WO2010016564A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2010016564A1 WO2010016564A1 PCT/JP2009/064000 JP2009064000W WO2010016564A1 WO 2010016564 A1 WO2010016564 A1 WO 2010016564A1 JP 2009064000 W JP2009064000 W JP 2009064000W WO 2010016564 A1 WO2010016564 A1 WO 2010016564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- dimensional electron
- electron gas
- low resistance
- gan
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 172
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract description 136
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 230000005669 field effect Effects 0.000 claims abstract description 16
- 230000008030 elimination Effects 0.000 claims description 87
- 238000003379 elimination reaction Methods 0.000 claims description 87
- 229910052710 silicon Inorganic materials 0.000 claims description 36
- 229910052749 magnesium Inorganic materials 0.000 claims description 30
- 230000004888 barrier function Effects 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 239000000969 carrier Substances 0.000 claims description 5
- 238000005530 etching Methods 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 229910002601 GaN Inorganic materials 0.000 description 163
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 162
- 239000012535 impurity Substances 0.000 description 84
- 239000000203 mixture Substances 0.000 description 49
- 229910052799 carbon Inorganic materials 0.000 description 22
- 229910052717 sulfur Inorganic materials 0.000 description 22
- 229910052711 selenium Inorganic materials 0.000 description 20
- -1 InN Chemical compound 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- 238000001312 dry etching Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910018503 SF6 Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3085—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Definitions
- the present invention is based on the priority claim of Japanese Patent Application No. 2008-204602 (filed on Aug. 7, 2008), the entire contents of which are incorporated herein by reference. Shall.
- the present invention relates to a semiconductor device, and more particularly to a nitride semiconductor device.
- Gate-recessed MISFET Metal Insulated Field Transducer Structure
- AlGaN aluminum gallium nitride
- GaN gallium nitride
- HFET Hetero Junction Field Effect Transistor
- Patent Document 1 Japanese Patent Laid-Open No. 2007-35905 discloses a structure using a Si 3 N 4 film as an insulating film on AlGaN / GaN.
- FIG. 6 is a cross-sectional structure diagram of the field effect transistor disclosed in Patent Document 1 (FIG. 10 of Patent Document 1). As shown in FIG. 6, after the GaN channel layer 1, the AlGaN barrier layer 2, the GaN layers 3, 4, and the AlGaN layers 5, 6 are stacked, the gate electrodes of the GaN layers 3, 4 and the AlGaN layers 5, 6 are arranged. A recess is formed by removing the portion, a source electrode 8 and a drain electrode 9 are formed so as to be in ohmic contact with the AlGaN layers 5 and 6, a gate insulating film 15 is formed in the recess, and a gate electrode 10 is formed. It is produced by.
- the AlGaN barrier layer 2 is sufficiently thin, so that a normally-off operation is possible.
- a piezo electric field is generated, and a two-dimensional electron gas in a region other than the gate electrode ( 2 (Dimensional (Electron Gas)) can be increased, and the on-resistance can be reduced.
- Patent Document 1 Note that the entire disclosure of Patent Document 1 is incorporated herein by reference. The following is an analysis of the related art according to the present invention.
- a two-dimensional electron gas is also formed at the interface between the GaN layer 4 and the AlGaN layer 6 on the drain electrode 9 side. Since the two-dimensional electron gas is opposed to the gate electrode 10 via the insulating film 15, high voltage operation becomes difficult. That is, it is difficult to achieve both low source resistance and high voltage operation.
- an object of the present invention is to provide a semiconductor device that performs a good enhancement operation, can operate at a high voltage, and has a low source resistance.
- the invention disclosed in the present application is generally configured as follows in order to solve the above problems.
- a field effect transistor comprising a group III-V nitride semiconductor and having an insulating film between the gate electrode and the semiconductor
- two-dimensional electrons are present in the semiconductor layer between the drain electrode and the gate electrode.
- a semiconductor device in which a gas is formed and a region is formed by forming a two-dimensional electron gas in at least a part of a semiconductor layer between the source electrode and the gate electrode.
- a recess structure in which a part of the III-V nitride semiconductor layer is removed is provided, a part of the drain electrode is disposed in a part of the recess region, and the source electrode is disposed in the recess region.
- a carrier supply layer (electron supply layer) and a carrier transit layer (electron transit layer) are provided between the drain electrode and the substrate, and two-dimensional electrons are provided between the source electrode and the carrier transit layer.
- a gas release layer is provided.
- a low resistance layer using electrons as carriers is further provided between the source electrode and the two-dimensional electron gas elimination layer.
- part or all of the semiconductor layers facing each other across the gate electrode and the insulating film are the n-type low resistance layer.
- a part of the semiconductor layer facing the gate electrode and the insulating film is an n-type low resistance layer, and a part is a two-dimensional electron gas elimination layer or a carrier supply layer.
- a part of the semiconductor layer facing the gate electrode and the insulating film is an n-type low resistance layer, a part is a two-dimensional electron gas elimination layer, and a part is a carrier supply layer.
- the carrier traveling layer is made of In x Ga 1-x N (0 ⁇ x ⁇ 1).
- the carrier supply layer is made of unstrained or tensile strained In a Al b Ga 1-ab N (0 ⁇ a, 0 ⁇ b, a + b ⁇ 1).
- the two-dimensional electron gas elimination layer is composed of unstrained or compressive strained GaN or compressive strained In ⁇ Al ⁇ Ga 1- ⁇ - ⁇ N (0 ⁇ , 0 ⁇ ⁇ , ⁇ + ⁇ ⁇ 1). .
- unstrained or compressive strained n-type In y Ga 1-y N (0 ⁇ y ⁇ 1) or In m Al 1 Ga 1-ml N (0 ⁇ m, 0 ⁇ l, m + l ⁇ 1).
- the gate insulating film is made of a substance (material) composed of one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and one or more of O and N.
- low resistance and high breakdown voltage can be independently achieved, and both low source resistance and high voltage operation can be achieved.
- Gate electrode 15 Gate insulating film 101 Substrate 102 Buffer layer 103 made of the first GaN-based semiconductor Carrier carrier layer 104 made of the second GaN-based semiconductor Third GaN-based semiconductor Carrier supply layer 105 made of a four-dimensional electron gas elimination layer 106 made of a fourth GaN-based semiconductor Low resistance layer made of a fifth GaN-based semiconductor 107 Source electrode 108 Drain electrode 109 Gate insulating film 110 Gate electrode 111 Protective film 201 Substrate 202 Buffer layer 203 made of the first GaN-based semiconductor Carrier carrier layer 204 made of the second GaN-based semiconductor Carrier supply layer 205 made of the third GaN-based semiconductor Two-dimensional electron gas elimination layer made of the fourth GaN-based semiconductor 206 Low resistance layer 207 made of
- a two-dimensional electron gas is formed in the semiconductor layer between the drain electrode and the gate electrode, but in at least a part of the semiconductor layer between the source electrode and the gate electrode,
- a two-dimensional electron gas is formed by the two-dimensional electron gas elimination layer that prevents the two-dimensional electron gas from accumulating in the carrier (electron) traveling layer.
- the electrical conduction is performed through a low resistance layer on the two-dimensional electron gas elimination layer.
- the two-dimensional electron gas elimination layer between the two-dimensional electron gas and the low resistance layer becomes a barrier, when the gate voltage is 0 V, a current flows between the two-dimensional electron gas and the low resistance layer. Does not flow and is in enhancement mode.
- the source resistance is determined by a low-resistance layer that does not use a two-dimensional electron gas, and the low-resistance layer exists only between the source electrode and the gate electrode. Does not exist. For this reason, a reduction in resistance and an increase in breakdown voltage can be performed independently, and both a reduction in source resistance and a high voltage operation can be achieved.
- FIG. 1 is a diagram schematically showing a cross-sectional structure of the first embodiment of the present invention.
- the field effect transistor of the present embodiment is On the substrate 101, A buffer layer 102 made of a first GaN-based semiconductor (group III-V nitride semiconductor); A carrier traveling layer 103 made of a second GaN-based semiconductor, A carrier supply layer 104 made of a third GaN-based semiconductor, A two-dimensional electron gas elimination layer 105 made of a fourth GaN-based semiconductor, which works to prevent the two-dimensional electron gas from accumulating in the carrier traveling layer by raising the conduction band of the carrier supply layer to the vacuum level side; Low resistance layer 106 made of a fifth GaN-based semiconductor Are formed in this order.
- group III-V nitride semiconductor group III-V nitride semiconductor
- a carrier traveling layer 103 made of a second GaN-based semiconductor
- a carrier supply layer 104 made of a third GaN-based semiconductor
- a two-dimensional electron gas elimination layer 105 made of
- the two-dimensional electron gas elimination layer 105 and the low resistance layer 106 are removed by recess etching between the drain electrode and the gate electrode, and a region below the gate electrode and a part below the gate electrode.
- the remaining side surfaces of the two-dimensional electron gas elimination layer 105 and the low resistance layer 106 are formed so as to have a taper (taper angle) rather than perpendicular to the surface before the removal.
- the source electrode 107 In contact with the low resistance layer 106, the source electrode 107, A drain electrode 108 is formed in contact with the carrier supply layer 104, Next, the gate insulating film 109 is formed, and the gate electrode 110 is formed.
- a field effect transistor is manufactured by forming a protective film 111.
- the substrate 101 for example, sapphire, silicon carbide, GaN, AlN or the like is used.
- the first to fifth GaN-based semiconductors are indicated by reference numerals 102 to 106, respectively.
- the first GaN-based semiconductor 102 for example, GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, or the like is used.
- a nucleation layer made of GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, or the like may be sandwiched between the substrate 101 and the buffer layer 102.
- the first GaN-based semiconductor 102 As an n-type impurity, for example, Si, S, Se, etc. As the p-type impurity, for example, Be, C, Mg, or the like can be added.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- the second GaN-based semiconductor 103 for example, GaN, InN, AlN, and a mixture of the above three kinds of GaN-based semiconductors are used.
- the impurity concentration in the second GaN-based semiconductor 103 is desirably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the third GaN-based semiconductor 104 for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors are used. However, in this example, the material or composition has a smaller electron affinity than the second GaN-based semiconductor.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- Examples of the fourth GaN-based semiconductor 105 include GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors.
- the fourth GaN-based semiconductor 105 needs to work to eliminate the two-dimensional electron gas, a substance or composition capable of inducing a negative charge at the interface between the two-dimensional electron gas elimination layer and the carrier supply layer. It is.
- the fourth GaN-based semiconductor 105 As an n-type impurity, for example, Si, S, Se, etc. As the p-type impurity, for example, Be, C, Mg, or the like can be added.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- the fifth GaN-based semiconductor 106 includes, for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors.
- the n-type impurity Si, S, Se, or the like can be used as the n-type impurity.
- the p-type impurity for example, Be, C, Mg, or the like can be added, but the conductivity type is n-type.
- the gate insulating film 109 there is a substance composed of one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and one or more of O and N.
- the protective film 111 there is a substance composed of one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and one or more of O and N, or an organic material.
- the field effect transistor of this example is A silicon (Si) substrate as the substrate 101;
- the first GaN-based semiconductor (buffer layer) 102 an AlGaN layer (Al composition ratio 0.2, film thickness 500 nm),
- the second GaN-based semiconductor (carrier running layer) 103 a GaN carrier running layer (film thickness 1000 nm)
- the third GaN-based semiconductor (carrier supply layer) 104 an AlGaN carrier supply layer (Al composition ratio 0.2, film thickness 15 nm)
- As a fourth GaN-based semiconductor (two-dimensional electron gas elimination layer) 105 an InGaN two-dimensional electron gas elimination layer (In composition ratio 0.15, film thickness 10 nm, Mg-doped 1 ⁇ 10 18 cm ⁇ 3 )
- the fifth GaN-based semiconductor (low resistance layer) 106 an epitaxial substrate made of a GaN low resistance layer (film thickness: 50 nm, Si-doped 1 ⁇ 10 19
- a SiN film of 200 nm is formed, and using a photoresist as a mask, for example, ICP (Inductivity Coupled Plasma) dry etching using SF6 (Sulfur Hexafluoride) as a process gas is performed. Open the recess.
