[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101113691B1 - 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자 - Google Patents

이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자 Download PDF

Info

Publication number
KR101113691B1
KR101113691B1 KR1020090089314A KR20090089314A KR101113691B1 KR 101113691 B1 KR101113691 B1 KR 101113691B1 KR 1020090089314 A KR1020090089314 A KR 1020090089314A KR 20090089314 A KR20090089314 A KR 20090089314A KR 101113691 B1 KR101113691 B1 KR 101113691B1
Authority
KR
South Korea
Prior art keywords
lens
thin film
film layer
micro
microcomposite
Prior art date
Application number
KR1020090089314A
Other languages
English (en)
Other versions
KR20110032019A (ko
Inventor
정기훈
채선기
정혁진
김재준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/120,142 priority Critical patent/US20110210368A1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090089314A priority patent/KR101113691B1/ko
Priority to PCT/KR2009/005375 priority patent/WO2010033002A2/ko
Publication of KR20110032019A publication Critical patent/KR20110032019A/ko
Application granted granted Critical
Publication of KR101113691B1 publication Critical patent/KR101113691B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은 미세복합형상렌즈 제조방법 및 이에 의하여 제조된 미세복합형상렌즈에 관한 것으로서, 본 발명에 따른 미세복합형상렌즈 제조방법은 기판상에 포토레지스트층을 적층한 후, 패터닝하여 미세복합패턴 어레이를 형성하는 단계; 탄성을 가지는 재료를 포함하는 박막층을 상기 미세패턴 어레이 상에 도포, 적층하는 단계; 내부에 소정 크기의 공동부를 가지는 탄성층의 일 면을 상기 박막층에 접촉, 결합시키는 단계; 상기 공동부 내의 기압을 낮춤으로써, 상기 박막층이 상기 공동부 내부로 들어가도록 상기 공동부에 음압을 인가하는 단계; 상기 박막층 상에 충진물을 충진시켜 렌즈를 형성하는 단계; 및 상기 렌즈를 상기 박막층으로부터 분리시키는 단계를 포함하며, 여기에서 상기 공동부는 상기 박막층에 대향하는 대향면에 소정 높이를 갖는 구형부가 구비되는 것을 특징으로 하며, 미세복합패턴에 의해 보다 큰 광방출각을 형성할 수 있으므로, 점광원인 LED 광원을 광균일도가 우수한 면광원으로 전환이 가능하며, 또한, 기존의 백라이트 유닛에 사용되는 광학기판의 복합적층 없이 단일렌즈 하나로 도광판, 프리즘판 및 확산판의 역할을 대체할 수 있는 장점이 있다. 또한, 90도에 가까운 LED 광원의 방출각을 160도이상 증가시킬 수 있고, 미세패턴의 국부적 변화와 극미세입자 혼합기술을 통해 광량의 균일도와 광원의 방출각을 향상시킬 수 있는 효과가 있고, 3차원 몰딩기술과 미세유체관 어레이를 이용해 웨이퍼레벨 제작이 가능하다. 또한, 넓은 광방출각을 가지는 단일 렌즈를 통해 LED 개수를 줄일 수 있어, 제조 원가를 절감할 수 있으며, LED로부터 발생되는 발열을 줄일 수 있다. 더 나아가, 본 발명에 따른 미세복합형상 렌즈의 이중곡면 구조는 광균일도를 향상시킬 뿐만 아니라, 광방출각을 단일곡면 구조보다 향상시킬 수 있다.
LED, BLU, LENS, MICROPATTERNS, MICROTEMPLATING, NANOPARTICLES, Wide Angle Illumination, 미세복합패턴

