[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010090222A1 - Hb-egf結合性タンパク質複合体 - Google Patents

Hb-egf結合性タンパク質複合体 Download PDF

Info

Publication number
WO2010090222A1
WO2010090222A1 PCT/JP2010/051515 JP2010051515W WO2010090222A1 WO 2010090222 A1 WO2010090222 A1 WO 2010090222A1 JP 2010051515 W JP2010051515 W JP 2010051515W WO 2010090222 A1 WO2010090222 A1 WO 2010090222A1
Authority
WO
WIPO (PCT)
Prior art keywords
egf
cells
bound
membrane
cell
Prior art date
Application number
PCT/JP2010/051515
Other languages
English (en)
French (fr)
Inventor
哲男 南野
英輔 目加田
知浩 浅井
成二 高島
仁裕 朝野
直人 奥
Original Assignee
国立大学法人大阪大学
静岡県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 静岡県公立大学法人 filed Critical 国立大学法人大阪大学
Priority to US13/147,903 priority Critical patent/US20120027843A1/en
Priority to JP2010549492A priority patent/JP5299922B2/ja
Publication of WO2010090222A1 publication Critical patent/WO2010090222A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell

Definitions

  • the present invention relates to an HB-EGF-binding protein complex capable of efficiently introducing a target substance such as a drug or gene into a cell, a drug containing the complex, an agent for promoting introduction of the target substance into a cell, and a target
  • the present invention relates to a method for promoting introduction of a substance into a cell.
  • a drug delivery system is attracting attention as a method capable of specifically transporting an active ingredient such as a drug to target cells and target tissues and allowing the active ingredient to act at a target location.
  • DDS drug delivery system
  • gene introduction into a target cell is indispensable when analyzing the structure, function or control mechanism of the gene.
  • such a technique for introducing a target substance into cells is extremely important in protein production, gene therapy, DNA vaccine and the like which are important in the medical field.
  • a method for introducing a gene or the like into a cell includes a method using a viral vector (virus vector method), a method using lipofection using a liposome (liposome method), an ultrasonic method, electroporation. Laws are being implemented.
  • adenoviral vectors and lentiviral vectors are known.
  • Transient gene expression suppression using a vector designed with shRNA as an adenoviral vector, constitutive gene using a vector designed with shRNA as a lentiviral belter Expression suppression is performed.
  • the viral vector method has a problem of an immune reaction induced by a viral vector, a risk that a cellular gene is modified by the viral vector, and the like. There is also an ethical problem when used for treatment.
  • Liposome method is highly safe because there is no risk of immune reaction, etc., as in the case of using viral vectors, and it does not damage cells like ultrasonic method and electroporation method. Is also widely implemented.
  • the liposome method has a problem that the substance introduction efficiency into cells is low. For this reason, the target substance could not be sufficiently introduced into the target cells in the disease treatment or experimental system.
  • it has been difficult to introduce sufficient amounts of target substances such as genes and drugs into cells such as cardiomyocytes, nerve cells, and cancer cells.
  • Patent Document 1 discloses a method for introducing a target substance into a cell, wherein the cell is brought into contact with a composition comprising a peptide having a specific amino acid sequence and the target substance.
  • Patent Document 2 discloses a method for introducing a target substance into a cell using a peptide having a specific amino acid sequence.
  • these methods have room for improvement in order to be able to introduce the target substance specifically and efficiently into cardiomyocytes and the like. Therefore, it has been desired to develop a technique that is highly safe and that can efficiently introduce a target substance specifically into cells such as cardiomyocytes and nerve cells.
  • the present invention relates to an HB-EGF binding protein complex capable of efficiently introducing a target substance such as a drug or gene into a target cell, a kit containing the complex, and cancer, heart failure, neurological disease or lung disease. It is an object of the present invention to provide a therapeutic or preventive agent, a diagnostic agent, and a method and a method for promoting introduction of a target substance into cells.
  • HB-EGF heparin-binding EGF-like growth factor
  • EGF antibody-bound liposomes are efficiently introduced (incorporated) into cells via membrane-bound HB-EGF.
  • the efficiency of introduction of anti-HB-EGF antibody-modified liposomes into cells via membrane-bound HB-EGF is approximately 60 times that of introduction of PEG-liposomes not modified with anti-HB-EGF antibodies into cells. It was more expensive.
  • uptake of anti-HB-EGF antibody-modified liposome hardly occurs in cells that do not express HB-EGF, and when this anti-HB-EGF antibody-modified liposome is used, it is specific to cells that express HB-EGF. In particular, it was found that the target substance can be efficiently introduced.
  • HB-EGF is highly expressed in cells such as failing cardiomyocytes, nerve cells, lung cells, etc.
  • HB-EGF is highly expressed in cells such as failing cardiomyocytes, nerve cells, lung cells, etc.
  • For expression in failing cardiomyocytes see Hypertens Res. 2008 Feb; 31 (2): 335-44. Etc., and for expression in heart, lung, brain, etc., Biochem Biophys Res Commun. 1993 Jan 15; 190 (1 ): 125-33, etc.), it was conceived that the use of anti-HB-EGF antibody-modified liposomes enables specific and efficient introduction of drugs, genes, etc. into these cells.
  • HB-EGF is highly expressed in cancer cells such as ovarian cancer, uterine cancer, and breast cancer
  • uterine cancer Gynecol Oncol. 2007 Jan; 104 (1): 158-67.
  • breast cancer Int J Surg Pathol. 2002 Apr; 10 (2): 91 -9. Etc.
  • drugs and the like can be more efficiently introduced into these cancer cells.
  • the present inventors have further studied based on the above findings, and have completed the present invention.
  • the present invention relates to the following (1) to (10).
  • a complex characterized in that it comprises a protein that binds to membrane-bound HB-EGF and thereby promotes uptake of the membrane-bound HB-EGF into cells, and a carrier. .
  • (2) The above-mentioned (1), wherein the protein having an action of binding to membrane-bound HB-EGF and thereby promoting uptake of the membrane-bound HB-EGF into the cell is an anti-HB-EGF antibody or a fragment thereof.
  • the protein having an action of binding to membrane-bound HB-EGF and thereby promoting uptake of the membrane-bound HB-EGF into cells is diphtheria toxin mutant CRM197 or a fragment thereof (1) ).
  • the target substance to be introduced into the cell is enclosed in a carrier, or the target substance and the carrier form a complex, as described in any one of (1) to (3) above Complex.
  • the target substance is an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a lung disease therapeutic agent, or a nucleic acid.
  • It contains a complex that essentially comprises a protein that binds to membrane-bound HB-EGF and thereby promotes uptake of the membrane-bound HB-EGF into cells and a carrier.
  • It contains a complex that essentially comprises a protein and a carrier that bind to membrane-bound HB-EGF and thereby promote the uptake of the membrane-bound HB-EGF into cells.
  • a complex comprising a protein and a carrier that binds to membrane-bound HB-EGF and thereby has a function of promoting uptake of the membrane-bound HB-EGF into cells. Introducing the target substance into cells.
  • a complex that binds to membrane-bound HB-EGF and thereby has a function of promoting the uptake of the membrane-bound HB-EGF into the cell and a carrier, and a complex that is essential, and is introduced into the cell A method for promoting introduction of a target substance into a cell, comprising a step of adding the target substance to a cell expressing HB-EGF or administering it to an animal other than a human.
  • a kit comprising a complex consisting essentially of a protein that binds to membrane-bound HB-EGF and thereby promotes uptake of the membrane-bound HB-EGF into cells and a carrier.
  • the present invention also provides a complex comprising (A) a protein that binds to membrane-bound HB-EGF and thereby promotes uptake of the membrane-bound HB-EGF into cells, and a carrier. And (B) cancer, heart failure, neurological disease or lung comprising the step of administering an anticancer agent, heart failure therapeutic agent, neurological disease therapeutic agent or lung disease therapeutic agent to a cancer patient, heart failure patient, neurological disease patient or lung disease patient Method for treating or preventing disease; (A) A protein that binds to membrane-bound HB-EGF and thereby promotes uptake of the membrane-bound HB-EGF into cells and a carrier are essential.
  • a method for diagnosing cancer, heart failure, neurological disease or lung disease comprising the step of administering the complex and (C) a diagnostic reagent to a mammal including human; treatment, prevention or prevention of cancer, heart failure, neurological disease or lung disease
  • binds to membrane-bound HB-EGF, thereby the protein which have the effect of promoting the intracellular uptake of the membrane-bound HB-EGF, complex consisting of a carrier as essential relates.
  • the present invention further provides a complex comprising a protein and a carrier essential for binding to membrane-bound HB-EGF and thereby promoting uptake of the membrane-bound HB-EGF into the cell, and a cell.
  • a method for promoting the introduction of a target substance into cells which comprises the step of administering the target substance to be introduced to animals including humans.
  • substances such as drugs and genes that have been difficult to introduce into cells can be specifically and efficiently introduced into target cells such as cardiomyocytes and cancer cells. This makes it possible to develop new therapeutic agents, diagnostic agents, etc., and analyze the structure and function of genes.
  • FIG. 1 (a) shows the results of examining the expression of HB-EGF in Vero cells and Vero-H cells by Western blotting
  • FIG. 1 (b) shows the expression of ⁇ -actin as a control in Western blotting. It is a figure which shows the result investigated by blotting. It is a figure which shows the result of SDS-PAGE under the reducing conditions of the anti- HB-EGF monoclonal antibody (IgG) digested with pepsin.
  • FIG. 4 is a view showing the binding (adhesion) of anti-HB-EGF antibody-bound liposomes to Vero cells (a) and Vero-H cells (b) at 4 ° C., respectively.
  • FIG. 3 shows the results of examining human HB-EGF mRNA expression (a) and mouse HB-EGF mRNA expression (b) in cultured rat cardiomyocytes. It is a figure which shows the result of having investigated the expression of the endogenous gene in a rat cultured cardiomyocyte. It is a figure which shows the result of having investigated the expression of human HB-EGF protein (a) and the expression of mouse HB-EGF protein (b) in a rat cultured cardiomyocyte by Western blotting.
  • FIG. 3 shows the results of examining human HB-EGF mRNA expression (a) and mouse HB-EGF mRNA expression (b) in cultured rat cardiomyocytes. It is a figure which shows the result of having investigated the expression of the endogenous gene in a rat cultured cardiomyocyte. It is a figure which shows the result of having investigated the expression of human HB-EGF protein (a) and the expression of mouse HB-EGF protein (b) in a
  • FIG. 3 shows the results of examining the expression localization of human HB-EGF protein in cultured rat cardiomyocytes by immunostaining using anti-human HB-EGF antibody.
  • Expression of human HB-EGF protein ((a) and (c)) and mouse HB-EGF protein in rat cultured myocardial fibroblasts ((b) and (d)) using anti-human HB-EGF antibody It is a figure which shows the result investigated by the immuno-staining. It is a figure which shows the result of having investigated the coupling
  • the complex or promoter of the present invention promotes introduction (incorporation) of a target substance into cells” is the purpose performed in the absence of the complex or promoter of the present invention.
  • introduction of a substance into a cell incorporation of a substance of interest into a cell
  • introduction of the substance of interest into the cell when the complex or promoter of the present invention is present is performed more efficiently.
  • treatment refers to not only completely curing the disease state, but also suppressing the progression and / or worsening of symptoms without complete cure, and stopping the progression of the disease state, or the disease state “Preventing” means preventing, suppressing, or delaying the onset of a disease state, respectively, by improving a part or all of the drug and leading to the direction of healing.
  • the complex of the present invention binds to membrane-bound HB-EGF, thereby promoting the uptake of the membrane-bound HB-EGF into cells (hereinafter referred to as “HB-EGF binding protein”). And a carrier that is essentially a carrier.
  • the complex of the present invention is also simply referred to as “HB-EGF binding protein complex”.
  • the HB-EGF binding protein complex of the present invention binds to membrane-bound HB-EGF (proHB-EGF) on the cell membrane by the HB-EGF binding protein. This binding causes a change in signal transduction, resulting in endocytosis, and a complex in which the complex of the present invention and membrane-bound HB-EGF are bound is taken up into the cell.
  • the target substance to be introduced into the cell can be efficiently introduced into the cell.
  • a target substance such as a nucleic acid or a drug introduced into a cell acts on a protein in the cell or controls the expression of other genes to exert its action.
  • the complex of the present invention may be a complex formed by using an HB-EGF binding protein and a carrier as essential components.
  • the HB-EGF binding protein and the carrier bind, adhere or adsorb. And the like.
  • it is a complex formed by binding an HB-EGF binding protein and a carrier.
  • the HB-EGF binding protein is preferably bound to, adhered to, or adsorbed to a carrier at a site other than the site of binding to membrane-bound HB-EGF.
  • the HB-EGF binding protein and the carrier may be directly bonded, adhered or adsorbed, or may be bonded via a spacer or the like.
  • the HB-EGF binding protein in the present invention is not particularly limited as long as it has the action of recognizing and binding to membrane-bound HB-EGF, thereby causing the above-mentioned endocytosis. Or a fragment thereof is preferred.
  • the antibody may be a monoclonal antibody or a polyclonal antibody, but a monoclonal antibody is preferred because of its high specificity for membrane-bound HB-EGF.
  • the anti-HB-EGF antibody or a fragment thereof is preferably an anti-HB-EGF antibody or a fragment thereof derived from the same species as the animal from which the membrane-bound HB-EGF expressed in the cell into which the target substance is introduced is derived.
  • an anti-human HB-EGF antibody or a fragment thereof is preferred.
  • Anti-HB-EGF antibodies include membrane-bound HB- present on the cell membrane of mammals such as humans, monkeys, cows, sheep, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs, and humans. Anti-HB-EGF antibodies against EGF are preferred, and anti-human HB-EGF antibodies are more preferred.
  • fragment of the anti-HB-EGF antibody in the present invention examples include, for example, the Fab fragment, Fab ′ fragment, F (ab ′) 2 fragment, and only the variable part of the Fab portion from which the Fc part of the anti-HB-EGF antibody is deleted.
  • a bound scFv antibody or the like is preferable.
  • Fab ′ fragments are preferred.
  • CRM197 diphtheria toxin mutant CRM197, a fragment thereof and the like are also preferable.
  • CRM197 is a non-toxic mutant having a mutation in the fragment A portion of diphtheria toxin, and has the same activity of binding to membrane-bound HB-EGF as wild-type toxin.
  • CRM197 is known to have a high affinity for membrane-bound HB-EGF of mammals including mouse and rat, particularly including humans and monkeys, and therefore, a complex comprising CRM197 and a carrier as essential Can be used to introduce the target substance very efficiently into cells that express HB-EGF in mammals other than mice and rats, especially cells that express human or monkey HB-EGF.
  • CRM197 is described in J Biol Chem.
  • Japanese Patent No. 4203742 describes the amino acid sequence of CRM197 and the like.
  • the amino acid sequence of CRM197 is shown in SEQ ID NO: 1.
  • the first 25 amino acid sequences are signal sequences.
  • a domain composed of amino acids 378 to 535 in the amino acid number excluding the signal sequence of CRM197 is an important domain for binding to membrane-bound HB-EGF.
  • a fragment comprising the amino acid sequence of amino acids 378 to 535 in the amino acid number excluding the signal sequence of CRM197 is preferable.
  • the HB-EGF binding protein in the present invention may be labeled with a radioactive label, a fluorescent label, a dye, or the like as long as the effects of the present invention are exhibited.
  • the “carrier” in the present invention means a material capable of transporting a target substance to be introduced into a cell such as a nucleic acid or a drug described later to a target cell or target site.
  • the carrier in the present invention is preferably composed of at least one selected from the group consisting of macromolecules, microassemblies, microparticles, microspheres, nanoglobules, liposomes and emulsions. Of these, liposomes are preferable.
  • the liposome is a closed vesicle having a lipid bilayer structure, it may be a multilamellar liposome (MLV), SUV (small unilamellar vesicle), LUV (large unilamellar vesicle), GUV (giant unilamellar vesicle), etc. It may be a single membrane liposome.
  • the size of the liposome is not particularly limited, but is usually about 50 to 3000 nm in diameter, preferably about 50 to 400 nm in diameter, and more preferably about 80 to 200 nm in diameter.
  • Lipids constituting the liposome are not particularly limited, and commonly used lipids can be used. Liposomes may be modified with polyethylene glycol (PEG) or the like.
  • the complex of the present invention may further contain a target substance to be introduced into cells (hereinafter also simply referred to as a target substance).
  • a target substance for example, the target substance to be introduced into cells is preferably enclosed in a carrier, or the target substance and the carrier preferably form a complex.
  • the target substance to be introduced into the cell can be appropriately selected according to the purpose of diagnosis, treatment, research, etc., and examples thereof include nucleic acids, drugs, peptides, proteins, sugars or their complexes, reagents, investigational drugs, etc. It is done.
  • the nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular. Examples of the nucleic acid include genomic DNA, cDNA, mRNA, antisense RNA, ribozyme, siRNA, short hairpin RNA (shRNA), microRNA (miRNA) and the like.
  • the nucleic acid includes, in addition to DNA or RNA, analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.).
  • an anticancer agent As the drug, an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a pulmonary disease therapeutic agent is preferable.
  • a therapeutic or prophylactic agent for cancer that highly expresses HB-EGF is preferable.
  • cancers that highly express HB-EGF include uterine cancer, ovarian cancer, breast cancer and the like.
  • uterine cancer therapeutic agents include cisplatin and doxorubicin
  • examples of ovarian cancer therapeutic agents include paclitaxel and doxil.
  • non-selective PDE inhibitors such as xanthine derivatives; PDEIII inhibitors such as amrinone, milrinone, olprinone, pimobendan, vesnarinone; digitalis preparations; other ACE inhibitors, ATP preparations, nitrate drugs, dipyridamole, nicorandil, Class III antiarrhythmic drugs, bepridil (bepricol) and the like.
  • These drugs also include nucleic acids.
  • an agent containing a nucleic acid such as siRNA, shRNA, miRNA or the like of a gene specifically expressed in failing cardiomyocytes can be used as a therapeutic agent for heart failure.
  • reagents include fluorescent reagents, dyes, diagnostic reagents, and the like.
  • the HB-EGF binding protein complex of the present invention is a cell that highly expresses HB-EGF, for example, a cancer cell that highly expresses HB-EGF, such as uterine cancer, ovarian cancer, breast cancer, a defective cardiomyocyte, a nerve cell, and Since the target substance can be efficiently introduced into lung cells and the like, the target substance is preferably an anticancer agent, a heart failure treatment agent, a neurological disease treatment agent or a lung disease treatment agent, or a nucleic acid, and an anticancer agent or heart failure treatment. An agent or a nucleic acid is more preferable. Also preferred are diagnostic reagents for diseases such as cancer, heart failure, neurological diseases, and pulmonary diseases.
  • the method for producing the complex of the present invention is not particularly limited, and examples thereof include a method of forming a complex by binding, adhering or adsorbing an HB-EGF binding protein and a carrier by a known method.
  • a method of forming a complex by binding, adhering or adsorbing an HB-EGF binding protein and a carrier by a known method for example, when the carrier is a liposome, a method of binding the liposome and the HB-EGF binding protein via a maleimide group can be employed.
  • a target substance to be introduced into cells may be encapsulated or bound in advance in the carrier. Further, after binding, adhering or adsorbing the HB-EGF binding protein and the carrier by a known method to form a complex, the target substance may be encapsulated or bound to the carrier as desired.
  • Such a method for binding a carrier to a protein and the like and a method for encapsulating a target substance in the carrier are known.
  • “New development of liposome application—toward the development of artificial cells” (supervised by Kazunari Akiyoshi) / Aoi Sakurai, NTS Corporation, published on June 1, 2005) and the like.
  • the HB-EGF binding protein used for the production of the HB-EGF binding protein complex of the present invention is preferably an anti-HB-EGF antibody or a fragment thereof, or a diphtheria toxin mutant CRM197 or a fragment thereof.
  • the anti-HB-EGF antibody may be a monoclonal antibody or a polyclonal antibody, but a monoclonal antibody is preferred because of its high specificity for membrane-bound HB-EGF.
  • Anti-HB-EGF antibodies are commercially available, and in the present invention, commercially available antibodies can be used as anti-HB-EGF antibodies.
  • Examples of commercially available anti-human HB-EGF antibodies include the following monoclonal antibodies, all of which are sold by Cosmo Bio. SANTA CRUZ BIOTECHNOLOGY, INC.
  • Anti HB-EGF (H-88) (catalog part number: SC28908), Anti HB-EGF (C-18) (catalog part number: SC1413), Anti HB-EGF (E-10) (catalog part number: SC74526), Anti HB-EGF (G-11) (catalog part number: SC7441), Anti HB-EGF (Z14) (catalog part number: SC74077L, SC74077), Anti HB-EGF (C-14) (catalog part number: SC21593), Anti HB -EGF (N-17) (catalog part number: SC21591); R & D SYSTEMS INC.
  • Anti HB-EGF (catalog number: MAB259, AF259NA, MAB2591), Anti HB-EGF, Human, (Poly) (trade name) (catalog number: BAF259); CALBIOCHEM-NOVABIOCHEM INTERN'L Anti HB-EGF (Catalog number: PC319L); Anti HB-EGF manufactured by Cosmo Bio (catalog numbers: 71503, 71501); Anti Heparin-binding Eggf-like Growth Factor manufactured by LIFESPAN BIOSCIENCES INC (catalog number: LSC36 46)
  • Commercially available anti-mouse HB-EGF antibodies include SANTA CRUZ BIOTECHNOLOGY, INC.
  • Anti HB-EGF (M-18) (catalog part number: SC1414) manufactured by the same company.
  • Anti-HB-EGF antibody is described in a known manner, for example, Mine N, Iwamoto R, Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. 2005 Oct; 132 (19): 4317-26. It can also be produced according to the method (p. 4318, production method using HB del / del mouse).
  • a monoclonal antibody of an anti-human HB-EGF antibody can be produced using a human antigen as an antigen in the above-mentioned Mine et al.
  • HB-EGF mab clones prepared by the above: # 3E9, # 3H4, and # 4G10 can also be used.
  • HB-EGF mab clone: # 3E9 can be prepared according to the method for preparing clone 4D9 described in the aforementioned Mine et al. Document using a human antigen as the antigen.
  • the fragment of the anti-HB-EGF antibody can be obtained by a known method, for example, a method of chemically or enzymatically cleaving the anti-HB-EGF antibody, a method of preparing the antibody binding site by genetic engineering, or the like.
  • a known method for example, a method of chemically or enzymatically cleaving the anti-HB-EGF antibody, a method of preparing the antibody binding site by genetic engineering, or the like.
  • the anti-HB-EGF antibody fragment the aforementioned HB-EGF antibody Fab fragment, Fab ′ fragment, F (ab ′) 2 fragment, scFv antibody and the like can be preferably used.
  • the diphtheria toxin mutant CRM197 used for the production of the HB-EGF-binding protein complex of the present invention includes, for example, Uchida T. et al., Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin J Biol Chem 1973; 248: 3838-44.
  • ATCC American Type Collection Collection Bacteria collection
  • C7 ( ⁇ 197) lysogen stock C7 ( ⁇ 197) phage lysed diphtheria C7 (beta197) M1
  • CRM197 can be purified from the culture broth.
  • a fragment of CRM197 can be obtained by a method of chemically or enzymatically cleaving CMR197, a method of genetically preparing a peptide containing a binding site of CRM197, or the like. Further, it can be synthesized by a peptide synthesis method based on the amino acid sequence of CRM197 (SEQ ID NO: 1) described in Japanese Patent No. 4203742.
  • a known method can be adopted as a method for producing the carrier.
  • the production method of liposomes is “New development of liposome application-Toward the development of artificial cells-” (supervised by Kazunari Akiyoshi / Aoi Sakurai, NTS Inc., published on June 1, 2005), etc.
  • the lipid can be hydrated by a bangham (simple hydration) method, a reverse phase evaporation method, a supercritical carbon dioxide method or the like to obtain a liposome solution.
  • the method of encapsulating a target substance to be introduced into cells in a carrier or forming a complex of the target substance and the carrier is not particularly limited, and can be performed by a known method.
  • a liposome is used as a carrier and the target substance is water-soluble
  • the target substance is added to an aqueous solvent used for hydrating the lipid membrane in the production of the liposome, thereby The target substance can be enclosed in the aqueous phase.
  • the target substance is fat-soluble, the target substance can be encapsulated in the lipid bilayer of the liposome by adding the target substance to an organic solvent used in the production of the liposome.
  • the target substance described later is efficiently introduced into cells that highly express HB-EGF. It can be used to For example, cancer cells such as uterine cancer, ovarian cancer, and breast cancer, failing cardiomyocytes, nerve cells, and lung cells express HB-EGF at high levels. It is possible to efficiently introduce the target substance.
  • cancer that highly expresses HB-EGF such as uterine cancer, ovarian cancer, breast cancer, etc .
  • heart failure an animal that develops a neurological disease or pulmonary disease, together with the HB-EGF binding protein complex of the present invention, a drug
  • the drug When administered (anticancer agent, heart failure therapeutic agent, neurological disease therapeutic agent or lung disease therapeutic agent, etc.), the drug can be specifically and efficiently introduced into cancer cells, failing cardiomyocytes, nerve cells or lung cells, It is effective for the treatment or prevention of these diseases.
  • the drug can be administered simultaneously with the administration of the complex of the present invention, or before or after the administration.
  • a composition containing the complex of the present invention and a drug may be prepared and the complex and the drug may be administered simultaneously, and (2) a cancer cell obtained by administering the complex of the present invention to an animal, After promoting uptake into cells such as failing cardiomyocytes, a drug may be added and taken into the cells. Alternatively, the drug may be administered to the animal in advance, and then the complex of the present invention may be administered.
  • a drug such as an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a pulmonary disease therapeutic agent
  • a drug such as an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a pulmonary disease therapeutic agent
  • Such a complex containing a drug such as an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a pulmonary disease therapeutic agent as a target substance is one of the preferred embodiments of the present invention. Especially, it is preferable that an anticancer agent or a heart failure therapeutic agent is included.
  • HB-EGF HB-EGF binding protein complex
  • a preferred embodiment is a therapeutic or preventive agent for cancer or heart failure that highly expresses HB-EGF.
  • the therapeutic or prophylactic agent of the present invention may further contain one or more drugs selected from the group consisting of anticancer agents, heart failure therapeutic agents, neurological disease therapeutic agents, and pulmonary disease therapeutic agents, depending on the dosage form. It may contain pharmaceutically acceptable ingredients.
  • the HB-EGF binding protein complex may contain the above-mentioned anticancer agent, heart failure therapeutic agent, neurological disease therapeutic agent, or pulmonary disease therapeutic agent.
  • a dosage form of the therapeutic or prophylactic agent of the present invention a dosage form for parenteral administration is preferable. For example, injection, instillation, ointment, gel, cream, patch, spray, spray, etc. Injectables are preferable.
  • an aqueous injection As an injection for parenteral administration, either an aqueous injection or an oily injection may be used.
  • an aqueous injection according to a known method, for example, an HB-EGF-binding protein complex (and a pharmaceutically acceptable additive is appropriately added to an aqueous solvent (water for injection, purified water, etc.). It can be prepared by mixing a drug) if desired, sterilizing by filtration with a filter or the like, and then filling an aseptic container.
  • Examples of pharmaceutically acceptable additives include isotonic agents such as sodium chloride, potassium chloride, glycerin, mannitol, sorbitol, boric acid, borax, glucose, propylene glycol; phosphate buffer, acetate buffer, Buffers such as borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon aminocaproate buffer; methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, paraoxybenzoic acid Preservatives such as butyl, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boric acid, borax; thickeners such as hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol; Sodium bisulfate, sodium thiosulfate, sodium edetate, sodium citrate, ascorbic acid,
  • solubilizers for example, alcohols such as ethanol; polyalcohols such as propylene glycol and polyethylene glycol; nonionic surfactants such as polysorbate 80, polyoxyethylene hydrogenated castor oil 50, lysolecithin, and pluronic polyol You may mix
  • proteins such as bovine serum albumin and keyhole limpet hemocyanin; polysaccharides such as aminodextran may be contained.
  • sesame oil or soybean oil is used as the oily solvent, and benzyl benzoate or benzyl alcohol may be blended as a solubilizing agent.
  • the prepared injection solution is usually filled in an appropriate ampoule or vial.
  • Liquid preparations such as injections can be stored after removing moisture by freezing or lyophilization.
  • the freeze-dried preparation is used by adding distilled water for injection at the time of use and re-dissolving it.
  • the amount of the HB-EGF binding protein complex contained in the therapeutic or prophylactic agent of the present invention varies depending on the preparation form or administration route of the therapeutic or prophylactic agent, but is usually about 0.0001 to 100% in the final formulation. It can be determined by appropriately selecting from the range.
  • Examples of the method for administering the therapeutic or prophylactic agent of the present invention to mammals including humans include parenteral administration such as intravenous, intraperitoneal, subcutaneous, and nasal administration. Depending on the cell or site, it can also be administered directly locally.
  • parenteral administration such as intravenous, intraperitoneal, subcutaneous, and nasal administration.
  • a therapeutic or prophylactic agent containing an HB-EGF binding protein complex is selected from the CARTO (registered trademark) system (Johnson & Johnson Company, Medical Company), myocardial tissue. It can be administered directly to cardiomyocytes by internal injection or the like. It is also possible to administer intravascularly after vascular permeability enhancement treatment.
  • the therapeutic or prophylactic agent of the present invention When the therapeutic or prophylactic agent of the present invention is administered, at the same time as the therapeutic or prophylactic agent, or before or after the administration, depending on the target disease, the above-described anticancer agent, heart failure therapeutic agent, neurological disease therapeutic agent or lung Drugs such as disease therapeutic agents can also be administered separately.
  • a therapeutic or prophylactic agent containing (1) an HB-EGF binding protein and a drug such as an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a pulmonary disease therapeutic agent
  • the therapeutic or prophylactic agent of the present invention may be administered to animals to promote the uptake of cancer cells, failing cardiomyocytes and the like into cells, and then added to drugs to be taken into cells.