- ICP Inductivity Coupled Plasma
- recess etching is performed by ICP dry etching using, for example, a mixed gas of BCl3 (Boron Trichloride) and SF6 as a process gas to eliminate the two-dimensional electron gas
- a mixed gas of BCl3 (Boron Trichloride) and SF6 as a process gas to eliminate the two-dimensional electron gas
- the side surfaces of the SiN film are also etched at the same time, so that the side surfaces of the two-dimensional electron gas elimination layer 105 and the low resistance layer 106 are tapered.
- the etching stops when F is bonded to the surface of the AlGaN carrier supply layer the two-dimensional electron gas elimination layer 105 and the low resistance layer 106 can be selectively removed.
- the SiN film is removed using HF (Hydrogen Fluoride) aqueous solution, Nb / Al / Nb / Au (film thickness 7 nm / 60 nm / 35 nm / 50 nm, heat treatment 850 ° C., 30 seconds) is formed as the source electrode 107 and the drain electrode 108.
- HF Hydrofluoride
- the gate insulating film 109 an Al 2 O 3 film (film thickness 20 nm), As the gate electrode 110, Ni / Au (Ni layer thickness 10nm, Au layer thickness 400nm), A SiON film (film thickness of 80 nm) is formed as the protective film 111, and a field effect transistor is manufactured.
- the resistance of the GaN low-resistance layer doped with Si at a high density of 1 ⁇ 10 19 cm ⁇ 3 is extremely low, so that a low source resistance can be realized.
- the operation voltage is 50 V or more while having a low source resistance. High voltage operation was possible.
- the region works to alleviate electric field concentration, so that it is particularly suitable for high voltage operation. Is suitable.
- Si is used as the substrate 101, but any other substrate such as SiC or sapphire can be used.
- an AlGaN layer is used as the buffer layer 102.
- GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors can be used as the buffer layer 102.
- a GaN layer is used as the carrier traveling layer 103.
- the carrier traveling layer 103 GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors can be used. .
- an AlGaN layer is used as the carrier supply layer 104.
- the carrier supply layer 104 GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors, such as an InAlN layer, are used. it can.
- the electron affinity of the carrier supply layer 104 needs to be a material or composition smaller than the electron affinity of the carrier traveling layer 103.
- the carrier supply layer 104 since the lattice constant of the carrier supply layer 104 is different from the lattice constant of the carrier traveling layer 103 which is the thickest layer, it is preferable that the carrier supply layer 104 be not more than the critical film thickness at which dislocation occurs.
- an InGaN layer is used as the two-dimensional electron gas elimination layer 105, but the two-dimensional electron gas elimination layer 105 is an InAlN layer, such as GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors. Etc. can be used.
- the fourth GaN-based semiconductor needs to work to eliminate the two-dimensional electron gas
- the fourth GaN-based semiconductor needs to be a substance or composition that can induce a negative charge at the interface between the two-dimensional electron gas elimination layer and the carrier supply layer.
- the carrier running layer and the carrier supply layer for example, unstrained or compressive strained GaN, or compressive strained In ⁇ Al ⁇ Ga 1- ⁇ - ⁇ N (0 ⁇ , 0 ⁇ ⁇ , ⁇ + ⁇
- a layer composed of ⁇ 1) or a layer to which a p-type impurity is added as in this embodiment is preferable.
- the lattice constant of the two-dimensional electron gas elimination layer is different from the lattice constant of the carrier traveling layer, which is the thickest layer, it is preferable to set it to a critical film thickness or less where dislocation occurs.
- the low resistance layer 106 is an unstrained or compressive strained n-type In y Ga 1-y N (0 ⁇ y ⁇ 1), or In m Al l Ga 1-ml N (0 ⁇ m, 0 ⁇ l, m + l ⁇ 1).
- the thickness be equal to or less than the critical film thickness at which dislocation occurs.
- the impurity concentration is desirably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the impurity concentration of the two-dimensional electron gas elimination layer is desirably 1 ⁇ 10 18 cm ⁇ 3 or less.
- Mg is added as a p-type impurity in the InGaN two-dimensional electron gas elimination layer 105.
- the two-dimensional electron gas can be eliminated only by the piezo effect of InGaN itself, it is not necessary to add Mg.
- the two-dimensional electron gas elimination layer 105 for example, Be, C, Mg, or the like can be added as an n-type impurity, for example, a p-type impurity such as Si, S, or Se.
- the added impurity is preferably p-type.
- Si is added as an n-type impurity in the GaN low-resistance layer 106, but as an n-type impurity, for example, Be, C, Mg, or the like is added as a p-type impurity such as Si, S, or Se. It is possible. However, in this embodiment, since it is conduction by electrons, it is desirable to add an n-type impurity in order to reduce the resistance.
- Nb / Al / Nb / Au is used as the source electrode 107 and the drain electrode 108.
- the source electrode and the drain electrode are in ohmic contact with the AlGaN serving as the carrier supply layer 104 and the low resistance layer 106.
- metals such as W, Mo, Si, Ti, Pt, Nb, Al, and Au can be used. Or it can also be set as the structure which laminated
- Ni / Au is used as the gate electrode 110.
- a desired metal can be used. However, it is desirable not to react with the gate insulating film.
- an Al 2 O 3 film is used as the gate insulating film 109.
- the gate insulating film 109 any one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr, and O and N are used. There exists a substance which consists of any one or more of these.
- FIG. 2 is a diagram schematically showing a cross-sectional structure of the second embodiment of the present invention.
- the field effect transistor of the present embodiment includes a buffer layer 202 made of a first GaN-based semiconductor, a carrier traveling layer 203 made of a second GaN-based semiconductor, and a third GaN-based material on a substrate 201.
- a carrier supply layer 204 made of a semiconductor, a two-dimensional electron gas elimination layer 205 made of a fourth GaN-based semiconductor, and a low resistance layer 206 made of a fifth GaN-based semiconductor are formed.
- the two-dimensional electron gas elimination layer 205 and the low resistance layer 206 are removed by recess etching between the drain electrode and the gate electrode and in a region below the gate electrode and a part below the gate electrode. At this time, the side surfaces of the remaining two-dimensional electron gas elimination layer 205 and low resistance layer 206 are formed so as to be substantially perpendicular to the surface before removal.
- a source electrode 207 is in contact with the low resistance layer 206 and a drain electrode 208 is formed in contact with the carrier supply layer 204.
- a gate insulating film 209 is formed, and a gate electrode 210 is formed.
- a field effect transistor is manufactured by forming a protective film 211.
- the substrate 201 for example, sapphire, silicon carbide, GaN, AlN or the like is used.
- the first to fifth GaN-based semiconductors are also indicated by reference numerals 202 to 206, respectively.
- Examples of the first GaN-based semiconductor 202 include GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors. However, a nucleation layer made of GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, or the like may be sandwiched between the substrate 201 and the first semiconductor 202 in order to form the first semiconductor.
- the first GaN-based semiconductor 202 As an n-type impurity, for example, Si, S, Se, etc. As the p-type impurity, for example, Be, C, Mg, or the like can be added.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- the second GaN-based semiconductor 203 for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors are used.
- the impurity concentration in the second GaN-based semiconductor 203 is desirably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the third GaN-based semiconductor 204 includes, for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors. However, in the embodiment of the present invention, the material or composition has a smaller electron affinity than that of the second GaN-based semiconductor.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- the fourth GaN-based semiconductor 205 includes, for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors.
- the fourth GaN-based semiconductor 205 needs to have a function of eliminating the two-dimensional electron gas, so that a substance capable of inducing a negative charge at the interface between the two-dimensional electron gas elimination layer and the carrier supply layer or Composition.
- the fourth GaN-based semiconductor 205 As an n-type impurity, for example, Si, S, Se, etc. As the p-type impurity, for example, Be, C, Mg, or the like can be added.
- n-type impurity for example, Si, S, Se, etc.
- p-type impurity for example, Be, C, Mg, or the like can be added.
- the fifth GaN-based semiconductor 206 includes, for example, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors.
- the fifth GaN-based semiconductor 206 for example, Si, S, Se, etc. can be used as n-type impurities.
- the p-type impurity for example, Be, C, Mg or the like can be added, but the conductivity type is n-type.
- the gate insulating film 209 there is a substance including any one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and any one or more of O and N.
- the protective film 211 there is a substance composed of one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and one or more of O and N, or an organic material.
- FIG. 2 is a diagram schematically showing a cross-sectional configuration of the second embodiment of the present invention.
- the field effect transistor of this example is As the substrate 201, a silicon carbide (SiC) substrate, As the first GaN-based semiconductor 202, an AlGaN layer (Al composition ratio 0.1, film thickness 1000 nm), As the second GaN-based semiconductor 203, a GaN carrier traveling layer (film thickness 40 nm), As the third GaN-based semiconductor 204, an AlGaN carrier supply layer (Al composition ratio 0.25, film thickness 15 nm), As the fourth GaN-based semiconductor 205, a GaN two-dimensional electron gas elimination layer (film thickness 10 nm, Mg-doped 1 ⁇ 10 18 cm ⁇ 3 ), As the fifth GaN-based semiconductor 206, an epitaxial substrate made of a GaN low resistance layer (film thickness: 30 nm, Si-doped 1 ⁇ 10 19 cm ⁇ 3 ) is used.
- a 200 nm SiO 2 film is formed on the epitaxial substrate, and a recess portion of the SiN film is opened by ICP dry etching using, for example, SF 6 as a process gas using a photoresist as a mask.
- recess etching is performed by using, for example, ICP dry etching using a mixed gas of BCl 3 and O 2 as a process gas, using the SiO 2 film as a mask, and the two-dimensional electron gas elimination layer 205, the low resistance layer 206 is removed.
- the side surfaces of the SiO 2 film are hardly etched, so that the side surfaces of the two-dimensional electron gas elimination layer 205 and the low resistance layer 206 are almost vertical.
- the etching stops when O is bonded to the surface of the AlGaN carrier supply layer the two-dimensional electron gas elimination layer 205 and the low resistance layer 206 can be selectively removed.
- the SiO 2 film is removed using an HF aqueous solution, and Ti / Al / Nb / Au (film thickness 15 nm / 60 nm / 35 nm / 50 nm, heat treatment 850 ° C., 30 seconds) is used as the source electrode 207 and the drain electrode 208.
- Ti / Al / Nb / Au film thickness 15 nm / 60 nm / 35 nm / 50 nm, heat treatment 850 ° C., 30 seconds
- the two-dimensional electron gas elimination layer between the two-dimensional electron gas and the low resistance layer serves as a barrier, when the gate voltage is 0 V, a current flows between the two-dimensional electron gas and the low resistance layer.
- a gate voltage of +3 V or higher was applied, the device was turned on and a good enhancement mode was realized.
- the resistance of the GaN low-resistance layer doped with Si at a high density of 1 ⁇ 10 19 cm ⁇ 3 is very low, so that a low source resistance can be realized.
- the low resistance layer 206 exists only between the source electrode 207 and the gate electrode 210 and does not exist on the side of the drain electrode to which a high voltage is applied during high voltage operation, a high voltage with an operating voltage of 50 V or more is achieved while having a low source resistance. I was able to work.
