WO2010027391A2 - Procédé et dispositif d'imagerie tridimensionnelle haute résolution donnant par défocalisation une posture de la caméra - Google Patents
Procédé et dispositif d'imagerie tridimensionnelle haute résolution donnant par défocalisation une posture de la caméra Download PDFInfo
- Publication number
- WO2010027391A2 WO2010027391A2 PCT/US2009/003167 US2009003167W WO2010027391A2 WO 2010027391 A2 WO2010027391 A2 WO 2010027391A2 US 2009003167 W US2009003167 W US 2009003167W WO 2010027391 A2 WO2010027391 A2 WO 2010027391A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- defocused images
- subsequent
- pose
- initial
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000003384 imaging method Methods 0.000 title claims abstract description 35
- 230000008859 change Effects 0.000 claims abstract description 29
- 238000004422 calculation algorithm Methods 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 abstract description 6
- 239000003550 marker Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/221—Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/571—Depth or shape recovery from multiple images from focus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/236—Image signal generators using stereoscopic image cameras using a single 2D image sensor using varifocal lenses or mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/254—Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
Definitions
- the present invention relates to three-dimensional imaging and, more particularly, to a method and device for high-resolution three-dimensional imaging which obtains camera pose using defocusing.
- the present invention relates to three-dimensional imaging and, more particularly, to a method and device for high-resolution three-dimensional (3-D) imaging which obtains camera pose using defocusing.
- a first aspect of the present invention is a method for determining a change in pose of a moving sensor using a defocusing technique.
- the method involves capturing, at an initial time, an initial plurality of defocused images of an object substantially simultaneously with a sensor, from an initial sensor pose.
- 3-D locations of three or more object features are extracted from the relative locations of the object features in the plurality of defocused images on the sensor.
- the next act requires capturing, at a subsequent time, a subsequent plurality of defocused images of the object substantially simultaneously, from a subsequent sensor pose.
- object features from the initial plurality of defocused images are matched with corresponding object features from the subsequent plurality of defocused images using either a feature matching algorithm or an error minimization method.
- a change in pose of the sensor between the initial and subsequent times is calculated using the 3-D locations extracted from the initial and subsequent pluralities of defocused images, whereby the change in pose of the moving sensor is determined.
- the method further comprises an act of constructing a high- resolution 3-D image of the object.
- a pattern of markers is projected on the object.
- Next is capturing, at the initial time, and from the initial sensor pose, an initial plurality of defocused images of the projected pattern of markers with the sensor, the defocused images being differentiable from the initial pluralities of defocused images of the object used for determining sensor pose.
- a 3-D image of the object is constructed based on relative positions of the initial plurality of defocused images of the projected pattern of markers on the sensor.
- a subsequent plurality of defocused images of the projected pattern of markers is captured with the sensor, the defocused images being differentiable from the subsequent pluralities of defocused images of the object used for determining sensor pose.
- a 3-D image of the object is constructed based on relative positions of the subsequent plurality of defocused images of the projected pattern of markers on the sensor.
- the 3- D images constructed from the initial and subsequent pluralities of defocused images of the projected pattern of markers are overlaid using the known change in sensor pose between the initial and subsequent times as previously calculated to produce a high-resolution 3-D image of the object.
- the method further comprises acts for resolving the detailed 3-D image of the object to a desired resolution.
- a second subsequent plurality of defocused images of the object is captured substantially simultaneously, from a second subsequent sensor pose.
- the object features from the subsequent plurality of defocused images are matched with corresponding object features from the second subsequent plurality of defocused images using either a feature matching algorithm or an error minimization method.
- a change in pose of the sensor between the subsequent and second subsequent times is calculated using the 3-D locations extracted from the subsequent and second subsequent pluralities of defocused images. Also, a pattern of markers is projected on the object.
- a second subsequent plurality of defocused images of the projected pattern of markers is captured with the sensor, the defocused images being differentiable from the second subsequent pluralities of defocused images of the object used for determining sensor pose.
- a 3-D image of the object is constructed based on relative positions of the second subsequent plurality of defocused images of the projected pattern of markers on the sensor.
- the 3-D images constructed from the initial, subsequent, and second subsequent pluralities of defocused images of the projected pattern of markers are overlaid using the known change in sensor pose between the initial and second subsequent times to produce a high-resolution 3-D image of the object.
- these acts are repeated at further subsequent times and at further subsequent camera poses until a desired resolution is reached.
- the method further comprises acts for calculating an absolute pose of the sensor with respect to an environment.
- a plurality of defocused images of three or more fixed features in the environment is captured with the sensor.
- 3-D locations of three or more fixed points in the environment are extracted from the relative locations of the fixed points in the plurality of defocused images on the sensor.
- the absolute pose of the sensor is calculated using the 3-D locations extracted from the plurality of defocused images.
- the present invention also comprises an imaging device for producing a high-resolution three-dimensional (3-D) image of an object.
- the device has a lens obstructed by a mask having at least one set of off-axis apertures.
- the at least one set of off-axis apertures produces a plurality of defocused images of an object substantially simultaneously.
- a sensor is configured to capture the plurality of defocused images produced.
- the device also comprises a data processing system having one or more processors configured to determine a change in pose of the moving sensor according to the method of the present invention as previously described in this section.
- the device further comprises a projector for projecting a pattern of markers on the surface of the object, resulting in plurality of defocused images of the pattern of markers being produced on the sensor.
- the projected pattern of marker should be of a wavelength differentiable from the object features on the object used to determine pose.
- the data processing system is further configured to construct a detailed 3-D image of the object from the defocused images of the projected pattern of markers produced on the sensor, according to the method of the present invention as previously described in this section.
- the data processing system of the device is further configured to calculate an absolute pose of the sensor with respect to the environment by the method of the present invention, as previously described in this section.
- the device has a lens obstructed by a mask having a first set and a second set of off-axis apertures.
- the first set of off-axis apertures comprises a plurality of apertures fitted with filter separators for capturing a plurality of defocused images of an object substantially simultaneously.
- the second set of off-axis apertures comprises a plurality of apertures fitted with filter separators differentiable from those of the first set of off-axis apertures for capturing a plurality of defocused images.
- the device further contains a projector for projecting a pattern of markers on the surface of the object, the projected pattern of markers being of a wavelength corresponding to the filter separators of the second set of off-axis apertures.
- sensor is configured to capture the defocused images produced, whereby the images captured on the sensor through the first set of off-axis apertures can be used to determine camera pose, and the images captured on the sensor through the second set of off-axis apertures can be used to construct a high-resolution three-dimensional image of the object.
- the device further comprises a data processing system having one or more processors.
- the processors are configured to perform the acts of the method of the present invention, as previously described in this section.
- the present invention also comprises a computer program product for determining a change in pose of a moving sensor using a defocusing technique.
- the computer program product comprises computer-readable instruction means stored on a computer-readable medium that are executable by a computer for causing the computer to perform the operations of the method of the present invention, as previously described in this section.
- FIG. 1 is a flow diagram showing the acts of the method of the present invention
- FIG. 2 is an illustration showing an aperture mask for use with the device of the present invention
- FIG. 3 is an illustration showing the components of the device of the present invention using an aperture mask with two sets of filtered apertures
- FIG. 4 is an illustration showing the components of the device using an aperture mask with one set of un-f ⁇ ltered apertures
- FIG. 5 is a block diagram showing a generic data processing system for use with the present invention.
- FIG. 6 is an illustration showing examples of computer program products for use with the present invention.
- the present invention relates to three-dimensional imaging and, more particularly, to a method and device for high-resolution three-dimensional imaging which obtains camera pose using defocusing.
- the following description is presented to enable one of ordinary skill in the art to make and use the invention and to incorporate it in the context of particular applications. Various modifications, as well as a variety of uses in different applications will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of embodiments. Thus, the present invention is not intended to be limited to the embodiments presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
- any element in a claim that does not explicitly state "means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a "means” or “step” clause as specified in 35 U. S. C. Section 112, Paragraph 6.
- the use of "step of or “act of in the claims herein is not intended to invoke the provisions of 35 U. S. C. 112, Paragraph 6.
- the labels left, right, front, back, top, bottom, forward, reverse, clockwise and counter clockwise have been used for convenience purposes only and are not intended to imply any particular fixed direction. Instead, they are used to reflect relative locations and/or directions between various portions of an object.
- Filter Separators referring to electromagnetic (including optical) filters, acoustic filters, and spatially biased aperture filters.
- Pose - a term known in the art to represent the spatial location (e.g., x, y, z) and orientation (e.g., tilt) of a camera/sensor with respect to an object.
- the term absolute pose refers to the location and orientation of a camera/sensor with respect to fixed features in the environment (e.g., the walls of a room).
- Object Features - fixed features on an object such as edges, protrusions, spots, etc., or they may be template features physically applied to the surface of the object, such as a painted-on or dyed point grid.
- the present invention relates to three-dimensional imaging and, more particularly, to a method and device for high-resolution three-dimensional (3-D) imaging which obtains camera pose using defocusing.
- the defocusing concept was first introduced in [1], showing how the 3-D location of a point can be accurately determined by two off-axis apertures. Two defocused images are generated from the apertures and are then used to obtain the depth location of the point from the relative location between the two images.
- the present invention uses the concept of defocusing to resolve the pose of a moving camera. This, in conjunction with other defocusing imaging techniques, can produce a 3-D image of an object with effectively unlimited resolution.
- FIG. 1 is a flow diagram showing the complete method of the present invention.
- the acts in column I corresponding to reference numbers 100 - 108, are the acts for determining the change in pose of a moving camera/sensor using a defocusing technique.
- the acts in column II corresponding to reference numbers 110 - 1 18, are the acts for constructing a detailed 3-D image of the object using defocusing of a projected pattern of markers on the object.
- the acts of columns I and II occur concurrently, and are linked at an initial time 101, and a subsequent time 105.
- the results of columns I and II are combined to produce a high resolution 3-D image
- FIG. 1 is not the only functional ordering of acts of the present invention, but is instead a non-limiting example of a functional ordering of acts, i.e., it is possible that certain acts may be done in a different order and still produce a similar end result.
- Column I in FIG. 1 refers to the acts of the method for determining a change in pose of a moving sensor.
- the 3-D locations of object features are extracted 102 using defocusing equations known in the art, see [2].
- Object features are fixed features on the object.
- the object features may be natural features such as edges, protrusions, spots, etc., or they may be template features physically applied to the surface of the object, such as a painted- on or dyed point grid.
- a subsequent plurality of defocused images of the object is captured 104 with the sensor.
- the 3- D locations of object features from the subsequent plurality of defocused images are extracted 105 using defocusing equations known in the art, see [2].
- the object features from the initial plurality of defocused images are matched 106 with the corresponding object features in the subsequent plurality of defocused images using either a feature matching algorithm or an error minimization method.
- the method of the present invention can utilize any of a variety known in the art, including but not limited to Scale-invariant Feature Transform (SIFT), see [5].
- SIFT Scale-invariant Feature Transform
- the method of the present invention can utilize any of a variety known in the art, including but not limited to the Levenberg-Marquardt minimization method, see [3] and [4].
- SIFT is more computationally efficient than the Levenberg-Marquardt minimization method, but for certain aperture systems, SIFT cannot be applied, in which case error minimization such as Levenberg-Marquardt must be used. Further detail regarding various aperture systems are described subsequently and with respect to FIGs. 3 and 4.
- the feature matching act allows the previously extracted 102 object feature 3-D locations to be applied to the object features extracted from the subsequent plurality of images 105.
- the change in pose of the sensor from the initial pose 101 to the subsequent pose 105 can be calculated 108.
- Techniques for calculating change in camera pose given an initial and subsequent set of three-dimensional coordinates are known in the art.
- a non limiting example of a technique for calculating a change in camera pose is generally called a "least squares method," which includes a more specific technique called “singular value decomposition.”
- the "singular value decomposition" method involves solving the following simple algebraic equation:
- [X, Y, Z] represents the three-dimensional coordinates in the initial image
- [x, y, z] represents the three-dimensional coordinates in the subsequent image
- [T] represents a "rigid body transformation matrix" which is the change in pose of the camera from the initial to the subsequent times.
- an absolute sensor pose i.e., the location and orientation of the sensor with respect to a surrounding environment
- acts of capturing an initial plurality of defocused images with a sensor 100 and extracting 3-D locations of object features 102 are executed, but with respect to fixed points of known absolute position in the environment.
- the absolute pose of the sensor with respect to the environment can be calculated, see [3] and [4] and the "singular value decomposition" equation above.
- Column II in FIG. 1 refers to the acts in the method for constructing a 3-D image of an object using a projected pattern of marker point.
- a pattern of markers is projected 110 on the object.
- the projected marker points need not be fixed, in contrast to the object features used when determining camera pose (column I).
- an initial plurality of defocused images of the projected pattern of markers is captured 1 12 with a sensor at the initial time and pose 101. This act occurs contemporaneously with the act of capturing the initial plurality of defocused images of the object 100.
- a 3-D image of the object is constructed 114 from the initial plurality of defocused images of the projected pattern of markers.
- the 3-D image is produced by determining the 3-D locations of each projected marker point using the defocusing equations known in the art as disclosed in [2].
- a subsequent plurality of defocused images of the projected pattern of markers is captured 116 with the sensor. This act occurs contemporaneously with act of capturing the subsequent plurality of defocused images of the object 104.
- another 3-D image of the object is constructed 118 from the subsequent plurality of defocused images of the projected marker points.
- the next act in the method is to overlay 120 the 3-D images from the initial and subsequent pluralities of defocused images using the known change in sensor pose from the initial 101 and subsequent 105 times to produce a high-resolution 3-D image of the object. If the resulting image is of a desired resolution 121, then the image can be output 122 or stored. If the desired resolution 121 is not reached, the method can be extended by repeating the acts from act 104 onward in column I and from act 116 onward in column II at further subsequent times and from further subsequent sensor poses until the desired resolution is reached 121. Repeating the method in this manner allows for effectively unlimited resolution in the 3-D image. The only limitation to resolution is the time required to accomplish the number of iterations of the method necessary to produce the desired resolution.
- the present invention is also an imaging device.
- Defocusing imaging devices generally use a camera mask having a plurality of off-axis apertures, the off-axis apertures producing the defocused images.
- FIGs. 2A and 2B show non-limiting examples of specialized aperture masks 200 for use with the device of the present invention.
- the masks 200 have a first set of off-axis apertures 202 (and 203 in FIG. 2B), and a second set of off axis apertures 204.
- the first set of off-axis apertures 202 and 203 comprises a plurality of apertures fitted with filter separators for capturing a plurality of defocused images of an object substantially simultaneously.
- filter separator comprises electromagnetic (including optical) filters, acoustic filters, and spatially biased aperture filters.
- the first set of off-axis apertures is used to determine camera pose, as described above in the acts of column I of FIG. 1.
- the first set of off axis apertures 202 comprises a set of two apertures fitted with blue optical filters 202 for producing blue defocused images.
- both apertures of the first set of apertures 202 are fitted with the same (blue) filter separators.
- FIG. 2B Such a filtered aperture arrangement will produce defocused images of different colors on the sensor, which makes distinguishing the defocused images considerably easier, thereby reducing computation time during the feature matching acts, as previously described.
- a system using the aperture mask in FIG. 2B performs particularly well when implementing a Scale-invariant Feature Transform (SIFT) feature matching algorithm ⁇ see [5]) to match features from the initial and subsequent images.
- SIFT Scale-invariant Feature Transform
- other feature matching algorithms known in the art may also be functional, and it is also possible to use an error minimization technique such as Levenberg-Marquardt minimization ⁇ see [3] and [4]) instead of a feature matching algorithm.
- the aperture mask 200 further comprises a second set of off-axis apertures 204.
- the second set of off-axis apertures is fitted with filter separators differentiable from those of the first set of off-axis apertures 202.
- the example in FIG. 2 shows a triad of three off-axis apertures 204 fitted with red optical filters for producing red defocused images. Note the example shown in FIG. 2 is non-limiting. Further non-limiting examples of aperture and filter separator types for use with the present invention are described in U.S. Patent Application No. 12/011,023, filed January 22, 2008, entitled “METHOD AND APPARATUS FOR QUANTITATIVE 3-D IMAGING;" U.S. Patent Application No. 12/011,016, filed January 22, 2008, entitled “METHOD AND APPARATUS FOR QUANTITATIVE 3-D IMAGING;" U.S. Patent
- FIG. 3 is an illustration showing the components of a preferred embodiment of the imaging device of the present invention.
- the imaging device comprises a lens
- FIG. 3 shows a first set of off-axis apertures comprising two apertures 202 and 203, differentiated by a blue and a green filter separator for producing a blue and a green defocused image 308 and 309 on the sensor 306.. Note that the device in FIG. 3 implements the aperture mask shown in FIG. 2B.
- the device further comprises a projector 304 for projecting a pattern of marker points 305 on the surface of the object 300.
- the projector 304 projects the marker points 305 at a wavelength corresponding to the wavelength of the filter separators of the second set of off-axis apertures 204.
- the second set of off-axis apertures 204 is used to generate the 3-D images of the object 300 that will be overlaid to produce the high-resolution 3-D image.
- the projector 304 projects a pattern of red marker points 305 and, correspondingly, the second set of off-axis apertures 204 selectively transmits the red projected pattern 305, producing a plurality of defocused images of the projected marker points 310 on the sensor 306.
- the second set of apertures 204 is arranged in a triad, whereby the plurality of images produces an image triad 310 for every marker point.
- the physical size of the image triad 310 can be used to calculate the depth location of each marker point 305 on the object 300 via the defocusing equations in [2].
- the sensor 306 used should be configured to capture the defocused image types produced. In this case, a sensor capable of capturing blue and red images should be used.
- the images produced are sent to a data processing system 500 (in FIG. 5) for calculation and analysis in accordance with the method of the present invention, as previously discussed. It should be noted that the system embodiment shown in FIG.
- SIFT Scale-invariant Feature Transform
- Other feature matching algorithms known in the art may also be functional, and it is also possible to use an error minimization technique such as Levenberg-Marquardt minimization ⁇ see [3] and [4]) instead of a feature matching algorithm.
- FIG. 4 is a non-limiting example of a more basic embodiment of the present invention.
- the device comprises a lens 302 obstructed by an aperture mask 200 having at least one set of off-axis apertures 400, in this case one set of three off-axis apertures.
- the single triad of apertures 400 will serve the dual purpose of: (1) producing defocused images 402 of the object 300; and (2) if a projected pattern of markers 305 is used, producing defocused images of the projected pattern of markers 310 on the sensor 306.
- This embodiment of the device can also comprise a data processing system 500 for processing the image data from the sensor 306 according to the method of the present invention. It should be noted that when a single unfiltered aperture set as in FIG.
- SIFT is not functional with the single unfiltered aperture set system (FIG. 4), it is possible that other feature matching algorithms will be functional, and therefore feature matching algorithms in general should not be excluded as a viable technique for matching features produced by this type of system.
- the data processing system 500 comprises an input 502 for receiving the input images.
- the input 502 may include multiple "ports.”
- input is received from at least one imaging device, or from stored images.
- An output 504 is connected with the processor for outputting the high-resolution 3-D image produced. Output may also be provided to other devices or other programs; e.g., to other software modules, for use therein.
- the input 502 and the output 504 are both coupled with one or more processors 506, the processor containing appropriate architecture to perform the acts of the method of the present invention.
- the processor 506 is coupled with a memory 508 to permit storage of data such as image memory strings and software that are to be manipulated by commands to the processor 506.
- FIG. 6 An illustrative diagram of a computer program product embodying the present invention is depicted in FIG. 6.
- the computer program product 600 is depicted as an optical disk such as a CD or DVD, but the computer program product generally represents any platform containing comprising computer-readable instruction means stored on a computer-readable medium that are executable by a computer having a processor for causing the processor to perform operations of the method of the present invention, as previously described.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
La présente invention concerne un procédé et un dispositif d'imagerie tridimensionnelle (3D) haute résolution créant par défocalisation une posture de la caméra. Le dispositif comprend un objectif obstrué par un masque comportant deux ensembles d'ouvertures. Le premier ensemble d'ouvertures produit une pluralité d'images défocalisées de l'objet, qui servent à créer la posture de la caméra. Le second ensemble de filtres optiques produit une pluralité d'images défocalisées d'un motif projeté de marqueurs situés sur l'objet. Les images produites par le second ensemble d'ouvertures, qui peuvent se différencier des images utilisées pour déterminer la posture, servent à construire une image 3D détaillée de l'objet. À partir du changement connu de posture de la caméra entre les images capturées, les images 3D produites peuvent être recouvertes de façon à produire une image 3D haute résolution de l'objet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09788778A EP2329454A2 (fr) | 2008-08-27 | 2009-05-21 | Procédé et dispositif d'imagerie tridimensionnelle haute résolution donnant par défocalisation une posture de la caméra |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19025508P | 2008-08-27 | 2008-08-27 | |
US61/190,255 | 2008-08-27 | ||
US20853409P | 2009-02-25 | 2009-02-25 | |
US61/208,534 | 2009-02-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010027391A2 true WO2010027391A2 (fr) | 2010-03-11 |
WO2010027391A3 WO2010027391A3 (fr) | 2010-12-16 |
Family
ID=41797702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/003167 WO2010027391A2 (fr) | 2008-08-27 | 2009-05-21 | Procédé et dispositif d'imagerie tridimensionnelle haute résolution donnant par défocalisation une posture de la caméra |
Country Status (3)
Country | Link |
---|---|
US (2) | US8514268B2 (fr) |
EP (2) | EP2329454A2 (fr) |
WO (1) | WO2010027391A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9736463B2 (en) | 2007-04-23 | 2017-08-15 | California Institute Of Technology | Single-lens, single-sensor 3-D imaging device with a central aperture for obtaining camera position |
DE102023207775A1 (de) | 2023-08-11 | 2025-02-13 | Volkswagen Aktiengesellschaft | Verfahren zum Bestimmen zumindest einer Objektinformation eines realen Objekts mittels Bildverarbeitung, sowie elektronisches Bestimmungssystem |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008091691A1 (fr) * | 2007-01-22 | 2008-07-31 | California Institute Of Technology | Procédé et appareil pour une imagerie 3d quantitative |
US8089635B2 (en) | 2007-01-22 | 2012-01-03 | California Institute Of Technology | Method and system for fast three-dimensional imaging using defocusing and feature recognition |
US8514268B2 (en) | 2008-01-22 | 2013-08-20 | California Institute Of Technology | Method and device for high-resolution three-dimensional imaging which obtains camera pose using defocusing |
US8773507B2 (en) | 2009-08-11 | 2014-07-08 | California Institute Of Technology | Defocusing feature matching system to measure camera pose with interchangeable lens cameras |
WO2011031538A2 (fr) * | 2009-08-27 | 2011-03-17 | California Institute Of Technology | Reconstruction d'objet en 3d précise utilisant un dispositif portable avec un motif lumineux projeté |
US20110301418A1 (en) * | 2010-04-20 | 2011-12-08 | Mortez Gharib | Catheter Based 3-D Defocusing Imaging |
CN103221975B (zh) * | 2010-09-03 | 2017-04-19 | 加州理工学院 | 三维成像系统 |
FR2991448B1 (fr) * | 2012-06-01 | 2015-01-09 | Centre Nat Rech Scient | Procede de mesures tridimensionnelles par stereo-correlation utilisant une representation parametrique de l'objet mesure |
US10955331B2 (en) * | 2012-06-22 | 2021-03-23 | The Regents Of The University Of Colorado, A Body Corporate | Imaging or measurement methods and systems |
WO2014011182A1 (fr) * | 2012-07-12 | 2014-01-16 | Calfornia Institute Of Technology | Techniques de détermination de profondeur basées sur convergence/divergence et utilisations avec une imagerie par défocalisation |
WO2014011179A1 (fr) * | 2012-07-12 | 2014-01-16 | California Institute Of Technology | Défocalisation avec une grille de projection comprenant des caractéristiques d'identification |
US9418480B2 (en) * | 2012-10-02 | 2016-08-16 | Augmented Reailty Lab LLC | Systems and methods for 3D pose estimation |
US20140132822A1 (en) * | 2012-11-14 | 2014-05-15 | Sony Corporation | Multi-resolution depth-from-defocus-based autofocus |
EP3175292B1 (fr) | 2014-07-31 | 2019-12-11 | Hewlett-Packard Development Company, L.P. | Projecteur faisant office de source de lumière pour un dispositif de capture d'image |
US9675430B2 (en) | 2014-08-15 | 2017-06-13 | Align Technology, Inc. | Confocal imaging apparatus with curved focal surface |
US9762793B2 (en) * | 2014-10-21 | 2017-09-12 | Hand Held Products, Inc. | System and method for dimensioning |
US10306208B2 (en) | 2014-11-05 | 2019-05-28 | Harold O. Hosea | Device for creating and enhancing three-dimensional image effects |
US9565421B2 (en) | 2014-11-25 | 2017-02-07 | Harold O. Hosea | Device for creating and enhancing three-dimensional image effects |
WO2017132165A1 (fr) | 2016-01-25 | 2017-08-03 | California Institute Of Technology | Mesure non effractive de la pression intraoculaire |
EP3236211A1 (fr) * | 2016-04-21 | 2017-10-25 | Thomson Licensing | Procédé et appareil permettant d'estimer une pose d'un dispositif d'affichage |
US10277842B1 (en) * | 2016-11-29 | 2019-04-30 | X Development Llc | Dynamic range for depth sensing |
US11402740B2 (en) | 2016-12-22 | 2022-08-02 | Cherry Imaging Ltd. | Real-time tracking for three-dimensional imaging |
US11412204B2 (en) | 2016-12-22 | 2022-08-09 | Cherry Imaging Ltd. | Three-dimensional image reconstruction using multi-layer data acquisition |
WO2018116305A1 (fr) | 2016-12-22 | 2018-06-28 | Eva - Esthetic Visual Analytics Ltd. | Suivi en temps réel pour imagerie tridimensionnelle |
US10999569B2 (en) | 2016-12-22 | 2021-05-04 | Eva—Esthetic Visual Analytics Ltd. | Three-dimensional image reconstruction using multi-layer data acquisition |
US20180343479A1 (en) * | 2017-05-26 | 2018-11-29 | Opentv, Inc. | Universal optimized content change |
WO2019019157A1 (fr) * | 2017-07-28 | 2019-01-31 | Qualcomm Incorporated | Initialisation de capteur d'image dans un véhicule robotisé |
CN111192318B (zh) * | 2018-11-15 | 2023-09-01 | 杭州海康威视数字技术股份有限公司 | 确定无人机位置和飞行方向的方法、装置及无人机 |
CN113574367B (zh) * | 2019-06-07 | 2025-05-30 | 株式会社前川制作所 | 图像处理装置、图像处理程序及图像处理方法 |
Family Cites Families (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1101608A (en) | 1912-09-20 | 1914-06-30 | Robert Zahn | Embroidering-machine. |
US1102308A (en) | 1914-02-21 | 1914-07-07 | Gen Electric | Vapor electric device. |
US5283641A (en) * | 1954-12-24 | 1994-02-01 | Lemelson Jerome H | Apparatus and methods for automated analysis |
JPS5258529A (en) | 1975-11-08 | 1977-05-14 | Canon Inc | Camera system |
JPS52149120A (en) | 1976-06-07 | 1977-12-12 | Minolta Camera Co Ltd | Interchangeable lens |
US4264921A (en) * | 1979-06-29 | 1981-04-28 | International Business Machines Corporation | Apparatus for color or panchromatic imaging |
US4879664A (en) * | 1985-05-23 | 1989-11-07 | Kabushiki Kaisha Toshiba | Three-dimensional position sensor and three-dimensional position setting system |
US4727471A (en) * | 1985-08-29 | 1988-02-23 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence | Miniature lightweight digital camera for robotic vision system applications |
US4650466A (en) | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US5235857A (en) * | 1986-05-02 | 1993-08-17 | Forrest Anderson | Real time 3D imaging device using filtered ellipsoidal backprojection with extended transmitters |
GB8617567D0 (en) | 1986-07-18 | 1986-08-28 | Szilard J | Ultrasonic imaging apparatus |
US5579444A (en) * | 1987-08-28 | 1996-11-26 | Axiom Bildverarbeitungssysteme Gmbh | Adaptive vision-based controller |
US4948258A (en) * | 1988-06-27 | 1990-08-14 | Harbor Branch Oceanographic Institute, Inc. | Structured illumination surface profiling and ranging systems and methods |
JP2655885B2 (ja) | 1988-08-05 | 1997-09-24 | 株式会社フジクラ | 限界電流式ガス濃度センサの駆動方法 |
CA1316590C (fr) * | 1989-04-17 | 1993-04-20 | Marc Rioux | Dispositif d'imagerie tridimensionnelle |
US5476100A (en) | 1994-07-07 | 1995-12-19 | Guided Medical Systems, Inc. | Catheter steerable by directional jets with remotely controlled closures |
CA1319188C (fr) * | 1989-08-24 | 1993-06-15 | Marc Rioux | Dispositif d'imagerie tridimensionnelle |
JP2878409B2 (ja) * | 1989-09-04 | 1999-04-05 | 株式会社リコー | 3次元物体撮像方式 |
CN1019919C (zh) | 1990-03-08 | 1993-02-17 | 清华大学 | 具有新型声镜的反射式声显微镜 |
JPH03289293A (ja) * | 1990-04-04 | 1991-12-19 | Mitsubishi Electric Corp | 撮像装置 |
US5221261A (en) | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5222971A (en) | 1990-10-09 | 1993-06-29 | Scimed Life Systems, Inc. | Temporary stent and methods for use and manufacture |
JP3210027B2 (ja) * | 1991-04-05 | 2001-09-17 | キヤノン株式会社 | カメラ |
US5206498A (en) * | 1991-06-07 | 1993-04-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Focus detecting apparatus having variable power condenser lens |
US5216695A (en) * | 1991-06-14 | 1993-06-01 | Anro Engineering, Inc. | Short pulse microwave source with a high prf and low power drain |
US5270795A (en) * | 1992-08-11 | 1993-12-14 | National Research Council Of Canada/Conseil National De Rechereches Du Canada | Validation of optical ranging of a target surface in a cluttered environment |
US5373151A (en) * | 1993-10-04 | 1994-12-13 | Raytheon Company | Optical system including focal plane array compensation technique for focusing and periodically defocusing a beam |
GB9323054D0 (en) * | 1993-11-09 | 1994-01-05 | British Nuclear Fuels Plc | Determination of the surface properties of an omject |
IL111229A (en) * | 1994-10-10 | 1998-06-15 | Nova Measuring Instr Ltd | Autofocusing microscope |
US5527282A (en) | 1994-12-09 | 1996-06-18 | Segal; Jerome | Vascular dilatation device and method |
US5864359A (en) * | 1995-05-30 | 1999-01-26 | Smith & Nephew, Inc. | Stereoscopic autofocusing based on comparing the left and right eye images |
WO1996041304A1 (fr) | 1995-06-07 | 1996-12-19 | The Trustees Of Columbia University In The City Of New York | Appareil et procedes de determination de la forme tridimensionnelle d'un objet au moyen d'un eclairage dynamique et d'une diminution de nettete relative dans deux images due a la defocalisation |
US5922961A (en) * | 1996-05-10 | 1999-07-13 | The United States Of America As Represented By The Secretary Of Commerce | Time and polarization resolved acoustic microscope |
US5745067A (en) * | 1996-07-17 | 1998-04-28 | Industrial Technology Research Institute | Two stage analoge-to-digital converter having unique fine encoding circuitry |
JP3198938B2 (ja) | 1996-09-03 | 2001-08-13 | 株式会社エフ・エフ・シー | 移動カメラ用の画像処理装置 |
US7194117B2 (en) | 1999-06-29 | 2007-03-20 | The Research Foundation Of State University Of New York | System and method for performing a three-dimensional virtual examination of objects, such as internal organs |
US6115553A (en) | 1996-09-17 | 2000-09-05 | Asahi Kogaku Kogyo Kabushiki Kaisha | Multipoint autofocus system |
US6858826B2 (en) * | 1996-10-25 | 2005-02-22 | Waveworx Inc. | Method and apparatus for scanning three-dimensional objects |
US6045623A (en) | 1997-04-24 | 2000-04-04 | Cannon; Bradley Jay | Method and apparatus for cleaning catheter lumens |
US5928260A (en) | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US6157747A (en) * | 1997-08-01 | 2000-12-05 | Microsoft Corporation | 3-dimensional image rotation method and apparatus for producing image mosaics |
US6545701B2 (en) | 1997-08-13 | 2003-04-08 | Georgia Tech Research Corporation | Panoramic digital camera system and method |
JP4054422B2 (ja) | 1997-11-13 | 2008-02-27 | キヤノン株式会社 | カメラ及び交換レンズ装置 |
EP1057009A2 (fr) * | 1998-02-25 | 2000-12-06 | California Institute Of Technology | Dispositif de prise de vues a ouverture codee pour imagerie tridimensionnelle |
US7006132B2 (en) * | 1998-02-25 | 2006-02-28 | California Institute Of Technology | Aperture coded camera for three dimensional imaging |
US7612870B2 (en) * | 1998-02-25 | 2009-11-03 | California Institute Of Technology | Single-lens aperture-coded camera for three dimensional imaging in small volumes |
US6113588A (en) | 1998-03-13 | 2000-09-05 | Corvascular, Inc. | Transillumination catheter and method |
US6563543B1 (en) | 1998-03-31 | 2003-05-13 | Hewlett-Packard Development Company, L.P. | Digital camera and method of using same |
US6304284B1 (en) | 1998-03-31 | 2001-10-16 | Intel Corporation | Method of and apparatus for creating panoramic or surround images using a motion sensor equipped camera |
US7116324B2 (en) | 1998-05-27 | 2006-10-03 | In-Three, Inc. | Method for minimizing visual artifacts converting two-dimensional motion pictures into three-dimensional motion pictures |
US6912293B1 (en) * | 1998-06-26 | 2005-06-28 | Carl P. Korobkin | Photogrammetry engine for model construction |
US6748112B1 (en) * | 1998-07-28 | 2004-06-08 | General Electric Company | Method and apparatus for finding shape deformations in objects having smooth surfaces |
US6262803B1 (en) | 1998-09-10 | 2001-07-17 | Acuity Imaging, Llc | System and method for three-dimensional inspection using patterned light projection |
US6227850B1 (en) | 1999-05-13 | 2001-05-08 | Align Technology, Inc. | Teeth viewing system |
GB2343320B (en) * | 1998-10-31 | 2003-03-26 | Ibm | Camera system for three dimentional images and video |
US6271918B2 (en) * | 1999-02-04 | 2001-08-07 | National Research Council Of Canada | Virtual multiple aperture 3-D range sensor |
US6711293B1 (en) | 1999-03-08 | 2004-03-23 | The University Of British Columbia | Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image |
US7068825B2 (en) | 1999-03-08 | 2006-06-27 | Orametrix, Inc. | Scanning system and calibration method for capturing precise three-dimensional information of objects |
JP2001016610A (ja) | 1999-06-29 | 2001-01-19 | Fuji Photo Film Co Ltd | 視差画像入力装置及びカメラ |
JP2001061165A (ja) | 1999-08-20 | 2001-03-06 | Sony Corp | レンズ装置及びカメラ |
US7236622B2 (en) * | 1999-08-25 | 2007-06-26 | Eastman Kodak Company | Method for forming a depth image |
US6519359B1 (en) | 1999-10-28 | 2003-02-11 | General Electric Company | Range camera controller for acquiring 3D models |
US6648640B2 (en) * | 1999-11-30 | 2003-11-18 | Ora Metrix, Inc. | Interactive orthodontic care system based on intra-oral scanning of teeth |
US7075930B1 (en) * | 2000-04-11 | 2006-07-11 | Telefonaktiebolaget Lm Ericsson (Publ) | System and method for packet data servicing node (PDSN)initial assignment and reselection |
US6638239B1 (en) * | 2000-04-14 | 2003-10-28 | Glaukos Corporation | Apparatus and method for treating glaucoma |
EP1150327B1 (fr) * | 2000-04-27 | 2018-02-14 | ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Dispositif multi-faisceaux de particules chargées |
GB2373329B (en) | 2000-05-05 | 2003-03-05 | Acoustical Tech Sg Pte Ltd | Acoustic microscope |
TW527518B (en) * | 2000-07-14 | 2003-04-11 | Massachusetts Inst Technology | Method and system for high resolution, ultra fast, 3-D imaging |
JP2002034056A (ja) | 2000-07-18 | 2002-01-31 | Scalar Corp | 立体視用画像の撮像装置、立体視用画像の撮像方法 |
JP2002164066A (ja) * | 2000-11-22 | 2002-06-07 | Mitsubishi Heavy Ind Ltd | 積層型熱交換器 |
ATE552572T1 (de) * | 2000-12-01 | 2012-04-15 | Imax Corp | Verfahren und vorrichtung zum erzeugen hochauflösender bilder |
US7304677B2 (en) | 2000-12-13 | 2007-12-04 | Eastman Kodak Company | Customizing a digital camera based on demographic factors |
US6765569B2 (en) * | 2001-03-07 | 2004-07-20 | University Of Southern California | Augmented-reality tool employing scene-feature autocalibration during camera motion |
US6915008B2 (en) * | 2001-03-08 | 2005-07-05 | Point Grey Research Inc. | Method and apparatus for multi-nodal, three-dimensional imaging |
US7423666B2 (en) * | 2001-05-25 | 2008-09-09 | Minolta Co., Ltd. | Image pickup system employing a three-dimensional reference object |
US6701181B2 (en) | 2001-05-31 | 2004-03-02 | Infraredx, Inc. | Multi-path optical catheter |
US6873868B2 (en) * | 2001-12-31 | 2005-03-29 | Infraredx, Inc. | Multi-fiber catheter probe arrangement for tissue analysis or treatment |
CA2369710C (fr) * | 2002-01-30 | 2006-09-19 | Anup Basu | Methode et appareil pour le balayage 3d a haute resolution d'objets comprenant des vides |
AU2003217587A1 (en) * | 2002-02-15 | 2003-09-09 | Canesta, Inc. | Gesture recognition system using depth perceptive sensors |
JP3932946B2 (ja) | 2002-03-28 | 2007-06-20 | ソニー株式会社 | 無線通信装置および無線通信方法、並びにプログラム |
JP2004046772A (ja) * | 2002-05-13 | 2004-02-12 | 3D Media Co Ltd | 画像処理方法、画像処理システム、及び画像処理装置 |
US20050119684A1 (en) | 2002-07-12 | 2005-06-02 | Guterman Lee R. | Aneurysm buttress arrangement |
US7106375B2 (en) | 2002-09-12 | 2006-09-12 | Eastman Kodak Company | Mutual display support for a digital information/imaging system |
US20040155975A1 (en) * | 2002-09-17 | 2004-08-12 | Hart Douglas P. | 3-D imaging system |
EP1556805B1 (fr) * | 2002-10-22 | 2011-08-24 | Artoolworks | Localisation d'une surface dans une scene tridimensionnelle a l'aide de caracteristiques visuelles naturelles de cette surface |
GB2395261A (en) | 2002-11-11 | 2004-05-19 | Qinetiq Ltd | Ranging apparatus |
JP4090860B2 (ja) | 2002-12-12 | 2008-05-28 | オリンパス株式会社 | 3次元形状測定装置 |
US7171054B2 (en) * | 2003-05-01 | 2007-01-30 | Eastman Kodak Company | Scene-based method for determining focus |
US7496226B2 (en) * | 2003-09-19 | 2009-02-24 | University Of Miami | Multi-camera inspection of underwater structures |
US7609289B2 (en) | 2003-09-25 | 2009-10-27 | Omnitek Partners, Llc | Methods and apparatus for capturing images with a multi-image lens |
JP4511471B2 (ja) | 2004-01-30 | 2010-07-28 | 株式会社モリテックス | 撮像装置、撮像レンズ、撮像レンズへのデータ書込方法 |
US7212330B2 (en) * | 2004-03-22 | 2007-05-01 | Angstrom, Inc. | Three-dimensional imaging system for pattern recognition |
US20050251116A1 (en) | 2004-05-05 | 2005-11-10 | Minnow Medical, Llc | Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter |
GB0410551D0 (en) * | 2004-05-12 | 2004-06-16 | Ller Christian M | 3d autostereoscopic display |
JP2005341416A (ja) | 2004-05-28 | 2005-12-08 | Toshiba Corp | 撮像機能付き電子機器およびその画像表示方法 |
CA2570963A1 (fr) | 2004-06-18 | 2006-01-26 | David R. Elmaleh | Dispositif d'imagerie intravasculaire et ses utilisations |
EP1845453A4 (fr) * | 2004-10-28 | 2010-06-16 | Univ Fukui | Dispositif méthode et programme de gestion de base de données |
US20060092314A1 (en) * | 2004-10-31 | 2006-05-04 | Silverstein D A | Autofocus using a filter with multiple apertures |
US7668388B2 (en) * | 2005-03-03 | 2010-02-23 | Mitutoyo Corporation | System and method for single image focus assessment |
WO2006094409A1 (fr) | 2005-03-11 | 2006-09-14 | Creaform Inc. | Systeme autoreference et appareil de lecture optique 3d |
US7577309B2 (en) * | 2005-06-18 | 2009-08-18 | Muralidhara Subbarao | Direct vision sensor for 3D computer vision, digital imaging, and digital video |
US7565029B2 (en) * | 2005-07-08 | 2009-07-21 | Seiko Epson Corporation | Method for determining camera position from two-dimensional images that form a panorama |
TWI286921B (en) * | 2005-09-09 | 2007-09-11 | Quanta Comp Inc | Apparatus for minimizing electromagnetic interference and manufacturing method thereof |
EP2361549A3 (fr) * | 2005-09-30 | 2012-05-02 | Cornova, Inc. | Système d'analyse et de traitement d'une lumière de corps |
WO2007041690A2 (fr) * | 2005-10-04 | 2007-04-12 | Alexander Eugene J | Dispositif permettant de generer des modeles de surface en trois dimensions d'objets en mouvement |
US7715918B2 (en) * | 2005-10-18 | 2010-05-11 | University Of Cincinnati | Muscle energy converter with smooth continuous tissue interface |
CN101466998B (zh) * | 2005-11-09 | 2015-09-16 | 几何信息学股份有限公司 | 三维绝对坐标表面成像的方法和装置 |
US7605817B2 (en) | 2005-11-09 | 2009-10-20 | 3M Innovative Properties Company | Determining camera motion |
US7342658B2 (en) * | 2005-12-28 | 2008-03-11 | Eastman Kodak Company | Programmable spectral imaging system |
US7372642B2 (en) * | 2006-02-13 | 2008-05-13 | 3M Innovative Properties Company | Three-channel camera systems with non-collinear apertures |
US7646550B2 (en) * | 2006-02-13 | 2010-01-12 | 3M Innovative Properties Company | Three-channel camera systems with collinear apertures |
US7819591B2 (en) * | 2006-02-13 | 2010-10-26 | 3M Innovative Properties Company | Monocular three-dimensional imaging |
ES2478637T3 (es) * | 2006-02-13 | 2014-07-22 | 3M Innovative Properties Company | Formación de imágenes tridimensionales monoculares |
WO2008054496A2 (fr) * | 2006-04-05 | 2008-05-08 | California Institute Of Technology | Imagerie tridimensionnelle par étirement acoustique et défocalisation |
EP2016559A2 (fr) | 2006-05-05 | 2009-01-21 | Thomson Licensing | Système et procédé permettant une reconstruction tridimensionnelle d'objet à partir d'images bidimensionnelles |
JP5362189B2 (ja) * | 2006-05-10 | 2013-12-11 | 株式会社トプコン | 画像処理装置及びその処理方法 |
JP4974650B2 (ja) | 2006-11-10 | 2012-07-11 | ペンタックスリコーイメージング株式会社 | 交換レンズ及びレンズデータ通信方法 |
WO2008091691A1 (fr) * | 2007-01-22 | 2008-07-31 | California Institute Of Technology | Procédé et appareil pour une imagerie 3d quantitative |
US8089635B2 (en) | 2007-01-22 | 2012-01-03 | California Institute Of Technology | Method and system for fast three-dimensional imaging using defocusing and feature recognition |
US7889197B2 (en) * | 2007-01-26 | 2011-02-15 | Captivemotion, Inc. | Method of capturing, processing, and rendering images |
JP2010525745A (ja) | 2007-04-23 | 2010-07-22 | カリフォルニア インスティテュート オブ テクノロジー | デフォーカスに基づく3d撮像用の空間的に偏向した絞り開口形状を有する絞り開口システム |
US8351685B2 (en) * | 2007-11-16 | 2013-01-08 | Gwangju Institute Of Science And Technology | Device and method for estimating depth map, and method for generating intermediate image and method for encoding multi-view video using the same |
US8514268B2 (en) | 2008-01-22 | 2013-08-20 | California Institute Of Technology | Method and device for high-resolution three-dimensional imaging which obtains camera pose using defocusing |
WO2010011355A2 (fr) | 2008-07-25 | 2010-01-28 | California Institute Of Technology | Cathéter d'imagerie utilisant un profil de laser pour mesure de profondeur de plaque |
US8773507B2 (en) | 2009-08-11 | 2014-07-08 | California Institute Of Technology | Defocusing feature matching system to measure camera pose with interchangeable lens cameras |
WO2011031538A2 (fr) * | 2009-08-27 | 2011-03-17 | California Institute Of Technology | Reconstruction d'objet en 3d précise utilisant un dispositif portable avec un motif lumineux projeté |
-
2009
- 2009-05-21 US US12/454,707 patent/US8514268B2/en active Active
- 2009-05-21 WO PCT/US2009/003167 patent/WO2010027391A2/fr active Application Filing
- 2009-05-21 EP EP09788778A patent/EP2329454A2/fr not_active Withdrawn
- 2009-05-21 EP EP20110075228 patent/EP2428932A1/fr not_active Withdrawn
-
2013
- 2013-07-15 US US13/942,576 patent/US9247235B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9736463B2 (en) | 2007-04-23 | 2017-08-15 | California Institute Of Technology | Single-lens, single-sensor 3-D imaging device with a central aperture for obtaining camera position |
DE102023207775A1 (de) | 2023-08-11 | 2025-02-13 | Volkswagen Aktiengesellschaft | Verfahren zum Bestimmen zumindest einer Objektinformation eines realen Objekts mittels Bildverarbeitung, sowie elektronisches Bestimmungssystem |
DE102023207775B4 (de) | 2023-08-11 | 2025-03-27 | Volkswagen Aktiengesellschaft | Verfahren zum Bestimmen zumindest einer Objektinformation eines realen Objekts mittels Bildverarbeitung, sowie elektronisches Bestimmungssystem |
Also Published As
Publication number | Publication date |
---|---|
US20090295908A1 (en) | 2009-12-03 |
WO2010027391A3 (fr) | 2010-12-16 |
US9247235B2 (en) | 2016-01-26 |
US8514268B2 (en) | 2013-08-20 |
EP2428932A1 (fr) | 2012-03-14 |
US20140022350A1 (en) | 2014-01-23 |
EP2329454A2 (fr) | 2011-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9247235B2 (en) | Method and device for high-resolution imaging which obtains camera pose using defocusing | |
Li et al. | A multiple-camera system calibration toolbox using a feature descriptor-based calibration pattern | |
JP6507730B2 (ja) | 座標変換パラメータ決定装置、座標変換パラメータ決定方法及び座標変換パラメータ決定用コンピュータプログラム | |
JP5294343B2 (ja) | 画像位置合わせ処理装置、領域拡張処理装置及び画質改善処理装置 | |
US8447099B2 (en) | Forming 3D models using two images | |
Agrawal | Camera calibration using spheres: A semi-definite programming approach | |
US8452081B2 (en) | Forming 3D models using multiple images | |
US20120154562A1 (en) | Method and device for joining a plurality of individual digital images to form a total image | |
JP2012517651A (ja) | 2d電子光学的画像データに対する3d点群データの登録 | |
CN115797461A (zh) | 基于双目视觉的火焰空间定位系统标定与校正方法 | |
JP5901447B2 (ja) | 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム | |
Juarez-Salazar et al. | Are camera, projector, and camera–projector calibrations different? | |
KR20150105190A (ko) | 컬러-코드화된 구조를 사용하는 카메라 캘리브레이션 방법 및 장치 | |
CN114792345A (zh) | 一种基于单目结构光系统的标定方法 | |
KR101673144B1 (ko) | 부분 선형화 기반의 3차원 영상 정합 방법 | |
CN111489384A (zh) | 基于互视角的遮挡评估方法及装置、设备、系统和介质 | |
JP6153318B2 (ja) | 画像処理装置、画像処理方法、画像処理プログラム、および、記憶媒体 | |
CN111145266B (zh) | 一种鱼眼相机标定方法、装置、鱼眼相机及可读存储介质 | |
CN110874820A (zh) | 一种物料仿真形变数据获取方法及装置 | |
Abbaspour Tehrani et al. | A practical method for fully automatic intrinsic camera calibration using directionally encoded light | |
Courchay et al. | Exploiting loops in the graph of trifocal tensors for calibrating a network of cameras | |
Cheng et al. | A linear approach for depth and colour camera calibration using hybrid parameters | |
Arnold et al. | 30‐3: A Moving Camera and Synthetic Calibration Target Solution for Non‐Planar Scene Estimation and Projector Calibration | |
Todorov | Multi-camera Calibration | |
Hou et al. | Automatic calibration method based on traditional camera calibration approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09788778 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009788778 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |