WO2010013557A1 - アクリル系熱可塑性樹脂、及びその成形体 - Google Patents
アクリル系熱可塑性樹脂、及びその成形体 Download PDFInfo
- Publication number
- WO2010013557A1 WO2010013557A1 PCT/JP2009/061405 JP2009061405W WO2010013557A1 WO 2010013557 A1 WO2010013557 A1 WO 2010013557A1 JP 2009061405 W JP2009061405 W JP 2009061405W WO 2010013557 A1 WO2010013557 A1 WO 2010013557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic resin
- film
- acrylic thermoplastic
- sheet
- repeating unit
- Prior art date
Links
- 0 C*(*1)C1(C(*)(C(C)(C)C)C(O1)=O)C1=O Chemical compound C*(*1)C1(C(*)(C(C)(C)C)C(O1)=O)C1=O 0.000 description 2
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/04—Anhydrides, e.g. cyclic anhydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to an acrylic thermoplastic resin having high heat resistance and a low photoelastic coefficient, and excellent in thermal stability capable of controlling the phase difference by stretching, and a molded article comprising the same.
- optical materials used have not only excellent transparency but also high heat resistance. It has been required to have the necessary birefringence.
- the molded body made of the required optical material is also increased in size, but there is a problem that the birefringence distribution is generated due to the bias of the external force and the contrast is lowered.
- an optical material having a small change in birefringence due to an external force that is, a small absolute value of the photoelastic coefficient is required.
- the optical material is a polymer
- the influence of the orientation of the polymer chain in the melt molding process tends to remain, and a molded body having significant birefringence can be obtained.
- the polymer chain is not oriented, and a molded body having no birefringence is obtained.
- Any of the molded products can cause arbitrary birefringence by stretching, but (i) a material whose birefringence changes greatly by a slight stretching is difficult to control the phase difference, and (ii) stretching A material that does not have the required birefringence unless the magnification is large has a problem that it is difficult to process.
- Methacrylic resins represented by methyl methacrylate homopolymer (PMMA) have been used for various optical applications because of their excellent transparency and low birefringence, but their heat resistance is insufficient. Met.
- a styrene resin represented by a styrene homopolymer (PS) is also excellent in transparency, but has a very large birefringence value and insufficient heat resistance.
- Non-Patent Documents 1 and 2 There is a demand for the development of optical materials (see Non-Patent Documents 1 and 2).
- Patent Document 1 discloses a terpolymer of methyl methacrylate: 60 to 90% by mass, styrene: 5 to 20% by mass, and maleic anhydride: 5 to 20% by mass.
- the weight ratio (a / b) of the content (a) of the repeating unit derived from the vinyl aromatic monomer and the content (b) of the repeating unit of the cyclic acid anhydride is 1 or more and less than 3
- Patent Document 2 discloses that the total amount of residual monomers is desirably 1.5% by weight or less with respect to the copolymer, and in particular, it is colored yellow when the amount of residual maleic anhydride is large. ing.
- a copolymer is obtained by a bulk polymerization method, and the total of residual monomers is at least 0.5% by weight or more.
- Patent Document 3 discloses a terpolymer of methyl methacrylate: 45 to 92% by mass, aromatic vinyl compound: 5 to 30% by mass, and maleic anhydride: 3 to 25% by mass.
- Patent Document 4 discloses a terpolymer of methyl methacrylate: 70 to 90% by mass, aromatic vinyl compound: 1 to 25% by mass, and maleic anhydride: 5 to 29% by mass.
- Patent Documents 5 to 8 peripheral technologies related to a quaternary copolymer having benzyl methacrylate as a fourth monomer as a more preferable acrylic thermoplastic resin of the present invention are disclosed in, for example, Patent Documents 5 to 8.
- Patent Document 5 describes a copolymer of methyl methacrylate and one or more copolymerizable monomers such as styrene, benzyl methacrylate, and maleic anhydride. It is a description as one of the constituents of the body and does not mention any optical properties. Further, there is no example relating to a quaternary copolymer corresponding to the present invention.
- Patent Document 6 describes a copolymer containing styrenes, maleic anhydrides and methacrylic esters. Specifically, there is a description that methyl methacrylate and benzyl methacrylate may be copolymerized in the copolymer as methacrylic acid esters. However, Examples relating to quaternary copolymers comprising methyl methacrylate and styrene, benzyl methacrylate and maleic anhydride of the present invention are not described.
- methacrylic acid esters there is a description that an ester composed of a lower alkyl group is preferable, and no suggestion is given about the repeating unit derived from a methacrylate monomer having an aromatic group in the present invention. Furthermore, there is a description that a copolymer in which a part or all of maleic anhydride as a structural unit has undergone a hydrolyzate is a preferable resin.
- Patent Document 7 describes a copolymer containing a monomer selected from styrenes, maleic anhydrides and methacrylic esters as a main component.
- methacrylic acid ester monomers include methyl methacrylate and benzyl methacrylate.
- copolymers of styrenes and methacrylic acid esters, maleic anhydrides and methacrylic acid esters are referred to as a copolymer blend consisting of styrene and maleic anhydride, and a copolymer blend consisting of maleic anhydride and methacrylic acid ester. No mention is made of the effects obtained when copolymerizing simultaneously.
- examples relating to the quaternary copolymer of the present invention are not described.
- an ester composed of a lower alkyl group is preferable as the methacrylic acid ester in the copolymer, and it does not give any suggestion about the repeating unit derived from the methacrylate monomer having an aromatic group in the present invention.
- a copolymer in which a part or all of maleic anhydride as a structural unit has undergone a hydrolyzate is a preferable resin.
- Patent Document 8 describes a copolymer of maleic anhydride and acrylate. Specifically, methyl (meth) acrylate and benzyl (meth) acrylate may be used in combination as the acrylate monomer in the copolymer, and other monomers as long as the heat resistance is not impaired. It is described that styrenes may be copolymerized. However, Examples relating to the quaternary copolymer of the present invention are not described.
- An object of the present invention is to provide an acrylic thermoplastic resin having high heat resistance and a low photoelastic coefficient, and having excellent thermal stability capable of controlling the phase difference by stretching, and a molded body comprising the same.
- the present invention relates to a specific acrylic thermoplastic resin, in particular, an acrylic thermoplastic resin having a total amount of residual monomers of 0.5 parts by weight or less based on 100 parts by weight of a copolymer. It has excellent stability, and the molded product made from it has much higher heat resistance and lower photoelastic coefficient than the molded product made from the conventional acrylic thermoplastic resin, and the phase difference can be controlled by stretching.
- the headline was made.
- the present invention [1] Repeating unit derived from a methacrylate monomer represented by the following formula (1): 10 to 70% by weight, repeating unit derived from a vinyl aromatic monomer represented by the following formula (2): 5 to 40 A copolymer containing 20% by weight and a cyclic acid anhydride repeating unit represented by the following formula (3) or the following formula (4):
- the molar ratio (B / A) of the unit content (A) to the cyclic acid anhydride repeating unit content (B) is greater than 1 and 10 or less, and 100 parts by weight of the copolymer.
- An acrylic thermoplastic resin characterized in that the total amount of monomers remaining is 0.5 parts by weight or less.
- R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
- R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a halogen group, a hydroxyl group, an alkoxy group having 1 to 12 carbon atoms, a nitro group, a linear or branched carbon number
- R 5 to R 8 may be the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
- R 5 to R 8 may be the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
- R 4 represents a hydrogen atom, a halogen group, a hydroxyl group, an alkoxy group having 1 to 12 carbon atoms, a nitro group, or a linear or branched alkyl group having 1 to 12 carbon atoms.
- a molded article comprising the acrylic thermoplastic resin according to any one of [1] to [8].
- the molded article according to [9], wherein the molded article is a sheet or a film.
- a sheet or film formed by extrusion molding which is stretched in at least one axial direction and has a stretching ratio of 0.1 to 300%.
- the sheet or film formed by cast molding which is stretched in at least one axial direction, and the stretching ratio is 0.1 to 300%.
- a sheet or film formed by extrusion molding which is stretched in at least one axial direction and has a stretch ratio of 0.1 to 300%.
- the sheet or film formed by cast molding which is stretched in at least one axial direction, and the stretch ratio is 0.1 to 300%.
- a polarizing plate protective film comprising the sheet or film according to any one of [21] to [23].
- a transparent plastic substrate comprising the sheet or film according to [10] or [21]. About.
- thermoplastic resin excellent in thermal stability at the time of molding processing, and a molded product having high heat resistance and low photoelastic coefficient, and capable of controlling the phase difference by stretching.
- a preferred acrylic thermoplastic resin of the present invention is a repeating unit derived from a methacrylate monomer represented by the following formula (1): 10 to 70% by weight, a vinyl aromatic monomer represented by the following formula (2) A copolymer comprising a repeating unit derived from 5 to 40% by weight and a cyclic acid anhydride repeating unit represented by the following formula (3) or the following formula (4): 20 to 50% by weight,
- R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
- R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a halogen group, a hydroxyl group, an alkoxy group having 1 to 12 carbon atoms, a nitro group, a linear or branched carbon number
- R 5 to R 8 may be the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
- the molar ratio (B / A) of the content (A) of the repeating unit derived from the vinyl aromatic monomer and the content (B) of the cyclic acid anhydride repeating unit is greater than 1 and in the range of 10 or less.
- the total of the monomer which remains with respect to 100 parts by weight of the copolymer is 0.5 parts by weight or less.
- a more preferred acrylic thermoplastic resin of the present invention further includes a copolymer containing 0.1 to 5% by weight of a repeating unit derived from a methacrylate monomer having an aromatic group represented by the following formula (5): Consists of. (Wherein R 4 represents a hydrogen atom, a halogen group, a hydroxyl group, an alkoxy group having 1 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 12 carbon atoms. M is an integer of 1 to 3) , N represents an integer of 0-2.)
- the repeating unit represented by the formula (1) is derived from methacrylic acid and a methacrylic acid ester monomer.
- the methacrylic acid ester used include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid. Cyclohexyl acid; and the like.