  • a drug may be administered to an animal in advance, and then a therapeutic or prophylactic agent may be administered.
  • a drug such as an anticancer agent, a heart failure therapeutic agent, a neurological disease therapeutic agent or a lung disease therapeutic agent
  • the therapeutic or prophylactic agent of the present invention contains a drug, its content can be appropriately adjusted according to the type of drug to be administered.
  • the dose can also be adjusted as appropriate according to the type of drug to be administered.
  • the dose and frequency of administration of the therapeutic or prophylactic agent of the present invention are the type and amount of a drug (anticancer agent, heart failure therapeutic agent, neurological disease therapeutic agent, pulmonary disease therapeutic agent, etc.) administered together with the HB-EGF binding protein complex. It can be adjusted as appropriate according to the patient's weight, disease, etc., and it is preferable to adjust the dosage so that the drug is efficiently taken into the affected area or target cells.
  • the therapeutic or prophylactic agent of the present invention is administered to one or more selected from the group consisting of cancers that highly express HB-EGF, such as uterine cancer, ovarian cancer, and breast cancer; heart failure; neurological disease and pulmonary disease Mammals that develop a disease are suitable, and when used for treatment, mammals that develop cancer or heart failure that highly express HB-EGF are more preferred.
  • a mammal capable of developing one or more diseases selected from the group consisting of cancers that highly express HB-EGF; heart failure; neurological diseases and pulmonary diseases is preferable. Examples of mammals include humans, monkeys, cows, sheep, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs, and the like. Human is preferred.
  • HB-EGF binding protein complex can also be used for diagnosis or detection of cancer, heart failure and the like that highly express HB-EGF.
  • a diagnostic agent for cancer, heart failure, nerve cell disease, or lung disease that highly expresses HB-EGF containing the HB-EGF binding protein complex is also one aspect of the present invention.
  • an HB-EGF binding protein complex is administered to an animal that may have developed a cancer that highly expresses HB-EGF, such as uterine cancer, ovarian cancer, or breast cancer, heart failure, nerve cell disease, or lung disease.
  • a fluorescent reagent, a diagnostic reagent, or the like When a fluorescent reagent, a diagnostic reagent, or the like is administered simultaneously with the administration of the complex or before or after the administration, the reagent is efficiently introduced into cancer cells, failing cardiomyocytes, nerve cells, or lung cells. Next, by detecting the reagent by a known method, it becomes possible to detect an affected area, diagnose a disease, and the like.
  • the diagnostic reagent and the like may be contained in the HB-EGF binding protein complex.
  • the dosage form and administration method of the diagnostic agent of the present invention are the same as the above-mentioned dosage form and administration method of the therapeutic or prophylactic agent, and can be appropriately selected.
  • the type, administration method, dosage and the like of the diagnostic reagent used with the HB-EGF binding protein complex can be appropriately selected according to the type of disease.
  • the introduction of the target substance into cells can be promoted by adding the above HB-EGF binding protein complex to cells (target cells) in vitro or by administering them to animals in vivo.
  • a method for promoting the introduction of a target substance into a cell comprising the step of adding the HB-EGF binding protein complex and the target substance to be introduced into the cell to a cell expressing HB-EGF or administering it to an animal is also provided by the present invention.
  • the target cell in the method for promoting introduction into cells of the present invention is preferably a cell that highly expresses HB-EGF, and a cell that highly expresses HB-EGF on the cell membrane is particularly preferred.
  • a gene that expresses HB-EGF is expressed in the cell by a known method, for example, a method using the adenoviral vector described in the Examples, or an appropriate plasmid.
  • High expression of HB-EGF by introducing a vector in which a gene expressing HB-EGF is incorporated into the cell using a method such as lipofection, calcium phosphate method, electroporation, etc.
  • a method such as lipofection, calcium phosphate method, electroporation, etc.
  • the target cell include cells derived from mammals such as human, monkey, cow, sheep, goat, horse, pig, rabbit, dog, cat, rat, mouse, guinea pig and the like.
  • Non-dividing cells such as mammalian cardiomyocytes and nerve cells are also preferred.
  • examples of the animals to which the HB-EGF binding protein complex is administered include the mammals described above.
  • cancer cells that highly express HB-EGF such as ovarian cancer, uterine cancer, breast cancer, etc .
  • heart failure cancer cells that are affected in an animal that develops neurological disease or pulmonary disease
  • a target substance such as an investigational drug, a drug, a reagent, or a gene can be efficiently introduced into defective cardiomyocytes, nerve cells, or lung cells.
  • a composition containing a target substance and an HB-EGF binding protein complex may be prepared and added to a target cell or administered to an animal, and the HB-EGF binding protein complex may be targeted.
  • the target substance may be added and taken up into cells.
  • the target substance may be added to the target cells in advance or the target substance may be administered to the animal, and then the HB-EGF binding protein complex may be added or administered to the animal.
  • the target substance may be contained in the HB-EGF binding protein complex.
  • the target substance is encapsulated in the carrier, or the target substance and the carrier form a complex. It is preferable.
  • the addition amount or dose of the HB-EGF binding protein complex and the target substance may be appropriately selected according to the type of cells or animals, the target substance, and the like.
  • a composition containing an HB-EGF binding protein complex to cells or administer to an animal.
  • a composition containing such an HB-EGF binding protein complex is useful as an agent for promoting intracellular introduction into a target substance.
  • Such an intracellular introduction promoter containing an HB-EGF binding protein complex is also one aspect of the present invention.
  • the intracellular introduction promoter of the present invention may further contain a target substance, and the target substance may be contained in the HB-EGF binding protein complex.
  • the dosage form of the promoter of the present invention is not particularly limited.
  • the same dosage form as the above-described therapeutic or prophylactic agent can be mentioned, and an injection or infusion is preferable.
  • it may contain a pharmaceutically acceptable component depending on the dosage form.
  • the method of administering the promoter of the present invention to an animal, the dosage, and the like are the same as those of the therapeutic or prophylactic agent described above.
  • Examples of the dosage form when added to cells in vitro include a dispersion of HB-EGF-binding protein complex.
  • a dispersion solvent for example, a buffer solution such as physiological saline, phosphate buffer, citrate buffer, and acetate buffer can be used.
  • additives such as sugars, polyhydric alcohols, water-soluble polymers, nonionic surfactants, antioxidants, pH regulators, hydration accelerators may be added to the dispersion.
  • a dried product eg, a lyophilized product, a spray-dried product, etc.
  • a buffer solution such as physiological saline, phosphate buffer solution, citrate buffer solution, and acetate buffer solution can be added and used as a dispersion of the HB-EGF binding protein complex.
  • the promoter of the present invention When the promoter of the present invention is added to cells in vitro, for example, the promoter of the present invention may be added to or contacted with cells cultured in a suitable medium. Next, a step of incubating the cells with the promoter, a step of washing the cells, a step of recovering the cells and the like may be performed. Introduction of the target substance into the cell can be confirmed by a known method after cell lysis, for example.
  • kits including a complex comprising an HB-EGF binding protein and a carrier as an essential component is also one aspect of the present invention.
  • the kit of the present invention may appropriately include a target substance, cells into which the target substance is introduced, a buffer solution, a medium, and the like.
  • a preferred embodiment of the HB-EGF binding protein complex is as described above, and the HB-EGF binding protein complex may contain a target substance.
  • an investigational drug, a nucleic acid or a drug is preferable.
  • the cell into which the target substance is introduced is not particularly limited, and non-dividing cells such as cardiomyocytes and nerve cells are preferable.
  • the cell into which the target substance is introduced is a cell that does not express or lowly expresses HB-EGF
  • a gene that expresses HB-EGF is expressed in the cell by a known method, such as the adenovirus described in the Examples.
  • a vector incorporating a gene that expresses HB-EGF into an appropriate plasmid vector by lipofection, calcium phosphate method, electroporation, etc. It can be set as the cell which highly expresses EGF.
  • the kit of the present invention can be suitably used for the introduction of nucleic acids, investigational drugs and the like into cultured cardiomyocytes, cultured neurons, and the like, which have been technically difficult until now.
  • Test example 1 Preparation of Vero-H cells
  • Vero HB-EGF low expression
  • Vero-H (HB-EGF highly expressing) cells are cells that highly express human HB-EGF. Goishi K., et al Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion It was prepared according to the method described in Mol Biol Cell 1995; 6: 967-980. from juxtacrine to paracrine growth factor activity.
  • Vero (HB-EGF low expression) cells were 5% at 37 ° C. in MEM medium containing nonessential amino acids (solution containing 10% fetal bovine serum (FBS), penicillin 100 units / mL, and streptomycin 100 ⁇ g / mL). Stored in the presence of carbon dioxide. Vero-H (high expression of HB-EGF) cells in MEM medium containing non-essential amino acids (solution containing 10% fetal bovine serum (FBS), penicillin 100 units / mL, streptomycin 100 ⁇ g / mL, and geneticin 1 ⁇ g / mL) And stored at 37 ° C. in the presence of 5% carbon dioxide. When confluent, the cells were detached with a 0.25% trypsin / EDTA-PBS ( ⁇ ) solution. Confirmation that Vero-H cells highly express HB-EGF was performed by Western blotting.
  • TTBS Tris Buffered Saline
  • the blocked nitrocellulose filter was soaked in TTBS containing primary antibody (containing 5% (w / v) BSA) and incubated overnight at 4 ° C., and then washed with TTBS (5 minutes ⁇ 3). did.
  • TTBS containing primary antibody containing 5% (w / v) BSA
  • TTBS containing secondary antibody containing 5% (w / v) BSA
  • anti-HB-EGF antibody anti-goat IgG (manufactured by Santa Cruz Biotechnology, diluted 4,000 times with TTBS containing 5% (w / v) BSA) was used. Using the ECL system (Amersham), the location of the target antigen was detected. As a control, ⁇ -actin was selected. As a primary antibody against ⁇ -actin, an anti-actin IgG rabbit (diluted 4000 times with TTBS containing 5% (w / v) BSA) was used. As the secondary antibody, HRP-conjugated anti-rabbit IgG (manufactured by Amersham, diluted 5000 times with TTBS containing 5% (w / v) BSA) was used.
  • FIG. 1 (a) shows the results of examining the expression of HB-EGF in Vero cells and Vero-H cells by Western blotting. 1A and 1B, the left lane is a marker, the center lane is a Vero-H cell, and the right lane is a Vero cell. As shown in FIG. 1 (a), in Vero-H cells (middle lane), a band was observed at about 20-30 kDa, and it was confirmed that HB-EGF was highly expressed.
  • FIG. 1 (b) is a view showing the results of examining the expression of ⁇ -actin (control) in Vero cells and Vero-H cells by Western blotting. FIG. 1 (b) shows that ⁇ -actin is expressed at the same level in both Vero cells and Vero-H cells.
  • Example 1 Preparation of anti-HB-EGF antibody-conjugated PEG liposomes
  • F (ab ′) 2 anti-HB-EGF antibody Preparation of F (ab ′) 2 anti-HB-EGF antibody was performed according to a conventional method. It was. Monoclonal antibody (HB-EGF mab clone) prepared from a hybridoma of human IgG (Osaka University Research Institute for Microbial Diseases, Cell Function Field, Mekada Laboratory (3-1 Yamadaoka, Suita-shi, Osaka, Japan 565-0871)) : # 3E9)) was digested with pepsin (37 ° C., 10 hours).
  • the hybridoma and monoclonal antibody HB-EGF mab clone: # 3E9 uses a human antigen as an antigen, and Mine N, Iwamoto R, Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. ; 132 (19): 4317-26, page 4318, can be prepared according to the preparation method using HB del / del mice (HB-EGF mab clone: # 3E9 was prepared from clone 4D9 described in the literature) It can be performed according to the manufacturing method).
  • the F (ab ′) 2 fragment was purified by gel filtration using Ultragel AcA54 (manufactured by PALL Life Sciences).
  • This Fab′-modified anti-HB-EGF antibody was added to the liposome solution prepared in (2) so as to be equimolar with maleimidated polyethylene glycol-linked hydrogenated soybean phosphatidylcholine, and reacted at 4 ° C. for 20 hours. After the reaction, 10-fold molar amount of 0.1 M N-ethylmaleimide of Fab′-ized anti-HB-EGF was added to inhibit unreacted sulfhydryl groups.
  • Fluorescently labeled liposomes bound with Fab′-anti-HB-EGF fluorescently labeled anti-HB-EGF antibody-bound liposomes
  • Detection of fluorescently labeled anti-HB-EGF antibody-bound liposomes was performed by measuring absorbance at 280 nm and 610 nm.
  • Vero Cell culture Vero (HB-EGF low expression) cells were cultured in a non-essential amino acid-containing MEM medium (solution containing 10% fetal bovine serum (FBS), penicillin 100 units / mL, and streptomycin 100 ⁇ g / mL). It was stored at 37 ° C. in the presence of 5% carbon dioxide. Vero-H (high expression of HB-EGF) cells in MEM medium containing non-essential amino acids (solution containing 10% fetal bovine serum (FBS), penicillin 100 units / mL, streptomycin 100 ⁇ g / mL, and geneticin 1 ⁇ g / mL) And stored at 37 ° C. in the presence of 5% carbon dioxide. When confluent, the cells were detached with a 0.25% trypsin / EDTA-PBS ( ⁇ ) solution. The resulting cells were used for uptake studies.
  • the cells were washed three times with phosphate buffered saline.
  • Cells were lysed by adding a cell lysis buffer solution (Tris-HCl buffer solution containing 0.1% sodium dodecyl sulfate (SDS)) to the washed cells.
  • SDS sodium dodecyl sulfate
  • the cell lysate was collected in a 1.5 mL Eppendorf tube and then centrifuged at 1,000 g for 10 minutes, and the supernatant was collected.
  • the fluorescence intensity of the sample was measured with a fluorometer (Ex: 549 nm, Em: 592 nm). The fluorescence intensity of each sample was corrected by the amount of protein.
  • FIG. 3 shows the results of examining the binding (adhesion) of liposomes into cells at 4 ° C.
  • FIG. 3 shows the results of examining the binding (adhesion) of liposomes into cells at 4 ° C.
  • Example 1 In the anti-HB-EGF antibody-binding liposome produced in Example 1, instead of the anti-HB-EGF antibody used above, another anti-HB-EGF antibody (for example, a commercially available anti-HB-EGF antibody) Even when CRM197 or the like is used, the same result as in Example 1 is obtained. Also in the following examples, in anti-HB-EGF antibody-binding liposomes, anti-HB-EGF antibodies other than the anti-HB-EGF antibodies used above (for example, commercially available anti-HB-EGF antibodies), CRM197, etc. are used. However, similar results can be obtained.
  • anti-HB-EGF antibody-binding liposomes instead of the anti-HB-EGF antibody used above, another anti-HB-EGF antibody (for example, a commercially available anti-HB-EGF antibody) Even when CRM197 or the like is used, the same result as in Example 1 is obtained. Also in anti-HB-EGF antibody-binding liposomes, anti-HB-EGF antibodies other than the anti-
  • Example 2 Based on the experimental results confirmed in Vero cells and Vero-H cells of Example 1, it is confirmed that anti-HB-EGF antibody-binding liposomes that specifically recognize human HB-EGF are actually taken up into cardiomyocytes. For this purpose, the following experiment was conducted. Specifically, human HB-EGF was expressed in neonatal rat cultured cardiomyocytes, and the uptake of anti-HB-EGF antibody-bound liposomes in the human HB-EGF expression system was examined.
  • Ad-HsHBEGF adenovirus construct expressing human HB-EGF
  • Ad-MmHBEGF adenovirus construct expressing mouse HB-EGF
  • Ad-LacZ an adenovirus construct expressing LacZ
  • An Invitrogen Gateway system was used for the production of an adenovirus construct (adenovirus vector).
  • adenovirus vector After introducing the human HB-EGF gene (NM_001945.1) or the mouse HB-EGF gene (NM_0104155.1) into the entry vector (pENTR / D-TOPO), the adenovirus expression vector (pAD / CMV / V5-DEST) is introduced.
  • Each construct (vector) was prepared by conversion.
  • Such a vector is prepared, for example, according to the method described in Hartley JL, Temple GF, Brasch MA. (2000) DNA cloning using in vitro site-specific recombination. Genome Res, Vol. 10 11 (11): 1788-95. It can be performed according to.
  • MOI 10 is calculated to be equivalent to 1.5 ⁇ 10 ⁇ 10 PFU, and in the case of MOI 10, 1.0 ⁇ 10 ⁇ 10 PFU / ⁇ L The solution was added at 1.5 ⁇ L per well.
  • the expression level of human HB-EGF or mouse HB-EGF mRNA in rat cultured cardiomyocytes was examined by real-time PCR. In rat cultured cardiomyocytes, human HB-EGF and mouse HB-EGF genes depend on the dose of infection. It was found that the protein was expressed at the mRNA level (FIGS. 5A and 5B).
  • FIG. 6A shows diuretic peptide (ANP) mRNA after adenovirus construct introduction, (b) diuretic peptide (BNP) mRNA, and (c) endogenous HB-EGF (rat HB-EGF) mRNA. The expression level of each is shown.
  • the horizontal axis represents the time after construct introduction.
  • FIG. 7 (a) shows the expression of human HB-EGF protein in cultured rat cardiomyocytes 36 hours after infection, with anti-human HB-EGF antibody (Osaka University Research Institute for Microbial Diseases, Cell Function Field, Mekada Laboratory (Japan)
  • anti-human HB-EGF antibody Osaka University Research Institute for Microbial Diseases, Cell Function Field, Mekada Laboratory (Japan)
  • This anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4) was prepared using human antigen as an antigen, Mine N, Iwamoto R, Mekada E.
  • FIG. 7 (b) shows the result of detecting the expression of mouse HB-EGF protein in cultured rat cardiomyocytes by Western blotting using an anti-mouse HB-EGF antibody (M-18, manufactured by Santa Cruz, SC1414). Yes (non-reducing conditions).
  • FIG. 8 The dose-dependent change of human HB-EGF expression in cultured cardiomyocytes and localization in the cells were examined (FIG. 8).
  • This is a result of staining membrane-bound HB-EGF present on cardiomyocytes by immunostaining using an anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4).
  • the white part is membrane-bound human HB-EGF stained.
  • 8A to 8D show that in rat cultured cardiomyocytes, human HB-EGF protein is expressed on the cell membrane in a dose-dependent manner.
  • FIGS. 9 (a) and (c) show cultured human myocardial fibroblasts infected with Ad-HsHBEGF and expressing human HB-EGF with anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4). It is the result of using and immunostaining.
  • FIGS. 9 (a) and (c) show cultured human myocardial fibroblasts infected with Ad-HsHBEGF and expressing human HB-EGF with anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4). It is the result of using and immunostaining.
  • FIGS. 9 (a) and (c) show cultured human myocardial fibroblasts infected with Ad-HsHBEGF and expressing human HB-EGF with anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4). It is the result of using and immunostaining.
  • FIG. 9 (b) and (d) show cultured myocardial fibroblasts that were infected with Ad-MmHBEGF and expressed mouse HB-EGF, and anti-human HB-EGF antibody (HB-EGF mab clone: # 3H4). It is the result of using and immunostaining.
  • membrane-bound HB-EGF is stained in white.
  • HB-EGF mab clone: # 3H4 does not detect mouse HB-EGF (does not bind to mouse HB-EGF), so mouse HB-EGF is not stained. It was confirmed that the human HB-EGF expressed by the introduced adenovirus vector was also localized on the cell membrane in cultured cardiac fibroblasts.
  • cultured rat cardiomyocytes expressing human HB-EGF were used.
  • cultured rat cardiomyocytes introduced with Ad-LacZ were used.
  • FIG. 10 (a) shows the adhesion and uptake of liposomes at 37 ° C. of cultured rat cardiomyocytes into which Ad-LacZ has been introduced
  • FIG. 10 (b) shows the liposomes at 37 ° C. of cultured rat cardiomyocytes into which Ad-HsHBEGF has been introduced. The adhesion and uptake of each are shown.
