WO2010013711A1 - 燃料電池システム及び電子機器 - Google Patents
燃料電池システム及び電子機器 Download PDFInfo
- Publication number
- WO2010013711A1 WO2010013711A1 PCT/JP2009/063425 JP2009063425W WO2010013711A1 WO 2010013711 A1 WO2010013711 A1 WO 2010013711A1 JP 2009063425 W JP2009063425 W JP 2009063425W WO 2010013711 A1 WO2010013711 A1 WO 2010013711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- fuel
- control
- unit
- fuel cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04373—Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell system and an electronic device using the fuel cell system as a power source.
- the fuel cell has an advantage that it can generate electric power only by supplying fuel and air, and can generate electric power continuously by exchanging only the fuel. Therefore, if miniaturization of the fuel cell can be realized, it is useful as a power source for a small electronic device.
- DMFC direct methanol fuel cell
- DMFCs are classified according to the liquid fuel supply method, and the active fuel cells, such as the gas supply type that supplies gaseous fuel and the liquid supply type that supplies liquid fuel, and the liquid fuel in the fuel container are vaporized inside the cell.
- the passive type fuel cell such as an internal vaporization type that is supplied to the fuel electrode.
- the passive type is particularly advantageous for downsizing the DMFC.
- a membrane electrode assembly (fuel cell) having a fuel electrode, an electrolyte membrane, and an air electrode is made of a resin-made box-like container.
- positioned on a fuel accommodating part is proposed.
- Patent Documents 2 to 4 disclose a configuration in which a DMFC fuel cell and a fuel storage portion are connected via a flow path.
- the amount of liquid fuel supplied can be adjusted based on the shape and diameter of the flow path by supplying the liquid fuel supplied from the fuel storage unit to the fuel cell via the flow path. It is said.
- liquid fuel is supplied from a fuel storage portion to a flow path by a pump so that the supply amount of the liquid fuel can be adjusted.
- this Patent Document 3 also describes that an electric field forming unit that forms an electroosmotic flow in the flow path is used instead of the pump.
- Patent Document 4 describes that liquid fuel or the like is supplied using an electroosmotic pump.
- control is performed so that the temperature generated by the heat generation in the DMFC becomes a preset reference temperature.
- the temperature of the heat generating part is easily affected by the temperature around the fuel cell system, and the actual temperature of the heat generating part is obtained by adding the temperature increase due to power generation in the DMFC to the ambient temperature of the fuel cell system.
- the control for setting the temperature of the heat generating portion to the reference temperature is The temperature of the heat generating part is controlled with a large temperature range while changing the operation time of the off-timer to adjust the fuel supply amount to the power generating part so as to approach the reference temperature.
- control may be performed in a high temperature range of 60 ° C. or higher, and the highest temperature side becomes a considerably high temperature state. For this reason, there is a risk of adversely affecting electronic devices incorporating the fuel cell system.
- the temperature of the heat generating part is controlled at a temperature range of 45 ° C. or less and a large temperature range.
- the power generation capacity of the power generation section is lowered due to a considerably low temperature state, and the temperature of the heat generation section may be further decreased.
- the output and power generation efficiency of the DMFC may be extremely reduced.
- An object of the present invention is to provide a fuel cell system and an electronic device that can always supply a proper fuel against fluctuations in ambient temperature to obtain a stable power generation output.
- a fuel cell main body having a power generation unit for generating electric power from fuel; A first temperature detector for detecting the ambient temperature; A second temperature detection unit for detecting the temperature of the power generation unit of the fuel cell body; A plurality of different temperature regions to which the ambient temperature belongs; A storage unit storing control temperatures corresponding to these temperature regions; A control temperature setting unit configured to determine a temperature region corresponding to the determined temperature region based on an ambient temperature detected by the first temperature detection unit, and to set a control temperature corresponding to the determined temperature region; A fuel cell system comprising: a control unit that controls a supply amount of fuel to the power generation unit according to a comparison result between a control temperature set by the control temperature setting unit and a detection output of the second temperature detection unit Provided.
- the fuel cell main body has a fuel transfer control unit that supplies fuel to the power generation unit,
- the control unit is configured to generate an ON signal that determines an operation time of the fuel transfer control unit according to a comparison result between the control temperature set by the control temperature setting unit and the detection output of the second temperature detection unit, or the There is provided a fuel cell system that controls a generation time of an off signal that determines a stop time of a fuel transfer control unit.
- the fuel cell main body has a fuel transfer control unit that supplies fuel to the power generation unit,
- the control temperature setting unit further sets a threshold temperature together with the control temperature set corresponding to the determined temperature region, and the control unit sets the threshold temperature and the control temperature set by the control temperature setting unit.
- an off signal for determining an on signal generation time for determining the operation time of the fuel transfer control unit and an off time for determining the stop time of the fuel transfer control unit according to respective comparison results with the detection output of the second temperature detection unit A fuel cell system is provided that controls the signal generation time.
- a fuel cell main body having a power generation unit that generates electric power with fuel and a fuel transfer control unit for supplying fuel to the power generation unit;
- a first temperature detector for detecting the ambient temperature;
- a second temperature detection unit for detecting the temperature of the power generation unit of the fuel cell body;
- a storage unit storing control temperatures corresponding to these temperature regions;
- a control temperature setting unit that determines a temperature region corresponding to the determined temperature region based on the ambient temperature detected by the temperature detection unit, and sets a control temperature corresponding to the determined temperature region;
- a fuel cell system comprising: a control unit that variably controls the drive voltage of the fuel transfer control unit according to a comparison result between the control temperature set by the control temperature setting unit and the detection output of the second temperature detection unit Provided.
- an electronic device using the fuel cell system according to any one of the first to fourth inventions as a power source.
- the present invention it is possible to provide a fuel cell system and an electronic device that can supply an appropriate fuel against fluctuations in ambient temperature and can always obtain a stable power generation output.
- FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an enlarged structure of the fuel cell main body shown in FIG. 3 is a perspective view schematically showing a fuel distribution mechanism used in the fuel cell main body shown in FIG.
- FIG. 4 is a table showing the contents of the control temperature setting table according to the first embodiment stored in the storage unit shown in FIG. 5A and 5B are waveform diagrams for explaining the operation in the fuel cell system shown in FIG. 1 based on the control temperature setting table shown in FIG.
- FIG. 6 is a table showing the contents of the control temperature setting table according to the second embodiment stored in the storage unit shown in FIG. 5A and 5B are waveform diagrams for explaining the operation in the fuel cell system shown in FIG. 1 based on the control temperature setting table shown in FIG.
- FIG. 1 shows a schematic configuration of a fuel cell system according to a first embodiment of the present invention.
- reference numeral 1 denotes a fuel cell main body (DMFC).
- the fuel cell main body 1 includes a fuel cell power generation unit (cell) 101 constituting an electromotive unit, a fuel storage unit 102 for storing liquid fuel, and a fuel storage unit. 102 and a flow path 103 connecting the fuel cell power generation unit (cell) 101 and a pump 104 as a fuel supply control unit for transferring liquid fuel from the fuel storage unit 102 to the fuel cell power generation unit (cell) 101.
- a fuel cell power generation unit (cell) 101 constituting an electromotive unit
- a fuel storage unit 102 for storing liquid fuel
- 102 and a flow path 103 connecting the fuel cell power generation unit (cell) 101 and a pump 104 as a fuel supply control unit for transferring liquid fuel from the fuel storage unit 102 to the fuel cell power generation unit (cell) 101.
- FIG. 2 is a cross-sectional view for explaining the fuel cell main body 1 in more detail.
- the fuel cell power generation unit 101 includes an anode (fuel electrode) 13 having an anode catalyst layer 11 and an anode gas diffusion layer 12, and a cathode (cathode catalyst layer 14 and cathode gas diffusion layer 15).
- MEA Membrane Electrode Assembly
- examples of the catalyst contained in the anode catalyst layer 11 and the cathode catalyst layer 14 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, an alloy containing the platinum group element, and the like. It is done.
- a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd
- Pt—Ru, Pt—Mo or the like having strong resistance to methanol, carbon monoxide, or the like.
- Pt, Pt—Ni, or the like is preferably used for the cathode catalyst layer 14.
- the catalyst is not limited to these, and various substances having catalytic activity can be used.
- the catalyst may be either a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst.
- Examples of the proton conductive material constituting the electrolyte membrane 17 include a fluorine-based resin (Nafion (trade name, manufactured by DuPont) such as a perfluorosulfonic acid polymer having a sulfonic acid group, and Flemion (trade name, Asahi Glass Co., Ltd.). Etc.), organic materials such as hydrocarbon resins having a sulfonic acid group, or inorganic materials such as tungstic acid and phosphotungstic acid.
- a fluorine-based resin Nafion (trade name, manufactured by DuPont) such as a perfluorosulfonic acid polymer having a sulfonic acid group, and Flemion (trade name, Asahi Glass Co., Ltd.). Etc.
- organic materials such as hydrocarbon resins having a sulfonic acid group
- inorganic materials such as tungstic acid and phosphotungstic acid.
- the proton conductive electrolyte membrane 17
- the anode gas diffusion layer 12 laminated on the anode catalyst layer 11 serves to uniformly supply fuel to the anode catalyst layer 11 and also serves as a current collector for the anode catalyst layer 11.
- the cathode gas diffusion layer 15 laminated on the cathode catalyst layer 14 serves to uniformly supply the oxidant to the cathode catalyst layer 14 and also serves as a current collector for the cathode catalyst layer 14.
- the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 are made of a porous substrate.
- a conductive layer is laminated on the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 as necessary.
- these conductive layers for example, a porous layer (for example, mesh) made of a conductive metal material such as Au or Ni, a porous film, a foil body, a conductive metal material such as stainless steel (SUS), gold or the like.
- a composite material coated with a highly conductive metal is used.
- a rubber O-ring 19 is interposed between the electrolyte membrane 17 and a fuel distribution mechanism 105 and a cover plate 18 described later. This O-ring 19 prevents fuel leakage and oxidant leakage from the fuel cell power generation unit 101.
- the cover plate 18 has an opening (not shown) for taking in air as an oxidant.
- a moisture retaining layer and a surface layer are disposed between the cover plate 18 and the cathode 16 as necessary.
- the moisturizing layer is impregnated with a part of the water generated in the cathode catalyst layer 14 to suppress the transpiration of water and promote uniform diffusion of air to the cathode catalyst layer 14.
- the surface layer adjusts the amount of air taken in, and has a plurality of air inlets whose number, size, etc. are adjusted according to the amount of air taken in.
- a fuel distribution mechanism 105 is disposed on the anode (fuel electrode) 13 side of the fuel cell power generation unit 101.
- a fuel storage unit 102 is connected to the fuel distribution mechanism 105 via a liquid fuel flow path 103 such as a pipe.
- the fuel storage unit 102 stores liquid fuel corresponding to the fuel cell power generation unit 101.
- the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol.
- Liquid fuel is not necessarily limited to methanol fuel.
- the liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel.
- liquid fuel corresponding to the fuel cell power generation unit 101 is stored in the fuel storage unit 102.
- Fuel is introduced into the fuel distribution mechanism 105 from the fuel storage portion 102 through the flow path 103.
- the flow path 103 is not limited to piping independent of the fuel distribution mechanism 105 and the fuel storage unit 102.
- a fuel flow path that connects them may be used.
- the fuel distribution mechanism 105 only needs to be connected to the fuel storage unit 102 via the flow path 103.
- the fuel distribution mechanism 105 includes at least one fuel inlet 21 through which fuel flows in via the flow path 103, and a plurality of fuel outlets for discharging the fuel and its vaporized components. And a fuel distribution plate 23 having 22. Inside the fuel distribution plate 23, as shown in FIG. 2, a gap portion 24 is provided that serves as a fuel passage led from the fuel injection port 21. The plurality of fuel discharge ports 22 are directly connected to gaps 24 that function as fuel passages.
- the fuel introduced from the fuel injection port 21 into the fuel distribution mechanism 105 enters the gap 24 and is guided to the plurality of fuel discharge ports 22 through the gap 24 that functions as the fuel passage.
- a gas-liquid separator (not shown) that transmits only the vaporized component of the fuel and does not transmit the liquid component may be disposed in the plurality of fuel discharge ports 22.
- the fuel vaporization component is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101.
- the gas-liquid separator may be installed as a gas-liquid separation membrane or the like between the fuel distribution mechanism 105 and the anode 13.
- the vaporized component of the fuel is discharged from a plurality of fuel discharge ports 22 toward a plurality of locations on the anode 13.
- a plurality of fuel discharge ports 22 are provided on the surface of the fuel distribution plate 23 in contact with the anode 13 so that fuel can be supplied to the entire fuel cell power generation unit 101.
- the number of the fuel discharge ports 22 may be two or more. However, in order to equalize the fuel supply amount in the plane of the fuel cell power generation unit 101, the fuel discharge ports 22 of 0.1 to 10 / cm 2 are provided. It is preferable to form it so that it exists.
- a pump 104 as a fuel transfer control unit is inserted into a flow path 103 that connects between the fuel distribution mechanism 105 and the fuel storage unit 102.
- the pump 104 is not a circulation pump through which fuel is circulated, but is a fuel supply pump that transfers fuel from the fuel storage unit 102 to the fuel distribution mechanism 105 to the last. By supplying the fuel when necessary with such a pump 104, the controllability of the fuel supply amount can be improved.
- this pump 104 it is preferable to use a rotary vane pump, an electroosmotic pump, a diaphragm pump, a squeezing pump, etc. from the viewpoint that a small amount of fuel can be sent with good controllability and can be reduced in size and weight. .
- a rotary vane pump feeds liquid by rotating a wing with a motor.
- the electroosmotic flow pump uses a sintered porous body such as silica that causes an electroosmotic flow phenomenon.
- a diaphragm pump drives a diaphragm with an electromagnet or piezoelectric ceramics to send liquid.
- the squeezing pump presses a part of a flexible fuel flow path and squeezes the fuel.
- a fuel supply control circuit 5 described later is connected to the pump 104, and the drive of the pump 104 is controlled. This point will be described later.
- the fuel stored in the fuel storage unit 102 is transferred through the flow path 103 by the pump 104 and supplied to the fuel distribution mechanism 105.
- the fuel released from the fuel distribution mechanism 105 is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101.
- the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11.
- methanol fuel is used as the fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11.
- the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1).
- the internal reforming reaction is caused by another reaction mechanism that does not require water.
- Electrons (e ⁇ ) generated by this reaction are guided to the outside via a current collector, supplied to the load side as so-called output, and then guided to the cathode (air electrode) 16. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ⁇ ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in accordance with the following equation (2) in the cathode catalyst layer 14, and water is generated with this reaction.
- the fuel cell main body 1 configured as described above includes a fuel cell power generation unit (cell) 101 provided with a temperature sensor 106 as a second temperature detection unit.
- This temperature sensor 106 detects the temperature of the heat generating part of the fuel cell power generation unit (cell) 101, and is composed of, for example, a thermistor or a thermocouple, and is the cathode (air) of the fuel cell power generation unit (cell) 101 shown in FIG. Pole) 16. Further, the temperature sensor 106 outputs a detection signal corresponding to the heat generation temperature to the control unit 7.
- a temperature sensor 8 is provided as a first temperature detector in the periphery of the fuel cell main body 1, for example, the case 6 that houses the system.
- the temperature sensor 8 detects the temperature around the case 6 and outputs a detection signal corresponding to the ambient temperature to the control unit 7. For example, when the ambient temperature detection output is an actual measurement value, or when the ambient temperature of the case 6 cannot be directly detected, for example, an estimated value obtained by estimating the ambient temperature from the actual measurement value of the ambient temperature of the fuel cell body 1 is used. Cases are also included.
- the controller 7 will be described in detail later.
- the fuel cell main body 1 is connected with a DC-DC converter (voltage adjustment circuit) 2 as an output adjustment unit.
- the DC-DC converter 2 has a switching element and an energy storage element (both not shown). Electric energy generated by the fuel cell body 1 is stored / released by these switching elements and energy storage elements, and an output generated by boosting a relatively low output voltage from the fuel cell body 1 to a sufficient voltage is generated. .
- the output of the DC-DC converter 2 is supplied to the auxiliary power supply 4.
- boost type DC-DC converter 2 Although a standard boost type DC-DC converter 2 is shown here, other circuit systems can be used as long as the boost operation is possible.
- the auxiliary power supply 4 is connected to the output terminal of the DC-DC converter 2.
- the auxiliary power supply 4 can be charged by the output of the DC-DC converter 2 and supplies a current to an instantaneous load fluctuation of the electronic device main body 3, and the fuel cell main body enters a fuel depleted state. 1 is used as a driving power source for the electronic device main body 3 when power generation becomes impossible.
- a chargeable / dischargeable secondary battery for example, a lithium ion rechargeable battery (LIB)
- LIB lithium ion rechargeable battery
- a fuel supply control circuit 5 is connected to the auxiliary power source 4.
- the fuel supply control circuit 5 controls the operation of the pump 104 using the auxiliary power source 4 as a power source, and controls the pump 104 on / off based on an instruction from the control unit 7.
- a controller 7 is connected to the fuel supply control circuit 5.
- the control unit 7 controls the entire system, and a storage unit 9 is connected thereto.
- the storage unit 9 has a control temperature setting table 901.
- the control temperature setting table 901 stores a temperature region 901a to which the ambient temperature belongs and a control temperature (operating temperature) 901b for the temperature region 901a.
- the setting criteria for each temperature region of the temperature region 901a is, for example, an intermediate temperature region of 25 ° C., a low temperature region and a high temperature region are set for this intermediate temperature region, and further, the intermediate temperature region and the low temperature region A medium / low temperature region and a medium / high temperature region are set between the medium temperature region and the high temperature region.
- control temperature 901b corresponding to the low temperature region, the medium low temperature region, the medium temperature region, the medium high temperature region, and the high temperature region is set by controlling the control temperature corresponding to the low temperature region to the ambient temperature of the low temperature region + 15 ° C.
- Ambient temperature + 20 ° C in the middle and low temperature region a control temperature corresponding to the middle temperature region is + 25 ° C in the middle temperature region
- a control temperature for the middle and high temperature region is the ambient temperature + 15 ° C in the middle and high temperature region
- a control temperature corresponding to the high temperature region The ambient temperature in the high temperature region is set to + 10 ° C.
- the value added to the ambient temperature in the medium temperature region is the largest, and the value added to the ambient temperature in the low temperature region and the high temperature region is small. This is because if the pressure is higher than necessary, the fuel will be excessively supplied and a phenomenon such as crossover will occur, and if the control temperature is increased more than necessary in the high temperature range, the fuel will be excessively supplied and the temperature of the heat generating part will increase. This is because the price rises too much.
- control temperatures set for the low temperature region, the medium low temperature region, the medium temperature region, the medium high temperature region, and the high temperature region are examples, and are arbitrarily set depending on the capacity and characteristics of the fuel cell body.
- the ambient temperature determination region is described as five regions of a low temperature region, a medium low temperature region, a medium temperature region, a medium high temperature region, and a high temperature region. For example, three regions of a low temperature region, a medium temperature region, and a high temperature region are described. It is possible to set a rough region or to set a large number of temperature regions.
- the control unit 7 includes a control temperature setting unit 701 and a temperature control signal generation unit 702.
- the control temperature setting unit 701 refers to the control temperature setting table 901 shown in FIG. 4 on the basis of the ambient temperature detected by the temperature sensor 8, that is, the temperature around the case 6, and includes a low temperature region, a medium low temperature region, a medium temperature region, a medium temperature region. One of the high temperature region and the high temperature region is determined, and the control temperature is set in correspondence with the determined temperature region.
- the temperature control signal generator 702 outputs a pump-on signal that determines the operation time of the pump 104 and a pump-off signal that determines the stop time of the pump 104 in order to control the fuel supply to the fuel cell power generation unit 101, and the temperature sensor 106.
- control temperature set by the control temperature setting unit 701 are compared.
- the pump-on signal is forcibly stopped at this timing (
- the pump-off signal is output (with the pump-on signal generation time limited), and then the pump-on signal is output again when the pump stop time set for the pump-off signal has elapsed.
- the control unit 7 refers to the control temperature setting table 901 shown in FIG. 4 based on the output of the temperature sensor 8 by the control temperature setting unit 701.
- the temperature range is determined. If the ambient temperature in this case is 25 ° C., it is determined as an intermediate temperature region, and the ambient temperature + 25 ° C. corresponding to the intermediate temperature region is set as the control temperature T11.
- FIG. 5A in the period in which the output (heat generation temperature of the heat generating portion) T12 of the temperature sensor 106 is lower than the control temperature T11, FIG.
- the temperature control signal generator 702 alternately outputs a pump-on signal and a pump-off signal.
