays |
US11616157B2 (en) | 2010-07-13 | 2023-03-28 | S.V.V. Technology Innovations, Inc. | Method of making light converting systems using thin light absorbing and light trapping structures |
US11923475B2 (en) | 2010-07-13 | 2024-03-05 | S.V.V. Technology Innovations, Inc. | Method of making light converting systems using thin light trapping structures and photoabsorptive films |
USRE49630E1 (en) | 2011-10-08 | 2023-08-29 | S.V.V. Technology Innovations, Inc. | Collimating illumination systems employing a waveguide |
CN106365112A (zh) * | 2016-09-28 | 2017-02-01 | 西安交通大学 | 一种基于可重构柔性模具的曲面微米柱的制造方法 |
CN106365112B (zh) * | 2016-09-28 | 2018-03-16 | 西安交通大学 | 一种基于可重构柔性模具的曲面微米柱的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110210368A1 (en) | 2011-09-01 |
WO2010033002A3 (ko) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010033002A2 (ko) | 미세복합형상렌즈 및 그 제조방법 | |
WO2010027131A1 (ko) | 기능성 나노패턴을 갖는 렌즈 제조방법 | |
WO2019035629A1 (ko) | 지문인식센서가 결합된 디스플레이 장치 | |
US8427748B2 (en) | Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit | |
WO2010077070A2 (ko) | 유기 발광 소자 및 그 제조 방법 | |
KR101345383B1 (ko) | 일체형도광판 제조방법 | |
TW201539736A (zh) | 用於藉白光成色之 oled 裝置的奈米結構 | |
KR20090084967A (ko) | 광중합성 수지 적층체 및 블랙 매트릭스 패턴이 부착된 기판의 제조 방법 | |
KR101113691B1 (ko) | 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자 | |
TWI843727B (zh) | 光學單元、光照射裝置、影像顯示裝置 | |
US20210159465A1 (en) | Display apparatus and method for manufacturing the same | |
KR101002212B1 (ko) | 미세복합형상렌즈 및 미세복합형상렌즈 제조 방법 | |
US9856564B2 (en) | Image processing-based lithography system and method of coating target object | |
JP3617846B2 (ja) | マイクロレンズ・マイクロレンズアレイ及びその製造方法 | |
WO2013047945A1 (ko) | 비정형 패턴을 갖는 광학필름, 그 제조방법 및 상기 광학필름이 적용된 백라이트 어셈블리 | |
WO2015030563A1 (ko) | 뉴턴링 개선 복합 광학 필름 및 그 제조방법 | |
KR101430112B1 (ko) | 포토리소그래피 및 모세관 현상을 이용한 계층적 구조물 제조방법 및 계층적 구조물 | |
WO2013032053A1 (ko) | 광학부재 및 그 제조방법 | |
KR101449633B1 (ko) | 고휘도 모아레 프리 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 필름을 포함한 백라이트 유닛과 마이크로 렌즈 어레이 장치 | |
KR101363473B1 (ko) | 무반사 나노구조층을 구비하는 고분자 렌즈 및 이의 제조 방법 | |
KR101557079B1 (ko) | 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 어레이 장치 및 마이크로 렌즈 필름의 적층 모듈 | |
CN108919559B (zh) | 一种聚合物阵列多组件集成的高密度像素显示及背光模块 | |
KR101162357B1 (ko) | 나노닷이 형성된 복합 광학플레이트, 이를 포함하는 백라이트 유닛 및 나노닷이 형성된 복합 광학플레이트의 제조방법 | |
WO2024154950A1 (ko) | 고종횡비의 고해상도 미세패턴 제조장치 및 그것을 이용한 제조방법 | |
WO2023229398A1 (ko) | 나노 클러스터를 이용한 대면적 투명 반사 패널 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09814818 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13120142 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09814818 Country of ref document: EP Kind code of ref document: A2 |