  • FIG. 10 (a) shows the adhesion and uptake of liposomes at 37 ° C. of cultured rat cardiomyocytes into which Ad-LacZ has been introduced
  • FIG. 10 (b) shows the liposomes at 37 ° C. of cultured rat cardiomyocytes into which Ad-HsHBEGF has been introduced. The adhesion and uptake of each are shown.
  • FIG. 10 (c) shows adhesion and uptake of liposomes at 4 ° C. of rat cultured cardiomyocytes introduced with Ad-LacZ
  • FIG. 10 (d) shows liposomes at 4 ° C. of rat cultured cardiomyocytes introduced with Ad-HsHBEGF. The adhesion and uptake of each are shown.
  • Example 3 It was investigated whether Fab′-modified anti-HB-EGF antibody-conjugated PEG liposomes were taken up by a breast cancer cell line (MDA-MB-231 cells).
  • the fluorescence-labeled anti-HB-EGF antibody-bound liposome used was that prepared in Example 1.
  • MDA-MB-231 cells manufactured by ATCC
  • Leibovitz L-15 10% fetal bovine serum (FBS), penicillin 100 units / and 500 ⁇ L of medium (purchased from GIBCO) was added per well. Cells were incubated for 4 hours at 37 ° C.
  • the culture solution was removed from each well of the plate, and the fluorescence-labeled anti-HB-EGF antibody-bound liposome (HSPC / Chol / DSPE / DSPE-PEG-mal / DiI) prepared in Example 1 or the control-labeled liposome (HSPC) / Chol / DSPE / DiI) containing Leibovitz L-15 medium (containing 10% fetal bovine serum (FBS), penicillin 100 units / mL, and streptomycin 100 ⁇ g / mL) (liposome concentration 1 mM), 25 per well, 50 and 100 ⁇ L were added so that the liposome concentration in the sample was 0.05 mM, 0.1 mM, and 0.15 mM, respectively.
  • FBS fetal bovine serum
  • penicillin 100 units / mL penicillin 100 units / mL
  • streptomycin 100 ⁇ g / mL liposome concentration 1 mM
  • a sample containing the prepared MDA-MB-231 cells (manufactured by ATCC) and fluorescence-labeled anti-HB-EGF antibody-bound liposomes (or control liposomes) was incubated at 37 ° C. for 4 hours.
  • FIG. 11 shows the result.
  • the vertical axis represents the amount of liposomes taken into MDA-MB-231 cells by the amount ( ⁇ g / mg) of fluorescent dye (octadecylindocarbocyanine (Dil 18 )) per 1 mg of cell protein.
  • the horizontal axis represents the liposome concentration (mM) added to MDA-MB-231 cells.
  • squares ( ⁇ ) represent control liposomes
  • triangles ( ⁇ ) represent anti-HB-EGF antibody-bound liposomes.
  • FIG. 11 shows numerical data (measured values) and standard deviation. Significant differences are indicated with asterisks (*) (* is p ⁇ 0.05, ** is p ⁇ 0.01). Significance test was performed by T test.
  • Example 4 Using an anti-HB-EGF antibody-bound liposome encapsulating siRNA, a knockdown experiment of a target gene in a cell was performed.
  • NUNC 96 indentations
  • plasmid DNA pCAG-luc3 (purchased from Nippon Gene) (2 ⁇ g per well) expressing luciferase was introduced into the cells using Lipofectamine 2000 (Invitrogen Co.) and incubated at 37 ° C. with 5% CO 2 for 24 hours. Then, luciferase was expressed.
  • lipid thin film having a ratio of dioleoylphosphatidylethanolamine (DOPE) / dimyristoyl phosphatidylglycerol (DMPG) / cholesterol 9/2/2 (molar ratio) was prepared.
  • DOPE dioleoylphosphatidylethanolamine
  • DMPG dimyristoyl phosphatidylglycerol
  • cholesterol 9/2/2 (molar ratio)
  • a complex solution of siRNA and protamine was prepared, and the lipid thin film was hydrated with the complex solution.
  • ultrasonic treatment was performed at 37 ° C. for 10 minutes to prepare siRNA-encapsulated liposomes (2 nmol of siRNA, 80 ⁇ g of protamine with respect to 10 ⁇ mol of total lipid).
  • siRNA-encapsulated liposomes were modified with 9% PEG 2000 and 1.5% PEG maleimide 2000 with respect to the total lipid of the liposome, and the same amount of Fab′-modified anti-HB-EGF as maleimide (Example) The same as that prepared in 1) was incubated for 20 hours and allowed to react. After the reaction, gel filtration was performed to obtain a purified liposome fraction.
  • PEG-liposomes encapsulating the siRNA were prepared. Specifically, the PEG maleimide 2000 and the Fab′-modified anti-HB-EGF antibody were modified by the above-described procedure except for the modification step. The amount of siRNA enclosed in the anti-HB-EGF antibody-bound liposome and the control liposome was 5 pmol or 50 pmol for each liposome.
  • the medium of the cells was replaced with 150 ⁇ L / well of a non-essential amino acid-containing MEM medium without serum, and a solution obtained by diluting anti-HB-EGF antibody-bound siRNA-encapsulated liposomes with RNase free water (liposome concentration (total lipid concentration): siRNA 5 pmol 1 mM for siRNA and 10 mM for siRNA 50 pmol) was added at 50 ⁇ L per well. After the addition, the cells were cultured for 24 hours at 37 ° C. under 5% CO 2 . The expression of the luciferase gene was examined by measuring luciferase activity.
  • the number of viable cells was calculated using Luciferase assay CellTiter-Fluor (registered trademark) Cell Viability Assay (Promega). Specifically, 5 ⁇ L of the attached substrate was added to 1 mL of a buffer solution attached to Kit, and mixed by vortex to obtain a Cell Titer reagent. The medium was replaced with 80 ⁇ L of non-essential amino acid-containing MEM medium without serum, 20 ⁇ L of Cell Titer reagent was added, mixed for 30 seconds, and incubated at 37 ° C. for 30 minutes. Thereafter, the fluorescence intensity was measured using a fluorometer (Ex: 400 nm, Em: 505 nm), and the number of viable cells was calculated.
  • Luciferase assay CellTiter-Fluor (registered trademark) Cell Viability Assay (Promega). Specifically, 5 ⁇ L of the attached substrate was added to 1 mL of a buffer solution attached to Kit, and mixed by vortex to obtain a Cell Titer
  • luciferase activity was determined using One-Glo (registered trademark) Luciferase Assay System (Promega). Luciferin substrate reagent was added at 100 ⁇ L per well, and the luminescence intensity was measured after 3 minutes. Luciferase activity was corrected by viable cell count. The luciferase gene knockdown (gene expression suppression) was evaluated with the luciferase activity in the case where no liposome was added to Vero-H cells in which the luciferase gene was forcibly expressed as 100%. A decrease in luciferase activity indicates that the expression of the luciferase gene was suppressed.
  • FIGS. 12 (a) and 12 (b) show the results of investigating luciferase gene knockdown using anti-HB-EGF antibody-bound liposomes and control liposomes each encapsulating 5 pmol of siRNA per liposome.
  • FIG. 12 (b) shows the results of examining knockdown of the luciferase gene using anti-HB-EGF antibody-binding liposomes and control liposomes each encapsulating 50 pmol of siRNA for each liposome.
  • “Control” is a Vero-H cell in which the luciferase gene is forcibly expressed (no liposome added).
  • HB-EGF Lipo is obtained by adding anti-HB-EGF antibody-binding liposomes encapsulating siRNA to the Vero-H cells.
  • shaft of Fig.12 (a) and (b) represents luciferase activity (%) when the luciferase activity in "Control” is set to 100%.
  • luciferase gene a highly expressed foreign gene (luciferase gene) was knocked down by the anti-HB-EGF antibody-bound liposome encapsulating siRNA.
  • the anti-HB-EGF antibody-bound liposome encapsulating siRNA strongly suppressed the expression of luciferase than the control liposome encapsulating siRNA.
  • anti-HB-EGF antibody-bound liposomes encapsulating siRNA were used, luciferase expression was suppressed in a dose-dependent manner with the encapsulated siRNA. Therefore, in the cells expressing HB-EGF, the target gene was knocked down efficiently by the anti-HB-EGF antibody-conjugated liposome.
  • Example 5 In the operation of Example 4 (II), the encapsulated siRNA is a siRNA targeting lamin A / C (target sequence 5′-CTGGAACTTCCAGAAGAACA-3 ′ (SEQ ID NO: 5), B-Bridge International, Inc). Modified to produce anti-HB-EGF antibody-modified liposomes. Knockdown of lamin A / C, which is an endogenous gene, was determined by measuring its mRNA amount.
  • a non-essential amino acid-containing MEM medium (10% fetal bovine serum (FBS), penicillin 100 units / mL, streptomycin 100 ⁇ g / mL And a solution containing 1 ⁇ g / mL of dineticin) for 24 hours.
  • the cells were replaced with 4.5 mL of a non-essential amino acid-containing MEM medium containing no serum, and 500 ⁇ L of a solution obtained by diluting anti-HB-EGF antibody-bound siRNA-encapsulated liposomes with RNase free water was added (750 pmol as the amount of siRNA).
  • SiRNA was introduced into the cells by incubating at 37 ° C. with 5% CO 2 for 20 hours. Subsequently, total RNA was extracted using RNeasy Plus Mini Kit (QIAGEN), the total RNA amount of each sample was matched, and cDNA was purified using T-Primed First-Strand Kit (Amersham Bioscience). . The amount of lamin A / C and ⁇ -actin mRNA was quantified by real-time PCR, the amount of lamin A / C mRNA was corrected with the amount of ⁇ -actin mRNA, and the knockdown efficiency of lamin A / C was determined.
  • FIG. 13 The results are shown in FIG. In FIG. 13, “Cont.” Is a Vero-H cell to which no liposome was added. “Peg-liposome” is obtained by adding control liposomes encapsulating siRNA to the Vero-H cells. “HB-EGF-liposome” is obtained by adding anti-HB-EGF antibody-binding liposomes encapsulating siRNA to the Vero-H cells. The vertical axis in FIG. 13 represents the relative amount (%) of lamin A / C mRNA when the amount of lamin A / C mRNA in “Control” is 100 (%).