- the pump 104 is driven by the fuel supply control circuit 5 within the operating time range determined by the pump-on signal, and fuel is supplied to the fuel cell power generation unit 101 via the flow path 103.
- the pump-off signal period the driving of the pump 104 by the fuel supply control circuit 5 is stopped for the pump stop time determined by the pump-off signal, and the fuel supply to the fuel cell power generation unit 101 is stopped.
- the fuel cell power generation unit (cell) 101 continues to generate power even after the fuel supply is stopped by the residual fuel, and the temperature of the heat generation unit continues to rise, but then the temperature starts to decrease.
- the output T12 of the sensor 106 decreases.
- the temperature control signal generator 702 outputs a pump-on signal again when the pump stop time set for the pump-off signal has elapsed.
- the pump-on signal and the pump-off signal may be alternately output similarly to the signal shown in the period A.
- the pump 104 is driven by the fuel supply control circuit 5 and fuel is supplied to the fuel cell power generation unit 101 via the flow path 103, so that the temperature of the heat generating part of the fuel cell power generation unit (cell) 101 is changed again.
- the temperature T 106 starts to rise and reaches the control temperature T11, and then the output T12 of the temperature sensor 106 reaches the control temperature T11 again (see point b in the figure), a pump-off signal is output from the temperature control signal generator 702 at this timing (pump-on signal). Is forcibly stopped) (see period C). Thereafter, by repeating the same operation, the temperature of the heat generating part of the fuel cell power generation part (cell) 101 is controlled to the control temperature T11.
- the fuel cell power generation unit 101 is controlled to the control temperature (operating temperature) set by the control temperature setting unit 701, and generates a power generation output.
- the power generation output of the fuel cell power generation unit 101 is boosted by the DC-DC converter 2 and supplied to the electronic device body 3.
- the auxiliary power supply 4 is charged by the output of the DC-DC converter 2.
- the electronic device body 3 is operated using the power supplied from the DC-DC converter 2 as a power source.
- the control temperature setting table 901 is prepared in advance, the control temperature is set with reference to the control temperature setting table 901 according to the ambient temperature where the device is used, and the control temperature and the temperature sensor 106 are set.
- the temperature control signal generator 702 forcibly stops the pump-on signal (limits the pump-on signal generation time).
- the pump-off signal is output to control the amount of fuel supplied to the fuel cell power generation unit 101.
- the temperature of the heat generating unit in the fuel cell power generation unit 101 is controlled based on the control temperature set according to the ambient temperature at this time.
- the temperature of the heat generating part is controlled based on the control temperature corresponding to the ambient temperature of the high temperature region, so that the temperature is considerably high on the maximum temperature side as before.
- adverse effects on an electronic device incorporating the fuel cell system having the fuel cell body 1 can be avoided.
- the temperature of the heat generating part of the fuel cell power generation unit 101 is controlled based on the control temperature set according to the ambient temperature at this time.
- the prototype of the fuel cell system configured according to the first embodiment was manufactured and the performance evaluation of this prototype was performed, the following results were obtained.
- the system according to the present system and the system according to the conventional system are prepared, pure methanol is injected into the fuel storage tank, and the ambient temperature of the medium temperature range (25 ° C ⁇ 10), low temperature range, and high temperature range is set. Then, the fuel cell power generation unit was allowed to generate a constant voltage, and from the output at that time, the output in 10 hours and the heat generation temperature were measured.
- the fluctuation range of the output and temperature with respect to the measurement for 10 hours was calculated as a standard deviation, and the value of the system of the present application when the value in the conventional system was set to 100 in each temperature range was obtained as a relative value.
- the output deviation 101 and the temperature deviation 100 in the system of the present system with respect to 100 of the conventional system and in the low temperature range, the output deviation of 72 in the system of the present system with respect to 100 of the conventional system.
- the output deviation 83 and the temperature deviation 85 were obtained in the system of the present application with respect to 100 of the conventional system.
- the conventional one was designed with the middle temperature range set to an appropriate temperature, so there was no significant difference.
- the system of the present application can always properly supply fuel. Therefore, it has been proved that good power generation that can reduce fluctuations in output and temperature can be realized.
- the temperature control signal generator 702 forcibly stops the pump-on signal at this timing when the output of the temperature sensor 106 exceeds the control temperature.
- the pump-off signal is output, and then the pump-on signal is output again when the pump stop time set for the pump-off signal has elapsed.
- the pump-off signal is forcibly stopped at this timing (the pump-off signal generation time is limited) and the pump-on signal is output, and then the pump operating time set for the pump-on signal has elapsed. Then, the pump-off signal may be output again. In this way, particularly when the ambient temperature is in a low temperature region, it is ensured that the fuel cell power generation unit 101 continues to decrease without obtaining an increase in temperature and the power generation capacity decreases and power generation becomes impossible. Can be prevented.
- the temperature control signal generator 702 may switch between the operation described in the first embodiment and the operation described in the modification when the ambient temperature is in a high temperature region or a low temperature region.
- control temperature is set according to the ambient temperature, and the temperature at the heat generating portion of the fuel cell power generation unit is controlled based on the control temperature.
- a threshold temperature set according to the ambient temperature is prepared, and the temperature at the heat generating portion of the fuel cell power generation unit is controlled by the threshold temperature and the control temperature.
- a control temperature setting table 902 is provided in the storage unit 9 in place of the control temperature setting table 901 in FIG.
- the control temperature setting table 902 stores a temperature region 902a to which the ambient temperature belongs, a control temperature (operation temperature) 902b for the temperature region 902a, and a threshold temperature 902c for the temperature region 902a.
- the setting standard of each temperature region of the temperature region 902a and the setting of the control temperature 902b corresponding to each temperature region (low temperature region, medium low temperature region, medium temperature region, medium high temperature region and high temperature region) are shown in FIG. This is the same as the control temperature setting table 901.
- the threshold temperature 902c is set corresponding to the low temperature region, the medium low temperature region, the medium temperature region, the medium high temperature region, and the high temperature region, and the threshold temperature corresponding to the low temperature region is set to the ambient temperature of the low temperature region + 10 ° C.
- the threshold temperature corresponds to the ambient temperature of the medium / low temperature region + 15 ° C.
- the threshold temperature corresponding to the medium temperature region is the ambient temperature of the medium temperature region + 20 ° C.
- the threshold temperature for the medium / high temperature region is the ambient temperature of the medium / high temperature region + 10 ° C.
- the temperature is the ambient temperature in the high temperature region + 15 ° C.
- the threshold temperature of each temperature region is set lower ( ⁇ 5 ° C. in the illustrated example) than the control temperature of each temperature region.
- the temperature control signal generation unit 702 of the control unit 7 outputs a pump on signal for determining the pump operating time and a pump off signal for determining the pump stop time.
- the control temperature set by the control temperature setting unit 701 is output.
- a pump-on signal and a pump-off signal are output in order to control the output of the temperature sensor 106 (the heat generation temperature of the heat generating portion) with respect to (or the threshold temperature).
- the temperature control signal generation unit 702 compares the output of the temperature sensor 106 with the above-described control temperature (or threshold temperature), and when the output exceeds the threshold temperature due to the increase in the output of the temperature sensor 106, the pump is turned on at this timing. The signal is forcibly stopped and a pump-off signal is output.
- the pump-off signal is forcibly stopped at this timing and the pump-on signal is output.
- the pump-on signal and the pump-off signal are alternately output similarly to the signal shown in the period A.
- the control unit 7 when the temperature around the case 6 is detected by the temperature sensor 8 as the ambient temperature, the control unit 7 causes the control temperature setting unit 701 to set the control temperature shown in FIG. 6 based on the output of the temperature sensor 8.
- the temperature region is determined with reference to the table 902. If the ambient temperature in this case is 25 ° C., it is determined as an intermediate temperature region, the ambient temperature + 25 ° C. corresponding to this intermediate temperature region is set as the control temperature T21, and the ambient temperature + 20 ° C. is set as the threshold temperature T22. As a result, as shown in period A of FIG.
- the output (heat generation temperature of the heat generation unit) T23 of the temperature sensor 106 is now lower than the threshold temperature T22 ( ⁇ control temperature T21) set by the control temperature setting unit 701.
- a pump-on signal and a pump-off signal are alternately output from the temperature control signal generator 702.
- the fuel supply control circuit 5 drives the pump 104 within the operating time range determined by the pump-on signal, and the fuel is supplied to the fuel cell power generation unit 101 via the flow path 103.
- the driving of the pump 104 by the fuel supply control circuit 5 is stopped for the pump stop time determined by the pump-off signal, and the fuel supply to the fuel cell power generation unit 101 is stopped.
- the fuel cell power generation unit (cell) 101 continues to generate power with the residual fuel, and the temperature of the heat generation unit continues to increase after the fuel supply is stopped, but then starts to decrease.
- the output T23 of the temperature sensor 106 decreases.
- the temperature control signal generator 702 outputs a pump-on signal (with the pump-off signal generation time limited) at this timing, and the fuel supply control circuit 5 pumps the pump 104. Is driven, and fuel is supplied to the fuel cell power generation unit 101 via the flow path 103.
- the temperature of the heat generating portion of the fuel cell power generation unit (cell) 101 continues to decrease even after the fuel supply is started, but then starts to increase toward the threshold temperature T22 (see period C). In this period C, it is preferable that the pump-on signal and the pump-off signal are alternately output as in the signal shown in the period A.
- a pump-off signal is output from the temperature control signal generator 702 (the pump-on signal is forcibly stopped) at this timing, and fuel is supplied.
- the drive of the pump 104 by the control circuit 5 is stopped, and the fuel supply to the fuel cell power generation unit 101 is stopped. Thereafter, the same operation is repeated to control the temperature of the heat generating part of the fuel cell power generation part (cell) 101 between the threshold temperature T22 and the control temperature T21.
- the threshold temperature T22 is set lower than the control temperature T21, and when the output T23 of the temperature sensor 106 reaches the threshold temperature T22, a pump-off signal is output to stop the driving of the pump 104 and the fuel cell power generation unit 101 Since the fuel supply to the fuel cell power generation unit 101 is stopped before the output T23 of the temperature sensor 106 reaches the control temperature T21, the fuel supply is stopped. After that, the temperature rise of the heat generating part of the fuel cell power generation unit 101 that continues to rise due to residual fuel can be minimized, and the temperature of the heat generating part of the fuel cell power generation unit 101 rises more than necessary. Can be avoided.
- control temperature is set according to the temperature range of the ambient temperature, and the temperature at the heat generating part in the fuel cell power generation part is controlled based on this control temperature.