- Methacrylic acid and methacrylic acid ester may be used alone or in combination of two or more.
- methacrylic acid esters methacrylic acid alkyl esters having 1 to 7 carbon atoms in the alkyl group are preferred, and methyl methacrylate is particularly preferred because the resulting acrylic thermoplastic resin is excellent in heat resistance and transparency. .
- the content of the repeating unit represented by the formula (1) is 10 to 70% by mass, preferably 25 to 70% by mass, more preferably 40 to 70% by mass from the viewpoint of transparency.
- the repeating unit represented by the formula (2) is derived from an aromatic vinyl monomer.
- the monomer used include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, and 2-methyl-4-chlorostyrene.
- styrene and ⁇ -methylstyrene are preferred because they are easily copolymerized.
- the content of the repeating unit represented by the formula (2) is 5 to 40% by mass, preferably 5 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoints of transparency and heat resistance.
- the cyclic acid anhydride repeating unit represented by the formula (3) is derived from unsubstituted and / or substituted maleic anhydride.
- the monomer used include maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, and diphenylmaleic anhydride. Can be mentioned. Of these monomers, maleic anhydride is preferable because of easy copolymerization.
- cyclic acid anhydride repeating unit represented by the formula (4) is derived by a condensation cyclization reaction between the repeating units described later, and examples thereof include glutaric anhydride.
- the cyclic acid anhydride repeating unit represented by the formula (3) or the formula (4) may be partially hydrolyzed and opened by an external environment such as moisture in the air.
- the hydrolysis rate is desirably less than 10 mol% from the viewpoint of optical properties and heat resistance. Furthermore, it is preferable that it is less than 5 mol%, and it is more preferable that it is less than 1 mol%.
- the hydrolysis rate (mol%) is obtained by ⁇ 1- (the amount of cyclic acid anhydride after hydrolysis (mol)) / the amount of cyclic acid anhydride before hydrolysis (mol) ⁇ ⁇ 100.
- the content ratio of the cyclic acid anhydride repeating unit represented by the formula (3) or the formula (4) achieves higher heat resistance and optical characteristics (particularly, control of retardation described later) that are the effects of the present invention. Therefore, the content is 20 to 50% by mass, preferably 20 to 45% by mass.
- the content (A) of the repeating unit derived from the vinyl aromatic monomer represented by the formula (2) and the formula (3) or the formula (4) The molar ratio (B / A) of the content (B) of cyclic acid anhydride repeating units is greater than 1 and 10 or less, preferably greater than 1 and 5 or less.
- the repeating unit represented by the formula (5) is derived from a methacrylate monomer having an aromatic group.
- the monomer used include phenyl methacrylate, benzyl methacrylate, and 1-phenylethyl methacrylate. These monomers may be used alone or in combination of two or more. Of these monomers, benzyl methacrylate is particularly preferred.
- the content of the repeating unit represented by the formula (5) is preferably 0.1 to 5 masses in order to develop the optical characteristics (particularly minimizing the photoelastic coefficient described later) which is the effect of the present invention. %, More preferably 0.1 to 4% by mass, and still more preferably 0.1 to 3% by mass.
- the total of the remaining monomers is 0.5 parts by weight or less, preferably 100 parts by weight of the copolymer, 0.4 parts by weight or less, more preferably 0.3 parts by weight or less.
- the total amount of residual monomers exceeds 0.5 parts by weight, there is a problem in that a molded product that is not suitable for practical use is obtained, such as being colored when heated during molding, and the heat resistance and weather resistance of the molded product are reduced.
- the weight average molecular weight (Mw) in terms of PMMA by the GPC measurement method of the acrylic thermoplastic resin of the present invention is preferably 10,000 to 400,000, more preferably 40,000 to 300,000, still more preferably 70,000.
- the molecular weight distribution (Mw / Mn) is preferably 1.8 to 3.0, more preferably 1.8 to 2.7, and still more preferably 1.8 to 2.5. It is.
- the glass transition temperature (Tg) of the acrylic thermoplastic resin of the present invention can be arbitrarily controlled by the resin composition, but is preferably controlled to 120 ° C. or more from the viewpoint of industrial applicability. More preferably, it is controlled to 130 ° C. or higher, more preferably 135 ° C. or higher.
- Polymerization reaction As a polymerization method of the acrylic thermoplastic resin of the present invention, for example, a polymerization method generally performed such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, anionic polymerization, etc. can be used. As a material application, it is preferable to avoid contamination of minute foreign matters as much as possible. From this viewpoint, it is desirable to use cast polymerization or solution polymerization without using a suspending agent or an emulsifier.
- the polymerization mode for example, either a batch polymerization method or a continuous polymerization method can be used, but it is desirable to use the continuous polymerization method in that a polymer having a more uniform composition can be obtained.
- the temperature and polymerization time during the polymerization reaction vary depending on the type and ratio of the monomer used, and for example, the polymerization temperature is 0 to 150 ° C., the polymerization time is 0.5 to 24 hours, and preferably Has a polymerization temperature of 80 to 140 ° C. and a polymerization time of 1 to 12 hours.
- examples of the polymerization solvent include aromatic hydrocarbon solvents such as toluene, xylene, and ethylbenzene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ether solvents such as tetrahydrofuran; Can be mentioned. These solvents may be used alone or in combination of two or more. If the boiling point of the solvent to be used is too high, the residual volatile content of the finally obtained thermoplastic resin for optical materials is increased. Therefore, a solvent having a boiling point of 50 to 200 ° C. is preferred.
- a polymerization initiator may be added as necessary.
- any initiator generally used in radical polymerization can be used.
- cumene hydroperoxide diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide
- Organic peroxides such as oxide, t-butylperoxyisopropyl carbonate, t-amylperoxy-2-ethylhexanoate; 2,2′-azobis (isobutyronitrile), 1,1′-azobis (cyclohexane) Carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo compounds such as dimethyl-2,2′-azobisisobutyrate; and the like.
- These polymerization initiators may be used alone or in combination of two or more.
- the amount of the polymerization initiator used may be appropriately set according to the combination of monomers and reaction conditions, and is not particularly limited, but is preferably in the range of 0.005 to 5 wt%.
- molecular weight regulator used as necessary in the polymerization reaction, any one used in general radical polymerization is used, and for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. It is mentioned as preferable.
- mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. It is mentioned as preferable.
- These molecular weight regulators are added in a concentration range such that the degree of polymerization is controlled within the above range.
- the concentration of the acrylic thermoplastic resin generated in the polymerization reaction solution is 50% by mass or less in order to suppress gelation of the polymerization reaction solution.
- a polymerization solvent is appropriately added to the polymerization reaction liquid to control it to 50% by mass or less. It is preferable.
- the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution is more preferably 45% by mass or less, and still more preferably 40% by mass or less.
- the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution is preferably 10% by mass or more, more preferably 20% by mass or more.
- the form of appropriately adding the polymerization solvent to the polymerization reaction solution is not particularly limited, and for example, the polymerization solvent may be added continuously or the polymerization solvent may be added intermittently. By controlling the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution in this way, the gelation of the reaction solution can be more sufficiently suppressed.
- the polymerization solvent to be added may be, for example, the same type of solvent used during the initial charging of the polymerization reaction or a different type of solvent, but the solvent used during the initial charging of the polymerization reaction. It is preferable to use the same type of solvent.
- the polymerization solvent to be added may be only one kind of single solvent or two or more kinds of mixed solvents.
- the acrylic thermoplastic resin containing the cyclic acid anhydride repeating unit represented by formula (4) is represented by formula (1), formula (2), formula (1), formula (2) It is induced by heat-treating an acrylic thermoplastic resin containing a repeating unit represented by the formula (5).
- this cyclic acid anhydride repeating unit By forming this cyclic acid anhydride repeating unit, high heat resistance and desired optical properties (for example, low photoelastic coefficient) are imparted to the acrylic thermoplastic resin of the present invention. If the reaction rate of this condensed cyclization reaction is insufficient, the optical properties are not lowered and the heat resistance is not sufficiently improved. Further, the heat treatment during molding may cause a condensation reaction in the middle of molding, resulting in gelation, water or alcohol, and appearing as foam or silver streak in the molded product.
- desired optical properties for example, low photoelastic coefficient
- a conventionally known method for example, a method in which a polymerization reaction liquid containing a solvent obtained by a polymerization step is directly heat-treated; necessary in the presence of a solvent.
- esterification catalyst or transesterification catalyst such as p-toluenesulfonic acid; acetic acid, propionic acid, benzoic acid, acrylic acid, methacrylic acid, etc.
- Organic carboxylic acids; basic compounds, organic carboxylates, carbonates and the like disclosed in JP-A-61-254608 and JP-A-61-261303; organic phosphorus compounds may also be used.
- organophosphorus compounds include alkyl (aryl) phosphonous acids such as methyl phosphonous acid, ethyl phosphonous acid, and phenyl phosphonous acid (however, these include alkyl (aryl) phosphinic acid which is a tautomer).
- Dialkyl (aryl) phosphinic acids such as dimethylphosphinic acid, diethylphosphinic acid, diphenylphosphinic acid, phenylmethylphosphinic acid, phenylethylphosphinic acid and their esters; methylphosphonic acid Alkyl phosphonic acids such as ethylphosphonic acid, trifluoromethylphosphonic acid, phenylphosphonic acid and their monoesters or diesters; methylphosphinic acid, ethylphosphinic acid, phenylphosphite Alkyl (aryl) phosphinic acids such as phosphoric acid and their esters; methyl phosphite, ethyl phosphite, phenyl phosphite, dimethyl phosphite, diethyl phosphite, diphenyl phosphite, phosphorous acid Phosphorous acid
- Alkyl (aryl) halogen phosphine methyl phosphine oxide, ethyl phosphine oxide, phenyl phosphine oxide, di-oxide Mono-, di- or tri-alkyl (aryl) phosphines such as methylphosphine, diethylphosphine oxide, diphenylphosphine oxide, trimethylphosphine oxide, triethylphosphine oxide, triphenylphosphine oxide; tetramethylphosphonium chloride, tetraethylphosphonium chloride, chloride Halogenated tetraalkyl (aryl) phosphonium such as tetraphenylphosphonium; and the like.
- the amount of the catalyst used in the condensation cyclization reaction is, for example, preferably 0.001 to 5% by mass, more preferably 0.01 to 2.5% by mass, and still more preferably with respect to the acrylic thermoplastic resin. Is 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass.
- the amount of the catalyst used is less than 0.001% by mass, the reaction rate of the cyclization condensation reaction may not be sufficiently improved.
- the amount of the catalyst used exceeds 5% by mass, the obtained acrylic thermoplastic resin may be colored, or the acrylic thermoplastic resin may be cross-linked to make melt molding difficult.
- the addition timing of the catalyst is not particularly limited.
- the catalyst may be added in the early stage of the reaction, may be added during the reaction, or may be added in both of them.
- the condensed cyclization reaction is performed in the presence of a solvent, and a devolatilization step is used in combination during the condensation cyclization reaction.
- a devolatilization step is used in combination during the condensation cyclization reaction.
- water or alcohol produced as a by-product in the condensation cyclization reaction is forcibly devolatilized and removed, so that the equilibrium of the reaction is advantageous to the side where the condensed cyclization product is produced.
- the devolatilization step refers to (i) volatile components such as polymerization solvent, residual monomer, and / or (ii) water or alcohol by-produced by the condensation cyclization reaction, under reduced pressure heating conditions as necessary, It means the process of removing. If this removal treatment is insufficient, residual volatile components in the resulting acrylic thermoplastic resin will increase, and coloring due to alteration during molding, and molding defects such as bubbles and silver streaks may occur. is there.
- the residual volatile content is desirably 1.0 part by weight or less, preferably 0.7 parts by weight or less, more preferably 0.5 parts by weight or less with respect to 100 parts by weight of the acrylic thermoplastic resin.
- the amount of residual volatile matter referred to in the present invention refers to the total amount of residual monomer, polymerization solvent, by-product water, and by-product alcohol that have not reacted during the above-described polymerization reaction.
- Examples of the apparatus used in the devolatilization step include a devolatilizer composed of a heat exchanger and a devolatilization tank; an extruder with a vent; an apparatus in which the devolatilizer and the extruder are arranged in series.
- a devolatilizer composed of a heat exchanger and a devolatilization tank
- an extruder with a vent an apparatus in which the devolatilizer and the extruder are arranged in series.
- an extruder with a vent one or a plurality of vents may be used, but it is preferable to have a plurality of vents.
- the reaction treatment temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C. If the reaction treatment temperature is less than 150 ° C., the cyclization condensation reaction may be insufficient and the residual volatile matter may increase. On the other hand, when the reaction treatment temperature exceeds 350 ° C., the obtained acrylic thermoplastic resin may be colored or decomposed.
- the reaction treatment pressure is preferably 931 to 1.33 hPa (700 to 1 mmHg), more preferably 798 to 66.5 hPa (600 to 50 mmHg).
- the reaction treatment pressure exceeds 931 hPa (700 mmHg)
- volatile components including water or alcohol may easily remain.
- the reaction treatment pressure is less than 1.33 hPa (1 mmHg)
- industrial implementation may be difficult.
- the reaction treatment time is appropriately selected depending on the condensed cyclization rate and the amount of residual volatile matter, but a shorter one is preferable in order to suppress coloring and decomposition of the obtained acrylic thermoplastic resin.
- the treatment is performed at a high treatment temperature for a long time, but there is a problem that the resulting acrylic thermoplastic resin is severely colored or decomposed.
- a problematic monomer for example, an aromatic hydrocarbon solvent, a hydrocarbon solvent, or an alcohol solvent
- a homogenizer (Emulsification and dispersion) treatment can be performed, and a pretreatment for liquid-liquid extraction and solid-liquid extraction of the unreacted monomer can be performed and separated from the polymerization reaction liquid.
- the polymerization reaction liquid after monomer separation is devolatilized, the total amount of monomers remaining in 100 parts by weight of the resulting acrylic thermoplastic resin can be suppressed to 0.5 parts by weight or less.
- the number of foreign substances contained in the acrylic thermoplastic resin of the present invention is preferably as small as possible when used for optics.
- the acrylic thermoplastic resin solution or melt is used, for example, with a filtration accuracy of 1.5 to 15 ⁇ m. And filtering with a leaf disk type polymer filter.
- the acrylic thermoplastic resin of the present invention is molded into a molded body, for example, a sheet or a film
- techniques such as extrusion molding and cast molding are used.
- an unstretched sheet or film can be extruded using an extruder equipped with a T die, a circular die, or the like.
- extrusion molding it can also be molded through melt-kneading of various additives and resins other than the acrylic thermoplastic resin of the present invention.
- an unstretched sheet or film can be cast-molded by dissolving the acrylic thermoplastic resin of the present invention using a solvent such as chloroform or methylene dichloride, followed by casting and solidifying.
- the sheet has a thickness exceeding 300 ⁇ m.
- the film has a thickness of 300 ⁇ m or less, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more.
- stretching can be performed continuously by extrusion molding and cast molding.
- an unstretched film in the case of a film, can be longitudinally uniaxially stretched in the mechanical flow direction and transversely uniaxially stretched in a direction perpendicular to the mechanical flow direction, and a sequential biaxial stretching method of roll stretching and tenter stretching,
- a biaxially stretched film can be produced by stretching by a simultaneous biaxial stretching method by stretching, a biaxial stretching method by tubular stretching, or the like. By stretching, the strength of the film can be improved.
- the final draw ratio can be determined from the heat shrinkage rate of the obtained molded body.
- the draw ratio is preferably 0.1% or more and 300% or less in at least one direction, more preferably 0.2% or more and 290% or less, and more preferably 0.3% or more and 280% or less. Especially preferred. By designing in this range, a stretched molded article that is preferable in terms of birefringence, heat resistance, and strength can be obtained.
- heat treatment when the molded body is a film, heat treatment (annealing) and the like can be performed after the stretching treatment in order to stabilize the optical isotropy and mechanical properties.
- the conditions for the heat treatment may be appropriately selected similarly to the conditions for the heat treatment performed on a conventionally known stretched film, and are not particularly limited.
- the molded article made of the acrylic thermoplastic resin of the present invention for example, a sheet or a film, may contain various additives within a range that does not significantly impair the effects of the present invention.
- the type of additive is not particularly limited as long as it is generally used for blending resins and rubber-like polymers.
- inorganic fillers pigments such as iron oxides, lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, mold release agents, paraffinic process oil, naphthenic process Oils, aromatic process oils, paraffins, organic polysiloxanes, mineralizers and other softeners / plasticizers, hindered phenol antioxidants, phosphorus heat stabilizers and other antioxidants, hindered amine light stabilizers, benzo Examples include triazole-based ultraviolet absorbers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, reinforcing agents such as metal whiskers, colorants, other additives, or mixtures thereof.
- lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide
- mold release agents paraffinic process oil, naphthenic process Oils, aromatic process oils
- the content of the additive is preferably 0 to 5% by mass, more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass.
- the molded article made of the acrylic thermoplastic resin of the present invention may be used in a range that does not impair the object of the present invention, for example, a polyolefin resin such as polyethylene and polypropylene; polystyrene, styrene / acrylonitrile copolymer Polymers, styrene resins such as styrene / maleic anhydride copolymers, styrene / methacrylic acid copolymers; polymethacrylate resins; polyamides; polyphenylene sulfide resins; polyether ether ketone resins; polyester resins; Polysulfone; Polyphenylene oxide; Polyimide; Polyetherimide; Polyacetal; Cyclic olefin resin; Norbornene resin; Thermoplastic resin such as cellulose resin such as triacetyl cellulose; and phenol resin; Resin; can be mixed at least one
- optical film The film made of the acrylic thermoplastic resin of the present invention can be used as an optical film.
- Optical films have applications that require birefringence as optical characteristics and applications that do not require them for industrial applications.
- Applications that require birefringence are, for example, retardation plates and retardation films (optical film A), and applications that do not require birefringence are, for example, polarizing plate protective films (optical film B).
- optical film A The optical film A made of the acrylic thermoplastic resin of the present invention satisfies the following optical properties (i).
- the absolute value of the photoelastic coefficient (C) is less than 2.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
- the following optical properties (ii) are satisfied.
- the absolute value of the in-plane direction phase difference (Re) is more than 30 nm and 300 nm or less.
- the following condition (iii) is satisfied.
- the glass transition temperature (Tg) is 120 ° C. or higher. More preferably, the following condition (iv) is satisfied.
- the total light transmittance is 85% or more.
- the absolute value of the photoelastic coefficient (C) of the optical film A made of the acrylic thermoplastic resin of the present invention is preferably less than 2.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 . More preferably, it is 2.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and further preferably 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
- C R
- nx ⁇ ny (wherein , C R : photoelastic coefficient, ⁇ R : stretching stress,
- the birefringence required for the optical film A when a retardation film is assumed, has an absolute value of more than 30 nm and 300 nm or less as a retardation (Re) in the in-plane direction due to the requirement of the liquid crystal mode to be applied. Designed to range.
- the absolute value of the required phase difference (Re) is 100 nm to 180 nm, preferably 120 nm to 160 nm, more preferably 130 nm to 150 nm.
- the absolute value of the necessary phase difference (Re) is 240 nm to 320 nm, preferably 260 nm to 300 nm, and more preferably 270 nm to 290 nm.
- the birefringence of the optical film A includes (i) composition control of the acrylic thermoplastic resin of the present invention, or (ii) polymer chain orientation control by stretching after molding, and (i) and (ii) Controlled by either method.
- the stretching process is not limited to birefringence control but may be performed for the purpose of increasing the mechanical strength of the film. Regardless of whether birefringence is imparted or mechanical strength is imparted, a material whose birefringence changes greatly by a slight stretching has a problem in that it is difficult to control the required phase difference.
- the glass transition temperature (Tg) of the optical film A made of the acrylic thermoplastic resin of the present invention is preferably 120 ° C. or higher. More preferably, it is 130 degreeC or more, More preferably, it is 135 degreeC or more. When the glass transition temperature is less than 120 ° C., the glass transition temperature may not be used for applications requiring high heat resistance such as poor dimensional stability under the use environment temperature.
- the total light transmittance of the optical film A made of the acrylic thermoplastic resin of the present invention is preferably 85% or more. More preferably, it is 88% or more, More preferably, it is 90% or more. When the total light transmittance is less than 85%, the transparency is lowered, and it may not be used for applications requiring high transparency.
- the optical film A made of the acrylic thermoplastic resin of the present invention has a much higher heat resistance and a lower photoelastic coefficient than the conventional film made of an acrylic thermoplastic resin, and the film is stretched by stretching. It is characterized by being able to easily control the phase difference.
- the optical film A made of the acrylic thermoplastic resin of the present invention is mainly used for applications requiring birefringence, for example, retardation films (specifically, various liquid crystal modes such as TN, VA, IPS, OCB). Suitable for liquid crystal optical compensation films such as viewing angle control films), retardation plates such as quarter-wave plates and half-wave plates.
- retardation films specifically, various liquid crystal modes such as TN, VA, IPS, OCB.
- liquid crystal optical compensation films such as viewing angle control films
- retardation plates such as quarter-wave plates and half-wave plates.
- Optical film B An optical film formed by molding the acrylic thermoplastic resin of the present invention and satisfying the following optical property (i): (I) The absolute value of the photoelastic coefficient (C) is less than 2.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
- the absolute value of the phase difference (Re) in the in-plane direction is 30 nm or less.
- the absolute value of the thickness direction retardation (Rth) is 30 nm or less.
- the glass transition temperature (Tg) is 120 ° C. or higher.
- the absolute value of the photoelastic coefficient (C) of the optical film B made of the acrylic thermoplastic resin of the present invention is preferably 2.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. More preferably, it is 2.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and further preferably 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
- C R
- nx ⁇ ny (wherein , C R : photoelastic coefficient, ⁇ R : stretching stress,
- the film When used industrially, it is preferred to stretch the film for the purpose of increasing the mechanical strength of the film.
- the birefringence may increase due to the orientation caused by stretching.
- the optical film B made of the acrylic thermoplastic resin of the present invention has an inclination K in the least squares approximate linear relationship (a) between the birefringence ( ⁇ n (S)) when stretched and the stretch ratio (S).
- the value satisfies the following formula (b).
- ⁇ n (S) K ⁇ S + C (a)
- the value of the slope K represents the magnitude of the increase in birefringence ( ⁇ n (S)) with respect to the draw ratio (S).
- a preferable K value range of the optical film B made of the acrylic thermoplastic resin of the present invention is
- ⁇ 0.15 ⁇ 10 ⁇ 6 more preferably
- the value of K is a value obtained by measuring the glass transition temperature (Tg) of the thermoplastic resin by DSC measurement and stretching at a stretching temperature of (Tg + 20) ° C. and a stretching speed of 500 mm / min.
- Tg glass transition temperature
- Tg + 20 glass transition temperature
- Tg + 20 stretching temperature
- Tg + 20 stretching temperature
- Tg + 20 stretching temperature
- Tg + 20 stretching temperature
- Tg + 20 ° C.
- a stretching speed 500 mm / min.
- the increase in birefringence decreases when the stretching speed is decreased.
- the value of K for example, the value of birefringence ( ⁇ n (S)) is measured when the draw ratio (S) is 100 times, 200 times, and 300 times, and these values are approximated by the least square method. Can be calculated.
- the draw ratio (S) is a value represented by the following formula, where L 0 is the distance between chucks before stretching and L 1 is the distance between chucks after stretching.
- the absolute value of the retardation (Re) per 100 ⁇ m thickness in the in-plane direction of the optical film B made of the acrylic thermoplastic resin of the present invention is 30 nm or less.
- the thickness is preferably 20 nm or less, more preferably 15 nm or less, and particularly preferably 11 nm or less.
- the absolute value of the phase difference is an index representing the magnitude of birefringence. Accordingly, the birefringence of the optical film B made of the acrylic thermoplastic resin of the present invention is small.
- the phase difference per 100 ⁇ m thickness in the in-plane direction exceeds 30 nm, it means that the anisotropy of the refractive index is high and may not be used for applications requiring low birefringence.
- the retardation of an optical film made of a thermoplastic resin increases by stretching.
- it may be stretched, but when the obtained stretched optical film has a phase difference per 100 ⁇ m in the in-plane direction exceeding 30 nm, low birefringence This is not to say that a protective film was obtained.
- the absolute value of the retardation (Rth) per 100 ⁇ m in the thickness direction of the optical film B made of the acrylic thermoplastic resin of the present invention is 30 nm or less.
- the thickness is preferably 20 nm or less, more preferably 15 nm or less, and particularly preferably 11 nm or less.
- the retardation in the thickness direction is an index that correlates with, for example, the viewing angle characteristics of a display device incorporating an optical film. Specifically, the smaller the absolute value of the phase difference in the thickness direction, the better the viewing angle characteristics, and the smaller the change in the color tone of the display color depending on the viewing angle and the lower the contrast.
- the absolute value of the retardation (Rth) is small in the thickness direction of the optical film.
- the glass transition temperature (Tg) of the optical film B is preferably 120 ° C. or higher. More preferably, it is 130 degreeC or more, More preferably, it is 135 degreeC or more. When the glass transition temperature is less than 120 ° C., the glass transition temperature may not be used for applications requiring high heat resistance such as poor dimensional stability under the use environment temperature.
- the total light transmittance of the optical film B is preferably 85% or more. More preferably, it is 88% or more, More preferably, it is 90% or more. When the total light transmittance is less than 85%, the transparency is lowered, and it may not be used for applications requiring high transparency.
- optical properties of the optical film B made of the acrylic thermoplastic resin of the present invention are such that the birefringence is extremely small (approximately zero) in both the in-plane direction and the film thickness direction, and the low photoelastic coefficient is also extremely small (approximate) In other words, it achieves optically complete isotropy that cannot be achieved by conventionally known resins. Furthermore, high heat resistance is also realized.
- the optical film B made of the acrylic thermoplastic resin of the present invention is suitable mainly for uses that do not require birefringence, such as a polarizing plate protective film.
- thermoplastic resin (1) Repeating unit From 1 H-NMR measurement, (i) a repeating unit derived from a methacrylate monomer, (ii) a repeating unit derived from a vinyl aromatic monomer, (iii) a repeating unit derived from a methacrylate monomer having an aromatic group, And (iv) an acid anhydride repeating unit was identified and its abundance was calculated.
- Measuring instrument DPX-400 manufactured by Blue Car Co., Ltd.
- Solvent for measurement CDCl 3 or d 6 -DMSO Measurement temperature: 40 ° C
- the glass transition temperature (Tg) was measured using a differential scanning calorimeter (Diamond DSC manufactured by PerkinElmer Japan Co., Ltd.) under a nitrogen gas atmosphere with ⁇ -alumina as a reference and JIS-K-7121. Based on the DSC curve obtained by heating about 10 mg of the sample from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min, it was calculated by the midpoint method.
- ⁇ Thickness direction retardation> Using a phase difference measuring apparatus (KOBRA-21ADH) manufactured by Oji Scientific Instruments, the phase difference at a wavelength of 589 nm was measured, and the obtained value was converted to a film thickness of 100 ⁇ m to obtain a measured value.
- a phase difference measuring apparatus (KOBRA-21ADH) manufactured by Oji Scientific Instruments, the phase difference at a wavelength of 589 nm was measured, and the obtained value was converted to a film thickness of 100 ⁇ m to obtain a measured value.
- ) and the phase difference (Rth) have the following relationship.
- Rth
- Rth phase difference
- d thickness of sample
- ) of birefringence is a value shown below.
- Example 1 Methyl methacrylate / styrene / maleic anhydride
- Example 1 A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
- MMA methyl methacrylate
- St styrene
- MAH maleic anhydride
- 240 g of ethylbenzene and 1.2 g of n-octyl mercaptan the mixture was replaced with nitrogen gas to prepare a raw material solution.
- An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of ethylbenzene and replacing with nitrogen gas.
- the raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump.
- the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle. The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution and methanol as an extraction solvent were simultaneously supplied to a homogenizer and subjected to emulsion dispersion extraction. The separated and precipitated polymer was collected and dried under vacuum at 130 ° C. for 2 hours to obtain the desired acrylic thermoplastic resin.
- Example 2 An acrylic thermoplastic resin was obtained in the same manner as in Example 1 except that 576 g of methyl methacrylate, 96 g of styrene, and 288 g of maleic anhydride were used.
- Composition: MMA / St / MAH 58/19/23 wt% (molar ratio: B / A> 1)
- Example 3 An acrylic thermoplastic resin was obtained in the same manner as in Example 1, except that 518 g of methyl methacrylate, 48 g of styrene, and 384 g of maleic anhydride were used.
- Composition: MMA / St / MAH 61/11/27 wt% (molar ratio: B / A> 1)
- Methyl methacrylate / styrene / maleic anhydride / benzyl methacrylate [Example 4] A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
- MMA methyl methacrylate
- St styrene
- BzMA benzyl methacrylate
- MAH maleic anhydride
- 240 g of methyl isobutyl ketone and 1.2 g of n-octyl mercaptan nitrogen was mixed.
- a raw material solution was prepared by replacing with gas.
- An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of methyl isobutyl ketone and then substituting with nitrogen gas.
- the raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump.
- the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump.
- the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle.
- the polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge.
- the polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge.
- the obtained polymer solution and methanol as an extraction solvent were simultaneously supplied to a homogenizer and subjected to emulsion dispersion extraction.
- the separated and precipitated polymer was collected and dried under vacuum at 130 ° C.
- Example 5 An acrylic thermoplastic resin was obtained in the same manner as in Example 3, except that 557 g of methyl methacrylate, 96 g of styrene, 19.2 g of benzyl methacrylate, and 288 g of maleic anhydride were used.
- Composition: MMA / St / MAH / BzMA 50/20/29/1 wt% (Molar ratio: B / A> 1)
- Methyl methacrylate / styrene / methacrylic acid / glutaric anhydride [Example 6] A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
- the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle. The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution and methanol as an extraction solvent were simultaneously supplied to a homogenizer and subjected to emulsion dispersion extraction. The separated and precipitated polymer was collected and dried under vacuum at 130 ° C. for 2 hours to obtain a precursor.
- the precursor was heat-treated with a lab plast mill equipped with a devolatilizer (treatment temperature: 250 ° C., vacuum degree: 133 hPa (100 mmHg)) to obtain a target acrylic thermoplastic resin.
- Composition: MMA / St / MAA / glutaric anhydride 37/12/10/41 wt% (Molar ratio: B / A> 1)
- Methyl methacrylate / styrene / methacrylic acid / glutaric anhydride / benzyl methacrylate [Example 7] A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
- the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle. The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution and methanol as an extraction solvent were simultaneously supplied to a homogenizer and subjected to emulsion dispersion extraction. The separated and precipitated polymer was collected and dried under vacuum at 130 ° C. for 2 hours to obtain a precursor.
- the precursor was heat-treated with a lab plast mill equipped with a devolatilizer (treatment temperature: 250 ° C., vacuum degree: 133 hPa (100 mmHg)) to obtain a target acrylic thermoplastic resin.
- Composition: MMA / St / MAA / glutaric anhydride / BzMA 59/9/4/4/24 wt% (molar ratio: B / A> 1)
- Example 1 In Example 1, except having used 960 g of methyl methacrylate, operation similar to Example 1 was performed and the acrylic thermoplastic resin was obtained.
- optical properties There is birefringence,
- B No birefringence,
- Example 15 and 16 With reference to Example 2, acrylic thermoplastic resins having different residual monomer amounts were prepared, subjected to compression press treatment at 250 ° C. for 2 minutes, and the color tone change at that time was observed. Table 3 shows the measurement results.
- the optical film A made of the acrylic thermoplastic resin of the present invention has high heat resistance and a low photoelastic coefficient, and has a significant negative phase difference, and the value is controlled to a desired value by the draw ratio. It is confirmed that it is possible. These characteristics are suitable for retardation film applications and the like.
- Example 19 Evaluation as optical film B (no birefringence) [Example 19, Comparative Example 5] Using the acrylic thermoplastic resin obtained in Example 3 and Comparative Example 1, a press film was molded according to the method described above. 100%, 200% and 300% stretched films were molded from the press film according to the method described above, and their optical properties were evaluated. Table 5 shows the measurement results.
- the optical film B made of the acrylic thermoplastic resin of the present invention is excellent in heat resistance, and its optical properties (very small birefringence value, very small photoelastic coefficient) have high optical isotropy not present in conventional materials. It is confirmed that Moreover, it is confirmed that the birefringence change rate is extremely small at the time of film forming or after arbitrary stretching. This feature is extremely advantageous in that, even if film forming by extrusion molding or subsequent drawing is performed, it is not affected by the orientation with respect to the polymer chain due to the flow during melt molding and birefringence does not occur.
- a molded body made of the acrylic thermoplastic resin of the present invention for example, a sheet or film, has high heat resistance and low photoelastic coefficient.
- a polarizing plate protective film, a quarter-wave plate, 1 used for displays such as liquid crystal displays, plasma displays, organic EL displays, field emission displays, rear projection televisions, /
- Preferably used for retardation plates such as two-wave plates
- liquid crystal optical compensation films such as viewing angle control films, display front plates, display substrates, lenses, etc., transparent substrates used for solar cells, transparent conductive substrates, etc. be able to.
- they can also be used for waveguides, lenses, optical fibers, optical fiber coating materials, LED lenses, lens covers, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polarising Elements (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
[1] 下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10~70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5~40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20~50重量%を含有する共重合体であって、ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下であることを特徴とするアクリル系熱可塑性樹脂。
[2] さらに、下記式(5)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位:0.1~5重量%を含有することを特徴とする[1]記載のアクリル系熱可塑性樹脂。
[3] GPC測定法による重量平均分子量で10,000~400,000、分子量分布で1.8~3.0の範囲にあることを特徴とする[1]又は[2]に記載のアクリル系熱可塑性樹脂。
[4] メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、環状酸無水物繰り返し単位が無水マレイン酸、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジルからそれぞれ誘導される共重合体よりなることを特徴とする[1]~[3]のいずれかに記載のアクリル系熱可塑性樹脂。
[5] 下記(i)の光学的性質を満足する[1]~[4]のいずれかに記載のアクリル系熱可塑性樹脂。
(i)光弾性係数(C)の絶対値が、2.5×10-12Pa-1未満である。
[6] さらに、下記(ii)の光学的性質を満足する[1]~[5]のいずれかに記載のアクリル系熱可塑性樹脂。
(ii)面内方向の位相差(Re)の絶対値が、30nmを超え、300nm以下である。
[7] 下記の条件(iii)を満足することを特徴とする[1]~[6]のいずれかに記載のアクリル系熱可塑性樹脂。
(iii)ガラス転移温度(Tg)が120℃以上である。
[8] さらに、下記の条件(iv)を満足することを特徴とする[1]~[7]のいずれかに記載のアクリル系熱可塑性樹脂。
(iv)全光線透過率が85%以上である。
[9] [1]~[8]のいずれかに記載のアクリル系熱可塑性樹脂からなる成形体。
[10] 成形体がシート又はフィルムである[9]記載の成形体。
[11] 押し出し成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[10]に記載のシート又はフィルム。
[12] キャスト成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[10]に記載のシート又はフィルム。
[13] [10]~[12]のいずれかに記載のシート又はフィルムからなる位相差板。
[14] [10]~[12]のいずれかに記載のシート又はフィルムからなる位相差フィルム。
[15] 下記(v)の光学的性質を満足することを特徴とする[1]~[5]のいずれかに記載のアクリル系熱可塑性樹脂。
(v)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
Δn(S)=K×S+C ・・・(a)
|K|<0.30×10-6 ・・・(b)
[16] さらに、下記(vi)の光学的性質を満足することを特徴とする[15]に記載のアクリル系熱可塑性樹脂。
(vi)面内方向の位相差(Re)の絶対値が30nm以下である。
[17] さらに、下記(vii)の光学的性質を満足することを特徴とする[15]又は[16]に記載のアクリル系熱可塑性樹脂。
(vii)厚み方向の位相差(Rth)の絶対値が30nm以下である。
[18] 下記の条件(viii)を満足することを特徴とする[15]~[17]のいずれかに記載のアクリル系熱可塑性樹脂。
(viii)ガラス転移温度(Tg)が120℃以上である。
[19] さらに下記の条件(ix)を満足することを特徴とする[15]~[18]のいずれかに記載のアクリル系熱可塑性樹脂。
(ix)全光線透過率が85%以上である。
[20] [15]~[19]のいずれかに記載のアクリル系熱可塑性樹脂からなる成形体。
[21] 成形体がシート又はフィルムである[20]に記載の成形体。
[22] 押し出し成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[21]に記載のシート又はフィルム。
[23] キャスト成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[21]に記載のシート又はフィルム。
[24] [21]~[23]のいずれかに記載のシート又はフィルムからなる偏光板保護フィルム。
[25] 成形体がレンズである[9]又は[20]に記載の成形体。
[26] [10]又は[21]に記載のシート又はフィルムからなる透明プラスチック基板。
に関する。
本発明の好ましいアクリル系熱可塑性樹脂は、下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10~70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5~40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20~50重量%からなる共重合体であって、
そのビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下のものである。
本発明のアクリル系熱可塑性樹脂の重合方法として、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の一般に行われている重合方法を用いることができるが、光学材料用途としては微小な異物の混入は出来るだけ避けるのが好ましく、この観点から懸濁剤や乳化剤を用いないキャスト重合や溶液重合を用いることが望ましい。
本発明のアクリル系熱可塑性樹脂において、式(4)で表される環状酸無水物繰り返し単位を含有するアクリル系熱可塑性樹脂は、式(1)、式(2)又は式(1)、式(2)、式(5)で表される繰り返し単位を含有するアクリル系熱可塑性樹脂を、加熱処理することにより誘導される。
(i)カルボキシル基+カルボキシル基 → 環状酸無水物+水、
脱揮工程とは、(i)重合溶剤、残存単量体などの揮発分、及び/又は(ii)縮合環化反応により副生した水又はアルコールを、必要に応じて減圧加熱条件下で、除去処理する工程を意味する。この除去処理が不充分であると、得られたアクリル系熱可塑性樹脂中の残存揮発分が多くなり、成形時の変質などにより着色することや、泡やシルバーストリークなどの成形不良が起こることがある。残存揮発分量は、アクリル系熱可塑性樹脂100重量部に対して1.0重量部以下、好ましくは0.7重量部以下、より好ましくは0.5重量部以下であることが望ましい。本発明でいう残存揮発分量とは、先述した重合反応時に反応しなかった残存単量体、重合溶媒、副生水、及び副生アルコールの合計量をいう。
本発明のアクリル系熱可塑性樹脂を成形体、例えば、シート又はフィルムに成形加工する際には、押出成形、キャスト成形等の手法が用いられる。例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸のシート又はフィルムを押し出し成形することができる。押し出し成形時に、各種添加剤、本発明のアクリル系熱可塑性樹脂以外の樹脂の溶融混錬を経て成形することもできる。
本発明のアクリル系熱可塑性樹脂からなる成形体、例えば、シート又はフィルムには、本発明の効果を著しく損なわない範囲内で、種々の添加剤を含有していてもよい。添加剤の種類は、樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。
本発明のアクリル系熱可塑性樹脂は、ディスプレイ基板、レンズ、太陽電池に用いられる透明基板等の成形体として好適に用いることができる。その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの被覆材料、LEDのレンズ、レンズカバー等の成形体に用いることができる。
本発明のアクリル系熱可塑性樹脂からなるフィルムは、光学フィルムとして用いることができる。光学フィルムには、産業的応用上、その光学特性として複屈折が必要な用途と必要でない用途が存在する。複屈折を必要とする用途は、例えば位相差板、位相差フィルム(光学フィルムA)であり、複屈折を必要としない用途は、例えば偏光板保護フィルム(光学フィルムB)である。
本発明のアクリル系熱可塑性樹脂からなる光学フィルムAは、下記(i)の光学的性質を満足する。
(i)光弾性係数(C)の絶対値が2.5×10-12Pa-1未満である。
好ましくは、下記(ii)の光学的性質を満足する。
(ii)面内方向の位相差(Re)の絶対値が、30nmを超え、300nm以下である。
さらに、下記(iii)の条件を満足する。
(iii)ガラス転移温度(Tg)が120℃以上である。
さらに好ましくは、下記の条件(iv)を満足する。
(iv)全光線透過率が85%以上である。
CR=|Δn|/σR
|Δn|=nx-ny
(式中、CR:光弾性係数、σR:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
本発明のアクリル系熱可塑性樹脂を成形してなる光学フィルムで、下記光学的性質(i)を満足する光学フィルムB。
(i)光弾性係数(C)の絶対値が2.5×10-12Pa-1未満である。
(ii)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
Δn(S)=K×S+C ・・・(a)
|K|<0.30×10-6 ・・・(b)
(iii)面内方向の位相差(Re)の絶対値が30nm以下である。
(iv)厚み方向の位相差(Rth)の絶対値が30nm以下である。
(v)面内方向の位相差(Re)と厚み方向の位相差(Rth)との比(Rth/Re)が次の関係式(c)を満たす。
0.1<Rth/Re<1 ・・・(c)
(vi)ガラス転移温度(Tg)が120℃以上である。
(vii)全光線透過率が85%以上である。
CR=|Δn|/σR
|Δn|=nx-ny
(式中、CR:光弾性係数、σR:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
Δn(S)=K×S+C ・・・(a)
|K|<0.30×10-6 ・・・(b)
(a)熱可塑性樹脂の解析
(1)繰り返し単位
1H-NMR測定より、(i)メタクリレート単量体由来の繰り返し単位、(ii)ビニル芳香族単量体由来の繰り返し単位、(iii)芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び(iv)酸無水物繰り返し単位を同定し、その存在量を算出した。
測定機器:ブルーカー株式会社製 DPX-400
測定溶媒:CDCl3、又はd6-DMSO
測定温度:40℃
ガラス転移温度(Tg)は、示差走査熱量計(パーキンエルマージャパン(株)製 Diamond DSC)を用いて、窒素ガス雰囲気下、α-アルミナをリファレンスとし、JIS-K-7121に準拠して、試料約10mgを常温から200℃まで昇温速度10℃/minで昇温して得られたDSC曲線から中点法で算出した。
重量平均分子量、及び数平均分子量は、ゲル浸透クロマトグラフ(東ソー(株)製 HLC-8220)を用いて、溶媒はテトラヒドロフラン、設定温度40℃で、市販標準PMMA換算により求めた。
(1)光学フィルムサンプルの作製
(a)プレスフィルムの成型
真空圧縮成型機((株)神藤金属工業所製 SFV?30型)を用いて、大気圧下、260℃、で25分間予熱後、真空下(約10kPa)、260℃、約10MPaで5分間圧縮してプレスフィルムを成型した。
インストロン社製5t引張り試験機を用いて、延伸温度(Tg+20)℃、延伸速度(500mm/分)で一軸フリー延伸して延伸フィルムを成形した。延伸倍率は、100%、200%、及び300%で延伸した。
大塚電子製RETS-100を用いて、回転検光子法により測定を行った。複屈折の値は、波長550nm光の値である。複屈折(Δn)は、以下の式により計算した。
Δn=nx-ny
(Δn:複屈折、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
複屈折(Δn)の絶対値(|Δn|)は、以下のように求めた。
|Δn|=|nx-ny|
<面内の位相差>
大塚電子(株)製RETS-100を用いて、回転検光子法により波長400~800nmの範囲について測定を行った。
複屈折の絶対値(|Δn|)と位相差(Re)は以下の関係にある。
Re=|Δn|×d
(|Δn|:複屈折の絶対値、Re:位相差、d:サンプルの厚み)
また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|nx-ny|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率)
王子計測機器(株)製位相差測定装置(KOBRA-21ADH)を用いて、波長589nmにおける位相差を測定し、得られた値をフィルムの厚さ100μmに換算して測定値とした。
Rth=|Δn|×d
(|Δn|:複屈折の絶対値、Rth:位相差、d:サンプルの厚み)
また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|(nx+ny)/2-nz|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率、nz:面外で延伸方向と垂直な厚み方向の屈折率)
(理想となる、3次元方向について完全等方的等方性であるフィルムでは、面内位相差(Re)、厚み方向位相差(Rth)ともに0となる。)
Polymer Engineering and Science 1999, 39, 2349-2357に詳細について記載のある複屈折測定装置を用いた。レーザー光の経路にフィルムの引張り装置を配置し、23℃で伸張応力をかけながら複屈折を測定した。伸張時の歪速度は50%/分(チャック間:50mm、チャック移動速度:5mm/分)、試験片幅は6mmで測定を行った。複屈折の絶対値(|Δn|)と伸張応力(σR)の関係から、最小二乗近似によりその直線の傾きを求め光弾性係数(CR)を計算した。計算には伸張応力が2.5MPa≦σR≦10MPaの間のデータを用いた。
CR=|Δn|/σR
|Δn|=|nx-ny|
(CR:光弾性係数、σR:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向の垂直な屈折率)
メタクリル酸メチル/スチレン/無水マレイン酸
[実施例1]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル(MMA)518g、スチレン(St)48g、無水マレイン酸(MAH)384g、エチルベンゼン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’-アゾビス(イソブチロニトリル)を0.364gをエチルベンゼン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液と、抽出溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して目的とするアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH=54/23/22wt%(モル比:B/A>1)
分子量:Mw=15.1×104;Mw/Mn=1.94
Tg:145℃
実施例1において、メタクリル酸メチル576g、スチレン96g、無水マレイン酸288gを用いた以外は、実施例1と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH=58/19/23wt%(モル比:B/A>1)
分子量:Mw=19.7×104;Mw/Mn=2.16
Tg:144℃
実施例1において、メタクリル酸メチル518g、スチレン48g、無水マレイン酸384gを用いた以外は、実施例1と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH=61/11/27wt%(モル比:B/A>1)
分子量:Mw=19.5×104;Mw/Mn=2.23
Tg:141℃
[実施例4]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル(MMA)518g、スチレン(St)115g、メタクリル酸ベンジル(BzMA)19.2g、無水マレイン酸(MAH)307g、メチルイソブチルケトン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’-アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液と、抽出溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して目的とするアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH/BzMA=55/20/24/1wt%
(モル比:B/A>1)
分子量:Mw=16.2×104;Mw/Mn=1.99
Tg:143℃
実施例4において、メタクリル酸メチル557g、スチレン96g、メタクリル酸ベンジル19.2g、無水マレイン酸288gを用いた以外は、実施例3と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH/BzMA=50/20/29/1wt%
(モル比:B/A>1)
分子量:Mw=19.0×104;Mw/Mn=2.23
Tg:143℃
[実施例6]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルとを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル288g、スチレン96g、メタクリル酸(MAA)576g、m-キシレン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。1,1-ジ(t-ブチルパーオキシ)シクロヘキサン75wt%エチルベンゼン溶液0.08gをエチルベンゼン12.96gで希釈した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液と、抽出溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して前駆体を得た。該前駆体を脱揮装置を附帯したラボプラストミルで加熱処理(処理温度:250℃、真空度:133hPa(100mmHg))して目的とするアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAA/無水グルタル酸=37/12/10/41wt%
(モル比:B/A>1)
分子量:Mw=26.7×104;Mw/Mn=2.65
Tg:157℃
[実施例7]
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
メタクリル酸メチル605g、スチレン67g、メタクリル酸ベンジル48g、メタクリル酸(MAA)240g、メチルイソブチルケトン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’-アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液と、抽出溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して前駆体を得た。該前駆体を脱揮装置を附帯したラボプラストミルで加熱処理(処理温度:250℃、真空度:133hPa(100mmHg))して目的とするアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAA/無水グルタル酸/BzMA
=59/9/4/4/24wt%(モル比:B/A>1)
分子量:Mw=11×104;Mw/Mn=2.35
Tg:131℃
実施例1において、メタクリル酸メチル960gを用いた以外は、実施例1と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
組成:MMA=100wt%
分子量:Mw=10×104;Mw/Mn=1.89
Tg:121℃
実施例1において、メタクリル酸メチル768g、スチレン144g、無水マレイン酸48gに変更した以外は、実施例1と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
組成:MMA/St/MAH=76/17/7wt%(モル比:B/A<1)
分子量:Mw=13.4×104;Mw/Mn=2.01
Tg:128℃
これらの重合結果を表1に示す。
実施例1~7、比較例1、2で得られたアクリル系熱可塑性樹脂を前述の方法に従いプレスフィルムを成型した。該プレスフィルムを前述の方法に従い100%延伸フィルムを成形し、その光学特性を評価した。測定結果を表2に示す。
A:複屈折あり、|C|<2.5×10-12Pa-1、|Re|>30nm
B:複屈折なし、|C|<2.5×10-12Pa-1、|Re|≦30nm
×:|C|≧2.5×10-12Pa-1
[実施例17~18、比較例5]
実施例1、5及び比較例1で得られたアクリル系熱可塑性樹脂を用いて、前述の方法に従いプレスフィルムを成型した。該プレスフィルムから前述の方法に従い100%、200%及び300%延伸フィルムを成型し、その光学特性を評価した。測定結果を表4に示す。
これらの特性は、位相差フィルム用途などに好適である。
[実施例19、比較例5]
実施例3、及び比較例1で得られたアクリル系熱可塑性樹脂を用いて、前述の方法に従いプレスフィルムを成型した。該プレスフィルムから前述の方法に従い100%、200%及び300%延伸フィルムを成型し、その光学特性を評価した。測定結果を表5に示す。
その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。
Claims (26)
- 下記式(1)で表されるメタクリレート単量体由来の繰り返し単位:10~70重量%、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位:5~40重量%、及び下記式(3)又は下記式(4)で表される環状酸無水物繰り返し単位:20~50重量%を含有する共重合体であって、ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下の範囲にあり、且つ、該共重合体100重量部に対して残存する単量体の合計が0.5重量部以下であることを特徴とするアクリル系熱可塑性樹脂。
- GPC測定法による重量平均分子量で10,000~400,000、分子量分布で1.8~3.0の範囲にあることを特徴とする請求項1又は2に記載のアクリル系熱可塑性樹脂。
- メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、環状酸無水物繰り返し単位が無水マレイン酸、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジルからそれぞれ誘導される共重合体よりなることを特徴とする請求項1~3のいずれか1項に記載のアクリル系熱可塑性樹脂。
- 下記(i)の光学的性質を満足する請求項1~4のいずれか1項に記載のアクリル系熱可塑性樹脂。
(i)光弾性係数(C)の絶対値が、2.5×10-12Pa-1未満である。 - さらに、下記(ii)の光学的性質を満足する請求項1~5のいずれか1項に記載のアクリル系熱可塑性樹脂。
(ii)面内方向の位相差(Re)の絶対値が、30nmを超え、300nm以下である。 - 下記の条件(iii)を満足することを特徴とする請求項1~6のいずれか1項に記載のアクリル系熱可塑性樹脂。
(iii)ガラス転移温度(Tg)が120℃以上である。 - さらに下記の条件(iv)を満足することを特徴とする請求項1~7のいずれか1項に記載のアクリル系熱可塑性樹脂。
(iv)全光線透過率が85%以上である。 - 請求項1~8のいずれか1項に記載のアクリル系熱可塑性樹脂からなる成形体。
- 成形体がシート又はフィルムである請求項9記載の成形体。
- 押し出し成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項10に記載のシート又はフィルム。
- キャスト成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項10に記載のシート又はフィルム。
- 請求項10~12のいずれか1項に記載のシート又はフィルムからなる位相差板。
- 請求項10~12のいずれか1項に記載のシート又はフィルムからなる位相差フィルム。
- 下記(v)の光学的性質を満足することを特徴とする請求項1~5のいずれか1項に記載のアクリル系熱可塑性樹脂。
(v)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
Δn(S)=K×S+C ・・・(a)
|K|<0.30×10-6 ・・・(b) - さらに、下記(vi)の光学的性質を満足することを特徴とする請求項15に記載のアクリル系熱可塑性樹脂。
(vi)面内方向の位相差(Re)の絶対値が30nm以下である。 - さらに、下記(vii)の光学的性質を満足することを特徴とする請求項15又は16に記載のアクリル系熱可塑性樹脂。
(vii)厚み方向の位相差(Rth)の絶対値が30nm以下である。 - 下記の条件(viii)を満足することを特徴とする請求項15~17のいずれか1項に記載のアクリル系熱可塑性樹脂。
(viii)ガラス転移温度(Tg)が120℃以上である。 - さらに下記の条件(ix)を満足することを特徴とする請求項15~18のいずれか1項に記載のアクリル系熱可塑性樹脂。
(ix)全光線透過率が85%以上である。 - 請求項15~19のいずれか1項に記載のアクリル系熱可塑性樹脂からなる成形体。
- 成形体がシート又はフィルムである請求項20記載の成形体。
- 押し出し成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項21に記載のシート又はフィルム。
- キャスト成形で成形されたシート又はフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項21に記載のシート又はフィルム。
- 請求項21~23のいずれか1項に記載のシート又はフィルムからなる偏光板保護フィルム。
- 成形体がレンズである請求項9又は請求項20に記載の成形体。
- 請求項10又は請求項21に記載のシート又はフィルムからなる透明プラスチック基板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010522660A JP5283701B2 (ja) | 2008-07-31 | 2009-06-23 | アクリル系熱可塑性樹脂、及びその成形体 |
US13/055,933 US8895682B2 (en) | 2008-07-31 | 2009-06-23 | Thermoplastic acrylic resin, and molded product thereof |
KR1020137028435A KR20130128015A (ko) | 2008-07-31 | 2009-06-23 | 아크릴계 열가소성 수지, 및 그 성형체 |
CN2009801296382A CN102112506B (zh) | 2008-07-31 | 2009-06-23 | 热塑性丙烯酸树脂及其成型体 |
KR1020117002513A KR101381528B1 (ko) | 2008-07-31 | 2009-06-23 | 아크릴계 열가소성 수지, 및 그 성형체 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008198687 | 2008-07-31 | ||
JP2008-198687 | 2008-07-31 | ||
JP2008-198678 | 2008-07-31 | ||
JP2008198678 | 2008-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013557A1 true WO2010013557A1 (ja) | 2010-02-04 |
Family
ID=41610261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061405 WO2010013557A1 (ja) | 2008-07-31 | 2009-06-23 | アクリル系熱可塑性樹脂、及びその成形体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8895682B2 (ja) |
JP (1) | JP5283701B2 (ja) |
KR (2) | KR101381528B1 (ja) |
CN (1) | CN102112506B (ja) |
TW (1) | TWI394761B (ja) |
WO (1) | WO2010013557A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103347952A (zh) * | 2011-04-13 | 2013-10-09 | Lg化学株式会社 | 光学膜用树脂组合物和使用该树脂组合物的光学膜 |
CN103403090A (zh) * | 2011-06-01 | 2013-11-20 | Lg化学株式会社 | 树脂组合物以及使用该树脂组合物形成的光学膜 |
JP2014514611A (ja) * | 2011-06-01 | 2014-06-19 | エルジー・ケム・リミテッド | 光学フィルム用樹脂組成物及びこれを用いた光学フィルム |
WO2015159645A1 (ja) * | 2014-04-16 | 2015-10-22 | コニカミノルタ株式会社 | 偏光板及び液晶表示装置 |
WO2016114374A1 (ja) * | 2015-01-15 | 2016-07-21 | デンカ株式会社 | 透明な高耐熱性樹脂組成物 |
US9429682B2 (en) | 2011-04-13 | 2016-08-30 | Lg Chem, Ltd. | Method for preparing acrylic copolymer resin for optical film and method for fabricating optical film using the same |
WO2018199213A1 (ja) | 2017-04-28 | 2018-11-01 | 株式会社クラレ | 押出樹脂板とその製造方法 |
KR20180136314A (ko) * | 2017-06-14 | 2018-12-24 | 삼성에스디아이 주식회사 | 광학필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치 |
WO2019022213A1 (ja) | 2017-07-28 | 2019-01-31 | 株式会社クラレ | 積層押出樹脂板及び赤外線センサー付き液晶ディスプレイ用の保護板 |
WO2019107462A1 (ja) | 2017-11-30 | 2019-06-06 | 株式会社クラレ | 熱成形用積層板とその製造方法 |
WO2020022426A1 (ja) | 2018-07-27 | 2020-01-30 | 株式会社クラレ | 赤外線遮蔽性積層シートとその製造方法 |
WO2020149254A1 (ja) | 2019-01-18 | 2020-07-23 | 株式会社クラレ | 押出樹脂積層体及び硬化被膜付き押出樹脂積層体 |
WO2020241724A1 (ja) | 2019-05-29 | 2020-12-03 | 株式会社クラレ | 積層体とその製造方法 |
WO2023054533A1 (ja) | 2021-09-29 | 2023-04-06 | 株式会社クラレ | 押出樹脂積層フィルムとその製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101231715B1 (ko) * | 2009-03-18 | 2013-02-08 | 주식회사 엘지화학 | 아크릴계 공중합체 수지, 이를 포함하는 광학 필름 및 액정표시 장치 |
CN103619946B (zh) * | 2011-07-01 | 2016-08-17 | 旭化成株式会社 | 丙烯酸系热塑性树脂组合物及其成型体 |
KR101462579B1 (ko) * | 2013-02-06 | 2014-11-18 | 동우 화인켐 주식회사 | 편광판 및 이를 포함하는 액정표시장치 |
JP6601056B2 (ja) * | 2014-09-12 | 2019-11-06 | 住友化学株式会社 | 熱可塑性樹脂フィルム |
AU2014411544B2 (en) * | 2014-11-20 | 2020-05-14 | Essilor International | Ophthalmic lens with reduced warpage |
JP6674404B2 (ja) * | 2016-03-29 | 2020-04-01 | 旭化成株式会社 | メタクリル系樹脂組成物、及び成形体 |
US20190255757A1 (en) | 2016-09-30 | 2019-08-22 | Zeon Corporation | Resin film, conductive film and method for producing these films |
JP6900810B2 (ja) * | 2017-07-20 | 2021-07-07 | 富士フイルムビジネスイノベーション株式会社 | 樹脂組成物及び成形体 |
CN107936170B (zh) * | 2017-12-04 | 2020-07-24 | 万华化学集团股份有限公司 | 一种耐热聚甲基丙烯酸甲酯及其制备方法 |
TW202200642A (zh) * | 2020-06-26 | 2022-01-01 | 德商羅姆有限公司 | 具有提升熱穩定性的光學級別模制組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59221314A (ja) * | 1983-05-31 | 1984-12-12 | Kyowa Gas Chem Ind Co Ltd | メタクリル共重合体の製造方法 |
JPS60147417A (ja) * | 1984-01-11 | 1985-08-03 | Mitsubishi Rayon Co Ltd | 耐熱性メタクリル系樹脂の製造法 |
JPS63264613A (ja) * | 1986-12-25 | 1988-11-01 | Asahi Chem Ind Co Ltd | 光学素子基体 |
JPS6414220A (en) * | 1987-07-07 | 1989-01-18 | Mitsubishi Rayon Co | Base for information recording medium |
JPH04227613A (ja) * | 1991-05-10 | 1992-08-17 | Asahi Chem Ind Co Ltd | 耐熱性、無色透明性に優れたメタクリル樹脂の製造法 |
JPH04356501A (ja) * | 1991-04-04 | 1992-12-10 | Asahi Chem Ind Co Ltd | 耐熱性に優れた共重合体の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57153008A (en) | 1981-03-19 | 1982-09-21 | Asahi Chem Ind Co Ltd | Methacrylic resin having excellent heat resistance |
JPS6071661A (ja) * | 1983-09-29 | 1985-04-23 | Asahi Chem Ind Co Ltd | 熱可塑性ポリアミド組成物 |
JPS631964A (ja) | 1986-06-20 | 1988-01-06 | Fuji Photo Film Co Ltd | 電気泳動用媒体材料 |
US5198305A (en) | 1986-12-25 | 1993-03-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Optical element substrate |
JPH0386712A (ja) | 1989-08-31 | 1991-04-11 | Kuraray Co Ltd | 低複屈折性および低吸湿性に優れたメタクリル系樹脂 |
JPH03123356A (ja) | 1989-10-06 | 1991-05-27 | Fuji Photo Film Co Ltd | 電子写真式平版印刷用原版 |
JP2977274B2 (ja) | 1989-12-26 | 1999-11-15 | 日本ゼオン株式会社 | 成形用材料および成形品 |
KR920702857A (ko) | 1990-02-23 | 1992-10-28 | 나가이 야타로 | 광학식 정보기록체용 메타그릴 수지 성형재료 |
JPH05186659A (ja) | 1991-06-28 | 1993-07-27 | Asahi Chem Ind Co Ltd | 耐熱性耐衝撃性樹脂組成物 |
JPH05288929A (ja) | 1992-02-14 | 1993-11-05 | Kuraray Co Ltd | 偏光板 |
JPH05311025A (ja) | 1992-05-01 | 1993-11-22 | Mitsubishi Rayon Co Ltd | メタクリル系樹脂成形材料 |
DE69309795T2 (de) * | 1992-07-10 | 1997-11-27 | Nippon Catalytic Chem Ind | Acrylat Polymer, seine Verwendung und Verfahren zu seiner Herstellung |
JPH0885729A (ja) | 1994-09-16 | 1996-04-02 | Asahi Chem Ind Co Ltd | 帯電防止性熱可塑性樹脂積層成形体 |
JPH0913852A (ja) | 1995-06-29 | 1997-01-14 | Fujisash Co | 網戸装置付き障子 |
JPH10130449A (ja) | 1996-10-29 | 1998-05-19 | Sumitomo Chem Co Ltd | 光選択吸収性メタクリル系樹脂組成物およびシート |
JP4432551B2 (ja) * | 2003-03-12 | 2010-03-17 | 東レ株式会社 | 熱可塑性樹脂組成物、成形品およびフィルム |
DE10349144A1 (de) * | 2003-10-17 | 2005-05-12 | Roehm Gmbh | Polymermischung für mattierte Spritzgußteile |
MX2007008855A (es) * | 2003-10-18 | 2008-03-13 | Roehm Gmbh | Masas de pieza moldeada de poli (met) acrilato resistentes a impactos con alta estabilidad termica. |
TWI249552B (en) | 2003-11-17 | 2006-02-21 | Chi Mei Corp | Photosensitive resin composition used for color filter |
US20070243364A1 (en) * | 2004-04-28 | 2007-10-18 | Shigetoshi Maekawa | Acrylic Resin Films and Process for Producing the Same |
DE102004022540A1 (de) | 2004-05-05 | 2005-12-08 | Röhm GmbH & Co. KG | Formmasse für Formkörper mit hoher Witterungsbeständigkeit |
JP2006131898A (ja) | 2004-10-07 | 2006-05-25 | Toray Ind Inc | 熱可塑性樹脂フィルム |
JP2006274118A (ja) | 2005-03-30 | 2006-10-12 | Toray Ind Inc | 熱可塑性樹脂組成物およびそれからなる成形品、フィルムおよびシート |
JP5159124B2 (ja) | 2006-03-01 | 2013-03-06 | 株式会社日本触媒 | アクリル系樹脂成型品の製造方法及びアクリル系樹脂成型品 |
-
2009
- 2009-06-23 CN CN2009801296382A patent/CN102112506B/zh active Active
- 2009-06-23 WO PCT/JP2009/061405 patent/WO2010013557A1/ja active Application Filing
- 2009-06-23 JP JP2010522660A patent/JP5283701B2/ja active Active
- 2009-06-23 US US13/055,933 patent/US8895682B2/en active Active
- 2009-06-23 KR KR1020117002513A patent/KR101381528B1/ko active IP Right Grant
- 2009-06-23 KR KR1020137028435A patent/KR20130128015A/ko not_active Application Discontinuation
- 2009-06-24 TW TW098121135A patent/TWI394761B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59221314A (ja) * | 1983-05-31 | 1984-12-12 | Kyowa Gas Chem Ind Co Ltd | メタクリル共重合体の製造方法 |
JPS60147417A (ja) * | 1984-01-11 | 1985-08-03 | Mitsubishi Rayon Co Ltd | 耐熱性メタクリル系樹脂の製造法 |
JPS63264613A (ja) * | 1986-12-25 | 1988-11-01 | Asahi Chem Ind Co Ltd | 光学素子基体 |
JPS6414220A (en) * | 1987-07-07 | 1989-01-18 | Mitsubishi Rayon Co | Base for information recording medium |
JPH04356501A (ja) * | 1991-04-04 | 1992-12-10 | Asahi Chem Ind Co Ltd | 耐熱性に優れた共重合体の製造方法 |
JPH04227613A (ja) * | 1991-05-10 | 1992-08-17 | Asahi Chem Ind Co Ltd | 耐熱性、無色透明性に優れたメタクリル樹脂の製造法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103347952A (zh) * | 2011-04-13 | 2013-10-09 | Lg化学株式会社 | 光学膜用树脂组合物和使用该树脂组合物的光学膜 |
US9494712B2 (en) | 2011-04-13 | 2016-11-15 | Lg Chem, Ltd. | Resin composition for optical film and optical film using the same |
JP2014506683A (ja) * | 2011-04-13 | 2014-03-17 | エルジー・ケム・リミテッド | 光学フィルム用樹脂組成物及びこれを利用した光学フィルム |
US9429682B2 (en) | 2011-04-13 | 2016-08-30 | Lg Chem, Ltd. | Method for preparing acrylic copolymer resin for optical film and method for fabricating optical film using the same |
CN103403090B (zh) * | 2011-06-01 | 2015-09-09 | Lg化学株式会社 | 树脂组合物以及使用该树脂组合物形成的光学膜 |
JP2014514611A (ja) * | 2011-06-01 | 2014-06-19 | エルジー・ケム・リミテッド | 光学フィルム用樹脂組成物及びこれを用いた光学フィルム |
CN103403090A (zh) * | 2011-06-01 | 2013-11-20 | Lg化学株式会社 | 树脂组合物以及使用该树脂组合物形成的光学膜 |
WO2015159645A1 (ja) * | 2014-04-16 | 2015-10-22 | コニカミノルタ株式会社 | 偏光板及び液晶表示装置 |
WO2016114374A1 (ja) * | 2015-01-15 | 2016-07-21 | デンカ株式会社 | 透明な高耐熱性樹脂組成物 |
JPWO2016114374A1 (ja) * | 2015-01-15 | 2017-10-19 | デンカ株式会社 | 透明な高耐熱性樹脂組成物 |
WO2018199213A1 (ja) | 2017-04-28 | 2018-11-01 | 株式会社クラレ | 押出樹脂板とその製造方法 |
KR20180136314A (ko) * | 2017-06-14 | 2018-12-24 | 삼성에스디아이 주식회사 | 광학필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치 |
KR102084114B1 (ko) * | 2017-06-14 | 2020-03-03 | 삼성에스디아이 주식회사 | 광학필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치 |
WO2019022213A1 (ja) | 2017-07-28 | 2019-01-31 | 株式会社クラレ | 積層押出樹脂板及び赤外線センサー付き液晶ディスプレイ用の保護板 |
WO2019107462A1 (ja) | 2017-11-30 | 2019-06-06 | 株式会社クラレ | 熱成形用積層板とその製造方法 |
WO2020022426A1 (ja) | 2018-07-27 | 2020-01-30 | 株式会社クラレ | 赤外線遮蔽性積層シートとその製造方法 |
WO2020149254A1 (ja) | 2019-01-18 | 2020-07-23 | 株式会社クラレ | 押出樹脂積層体及び硬化被膜付き押出樹脂積層体 |
WO2020241724A1 (ja) | 2019-05-29 | 2020-12-03 | 株式会社クラレ | 積層体とその製造方法 |
WO2023054533A1 (ja) | 2021-09-29 | 2023-04-06 | 株式会社クラレ | 押出樹脂積層フィルムとその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110130535A1 (en) | 2011-06-02 |
JPWO2010013557A1 (ja) | 2012-01-12 |
KR101381528B1 (ko) | 2014-04-10 |
KR20130128015A (ko) | 2013-11-25 |
CN102112506B (zh) | 2013-08-21 |
KR20110038094A (ko) | 2011-04-13 |
JP5283701B2 (ja) | 2013-09-04 |
US8895682B2 (en) | 2014-11-25 |
TWI394761B (zh) | 2013-05-01 |
CN102112506A (zh) | 2011-06-29 |
TW201004982A (en) | 2010-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5283701B2 (ja) | アクリル系熱可塑性樹脂、及びその成形体 | |
JP4717947B2 (ja) | アクリル系熱可塑性樹脂、及び光学材料用成形体 | |
JP5142938B2 (ja) | 光学フィルム | |
TWI440646B (zh) | 丙烯酸系熱可塑性樹脂及其成形體 | |
JP5190564B2 (ja) | アクリル系熱可塑性樹脂組成物及びその成形体 | |
US20100168363A1 (en) | Low Birefringent Copolymers | |
JP5919611B2 (ja) | 低い光弾性係数を有する位相差板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980129638.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802802 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010522660 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13055933 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117002513 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09802802 Country of ref document: EP Kind code of ref document: A1 |