  • the endogenous gene lamin A / C was knocked down efficiently by the anti-HB-EGF antibody-bound liposome encapsulating siRNA.
  • the anti-HB-EGF antibody-bound liposome encapsulating siRNA strongly suppressed the expression of lamin A / C than the control liposome encapsulating siRNA. Therefore, in the cells expressing HB-EGF, the target gene was knocked down efficiently by the anti-HB-EGF antibody-conjugated liposome.
  • Example 6 Using a mouse transplanted with human breast cancer cells (MDA-MB-231 cells), the tumor growth inhibitory effect of anti-HB-EGF antibody-conjugated liposomes encapsulating doxorubicin was examined.
  • MDA-MB-231 cells were purchased from ATCC. MDA-MB-231 cells were cultured at 37 ° C. in Leibovitz L-15 medium. 1.0 ⁇ 10 7 cultured MDA-MB-231 cells were subcutaneously transplanted into the ventral part of 8-week-old Balb / c (nu / nu) mice (purchased from Japan SLC). After the transplantation, the animals were reared under uniform temperature and humidity conditions (22 ° C., humidity 55%) for 12 days and used for the following experiments.
  • Example 4 Preparation of anti-HB-EGF antibody-bound liposome encapsulating doxorubicin and control liposome
  • anti-HB-EGF antibody-bound liposome and control liposome were prepared in the same manner as in Example 4, except that doxorubicin (generic name) (manufactured by Kyowa Hakko) was used instead of siRNA.
  • doxorubicin generic name
  • Doxorubicin was encapsulated in the liposome part of the HB-EGF antibody-bound liposome.
  • Doxorubicin was encapsulated in liposomes so as to give 0.26 mol of doxorubicin per mol of HSPC.
  • anti-HB-EGF antibody-bound liposomes were prepared in the same manner as described above except that doxorubicin was not encapsulated (anti-HB-EGF antibody-bound liposomes not encapsulating doxorubicin).
  • doxorubicin was encapsulated in the liposome part of the PEG-liposome in the same manner as in Example 4 except that doxorubicin was used instead of siRNA.
  • Doxorubicin was encapsulated in liposomes so that 0.26 mol of doxorubicin per mol of HSPC.
  • the liposome was administered using a liposome solution in which each liposome was suspended in physiological saline.
  • Tumor volume was measured at the start of dosing (before treatment) and 48 hours after dosing.
  • the tumor growth inhibitory effect was evaluated by the relative volume of the tumor 48 hours after the administration when the tumor volume at the start of the administration was 100%.
  • FIG. 14 shows the tumor growth inhibitory effect 48 hours after the administration.
  • the vertical axis in FIG. 14 represents the relative volume (tumor growth rate (%)) 48 hours after dosing when the tumor volume at the start of dosing (before treatment) is taken as 100%.
  • (1) is a human breast cancer cell transplanted mouse (control) to which doxorubicin and liposome were not administered.
  • (2) is a human breast cancer cell transplanted mouse administered with anti-HB-EGF antibody-conjugated liposomes not encapsulating doxorubicin.
  • (3) is a human breast cancer cell transplanted mouse administered with a control liposome encapsulating doxorubicin.
  • (4) is a human breast cancer cell transplanted mouse administered with anti-HB-EGF antibody-bound liposome encapsulating doxorubicin.
  • the doxorubicin-encapsulated anti-HB-EGF antibody-bound liposome (4) significantly suppressed tumor growth compared to the control liposome (3) encapsulating doxorubicin. It has been reported that when PEG-liposomes encapsulating doxorubicin (control liposome (3) in FIG. 14) are used in an animal model, the tumor suppression effect is higher than when doxorubicin is administered as it is (SK Huang et al., Cancer). Res. 52 (1992), pp. 6774-6781).
  • anti-HB-EGF antibody-bound liposomes encapsulating doxorubicin have a significantly higher tumor suppressing effect than doxorubicin administered directly.
  • tumors grew to the same extent as in the control.
  • Example 7 Cardiomyocytes are prepared in the same manner as in the experiment using rat cultured cardiomyocytes performed in (II) of Example 2.
  • An anti-HB-EGF antibody-bound liposome encapsulating siRNA can be added to the cardiomyocytes to examine the gene expression inhibitory effect.
  • Example 5 the same method except that the siRNA to be encapsulated was changed to siRNA targeting lamin A / C (target sequence 5′-GGTGGTGACGATTCTGGCT-3 ′ (SEQ ID NO: 6), B-Bridge International, Inc) To prepare anti-HB-EGF antibody-modified liposomes. Knockdown of lamin A / C, which is an endogenous gene, can be confirmed by measuring the amount of mRNA of lamin A / C.
  • Neonatal rat cultured cardiomyocytes (Wistar rat, manufactured by Kiwa Laboratory Animal Research) were seeded in a 6-well plate at 1.5 ⁇ 10 6 cells per well.
  • Ad-HsHBEGF or Ad-LacZ prepared in (I) of Example 2 was mixed, and rat cultured cardiomyocytes were infected according to the method of Example (II).
  • anti-HB-EGF antibody-modified liposomes encapsulating siRNA against lamin A / C are introduced into rat cultured cardiomyocytes.
  • Real-time PCR is performed 24 hours after liposome introduction, and the knockout of the gene can be examined by examining the mRNA expression level of lamin A / C in cultured rat cardiomyocytes.
  • Lamin A / C is knocked down more efficiently in rat cultured cardiomyocytes infected with Ad-HsHBEGF than in rat cultured cardiomyocytes transfected with Ad-LacZ by anti-HB-EGF antibody-binding liposomes encapsulating siRNA .
  • failing heart pressure-loaded heart, post-infarcted heart, etc.
  • cancer in which increased expression of HB-EGF is recognized by the HB-EGF binding protein complex such as anti-HB-EGF antibody-binding liposome
  • drugs, siRNA and the like can be specifically delivered to cells and the like. Therefore, it was found that the anti-HB-EGF antibody-bound liposome is useful as a novel treatment system targeting cardiovascular diseases such as failing heart, arteriosclerotic sites, gynecological cancer diseases and the like.
  • a drug delivery system (DDS) for heart failure has not been reported at present and is very innovative.
  • DDS drug delivery system
  • Myocarditis (such as autoimmunity or infectivity), myocardial infarction, and ischemia-reperfusion, which are highly expressed in heart failure and accompanied by inflammation in which the vascular endothelium is easily damaged, is anti-HB-EGF in heart failure. It is believed that this is a typical model in which antibody-bound liposomes can be used. Furthermore, HB-EGF-binding protein complexes such as anti-HB-EGF antibody-binding liposomes are selectively transported to target cells that express HB-EGF, and when bound to target cells, HB-EGF itself In order to promote intracellular uptake, growth suppression is also expected to occur due to intracellular uptake of growth factor HB-EGF.