- the drive voltage of the pump that is the fuel supply unit is made variable.
- an electroosmotic flow pump (hereinafter referred to as electroosmotic flow pump 104) is used as the pump 104 as the fuel transfer control unit in FIG.
- the electroosmotic pump 104 has an electroosmotic material composed of a sintered porous body such as silica that causes an electroosmotic flow phenomenon in the flow path 103, and the upstream and downstream ends of the electroosmotic material respectively.
- electrodes are arranged. By applying a predetermined voltage (driving voltage) between these upstream and downstream electrodes, fuel is transferred into the flow path 103 via the electroosmotic material. Yes.
- the electroosmotic pump 104 has a feature that the amount of fuel transferred through the flow path 103 can be varied by varying the drive voltage applied between the electrodes.
- control unit 7 includes a pump drive signal generation unit 703 instead of the temperature control signal generation unit 702.
- the pump drive signal generator 703 outputs a control signal for controlling the drive voltage of the electroosmotic pump 104 to the fuel supply control circuit 5 based on the control temperature set by the control temperature setting unit 701.
- the pump drive signal generation unit 703 forces the pump on signal.
- the pump off signal is forcibly stopped and the pump on signal is output.
- the temperature around the case 6 is detected by the temperature sensor 8, and the temperature region is determined by referring to the control temperature setting table 901 shown in FIG. 4 based on the output of the temperature sensor 8. If the ambient temperature in this case is 25 ° C., it is determined as an intermediate temperature region, and the ambient temperature + 25 ° C. corresponding to the intermediate temperature region is set as the control temperature T11.
- the pump drive signal generation unit 703 sets a large drive voltage for the electroosmotic pump 104, and the amount of fuel supplied to the fuel cell power generation unit 101 To increase the temperature at the heat generating part, and when the output of the temperature sensor 106 exceeds, a large driving voltage is set for the electroosmotic pump 104 to supply the fuel to the fuel cell power generation part (cell) 101. To reduce the temperature rise in the heat generating part.
- the example applied to the first embodiment has been described.
- the third embodiment can be similarly applied to the second embodiment.
- an example of an electroosmotic flow pump has been described as the pump 104, a pump other than the electroosmotic flow pump may be applied as long as the amount of fuel supplied to the fuel cell power generation unit 101 can be varied by the driving voltage. .
- the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. If the above effect is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention.
- the vaporized component of the liquid fuel supplied to the fuel cell power generation unit may be all supplied as the vaporized component of the liquid fuel, but the present invention is applied even when a part is supplied in the liquid state. be able to.
- the present invention it is possible to provide a fuel cell system and an electronic device that can supply an appropriate fuel against fluctuations in ambient temperature and can always obtain a stable power generation output.
- SYMBOLS 1 Fuel cell main body, 101 ... Fuel cell electric power generation part 102 ... Fuel accommodating part, 103 ... Flow path 104 ... Pump, 105 ... Fuel distribution mechanism 106 ... Temperature sensor, 2 ... DC / DC converter, 3 ... Electronic equipment main body 4 ... Auxiliary power supply, 5 ... Fuel supply control circuit 6 ... Case, 7 ... Control unit, 701 ... Control temperature setting unit, 702 ... Temperature control signal generation unit, 703 ... Pump drive signal generator, 8 ... Temperature sensor, 9: Storage unit, 901, 902 ... Control temperature setting table, DESCRIPTION OF SYMBOLS 11 ... Anode catalyst layer, 12 ... Anode gas diffusion layer 13 ...
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
燃料電池システムにおいては、予め制御温度設定テーブル901が用意され、機器が使用される周囲温度に応じて制御温度設定テーブル901が参照されて制御温度が設定される。この制御温度と温度センサ106の出力とが比較され、温度センサ106の出力が上昇して、この出力が制御温度を上回ると、温度制御信号発生部702によりポンプオン信号が強制的に停止される。そして、ポンプオフ信号が出力されて、燃料電池発電部101への燃料の供給量が制御される。
Description
本発明は、燃料電池システム及びこの燃料電池システムを電源として用いた電子機器に関する。
携帯電話機及び携帯情報端末などの電子機器の小型化は目覚しいものがあり、これら電子機器の小型化とともに、電源として燃料電池を使用することが試みられている。燃料電池は、燃料と空気を供給するのみで、発電することができ、燃料のみを交換すれば連続して発電できるという利点を有している。従って、燃料電池の小型化が実現できれば、小型の電子機器の電源として有用とされる。
そこで、最近、燃料電池として、直接メタノール型燃料電池(以下、DMFC; Direct Methanol Fuel Cellと称する。) が注目されている。かかるDMFCは、液体燃料の供給方式によって分類され、気体燃料を供給する気体供給型及び液体燃料を供給する液体供給型等のアクティブ方式の燃料電池と、燃料収容部内の液体燃料を電池内部で気化させて燃料極に供給する内部気化型等のパッシブ方式の燃料電池がある。これら燃料電池のうち、パッシブ方式のものはDMFCの小型化に対して特に有利である。
従来、このようなパッシブ方式のDMFCとして、特許文献1に開示されるように、燃料極、電解質膜及び空気極を有する膜電極接合体(燃料電池セル)を、樹脂製の箱状容器からなる燃料収容部上に配置した構造のものが提案されている。
また、DMFCの燃料電池セルと燃料収容部とを流路を介して接続する構成のものも特許文献2~4に開示されている。これら特許文献2~4は、燃料収容部から供給された液体燃料を燃料電池セルに流路を介して供給することによって、流路の形状や径等に基づいて液体燃料の供給量を調整可能としている。特に、特許文献3では、燃料収容部から流路にポンプで液体燃料を供給して液体燃料の供給量を調整可能としている。また、この特許文献3には、ポンプに代えて、流路に電気浸透流を形成する電界形成部を用いることも記載されている。さらに特許文献4には電気浸透流ポンプを用いて液体燃料等を供給することも記載されている。
ところで、このようなDMFCを主発電部とした燃料電池システムでは、安定した発電出力を確保するためには、DMFC内部の発熱部の発熱による温度が予め設定された基準温度になるように制御を行う必要がある。発熱部の温度は、燃料電池システム周囲の温度にも影響を受け易く、実際の発熱部の温度は、燃料電池システムの周囲温度にDMFCでの発電による温度上昇分を加えたものとなる。
例えば、発熱部の基準温度を45℃とした場合、燃料電池システムの周囲温度の影響により発熱部が60℃まで上昇したとすると、発熱部の温度を基準温度にするための制御は、オンタイマーとオフタイマーの動作時間を変更して発電部への燃料供給量を調整しながら大きな温度幅で発熱部の温度を制御し、基準温度に近づけるようにしている。しかし、このような制御は、60℃以上の高温域で実施されることがあり、最高温度側は、かなりの高温状態になる。これが原因で、燃料電池システムを組み込んだ電子機器などに悪影響を及ぼす虞がある。一方、燃料電池システムの周囲温度の影響により発熱部が基準温度より大幅に低下したような場合、今度は、45℃以下で、大きな温度幅で発熱部の温度が制御されるため、最低温度側で、かなりの低温状態となって発電部での発電能力が低下し、発熱部の温度をさらに低下させる虞がある。その結果、DMFCの出力及び発電効率が極端に低下する虞がある。
本発明の目的は、周囲温度の変動に対して適正な燃料を供給して常に安定した発電出力を得られる燃料電池システム及び電子機器を提供することにある。
第1の発明によれば、
燃料により電力を発電する発電部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、
これら温度領域に対応する制御温度を記憶した記憶部と、
前記第1の温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記発電部への燃料の供給量を制御する制御部とを具備した燃料電池システムが提供される。
燃料により電力を発電する発電部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、
これら温度領域に対応する制御温度を記憶した記憶部と、
前記第1の温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記発電部への燃料の供給量を制御する制御部とを具備した燃料電池システムが提供される。
第2の発明によれば、
第1の発明に係る燃料電池システムにおいて、
前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御部は、制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間又は前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御している燃料電池システムが提供される。
第1の発明に係る燃料電池システムにおいて、
前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御部は、制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間又は前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御している燃料電池システムが提供される。
第3の発明によれば、第1の発明に係る燃料電池システムにおいて、
前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御温度設定部は、前記判定された温度領域に対応して設定される制御温度とともに、さらに閾値温度を設定し、前記制御部は、前記制御温度設定部により設定された閾値温度及び制御温度と、前記第2の温度検出部の検出出力とのそれぞれの比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間及び前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御している燃料電池システムが提供される。
前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御温度設定部は、前記判定された温度領域に対応して設定される制御温度とともに、さらに閾値温度を設定し、前記制御部は、前記制御温度設定部により設定された閾値温度及び制御温度と、前記第2の温度検出部の検出出力とのそれぞれの比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間及び前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御している燃料電池システムが提供される。
第4の発明によれば、
燃料により電力を発電する発電部を有するとともに、前記発電部に燃料を供給する燃料移送制御部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、
これら温度領域に対応する制御温度を記憶した記憶部と、
前記温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の駆動電圧を可変制御する制御部とを具備する燃料電池システムが提供される。
燃料により電力を発電する発電部を有するとともに、前記発電部に燃料を供給する燃料移送制御部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、
これら温度領域に対応する制御温度を記憶した記憶部と、
前記温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の駆動電圧を可変制御する制御部とを具備する燃料電池システムが提供される。
第5の発明によれば、第1乃至第4のいずれかの発明に係る燃料電池システムを電源として使用した電子機器が提供される。
本発明によれば、周囲温度の変動に対して適正な燃料を供給することができ、常に安定した発電出力を得られる燃料電池システム及び電子機器を提供することができる。
以下、図面を参照して本発明の実施の形態に係る燃料電池システムを説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る燃料電池システムの概略構成を示している。
図1は、本発明の第1の実施の形態に係る燃料電池システムの概略構成を示している。
図1において、1は、燃料電池本体(DMFC)で、この燃料電池本体1は、起電部を構成する燃料電池発電部(セル)101、液体燃料を収容する燃料収容部102、燃料収容部102と燃料電池発電部(セル)101を接続する流路103及び燃料収容部102から燃料電池発電部(セル)101に液体燃料を移送するための燃料供給制御部としてのポンプ104を有している。
図2は、このような燃料電池本体1をさらに詳細に説明するための断面図である。
図2に示すように、燃料電池発電部101は、アノード触媒層11とアノードガス拡散層12とを有するアノード(燃料極)13と、カソード触媒層14とカソードガス拡散層15とを有するカソード(空気極/酸化剤極)16と、アノード触媒層11とカソード触媒層14とで挟持されたプロトン(水素イオン)伝導性の電解質膜17とから構成される膜電極接合体(MEA: Membrane Electrode Assembly)を有している。
ここで、アノード触媒層11やカソード触媒層14に含有される触媒としては、例えばPt、Ru、Rh、Ir、Os、Pd等の白金族元素の単体、白金族元素を含有する合金等が挙げられる。アノード触媒層11には、メタノールや一酸化炭素等に対して強い耐性を有するPt-RuやPt-Mo等を用いることが好ましい。カソード触媒層14には、PtやPt-Ni等を用いることが好ましい。ただし、触媒はこれらに限定されるものではなく、触媒活性を有する各種の物質を使用することができる。触媒は炭素材料のような導電性担持体を使用した担持触媒、あるいは無担持触媒のいずれであっても良い。
ここで、アノード触媒層11やカソード触媒層14に含有される触媒としては、例えばPt、Ru、Rh、Ir、Os、Pd等の白金族元素の単体、白金族元素を含有する合金等が挙げられる。アノード触媒層11には、メタノールや一酸化炭素等に対して強い耐性を有するPt-RuやPt-Mo等を用いることが好ましい。カソード触媒層14には、PtやPt-Ni等を用いることが好ましい。ただし、触媒はこれらに限定されるものではなく、触媒活性を有する各種の物質を使用することができる。触媒は炭素材料のような導電性担持体を使用した担持触媒、あるいは無担持触媒のいずれであっても良い。
電解質膜17を構成するプロトン伝導性材料としては、例えば、スルホン酸基を有するパーフルオロスルホン酸重合体のようなフッ素系樹脂(ナフィオン(商品名、デュポン社製)やフレミオン(商品名、旭硝子社製)等)、スルホン酸基を有する炭化水素系樹脂等の有機系材料、あるいはタングステン酸やリンタングステン酸等の無機系材料が挙げられる。ただし、プロトン伝導性の電解質膜17は、これらに限られるものではない。
アノード触媒層11に積層されるアノードガス拡散層12は、アノード触媒層11に燃料を均一に供給する役割を果たすと同時に、アノード触媒層11の集電体も兼ねている。カソード触媒層14に積層されるカソードガス拡散層15は、カソード触媒層14に酸化剤を均一に供給する役割を果たすと同時に、カソード触媒層14の集電体も兼ねている。アノードガス拡散層12及びカソードガス拡散層15は、多孔質基材で構成されている。
アノードガス拡散層12やカソードガス拡散層15には、必要に応じて導電層が積層される。これら導電層としては、例えばAu、Niのような導電性金属材料からなる多孔質層(例えば、メッシュ)、多孔質膜、箔体あるいはステンレス鋼(SUS)などの導電性金属材料に金などの良導電性金属を被覆した複合材等が用いられる。電解質膜17と後述する燃料分配機構105及びカバープレート18との間には、それぞれゴム製のOリング19が介在されている。このOリング19によって燃料電池発電部101からの燃料漏れや酸化剤漏れが防止される。
カバープレート18は、酸化剤である空気を取入れるための開口(図示せず)を有している。カバープレート18とカソード16との間には、必要に応じて保湿層や表面層が配置される。保湿層は、カソード触媒層14で生成された水の一部が含浸されて、水の蒸散を抑制すると共に、カソード触媒層14への空気の均一拡散を促進するものである。表面層は、空気の取入れ量を調整するものであり、空気の取入れ量に応じて個数や大きさ等が調整された複数の空気導入口を有している。
燃料電池発電部101のアノード(燃料極)13側には、燃料分配機構105が配置されている。燃料分配機構105には配管のような液体燃料の流路103を介して燃料収容部102が接続されている。
燃料収容部102には、燃料電池発電部101に対応した液体燃料が収容されている。液体燃料としては、各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が挙げられる。液体燃料は、必ずしもメタノール燃料に限られるものではない。液体燃料は、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であっても良い。いずれにしても、燃料収容部102には燃料電池発電部101に応じた液体燃料が収容される。
燃料分配機構105には燃料収容部102から流路103を介して燃料が導入される。流路103は、燃料分配機構105や燃料収容部102と独立した配管に限られるものではない。例えば、燃料分配機構105と燃料収容部102とを積層して一体化する構造にあっては、これらを繋ぐ燃料の流路であっても良い。燃料分配機構105は、流路103を介して燃料収容部102と接続されていれば良い。
ここで、燃料分配機構105は、図3に示すように、燃料が流路103を介して流入する少なくとも1個の燃料注入口21と、燃料やその気化成分を排出する複数個の燃料排出口22とを有する燃料分配板23を備えている。燃料分配板23の内部には、図2に示すように、燃料注入口21から導かれた燃料の通路となる空隙部24が設けられている。複数の燃料排出口22は、燃料通路として機能する空隙部24にそれぞれ直接接続されている。
燃料注入口21から燃料分配機構105に導入された燃料は、空隙部24に入り、この燃料通路として機能する空隙部24を介して複数の燃料排出口22にそれぞれ導かれる。複数の燃料排出口22には、例えば燃料の気化成分のみを透過し、液体成分は、透過させない気液分離体(図示せず)を配置しても良い。これによって、燃料電池発電部101のアノード(燃料極)13には燃料の気化成分が供給される。なお、気液分離体は燃料分配機構105とアノード13との間に気液分離膜等として設置しても良い。燃料の気化成分は複数の燃料排出口22からアノード13の複数個所に向けて排出される。
燃料排出口22は、燃料電池発電部101の全体に燃料を供給することが可能なように、燃料分配板23のアノード13と接する面に複数設けられている。燃料排出口22の個数は2個以上であればよいが、燃料電池発電部101の面内における燃料供給量を均一化する上で、0.1~10個/cm2の燃料排出口22が存在するように形成することが好ましい。
燃料分配機構105と燃料収容部102の間を接続する流路103には、燃料移送制御部としてのポンプ104が挿入されている。このポンプ104は、燃料を循環される循環ポンプではなく、あくまでも燃料収容部102から燃料分配機構105に燃料を移送する燃料供給ポンプである。このようなポンプ104で必要時に燃料を送液することによって、燃料供給量の制御性を高めることができる。このポンプ104としては、少量の燃料を制御性よく送液することができ、さらに小型軽量化が可能という観点から、ロータリーベーンポンプ、電気浸透流ポンプ、ダイアフラムポンプ、しごきポンプ等を使用することが好ましい。ロータリーベーンポンプはモータで羽を回転させて送液するものである。電気浸透流ポンプは、電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。ダイアフラムポンプは、電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは、柔軟性を有する燃料流路の一部を圧迫し、燃料をしごき送るものである。これらのうち、駆動電力や大きさ等の観点から、電気浸透流ポンプや圧電セラミックスを有するダイアフラムポンプを使用することがより好ましい。
また、ポンプ104には、後述する燃料供給制御回路5が接続され、ポンプ104の駆動が制御される。この点については後述する。