- the region works to alleviate electric field concentration. Suitable for voltage operation.
- SiC is used as the substrate, but any other substrate such as Si or sapphire can be used.
- an AlGaN layer is used as the buffer layer 202, but a GaN layer such as GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors can be used as the buffer layer.
- a GaN layer is used as the carrier traveling layer 203, but as the carrier traveling layer, GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors can be used.
- the lattice constant of the carrier traveling layer 203 is different from the lattice constant of the AlGaN buffer layer 202 which is the thickest layer, it is preferable to set the critical film thickness to be less than the critical film thickness at which dislocation occurs.
- an AlGaN layer is used as the carrier supply layer 204, but as the carrier supply layer, GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, and the like can be used.
- the electron affinity of the carrier supply layer 204 needs to be a material or composition smaller than the electron affinity of the carrier traveling layer.
- the carrier supply layer 204 since the lattice constant of the carrier supply layer 204 is different from the lattice constant of the AlGaN buffer layer, which is the thickest layer, it is preferable that the carrier supply layer 204 be less than the critical film thickness at which dislocation occurs.
- the two-dimensional electron gas elimination layer 205 is used as the two-dimensional electron gas elimination layer 205.
- the two-dimensional electron gas elimination layer is an InAlN layer, such as GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors. Can be used.
- the fourth GaN-based semiconductor (two-dimensional electron gas elimination layer) 205 needs to work to eliminate the two-dimensional electron gas, a negative charge is induced at the interface between the two-dimensional electron gas elimination layer and the carrier supply layer. It is necessary to be a material or a composition that can be used. Depending on the composition of the carrier running layer and the carrier supply layer, for example, unstrained or compressive strained GaN, or compressive strained In ⁇ Al ⁇ Ga 1- ⁇ - ⁇ N ( A layer composed of 0 ⁇ , 0 ⁇ ⁇ , ⁇ + ⁇ ⁇ 1) or a layer to which a p-type impurity is added as in this embodiment is preferable.
- the lattice constant of the two-dimensional electron gas elimination layer is different from the lattice constant of the AlGaN buffer layer which is the thickest layer.
- a GaN layer is used as the low resistance layer 206, but the low resistance layer is an unstrained or compressive strain n-type In y Ga 1-y N (0 ⁇ y ⁇ 1) or In m AllGa. 1-ml N (0 ⁇ m, 0 ⁇ l, m + l ⁇ 1).
- the impurity concentration is desirably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the impurity concentration of the two-dimensional electron gas elimination layer 205 is desirably 1 ⁇ 10 18 cm ⁇ 3 or less.
- Mg was added as a p-type impurity in the GaN two-dimensional electron gas elimination layer 205.
- the GaN layer in this example is subjected to compressive strain, and the electron supply capability of the AlGaN carrier supply layer is low. Therefore, it is possible to eliminate the two-dimensional electron gas without converting Mg.
- the two-dimensional electron gas elimination layer 205 As an n-type impurity, for example, Si, S, Se, etc. As the p-type impurity, for example, Be, C, Mg or the like can be added. However, if the n-type impurity concentration in the carrier supply layer is increased, it is difficult to eliminate the two-dimensional electron gas between the source electrode and the gate electrode, so that the added impurity is preferably p-type.
- n-type impurities and Si were added to the GaN low resistance layer 206.
- an n-type impurity for example, Si, S, Se, etc.
- the p-type impurity for example, Be, C, Mg or the like can be added.
- it is conduction by electrons it is desirable to add an n-type impurity in order to reduce the resistance.
- Ti / Al / Nb / Au is used as the source electrode 207 and the drain electrode 208.
- the source electrode and the drain electrode are in ohmic contact with the AlGaN and the low resistance layer 206 which are the carrier supply layer 204 in this embodiment.
- Any metal can be used as long as it is in contact with each other, and for example, metals such as W, Mo, Si, Ti, Pt, Nb, Al, and Au can be used, and a structure in which a plurality of the metals are stacked can be used.
- Ni / Au is used as the gate electrode 210.
- a desired metal can be used. However, it is desirable not to react with the gate insulating film.
- a SiN film is used as the gate insulating film 209.
- the gate insulating film 209 any one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and any of O and N are used. One or more substances may be used.
- FIG. 4 is a diagram schematically showing a cross-sectional configuration of the third embodiment of the present invention.
- the field effect transistor of this example is As the substrate 301, a silicon (Si) substrate, AlN layer (film thickness 150 nm) as the nucleation layer 312, As the first GaN-based semiconductor 302, a GaN layer (film thickness 1500 nm), As the second GaN-based semiconductor 303, an InGaN carrier traveling layer (In composition ratio 0.04, film thickness 25 nm), As the third GaN-based semiconductor 304, an InAlN carrier supply layer (Al composition ratio 0.83, film thickness 15 nm), As the fourth GaN-based semiconductor 305, an InGaN two-dimensional electron gas elimination layer (In composition ratio 0.15, film thickness 10 nm), As the fifth GaN-based semiconductor 306, an epitaxial substrate made of an AlGaN low resistance layer (Al composition ratio 0.05, film thickness 50 nm, Si-doped 1 ⁇ 10 19 cm ⁇
- a 200 nm SiO 2 film is formed on the epitaxial substrate, and a recess portion of the SiN film is opened by ICP dry etching using, for example, SF 6 as a process gas using a photoresist as a mask. After removing the photoresist, recess etching is performed by using, for example, ICP dry etching using BCl 3 gas as a process gas with the SiO 2 film as a mask, and the low resistance layer 306 is removed.
- a 200 nm SiO 2 film is formed, and the recess portion of the SiN film is opened by ICP dry etching using, for example, SF 6 as a process gas, using the photoresist as a mask.
- recess etching is performed using, for example, ICP dry etching using a mixed gas of BCl 3 gas and O 2 as a process gas, using the SiO 2 film as a mask, and the two-dimensional electron gas elimination layer 305 is removed. To do.
- the side surfaces of the SiO 2 film are hardly etched, so the side surfaces of the two-dimensional electron gas elimination layer 305 and the low resistance layer 306 are almost vertical.
- the two-dimensional electron gas elimination layer 305 can be selectively removed.
- the SiO 2 film is removed using an HF aqueous solution, and Ti / Al / Nb / Au (film thickness 15 nm / 60 nm / 35 nm / 50 nm, heat treatment 850 ° C., 30 seconds) is formed as the source electrode 307 and the drain electrode 308. .
- the resistance of the AlGaN low-resistance layer doped with Si at a high density of 1 ⁇ 10 19 cm ⁇ 3 is very low, so that a low source resistance can be realized.
- the low resistance layer exists only between the source electrode and the gate electrode and does not exist on the drain electrode side to which a high voltage is applied during high voltage operation, the high voltage operation with an operation voltage of 50 V or more is achieved while having a low source resistance. I was able to.
- the two-dimensional electron gas elimination layer 305 When the two-dimensional electron gas elimination layer 305 is included in a part of the semiconductor layer opposed to each other with the gate electrode 310 and the insulating film 309 interposed therebetween as in the embodiment shown in FIG. 4, the two-dimensional electron gas is not formed in that region. Good pinch-off characteristics can be realized. However, depending on the position of the gate electrode and the two-dimensional electron gas elimination layer, it is difficult to flow electrons even in the on state, so care must be taken.
- the semiconductor layers facing each other with the gate electrode 310 and the insulating film 309 interposed therebetween are the low resistance layer 306, the two-dimensional electron gas elimination layer 305, and the carrier supply layer 304.
- the region facing the carrier supply layer 304 serves to alleviate electric field concentration
- the region facing the two-dimensional electron gas supply layer 305 serves to achieve good pinch-off properties.
- Si is used as the substrate, but any other substrate such as SiC or sapphire can be used.
- a GaN layer is used as the buffer layer 302, but as the buffer layer, GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, and the like can be used.
- an InGaN layer is used as the carrier traveling layer 303.
- the carrier traveling layer GaN, InN, AlN, and a mixture of the above three types of GaN-based semiconductors can be used.
- the lattice constant of the carrier traveling layer is different from the lattice constant of the GaN buffer layer, which is the thickest layer, in this embodiment, it is preferable to set it to a critical film thickness or less where dislocation occurs.
- an InAlN layer is used as the carrier supply layer, but as the carrier supply layer, GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, and the like can be used.
- the electron affinity of the carrier supply layer needs to be a material or composition smaller than the electron affinity of the carrier running layer.
- the carrier supply layer since the lattice constant of the carrier supply layer is slightly different from the lattice constant of the GaN buffer layer, which is the thickest layer, it is preferable that the carrier supply layer be less than the critical film thickness at which dislocation occurs.
- an InGaN layer was used as the two-dimensional electron gas elimination layer, but as the carrier supply layer, GaN, InN, AlN, a mixture of the above three types of GaN-based semiconductors, and the like were used. Can do.
- the fourth GaN-based semiconductor 305 needs to work to eliminate the two-dimensional electron gas, the fourth GaN-based semiconductor 305 needs to be a substance or composition that can induce a negative charge at the interface between the two-dimensional electron gas elimination layer and the carrier supply layer.
- the carrier running layer 303 and the carrier supply layer 304 for example, unstrained or compressive strained GaN, or compressive strained In ⁇ Al ⁇ Ga 1- ⁇ - ⁇ N (0 ⁇ , 0 ⁇
- the lattice constant of the two-dimensional electron gas elimination layer is different from the lattice constant of the GaN buffer layer, which is the thickest layer.
- an AlGaN layer is used as the low resistance layer.
- the low resistance layer may be an unstrained or compressive strained n-type In y Ga 1-y N (0 ⁇ y ⁇ 1) or In m Al l Ga 1-ml N (0 ⁇ m, 0 ⁇ l, m + l ⁇ 1).
- the impurity concentration is desirably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the impurity concentration of the two-dimensional electron gas elimination layer is desirably 1 ⁇ 10 18 cm ⁇ 3 or less.
- the two-dimensional electron gas elimination layer has n-type impurities, for example, p-type impurities such as Si, S, Se, for example Be, C, etc. Mg or the like can be added.
- the added impurity is preferably p-type.
- Si was added as an n-type impurity in the AlGaN low resistance layer.
- an n-type impurity for example, Si, S, Se, etc.
- the p-type impurity for example, Be, C, Mg or the like can be added.
- it is conduction by electrons it is desirable to add an n-type impurity in order to reduce the resistance.
- Ti / Al / Nb / Au is used as the source electrode 307 and the drain electrode 308.
- the source electrode and the drain electrode are in ohmic contact with InAlN and the low resistance layer 306 which are the carrier supply layers 304 in this embodiment.
- Any metal can be used as long as it is in contact with each other, and for example, metals such as W, Mo, Si, Ti, Pt, Nb, Al, and Au can be used, and a structure in which a plurality of the metals are stacked can be used.
- Ni / Au is used as the gate electrode 310.
- a desired metal can be used. However, it is desirable not to react with the gate insulating film.
- a SiN film is used as the gate insulating film 309.
- the gate insulating film 309 one or more of Si, Mg, Hf, Al, Ti, Ta, and Zr and any of O and N are used. There are substances consisting of one or more.
- Patent Document 1 above is incorporated herein by reference.
- the embodiments and examples can be changed and adjusted based on the basic technical concept.
- Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
良好なエンハンスメント動作を行い、高電圧動作が可能であり、かつ、低ソース抵抗の半導体装置を提供する。基板101上に、第一のGaN系半導体からなるバッファ層102、第二のGaN系半導体からなるキャリア走行層103、第三のGaN系半導体からなるキャリア供給層104、第四のGaN系半導体からなり、キャリア供給層の伝導帯を真空準位側へ持ち上げることでキャリア走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層105、第五のGaN系半導体からなる低抵抗層106を形成し、ドレイン電極とゲート電極の間、及びゲート電極の下の一部とドレイン電極108の下となる領域の2次元電子ガス解消層105、低抵抗層106をリセスエッチングし除去する。その際、残された2次元電子ガス解消層105、低抵抗層106の側面は、除去前の表面に対し垂直ではなくテーパーを持つように形成する。低抵抗層106に接してソース電極107、キャリア供給層104に接してドレイン電極108を形成し、次に、ゲート絶縁膜109を製膜し、ゲート電極110を形成する。最後に保護膜111を製膜することで電界効果トランジスタが製作される。
Description
[関連出願の記載]
本発明は、日本国特許出願:特願2008-204602号(2008年 8月 7日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は半導体装置に関し、特に窒化物半導体装置に関する。
本発明は、日本国特許出願:特願2008-204602号(2008年 8月 7日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は半導体装置に関し、特に窒化物半導体装置に関する。
AlGaN(窒化アルミニウムガリウム)/GaN(窒化ガリウム) HFET(Hetero Junction Field Effect Transistor)構造において、ゲートリーク電流を低減でき、またエンハンスメントモードで動作することができるゲートリセス型MISFET(Metal Insulated Field Effect Transistor)構造が報告されている。
例えば特許文献1(特開2007-35905号公報)には、AlGaN/GaN上にSi3N4膜を絶縁膜として用いた構造が開示されている。
図6は、特許文献1に開示された電界効果トランジスタの断面構造図(特許文献1の図10)である。図6に示すように、GaNチャネル層1、AlGaNバリア層2、GaN層3、4、AlGaN層5、6を積層後、GaN層3、4とAlGaN層5、6のゲート電極が配される部分を除去してリセスを形成し、AlGaN層5、6にオーミック接触するようソース電極8、ドレイン電極9を形成し、リセス部にゲート絶縁膜15を成膜し、ゲート電極10を形成することにより作製される。このような構造とすることで、AlGaNバリア層2が十分薄いことから、ノーマリオフ動作が可能となる。また、AlGaNバリア層2とAlGaN層5、6両方の層のpiezo(ピエゾ)効果(へテロ界面の結晶歪みに基づく)により、ピエゾ電界が発生し、ゲート電極以外の領域の2次元電子ガス(2 Dimensional Electron Gas)の濃度を高くすることができ、オン抵抗を低減することができる。
なお、上記特許文献1の全開示内容はその引用をもって本書に繰込み記載する。
以下に本発明による関連技術の分析を与える。
以下に本発明による関連技術の分析を与える。
図6に示したような、ゲート埋め込み型のMISFET構造では、AlGaNバリア層2を薄くした場合、ゲートしきい値電圧(Vth)が約0ボルトの擬似的なエンハンスメントモードにすることは可能であるが、+0.5V以上にすることは、極めて困難である。
また、ソース抵抗低減のためのキャリアの供給が、AlGaNバリア層2とAlGaN層5、6両方の層のpiezo効果によって行われるため、おのずと臨界膜厚による制限が加わる。
更に、AlGaN層の高Al化やAlGaN層へのドーピングにより低ソース抵抗化を図ろうとした場合、ドレイン電極9側のGaN層4、AlGaN層6界面にも、2次元電子ガスが形成され、この2次元電子ガスがゲート電極10と絶縁膜15を介して相対することとなり、高電圧動作が困難となる。すなわち、低ソース抵抗化と高電圧動作の両立は困難である。
したがって、本発明の目的は、良好なエンハンスメント動作を行い、高電圧動作が可能であり、かつ、低ソース抵抗の半導体装置を提供することにある。
本願で開示される発明は、前記課題を解決するため、概略以下の構成とされる。
本発明によれば、III-V族窒化物半導体からなり、ゲート電極と半導体の間に絶縁膜を具備する電界効果トランジスタにおいて、ドレイン電極と該ゲート電極の間の半導体層中には2次元電子ガスが形成されており、かつ、ソース電極と該ゲート電極の間の少なくとも一部の半導体層中には2次元電子ガスが形成されて領域を有する半導体装置が提供される。
本発明において、III-V族窒化物半導体層の一部を除去したリセス構造を備え、該リセス領域の一部にドレイン電極の一部が配置されており、ソース電極はリセス領域には配置されていない。
本発明において、ドレイン電極と基板の間には、キャリア供給層(電子供給層)とキャリア走行層(電子走行層)を備え、かつ、ソース電極と該キャリア走行層の間には、2次元電子ガス解消層を備えている。
本発明において、ソース電極と2次元電子ガス解消層の間に、更に電子をキャリアとする低抵抗層を備えている。
本発明において、ゲート電極と絶縁膜を挟んで相対する半導体層は一部、もしくは全部が該n型低抵抗層である。
本発明において、ゲート電極と絶縁膜を挟んで相対する半導体層の一部はn型低抵抗層であり、一部は2次元電子ガス解消層またはキャリア供給層である。
本発明において、ゲート電極と絶縁膜を挟んで相対する半導体層の一部はn型低抵抗層であり、一部は2次元電子ガス解消層であり、一部はキャリア供給層である。
本発明において、キャリア走行層がInxGa1-xN(0≦x≦1)からなる。
本発明において、キャリア供給層が無歪もしくは引っ張り歪のInaAlbGa1-a-bN(0≦a、0<b、a+b≦1)からなる。
本発明において、2次元電子ガス解消層が、無歪もしくは圧縮歪のGaN、もしくは圧縮歪のInαAlβGa1-α-βN(0<α、0≦β、α+β≦1)からなる。
本発明において、無歪もしくは圧縮歪のn型InyGa1-yN(0≦y≦1)、もしくはInmAllGa1-m-lN(0≦m、0<l、m+l≦1)からなる。
本発明において、ゲート絶縁膜がSi、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質(材料)からなる。
本発明によれば、低抵抗化と高耐圧化が独立に行うことができ、低ソース抵抗化と高電圧動作との両立が可能となる。
1 GaNチャネル層
2 AlGaNバリア層
3 GaN層(ソース側)
4 GaN層(ドレイン側)
5 AlGaN層(ソース側)
6 AlGaN層(ドレイン側)
7 2次元電子ガス
8 ソース電極
9 ドレイン電極
10 ゲート電極
15 ゲート絶縁膜
101 基板
102 第一のGaN系半導体からなるバッファ層
103 第二のGaN系半導体からなるキャリア走行層
104 第三のGaN系半導体からなるキャリア供給層
105 第四のGaN系半導体からなる2次元電子ガス解消層
106 第五のGaN系半導体からなる低抵抗層
107 ソース電極
108 ドレイン電極
109 ゲート絶縁膜
110 ゲート電極
111 保護膜
201 基板
202 第一のGaN系半導体からなるバッファ層
203 第二のGaN系半導体からなるキャリア走行層
204 第三のGaN系半導体からなるキャリア供給層
205 第四のGaN系半導体からなる2次元電子ガス解消層
206 第五のGaN系半導体からなる低抵抗層
207 ソース電極
208 ドレイン電極
209 ゲート絶縁膜
210 ゲート電極
211 保護膜
301 基板
302 第一のGaN系半導体からなるバッファ層
303 第二のGaN系半導体からなるキャリア走行層
304 第三のGaN系半導体からなるキャリア供給層
305 第四のGaN系半導体からなる2次元電子ガス解消層
306 第五のGaN系半導体からなる低抵抗層
307 ソース電極
308 ドレイン電極
309 ゲート絶縁膜
310 ゲート電極
311 保護膜
312 核形成層
2 AlGaNバリア層
3 GaN層(ソース側)
4 GaN層(ドレイン側)
5 AlGaN層(ソース側)
6 AlGaN層(ドレイン側)
7 2次元電子ガス
8 ソース電極
9 ドレイン電極
10 ゲート電極
15 ゲート絶縁膜
101 基板
102 第一のGaN系半導体からなるバッファ層
103 第二のGaN系半導体からなるキャリア走行層
104 第三のGaN系半導体からなるキャリア供給層
105 第四のGaN系半導体からなる2次元電子ガス解消層
106 第五のGaN系半導体からなる低抵抗層
107 ソース電極
108 ドレイン電極
109 ゲート絶縁膜
110 ゲート電極
111 保護膜
201 基板
202 第一のGaN系半導体からなるバッファ層
203 第二のGaN系半導体からなるキャリア走行層
204 第三のGaN系半導体からなるキャリア供給層
205 第四のGaN系半導体からなる2次元電子ガス解消層
206 第五のGaN系半導体からなる低抵抗層
207 ソース電極
208 ドレイン電極
209 ゲート絶縁膜
210 ゲート電極
211 保護膜
301 基板
302 第一のGaN系半導体からなるバッファ層
303 第二のGaN系半導体からなるキャリア走行層
304 第三のGaN系半導体からなるキャリア供給層
305 第四のGaN系半導体からなる2次元電子ガス解消層
306 第五のGaN系半導体からなる低抵抗層
307 ソース電極
308 ドレイン電極
309 ゲート絶縁膜
310 ゲート電極
311 保護膜
312 核形成層
本発明の1つの態様の動作原理を説明する。本発明の1つの態様において、ドレイン電極とゲート電極の間の半導体層中には2次元電子ガスが形成されているが、ソース電極とゲート電極の間の少なくとも一部の半導体層中には、キャリア(電子)供給層の伝導帯を真空準位側へ持ち上げることで、キャリア(電子)走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層により、2次元電子ガスが形成されていず、電気伝導は2次元電子ガス解消層上の低抵抗層を介して行われる。
このような構造とすると、2次元電子ガスと低抵抗層の間の2次元電子ガス解消層が障壁となるため、ゲート電圧が0Vの時は、2次元電子ガスと低抵抗層の間で電流が流れずエンハンスメントモードとなる。
一方、ゲート電圧として、例えば+0.5V以上の正の電圧を印加し、2次元電子ガス解消層の障壁を下げることで、電流が流れオン状態とすることができる。その際、ソース抵抗は、2次元電子ガスを用いない低抵抗層で決定され、かつ、低抵抗層はソース電極とゲート電極の間にのみ存在し、高電圧動作時に高電圧のかかるドレイン電極側には存在しない。このため、低抵抗化と高耐圧化が独立に行うことができ、低ソース抵抗化と高電圧動作との両立が可能となる。
本発明の実施の形態について図面を参照して説明する。
<第1の実施の形態>
図1は、本発明の第1の実施の形態の断面構造を模式的に示す図である。図1を参照すると、本実施の形態の電界効果トランジスタは、
基板101上に、
第一のGaN系半導体(III-V族窒化物半導体)からなるバッファ層102、
第二のGaN系半導体からなるキャリア走行層103、
第三のGaN系半導体からなるキャリア供給層104、
第四のGaN系半導体からなり、キャリア供給層の伝導帯を真空準位側へ持ち上げることで、キャリア走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層105、
第五のGaN系半導体からなる低抵抗層106
をこの順に形成する。
図1は、本発明の第1の実施の形態の断面構造を模式的に示す図である。図1を参照すると、本実施の形態の電界効果トランジスタは、
基板101上に、
第一のGaN系半導体(III-V族窒化物半導体)からなるバッファ層102、
第二のGaN系半導体からなるキャリア走行層103、
第三のGaN系半導体からなるキャリア供給層104、
第四のGaN系半導体からなり、キャリア供給層の伝導帯を真空準位側へ持ち上げることで、キャリア走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層105、
第五のGaN系半導体からなる低抵抗層106
をこの順に形成する。
その後、ドレイン電極とゲート電極の間、及びゲート電極の下の一部とドレイン電極の下となる領域の2次元電子ガス解消層105、低抵抗層106をリセスエッチングし除去する。
その際、残された2次元電子ガス解消層105、低抵抗層106の側面は、除去前の表面に対して垂直ではなく、テーパー(テーパー角)を持つように形成する。
低抵抗層106に接して、ソース電極107、
キャリア供給層104に接してドレイン電極108を形成し、
次に、ゲート絶縁膜109を製膜し、ゲート電極110を形成する。
キャリア供給層104に接してドレイン電極108を形成し、
次に、ゲート絶縁膜109を製膜し、ゲート電極110を形成する。
最後に保護膜111を製膜することで電界効果トランジスタが製作される。
本実施例において、基板101としては、例えばサファイア、炭化シリコン、GaN、AlNなどが用いられる。なお、図1において、第一のGaN系半導体乃至第五のGaN系半導体は、それぞれ参照符号102~106によって指示される。
第一のGaN系半導体102としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いられる。ただし、第一の半導体形成のために、基板101とバッファ層102の間にGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等からなる核形成層を挟んでも良い。
第一のGaN系半導体102中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
第二のGaN系半導体103としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等が用いられる。
第二のGaN系半導体103中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、第二のGaN系半導体中の不純物濃度が高くなるとクーロン散乱の影響により、電子の移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、第二のGaN系半導体中の不純物濃度が高くなるとクーロン散乱の影響により、電子の移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
第三のGaN系半導体104としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等が用いられる。ただし、本実施例では、第二のGaN系半導体より電子親和力は小さい物質または組成である。
第三のGaN系半導体104中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
第四のGaN系半導体105としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。ただし、本実施例では、第四のGaN系半導体105は2次元電子ガスを解消する働きが必要であるため、2次元電子ガス解消層とキャリア供給層の界面に負電荷が誘起できる物質または組成である。
また、第四のGaN系半導体105中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
また、第五のGaN系半導体106としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。
第五のGaN系半導体106中に、
n型不純物として、例えばSi、S、Seなどが可能である。p型不純物としても、例えばBe、C、Mgなどを添加することも可能であるが、導電形はn型である。
n型不純物として、例えばSi、S、Seなどが可能である。p型不純物としても、例えばBe、C、Mgなどを添加することも可能であるが、導電形はn型である。
また、ゲート絶縁膜109としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質がある。
また、保護膜111としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質、もしくは有機材料がある。
(実施例1)
本発明の第1の実施例を説明する。本実施例の電界効果トランジスタは、
基板101としてシリコン(Si)基板、
第一のGaN系半導体(バッファ層)102として、AlGaN層(Al組成比0.2、膜厚500nm)、
第二のGaN系半導体(キャリア走行層)103として、GaNキャリア走行層(膜厚1000nm)、
第三のGaN系半導体(キャリア供給層)104として、AlGaNキャリア供給層(Al組成比0.2、膜厚15nm)、
第四のGaN系半導体(2次元電子ガス解消層)105として、InGaN2次元電子ガス解消層(In組成比0.15、膜厚10nm、Mgドープ1×1018cm-3)、
第五のGaN系半導体(低抵抗層)106として、GaN低抵抗層(膜厚50nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
本発明の第1の実施例を説明する。本実施例の電界効果トランジスタは、
基板101としてシリコン(Si)基板、
第一のGaN系半導体(バッファ層)102として、AlGaN層(Al組成比0.2、膜厚500nm)、
第二のGaN系半導体(キャリア走行層)103として、GaNキャリア走行層(膜厚1000nm)、
第三のGaN系半導体(キャリア供給層)104として、AlGaNキャリア供給層(Al組成比0.2、膜厚15nm)、
第四のGaN系半導体(2次元電子ガス解消層)105として、InGaN2次元電子ガス解消層(In組成比0.15、膜厚10nm、Mgドープ1×1018cm-3)、
第五のGaN系半導体(低抵抗層)106として、GaN低抵抗層(膜厚50nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
このエピタキシャル基板上に、SiN膜200nmを成膜し、フォトレジストをマスクとして、例えばSF6(Sulfar Hexafluoride;六フッ化硫黄)をプロセスガスに用いたICP(Inductivity Coupled Plasma)ドライエッチングで、SiN膜のリセス部分を開口する。
フォトレジストを除去した後、SiN膜をマスクとして、例えばBCl3(Boron Trichroride;三塩化ホウ素)とSF6の混合ガスをプロセスガスに用いたICPドライエッチングで用いて、リセスエッチングを行い2次元電子ガス解消層105、低抵抗層106を除去する。
このようなガスを用いたリセスエッチング時には、SiN膜の側面も同時にエッチングされるため、2次元電子ガス解消層105、低抵抗層106の側面は、テーパー形状になる。
また、AlGaNキャリア供給層表面にFが結合したところでエッチングが停止するため、2次元電子ガス解消層105、低抵抗層106は選択的に除去できる。
リセスエッチング後、HF(Hydrogen Fluoride)水溶液を用いてSiN膜を除去し、
ソース電極107、及び、ドレイン電極108として、Nb/Al/Nb/Au(膜厚7nm/60nm/35nm/50nm、熱処理850℃30秒)を形成する。
ソース電極107、及び、ドレイン電極108として、Nb/Al/Nb/Au(膜厚7nm/60nm/35nm/50nm、熱処理850℃30秒)を形成する。
その後、イオン注入により素子分離を行い、
ゲート絶縁膜109として、Al2O3膜(膜厚20nm)、
ゲート電極110として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜111として、SiON膜(膜厚80nm)を形成し、電界効果トランジスタが作製される。
ゲート絶縁膜109として、Al2O3膜(膜厚20nm)、
ゲート電極110として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜111として、SiON膜(膜厚80nm)を形成し、電界効果トランジスタが作製される。
このような構造であれば、2次元電子ガスと、低抵抗層の間の2次元電子ガス解消層が障壁となるため、ゲート電圧が0Vの時は、2次元電子ガスと低抵抗層の間で電流が流れず、ゲート電圧+3V以上を印加すると、オン状態となり、良好なエンハンスメントモードが実現できた。
オン状態では、Siを1×1019cm-3と高密度でドープしたGaN低抵抗層の抵抗が極めて低いことから、低ソース抵抗が実現できた。
低抵抗層106は、ソース電極107とゲート電極110の間にのみ存在し、高電圧動作時に高電圧のかかるドレイン電極108側には存在しないため、低ソース抵抗でありながら、動作電圧50V以上の高電圧動作ができた。
なお、本実施例のように、ゲート電極と絶縁膜を挟んで相対する半導体層の一部にキャリア供給層を含む場合、その領域は電界集中を緩和するように働くため、特に高電圧動作に適している。
本実施例では、基板101として、Siを用いたが、SiCやサファイアなど他の任意の基板を用いることができる。
本実施例では、バッファ層102として、AlGaN層を用いたが、バッファ層102としては、GaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。
本実施例では、キャリア走行層103として、GaN層を用いたが、キャリア走行層103としてはInGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。
本実施例では、キャリア供給層104として、AlGaN層を用いたが、キャリア供給層104としては、InAlN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。ただし、キャリア供給層104の電子親和力は、キャリア走行層103の電子親和力よりも小さい物質または組成である必要がある。
本実施例では、キャリア供給層104の格子定数は最も厚い層であるキャリア走行層103の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、2次元電子ガス解消層105として、InGaN層を用いたが、2次元電子ガス解消層105としてはInAlN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることが可能である。
ただし、第四のGaN系半導体は、2次元電子ガスを解消する働きが必要であるため、2次元電子ガス解消層とキャリア供給層の界面に負電荷が誘起できる物質または組成である必要があり、キャリア走行層、キャリア供給層の組成にもよるが、例えば、無歪もしくは圧縮歪のGaN、もしくは圧縮歪のInαAlβGa1-α-βN(0<α、0≦β、α+β≦1)からなる層や本実施例のようにp型不純物を添加した層が好ましい。
本実施例では、2次元電子ガス解消層の格子定数は最も厚い層であるキャリア走行層の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、低抵抗層106として、GaN層を用いたが、低抵抗層としては無歪もしくは圧縮歪のn型InyGa1-yN(0≦y≦1)、もしくはInmAllGa1-m-lN(0≦m、0<l、m+l≦1)とすることができる。ただし、最も厚い層であるキャリア走行層の格子定数と異なっている組成を用いる場合、転位が発生する臨界膜厚以下とすることが好ましい。
また、本実施例では、GaNキャリア走行層103中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
本実施例では、AlGaNキャリア供給層104中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
本実施例では、InGaN2次元電子ガス解消層105中にp型不純物としてMgを添加したが、InGaN自体のpiezo効果だけでも2次元電子ガスを解消できるため、Mgを添加しなくても良い。
2次元電子ガス解消層105中には、n型不純物として、例えばSi、S、Seなどp型不純物として、例えばBe、C、Mgなどを添加することが可能である。ただし、キャリア供給層中のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、添加する不純物はp型が望ましい。
本実施例では、GaN低抵抗層106中に、n型不純物としてSiを添加したが、n型不純物として、例えばSi、S、Seなどp型不純物として、例えばBe、C、Mgなどを添加することが可能である。ただし、本実施例では電子による伝導であることから、低抵抗にするためにはn型不純物の添加が望ましい。
本実施例では、ソース電極107、ドレイン電極108として、Nb/Al/Nb/Auを用いたが、ソース電極、ドレイン電極は、キャリア供給層104であるAlGaNおよび低抵抗層106とオーミック接触する金属であればよく、例えばW、Mo、Si、Ti、Pt、Nb、Al、Au等の金属を用いることができる。あるいは、複数の前記金属を積層した構造とすることもできる。
本実施例では、ゲート電極110として、Ni/Auを用いたが、ゲート電極は半導体と直接接していないので、所望の金属とすることが出来る。但し、ゲート絶縁膜と反応しないことが望ましい。
本実施例では、ゲート絶縁膜109として、Al2O3膜を用いたが、ゲート絶縁膜109としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質がある。
<第2の実施の形態>
図2は、本発明の第2の実施の形態の断面構造を模式的に示す図である。図2を参照すると、本実施形態の電界効果トランジスタは、基板201上に、第一のGaN系半導体からなるバッファ層202、第二のGaN系半導体からなるキャリア走行層203、第三のGaN系半導体からなるキャリア供給層204、第四のGaN系半導体からなる2次元電子ガス解消層205、第五のGaN系半導体からなる低抵抗層206を形成する。
図2は、本発明の第2の実施の形態の断面構造を模式的に示す図である。図2を参照すると、本実施形態の電界効果トランジスタは、基板201上に、第一のGaN系半導体からなるバッファ層202、第二のGaN系半導体からなるキャリア走行層203、第三のGaN系半導体からなるキャリア供給層204、第四のGaN系半導体からなる2次元電子ガス解消層205、第五のGaN系半導体からなる低抵抗層206を形成する。
その後、ドレイン電極とゲート電極の間、及びゲート電極の下の一部とドレイン電極の下となる領域の2次元電子ガス解消層205、低抵抗層206をリセスエッチングし除去する。その際、残された2次元電子ガス解消層205、低抵抗層206の側面は、除去前の表面に対しほぼ垂直となるように形成する。低抵抗層206に接してソース電極207、キャリア供給層204に接してドレイン電極208を形成し、次に、ゲート絶縁膜209を製膜し、ゲート電極210を形成する。最後に保護膜211を製膜することで、電界効果トランジスタが製作される。
本実施の形態において、基板201としては、例えばサファイア、炭化シリコン、GaN、AlNなどが用いられる。なお、以下では、第一乃至第五のGaN系半導体はそれぞれ参照符号202~206によっても指示される。
第一のGaN系半導体202としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。ただし、第一の半導体形成のために、基板201と第一の半導体202の間にGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等からなる核形成層を挟んでも良い。
また、第一のGaN系半導体202中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
また、第二のGaN系半導体203としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等が用いられる。
また、第二のGaN系半導体203中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、第二のGaN系半導体中の不純物濃度が高くなるとクーロン散乱の影響により電子の移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、第二のGaN系半導体中の不純物濃度が高くなるとクーロン散乱の影響により電子の移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
また、第三のGaN系半導体204としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。ただし、本発明の実施例では第二のGaN系半導体より電子親和力は小さい物質または組成である。
また、第三のGaN系半導体204中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
また、第四のGaN系半導体205としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。ただし、本実施例では、第四のGaN系半導体205は、2次元電子ガスを解消する働きが必要であるため、2次元電子ガス解消層とキャリア供給層の界面に負電荷が誘起できる物質または組成である。
また、第四のGaN系半導体205中に、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。
また、第五のGaN系半導体206としては、例えばGaN、InN、AlN、及び上記3種のGaN系半導体の混合物等がある。
また、第五のGaN系半導体206中に、n型不純物として、例えばSi、S、Seなどが可能である。p型不純物としても、例えばBe、C、Mgなどを添加することも可能であるが導電形はn型である。
また、ゲート絶縁膜209としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質がある。
また、保護膜211としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質、もしくは有機材料がある。
(実施例2)
図2は、本発明の第2の実施例の断面構成を模式的に示す図である。図2を参照すると、本実施例の電界効果トランジスタは、
基板201として、炭化シリコン(SiC)基板、
第一のGaN系半導体202として、AlGaN層(Al組成比0.1、膜厚1000nm)、
第二のGaN系半導体203として、GaNキャリア走行層(膜厚40nm)、
第三のGaN系半導体204として、AlGaNキャリア供給層(Al組成比0.25、膜厚15nm)、
第四のGaN系半導体205として、GaN2次元電子ガス解消層(膜厚10nm、Mgドープ1×1018cm-3)、
第五のGaN系半導体206として、GaN低抵抗層(膜厚30nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
図2は、本発明の第2の実施例の断面構成を模式的に示す図である。図2を参照すると、本実施例の電界効果トランジスタは、
基板201として、炭化シリコン(SiC)基板、
第一のGaN系半導体202として、AlGaN層(Al組成比0.1、膜厚1000nm)、
第二のGaN系半導体203として、GaNキャリア走行層(膜厚40nm)、
第三のGaN系半導体204として、AlGaNキャリア供給層(Al組成比0.25、膜厚15nm)、
第四のGaN系半導体205として、GaN2次元電子ガス解消層(膜厚10nm、Mgドープ1×1018cm-3)、
第五のGaN系半導体206として、GaN低抵抗層(膜厚30nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
前記エピタキシャル基板上に、SiO2膜200nmを成膜し、フォトレジストをマスクとして、例えばSF6をプロセスガスに用いたICPドライエッチングでSiN膜のリセス部分を開口する。
フォトレジストを除去した後、SiO2膜をマスクとして、例えばBCl3とO2の混合ガスをプロセスガスに用いたICPドライエッチングで用いてリセスエッチングを行い2次元電子ガス解消層205、低抵抗層206を除去する。
このようなガスを用いたリセスエッチング時には、SiO2膜の側面はほとんどエッチングされないため2次元電子ガス解消層205、低抵抗層206の側面はほぼ垂直になる。
また、AlGaNキャリア供給層表面にOが結合したところでエッチングが停止するため、2次元電子ガス解消層205、低抵抗層206は選択的に除去できる。
リセスエッチング後、HF水溶液を用いて、SiO2膜を除去し、ソース電極207、ドレイン電極208としてTi/Al/Nb/Au(膜厚15nm/60nm/35nm/50nm、熱処理850℃30秒)を形成する。
その後、イオン注入により素子分離を行い、
ゲート絶縁膜209として、SiN膜(膜厚20nm)、
ゲート電極210として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜211として、SiON膜(膜厚80nm)を形成し、
電界効果トランジスタが作製される。
ゲート絶縁膜209として、SiN膜(膜厚20nm)、
ゲート電極210として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜211として、SiON膜(膜厚80nm)を形成し、
電界効果トランジスタが作製される。
このような構造であれば、2次元電子ガスと低抵抗層の間の2次元電子ガス解消層が障壁となるため、ゲート電圧が0Vの時は2次元電子ガスと低抵抗層の間で電流が流れず、ゲート電圧+3V以上を印加するとオン状態となり良好なエンハンスメントモードが実現できた。
オン状態では、Siを1×1019cm-3と高密度でドープしたGaN低抵抗層の抵抗が非常に低いことから、低ソース抵抗が実現できた。
低抵抗層206は、ソース電極207とゲート電極210の間にのみ存在し、高電圧動作時に高電圧のかかるドレイン電極側には存在しないため、低ソース抵抗でありながら動作電圧50V以上の高電圧動作ができた。
なお、図2に示す実施例のように、ゲート電極と絶縁膜を挟んで相対する半導体層の一部にキャリア供給層を含む場合、その領域は電界集中を緩和するように働くため、特に高電圧動作に適している。
一方、図3に示す実施例のように、ゲート電極210と絶縁膜209を挟んで相対する半導体層が全て低抵抗層206である場合、電界集中を緩和する働きはなくなるが、ゲート電極210全てが2次元電子ガス解消層205から遠ざかるため、閾値電圧を正側に大きくとることが可能となる。
なお、本実施例では、基板としてSiCを用いたが、Siやサファイアなど他の任意の基板を用いることができる。
本実施例では、バッファ層202として、AlGaN層を用いたが、バッファ層としてはGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。
本実施例では、キャリア走行層203として、GaN層を用いたが、キャリア走行層としてはInGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。但し、本実施例では、キャリア走行層203の格子定数は最も厚い層であるAlGaNバッファ層202の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、キャリア供給層204として、AlGaN層を用いたが、キャリア供給層としてはInAlN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。ただし、キャリア供給層204の電子親和力はキャリア走行層の電子親和力より小さい物質または組成である必要がある。また、本実施例ではキャリア供給層204の格子定数は最も厚い層であるAlGaNバッファ層の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、2次元電子ガス解消層205として、GaN層を用いたが、2次元電子ガス解消層としてはInAlN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることが可能である。
ただし、第四のGaN系半導体(2次元電子ガス解消層)205は、2次元電子ガスを解消する働きが必要であるため、2次元電子ガス解消層とキャリア供給層の界面に負電荷が誘起できる物質または組成である必要があり、キャリア走行層、キャリア供給層の組成にもよるが、例えば、無歪もしくは圧縮歪のGaN、もしくは圧縮歪のInαAlβGa1-α-βN(0<α、0≦β、α+β≦1)からなる層や、本実施例のように、p型不純物を添加した層が好ましい。
本実施例では、2次元電子ガス解消層の格子定数は最も厚い層であるAlGaNバッファ層の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、低抵抗層206として、GaN層を用いたが、低抵抗層としては無歪もしくは圧縮歪のn型InyGa1-yN(0≦y≦1)、もしくはInmAllGa1-m-lN(0≦m、0<l、m+l≦1)とすることができる。ただし、本実施例のように、最も厚い層であるAlGaNバッファ層の格子定数と異なっている組成を用いる場合、転位が発生する臨界膜厚以下とすることが好ましい。
また、本実施例では、GaNキャリア走行層203中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
本実施例では、AlGaNキャリア供給層204中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層205のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層205のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
本実施例では、GaN2次元電子ガス解消層205中に、p型不純物としてMgを添加したが、本実施例のGaN層は圧縮歪を受けており、AlGaNキャリア供給層の電子供給能力も低いことから、Mgを転化しなくても、2次元電子ガスを解消することは可能である。
2次元電子ガス解消層205には、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、キャリア供給層中のn型不純物濃度が高くなると、ソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、添加する不純物はp型が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、キャリア供給層中のn型不純物濃度が高くなると、ソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、添加する不純物はp型が望ましい。
本実施例では、GaN低抵抗層206中に、n型不純物とSiを添加したが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、本実施例では、電子による伝導であることから、低抵抗にするためにはn型不純物の添加が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、本実施例では、電子による伝導であることから、低抵抗にするためにはn型不純物の添加が望ましい。
本実施例では、ソース電極207、ドレイン電極208として、Ti/Al/Nb/Auを用いたが、ソース電極、ドレイン電極は本実施例中キャリア供給層204であるAlGaNおよび低抵抗層206とオーミック接触する金属であればよく、例えばW、Mo、Si、Ti、Pt、Nb、Al、Au等の金属を用いることができ、複数の前記金属を積層した構造とすることもできる。
本実施例では、ゲート電極210として、Ni/Auを用いたが、ゲート電極が半導体と直接接していないので、所望の金属とすることが出来る。但し、ゲート絶縁膜と反応しないことが望ましい。
本実施例では、ゲート絶縁膜209として、SiN膜を用いたが、ゲート絶縁膜209としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質を用いてもよい。
<実施例3>
図4は、本発明の第3の実施例の断面構成を模式的に示す図である。本実施例の電界効果トランジスタは、
基板301として、シリコン(Si)基板、
核形成層312としてAlN層(膜厚150nm)、
第一のGaN系半導体302として、GaN層(膜厚1500nm)、
第二のGaN系半導体303として、InGaNキャリア走行層(In組成比0.04、膜厚25nm)、
第三のGaN系半導体304として、InAlNキャリア供給層(Al組成比0.83、膜厚15nm)、
第四のGaN系半導体305として、InGaN2次元電子ガス解消層(In組成比0.15、膜厚10nm)、
第五のGaN系半導体306として、AlGaN低抵抗層(Al組成比0.05、膜厚50nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
図4は、本発明の第3の実施例の断面構成を模式的に示す図である。本実施例の電界効果トランジスタは、
基板301として、シリコン(Si)基板、
核形成層312としてAlN層(膜厚150nm)、
第一のGaN系半導体302として、GaN層(膜厚1500nm)、
第二のGaN系半導体303として、InGaNキャリア走行層(In組成比0.04、膜厚25nm)、
第三のGaN系半導体304として、InAlNキャリア供給層(Al組成比0.83、膜厚15nm)、
第四のGaN系半導体305として、InGaN2次元電子ガス解消層(In組成比0.15、膜厚10nm)、
第五のGaN系半導体306として、AlGaN低抵抗層(Al組成比0.05、膜厚50nm、Siドープ1×1019cm-3)からなるエピタキシャル基板を用いる。
このエピタキシャル基板上にSiO2膜200nmを成膜し、フォトレジストをマスクとして、例えばSF6をプロセスガスに用いたICPドライエッチングでSiN膜のリセス部分を開口する。フォトレジストを除去した後、SiO2膜をマスクとして、例えばBCl3ガスをプロセスガスに用いたICPドライエッチングで用いてリセスエッチングを行い、低抵抗層306を除去する。
再度、SiO2膜200nmを成膜し、フォトレジストをマスクとして、例えばSF6をプロセスガスに用いたICPドライエッチングでSiN膜のリセス部分を開口する。
フォトレジストを除去した後、SiO2膜をマスクとして、例えばBCl3ガスとO2の混合ガスをプロセスガスに用いたICPドライエッチングで用いてリセスエッチングを行い、2次元電子ガス解消層305を除去する。
リセスエッチング時には、SiO2膜の側面はほとんどエッチングされないため2次元電子ガス解消層305、低抵抗層306の側面はほぼ垂直になる。
そして、InAlNキャリア供給層表面にOが結合したところで、エッチングが停止するため、2次元電子ガス解消層305は選択的に除去できる。リセスエッチング後HF水溶液を用いてSiO2膜を除去し、ソース電極307、ドレイン電極308としてTi/Al/Nb/Au(膜厚15nm/60nm/35nm/50nm、熱処理850℃30秒)を形成する。
その後、イオン注入により素子分離を行い、
ゲート絶縁膜309として、SiN膜(膜厚20nm)、
ゲート電極310として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜311として、SiON膜(膜厚80nm)を形成し、
電界効果トランジスタが作製される。
ゲート絶縁膜309として、SiN膜(膜厚20nm)、
ゲート電極310として、Ni/Au(Ni層の膜厚10nm、Au層の膜厚400nm)、
保護膜311として、SiON膜(膜厚80nm)を形成し、
電界効果トランジスタが作製される。
このような構造であれば、2次元電子ガスと低抵抗層の間の2次元電子ガス解消層が障壁となるため、ゲート電圧が0Vの時は2次元電子ガスと低抵抗層の間で電流が流れず、ゲート電圧+3V以上を印加するとオン状態となる良好なエンハンスメントモードが実現できた。
オン状態では、Siを1×1019cm-3と、高密度でドープしたAlGaN低抵抗層の抵抗が非常に低いことから、低ソース抵抗が実現できた。また、低抵抗層はソース電極とゲート電極の間にのみ存在し、高電圧動作時に高電圧のかかるドレイン電極側には存在しないため、低ソース抵抗でありながら、動作電圧50V以上の高電圧動作ができた。
図4に示す実施例のように、ゲート電極310と絶縁膜309を挟んで相対する半導体層の一部に2次元電子ガス解消層305を含む場合、その領域も2次元電子ガスが形成されず、良好なピンチオフ特性が実現できる。ただし、ゲート電極と2次元電子ガス解消層の位置によっては、オン状態でも電子が流れにくい状態となるので注意が必要となる。
一方、図5に示す実施例(変形例)のように、ゲート電極310と絶縁膜309を挟んで相対する半導体層が、低抵抗層306、2次元電子ガス解消層305、キャリア供給層304のすべてである場合、キャリア供給層304と相対する領域は、電界集中を緩和するよう働き、2次元電子ガス供給層305と相対する領域は、良好なピンチオフ性が実現できるよう働く。
ただし、本実施例では、ドライエッチングが2度必要であり、実施例1、実施例2と比較してプロセスが多くなる。
なお、本実施例では、基板としてSiを用いたが、SiCやサファイアなど他の任意の基板を用いることができる。
本実施例では、バッファ層302として、GaN層を用いたが、バッファ層としては、AlGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。
本実施例では、キャリア走行層303として、InGaN層を用いたが、キャリア走行層としては、IGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。但し、本実施例ではキャリア走行層の格子定数は最も厚い層であるGaNバッファ層の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、キャリア供給層として、InAlN層を用いたが、キャリア供給層としては、AlGaN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。ただし、キャリア供給層の電子親和力はキャリア走行層の電子親和力より小さい物質または組成である必要がある。
本実施例では、キャリア供給層の格子定数は最も厚い層であるGaNバッファ層の格子定数とわずかながら異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、2次元電子ガス解消層として、InGaN層を用いたが、キャリア供給層としては、InAlN層など、GaN、InN、AlN、及び上記3種のGaN系半導体の混合物等を用いることができる。
ただし、第四のGaN系半導体305は、2次元電子ガスを解消する働きが必要であるため、2次元電子ガス解消層とキャリア供給層の界面に負電荷が誘起できる物質または組成である必要があり、キャリア走行層303、キャリア供給層304の組成にもよるが、例えば、無歪もしくは圧縮歪のGaN、もしくは圧縮歪のInαAlβGa1-α-βN(0<α、0≦β、α+β≦1)からなる層や、本実施例のように、p型不純物を添加した層がある。
また、本実施例では、2次元電子ガス解消層の格子定数は最も厚い層であるGaNバッファ層の格子定数と異なっているため、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、低抵抗層として、AlGaN層を用いたが、低抵抗層としては、無歪もしくは圧縮歪のn型InyGa1-yN(0≦y≦1)、もしくはInmAllGa1-m-lN(0≦m、0<l、m+l≦1)とすることができる。ただし、本実施例のように、最も厚い層であるGaNバッファ層の格子定数と異なっている組成を用いる場合、転位が発生する臨界膜厚以下とすることが好ましい。
本実施例では、InGaNキャリア走行層中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、キャリア走行層中の不純物濃度が高くなるとクーロン散乱の影響により移動度が低下するため、不純物濃度は1×1017cm-3以下が望ましい。
本実施例では、InAlNキャリア供給層中に不純物は添加していないが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することも可能である。ただし、2次元電子ガス解消層のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、不純物濃度は1×1018cm-3以下が望ましい。
本実施例では、InGaN2次元電子ガス解消層中に不純物を添加していないが、2次元電子ガス解消層にはn型不純物として、例えばSi、S、Seなどp型不純物として、例えばBe、C、Mgなどを添加することが可能である。ただし、キャリア供給層中のn型不純物濃度が高くなるとソース電極-ゲート電極間の2次元電子ガスの解消が困難になるため、添加する不純物はp型が望ましい。
本実施例では、AlGaN低抵抗層中にn型不純物として、Siを添加したが、
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、本実施例では、電子による伝導であることから、低抵抗にするためにはn型不純物の添加が望ましい。
n型不純物として、例えばSi、S、Seなど、
p型不純物として、例えばBe、C、Mgなど
を添加することが可能である。ただし、本実施例では、電子による伝導であることから、低抵抗にするためにはn型不純物の添加が望ましい。
本実施例では、ソース電極307、ドレイン電極308として、Ti/Al/Nb/Auを用いたが、ソース電極、ドレイン電極は本実施例中キャリア供給層304であるInAlNおよび低抵抗層306とオーミック接触する金属であればよく、例えばW、Mo、Si、Ti、Pt、Nb、Al、Au等の金属を用いることができ、複数の前記金属を積層した構造とすることもできる。
本実施例では、ゲート電極310として、Ni/Auを用いたが、本発明ではゲート電極が半導体と直接接していないので、所望の金属とすることが出来る。但し、ゲート絶縁膜と反応しないことが望ましい。
本実施例では、ゲート絶縁膜309として、SiN膜を用いたが、ゲート絶縁膜309としては、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質がある。
なお、上記の特許文献1の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
Claims (22)
- III-V族窒化物半導体からなり、ゲート電極と半導体の間に絶縁膜を具備する電界効果トランジスタにおいて、
ドレイン電極と前記ゲート電極の間の半導体層中には2次元電子ガスが形成され、
ソース電極と前記ゲート電極の間の半導体層の少なくとも一部に、その中に2次元電子ガスが形成されない半導体層を含む、ことを特徴とする半導体装置。 - III-V族窒化物半導体層の一部を除去したリセス領域を備え、
前記リセス領域の一部に、前記ドレイン電極の一部が配置されており、
前記ソース電極は、前記リセス領域とは別の所定の領域に配置されている、ことを特徴とする請求項1記載の半導体装置。 - 前記ドレイン電極と基板の間に、キャリア供給層とキャリア走行層とを備え、
前記ソース電極と前記キャリア走行層の間に、2次元電子ガス解消層を備えている、ことを特徴とする請求項1又は2記載の半導体装置。 - 前記ソース電極と前記2次元電子ガス解消層の間に、電子をキャリアとする低抵抗層を備えている、ことを特徴とする請求項3記載の半導体装置。
- 前記ゲート電極と絶縁膜を挟んで相対する半導体層は、その一部又は全てが、n型低抵抗層である、ことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置。
- 前記ゲート電極と絶縁膜を挟んで相対する半導体層は、一部にn型低抵抗層を含み、別の一部に、2次元電子ガス解消層又はキャリア供給層を含む、ことを特徴とする請求項1乃至4のいずれか1項に半導体装置。
- 前記ゲート電極と絶縁膜を挟んで相対する半導体層は、
一部にn型低抵抗層を含み、
別の一部に、2次元電子ガス解消層を含み、
前記一部と別の一部と異なるさらに別の一部に、キャリア供給層を含む、ことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置。 - 前記キャリア走行層が、InxGa1-xN(0≦x≦1)からなる、ことを特徴とする請求項3記載の半導体装置。
- 前記キャリア供給層が、無歪もしくは引っ張り歪のInaAlbGa1-a-bN(0≦a、0<b、a+b≦1)からなる、ことを特徴とする請求項3、6、7のいずれか1項に記載の半導体装置。
- 前記2次元電子ガス解消層が、無歪もしくは圧縮歪のGaN、又は圧縮歪のInαAlβGa1-α-βN(0<α、0≦β、α+β≦1)からなる、ことを特徴とする請求項3、4、6のいずれか1項に記載の半導体装置。
- 前記n型低抵抗層が、無歪もしくは圧縮歪のn型InyGa1-yN(0≦y≦1)、又はInmAllGa1-m-lN(0≦m、0<l、m+l≦1)からなる、ことを特徴とする請求項7記載の半導体装置。
- 前記絶縁膜が、Si、Mg、Hf、Al、Ti、Ta、Zrのいずれか1以上とO、Nのいずれか1以上からなる物質からなる、ことを特徴とする請求項5、6、7のいずれか1項に記載の半導体装置。
- 基板上に、バッファ層、キャリア走行層、キャリア供給層をこの順に備え、
前記キャリア供給層の表面の一部の領域上に、順に積層されてなる、2次元電子ガス解消層と低抵抗層を備え、
前記キャリア供給層の表面上の、前記2次元電子ガス解消層と前記低抵抗層の積層体が設けられる前記一部の領域と離間した、所定の領域に、ドレイン電極を備え、
前記低抵抗層の表面の所定の領域にソース電極を備え、
前記低抵抗層の一部及び前記2次元電子ガス解消層の一部と、前記キャリア供給層の一部とを覆う絶縁膜と、
前記絶縁膜を介して、
前記低抵抗層の一部領域;
前記低抵抗層の一部領域と前記2次元電子ガス解消層の一部領域;
前記低抵抗層の一部領域と前記2次元電子ガス解消層の一部領域と前記キャリア供給層の一部領域;
のうちのいずれかと相対するように配置されたゲート電極と、
を備えた半導体装置。 - 前記バッファ層、前記キャリア走行層、前記キャリア供給層、前記2次元電子ガス解消層、前記低抵抗層が、それぞれ、GaN系半導体よりなる、請求項13記載の半導体装置。
- 前記2次元電子ガス解消層と前記低抵抗層の積層体の、前記ゲート電極に前記絶縁膜を介して相対する側面がテーパー状とされ、
前記ゲート電極は、前記絶縁膜を介して、
前記2次元電子ガス解消層と前記低抵抗層の積層体のテーパー面と、
前記抵抗層表面の一部領域と、
前記キャリア供給層の一部領域と、に相対する、請求項13又は14記載の半導体装置。 - 前記2次元電子ガス解消層と前記低抵抗層の積層体の、前記ゲート電極に前記絶縁膜を介して相対する側が面一の側壁を有し、
前記ゲート電極は、前記絶縁膜を介して、
前記2次元電子ガス解消層と前記低抵抗層の積層体の側壁と、
前記抵抗層表面の一部領域と、
前記キャリア供給層表面の一部領域に相対する、請求項13又は14記載の半導体装置。 - 前記2次元電子ガス解消層と前記低抵抗層の積層体の、前記ゲート電極に前記絶縁膜を介して相対する側は、前記2次元電子ガス解消層が前記低抵抗層に対して突出する段差を有し、
前記ゲート電極は、前記絶縁膜を介して、
前記2次元電子ガス解消層の段差部の表面の一部と、前記低抵抗層の側壁と、前記低抵抗層表面の一部領域とに相対する、請求項13又は14記載の半導体装置。 - 前記2次元電子ガス解消層と前記低抵抗層の積層体の、前記ゲート電極に前記絶縁膜を介して相対する側は、前記2次元電子ガス解消層が前記低抵抗層に対して突出する段差を有し、
前記ゲート電極は、前記絶縁膜を介して、
前記キャリア供給層の表面の一部領域と、前記2次元電子ガス解消層の段差部の側壁及び表面の一部領域と、前記低抵抗層の側壁及び前記低抵抗層表面の一部領域と、に相対する、請求項13又は14記載の半導体装置。 - 前記ドレイン電極と基板の間に、キャリア供給層とキャリア走行層とを備え、前記ドレイン電極と前記ゲート電極の間の半導体層中には、2次元電子ガスが形成され、
前記その中に2次元電子ガスが形成されない半導体層として、前記キャリア供給層の伝導帯を真空準位側へ持ち上げることで前記キャリア走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層を、前記ソース電極と前記ゲート電極の間の半導体層の少なくとも一部に備え、
電気伝導は前記2次元電子ガス解消層上の、電子をキャリアとする低抵抗層を介して行われ、
ゲート電圧が0Vの場合、前記2次元電子ガスと前記低抵抗層の間の前記2次元電子ガス解消層が障壁となり、前記2次元電子ガスと前記低抵抗層の間で電流が流れず、エンハンスメントモードとなる、請求項1記載の半導体装置。 - 前記ゲート電圧として所定の正電圧を印加した場合、前記2次元電子ガス解消層の障壁を下げることで電流が流れ、このとき、ソース抵抗は、前記低抵抗層で決定され、前記低抵抗層は、前記ソース電極と前記ゲート電極間に存在し、高電圧動作時に高電圧が印加されるドレイン電極側には存在せず、低ソース抵抗化と高電圧動作との両立を可能としてなる、請求項19記載の半導体装置。
- III-V族窒化物半導体からなり、ゲート電極と半導体の間に絶縁膜を具備する電界効果トランジスタのドレイン電極と基板の間に、キャリア供給層とキャリア走行層とを備え、前記ドレイン電極と前記ゲート電極の間の半導体層中には、2次元電子ガスが形成され、
前記電界効果トランジスタのソース電極と前記ゲート電極の間の半導体層の少なくとも一部において、前記キャリア供給層の伝導帯を真空準位側へ持ち上げることで前記キャリア走行層に2次元電子ガスが蓄積しないように働く2次元電子ガス解消層を設け、
電気伝導は前記2次元電子ガス解消層上の、電子をキャリアとする低抵抗層を介して行われ、
ゲート電圧が0Vであるとき、2次元電子ガスと前記低抵抗層の間の前記2次元電子ガス解消層が障壁となり、前記2次元電子ガスと前記低抵抗層の間で電流が流れず、エンハンスメントモード動作を行う、半導体装置の動作方法。 - 前記ゲート電圧として所定の正電圧を印加した場合、前記2次元電子ガス解消層の障壁を下げることで電流が流れ、このとき、ソース抵抗は、前記低抵抗層で決定され、前記低抵抗層は、前記ソース電極と前記ゲート電極間に存在し、高電圧動作時に高電圧が印加されるドレイン電極側には存在せず、低ソース抵抗化と高電圧動作との両立を可能としてなる請求項21記載の半導体装置の動作方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010523894A JPWO2010016564A1 (ja) | 2008-08-07 | 2009-08-07 | 半導体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008204602 | 2008-08-07 | ||
JP2008-204602 | 2008-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016564A1 true WO2010016564A1 (ja) | 2010-02-11 |
Family
ID=41663776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064000 WO2010016564A1 (ja) | 2008-08-07 | 2009-08-07 | 半導体装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010016564A1 (ja) |
WO (1) | WO2010016564A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010074077A (ja) * | 2008-09-22 | 2010-04-02 | Sanken Electric Co Ltd | 半導体装置 |
CN102194867A (zh) * | 2010-03-02 | 2011-09-21 | 三星电子株式会社 | 表现双耗尽的高电子迁移率晶体管及其制造方法 |
JP2012209374A (ja) * | 2011-03-29 | 2012-10-25 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
CN102969354A (zh) * | 2011-09-01 | 2013-03-13 | 富士通株式会社 | 半导体器件 |
JP2015095554A (ja) * | 2013-11-12 | 2015-05-18 | 富士通株式会社 | 半導体装置及び半導体装置の製造方法 |
US9054170B2 (en) | 2012-12-21 | 2015-06-09 | Fujitsu Limited | Semiconductor device, method for manufacturing the same, power supply, and high-frequency amplifier |
CN108598163A (zh) * | 2018-05-14 | 2018-09-28 | 电子科技大学 | 一种GaN异质结纵向功率器件 |
KR20200094008A (ko) * | 2019-01-29 | 2020-08-06 | 한국과학기술원 | 이종접합 구조의 수직형 트랜지스터 및 그 제조 방법 |
US20200343375A1 (en) * | 2018-10-12 | 2020-10-29 | Transphorm Technology, Inc. | Lateral iii-nitride devices including a vertical gate module |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338510A (ja) * | 2002-05-21 | 2003-11-28 | Fujitsu Ltd | 化合物電界効果半導体装置 |
JP2004335960A (ja) * | 2003-05-12 | 2004-11-25 | Kri Inc | 電界効果型トランジスタ |
JP2006073802A (ja) * | 2004-09-02 | 2006-03-16 | Toshiba Corp | 窒化物含有半導体装置 |
JP2006114659A (ja) * | 2004-10-14 | 2006-04-27 | Matsushita Electric Ind Co Ltd | 電界効果トランジスタ |
JP2008010526A (ja) * | 2006-06-28 | 2008-01-17 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2008306058A (ja) * | 2007-06-08 | 2008-12-18 | Sanken Electric Co Ltd | 半導体装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59181675A (ja) * | 1983-03-31 | 1984-10-16 | Fujitsu Ltd | 半導体装置 |
JP2008072029A (ja) * | 2006-09-15 | 2008-03-27 | Sumitomo Chemical Co Ltd | 半導体エピタキシャル結晶基板の製造方法 |
JP5566618B2 (ja) * | 2008-03-07 | 2014-08-06 | 古河電気工業株式会社 | GaN系半導体素子 |
-
2009
- 2009-08-07 JP JP2010523894A patent/JPWO2010016564A1/ja active Pending
- 2009-08-07 WO PCT/JP2009/064000 patent/WO2010016564A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338510A (ja) * | 2002-05-21 | 2003-11-28 | Fujitsu Ltd | 化合物電界効果半導体装置 |
JP2004335960A (ja) * | 2003-05-12 | 2004-11-25 | Kri Inc | 電界効果型トランジスタ |
JP2006073802A (ja) * | 2004-09-02 | 2006-03-16 | Toshiba Corp | 窒化物含有半導体装置 |
JP2006114659A (ja) * | 2004-10-14 | 2006-04-27 | Matsushita Electric Ind Co Ltd | 電界効果トランジスタ |
JP2008010526A (ja) * | 2006-06-28 | 2008-01-17 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2008306058A (ja) * | 2007-06-08 | 2008-12-18 | Sanken Electric Co Ltd | 半導体装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010074077A (ja) * | 2008-09-22 | 2010-04-02 | Sanken Electric Co Ltd | 半導体装置 |
US9660048B2 (en) | 2010-03-02 | 2017-05-23 | Samsung Electronics Co., Ltd. | High electron mobility transistors exhibiting dual depletion and methods of manufacturing the same |
CN102194867A (zh) * | 2010-03-02 | 2011-09-21 | 三星电子株式会社 | 表现双耗尽的高电子迁移率晶体管及其制造方法 |
EP2363890A3 (en) * | 2010-03-02 | 2013-04-24 | Samsung Electronics Co., Ltd. | High electron mobility transistors exhibiting dual depletion and methods of manufacturing the same |
KR101774933B1 (ko) * | 2010-03-02 | 2017-09-06 | 삼성전자 주식회사 | 듀얼 디플리션을 나타내는 고 전자 이동도 트랜지스터 및 그 제조방법 |
JP2012209374A (ja) * | 2011-03-29 | 2012-10-25 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
CN102969354A (zh) * | 2011-09-01 | 2013-03-13 | 富士通株式会社 | 半导体器件 |
JP2013055148A (ja) * | 2011-09-01 | 2013-03-21 | Fujitsu Ltd | 半導体装置 |
KR101340240B1 (ko) | 2011-09-01 | 2013-12-10 | 후지쯔 가부시끼가이샤 | 반도체 장치 |
US9054170B2 (en) | 2012-12-21 | 2015-06-09 | Fujitsu Limited | Semiconductor device, method for manufacturing the same, power supply, and high-frequency amplifier |
JP2015095554A (ja) * | 2013-11-12 | 2015-05-18 | 富士通株式会社 | 半導体装置及び半導体装置の製造方法 |
CN108598163A (zh) * | 2018-05-14 | 2018-09-28 | 电子科技大学 | 一种GaN异质结纵向功率器件 |
US20200343375A1 (en) * | 2018-10-12 | 2020-10-29 | Transphorm Technology, Inc. | Lateral iii-nitride devices including a vertical gate module |
CN113169228A (zh) * | 2018-10-12 | 2021-07-23 | 创世舫科技有限公司 | 包括垂直栅极模块的横向iii族氮化物器件 |
KR20200094008A (ko) * | 2019-01-29 | 2020-08-06 | 한국과학기술원 | 이종접합 구조의 수직형 트랜지스터 및 그 제조 방법 |
KR102198765B1 (ko) * | 2019-01-29 | 2021-01-05 | 한국과학기술원 | 이종접합 구조의 수직형 트랜지스터 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010016564A1 (ja) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5487550B2 (ja) | 電界効果半導体装置及びその製造方法 | |
JP5487615B2 (ja) | 電界効果半導体装置及びその製造方法 | |
JP6251071B2 (ja) | 半導体装置 | |
US8907349B2 (en) | Semiconductor device and method of manufacturing the same | |
WO2010016564A1 (ja) | 半導体装置 | |
US8164117B2 (en) | Nitride semiconductor device | |
JP4940557B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
EP2629334B1 (en) | Power transistor having segmented gate | |
US8759876B2 (en) | Enhancement-mode nitride transistor | |
WO2009116223A1 (ja) | 半導体装置 | |
JP2004273486A (ja) | 半導体装置およびその製造方法 | |
JP5534661B2 (ja) | 半導体装置 | |
US20110233538A1 (en) | Compound semiconductor device | |
KR20150070001A (ko) | 반도체 장치 | |
WO2004061978A1 (ja) | 電界効果トランジスタ | |
JP2008112868A (ja) | 半導体装置およびその製造方法 | |
JP2010098047A (ja) | 窒化物半導体装置 | |
WO2020213291A1 (ja) | 窒化物半導体装置およびその製造方法 | |
JP2023001273A (ja) | 窒化物半導体装置 | |
WO2007041595A2 (en) | Iii-nitride semiconductor fabrication | |
WO2012144100A1 (ja) | 窒化物系半導体装置 | |
JP6331907B2 (ja) | 半導体装置 | |
JP4607506B2 (ja) | 半導体装置 | |
JP2010153748A (ja) | 電界効果半導体装置の製造方法 | |
JP2010245240A (ja) | ヘテロ接合型電界効果半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09805046 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010523894 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09805046 Country of ref document: EP Kind code of ref document: A1 |