[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010023922A1 - ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法 - Google Patents

ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法 Download PDF

Info

Publication number
WO2010023922A1
WO2010023922A1 PCT/JP2009/004174 JP2009004174W WO2010023922A1 WO 2010023922 A1 WO2010023922 A1 WO 2010023922A1 JP 2009004174 W JP2009004174 W JP 2009004174W WO 2010023922 A1 WO2010023922 A1 WO 2010023922A1
Authority
WO
WIPO (PCT)
Prior art keywords
hdi
polyurea compound
hexamethylene diisocyanate
decomposition
water
Prior art date
Application number
PCT/JP2009/004174
Other languages
English (en)
French (fr)
Inventor
古川睦久
小椎尾謙
本九町卓
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Publication of WO2010023922A1 publication Critical patent/WO2010023922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • C08G18/305Water creating amino end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/02Polyureas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for decomposing an HDI polyurea compound, wherein a hexamethylene diisocyanate (hereinafter abbreviated as HDI) polyurea compound is hydrolyzed to recover hexamethylene diamine (hereinafter abbreviated as HDA).
  • HDI hexamethylene diisocyanate
  • HDA hexamethylene diamine
  • Polyurethane is a polymer material synthesized by polyaddition reaction of polyisocyanate and polyol. Polyurethane can be imparted with various physical properties by blending, formulation, molding method and the like. For this reason, it is used in a wide variety of forms such as foams, elastomers, paints, and adhesives.
  • Isocyanate which is a raw material of polyurethane, is obtained by reacting a corresponding amine with phosgene, but a residue containing a polyurea compound is produced as a by-product at this time.
  • This residue is a tar-like substance that solidifies at room temperature and is difficult to handle, so that it has conventionally been a waste that is exclusively incinerated.
  • Patent Document 1 proposes a method of treating urea residue using supercritical or subcritical water.
  • the object of the present invention is to recover a reusable amine compound without adding a hydrolysis accelerator such as an alkali to the residue containing a polyurea compound by-produced during the production of HDI, which until now had only been disposed of.
  • Another object of the present invention is to provide a method for decomposing an HDI polyurea compound that does not cause the corrosive problem of the reactor.
  • the present inventors have efficiently recovered HDA by hydrolyzing an HDI-based polyurea compound in carbon dioxide in a supercritical state or a subcritical state. And the suitable conditions for it were found, and it came to complete this invention. That is, the present invention is shown in the following (1) to (4).
  • a method for decomposing an HDI polyurea compound comprising hydrolyzing an HDI polyurea compound in carbon dioxide in a supercritical state or a subcritical state to recover HDA.
  • the HDI-based polyurea compound is a compound in which a group (urea group) of —NH—CO—NH— is mainly adjacent to — (CH 2 ) 6 —, and a part of the urea group is a biuret group. Also included are Specifically, it is generated mainly as a by-product residue during HDI production. The residue means a residue generated at the time of manufacturing the HDI.
  • the HDI-based polyurea compound used in the decomposition of the present invention may be generated in any process as long as it remains as a by-product during HDI production. Specifically, it is a residue by-produced in any of the HDA production process, the HDA-phosgene reaction process, the HDI purification process, and the like. These residues may be melted and dissolved in each step.
  • the residue applicable to the present invention is not limited to HDI produced using phosgene, and when produced by a non-phosgene method, the residue produced as a by-product in any of these steps may be decomposed. It goes without saying that we can do it.
  • Any residue may be used, but it is usually used after the residue generated in each step is separated from the liquid component by a solid-liquid separation step, a distillation step or the like.
  • the residue produced as a by-product during the production of HDI is a mixture mainly composed of thermal polycondensates such as amines and isocyanates.
  • the thermal polycondensate has groups or rings such as urea (urethane), biuret, carbodiimide, isocyanurate and the like. In particular, many compounds having a complicated structure having a plurality of these groups or rings are contained.
  • the HDI polyurea compound contained in the above residue is hydrolyzed to HDA in carbon dioxide in a supercritical or subcritical state.
  • the pressure during hydrolysis is preferably 3 MPa or more, particularly preferably 4.8 MPa or more from the viewpoint of decomposition efficiency.
  • Decomposition temperature is preferably 180 ° C or higher, and particularly preferably 185 ° C or higher. When the temperature is low, the decomposition rate becomes slow.
  • the ratio of the HDI polyurea compound to water is preferably 20 times to 120 times the mass of water, more preferably 20 times to 80 times the mass of the HDI urea compound. If the amount of water is too small, the diffusion of water into the urea compound will be insufficient. If the amount is too large, the diffusion of carbon dioxide into the urea compound will be insufficient.
  • the decomposition time of the HDI-based polyurea compound is not particularly limited, but is 1 minute to 300 minutes, preferably 1 minute to 150 minutes after reaching a predetermined temperature.
  • Mixing and heating of water and the HDI polyurea compound may be performed by any of the following methods, but 3) is preferable.
  • 1) Water and an HDI polyurea compound are mixed at a predetermined temperature.
  • 2) Water is heated to a predetermined temperature when mixed with the HDI polyurea compound, and the decomposition temperature is set by mixing the heated water and the HDI polyurea compound.
  • 3) Water and an HDI-based polyurea compound are mixed in advance at a predetermined concentration in a slurry preparation drum or the like to prepare a slurry, and then heated to a decomposition temperature.
  • HDA is contained as a main component in the aqueous solution obtained by decomposing the HDI-based polyurea compound in this way, and HDA can be easily recovered by a method such as ordinary distillation or extraction. Can do.
  • the recovered HDA can be used as a raw material in the HDI production process after further purification if necessary. In addition, it can be used as a raw material for various resins obtained from HDA such as nylon.
  • a light boiling component mainly composed of carbon dioxide is dissolved in the aqueous solution from which HDA is separated, but it can be used for hydrolysis after removing it by performing steam stripping or the like without removing it. It can also be recycled as water. Or it can also drain after carrying out normal wastewater treatment.
  • the distillation residue at the time of HDI production may be any distillation residue generated by distillation in any step of the isocyanate production facility. Usually, it is produced mainly by distillation of a reaction solution obtained in an amine production step or a step of reacting an amine with a carbonyl source such as phosgene.
  • the amount of by-product of this distillation residue varies depending on the production method, but is about 10 wt% with respect to the produced HDI.
  • This distillation residue is usually liquid and contains several tens of percent of volatile components, for example, 50 to 10 wt%.
  • examples of an apparatus for recovering from the above distillation residue to a state that does not substantially contain a volatile component include those used in a normal volatile recovery process such as a thin film evaporator, an apparatus having a stirring and heating means such as a kneader. .
  • a two-phase flow evaporator having piston flow properties it is particularly preferable to use a two-phase flow evaporator having piston flow properties.
  • the evaporation device having piston flow means a facility through which an evaporation target flows in a certain direction from upstream to downstream of the device.
  • the two-phase flow type evaporator is an evaporator having at least a gas-liquid or gas-solid two-phase flow, and gas-liquid-solid three phases may coexist.
  • This HDI polyurea compound did not dissolve in DMF, dimethyl sulfoxide (DMSO), methanol, or chloroform.
  • FT-IR measurement conditions Equipment: FTS3000 type FT-IR measurement device (manufactured by Bio-Rad) Measurement method: KBr method detector: MCT Measurement range: 400 to 4000 cm -1 Sensitivity: 2 Resolution: 4cm -1 Integration count: 32 1 H-NMR measurement conditions Solvent: D 2 O Measuring device: Superconducting multi-nuclide magnetic resonance apparatus JNM-GC400 (manufactured by JEOL Ltd.) Integration count: 8 times
  • FIG. 3 shows a graph of Runs 1 to 5 (Comparative Example 1 and Examples 1 to 4) in Tables 1 and 2 with the vertical axis representing the decomposition rate and the horizontal axis representing the pressure. From FIG. 3, the degradation rate of 99% was achieved with Run 2, and the degradation rate of Runs 3 to 5 was 100%. This is presumably because, when the pressure was high, carbon dioxide was sufficiently diffused into the HDI-based polyurea compound to inhibit hydrogen bonding between the urea groups, thereby reducing the crystallinity of the HDI-based polyurea compound. From this result, it can be said that the pressure during decomposition is 3 MPa or more, preferably 4.8 MPa or more.
  • FIG. 4 shows a graph with the vertical axis representing the decomposition rate and the horizontal axis representing the temperature for Runs 7, 6, and 3 (Comparative Examples 3, 2, and Example 3) in Tables 1 and 2.
  • FIG. 4 shows that the temperature is 180 ° C. or higher in order to achieve a sufficient decomposition rate. From this result, it can be said that the temperature during decomposition is 180 ° C or higher, preferably 185 ° C or higher.
  • FIG. 5 shows a graph with the vertical axis representing the decomposition rate and the horizontal axis representing the amount of water charged for Runs 9, 10, 3, and 11 (Examples 5, 6, 2, and Comparative Example 5) in Tables 1 and 2. From FIG. 5, Runs 9, 10 and 3 had a decomposition rate of 90% or more and gave good results, but the decomposition rate of Run 11 was very low. If the amount of water is too large, it is thought that the diffusion level of carbon dioxide is low. From this result, it can be said that the optimal range is 20 to 120 times the mass of water relative to the mass of the HDI-based polyurea compound.
  • 1 is a 1 H-NMR chart of methanol-soluble matter. It is a decomposition
  • FIG. 1 (a) is an FT-IR chart of an HDI polyurea compound before decomposition.
  • a is a hydrogen peak of a methylene group adjacent to the amino group.
  • b Hydrogen peak of methylene group when one methylene group is separated from amino group.
  • c Hydrogen peak of methylene group when two methylene groups are separated from amino group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】 これまで廃棄処分するしかなかったヘキサメチレンジイソシアネート(HDI)製造時に副生するウレア残さに、アルカリ等の加水分解促進剤を添加することなく、再利用可能なヘキサメチレンジアミン(HDA)を回収でき、また、反応装置の腐食性の問題を起こすことのないHDI系ポリウレアの分解処理方法を提供する。 【解決手段】 HDI系ポリウレア化合物を超臨界状態又は亜臨界状態の二酸化炭素中で加水分解することを特徴とする、HDI系ポリウレア化合物の分解処理方法により解決する。

Description

ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法
 本発明は、ヘキサメチレンジイソシアネート(以後、HDIと略称する)系ポリウレア化合物を加水分解してヘキサメチレンジアミン(以後、HDAと略称する)を回収する、HDI系ポリウレア化合物の分解処理方法に関する。
 ポリウレタンは、ポリイソシアネートとポリオールとの重付加反応により合成される高分子材料である。ポリウレタンは、配合、処方、成形方法等により、種々の物性を付与することが可能である。このため、フォーム、エラストマー、塗料、接着剤等多種多様に利用されている。
 ポリウレタンの原料であるイソシアネートは、対応するアミンをホスゲンと反応させることにより得られているが、この際の副生成物として、ポリウレア化合物を含有する残さが生成する。この残さは、常温下で固化するタール状の物質であり、ハンドリングが難しいため、従来はもっぱら焼却処理される廃棄物であった。
 この残さを分解・回収する方法として、超臨界状態又は亜臨界状態の水を用いてウレア残さを処理する方法が特許文献1に提案されている。
特開2000-136264号公報
 しかしながら、特許文献1の方法では、超臨界状態又は亜臨界状態の水とするためには、高温(臨界温度=374℃)・高圧(臨界圧力=22.1MPa)のという過酷な条件が必要であるため、重厚な設備を必要とする。また超臨界状態又は亜臨界状態の水は、金属腐食の問題を内包しており、反応容器他の装置の維持管理が煩雑となる。
 本発明の目的は、これまで廃棄処分するしかなかったHDI製造時に副生するポリウレア化合物を含有する残さに、アルカリ等の加水分解促進剤を添加することなく、再利用可能なアミン化合物を回収でき、また、反応装置の腐食性の問題を起こすことのないHDI系ポリウレア化合物の分解処理方法を提供することにある。
そこで本発明者らは上記課題を解決するべく鋭意検討した結果、HDI系ポリウレア化合物を、超臨界状態又は亜臨界状態の二酸化炭素中にて、加水分解させることにより、HDAの効率的な回収、及びそのための好適条件を見い出し、本発明を完成するに至った。すなわち本発明は、以下の(1)~(4)に示されるものである。
(1)HDI系ポリウレア化合物を超臨界状態又は亜臨界状態の二酸化炭素中で加水分解して、HDAを回収することを特徴とする、HDI系ポリウレア化合物の分解処理方法。
(2)加水分解時の圧力が3MPa以上であることを特徴とする、前記(1)のHDI系ポリウレア化合物の分解処理方法。
(3)加水分解時の温度が180℃以上であることを特徴とする、前記(1)、(2)のHDI系ウレア化合物の分解処理方法。
(4)HDI系ポリウレア化合物の質量に対して、水の質量が20倍~120倍であることを特徴とする、前記(1)~(3)のいずれかのHDI系ポリウレア化合物の分解処理方法。
 本発明において、HDI系ポリウレア化合物とは、主に-NH-CO-NH-なる基(ウレア基)と-(CH26-が隣接する化合物であり、前記ウレア基の一部がビウレット基となっているものも含む。具体的には、主にHDI製造時に副生する残さとして生成するものである。また残さとは、HDI製造時に発生する残さを意味する。
 本発明の分解に用いられるHDI系ポリウレア化合物としてはHDI製造時に副生する残さであればいずれの工程で発生したものでもよい。具体的には、HDA製造工程、HDAとホスゲンの反応工程、HDI精製工程等のいずれかで副生する残さである。これら残さは各工程においては溶融、溶解していてもよい。なお本発明に適用できる残さとしてはホスゲンを用いて製造されるHDIには限定されず、非ホスゲン法で製造する場合それらの各工程のいずれかの工程で副生する残さをも分解することができることは言うまでもない。
 残さとしてはいずれを用いても良いが通常、各工程で発生した残さを固液分離工程、蒸留工程等により液状成分と分離した後に用いられる。
 これらHDI製造時に副生する残さは主としてアミン、イソシアネート等の熱重縮合物からなる混合物である。熱重縮合物は例えばウレア(ウレタン)、ビウレット、カルボジイミド、イソシアヌレート等の基又は環を有している。特にこれらの基又は環を複数有する複雑な構造を有する化合物が多く含有されている。
 上記の残さ中に含有するHDI系ポリウレア化合物は、超臨界又は亜臨界状態の二酸化炭素中で、HDAに加水分解される。加水分解時の圧力は、分解効率の点から3MPa以上であることが好ましく、特に4.8MPa以上が特に好ましい。
 分解温度は180℃以上が好ましく、特に185℃以上が好ましい。温度が低い場合は分解速度が遅くなる。
 HDI系ポリウレア化合物と水の割合は、HDI系ウレア化合物の質量に対して、水の質量が20倍~120倍上であることが好ましく、特に20倍から80倍が好ましい。水の量が少なすぎる場合は、ウレア化合物への水の拡散が不十分になると思われる。多すぎる場合はウレア化合物への二酸化炭素の拡散が不十分になると思われる。
 HDI系ポリウレア化合物の分解時間は、特に制限されないが、所定温度に達した後、1分~300分、好ましくは1分~150分の範囲で行う。
 水と、HDI系ポリウレア化合物の混合加熱は、以下のいずれの方法によってもよいが、3)が好ましい。
1)水とHDI系ポリウレア化合物とを予め所定の温度にしておいて混合する。
2)水を、HDI系ポリウレア化合物と混合したときに所定温度になるように加熱しておき、加熱された水とHDI系ポリウレア化合物とを混合することにより分解温度とする。3)水とHDI系ポリウレア化合物を予めスラリー調製ドラム等において所定濃度になるように混合してスラリーを調製した後、分解温度まで加熱する。
 このようにしてHDI系ポリウレア化合物を分解して得られた水溶液中には、HDAが
主成分として含まれていることは言うまでもなく、HDAを通常の蒸留や抽出等の方法によって容易に回収することができる。回収されたHDAは、必要によりさらに精製されたのち、HDI製造工程に原料として用いることができる。その他、ナイロンなどHDAから得られる各種樹脂の原料としても使用可能である。
 HDAが分離された水溶液中には二酸化炭素を主成分とする軽沸点成分が溶解しているが、これをスチームストリッピング等を実施することにより除去したのち、あるいは除去することなく、加水分解用の水として循環使用することもできる。あるいは、通常の廃水処理をしたのち排水することもできる。
 HDI製造時の蒸留残さとは、イソシアネートの製造設備のいずれかの工程において蒸留することによって発生した蒸留残さであればいずれでもよい。通常、主にアミン製造工程又はアミンとカルボニル源例えばホスゲンとを反応する工程で得られた反応液を蒸留することにより生じる。
 この蒸留残さの副生量はその製造方法によって異なるが、製造されるHDIに対して約10wt%程度の量である。この蒸留残さは通常液状であり、揮発成分を数10%、例えば50~10wt%含有している。
 本発明において、上記蒸留残さから揮発成分を実質的に含有しない状態までに回収する装置としては薄膜蒸発器、ニーダー等攪拌及び加熱手段を有する装置等通常の揮発回収工程において用いられるものが挙げられる。これらの中で特にピストンフロー性を有する二相流型蒸発装置を用いることが好ましい。
 ピストンフロー性を有する蒸発装置とは、装置の上流から下流への一定方向に向かって被蒸発体が流れる設備のことを意味する。二相流型蒸発装置とは、少なくとも気液、気固のいずれかの二相の流れを有する蒸発装置であり、気液固の三相が共存してもよい。
 本発明の方法によれば、従来産業廃棄物として処分されていたHDI製造時の残さをアルカリ等の添加剤を使うことなく、HDAに効率よく変換することが可能となった。
 以下実施例により本発明を更に詳細に説明するが、下記実施例は本発明を何等制限するものではない。
〔HDI系ポリウレア化合物の合成〕
 メカニカルスターラーをつけたセパラブルフラスコ中で、減圧蒸留したヘキサメチレンジイソシアネート(HDI)を32.7gをジメチルホルムアミド(DMF)80mlに溶解させた。HDIのDMF溶液を撹拌しながら、蒸留水4.0g/DMF100mlの混合液を、滴下ロートを用いて、室温にて2時間かけてHDIのDMF溶液に加えた。その後、80℃のオイルバスにて8時間、撹拌しながら加熱混合を続けた。加熱後、反応液は乳濁した沈殿物を生じた。これを濾過し、濾物をアセトンとメタノールにて数回洗浄した後、減圧乾燥して、白色粉末状のHDI系ポリウレア化合物を得た。このHDI系ポリウレア化合物は、DMF、ジメチルスホキシド(DMSO)、メタノール、クロロホルムには溶解しなかった。
〔ウレア化合物の分解〕
実施例1~8、比較例1~5
 マグネットスターラーを入れた容量:200mlのステンレス製オートクレーブに、前
記HDI系ポリウレア化合物0.5g及び所定量の水(比較例4は不使用)を仕込み、容器内の空気を二酸化炭素で置換した。その後、オートクレーブに液化炭酸ガスを仕込み、バンドヒーターを取り付けて1時間加熱し、所定の内圧及び温度に達したところで、所定の時間撹拌した。その後、氷浴にオートクレーブを浸けて、すばやく冷却した後、常圧に戻し、反応混合物をメタノールで濾過して、メタノールへの可溶物と不溶物に分けて回収した。実施例の結果を表1、2に示す。表2は、表1のデータを後述するグラフのプロットに対応させたものである。不溶物(濾物)をFT-IR測定したところ(図1)、分解前のHDI系ポリウレア化合物のチャートと大きな差は見られなかった。また、可溶物を
1H-NMR測定したところ(図2)、当該物質はヘキサメチレンジアミン(HDA)と同定できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
FT-IR測定条件
 機器  :FTS3000型FT-IR測定装置(Bio-Rad社製)
測定法 :KBr法
検出器 :MCT
測定範囲:400~4000cm-1
感度 :2
 分解能 :4cm-1
積算回数:32
1H-NMR測定条件
 溶媒  :D2
測定装置:超伝導多核種磁気共鳴装置JNM-GC400(日本電子社製)
 積算回数:8回
 表1に示されている温度と圧力は、水の臨界条件(374℃、22.1MPa)に達していないので、水は超臨界状態にはなっていないと判断できる。実施例1~8の全てでHDI系ポリウレア化合物の加水分解が確認できた。しかし比較例では、HDI系ポリウレア化合物の分解量は不十分であった。
 表1、2のRun1~5(比較例1、実施例1~4)について、縦軸に分解率、横軸に圧力としたグラフを図3に示す。図3から、Run2で分解率99%を達成し、Run3~5では分解率は100%であった。これは、圧力が高いと、二酸化炭素がHDI系ポリウレア化合物へ十分に拡散し、ウレア基間の水素結合を阻害して、HDI系ポリウレア化合物の結晶性を低下させたためと考えられる。この結果から、分解時の圧力は3MPa以上、好ましくは4.8MPa以上が適しているということが言える。
 表1、2のRun7、6、3(比較例3、2、実施例3)について、縦軸に分解率、横軸に温度としたグラフを図4に示す。図4から、十分な分解率となるためには、温度が180℃以上であることが分かる。この結果から、分解時の温度は180℃以上、好ましくは185℃以上が適しているということが言える。
 表1、2のRun9、10、3、11(実施例5、6、2、比較例5)について、縦軸に分解率、横軸に水仕込み量としたグラフを図5に示す。図5から、Run9、10、3は、分解率が90%以上あり、良好な結果となったが、Run11の分解率は非常に低いものであった。水の量が多すぎる場合は、二酸化炭素の拡散レベルが低いためと考えられる。この結果から、HDI系ポリウレア化合物の質量に対して、水の質量が20倍~120倍が最適範囲であることが言える。
Run6における、分解前のHDI系ポリウレア化合物及び分解後の濾物のFT-IRチャートである。 メタノール可溶物の1H-NMRチャートである。 温度一定下(190℃)、圧力を変化させたときのHDI系ポリウレア化合物の分解結果である。 圧力一定下(6.8MPa)、温度を変化させたときのHDI系ポリウレア化合物の分解結果である。 温度一定(190℃)、圧力ほぼ一定(6.8~7.0MPa)下、水添加量を変化させたときのHDI系ポリウレア化合物の分解結果である。
図1において
(a):分解前のHDI系ポリウレア化合物のFT-IRチャートである。
(b):分解後の濾物のFT-IRチャートである。
図2において
a:アミノ基に隣接するメチレン基の水素のピークである。
b:アミノ基からメチレン基を1個分乖離したところのメチレン基の水素のピークである。
c:アミノ基からメチレン基を2個分乖離したところのメチレン基の水素のピークである。

Claims (4)

  1.  ヘキサメチレンジイソシアネート系ポリウレア化合物を超臨界状態又は亜臨界状態の二酸化炭素中で加水分解して、ヘキサメチレンジアミンを回収することを特徴とする、ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法。
  2.  加水分解時の圧力が3MPa以上であることを特徴とする、請求項1記載のヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法。
  3.  加水分解時の温度が180℃以上であることを特徴とする、請求項1又は2記載のヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法。
  4.  ヘキサメチレンジイソシアネート系ポリウレア化合物の質量に対して、水の質量が20倍~120倍であることを特徴とする、請求項1から3のいずれか1項に記載のヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法。
PCT/JP2009/004174 2008-08-27 2009-08-27 ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法 WO2010023922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008218165A JP2010053055A (ja) 2008-08-27 2008-08-27 ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法
JP2008-218165 2008-08-27

Publications (1)

Publication Number Publication Date
WO2010023922A1 true WO2010023922A1 (ja) 2010-03-04

Family

ID=41721105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004174 WO2010023922A1 (ja) 2008-08-27 2009-08-27 ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法

Country Status (2)

Country Link
JP (1) JP2010053055A (ja)
WO (1) WO2010023922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096552A (ja) * 2010-03-31 2015-05-21 三菱化学株式会社 ペンタメチレンジアミンの製造方法及びポリアミド樹脂の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721744B (zh) * 2019-09-19 2022-02-22 江苏国立化工科技有限公司 一种具有高反应活性的固体酸催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136264A (ja) * 1998-08-27 2000-05-16 Mitsui Chemicals Inc 固体残さ分解方法
JP2007045815A (ja) * 2005-07-12 2007-02-22 Kobe Steel Ltd イソシアネート系化合物の分解回収方法およびその分解回収設備

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136264A (ja) * 1998-08-27 2000-05-16 Mitsui Chemicals Inc 固体残さ分解方法
JP2007045815A (ja) * 2005-07-12 2007-02-22 Kobe Steel Ltd イソシアネート系化合物の分解回収方法およびその分解回収設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGURU MOTOKUCHO ET AL.: "The Society of Rubber Industry", JAPAN, 2008 NEN NENJI TAIKAI KENKYU HAPPYO KOEN YOSHI, 21 May 2008 (2008-05-21), pages 113 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096552A (ja) * 2010-03-31 2015-05-21 三菱化学株式会社 ペンタメチレンジアミンの製造方法及びポリアミド樹脂の製造方法

Also Published As

Publication number Publication date
JP2010053055A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
KR100602981B1 (ko) 톨릴렌 디이소시아네이트 합성으로부터의 증류 잔류물을처리하는 방법
CN108147980B (zh) 通过二胺悬浮体的光气化制备二异氰酸酯的方法
CN109748822B (zh) 一种制备异氰酸酯单体的方法和系统
WO2010023922A1 (ja) ヘキサメチレンジイソシアネート系ポリウレア化合物の分解処理方法
JP4096080B2 (ja) イソシアナート基とウレタン基とを含むプレポリマーの製造方法
TWI443080B (zh) 利用二芳基碳酸酯製造芳基胺基甲酸酯、異氰酸鹽及聚脲之方法
JP5240678B2 (ja) ウレア化合物の分解処理方法
WO2010103720A1 (ja) トリレンジイソシアネート系ポリウレア化合物の分解処理方法
KR20070038528A (ko) 폴리이소시아네이트 제조 방법
JP2004262835A (ja) 芳香族イソシアネートの製造方法
JP4112750B2 (ja) 固体残さ分解方法
JPH10279539A (ja) イソシアネート系分解対象化合物の分解回収方法およびその分解回収設備
EP1229071A1 (en) Method of treating polyol recovered through decomposition and polyol recovered through decomposition
EP3572397B1 (en) Method for producing n-(alpha-hydroxyethyl)formamide and method for producing n-vinylformamide
JP4501013B2 (ja) ポリオールの精製方法
WO2010125743A1 (ja) ポリメチレンポリフェニレンポリイソシアネート系ポリウレア化合物の分解処理方法
JP6535542B2 (ja) 脂肪族ポリイソシアネートの製造方法および脂肪族ポリイソシアネートの製造装置
JP2008546858A (ja) イソシアネート付加体の後処理方法
JP2005247787A (ja) イソシアナート化合物の製造方法
JP2005008709A (ja) ポリウレタンのフェノール類による分解および分解生成物の回収方法
KR20070084595A (ko) 폴리이소시아네이트의 제조 방법
JPH03184947A (ja) カルバミン酸エステルの精製方法
RU2633520C1 (ru) Жидкий отвердитель форполимеров с концевыми изоцианатными группами
RU2361857C2 (ru) Способ производства полиизоцианатов
RU2479595C1 (ru) Способ получения фторсодержащего форполимера с изоцианатными группами

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809578

Country of ref document: EP

Kind code of ref document: A1