Description

이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 LED 소자{Manufacturing method for Lens with Micro-Patterned Complex Surface having double curvature, Lens with Micro-Patterned Complex Surface having double curvature manufactured by the same and LED device comprising the Lens with Micro-Patterned Complex Surface having double curvature}
본 발명은 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 LED 소자에 관한 것으로서, 특히 광원에서 나온 빛을 넓고 균등하게 분산시키며, 광방출각이 증가된, 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 LED 소자에 관한 것이다.
현재 미세영역에서의 정교한 MEMS(MicroElectroMechanicalSystem) 공정을 이용하여, 렌즈 표면 변형을 통해 빛을 조절하는 기술들이 많이 개발되고 있다. 그 중에서도 빛을 넓고 균등하게 분산시키는 연구가 최근 크게 주목받고 있다.
특히, 기존의 LCD-TV에 사용되는 백라이트 유닛(Backlight Units, 이하 BLUs) 보다 LED(Light Emitting Diodes) BLUs의 많은 장점이 드러나면서, LED BLUs의 TV 시장 적용이 활발해지고 있다.
LCD 나 조명 BLUs용 LED 광원의 경우 빛 확산도가 중요해 렌즈 역할이 커지고 있으나 그동안 국내 LED 업체들은 LED 렌즈와 관련하여 유럽이나 일본에서 수입하거나 해외 업체와 공동 개발 방식으로 렌즈를 조달하고 있는 실정으로, 향후 LED 산업의 성장을 주도하기 위해서는 국산 렌즈 기술 개발이 시급한 실정이다. LED에서 렌즈에 따라 휘도가 좌우되는 등 기술적 비중이 매우 크며 현재는 전체 LED 생산 가격에서 렌즈가 차지하는 비중은 5%이내지만 고출력?LED의 경우 다소 높아질 것으로 예상된다. 특히 LCD BLU 응용의 경우 렌즈의 역할이 매우 중요한데, 얇은 두께를 유지하면서 LED 개수를 더 줄임으로서 저가격화를 달성해야 하는 측면에서 볼 때 넓은 광방출각을 갖는 렌즈의 개발이 요구되고 있다.
종래 LED 위에 설치되는 렌즈는 방출각을 향상시키기에는 가능하나, 광균일도를 제어하는 데 한계가 있고, LED와 같은 점광원을 면광원으로 변환시 별도의 도광판, 프리즘판, 확산판과 같은 다양한 복합 광학기판이 요구되는 문제점이 있었다. 각각의 요소의 제작 공정 단가가 높고, 정밀 패키징이 요구되므로, 전반적인 생산원가 절감에 한계가 있어 일체형 광학 소자가 요구된다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 표면에 형성된 다양한 형태의 미세복합패턴 및 이중곡면 구조에 의하여, 보다 큰 광방출각을 가지고, 또한 개선된 광균일도를 갖는 이중곡면 구조를 갖는 미세복합형상렌즈를 제조하는 방법, 이에 따라 제조된 이중곡면 구조의 미세복합형상 렌즈, 및 이를 포함하는 LED소자를 제공하는 데 있다.
상기와 같이 구성되는 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈 제조방법 및 이에 의하여 제조된 미세복합형상렌즈는 미세복합패턴에 의해 보다 큰 광방출각을 형성할 수 있으므로, 점광원인 LED 광원을 광균일도가 우수한 면광원으로 전환이 가능하다. 또한, 기존의 백라이트 유닛에 사용되는 광학기판의 복합적층 없이 단일렌즈 하나로 도광판, 프리즘판 및 확산판의 역할을 대체할 수 있는 장점이 있다. 또한, 90도에 가까운 LED 광원의 방출각을 160도이상 증가시킬 수 있고, 미세패턴의 국부적 변화와 극미세입자 혼합기술을 통해 광량의 균일도와 광원의 방출각을 향상시킬수 있는 효과가 있고, 3차원 몰딩기술과 미세유체관 어레이를 이용해 웨이퍼레벨 제작이 가능하다. 또한, 넓은 광방출각을 가지는 단일 렌즈를 통해 LED 개수를 줄일 수 있어, 제조 원가를 절감할 수 있으며, LED로부터 발생되는 발열을 줄일 수 있다. 더 나아가, 본 발명에 따른 미세복합형상 렌즈의 이중곡면 구조는 광균일도를 향상시킬 뿐만 아니라, 광방출각을 단일곡면 구조 보다 향상시킬 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 내용 및 실시예를 설명하면 다음과 같다.
도 1은 본 발명에 따른 미세복합형상렌즈의 구조가 도시된 단면도이다.
도 1을 참조하면, 본 발명에 따른 미세복합형상렌즈는 렌즈(100)의 표면에 다수의 돌출부(10)로 이루어진 미세복합패턴이 형성되어 있으며, 렌즈(100)를 구성하는 물질이 광 고분자 나노입자를 포함하고 있어, 렌즈 내부를 통과하는 빛이 상기 나노입자(20)와 상기 돌출부(10)에 의해 산란, 반사 및 회절되어 렌즈 외부로 빛이 넓고 균등하게 방출되도록 한다. 즉, 본 발명에서 "미세복합형상렌즈"는 렌즈 표면에 다양한 형상의 돌출부로 이루어진 미세패턴이 형성된 렌즈를 지칭한다.
상기 미세복합형상렌즈는 광감응 고분자인 자외선 경화 고분자(UV Curable epoxy resin), 열경화 고분자 또는 세라믹 등의 재료로 만들어질 수 있으나, 표면에 미세패턴이 형성되며, 소정 곡률을 갖는 한, 어떠한 물질도 본 발명의 범위에 속한다.
도 2는 본 발명에 따른 미세복합형상렌즈의 미세복합패턴의 실시예들이 도시된 도이다.
도 2를 참조하면, 미세복합패턴의 돌출부의 수평방향의 단면이 (a) 원 (b) 사각형 (c) 삼각형 (d) 육각형 (e) 마름모의 형태로 구성될 수 있다.
상기의 형태를 가진 돌출부들이 연속적으로 배열되어 미세복합패턴을 형성한 다.
또한, 이 경우 상기 돌출부의 수직방향의 단면은 사각형, 반원, 삼각형 등의 형태로 구성될 수 있다.
이 경우, 상기 돌출부의 입체적인 형상은 원기둥, 반구형, 원뿔, 사각기둥, 사각뿔, 삼각기둥, 삼각뿔 등으로 표현될 수 있다.
여기서, 상기 돌출부의 높이 또는 폭은 광의 균등성 조절을 위해 조사하는 광원의 파장이상의 다양성을 가진다. 회절효율을 높이기 위해 상기 돌출부의 폭은 광원의 파장과 같거나 그 이상으로 형성되는 것이 바람직하다.
본 발명에서는 상기에서 서술한 형태에 한정되는 것은 아니며, 다양한 형태의 돌출부가 렌즈 표면에 형성될 수 있다.
또한, 미세복합형상렌즈의 형태가 볼록렌즈거나 오목렌즈에 한정되지 않으며, 다양한 형태로 제작될 수 있고, 돌출부의 형상이나 크기 등도 다양한 형태가 복합적으로 배열되어 미세복합패턴을 형성할 수도 있다.
도 3 및 도 4를 통하여 다양한 형태의 본 발명의 실시예를 설명하겠다.
도 3은 본 발명에 따른 미세복합형상렌즈의 제 1 실시예가 도시된 도이다.
도 3의 (a)는 렌즈의 위에서 바라본 모습이 도시된 도이며, 도 3의 (b)는 렌즈의 수직방향으로의 단면이 도시된 단면도이다.
렌즈(100)의 표면에는 다수의 돌출부(10)가 패턴을 이루며 형성된다.
여기서, 상기 돌출부가 형성된 렌즈(100)의 표면 곡률은 볼록렌즈거나 오목렌즈에 한정되지 않으며, 다양한 형태로 제작되고, 한 실시예로 가장자리가 볼록하 게 형성되며, 렌즈의 중심부로 갈수록 오목하게 형성될 수 있다.
즉, 위의 실시예를 구체적으로 설명하면 렌즈의 중심부(A)의 두께(H1)는 렌즈의 중심부(A)에서 렌즈의 가장자리(C)까지의 거리의 1/2 되는 지점의 두께(H2)보다 작게 형성된다.
도 4는 본 발명에 따른 미세복합형상렌즈의 제 2 실시예가 도시된 도이다.
도 4의 (a)는 렌즈 표면에 형성된 미세복합패턴을 수평선을 기준으로 투영한 모습이 도시된 도이며, (b)는 미세복합형상렌즈의 수직방향의 단면이 도시된 단면도이다.
도 4를 참조하면, 본 발명에 따른 미세복합형상렌즈의 제 2 실시예는 렌즈의 중심부 부근의 표면에는 원기둥 형태의 돌출부(10a)가 형성되며, 렌즈의 가장자리로 갈수록 반구형의 돌출부(10b)가 형성된다.
즉, 두 가지 형상의 돌출부가 복합적으로 패턴을 이루도록 형성된다.
또한, 돌출부의 형상 역시 두 가지 형태의 돌출부가 서로 다르도록 구성된다.
돌출부(10a)의 높이는 돌출부(10b)의 높이보다 높게 형성된다.
상기 설명한 내용은 한 가지 실시예일 뿐이며, 본 발명은 다양한 형태의 돌출부가 복합적으로 배열되어 미세복합패턴을 형성할 수 있다.
도 5는 본 발명에 따른 미세복합형상렌즈의 제 3 실시예가 도시된 도이다.
도 5를 참조하면, 본 발명에 따른 미세복합형상렌즈의 제 3 실시예는 렌즈(100) 표면에 형성된 미세복합패턴의 돌출부(10) 사이 사이에 상기 돌출부(10)의 폭에 대한 높이비 보다 더 큰 높이비를 가지는 극미세패턴의 무반사층(30)이 형성되도록 구성된다.
여기서 상기 극미세패턴 하나 하나의 폭은 조사되는 광원의 파장(λ)보다 적게 형성되는 것이 바람직하며, 극미세패턴의 높이는
Figure 112009058003931-pat00001
가 되는 것이 바람직하다. 여기서 n 은 0, 1, 2... 이다.
이 경우 상기 무반사층(30)은 미세복합패턴의 돌출부의 위에 형성될 수도 있다.
상기 무반사층의 또 다른 실시예는 상기 극미세패턴 대신 상기 돌출부 및 렌즈 표면을 덮는 미세박막층으로 구성되는 것이다. 이 경우 상기 무반사층은 하나 이상의 미세박막층으로 이루어질 수 있다.
여기서, 상기 무반사층의 두께의 일례는 광원 파장의 1/4 이고, 렌즈의 굴절률보다 작은 굴절률을 가지며, MgF2, Al2O3, ZrO2, 파릴렌(Parylene) 중 하나 이상을 포함하는 재료로 형성된다. 상기 무반사층의 최적의 굴절률은 상기 렌즈의 굴절률의 이제곱근이다.
상기 무반사층(30)은 다중반사로 인한 LED 광원방향으로의 후반사를 최소화시킨다.
도 6은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 빛 투과 모습이 비교 도시된 도이다.
도 6의 (a)는 일반 미세렌즈의 경우인데, 일반 미세렌즈의 경우 렌즈를 통과한 빛은 렌즈의 중심으로 모이게 되는 반면에, 도 6의 (b)와 같이 본 발명에 따른 미세복합형상렌즈의 경우에는 돌출부에 의해 다양한 각도로 반사와 회절이 이루어져 일반 미세렌즈보다 큰 광방출각을 형성한다.
도 6의 (c)를 참조하면, 본 발명에 따른 미세복합형상렌즈는 렌즈의 주곡률(P1)과 렌즈 재료의 굴절률(P2), 돌출부(10)의 모양, 크기, 돌출부의 주기, 종횡비 등을 조절하여 최대 광방출각을 만들어낼 수 있다.
도 7은 백색광원이 입사된 경우 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 분포가 촬영된 사진이다.
도 7의 (a)는 볼록한 곡면을 갖는 일반 미세렌즈의 광 분포 이미지이며, 도 7의 (b)는 볼록한 곡면상에 미세복합패턴이 형성된 미세복합형상렌즈의 광 분포 이미지이다.
일반 미세렌즈의 경우보다 본 발명에 따른 미세복합형상렌즈의 경우에 광 분포도가 더 넓고 균일하게 분포되는 것을 알 수 있다. 이 경우 미세복합패턴에 의해 유발된 회절패턴에 의해 빛의 최대 세기는 감소하지만 전체적으로 렌즈를 통과한 빛의 균등성은 향상됨을 알 수 있다.
도 8은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 세기 분포가 촬영된 사진이다.
일반 미세렌즈의 경우 LED 광원에 의한 세기 분포보다 본 발명에 따른 미세복합형상렌즈의 경우 광 세기 분포가 더 균일함을 알 수 있다.
도 9a 및 도 9b는 돔 형태의 일반 미세렌즈의 경우와 본 발명에 따른 미세복합형상렌즈의 경우에 백색광원의 진행과정 및 통과 후 광 분포가 비교 도시된 도이다.
도 9a의 (a)의 경우 일반적인 백색광원이 직진하는 모습이 도시된 도이며, (b)의 경우 일반 미세렌즈를 지나는 빛을 촬영한 모습인데, 렌즈를 지난 빛이 모였다가 다시 흩어지는 것을 볼 수 있으며, (c)의 경우 렌즈의 정면에서 광 분포를 촬영한 것으로 광이 넓게 퍼지지 않고 모아지는 것을 볼 수 있다.
도 9b의 (a)의 경우 회절 격자를 통과한 빛이 퍼지는 모습이 도시된 도이며, (b)의 경우 미세복합형상렌즈를 지나는 빛을 측면에서 촬영한 것으로 렌즈를 통과한 직후부터 빛이 넓게 퍼지는 것을 알 수 있다. (c)의 경우 렌즈 표면에 형성된 미세복합패턴에 따라 빛이 골고루 넓게 분포되는 것을 알 수 있다.
도 10은 주사전자현미경(SEM)을 통해 본 발명에 따른 미세복합형상렌즈를 촬영한 모습이 도시된 사진이다.
도 10의 (a)는 주사전자현미경(Scanning Electron Microscope, SEM)을 통해 미세복합형상렌즈의 표면을 촬영한 것인데, 아주 미세한 돌출부들이 패턴을 이루고 있는 것을 볼 수 있으며, (b)는 더욱 더 확대한 것으로 돌출부가 미세기둥 형상을 가지고 있는 것을 볼 수 있으며, 돌출부와 돌출부간의 간격이 6㎛ 정도됨을 알 수 있다.
도 11은 본 발명에 따른 미세복합형상렌즈의 돌출부 간의 간격, 돌출부의 폭, 폭과 간격의 복합적인 조건에 따른 광의 세기가 도시된 그래프이다. 여기에서, 본 발명에 따른 미세복합형상렌즈는 μCOS-1-5로 표시되며 각각의 돌출부 치수는 도 11에서 백색으로 표시된다. (a)의 경우에는 돌출부의 크기는 동일하게 한 채 돌출부와 돌출부간의 간격을 점차 증가시킨 경우로써, 이 경우 돌출부 간의 간격이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다. (b)의 경우에는 돌출부 간의 간격은 동일하게 한 채 돌출부의 폭을 증가시킨 경우로써, 이 경우 돌출부의 폭이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다. (c)의 경우에는 돌출부 간의 간격과 폭을 모두 비교한 경우로써, 돌출부의 폭과 간격이 좁을수록 광 방출각이 증가하고 광의 세기는 감소됨을 알 수 있다.
즉, 본 발명에 따라 돌출부가 표면에 형성된 미세복합형상렌즈 세 가지 경우 모두 일반 돔 형태의 미세렌즈(dom lens)의에 비하여 넓은 광방출각과 함께, 균일할 광 세기를 나타내는 것을 알 수 있다
도 12는 본 발명에 따른 미세복합형상렌즈의 제조 방법을 설명하는 제조 과정이 도시된 도이다.
본 발명에 따른 미세복합형상렌즈의 제조 방법은 먼저 (a)와 같이 기판(1) 상에 상기 미세복합패턴(2)을 패터닝하여 템플릿을 제작한다. 여기서 상기 기판(1)은 유리 기판이 사용될 수 있다.
다음으로 (b)와 같이 상기 미세복합패턴(2)을 덮도록 상기 템플릿 상에 탄성을 가지는 재료로 박막층(3)을 형성한다. 여기서, 상기 박막층(3)은 일반적으로 합성 수지 등과 같은 탄성을 가지는 고분자 물질이 될 수 있으며, 하나의 예로 PDMS(Polydimethylsiloxane)로 형성될 수 있다.
여기서, 상기 박막층(3)의 두께는 상기 미세복합패턴(2)을 완전히 덮을 수 있도록 상기 상기 미세복합패턴(2)의 높이보다 크게 한다.
다음으로, (c)와 같이 상기 박막층(3)을 챔버(200)의 개구부에 접착시킨다.
이 경우 상기 박막층을 상기 챔버에 접착시키기 전에 상기 박막층을 산소 플라즈마 처리하여 이물질을 제거하는 과정을 더 수행할 수 있다.
여기서, 상기 챔버(200)는 내부에 빈 공간(210)이 형성되며 챔버의 일면에는 내부의 빈공간과 연결되는 미세유체채널(220)이 형성된다.
그 후 상기 박막층(3)과 상기 템플릿(1, 2)을 분리시킨다.
여기서, 상기 템플릿이 제거된 박막층은 상기 미세복합패턴과 상보적인 패턴 구조를 가지게 된다.
다음으로, (d)와 같이 상기 미세유체채널(220)을 통해 음압을 인가하여 상기 박막층(3)이 챔버 내부로 오목하게 들어가도록 한다. 여기서, 음압을 인가한다고 하는 것은 챔버 내부의 공기압이 챔버 외부보다 낮게 하는 것으로 내부의 공기를 챔버 외부로 토출시키는 것을 의미한다.
다음으로, (e)와 같이 상기 박막층(3)의 오목하게 들어간 일면 위에 광 고분자 나노입자가 포함된 충진물(100)을 충진시키고, 그 위에 기판(300)으로 덮은 후 자외선이나 열을 가하여 상기 충진물(100)을 경화시킨다.
여기서, 상기 충진물은 자외선 경화 고분자, 열경화 고분자 및 세라믹 등이 될 수 있다.
충진물(100)이 경화되면 이것이 바로 본 발명의 미세복합형상렌즈가 되는데, 이 렌즈를 (f)와 같이 상기 박막층으로부터 분리시킨다.
그 후, 필요에 따라 상기 렌즈 표면 상에 무반사층인 미세박막층을 형성할 수 있다. 또한, 상기 무반사층은 상기 충진물(100)을 충진하기 전에 상기 박막층(3)상에 얇게 형성시켜 경화시킨 후 상기 충진물(100)을 충진하는 과정을 통해 형성될 수도 있다.
상기와 같은 본 발명의 렌즈 제작 공정 중 렌즈의 몰딩시 사용되는 마스터는 변형이 우수한 실리콘계열의 PDMS를 사용하여 원본 변형 렌즈 마스터를 제작 후 자외선 경화수지 또는 열경화수지를 이용하여 복제후 다시 PDMS로 재복제함으로써 변형마스터에서 고정마스터의 제작이 가능하다.
또한, 본 발명에 따른 렌즈 제조 방법은 미세 몰딩 기술시 변형렌즈 마스터를 미세유체관을 통해 도 13과 같이 연결함으로써 여러 개의 변형마스터를 동시에 같은 압력하에 동일 변형을 갖도록 설계할 수 있고, 이를 바탕으로 웨이퍼레벨공정화 할 수 있다.
본 발명자는 표면에 상술한 미세패턴이 형성된 미세복합형상렌즈의 곡면구조를 도 3의 (b)와 같은 이중 구조, 즉, 오목렌즈의 곡면구조와 볼록렌즈의 곡면구조 모두를 포함하는 구조로 하는 경우, 광방출각 등과 같은 렌즈 특성이 단일곡면 구조에 비하여 향상되는 점을 발견하였다. 따라서, 본 발명은 개선된 광특성을 갖는 이중곡면 구조의 미세복합형상렌즈 제조방법 및 이에 따라 제조된 이중곡면 구조의 미세복합형상 렌즈를 제공하는데, 이하 도면을 이용하여 본 발명에 따른 이중 곡면 구조의 미세복합형상 렌즈를 설명한다.
도 14는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈의 모식도이다.
도 14를 참조하면, 본 발명의 상기 실시예에 따른 이중곡면 구조의 미세복합형상렌즈는 주변부의 볼록부(310), 중심부의 오목부(320)을 갖는다.
이중곡면 구조를 갖는 상기 미세복합형상렌즈는 오목부(320)의 오목 곡면을 통하여 LED 광원의 핫-스폿(hot spot)을 감소시키고, 빛을 넓게 방출시킨다. 또한 상기 중심부의 오목 곡면은 주로 회절된 빛의 각도를 제어하고, 광균일도 및 광반사각을 증가시킬 수 있다. 또한 주변부의 볼록 곡면은 빛을 미세패턴과 커플링시켜, 내부에서 반사되는 광량을 제어할 수 있다.
이하 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈의 제조방법을 상세히 설명한다.
제조예
도 15는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈 제조공정의 단계도이다.
도 15의 (a)를 참조하면, 기판상에 포토레지스트를 적층한 후 패터닝하여, 미세패턴 어레이(2)를 제조하였다. 본 발명의 일 실시예에서는 먼저 4 인치 실리콘 기판을 세척한 후 30분간 120℃로 표면에 잔류하는 물을 증발시켰다. 이로써 화학 잔류물과 유기 오염물이 제거되었다. 또한 HMDS 처리를 해주어 포토레지스트와 실리콘 기판 사이의 접착력을 향상시켰다. 이후. 포지티브 포토레지스트인 AZ1512(AZ Electronic Materials)를 상기 실리콘 기판상에 도포한 후, 1500rpm으로 3초간, 4500rpm으로 30초간 스핀코팅하여, 1.2 ㎛ 두께의 포토레지스트층을 실리콘 기판상에 적층시켰다. 이후, 마스크 얼라이너(MA6, SUSS MicroTec)에서 상기 포지티브 레지스트는 패터닝된 후, 현상액에서 현상되었다. 이로써, 다수의 돌출부로 이루어진 미세패턴 어레이, 즉 미세복합패턴(2)가 제조되었는데, 패턴된 상기 돌출부의 형상, 치수는 원하는 광방출 효과에 따라 다양하게 변형, 변경될 수 있으며, 이는 모두 본 발명의 범위에 속한다.
도 15의 (b)를 참조하면, 상기 기판상의 미세복합패턴(2)을 덮도록, 탄성을 가지는 재료로 이루어진 박막층(3)을 미세복합패턴(2) 상에 적층한다. 여기서, 상기 박막층(3)은 일반적으로 합성수지 등과 같은 탄성을 가지는 고분자 물질이 될 수 있으며, 하나의 예로 PDMS(Polydimethylsiloxane)로 형성될 수 있다. 또한, 상기 박막층(3)의 두께는 상기 미세복합패턴(2)을 완전히 덮을 수 있도록 상기 미세복합패턴(2)의 높이보다 크게 하며, 이로써 상기 미세복합패턴의 형상, 치수가 상기 박막층(3)에 구현된다.
본 발명의 일 실시예에서, PDMS(Sylgard 184, Dow Corning) 박막을 상기 박막층(3)으로 하여, 상기 미세복합패턴(2) 상에 도포, 적층한 후, 스핀 코팅하였다. 상기 스핀코팅 전, 비점착 코팅(anti-stiction coating, Trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, 97%, Sigma-Aldrich Products Incorporated, St. Louis, MO)을 상기 미세복합패턴 템플릿(2) 상에 실시하여, 탄성을 갖는 상기 박막층의 분리를 용이하게 하였다.
도 15의 (c) 내지 (e) 를 참조하면, 상기 박막층(3)과 결합시 내부에 소정 크기의 공동부(Cavity, 210))가 형성되는 탄성층(도 15의 (c) 참조, 200)이 상기 박막층(3)에 결합, 접착되고(도 15의 (d) 참조), 이후 상기 기판은 제거된다(도 15의 (e) 참조). 본 발명의 일 실시예에서 상기 탄성층(3)은 PDMS이었으며, 상기 공동부 직경은 2.6mm 수준이었고, 또한 상기 공동에는 미세채널(240)이 구비되어 있다. 이로써, 상기 공동 내의 공기압은 상기 미세채널에 의하여 자유로이 조절, 제어될 수 있다.
본 발명의 일 실시예에서 상기 공동부(210) 내에는 상기 박막층(3)에 대향하는 대향면(200a)에 볼록 렌즈와 같은 형상의 구형부(230)가 구비된다. 상기 구형부는 상기 박막층의 중심점을 기준으로 상기 미세복합패턴(3)의 직경보다는 작은 직경을 갖는 것이 바람직하다. 상기 구형부(230)의 볼록렌즈 형상은 이후 미세복합형상렌즈 중심부의 곡면구조를 상보적으로 결정하며, 이로써 상기 중심부의 곡면구조는 오목렌즈의 곡면 구조를 갖는다. 본 발명의 일 실시예에서 상기 구형부의 재질은 UV-경화성 에폭시 수지이었으나, 이는 일 예일 뿐, 본 발명의 범위는 이에 제한되지 않는다.
도 15의 (f)를 참조하면, 상기 미세유체채널을 통해 음압을 인가하여 상기 박막층(3)이 공동부(210) 내부, 보다 구체적으로는 상기 공동부(210) 내의 구형부(230) 방향으로 들어가도록 한다. 여기서, 음압을 인가한다고 하는 것은 내부의 공기압이 공동부(210) 외부보다 낮게 하는 것으로, 내부의 공기를 공동부(210) 외부로 토출시키는 것을 의미한다. 즉, 공동부(210)를 기준으로, 내부와 외부 압력차는 상기 공동부(210)의 일 면을 이루는 탄성 재질의 박막층(3)을 공 동부(210) 내로 이동시켜, 들어가게 한다. 이때, 상기 박막층(3)은 상기 공동부 내에서 소정 높이 및 크기를 갖는 볼록렌즈의 곡면구조를 갖는 구형부(230)와 접촉하게 되며, 이때 박막층(3)은 전체영역이 아닌 일부영역, 즉, 박막층(3)의 중심부 영역만이 상기 구형부(230)와 접촉하게 된다. 그 결과 상기 박막층(3) 중심부 영역은 구형부(230)의 곡면 형상에 대응하는, 상보적인 곡면 구조를 갖게 된다. 하지만, 상기 구형부(230)에 접촉하지 않는 박막층 영역, 즉, 주변부 영역은 여전히 공동부(210) 방향으로 함몰된 형태의 곡면 구조를 갖는다. 따라서, 박막층(3)과 곡면부(230)의 접촉 면적, 곡면부(230)의 곡률 반경 등에 따라 원하는 중심부의 곡면 구조를 다양하게 결정할 수 있다.
다음으로, 도 15의 (g)를 참조하면, 중심부는 구형부(230) 형상이, 주변부는 공동부(210) 내로 들어간 형상을 갖는, 소위 이중곡면 구조의 박막층(3) 상에 광 고분자 나노입자가 포함된 충진물(100)을 충진시키고, 그 위에 또 다른 기판(100), 예를 들면 유리기판으로 덮은 후 자외선이나 열을 가하여 상기 충진물(300)을 경화시킨다. 여기서, 충진물은 자외선 경화 고분자, 열경화 고분자 및 세라믹 등이 될 수 있다. 본 발명의 일 실시예에서 상기 충진물은 광경화성, 특히 UV 경화성 수지(Norland optical adhesive 63, Norland Products Incorporated, Cranbury)를 사용하였으나, 본 발명의 범위는 이에 제한되지 않는다.
충진물(100)이 경화되면 이것이 바로 본 발명의 미세복합형상렌즈가 되는데, 이후 렌즈를 도 12의 (f)와 같이 상기 박막층으로부터 분리시킨다(도 15의 (h)). 본 발명의 일 실시예에서 상기 경화는 UV 경화이었다.
이상의 제조공정을 통하여 얻어진 미세복합형상렌즈는, 두 개의 곡면 구조, 즉, 오목 곡면의 중심부, 볼록 곡면의 주변부를 가지며, 상기 렌즈 표면에는 미세패턴이 형성되어 있다.
도 16은 본 발명의 일 실시예에 따라 제조된, 이중곡면 구조의 미세복합형상 렌즈의 SEM 이미지이다.
도 16을 참조하면, 미세복합형상렌즈의 중심부와 이를 에워싸고 있는 주변부는 곡면 형상이 서로 다른, 소위 이중곡면이며, 렌즈 표면에는 미세패턴이 형성되어 있음을 알 수 있다.
실험예
본 실험결과를 통하여 렌즈의 곡면구조와 광방출각 특성 간의 관계를 분석하였다. 이중곡면 구조의 미세복합형상렌즈의 광방출각을 optical power meter를 이용하여 측정, 분석하였다. 참조예로서, LED 광원을, 비교예로서, 단일곡면 구조인 오목 및 볼록렌즈 미세복합형상렌즈를 사용하였다.
도 17은 LED 광원의 광방출각을 측정한 그래프이다.
도 17을 참조하면, 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈는 단일곡면 구조의 미세복합형상렌즈에 비하여 더 넓어진 광방출각(약 ± 4°)을 갖는 것을 알 수 있다. 상기 실험 결과는 미세복합형상 렌즈의 곡면구조에 따라 광방출각은 달라지며, 특히 이중구조가 유리하다는 점을 나타낸다.
본 발명에 따른 이중곡면 구조의 미세복합형상 렌즈는 LED 소자와 같은 점 광원 디스플레이 장치에 있어, 매우 유리한 효과를 갖는다.
도 18은 LED 소자에 본 발명에 따른 미세복합형상렌즈가 적용된 경우의 모식도이다.
도 18을 참조하면, 소정 간격으로 이격된 복수 개의 LED 광원(점광원) 상에 본 발명에 따른 미세복합형상렌즈(MSL), 특히 이중곡면 구조를 갖는 미세복합형상렌즈가 구비된다. 특히, 본 발명에 따른 이중곡면 구조의 미세복합형상렌즈는 광방출각 등의 효과가 우수하므로, LED 광원 각각에 하나씩 구비된 이중곡면 구조의 미세복합형상렌즈는 각각의 LED 광원으로부터 조사되는 빛을 효과적으로 확산, 방출시킨다.
이상과 같이 본 발명에 의한 미세복합형상렌즈 및 미세복합형상렌즈 제조 방법을 예시된 도면을 참조로 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명은 한정되지 않고, 기술사상이 보호되는 범위 이내에서 응용될 수 있다.
도 1은 본 발명에 따른 미세복합형상렌즈의 구조가 도시된 단면도,
도 2는 본 발명에 따른 미세복합형상렌즈의 미세복합패턴의 실시예들이 도시된 도,
도 3은 본 발명에 따른 미세복합형상렌즈의 제 1 실시예가 도시된 도,
도 4는 본 발명에 따른 미세복합형상렌즈의 제 2 실시예가 도시된 도,
도 5는 본 발명에 따른 미세복합형상렌즈의 제 3 실시예가 도시된 도,
도 6은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 빛 투과 모습이 비교 도시된 도,
도 7은 백색광원이 입사된 경우 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 분포가 촬영된 사진,
도 8은 일반 미세렌즈와 본 발명에 따른 미세복합형상렌즈의 광 세기 분포가 촬영된 사진,
도 9a는 광원과 돔 형태의 일반 미세렌즈의 광 이동경로를 표시한 것과 돔 형태의 일반 미세렌즈를 통과 한 광의 분포가 도시된 도,
도 9b는 확산판과 돔 형태의 미세복합형상렌즈의 광 이동경로를 표시한 것과 돔 형태의 미세복합형상렌즈를 통과한 광의 분포가 도시된 도,
도 10은 주사전자현미경(SEM)을 통해 본 발명에 따른 미세복합형상렌즈를 촬영한 모습이 도시된 사진,
도 11은 본 발명에 따른 미세복합형상렌즈의 돌출부 간의 간격, 돌출부의 폭, 폭과 간격의 복합적인 조건에 따른 광의 세기가 도시된 그래프,
도 12는 본 발명에 따른 미세복합형상렌즈의 제조 방법을 설명하는 제조 과정이 도시된 도,
도 13은 본 발명에 따른 미세복합형상렌즈를 동시에 여러 개를 만들 수 있는 장치가 도시된 도,
도 14는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈가 도시된 도,
도 15는 본 발명의 일 실시예에 따른 이중곡면 구조의 미세복합형상렌즈 제조공정의 단계도,
도 16은 본 발명의 일 실시예에 따라 제조된, 이중곡면 구조의 미세복합형상 렌즈의 SEM 이미지,
도 17은 LED 광원의 광방출각을 측정한 그래프,
도 18은 LED 소자에 본 발명에 따른 미세복합형상렌즈가 적용된 경우의 모식도이다.
<도면의 주요 부분에 관한 부호의 설명>
1: 기판
2: 미세복합패턴
3: 박막층
10: 돌출부
20: 나노입자
100: 렌즈
200: 챔버

Claims (15)

  1. 기판상에 포토레지스트층을 적층한 후, 패터닝하여 미세복합패턴 어레이를 형성하는 단계;
    탄성을 가지는 재료를 포함하는 박막층을 상기 미세패턴 어레이 상에 도포, 적층하는 단계;
    내부에 소정 크기의 공동부를 가지는 탄성층의 일 면을 상기 박막층에 접촉, 결합시키는 단계;
    상기 공동부 내의 기압을 낮춤으로써, 상기 박막층이 상기 공동부 내부로 들어가도록 상기 공동ㅂ에 음압을 인가하는 단계;
    상기 박막층 상에 충진물을 충진시켜 렌즈를 형성하는 단계; 및
    상기 렌즈를 상기 박막층으로부터 분리시키는 단계를 포함하며, 여기에서 상기 공동부는 상기 박막층에 대향하는 대향면에 소정 높이를 갖는 구형부가 구비되는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  2. 제 1항에 있어서,
    상기 공동부 내의 구형부는 상기 박막층 방향으로 돌출된, 볼록 렌즈 형상인 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  3. 제 1항에 있어서,
    상기 박막층이 공동부 내부로 들어갈 때, 상기 박막층의 일부는 상기 구형부의 표면에 접촉하는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  4. 제 2항에 있어서,
    상기 박막층의 중심 영역이 상기 구형부 표면에 접촉하며, 상기 박막층의 주변 영역은 상기 구형부 표면에 접촉하지 않는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  5. 청구항 5은(는) 설정등록료 납부시 포기되었습니다.
    제 1항에 있어서,
    상기 미세복합형상렌즈는 자외선 경화 고분자, 열경화 고분자 및 세라믹 중
    하나 이상으로 형성되는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  6. 제 1항에 있어서,
    상기 미세복합형상렌즈는 광 고분자 나노입자를 포함하는 것을 특징으로 하는 미세복합형상 렌즈 제조방법.
  7. 청구항 7은(는) 설정등록료 납부시 포기되었습니다.
    제 1항에 있어서,
    상기 박막층은 PDMS(Polydimethylsiloxane)로 형성되는 것을 특징으로 하는
    미세복합형상렌즈 제조 방법.
  8. 청구항 8은(는) 설정등록료 납부시 포기되었습니다.
    상기 박막층의 두께는 상기 미세복합패턴의 높이보다 큰 것을 특징으로 하는
    미세복합형상렌즈 제조 방법.
  9. 제 1항 내지 제 8항 중 어느 한 항에 따른 제조방법에 의하여 제조된 이중곡면 구조의 미세복합형상렌즈.
  10. 미세복합형상렌즈에 있어서,
    상기 미세복합형상렌즈는 표면상에 구비된 복수 개의 돌출부를 포함하며,
    상기 미세복합형상렌즈의 중심부는 오목 렌즈의 곡면 구조를, 주변부는 서로 대칭되는 2 개의 볼록 렌즈의 곡면 구조를 갖는, 미세복합형상렌즈.
  11. 청구항 11은(는) 설정등록료 납부시 포기되었습니다.
    제 10항에 있어서,
    상기 미세복합형상렌즈는 자외선 경화 고분자, 열경화 고분자 및 세라믹 중
    하나 이상으로 형성되는 것을 특징으로 하는 미세복합형상렌즈.
  12. 제 10항에 있어서,
    상기 미세복합형상렌즈는 광 고분자 나노입자를 포함하는 것을 특징으로 하는 미세복합형상렌즈.
  13. 제 10항 내지 제 12항 중 어느 한 항에 따른 이중곡면 구조의 미세복합형상렌즈를 포함하는 LED 소자.
  14. 청구항 14은(는) 설정등록료 납부시 포기되었습니다.
    제 13항에 있어서,
    상기 이중곡면 구조의 미세복합형상렌즈는 복수 개의 LED 광원 각각에 대응되며, 각각의 LED 광원상에 하나의 미세복합형상렌즈가 구비되는 것을 특징으로 하는 LED 소자.
  15. 청구항 15은(는) 설정등록료 납부시 포기되었습니다.
    제 14항에 있어서,
    상기 LED 광원으로부터 방출된 빛은 대응되는 상기 이중곡면 구조의 미세복합형상렌즈를 거치면서, 확산되는 것을 특징으로 하는 LED 소자.
KR1020090089314A 2008-09-22 2009-09-22 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자 KR101113691B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/120,142 US20110210368A1 (en) 2008-09-22 2008-09-22 Micro-composite pattern lens, and method for manufacturing same
KR1020090089314A KR101113691B1 (ko) 2009-09-22 2009-09-22 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자
PCT/KR2009/005375 WO2010033002A2 (ko) 2008-09-22 2009-09-22 미세복합형상렌즈 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090089314A KR101113691B1 (ko) 2009-09-22 2009-09-22 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자

Publications (2)

Publication Number Publication Date
KR20110032019A KR20110032019A (ko) 2011-03-30
KR101113691B1 true KR101113691B1 (ko) 2012-02-27

Family

ID=43936825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090089314A KR101113691B1 (ko) 2008-09-22 2009-09-22 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자

Country Status (1)

Country Link
KR (1) KR101113691B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458788B1 (ko) * 2013-07-26 2014-11-07 노명재 Led 광원의 광 조정용 광학패턴렌즈
US11635549B2 (en) 2016-12-21 2023-04-25 Samsung Electronics Co., Ltd. Reflectionless window, method for manufacturing same, and reflectionless window for invasive sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220909B1 (ko) * 2011-06-01 2013-01-11 주식회사 아모럭스 형광등형 엘이디 조명등
WO2015133813A1 (ko) * 2014-03-07 2015-09-11 주식회사 금호에이치티 면발광 램프 및 그 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300905A (ja) * 1993-04-14 1994-10-28 Nikon Corp 光散乱面を有する光学部品及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300905A (ja) * 1993-04-14 1994-10-28 Nikon Corp 光散乱面を有する光学部品及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458788B1 (ko) * 2013-07-26 2014-11-07 노명재 Led 광원의 광 조정용 광학패턴렌즈
US11635549B2 (en) 2016-12-21 2023-04-25 Samsung Electronics Co., Ltd. Reflectionless window, method for manufacturing same, and reflectionless window for invasive sensor

Also Published As

Publication number Publication date
KR20110032019A (ko) 2011-03-30

Similar Documents

Publication Publication Date Title
US20110210368A1 (en) Micro-composite pattern lens, and method for manufacturing same
Xu et al. Self-assembled microlens array with controllable focal length formed on a selective wetting surface
CN112714879A (zh) 光学系统及其制造过程
US20100002449A1 (en) Method for fabricating micro-lens and mold cavity thereof and light emitting device
US20090034088A1 (en) Mass production of Micro-Optical devices, corresponding tools, and resultant structures
JP2007086784A5 (ko)
KR101113691B1 (ko) 이중곡면을 갖는 미세복합형상렌즈 제조방법, 이에 의하여 제조된 미세복합형상렌즈 및 이를 포함하는 led 소자
KR20100029577A (ko) 기능성 나노패턴을 갖는 렌즈와 그 제조방법
KR101002212B1 (ko) 미세복합형상렌즈 및 미세복합형상렌즈 제조 방법
JP2023126273A (ja) 樹脂積層光学体、光源ユニット、光学ユニット、光照射装置、画像表示装置、樹脂積層光学体の製造方法、及び光源ユニットの製造方法
JP2013038117A (ja) 微細パターンを転写するための転写ヘッド及びそれを用いた微細パターンの形成方法
US20210159465A1 (en) Display apparatus and method for manufacturing the same
CN218383360U (zh) 角度滤光器
KR101430112B1 (ko) 포토리소그래피 및 모세관 현상을 이용한 계층적 구조물 제조방법 및 계층적 구조물
KR101363473B1 (ko) 무반사 나노구조층을 구비하는 고분자 렌즈 및 이의 제조 방법
KR101449633B1 (ko) 고휘도 모아레 프리 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 필름을 포함한 백라이트 유닛과 마이크로 렌즈 어레이 장치
TW201128319A (en) Image processing based lithography system and method for coating target object
JP2013246210A (ja) マイクロレンズの形成方法、マイクロレンズ、液晶デバイス用対向基板、および液晶デバイス
US10663856B2 (en) Optical mask for use in a photolithography process, a method for fabricating the optical mask and a method for fabricating an array of patterns on a substrate using the optical mask
CN111443408A (zh) 一种增亮型扩散膜及其制备方法
CN211148968U (zh) 红外光扩散片和光学系统
KR101557079B1 (ko) 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 어레이 장치 및 마이크로 렌즈 필름의 적층 모듈
TWI332789B (en) Lens structure for an imaging device and method making same
KR101162357B1 (ko) 나노닷이 형성된 복합 광학플레이트, 이를 포함하는 백라이트 유닛 및 나노닷이 형성된 복합 광학플레이트의 제조방법
KR101551648B1 (ko) 복합 도광판

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee