WO2010018612A1 - 導電性高分子アクチュエータおよびその製造方法 - Google Patents
導電性高分子アクチュエータおよびその製造方法 Download PDFInfo
- Publication number
- WO2010018612A1 WO2010018612A1 PCT/JP2008/002219 JP2008002219W WO2010018612A1 WO 2010018612 A1 WO2010018612 A1 WO 2010018612A1 JP 2008002219 W JP2008002219 W JP 2008002219W WO 2010018612 A1 WO2010018612 A1 WO 2010018612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive polymer
- solid electrolyte
- film
- organic polymer
- actuator
- Prior art date
Links
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims description 11
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 56
- 229920000620 organic polymer Polymers 0.000 claims abstract description 46
- 238000005452 bending Methods 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 claims abstract description 24
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims abstract description 23
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims abstract description 23
- 239000002608 ionic liquid Substances 0.000 claims abstract description 20
- 239000002033 PVDF binder Substances 0.000 claims abstract description 14
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 13
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 13
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 13
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 7
- 239000012528 membrane Substances 0.000 claims description 43
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 30
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 12
- 239000004815 dispersion polymer Substances 0.000 claims description 11
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 2
- -1 polyethylene dihydroxythiophene Polymers 0.000 abstract description 11
- 229920002239 polyacrylonitrile Polymers 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 94
- 150000002500 ions Chemical class 0.000 description 53
- 239000003792 electrolyte Substances 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 16
- 238000006073 displacement reaction Methods 0.000 description 13
- 239000011521 glass Substances 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002595 Dielectric elastomer Polymers 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- UINDRJHZBAGQFD-UHFFFAOYSA-O 2-ethyl-3-methyl-1h-imidazol-3-ium Chemical compound CCC1=[NH+]C=CN1C UINDRJHZBAGQFD-UHFFFAOYSA-O 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010014357 Electric shock Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/005—Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S310/00—Electrical generator or motor structure
- Y10S310/80—Piezoelectric polymers, e.g. PVDF
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- the present invention relates to a conductive polymer actuator that can be applied to household robots and the like, and a method for manufacturing the same.
- the present invention relates to an actuator using an electrochemical reaction and a manufacturing method thereof.
- actuators that are small, light, and flexible in the medical and household robot fields. This is because actuators for operating robots that are expected to play an active role in the immediate vicinity such as housework support and work support at home, office, hospital, etc. This is because such a property (for example, safety that does not cause injury when touched or softness that does not hurt when bumped) is required.
- Electrostatic attractive type, piezoelectric type, ultrasonic type, and shape memory alloy type have already been put to practical use as small and lightweight actuators, but these use inorganic materials and their operating principles. Therefore, it cannot be a flexible actuator. Therefore, in recent years, various attempts have been actively made to realize a lightweight and flexible actuator by using an organic material such as a polymer.
- a gel is bent by an electric field (Patent Document 1), a gel is deformed by applying a strong electric field between dielectric elastomer thin films (Non-Patent Document 1), and a conductive polymer is expanded and contracted by a redox reaction. (Patent Document 2) and the like.
- An actuator that bends the gel by an electric field has a problem that the generated stress is small and the power consumption increases because the bending property cannot be maintained unless the electric field is continuously applied.
- a high voltage of several hundred to several kilovolts is required for deformation, and when used for a home robot, the voltage is too high and there is a risk of electric shock or the like.
- conductive polymer actuators that use the expansion and contraction associated with oxidation and reduction of conductive polymers have a relatively simple structure, are easy to reduce in size and weight, are flexible, and can be driven at a low voltage of several volts. It has a feature that the generated stress is sufficiently strong.
- a bending type actuator utilizing the expansion and contraction of a conductive polymer has a structure in which a conductive polymer film is laminated on at least one surface of a solid electrolyte film as shown in FIG.
- 201 is an actuator element
- 202a and 202b are conductive polymer films
- 203 is a solid electrolyte film
- 204a and 204b are electrodes.
- a metal electrode thin film (counter electrode) is formed on the other side of the solid electrolyte membrane in order to apply a voltage.
- a metal electrode thin film may be formed on the conductive polymer film in order to apply a voltage.
- the laminated film is bent by applying a predetermined voltage between the conductive polymer film and the counter electrode or between the conductive polymer films.
- the operating principle of bending is considered as follows. That is, the conductive polymer is oxidized and reduced by voltage application, and ions are taken into or taken out of the conductive polymer film accordingly.
- the volume of the conductive polymer film changes due to the entry and exit of the ions, and the actuator is bent because it is laminated with the solid electrolyte film that does not change in volume. For example, in the configuration shown in FIG. 2, when ions are taken into the upper conductive polymer film or ions are taken out from the lower conductive polymer film, the upper conductive film is turned downward. When ions are extracted from the conductive polymer film or ions are taken into the lower conductive polymer film, the film bends upward.
- Examples of conductive polymers used for actuators include polyaniline, polypyrrole, polythiophene, and derivatives thereof (Patent Document 2).
- Conductive polymer actuators use ions in and out of the conductive polymer film as a result of the electrical oxidation and reduction of the conductive polymer as the principle of operation.
- An electrolyte is required, and in order to operate in air, a solid electrolyte having sufficient ionic conductivity at a temperature of about room temperature is required.
- a material named ion gel has been created. This is at least one of polymers or monomers dispersed in the ionic liquid is gelled, a material holding an ionic liquid into a three-dimensional network structure of the gel has a softness, and at room temperature for 10 - The value of 2 S / cm, which is 100 times or more that of the conventional polyether polymer solid electrolyte, is achieved.
- Patent Document 2 Other documents that may be relevant to the present invention include Patent Document 3 and Patent Document 4.
- Patent Document 3 discloses a polymer actuator device.
- FIG. 9 and its description include a control electrode A (reference numeral 203), an electrolytic displacement part A (reference numeral 201) made of a conductive polymer, an electrolyte part (reference numeral 202), and a conductive polymer.
- a polymer actuator device comprising an electrolytic displacement portion B (reference numeral 201 ′) and a control electrode B (reference numeral 203 ′) is disclosed.
- paragraph number 0077 of Patent Document 3 describes that polythiophene is preferable as the conductive polymer.
- Paragraph No. 0078 of Patent Document 3 discloses that a fluorine-based polymer such as polyvinylidene fluoride or a copolymer thereof is used as the polymer solid electrolyte. Furthermore, it is disclosed that sulfonic acid may be introduced into the basic skeleton.
- Patent Document 4 discloses a conductive polymer gel and a method for producing the same, an actuator, a patch label for ion introduction, and a bioelectrode.
- paragraph No. 0069 (Example 7) of Patent Document 4 poly (3,4-ethylenedioxythiophene) -poly (ethylenesulfonic acid) colloidal dispersion (abbreviated as PEDOT / PSS) The addition of alcohol is disclosed.
- PEDOT / PSS poly (3,4-ethylenedioxythiophene) -poly (ethylenesulfonic acid) colloidal dispersion
- An object of the present invention is to improve the adhesion between a solid electrolyte membrane made of a conductive polymer membrane and an ionic gel, and to realize a bent type conductive polymer actuator that does not deteriorate even if it is repeatedly operated. Furthermore, it aims at providing the manufacturing method for implement
- the bending type conductive polymer actuator according to the present invention for solving the above-mentioned problems is A pair of electrodes;
- a bending type conductive polymer actuator comprising a laminated structure sandwiched between the pair of electrodes, The laminated structure is Vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)], polyvinylidene fluoride (PVDF), perfluorosulfonic acid / PTFE copolymer, polymethyl methacrylate (PMMA), polyethylene oxide (PEO), poly
- a solid electrolyte membrane comprising a mixture of a first organic polymer containing at least one acrylonitrile (PAN) and an ionic liquid; Comprising at least one surface of the solid electrolyte membrane a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS), and a conductive polymer membrane formed on the solid electrolyte
- the method for driving the bent conductive polymer actuator according to the present invention as described above is as follows. Preparing a bent conductive polymer actuator; and applying a voltage to the pair of electrodes.
- the conductive polymer film is formed on both surfaces of the solid electrolyte film.
- a conductive polymer dispersion or solution is applied onto a substrate, and the dispersion or solution is made of a vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] before being dried to form a solid film.
- a second organic polymer composed of a vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] having a specific gravity smaller than that of the conductive polymer dispersion or solution is used as a conductive polymer dispersion or solution.
- a bend-type conductive polymer actuator is realized in which the adhesion between the conductive polymer membrane and the solid electrolyte membrane made of ionic gel is improved, and the characteristics are not deteriorated even when operated repeatedly.
- FIG. 1 is a schematic diagram of an actuator according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a conventional bending actuator.
- FIG. 1 is a schematic cross-sectional view of an actuator according to an embodiment of the present invention.
- the actuator 101 is composed of a laminate of conductive polymer films 102a and 102b and a solid electrolyte film 103, and electrodes 105a and 105b are disposed so as to sandwich one end of the conductive polymer films 102a and 102b.
- the actuator 101 bends with the portion sandwiched between the electrodes 105a and 105b as a fixed portion.
- a conductive polymer film is laminated on one side of the solid electrolyte membrane, and the other side of the solid electrolyte membrane also bends in the same way, even if it has a structure in which a metal electrode thin film (counter electrode) is formed to apply a voltage.
- a larger bending displacement can be obtained by laminating a conductive polymer film on both surfaces of the solid electrolyte membrane.
- the conductive polymer used in the present invention has a conjugated double bond, so that ⁇ electrons spread throughout the polymer and contribute to electronic conductivity. Electrical conduction of conducting polymers is thought to occur when polarons and bipolarons generated by the interaction between oxidants doped in polymers and ⁇ electrons in the polymers become charge carriers. .
- polyaniline, polypyrrole, polythiophene, and derivatives thereof can be used as the conductive polymer.
- PEDOT polyethylenedioxythiophene
- PEDOT polyethylenedioxythiophene
- PES polystyrene
- PEDOT Polyethylenedioxythiophene
- polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) in the mixture constituting the conductive polymer are represented by (Chemical Formula 1) and (Chemical Formula 2), respectively.
- Polyethylenedioxythiophene has a feature that the ⁇ -position of a chemically active five-membered ring is preliminarily modified and inactivated by oxygen, and thus is less susceptible to oxidative degradation.
- polystyrene sulfonic acid is strongly bonded to polyethylene dioxythiophene by ionic bond.
- the conductive polymer film in which the second organic polymer made of vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] is dispersed on the surface is the second organic polymer. These particles are embedded in the conductive polymer film, and a part thereof is exposed on the surface of the conductive polymer film.
- a conductive polymer dispersion or solution is applied onto a substrate, and a second organic polymer is sprayed and applied before the dispersion or solution is dried to form a solid film. It can be performed by the procedure of embedding in a distributed state using the attached means.
- the second organic polymer made of vinylidene fluoride / hexafluoropropylene copolymer has a specific gravity smaller than that of the conductive polymer dispersion or solution.
- the second organic polymer can be embedded in a dispersed state on the surface of the conductive polymer film by dispersing the polymer in the conductive polymer dispersion or solution.
- the second organic polymer needs to be insoluble in the conductive polymer dispersion or the solvent of the solution.
- the second organic polymer When the second organic polymer is dispersed on the surface of the conductive polymer film after the conductive polymer film becomes a solid film, the second organic polymer is not embedded in the conductive polymer film. The effect of improving the adhesion between the polymer membrane and the solid electrolyte is not exhibited.
- the second organic polymer made of vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] is formed as a continuous film on the surface of the conductive polymer film, the principle of operation of the conductive polymer actuator This is not preferable because it inhibits the entry and exit of ions from the electrolyte.
- the amount of dispersion of the second organic polymer made of vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] is the conductive polymer dispersion or solution of the second organic polymer (conductive polymer).
- the mixing ratio with respect to the solid content (1 weight percent) is preferably 0.1 weight percent to 10 weight percent. When the amount is less than this range, the adhesion between the conductive polymer and the ion gel cannot be obtained, and the bending operation becomes difficult when the actuator is manufactured.
- the solid electrolyte membrane 103 used in the present invention is named an ionic gel in which at least one of a polymer or a monomer dispersed in an ionic liquid is gelled and the ionic liquid is held in the three-dimensional network structure of the gel.
- the material is flexible and has a value of 10 ⁇ 2 S / cm at room temperature, which is 100 times or more that of a conventional polyether-based polymer solid electrolyte.
- an ionic gel can be used alone as the solid electrolyte membrane, the ionic gel can also be used by impregnating a porous membrane such as paper or a membrane filter.
- the ionic liquid is also called a room temperature molten salt or simply a molten salt, and is a salt that shows a molten state in a wide temperature range including normal temperature (room temperature).
- conventionally known various ionic liquids can be used, but those which show a liquid state at a room temperature (room temperature) or a temperature close to room temperature (room temperature) and are stable are preferable.
- Examples of the ionic liquid preferably used in the present invention include those composed of the following cations represented by (Chemical Formula 3) to (Chemical Formula 6) and an anion (X ⁇ ).
- R represents an alkyl group having 1 to 12 carbon atoms or an alkyl group containing an ether bond and having a total number of carbon and oxygen of 3 to 12, and in (Chemical Formula 3), R1 Represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
- R and R1 are different.
- x is an integer of 1 to 4, respectively.
- an imidazolium ion represented by (Chemical Formula 3) is more preferable.
- anion (X ⁇ ) examples include a tetrafluoroborate anion, a hexafluorophosphate anion, a bis (trifluoromethanesulfonyl) imido anion, a perchlorate anion, a tris (trifluoromethanesulfonyl) carbonate anion, and a trifluoromethanesulfonate anion.
- Dicyanamide anion, trifluoroacetate anion, organic carboxylate anion and halogen ion are preferred.
- Organic polymers that can be used to obtain a gel-like composition that becomes an ionic gel include vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)], polyvinylidene fluoride (PVDF), and perfluorosulfonic acid.
- PVDF / HFP vinylidene fluoride / hexafluoropropylene copolymer
- PVDF polyvinylidene fluoride
- perfluorosulfonic acid perfluorosulfonic acid.
- / PTFE copolymer polymethyl methacrylate (PMMA), polyethylene oxide (PEO), and polyacrylonitrile (PAN).
- a monomer for example, methyl methacrylate, MMA
- a crosslinking agent for example, ethylene glycol dimethacrylate, EGDMA
- a polymerization initiator for example, azobisisobutyronitrile, AIBN
- the solid electrolyte is obtained by mixing the ionic liquid and at least one of the polymer or monomer to prepare an ionic gel precursor, heating it, and then cooling it, but from the viewpoint of strength and ionic conductivity.
- the weight ratio is preferably 9: 1 to 6: 4, and more preferably 8: 2 to 7: 3.
- the molar ratio is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.
- the electrode may be any material that has electronic conductivity and can easily exchange electrons with the conductive polymer without chemically reacting with the conductive polymer, such as gold, silver, platinum, copper, and chromium, And carbon-containing plates can be used.
- Example 1 [Preparation of conductive polymer film embedded with second organic polymer dispersed] PEDOT in which 5% by weight of dimethyl sulfoxide (DMSO) and 0.1% by weight of vinylidene fluoride-hexafluoropropylene copolymer [P (VDF / HFP)] were mixed on a glass slide treated with oxygen and treated with oxygen plasma A predetermined amount of an aqueous dispersion of PSS mixture (trade name Vitron PH500, manufactured by Starck Co., Ltd.) was dropped. Since the specific gravity of P (VDF / HFP) is smaller than that of the aqueous dispersion of PEDOT and PSS mixture, P (VDF / HFP) floats on top of the mixture.
- DMSO dimethyl sulfoxide
- PVDF / HFP vinylidene fluoride-hexafluoropropylene copolymer
- the film was naturally dried at room temperature to volatilize the solvent, and a conductive polymer film embedded with PVP dispersed on the slide glass was formed. Finally, the conductive polymer film was peeled from the slide glass using a razor.
- the obtained conductive polymer film had an average thickness of 20 ⁇ m and an electrical conductivity of 230 S / cm measured using a four-end needle method.
- a polyethylene terephthalate (PET) sheet having a thickness of 0.1 mm was cut into a size of 76 mm ⁇ 26 mm, and this was adhered to a slide glass having a size of 76 mm ⁇ 26 mm. Two sets of this were produced. Then, a slide glass produced by sandwiching a capacitor separator paper having a thickness of 40 ⁇ m was adhered so that the two PET sheets face each other with a predetermined gap therebetween. At this time, the capacitor separator paper was impregnated with an ion gel precursor. Thereafter, the mixture was heated at 100 ° C.
- PET polyethylene terephthalate
- an electrolyte ion gel obtained here is referred to as an electrolyte ion gel.
- This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
- a molecular actuator was fabricated.
- Bending displacement was evaluated by triangulation using a laser displacement meter.
- the measurement point of the triangular measurement was set at a position of 5 mm in the length direction from the electrode mounting portion.
- Table 1 shows the amount of displacement when driven by a 1 Hz rectangular wave.
- the bent type conductive polymer actuator having this configuration has excellent adhesion between the conductive polymer film and the solid electrolyte film, and can be operated for a long time.
- Example 2 Preparation of conductive polymer film embedded with second organic polymer dispersed
- a predetermined amount of an aqueous dispersion of PEDOT mixed with 5% by weight of N-methylpyrrolidone (NMP) and a PSS mixture (trade name Vitron PH500, manufactured by Starck Co., Ltd.) was dropped onto a silicon substrate that had been cleaned with acetone and treated with oxygen plasma.
- NMP N-methylpyrrolidone
- PSS mixture trade name Vitron PH500, manufactured by Starck Co., Ltd.
- P (VDF / HFP) a vinylidene fluoride / hexafluoropropylene copolymer
- the silicon substrate was immersed in a 50% by volume aqueous potassium hydroxide solution, and the conductive polymer film was peeled from the substrate.
- the obtained conductive polymer film had an average thickness of 13 ⁇ m, and the conductivity measured using a four-end needle method was 238 S / cm.
- a polyethylene terephthalate (PET) sheet having a thickness of 0.1 mm was cut into a size of 76 mm ⁇ 26 mm, and this was adhered to a slide glass having a size of 76 mm ⁇ 26 mm. Two sets of this were produced. Then, a slide glass produced by sandwiching a capacitor separator paper having a thickness of 40 ⁇ m was adhered so that the two PET sheets face each other with a predetermined gap therebetween. At this time, the capacitor separator paper was impregnated with an ion gel precursor. Thereafter, the mixture was heated at 100 ° C.
- PET polyethylene terephthalate
- electrolyte ion gel the ion gel-impregnated paper obtained here is referred to as electrolyte ion gel.
- Conductive polymer film / electrolyte ion gel / conductive polymer film is formed by superposing conductive polymer films on both sides of the electrolyte ion gel so as to be opposed to each other, heating in a thermostatic bath at 100 ° C. for 30 minutes, and then cooling to room temperature. The three-layer structure was formed.
- This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
- a molecular actuator was fabricated.
- the bent type conductive polymer actuator having this configuration is excellent in adhesiveness between the conductive polymer film and the solid electrolyte film and can be operated for a long time.
- Example 3 A bending type conductive polymer actuator was prepared in the same manner as in Example 1 except that 0.5, 1, 5, 10, 20 weight percent of vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)] was mixed. Produced. When a voltage of ⁇ 1.0 V was applied to these actuators, bending action was made in response to the applied voltage without peeling at the electrolyte ion gel-conductive polymer film interface. Similar to the first and second embodiments, these were able to perform a bending operation stably even in long-term continuous driving.
- Comparative Example 1 A predetermined amount of an aqueous dispersion of PEDOT and PSS mixture (trade name Vitron PH500, manufactured by Starck Co., Ltd.) in which 5 weight percent of dimethyl sulfoxide (DMSO) was dissolved was dropped onto a slide glass that had been cleaned with acetone and treated with oxygen plasma. Then, it was naturally dried at room temperature to evaporate the solvent, and a conductive polymer film was formed on the slide glass. Finally, the conductive polymer film was peeled from the slide glass using a razor.
- PEDOT and PSS mixture trade name Vitron PH500, manufactured by Starck Co., Ltd.
- DMSO dimethyl sulfoxide
- Conductive polymer membranes are stacked on both sides of an electrolyte ion gel produced in the same manner as in Example 1, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the electrolyte ion gel and the conductive polymer membrane are cooled.
- a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
- a molecular actuator was fabricated.
- This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave, and the initial 10-time average displacement was 0.05 mm or less (Table 3).
- Comparative Example 2 A predetermined amount of an aqueous dispersion of PEDOT and PSS mixture in which 5% by weight of N-methylpyrrolidone (NMP) was dissolved (trade name Vitron PH500, manufactured by Starck Co., Ltd.) was dropped onto a silicon substrate that had been cleaned with acetone and treated with oxygen plasma. Thereafter, the solvent was volatilized by natural drying at room temperature, and a conductive polymer film was formed on the silicon substrate. Finally, the silicon substrate was immersed in a 50% by volume potassium hydroxide aqueous solution, and the conductive polymer film was peeled from the substrate.
- NMP N-methylpyrrolidone
- Conductive polymer membranes are stacked on both sides of the electrolyte ion gel produced in the same manner as in Example 2, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the conductive polymer membrane and the electrolyte ion gel are cooled.
- a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
- a molecular actuator was fabricated.
- This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave and the initial 10-time average displacement was 0.05 mm or less.
- Conductive polymer membranes are stacked on both sides of an electrolyte ion gel produced in the same manner as in Example 1, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the electrolyte ion gel and the conductive polymer membrane are cooled.
- a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to an area of 5 mm in the longitudinal direction from one end, and a bending type conductive high electrode having a movable part length of 10 mm is attached.
- a molecular actuator was fabricated.
- This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave and the initial 10-time average displacement was 0.05 mm or less.
- a highly reliable actuator that is small, light and flexible, and can be suitably used in fields such as medical, industrial, and home robots or micromachines. it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
Description
その他、本発明に関連し得る文献として、特許文献3および特許文献4が挙げられる。
一対の電極と、
前記一対の電極の間に挟まれる積層構造と
を具備している屈曲型導電性高分子アクチュエータであって、
前記積層構造は、
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む第1の有機ポリマーとイオン液体との混合物からなる固体電解質膜と、
前記固体電解質膜の少なくとも片面にポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなり、前記固体電解質膜上に形成された導電性高分子膜と
を具備し、
前記導電性高分子膜表面にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる第2の有機ポリマーが分散された状態で埋め込まれ、かつ
前記固体電解質膜と前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面とが接している。
前記屈曲型導電性高分子アクチュエータを用意する工程、および
前記一対の電極に電圧を印加する工程
を有する。
基板上に導電性高分子分散液または溶液を塗付し、前記分散液または溶液が乾燥し固体膜となる前にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる第2の有機ポリマーを散布、塗付の手段を用いて分散された状態で埋め込む工程と、
前記固体電解質膜の少なくとも片面に前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面を対向させて積層させる工程と
を有する。
予めフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる、比重が前記導電性高分子分散液または溶液よりも小さい第2の有機ポリマーを導電性高分子分散液または溶液中に分散させることによって前記導電性高分子膜表面に前記第2の有機ポリマーを分散された状態で埋め込む工程と、
前記固体電解質膜の少なくとも片面に前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面を対向させて積層させる工程と
を有する。
102a 導電性高分子膜
102b 導電性高分子膜
103 固体電解質膜
104a 第2の有機ポリマー
104b 第2の有機ポリマー
105a 電極
105b 電極
201 アクチュエータ素子
202a 導電性高分子膜
202b 導電性高分子膜
203 固体電解質膜
204a 電極
204b 電極
固体電解質膜の片面に導電性高分子膜を積層させ、固体電解質膜のもう片面には電圧を印加するために金属電極薄膜(対極)を形成した構造であっても同様に屈曲動作するが、固体電解質膜の両面に導電性高分子膜を積層することでより大きな屈曲変位が得られる。
[第2の有機ポリマーが分散された状態で埋め込まれている導電性高分子膜作製]
アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)、0.1重量パーセントのフッ化ビニリデン-ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を混合したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。P(VDF/HFP)の比重はPEDOTとPSS混合体の水分散液よりも小さいためにP(VDF/HFP)は混合液の上部に浮上する。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上にPVPが分散された状態で埋め込まれている導電性高分子膜を形成した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。得られた導電性高分子膜は平均厚さ20μm、四端針法を用いて測定した導電率は230S/cmであった。
イオンゲルを作製するためのイオン液体には、カチオンとして、エチルメチルイミダゾリウム(EMI)、アニオンとして、ビス(トリフルオロメタンスルホニル)イミド[(CF3SO2)2N-](TFSI)を用いた。混合するポリマーとしてはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を用いた。EMITFSIとP(VDF/HFP)混合比は重量比で8:2とし、混合した後マグネチックスターラーを用いて十分攪拌した。以下、この混合液をイオンゲル前駆体と記す。
厚み0.1mmのポリエチレンテレフタレート(PET)シートを76mm×26mmの大きさに裁断し、これを大きさ76mm×26mmのスライドグラスに密着させた。これを2組作製した。そして、二つのPETシートが所定の間隔を空けて対向するように、40μm厚のコンデンサセパレータ紙を挟んで作製したスライドガラスを密着させた。この時、コンデンサセパレータ紙にイオンゲル前駆体を含浸させておいた。その後、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで厚さ40μmのイオンゲル含浸紙を得た。PETシートとイオンゲル含浸紙は相互の接着性が極めて低いため容易に剥離できた。以下、ここで得られたイオンゲルを電解質イオンゲルと記す。
電解質イオンゲルの両面に、導電性高分子膜の[P(VDF/HFP)]が分散された状態で埋め込まれている面を対向させて重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで、導電性高分子膜/電解質イオンゲル/導電性高分子膜の三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
[第2の有機ポリマーが分散された状態で埋め込まれている導電性高分子膜作製]
アセトン洗浄後酸素プラズマ処理したシリコン基板上に、5重量パーセントのNメチルピロリドン(NMP)を混合したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。この膜が乾燥する前にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]をPEDOTとPSS混合体の水分散液に対して1重量パーセント表面に散布し、その後、室温で自然乾燥して溶媒を揮発させ、シリコン基板上にP(VDF/HFP)が分散された状態で埋め込まれている導電性高分子膜を形成した。
イオンゲルを作製するためのイオン液体には、カチオンとして、ブチルメチルイミダゾリウム(BMI)、アニオンとしてヘキサフルオロリン酸アニオン(PF6 -)を用いた。混合するポリマーとしてはフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を用いた。EMITFSIとP(VDF/HFP)混合比は重量比で8:2とし、混合した後マグネチックスターラーを用いて十分攪拌した。以下、この混合液をイオンゲル前駆体と記す。
厚み0.1mmのポリエチレンテレフタレート(PET)シートを76mm×26mmの大きさに裁断し、これを大きさ76mm×26mmのスライドグラスに密着させた。これを2組作製した。そして、二つのPETシートが所定の間隔を空けて対向するように、40μm厚のコンデンサセパレータ紙を挟んで作製したスライドガラスを密着させた。この時、コンデンサセパレータ紙にイオンゲル前駆体を含浸させておいた。その後、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで厚さ40μmのイオンゲル含浸紙を得た。PETシートとイオンゲル含浸紙は相互の接着性が極めて低いため容易に剥離できた。以下、ここで得られたイオンゲル含浸紙を電解質イオンゲルと記す。
電解質イオンゲルの両面に導電性高分子膜を対向させて重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで、導電性高分子膜/電解質イオンゲル/導電性高分子膜の三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を0.5、1、5、10、20重量パーセント混合した以外実施例1と同様にして屈曲型導電性高分子アクチュエータを作製した。これらのアクチュエータに±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離することなく印加電圧に応答した屈曲動作をした。これらは実施例1および2と同様に長期連続駆動においても安定して屈曲動作することが可能であった。一方 フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を20重量パーセント溶解させた分散液は膜質が非常に脆く実施例1と同様にして屈曲型導電性高分子アクチュエータを作製することが出来なかった(表3)。
アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上に導電性高分子膜を形成した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。
アセトン洗浄後酸素プラズマ処理したシリコン基板上に、5重量%のNメチルピロリドン(NMP)を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、シリコン基板上に導電性高分子膜を形成した。最後に、シリコン基板を50体積%の水酸化カリウム水溶液に浸漬し、導電性高分子膜を基板から剥離した。
アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上に導電性高分子膜を形成した。導電性高分子膜を形成した後に、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を表面に散布した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。
Claims (6)
- 一対の電極と、
前記一対の電極の間に挟まれる積層構造と
を具備している屈曲型導電性高分子アクチュエータであって、
前記積層構造は、
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む第1の有機ポリマーとイオン液体との混合物からなる固体電解質膜と、
前記固体電解質膜の少なくとも片面にポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなり、前記固体電解質膜上に形成された導電性高分子膜と
を具備し、
前記導電性高分子膜表面にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる第2の有機ポリマーが分散された状態で埋め込まれ、かつ
前記固体電解質膜と前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面とが接している
ことを特徴とする屈曲型導電性高分子アクチュエータ。 - 前記固体電解質膜の両面に前記導電性高分子膜が形成されている、請求項1に記載の屈曲型導電性高分子アクチュエータ。
- 屈曲型導電性高分子アクチュエータの駆動方法であって、
前記駆動方法は、
前記屈曲型導電性高分子アクチュエータを用意する工程、および
ここで、前記屈曲型導電性高分子アクチュエータは、
一対の電極と、
前記一対の電極の間に挟まれる積層構造と
を具備しており、
前記積層構造は、
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む第1の有機ポリマーとイオン液体との混合物からなる固体電解質膜と、
前記固体電解質膜の少なくとも片面に形成されたポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなり、前記固体電解質膜上に形成された導電性高分子膜と
を具備し、
前記導電性高分子膜表面にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる第2の有機ポリマーが分散された状態で埋め込まれ、かつ
前記固体電解質膜と前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面とが接しており、
前記一対の電極に電圧を印加する工程
を有する、屈曲型導電性高分子アクチュエータの駆動方法。 - 前記固体電解質膜の両面に前記導電性高分子膜が形成されている、請求項3に記載の屈曲型導電性高分子アクチュエータの駆動方法。
- 一対の電極と、
前記一対の電極の間に挟まれる積層構造と
を具備し、
前記積層構造は、
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む第1の有機ポリマーとイオン液体との混合物からなる固体電解質膜と、
前記固体電解質膜の少なくとも片面に形成されたポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなり、前記固体電解質膜上に形成された導電性高分子膜と
を具備している屈曲型導電性高分子アクチュエータの製造方法であって、
基板上に導電性高分子分散液または溶液を塗付し、前記分散液または溶液が乾燥し固体膜となる前にフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる第2の有機ポリマーを散布、塗付の手段を用いて分散された状態で埋め込む工程と、
前記固体電解質膜の少なくとも片面に前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面を対向させて積層させる工程と
を有することを特徴とする屈曲型導電性高分子アクチュエータの製造方法。 - 一対の電極と、
前記一対の電極の間に挟まれる積層構造と
を具備し、
前記積層構造は、
フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む第1の有機ポリマーとイオン液体との混合物からなる固体電解質膜と、
前記固体電解質膜の少なくとも片面に形成されたポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなり、前記固体電解質膜上に形成された導電性高分子膜と
を具備している屈曲型導電性高分子アクチュエータの製造方法であって、
予めフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]からなる、比重が前記導電性高分子分散液または溶液よりも小さい第2の有機ポリマーを導電性高分子分散液または溶液中に分散させることによって前記導電性高分子膜表面に前記第2の有機ポリマーを分散された状態で埋め込む工程と、
前記固体電解質膜の少なくとも片面に前記導電性高分子膜表面の前記第2の有機ポリマーが分散された状態で埋め込まれている面を対向させて積層させる工程と
を有することを特徴とする屈曲型導電性高分子アクチュエータの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/002219 WO2010018612A1 (ja) | 2008-08-15 | 2008-08-15 | 導電性高分子アクチュエータおよびその製造方法 |
CN2008800074385A CN101828330B (zh) | 2008-08-15 | 2008-08-15 | 导电性高分子致动器及其制造方法 |
JP2008556599A JP4287504B1 (ja) | 2008-08-15 | 2008-08-15 | 導電性高分子アクチュエータおよびその製造方法 |
US12/434,456 US7733000B2 (en) | 2008-08-15 | 2009-05-01 | Electrically conductive polymer actuator, and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/002219 WO2010018612A1 (ja) | 2008-08-15 | 2008-08-15 | 導電性高分子アクチュエータおよびその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/434,456 Continuation US7733000B2 (en) | 2008-08-15 | 2009-05-01 | Electrically conductive polymer actuator, and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018612A1 true WO2010018612A1 (ja) | 2010-02-18 |
Family
ID=40921813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/002219 WO2010018612A1 (ja) | 2008-08-15 | 2008-08-15 | 導電性高分子アクチュエータおよびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7733000B2 (ja) |
JP (1) | JP4287504B1 (ja) |
CN (1) | CN101828330B (ja) |
WO (1) | WO2010018612A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160071878A (ko) * | 2014-12-12 | 2016-06-22 | 엘지디스플레이 주식회사 | 액츄에이터, 이를 포함하는 표시 장치 및 액츄에이터의 제조 방법 |
KR20160080956A (ko) * | 2014-12-30 | 2016-07-08 | 엘지디스플레이 주식회사 | 액츄에이터, 액츄에이터 구동 방법 및 액츄에이터를 포함하는 표시 장치 |
KR20170079965A (ko) * | 2015-12-31 | 2017-07-10 | 엘지디스플레이 주식회사 | 접촉 감응 소자 및 이를 포함하는 표시 장치 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8247946B2 (en) * | 2004-06-14 | 2012-08-21 | Massachusetts Institute Of Technology | Electrochemical actuator |
JP2008503059A (ja) | 2004-06-14 | 2008-01-31 | マサチューセッツ・インスティテュート・オブ・テクノロジー | 電気化学的方法、デバイス、および構造体 |
US7872396B2 (en) | 2004-06-14 | 2011-01-18 | Massachusetts Institute Of Technology | Electrochemical actuator |
JP4552916B2 (ja) * | 2005-12-21 | 2010-09-29 | 株式会社大真空 | 圧電振動デバイス |
EP2178584A2 (en) * | 2007-07-26 | 2010-04-28 | Entra Pharmaceuticals Inc. | Skin-patch pump comprising a changing-volume electrochemical actuator |
JP5402140B2 (ja) * | 2009-03-24 | 2014-01-29 | ソニー株式会社 | アクチュエータ |
JP5279902B2 (ja) * | 2009-05-26 | 2013-09-04 | アルプス電気株式会社 | 高分子アクチュエータ装置 |
WO2011024219A1 (ja) * | 2009-08-26 | 2011-03-03 | パナソニック株式会社 | 導電性高分子アクチュエータ、並びにその駆動方法および製造方法 |
JP5473483B2 (ja) * | 2009-08-27 | 2014-04-16 | キヤノン株式会社 | アクチュエータ |
JP5733938B2 (ja) * | 2009-12-08 | 2015-06-10 | キヤノン株式会社 | アクチュエータ |
WO2011070853A1 (ja) * | 2009-12-10 | 2011-06-16 | 株式会社ニコン | 空間光変調器、照明光学系、露光装置、およびデバイス製造方法 |
JP5466758B2 (ja) * | 2010-03-16 | 2014-04-09 | アルプス電気株式会社 | 高分子アクチュエータを用いた駆動装置 |
US8337457B2 (en) | 2010-05-05 | 2012-12-25 | Springleaf Therapeutics, Inc. | Systems and methods for delivering a therapeutic agent |
JP5918236B2 (ja) | 2010-08-20 | 2016-05-18 | ロディア オペレーションズRhodia Operations | ポリマー組成物、ポリマーフィルム、ポリマーゲル、ポリマーフォーム、並びに当該フィルム、ゲル及びフォームを含有する電子デバイス |
WO2012083174A2 (en) | 2010-12-17 | 2012-06-21 | Massachusetts Institute Of Technology | Electrochemical actuators |
JP5942338B2 (ja) * | 2011-04-28 | 2016-06-29 | デクセリアルズ株式会社 | 駆動装置、レンズモジュールおよび撮像装置 |
JP2013123366A (ja) * | 2011-11-10 | 2013-06-20 | Canon Inc | アクチュエータ |
CN103998777B (zh) * | 2011-12-19 | 2016-12-07 | 松下电器产业株式会社 | 致动器 |
JP5848639B2 (ja) * | 2012-03-07 | 2016-01-27 | 本田技研工業株式会社 | バルブ装置、及び油圧回路の故障検出装置 |
JP5954412B2 (ja) | 2012-04-23 | 2016-07-20 | 株式会社村田製作所 | 複合材料、アクチュエータおよびそれらの製造方法 |
JP6322900B2 (ja) * | 2013-04-26 | 2018-05-16 | デクセリアルズ株式会社 | ポリマー素子およびその製造方法、ならびにレンズモジュールおよび撮像装置 |
JP6108138B2 (ja) * | 2014-04-30 | 2017-04-05 | 株式会社村田製作所 | 導電パターン付絶縁基材 |
KR101714713B1 (ko) * | 2015-09-23 | 2017-03-09 | 숭실대학교산학협력단 | 센서 결합형 액추에이터 햅틱 소자와 그 제작방법 |
EP3465785B1 (en) * | 2016-06-07 | 2020-02-12 | Koninklijke Philips N.V. | Electroactive polymer actuator |
TWI798160B (zh) * | 2016-06-30 | 2023-04-11 | 施奕兆 | 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用 |
US10007347B1 (en) * | 2017-03-09 | 2018-06-26 | Immersion Corporation | Fiber actuator for haptic feedback |
US11107972B2 (en) | 2018-12-11 | 2021-08-31 | Facebook Technologies, Llc | Nanovoided tunable optics |
CN111403431B (zh) * | 2019-01-02 | 2023-09-05 | 京东方科技集团股份有限公司 | 柔性体及控制其发生形变的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11169394A (ja) * | 1997-12-15 | 1999-06-29 | Keiichi Kanefuji | 金属電極を表面に有する人工筋肉体 |
JP2005176428A (ja) * | 2003-12-08 | 2005-06-30 | Japan Science & Technology Agency | アクチュエータ素子 |
WO2006046620A1 (ja) * | 2004-10-27 | 2006-05-04 | Asahi Glass Company, Limited | 電解質材料、電解質膜、及び固体高分子形燃料電池用膜電極接合体 |
JP2008011593A (ja) * | 2006-06-27 | 2008-01-17 | Konica Minolta Opto Inc | アクチュエータ素子、及びアクチュエータ素子の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812624B1 (en) * | 1999-07-20 | 2004-11-02 | Sri International | Electroactive polymers |
JP4154474B2 (ja) | 1998-01-09 | 2008-09-24 | 独立行政法人産業技術総合研究所 | アクチュエータ素子の製造方法 |
EP0924033A3 (en) * | 1997-12-15 | 1999-11-17 | Keiichi Kaneto | Artificial muscles |
US6545391B1 (en) * | 1999-10-22 | 2003-04-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Polymer-polymer bilayer actuator |
US6982514B1 (en) * | 2000-05-22 | 2006-01-03 | Santa Fe Science And Technology, Inc. | Electrochemical devices incorporating high-conductivity conjugated polymers |
KR100968107B1 (ko) | 2003-01-28 | 2010-07-06 | 돗빤호무즈가부시기가이샤 | 도전성 고분자 겔 및 그 제조 방법, 액추에이터, 이온도입용 패치 라벨, 생체 전극, 토너, 도전 기능 부재, 대전방지 시트, 인쇄 회로 부재, 도전성 페이스트, 연료전지용 전극, 및 연료 전지 |
JP3983731B2 (ja) | 2003-01-28 | 2007-09-26 | トッパン・フォームズ株式会社 | 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極 |
JP2006050780A (ja) | 2004-08-04 | 2006-02-16 | Japan Carlit Co Ltd:The | 導電性高分子アクチュエータ |
JP2006129541A (ja) | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | 高分子アクチュエータデバイス |
JP4802680B2 (ja) * | 2005-11-18 | 2011-10-26 | ソニー株式会社 | アクチュエータ |
US7443082B2 (en) * | 2006-03-03 | 2008-10-28 | Basf Corporation | Piezoelectric polymer composite article and system |
JP5156940B2 (ja) | 2006-06-08 | 2013-03-06 | 国立大学法人福井大学 | 高分子アクチュエータおよびその製造方法 |
JP4256469B1 (ja) * | 2008-06-11 | 2009-04-22 | パナソニック株式会社 | 導電性高分子アクチュエータおよびその製造方法 |
-
2008
- 2008-08-15 JP JP2008556599A patent/JP4287504B1/ja active Active
- 2008-08-15 CN CN2008800074385A patent/CN101828330B/zh not_active Expired - Fee Related
- 2008-08-15 WO PCT/JP2008/002219 patent/WO2010018612A1/ja active Application Filing
-
2009
- 2009-05-01 US US12/434,456 patent/US7733000B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11169394A (ja) * | 1997-12-15 | 1999-06-29 | Keiichi Kanefuji | 金属電極を表面に有する人工筋肉体 |
JP2005176428A (ja) * | 2003-12-08 | 2005-06-30 | Japan Science & Technology Agency | アクチュエータ素子 |
WO2006046620A1 (ja) * | 2004-10-27 | 2006-05-04 | Asahi Glass Company, Limited | 電解質材料、電解質膜、及び固体高分子形燃料電池用膜電極接合体 |
JP2008011593A (ja) * | 2006-06-27 | 2008-01-17 | Konica Minolta Opto Inc | アクチュエータ素子、及びアクチュエータ素子の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160071878A (ko) * | 2014-12-12 | 2016-06-22 | 엘지디스플레이 주식회사 | 액츄에이터, 이를 포함하는 표시 장치 및 액츄에이터의 제조 방법 |
KR102287697B1 (ko) * | 2014-12-12 | 2021-08-09 | 엘지디스플레이 주식회사 | 액츄에이터, 이를 포함하는 표시 장치 및 액츄에이터의 제조 방법 |
KR20160080956A (ko) * | 2014-12-30 | 2016-07-08 | 엘지디스플레이 주식회사 | 액츄에이터, 액츄에이터 구동 방법 및 액츄에이터를 포함하는 표시 장치 |
KR102313293B1 (ko) | 2014-12-30 | 2021-10-14 | 엘지디스플레이 주식회사 | 액츄에이터, 액츄에이터 구동 방법 및 액츄에이터를 포함하는 표시 장치 |
KR20170079965A (ko) * | 2015-12-31 | 2017-07-10 | 엘지디스플레이 주식회사 | 접촉 감응 소자 및 이를 포함하는 표시 장치 |
KR102476387B1 (ko) | 2015-12-31 | 2022-12-09 | 엘지디스플레이 주식회사 | 접촉 감응 소자 및 이를 포함하는 표시 장치 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010018612A1 (ja) | 2012-01-26 |
US20100039001A1 (en) | 2010-02-18 |
JP4287504B1 (ja) | 2009-07-01 |
CN101828330A (zh) | 2010-09-08 |
CN101828330B (zh) | 2012-05-30 |
US7733000B2 (en) | 2010-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4287504B1 (ja) | 導電性高分子アクチュエータおよびその製造方法 | |
JP4256469B1 (ja) | 導電性高分子アクチュエータおよびその製造方法 | |
JP4256470B1 (ja) | 導電性高分子アクチュエータ、その製造方法、およびその駆動方法 | |
JP4038685B2 (ja) | アクチュエータ素子 | |
JP2010161870A (ja) | 導電性高分子アクチュエータおよびその製造方法 | |
Rohtlaid et al. | Poly (3, 4‐ethylenedioxythiophene): poly (styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors | |
US10199561B2 (en) | Carbon nanofiber actuator | |
JP6964855B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造方法 | |
Khan et al. | Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications | |
JP4777488B2 (ja) | 平板積層型導電性高分子アクチュエータ | |
Terasawa et al. | Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol | |
JP4691703B2 (ja) | アクチュエータ素子およびその製造方法 | |
JP2011205751A (ja) | 導電性高分子アクチュエータ及びアクチュエータ用駆動素子の製造方法 | |
WO2011024219A1 (ja) | 導電性高分子アクチュエータ、並びにその駆動方法および製造方法 | |
JP6359248B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造法 | |
JP2012135071A (ja) | アクチュエータ用複合導電性薄膜、アクチュエータ素子 | |
JP7307931B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880007438.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008556599 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08808251 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08808251 Country of ref document: EP Kind code of ref document: A1 |