このような構成において、燃料収容部102に収容された燃料は、ポンプ104により流路103を移送され、燃料分配機構105に供給される。そして、燃料分配機構105から放出された燃料は、燃料電池発電部101のアノード(燃料極)13に供給される。燃料電池発電部101内において、燃料はアノードガス拡散層12を拡散してアノード触媒層11に供給される。燃料としてメタノール燃料を用いた場合、アノード触媒層11で下記の(1)式に示すメタノールの内部改質反応が生じる。なお、メタノール燃料として純メタノールを使用した場合には、カソード触媒層14で生成した水や電解質膜17中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは、水を必要としない他の反応機構により内部改質反応を生じさせる。
CH3OH+H2O → CO2+6H++6e- …(1)
この反応で生成した電子(e-)は集電体を経由して外部に導かれ、いわゆる出力として負荷側に供給された後、カソード(空気極)16に導かれる。また、(1)式の内部改質反応で生成したプロトン(H+)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成される。
この反応で生成した電子(e-)は集電体を経由して外部に導かれ、いわゆる出力として負荷側に供給された後、カソード(空気極)16に導かれる。また、(1)式の内部改質反応で生成したプロトン(H+)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成される。
6e-+6H++(3/2)O2 → 3H2O …(2)
図1に示されるように、このように構成された燃料電池本体1は、燃料電池発電部(セル)101に第2の温度検出部としての温度センサ106が設けられている。この温度センサ106は、燃料電池発電部(セル)101の発熱部の温度を検出するもので、例えば、サーミスタや熱電対からなり、図2に示す燃料電池発電部(セル)101のカソード(空気極)16に配置されている。また、温度センサ106は、発熱温度に対応する検出信号を制御部7に出力する。
図1に示されるように、このように構成された燃料電池本体1は、燃料電池発電部(セル)101に第2の温度検出部としての温度センサ106が設けられている。この温度センサ106は、燃料電池発電部(セル)101の発熱部の温度を検出するもので、例えば、サーミスタや熱電対からなり、図2に示す燃料電池発電部(セル)101のカソード(空気極)16に配置されている。また、温度センサ106は、発熱温度に対応する検出信号を制御部7に出力する。
また、燃料電池本体1の周囲、例えばシステムを収納するケース6には、第1の温度検出部として温度センサ8が設けられている。この温度センサ8は、ケース6周囲の温度を検出するもので、この周囲温度に対応する検出信号を制御部7に出力する。この周囲温度の検出出力は、実測値の場合と、例えばケース6の周囲温度を直接検出できないような場合は、例えば、燃料電池本体1の周囲温度の実測値から周囲温度を推定した推定値の場合も含まれる。制御部7については、後に詳細に説明する。
燃料電池本体1には、出力調整部としてDC-DCコンバータ(電圧調整回路)2が接続されている。このDC-DCコンバータ2は、スイッチング要素とエネルギー蓄積要素(いずれも図示せず)を有している。これらスイッチング要素とエネルギー蓄積要素により燃料電池本体1で発電された電気エネルギーを蓄積/放出させ、燃料電池本体1からの比較的低い出力電圧を十分の電圧まで昇圧して生成される出力を発生する。このDC-DCコンバータ2の出力は、補助電源4に供給される。
なお、ここでは標準的な昇圧型のDC-DCコンバータ2を示したが、昇圧動作が可能なものならば、他の回路方式のものでも実施可能である。
DC-DCコンバータ2の出力端には、補助電源4が接続されている。この補助電源4は、DC-DCコンバータ2の出力により充電可能としたもので、電子機器本体3の瞬間的な負荷変動に対して電流を供給し、また、燃料枯渇状態になって燃料電池本体1が発電不能に陥った場合に電子機器本体3の駆動電源として用いられる。この補助電源4には、充放電可能な二次電池(例えばリチウムイオン充電池(LIB))や電気二重層コンデンサ)が用いられる。
補助電源4には、燃料供給制御回路5が接続されている。この燃料供給制御回路5は、補助電源4を電源としてポンプ104の動作を制御するもので、制御部7の指示に基づいてポンプ104をオン/オフ制御する。
燃料供給制御回路5には、制御部7が接続されている。
制御部7は、システム全体を制御するもので、記憶部9が接続されている。記憶部9は、制御温度設定テーブル901を有している。制御温度設定テーブル901は、図4に示すように周囲温度の属する温度領域901a及び温度領域901aに対する制御温度(動作温度)901bを記憶している。図4に示されるように、温度領域901aの各温度領域の設定基準は、例えば、中温領域を25℃とし、この中温領域に対して低温領域と高温領域を設定し、さらに中温領域と低温領域の間に中低温領域、中温領域と高温領域の間に中高温領域を設定している。また、これら低温領域、中低温領域、中温領域、中高温領域及び高温領域に対応する制御温度901bの設定は、低温領域に対応する制御温度を低温領域の周囲温度+15℃、中低温領域に対する制御温度を中低温領域の周囲温度+20℃、中温領域に対応する制御温度を中温領域の周囲温度+25℃、中高温領域に対する制御温度を中高温領域の周囲温度+15℃、高温領域に対応する制御温度を高温領域の周囲温度+10℃としている。ここで、中温領域の周囲温度に対して加算される値が一番大きく、低温領域及び高温領域の周囲温度に対して加算される値が小さくなっているのは、低温領域では、制御温度を必要以上高くすると燃料が供給が過剰になって、クロスオーバなどの現象が生じるからであり、また、高温領域では、制御温度を必要以上高くすると燃料が供給が過剰になって、発熱部の温度が上昇し過ぎるためである。
なお、低温領域、中低温領域、中温領域、中高温領域及び高温領域に対して設定される制御温度は一例で、燃料電池本体の容量や特性などによって任意に設定される。また、周囲温度の判定領域を低温領域、中低温領域、中温領域、中高温領域及び高温領域の5つの領域の場合を述べでいるが、例えば、低温領域、中温領域、及び高温領域の3つの大まかな領域にしたり、さらに細かく分けて多くの温度領域を設定することもできる。
制御部7は、制御温度設定部701、温度制御信号発生部702を有している。制御温度設定部701は、温度センサ8で検出される周囲温度、つまりケース6周囲の温度に基づいて図4に示す制御温度設定テーブル901を参照して低温領域、中低温領域、中温領域、中高温領域及び高温領域のいずれかの温度領域を判定し、この判定された温度領域に対応させて制御温度を設定する。温度制御信号発生部702は、燃料電池発電部101への燃料供給を制御するためポンプ104の動作時間を決定するポンプオン信号とポンプ104の停止時間を決定するポンプオフ信号を出力するとともに、温度センサ106の出力と制御温度設定部701で設定された制御温度を比較し、温度センサ106の出力が上昇して、この出力が制御温度を上回ると、このタイミングでポンプオン信号を強制的に停止して(ポンプオン信号の発生時間を制限して)ポンプオフ信号を出力し、その後、ポンプオフ信号に対して設定されたポンプ停止時間を経過すると再びポンプオン信号を出力するようになっている。
次に、このように構成された実施の形態の作用を説明する。
いま、周囲温度としてケース6周囲の温度が温度センサ8で検出されると、制御部7は、制御温度設定部701により温度センサ8の出力に基づいて図4に示す制御温度設定テーブル901を参照し、温度領域を判定する。この場合の周囲温度が25℃とすると、中温領域と判断され、この中温領域に対応する周囲温度+25℃が制御温度T11として設定される。これにより、いま、図5の期間Aにおいて図5(a)に示すように温度センサ106の出力(発熱部の発熱温度)T12が制御温度T11を下回っている期間では、図5(b)に示すように温度制御信号発生部702よりポンプオン信号とポンプオフ信号が交互に出力される。ポンプオン信号期間では、ポンプオン信号により決定される動作時間の範囲で燃料供給制御回路5によりポンプ104が駆動され、流路103を介して燃料電池発電部101に燃料が供給される。また、ポンプオフ信号期間では、ポンプオフ信号により決定されるポンプの停止時間だけ燃料供給制御回路5によるポンプ104の駆動が停止され、燃料電池発電部101への燃料供給が停止される。この状態で、燃料電池発電部(セル)101の発熱部の温度が上昇し、温度センサ106の出力T12が増加するような場合、燃料電池発電部(セル)101の発熱部の温度上昇により温度センサ106の出力T12が制御温度T11に達すると(図示a点参照)、このタイミングで温度制御信号発生部702よりポンプオフ信号が出力(ポンプオン信号が強制的に停止)され、燃料供給制御回路5によるポンプ104の駆動が停止され、燃料電池発電部101への燃料供給が強制的に停止される。この場合、期間Bに示すように燃料電池発電部(セル)101は、残留燃料により燃料供給が停止された後も発電を続け、発熱部の温度は上昇を続けるが、その後、降下に転じ温度センサ106の出力T12が低下していく。この状態で、温度制御信号発生部702は、ポンプオフ信号に対して設定されたポンプ停止時間を経過すると再びポンプオン信号を出力する。または、この後は期間Aに示す信号と同様にポンプオン信号とポンプオフ信号が交互に出力されても良い。これにより、燃料供給制御回路5によりポンプ104が駆動され、流路103を介して燃料電池発電部101に燃料が供給されるので、燃料電池発電部(セル)101の発熱部の温度は、再び上昇に転じ、制御温度T11に向かい、その後、温度センサ106の出力T12が再び制御温度T11に達すると(図示b点参照)、このタイミングで温度制御信号発生部702よりポンプオフ信号が出力(ポンプオン信号が強制的に停止)される(期間C参照)。以下同様な動作を繰り返すことにより、燃料電池発電部(セル)101の発熱部の温度は、制御温度T11に制御される。
このようにして、燃料電池発電部101は、制御温度設定部701で設定された制御温度(動作温度)に制御され、発電出力を発生する。燃料電池発電部101の発電出力は、DC-DCコンバータ2により昇圧され、電子機器本体3に供給される。同時に、補助電源4は、DC-DCコンバータ2の出力により充電される。また、電子機器本体3は、DC-DCコンバータ2から供給される電力を電源として動作される。
上述では、中温領域に対応する周囲温度+25℃を制御温度として設定した場合を述べたが、この他の低温領域、中低温領域、中高温領域及び高温領域の各温度領域についても、図4に示す制御温度設定テーブル901を参照して設定される制御温度に基づいて同様にして制御が行われる。
したがって、このようにすれば、予め制御温度設定テーブル901を用意し、機器が使用される周囲温度に応じて制御温度設定テーブル901を参照して制御温度を設定し、この制御温度と温度センサ106の出力との比較し、温度センサ106の出力が上昇して、この出力が制御温度を上回ると、温度制御信号発生部702によりポンプオン信号を強制的に停止して(ポンプオン信号の発生時間を制限して)ポンプオフ信号を出力し、燃料電池発電部101への燃料の供給量を制御するようにしている。これにより、周囲温度がどのような場合でも、このときの周囲温度に応じて設定される制御温度に基づいて燃料電池発電部101での発熱部の温度が制御されるようになるので、特に、周囲温度が高温領域にある場合、この高温領域の周囲温度に応じた制御温度に基づいて発熱部の温度が制御されるので、従来のように最高温度側で、かなりの高温状態になるようなことがなくなり、燃料電池本体1を有する燃料電池システムを組み込んだ電子機器などへの悪影響を回避できる。また、周囲温度が低温領域にある場合も、このときの周囲温度に応じて設定される制御温度に基づいて燃料電池発電部101の発熱部の温度が制御されるので、従来のように温度上昇が得られないまま発電能力が低下し、発熱部の温度をさらに低下し、発電不能に陥るような事態も回避することができる。
ちなみに、第1の実施の形態により構成された燃料電池システムの試作を行い、この試作品についての性能評価を行ったところ、下記の結果が得られている。この性能評価では、本願システムによるものと従来システムによるものをそれぞれ用意し、燃料収納タンクに純メタノールを注入し、中温域(25℃±10)、低温域、高温域のそれぞれの環境温度の下で、燃料電池発電部に一定電圧の発電を行わせ、そのときの出力から、10時間での出力、発熱温度を計測した。そして、10時間の測定に対しての出力と温度の変動幅を標準偏差として算出し、各温度域において従来システムでの値を100としたときの本願システムの値を相対値として求めた。この結果、中温域(25℃±10)では、従来システムの100に対して本願システムでは、出力偏差101、温度偏差100、低温域では、従来システムの100に対して本願システムでは、出力偏差72、温度偏差52、高温域では、従来システムの100に対して本願システムでは、出力偏差83、温度偏差85として求められた。この場合、中温域では、そもそも従来のものも中温域を適温として設計されているので大きな差がなかったが、低温域や高温域になると、本願システムのものは、常に適正に燃料供給ができるため出力の変動や温度の変動を小さくできる良好な発電を実現できることが証明された。
(変形例)
第1の実施の形態では、温度制御信号発生部702は、温度センサ106の出力が上昇する場合、温度センサ106の出力が制御温度を上回ると、このタイミングでポンプオン信号を強制的に停止してポンプオフ信号を出力し、その後、ポンプオフ信号に対して設定されたポンプ停止時間を経過すると再びポンプオン信号を出力するものとしたが、例えば、温度センサ106の出力が降下するような場合、この出力が制御温度を下回ると、このタイミングでポンプオフ信号を強制的に停止して(ポンプオフ信号の発生時間を制限して)ポンプオン信号を出力し、その後、ポンプオン信号に対して設定されたポンプ動作時間を経過すると再びポンプオフ信号を出力するようにしても良い。このようにすれば、特に、周囲温度が低温領域にある場合に、燃料電池発電部101の温度上昇が得られないまま下降を続け発電能力が低下し、発電不能に陥るようなことを確実に防止できる。
第1の実施の形態では、温度制御信号発生部702は、温度センサ106の出力が上昇する場合、温度センサ106の出力が制御温度を上回ると、このタイミングでポンプオン信号を強制的に停止してポンプオフ信号を出力し、その後、ポンプオフ信号に対して設定されたポンプ停止時間を経過すると再びポンプオン信号を出力するものとしたが、例えば、温度センサ106の出力が降下するような場合、この出力が制御温度を下回ると、このタイミングでポンプオフ信号を強制的に停止して(ポンプオフ信号の発生時間を制限して)ポンプオン信号を出力し、その後、ポンプオン信号に対して設定されたポンプ動作時間を経過すると再びポンプオフ信号を出力するようにしても良い。このようにすれば、特に、周囲温度が低温領域にある場合に、燃料電池発電部101の温度上昇が得られないまま下降を続け発電能力が低下し、発電不能に陥るようなことを確実に防止できる。
勿論、温度制御信号発生部702は、周囲温度が高温領域又は低温領域にある場合に、第1の実施の形態で述べた動作と変形例で述べた動作を切り替えるようにしても良い。
(第2の実施の形態)
上述した実施の形態では、周囲温度に応じて制御温度を設定し、この制御温度に基づいて燃料電池発電部の発熱部での温度を制御するようにしたが、この第2の実施の形態では、制御温度と別に、さらに周囲温度に応じて設定される閾値温度を用意し、これら閾値温度と制御温度により燃料電池発電部の発熱部での温度を制御するようにしている。
上述した実施の形態では、周囲温度に応じて制御温度を設定し、この制御温度に基づいて燃料電池発電部の発熱部での温度を制御するようにしたが、この第2の実施の形態では、制御温度と別に、さらに周囲温度に応じて設定される閾値温度を用意し、これら閾値温度と制御温度により燃料電池発電部の発熱部での温度を制御するようにしている。
この第2の実施の形態では、図1において、記憶部9に制御温度設定テーブル901に代えて制御温度設定テーブル902が設けられている。制御温度設定テーブル902は、図6に示すように周囲温度の属する温度領域902a、温度領域902aに対する制御温度(動作温度)902b及び温度領域902aに対する閾値温度902cを記憶している。この場合、温度領域902aの各温度領域の設定基準、各温度領域(低温領域、中低温領域、中温領域、中高温領域及び高温領域)に対応する制御温度902bの設定については、図4に示す制御温度設定テーブル901と同様である。また、閾値温度902cは、低温領域、中低温領域、中温領域、中高温領域及び高温領域に対応して設定され、低温領域に対応する閾値温度を低温領域の周囲温度+10℃、中低温領域に対する閾値温度を中低温領域の周囲温度+15℃、中温領域に対応する閾値温度を中温領域の周囲温度+20℃、中高温領域に対する閾値温度を中高温領域の周囲温度+10℃、高温領域に対応する閾値温度を高温領域の周囲温度+15℃としている。この場合、各温度領域の閾値温度は、各温度領域の制御温度に比べて低く(図示例では-5℃)設定されている。
また、制御部7の温度制御信号発生部702は、ポンプの動作時間を決定するポンプオン信号とポンプの停止時間を決定するポンプオフ信号を出力するもので、制御温度設定部701で設定された制御温度(又は閾値温度)に対して温度センサ106の出力(発熱部の発熱温度)を制御するためポンプオン信号とポンプオフ信号を出力する。また、温度制御信号発生部702は、温度センサ106の出力と上述の制御温度(又は閾値温度)を比較し、温度センサ106の出力増加により、この出力が閾値温度を上回ると、このタイミングでポンプオン信号を強制的に停止してポンプオフ信号を出力し、逆に温度センサ106の出力減少の際に、この出力が制御温度を下回ると、このタイミングでポンプオフ信号を強制的に停止してポンプオン信号を出力する。好ましくは、期間Aに示す信号と同様にポンプオン信号とポンプオフ信号が交互に出力される。
その他は、図1と同様である。
このような構成において、周囲温度としてケース6周囲の温度が温度センサ8で検出されると、制御部7は、制御温度設定部701により温度センサ8の出力に基づいて図6に示す制御温度設定テーブル902を参照し、温度領域を判定する。この場合の周囲温度が25℃とすると、中温領域と判断され、この中温領域に対応する周囲温度+25℃が制御温度T21、周囲温度+20℃が閾値温度T22として設定される。これにより、いま、図7の期間Aに示すように温度センサ106の出力(発熱部の発熱温度)T23が制御温度設定部701で設定された閾値温度T22(<制御温度T21)を下回っている期間では、温度制御信号発生部702よりポンプオン信号とポンプオフ信号が交互に出力される。これにより、ポンプオン信号期間では、ポンプオン信号により決定される動作時間の範囲で燃料供給制御回路5によりポンプ104が駆動され、流路103を介して燃料電池発電部101に燃料が供給される。また、ポンプオフ信号期間では、ポンプオフ信号により決定されるポンプの停止時間だけ燃料供給制御回路5によるポンプ104の駆動が停止され、燃料電池発電部101への燃料供給が停止される。この状態で、燃料電池発電部(セル)101の発熱部の温度が上昇し、温度センサ106の出力T23が増加するような場合、燃料電池発電部(セル)101の発熱部の温度上昇により、温度センサ106の出力T23が閾値温度T22に達すると(図示c点参照)、このタイミングで、温度制御信号発生部702よりポンプオフ信号が出力(ポンプオン信号が強制的に停止)され、燃料供給制御回路5によるポンプ104の駆動が停止され、燃料電池発電部101への燃料供給が強制的に停止される。この場合、期間Bに示すように燃料電池発電部(セル)101は、残留燃料により発電を続け、発熱部の温度は、燃料供給が停止された後も上昇を続けるが、その後、降下に転じ、温度センサ106の出力T23が低下していく。そして、制御温度T21まで低下すると(図示d点参照)、このタイミングで温度制御信号発生部702よりポンプオン信号が出力(ポンプオフ信号の発生時間を制限して)され、燃料供給制御回路5によりポンプ104が駆動され、流路103を介して燃料電池発電部101に燃料が供給される。燃料電池発電部(セル)101の発熱部の温度は、燃料供給が開始された後も一旦降下を続けるが、その後、上昇に転じ閾値温度T22に向かう(期間C参照)。あのこの期間Cにおいては、期間Aに示す信号と同様にポンプオン信号とポンプオフ信号が交互に出力されることが好ましい。そして、再び温度センサ106の出力T23が閾値温度T22に達すると(図示e点参照)、このタイミングで温度制御信号発生部702よりポンプオフ信号が出力(ポンプオン信号が強制的に停止)され、燃料供給制御回路5によるポンプ104の駆動が停止され、燃料電池発電部101への燃料供給が停止される。以下同様な動作を繰り返すことにより、燃料電池発電部(セル)101の発熱部の温度は、閾値温度T22と制御温度T21の間で制御される。
したがって、このようにしても第1の実施の形態と同様な効果を得ることができる。さらに、制御温度T21より低めに閾値温度T22を設定し、温度センサ106の出力T23が閾値温度T22に達したところで、ポンプオフ信号を出力して、ポンプ104の駆動を停止して燃料電池発電部101への燃料供給を停止させるようにした、つまり、温度センサ106の出力T23が制御温度T21に達する前に、燃料電池発電部101への燃料供給を停止させるようにしたので、燃料供給が停止された後も残留燃料により上昇を続ける燃料電池発電部101の発熱部の温度上昇を最小限に抑えることができ、これにより燃料電池発電部101の発熱部の温度が必要以上に上昇するような事態を回避できる。
(第3の実施の形態)
上述した実施の形態では、周囲温度の温度領域に応じて制御温度を設定し、この制御温度に基づいて燃料電池発電部での発熱部での温度を制御するようにしたが、この第3の実施の形態では、燃料供給部であるのポンプの駆動電圧を可変するようにしている。
上述した実施の形態では、周囲温度の温度領域に応じて制御温度を設定し、この制御温度に基づいて燃料電池発電部での発熱部での温度を制御するようにしたが、この第3の実施の形態では、燃料供給部であるのポンプの駆動電圧を可変するようにしている。
この第3の実施の形態では、図1において、燃料移送制御部としてのポンプ104に、例えば電気浸透流ポンプ(以下、電気浸透流ポンプ104として述べる)が用いられる。この電気浸透流ポンプ104は、流路103内に電気浸透流現象を起こすシリカ等の焼結多孔体から構成される電気浸透材を有し、この電気浸透材の上流及び下流側端部にそれぞれ電極を配置した構成をしたもので、これら上流及び下流の電極間に所定の電圧(駆動電圧)を印加することにより、前記電気浸透材を介して流路103内に燃料を移送させるようにしている。この電気浸透流ポンプ104は、電極間に印加される駆動電圧を可変することにより流路103内を移送される燃料の量を可変できるという特徴を有している。
また、制御部7は、温度制御信号発生部702に代えてポンプ駆動信号発生部703が設けられている。このポンプ駆動信号発生部703は、制御温度設定部701で設定された制御温度に基づいて燃料供給制御回路5に対し電気浸透流ポンプ104の駆動電圧を制御するための制御信号を出力する。この場合、ポンプ駆動信号発生部703は、制御温度設定部701で設定された制御温度に対して温度センサ106の出力(発熱部の発熱温度)が上昇して上回ると、ポンプオン信号を強制的に停止してポンプオフ信号を出力し、温度センサ106の出力の低下にともない、温度センサ106の出力が制御温度を下回ると、ポンプオフ信号を強制的に停止してポンプオン信号を出力する。
その他は、図1と同様である。
このような構成においても、ケース6周囲の温度が温度センサ8で検出され、この温度センサ8の出力に基づいて図4に示す制御温度設定テーブル901を参照し、温度領域を判定する。この場合の周囲温度が25℃とすると、中温領域と判断され、この中温領域に対応する周囲温度+25℃が制御温度T11として設定される。
これにより、ポンプ駆動信号発生部703は、制御温度に対して温度センサ106の出力が下回ると電気浸透流ポンプ104に対して大きな駆動電圧を設定して、燃料電池発電部101への燃料供給量を多くして発熱部での温度上昇を許容し、温度センサ106の出力が上回ったとき電気浸透流ポンプ104に対して大きな駆動電圧を設定し燃料電池発電部(セル)101への燃料供給量を少なくして発熱部での温度上昇を抑制する。
したがって、このようにしても第1の実施の形態と同様な効果を得ることができる。
上述した第3の実施の形態では、第1の実施の形態に適用した例を述べたが、第2の実施の形態に適用しても同様に実施できる。また、ポンプ104として、電気浸透流ポンプの例を述べたが、駆動電圧により燃料電池発電部101への燃料供給量を可変できるものならは、電気浸透流ポンプ以外のものを適用しても良い。
その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
さらに燃料電池発電部へ供給される液体燃料の気化成分においても、全て液体燃料の気化成分を供給してもよいが、一部が液体状態で供給される場合であっても本発明を適用することができる。
本発明によれば、周囲温度の変動に対して適正な燃料を供給することができ、常に安定した発電出力を得られる燃料電池システム及び電子機器が提供される。
1…燃料電池本体、101…燃料電池発電部
102…燃料収容部、103…流路
104…ポンプ、105…燃料分配機構
106…温度センサ、2…DC/DCコンバータ、3…電子機器本体
4…補助電源、5…燃料供給制御回路
6…ケース、7…制御部、
701…制御温度設定部、702…温度制御信号発生部、
703…ポンプ駆動信号発生部、8…温度センサ、
9…記憶部、901、902…制御温度設定テーブル、
11…アノード触媒層、12…アノードガス拡散層
13…アノード、14…カソード触媒層
15…カソードガス拡散層、16…カソード
17…電解質膜、18…カバープレート
19…Oリング、21…燃料注入口
22…燃料排出口、23…燃料分配板
24…空隙部
102…燃料収容部、103…流路
104…ポンプ、105…燃料分配機構
106…温度センサ、2…DC/DCコンバータ、3…電子機器本体
4…補助電源、5…燃料供給制御回路
6…ケース、7…制御部、
701…制御温度設定部、702…温度制御信号発生部、
703…ポンプ駆動信号発生部、8…温度センサ、
9…記憶部、901、902…制御温度設定テーブル、
11…アノード触媒層、12…アノードガス拡散層
13…アノード、14…カソード触媒層
15…カソードガス拡散層、16…カソード
17…電解質膜、18…カバープレート
19…Oリング、21…燃料注入口
22…燃料排出口、23…燃料分配板
24…空隙部
Claims (6)
- 燃料により電力を発電する発電部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、これら温度領域に対応する制御温度を記憶した記憶部と、
前記第1の温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記発電部への燃料の供給量を制御する制御部と
を具備する燃料電池システム。 - 請求項1に記載の燃料電池システムを電源として使用した電子機器。
- 前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御部は、制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間又は前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御する請求項1に記載の燃料電池システム。 - 前記燃料電池本体は、前記発電部に燃料を供給する燃料移送制御部を有し、
前記制御温度設定部は、前記判定された温度領域に対応して設定される制御温度とともに、さらに閾値温度を設定し、
前記制御部は、前記制御温度設定部により設定された閾値温度及び制御温度と、前記第2の温度検出部の検出出力とのそれぞれの比較結果に応じて前記燃料移送制御部の動作時間を決定するオン信号の発生時間及び前記燃料移送制御部の停止時間を決定するオフ信号の発生時間を制御する請求項1に記載の燃料電池システム。 - 燃料により電力を発電する発電部を有するとともに、前記発電部に燃料を供給する燃料移送制御部を有する燃料電池本体と、
周囲温度を検出する第1の温度検出部と、
前記燃料電池本体の発電部の温度を検出する第2の温度検出部と、
前記周囲温度の属する複数の異なる温度領域と、これら温度領域に対応する制御温度を記憶した記憶部と、
前記温度検出部より検出される周囲温度に基づいて前記記憶部より対応する温度領域を判定するとともに、該判定した温度領域に対応する制御温度を設定する制御温度設定部と、
前記制御温度設定部により設定された制御温度と前記第2の温度検出部の検出出力の比較結果に応じて前記燃料移送制御部の駆動電圧を可変制御する制御部と
を具備する燃料電池システム。 - 請求項5に記載の燃料電池システムを電源として使用した電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/015,105 US20110136031A1 (en) | 2008-07-29 | 2011-01-27 | Fuel cell system and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008195088A JP2010033901A (ja) | 2008-07-29 | 2008-07-29 | 燃料電池システム及び電子機器 |
JP2008-195088 | 2008-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/015,105 Continuation US20110136031A1 (en) | 2008-07-29 | 2011-01-27 | Fuel cell system and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013711A1 true WO2010013711A1 (ja) | 2010-02-04 |
Family
ID=41610411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063425 WO2010013711A1 (ja) | 2008-07-29 | 2009-07-28 | 燃料電池システム及び電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110136031A1 (ja) |
JP (1) | JP2010033901A (ja) |
KR (1) | KR20100125468A (ja) |
WO (1) | WO2010013711A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010033898A (ja) * | 2008-07-29 | 2010-02-12 | Toshiba Corp | 燃料電池システム及び電子機器 |
KR20120080881A (ko) | 2011-01-10 | 2012-07-18 | 삼성에스디아이 주식회사 | 연료 전지 시스템 및 연료 전지 내에서의 연료의 반응 조건을 제어하는 방법 |
US9537189B2 (en) | 2012-06-11 | 2017-01-03 | Siemens Aktiengesellschaft | Temperature control system for a high-temperature battery or a high-temperature electrolyzer |
US10050293B2 (en) * | 2014-11-28 | 2018-08-14 | Panasonic Intellectual Property Management Co., Ltd. | Method for operating fuel cell system and method for estimating composition of fuel used in fuel cell system |
KR101734760B1 (ko) * | 2016-04-18 | 2017-05-11 | 현대자동차주식회사 | 연료전지 스택의 제어 장치 및 그 방법 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276478A (ja) * | 2004-03-23 | 2005-10-06 | Nissan Motor Co Ltd | 燃料電池システム |
JP2007095588A (ja) * | 2005-09-30 | 2007-04-12 | Sanyo Electric Co Ltd | 燃料電池制御装置 |
JP2007509470A (ja) * | 2003-10-21 | 2007-04-12 | アルバータ リサーチ カウンシル インコーポレイテッド | 固体酸化物型燃料電池の動作制御 |
JP2008084688A (ja) * | 2006-09-27 | 2008-04-10 | Toshiba Corp | 燃料電池システム及び燃料電池システムの制御方法 |
JP2008153012A (ja) * | 2006-12-15 | 2008-07-03 | Hitachi Ltd | 燃料電池電源装置および燃料電池の制御方法 |
JP2008218032A (ja) * | 2007-02-28 | 2008-09-18 | Toshiba Corp | 燃料電池システム及び電子機器 |
JP2008218236A (ja) * | 2007-03-05 | 2008-09-18 | Toshiba Corp | 燃料電池システム及び電子機器 |
JP2009016270A (ja) * | 2007-07-06 | 2009-01-22 | Toshiba Corp | 電子機器 |
JP2009134885A (ja) * | 2007-11-28 | 2009-06-18 | Casio Comput Co Ltd | 燃料電池システム及びその制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7799453B2 (en) * | 2004-08-04 | 2010-09-21 | The Board Of Trustees Of The Leland Stanford Junior University | Fuel cell with electroosmotic pump |
-
2008
- 2008-07-29 JP JP2008195088A patent/JP2010033901A/ja active Pending
-
2009
- 2009-07-28 WO PCT/JP2009/063425 patent/WO2010013711A1/ja active Application Filing
- 2009-07-28 KR KR1020107024199A patent/KR20100125468A/ko not_active Application Discontinuation
-
2011
- 2011-01-27 US US13/015,105 patent/US20110136031A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007509470A (ja) * | 2003-10-21 | 2007-04-12 | アルバータ リサーチ カウンシル インコーポレイテッド | 固体酸化物型燃料電池の動作制御 |
JP2005276478A (ja) * | 2004-03-23 | 2005-10-06 | Nissan Motor Co Ltd | 燃料電池システム |
JP2007095588A (ja) * | 2005-09-30 | 2007-04-12 | Sanyo Electric Co Ltd | 燃料電池制御装置 |
JP2008084688A (ja) * | 2006-09-27 | 2008-04-10 | Toshiba Corp | 燃料電池システム及び燃料電池システムの制御方法 |
JP2008153012A (ja) * | 2006-12-15 | 2008-07-03 | Hitachi Ltd | 燃料電池電源装置および燃料電池の制御方法 |
JP2008218032A (ja) * | 2007-02-28 | 2008-09-18 | Toshiba Corp | 燃料電池システム及び電子機器 |
JP2008218236A (ja) * | 2007-03-05 | 2008-09-18 | Toshiba Corp | 燃料電池システム及び電子機器 |
JP2009016270A (ja) * | 2007-07-06 | 2009-01-22 | Toshiba Corp | 電子機器 |
JP2009134885A (ja) * | 2007-11-28 | 2009-06-18 | Casio Comput Co Ltd | 燃料電池システム及びその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010033901A (ja) | 2010-02-12 |
KR20100125468A (ko) | 2010-11-30 |
US20110136031A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009087741A (ja) | 燃料電池の劣化検出装置及び燃料電池システム | |
WO2010013711A1 (ja) | 燃料電池システム及び電子機器 | |
JP2008218236A (ja) | 燃料電池システム及び電子機器 | |
WO2010013709A1 (ja) | 燃料電池システム及び電子機器 | |
JP2010165601A (ja) | 燃料電池システム及び電子機器 | |
JP5258203B2 (ja) | 燃料電池システム及び電子機器 | |
JP2010239701A (ja) | 燃料電池システム及び圧電ポンプ装置 | |
JP5617218B2 (ja) | 燃料電池 | |
WO2008068886A1 (ja) | 燃料電池 | |
JP2010244919A (ja) | 燃料電池システム、燃料電池システムの制御方法 | |
JPWO2008068887A1 (ja) | 燃料電池 | |
JP2010238408A (ja) | 燃料電池システム及びバルブ装置 | |
WO2010013714A1 (ja) | 燃料電池システム及び充電装置 | |
JP2010033898A (ja) | 燃料電池システム及び電子機器 | |
JP2010033904A (ja) | 燃料電池システム及び電子機器 | |
JP2011023198A (ja) | 燃料電池システム及び充電装置 | |
JP2011113912A (ja) | 燃料電池 | |
JP2010033899A (ja) | 燃料電池システム及び電子機器 | |
JP5025288B2 (ja) | 燃料電池システム及び電子機器 | |
JP5556123B2 (ja) | 燃料電池システム | |
WO2011024386A1 (ja) | 燃料電池 | |
JP2008282626A (ja) | 燃料電池システム及び電子機器 | |
JP2008243787A (ja) | 燃料電池システム及び制御方法 | |
JP2008210611A (ja) | 燃料電池 | |
JP2010170732A (ja) | 燃料電池システム及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802954 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107024199 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09802954 Country of ref document: EP Kind code of ref document: A1 |