  • the target substance can be specifically and efficiently introduced into target cells such as cardiomyocytes and cancer cells. Therefore, the present invention is useful in the medical and research fields.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Hospice & Palliative Care (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなる複合体。

Description

HB-EGF結合性タンパク質複合体
 本発明は、薬剤、遺伝子等の目的物質を細胞に効率よく導入することができるHB-EGF結合性タンパク質複合体、該複合体を含有する医薬、目的物質の細胞内への導入促進剤及び目的物質の細胞内への導入促進方法に関する。
 近年、医学の分野において、患部又は標的部位に直接作用し、高い効果を示す副作用の少ない医薬の開発が盛んに行われている。特に、ドラッグデリバリーシステム(DDS)と呼ばれる方法は、標的細胞及び標的組織に対して特異的に薬剤等の有効成分を運搬し、目的箇所で有効成分を作用させることのできる方法として注目されている。また、最近の分子細胞生物学の分野においても、標的細胞への遺伝子導入は、遺伝子の構造、機能又は制御機構を解析する際に不可欠となっている。さらに、このような細胞への目的物質導入技術は、医療分野で重要となるタンパク質の生産、遺伝子治療、DNAワクチン等においても極めて重要である。
 細胞に薬剤、生理活性物質、DNA等の物質を導入する方法は種々知られている。例えば、哺乳動物の遺伝子実験系において、細胞内に遺伝子等を導入する方法として、ウイルスベクターを用いる方法(ウイルスベクター法)、リポソームを用いるリポフェクションによる方法(リポソーム法)、超音波法、エレクトロポレーション法等が行われている。
 ウイルスベクターとしては、アデノウイルスベクター、レンチウイルスベクターが知られており、アデノウイルスベクターにshRNAをデザインしたベクターを用いる一過性遺伝子発現抑制、レンチウイルスベルターにshRNAをデザインしたベクターを用いる恒常性遺伝子発現抑制等が行われている。しかしながら、ウイルスベクター法は、ウイルスベクターに誘導される免疫反応の問題、ウイルスベクターにより細胞の遺伝子が改変される危険性等がある。治療等に用いる場合には倫理上の問題もある。
 リポソーム法は、ウイルスベクターを用いる方法のように免疫反応等の危険性がないため安全性が高く、さらに超音波法やエレクトロポレーション法のように細胞に障害を与えることがなく、特殊な装置も必要ないため広く実施されている。しかしながら、リポソーム法では、細胞への物質導入効率が低いという問題がある。このため、疾患の治療又は実験系において、標的細胞に十分に目的物質を導入することができなかった。中でも特に、心筋細胞、神経細胞、癌細胞等の細胞に、遺伝子、薬剤等の目的物質を十分量導入することは困難であった。
 特許文献1には、細胞を、特定のアミノ酸配列を有するペプチドおよび目的物質を含む組成物と接触させる、目的物質を細胞に導入する方法が開示されている。特許文献2には、特定のアミノ酸配列を有するペプチドを用いた目的物質の細胞内導入方法が開示されている。しかしながらこれらの方法においては、心筋細胞等に特異的にかつ効率よく目的物質を導入できるようにするには、改善の余地があった。
 したがって、安全性が高く、かつ心筋細胞、神経細胞等の細胞にも特異的に目的物質を効率よく導入することができる技術の開発が望まれていた。
特表2004-534004号公報 特許第3748561号
 本発明は、薬剤、遺伝子等の目的物質を効率よく標的細胞内に導入することができるHB-EGF結合性タンパク質複合体、該複合体を含むキット、及び癌、心不全、神経疾患又は肺疾患の治療又は予防剤、診断薬、並びに目的物質の細胞内への導入促進剤及び導入促進方法を提供することを目的とする。
 へパリン結合性EGF様増殖因子(HB-EGF)の膜結合型は、ジフテリア毒素の受容体であり、当該毒素が該HB-EGFに結合すると、毒素とHB-EGFとの複合体はエンドサイト-シスによって細胞内へ取り込まれることが知られている(例えば、Cell, 1992, 69, p.1051-1061等)。本発明者らは、標的細胞に目的物質を効率よく導入する技術について鋭意研究した結果、PEG-リポソームを抗HB-EGF抗体で修飾することによって作製した抗HB-EGF抗体修飾リポソーム(抗HB-EGF抗体結合リポソーム)が、膜結合型HB-EGFを介して細胞内へ効率よく導入される(取り込まれる)ことを見出した。膜結合型HB-EGFを介する抗HB-EGF抗体修飾リポソームの細胞内への導入効率は、抗HB-EGF抗体で修飾していないPEG-リポソームの細胞内への導入効率と比べて約60倍以上高かった。また、HB-EGFを発現しない細胞においては、抗HB-EGF抗体修飾リポソームの取り込みはほとんど起こらないことを見出し、該抗HB-EGF抗体修飾リポソームを用いると、HB-EGFを発現する細胞に特異的に、効率よく目的物質を導入することができることを見出した。さらに、従来は心筋細胞、神経細胞等への物質の導入が困難であったが、不全心筋細胞、神経細胞、肺細胞等の細胞ではHB-EGFが高発現しているため(HB-EGFの不全心筋細胞での発現については、Hypertens Res. 2008 Feb;31(2):335-44.等に、心臓、肺、脳等での発現についてはBiochem Biophys Res Commun. 1993 Jan 15;190(1):125-33.等にそれぞれ記載されている)、抗HB-EGF抗体修飾リポソームを用いると、これらの細胞に特異的に、しかも効率的に薬剤、遺伝子等を導入できることに想到した。また、卵巣癌、子宮癌、乳癌等の癌細胞でもHB-EGFが高発現しているため(HB-EGFの卵巣癌での発現についてはCancer Sci. 2006 May;97(5):341-7.等に、子宮癌での発現については、Gynecol Oncol. 2007 Jan;104(1):158-67.等に、乳癌での発現についてはInt J Surg Pathol. 2002 Apr;10(2):91-9.等に、それぞれ記載されている)、これらの癌細胞内に、より効率よく薬剤等を導入できることも見出した。
 本発明者らは、上記知見に基づきさらに研究を重ね、本発明を完成させるに至った。
 即ち、本発明は、以下の(1)~(10)に関する。
(1)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなることを特徴とする複合体。
(2)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質が、抗HB-EGF抗体又はそのフラグメントである上記(1)に記載の複合体。
(3)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質が、ジフテリア毒素変異体CRM197又はそのフラグメントである上記(1)に記載の複合体。
(4)さらに、細胞に導入する目的物質が担体に封入されている、又は該目的物質と担体とが複合体を形成している上記(1)~(3)のいずれか一項に記載の複合体。
(5)目的物質が、抗癌剤、心不全治療剤、神経疾患治療剤若しくは肺疾患治療剤、又は核酸である上記(4)に記載の複合体。
(6)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とするHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の治療又は予防剤。
(7)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とするHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の診断薬。
(8)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とする目的物質の細胞内への導入促進剤。
(9)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体、及び細胞に導入する目的物質をHB-EGFを発現する細胞に添加する、又はヒトを除く動物に投与する工程を含むことを特徴とする目的物質の細胞内への導入促進方法。
(10)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含むキット。
 本発明はまた、(A)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなる複合体、及び(B)抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤を、癌患者、心不全患者、神経疾患患者又は肺疾患患者に投与する工程を含む、癌、心不全、神経疾患又は肺疾患の治療又は予防方法;(A)膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなる複合体、及び(C)診断試薬を、ヒトを含む哺乳動物に投与する工程を含む、癌、心不全、神経疾患又は肺疾患の診断方法;癌、心不全、神経疾患又は肺疾患の治療、予防又は診断のための、膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなる複合体、に関する。本発明はさらに、膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体、及び細胞に導入する目的物質をヒトを含む動物に投与する工程を含む目的物質の細胞内への導入促進方法も包含する。
 本発明によれば、従来細胞への導入が困難であった薬剤、遺伝子等の物質を、心筋細胞、癌細胞等の標的細胞に特異的にかつ効率的に導入することができる。このため、新しい治療薬、診断薬等の開発、及び遺伝子の構造、機能等の解析等が可能となる。
図1(a)は、Vero細胞及びVero-H細胞におけるHB-EGFの発現をウェスタンブロッティングにより調べた結果を示す図であり、図1(b)は、コントロールであるβ-アクチンの発現をウェスタンブロッティングにより調べた結果を示す図である。 ペプシンで消化した抗HB-EGFモノクローナル抗体(IgG)の還元条件下でのSDS-PAGEの結果を示す図である。 4℃における、Vero細胞(a)及びVero-H細胞(b)それぞれへの抗HB-EGF抗体結合リポソームの結合(接着)を示す図である。 37℃における、Vero細胞(a)及びVero-H細胞(b)それぞれによる抗HB-EGF抗体結合リポソームの取り込みを示す図である。 ラット培養心筋細胞におけるヒトHB-EGFのmRNAの発現(a)及びマウスHB-EGFのmRNAの発現(b)を調べた結果を示す図である。 ラット培養心筋細胞における内在性遺伝子の発現を調べた結果を示す図である。 ラット培養心筋細胞におけるヒトHB-EGF蛋白の発現(a)及びマウスHB-EGF蛋白の発現(b)をウェスタンブロッティングにより調べた結果を示す図である。 ラット培養心筋細胞におけるヒトHB-EGF蛋白の発現局在を、抗ヒトHB-EGF抗体を用いる免疫染色により調べた結果を示す図である。 ラット培養心筋繊維芽細胞におけるヒトHB-EGF蛋白((a)及び(c))及びマウスHB-EGF蛋白の発現局在((b)及び(d))を、抗ヒトHB-EGF抗体を用いる免疫染色により調べた結果を示す図である。 ラット培養心筋細胞又はヒトHB-EGFを強制発現させたラット培養心筋細胞へのリポソームの結合(接着)及び導入を調べた結果を示す図である。 ヒト乳癌細胞株(MDA-MB-231細胞)による抗HB-EGF抗体結合リポソーム及び対照リポソームの取り込みを調べた結果を示す図である。 siRNA(5pmol(a)又は50pmol(b))を封入した抗HB-EGF抗体結合リポソーム及び対照リポソームによるVero-H細胞中のルシフェラーゼ遺伝子のノックダウン実験の結果を示す図である。 siRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームによるVero-H細胞中のラミン遺伝子のノックダウン実験の結果を示す図である。 ヒト乳癌細胞株(MDA-MB-231細胞)を移植したマウスにおけるドキソルビシン封入抗HB-EGF抗体結合リポソームの腫瘍増殖抑制効果を調べた結果を示す図である。
 本明細書中、「本願発明の複合体又は促進剤が、目的物質の細胞内への導入(取り込み)を促進する」とは、本願発明の複合体又は促進剤の不在下で行われた目的物質の細胞内への導入(目的物質の細胞内への取り込み)に対して、本願発明の複合体又は促進剤が存在する場合の細胞内への目的物質の導入(目的物質の細胞内への取り込み)が、より効率よく行われることを意味する。
 なお、本明細書中、「治療」とは、病態を完全に治癒させることの他、完全に治癒しなくても症状の進展及び/又は悪化を抑制し、病態の進行をとどめること、又は病態の一部若しくは全部を改善して治癒の方向へ導くことを、「予防」とは病態の発症を防ぐこと、抑制すること又は遅延させることを、それぞれ意味するものとする。
 本発明の複合体は、膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質(以下、「HB-EGF結合性タンパク質」ともいう)と、担体とを必須としてなる複合体である。このような本発明の複合体を、以下、単に「HB-EGF結合性タンパク質複合体」ともいう。
 本発明のHB-EGF結合性タンパク質複合体は、HB-EGF結合性タンパク質により細胞膜上の膜結合型HB-EGF(proHB-EGF)と結合するものである。この結合によってシグナル伝達に変化が生じてエンドサイトシスが起こり、本発明の複合体と膜結合型HB-EGFとが結合した複合体が細胞内に取り込まれる。このような作用を利用して、細胞に導入する目的物質を細胞内へ効率よく導入することができることになる。細胞内に導入された核酸、薬剤等の目的物質は、細胞内のタンパク質等に作用したり、又は他の遺伝子の発現を制御したりして作用を発揮することになる。
 本発明の複合体は、HB-EGF結合性タンパク質と、担体とを必須として形成される複合体であればよく、例えば、HB-EGF結合性タンパク質と、担体とが結合、接着又は吸着してなる複合体等が挙げられる。好ましくは、HB-EGF結合性タンパク質と、担体とが結合してなる複合体である。また、HB-EGF結合性タンパク質は、膜結合型HB-EGFとの結合部位以外の部位において、担体と結合、接着又は吸着していることが好ましい。このような複合体において、HB-EGF結合性タンパク質と担体とは直接結合、接着又は吸着していてもよく、スペーサー等を介して結合等していてもよい。
 本発明におけるHB-EGF結合性タンパク質は、膜結合型HB-EGFを認識して結合し、これにより上述したエンドサイトシスを引き起こす作用を有するものであれば特に限定されないが、抗HB-EGF抗体又はそのフラグメントが好ましい。抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよいが、膜結合型HB-EGFに対する特異性が高い点から、モノクローナル抗体が好ましい。
 抗HB-EGF抗体又はそのフラグメントは、目的物質を導入する細胞に発現している膜結合型HB-EGFが由来する動物と同種動物由来の抗HB-EGF抗体又はそのフラグメントが好ましく、例えば、ヒトHB-EGFを細胞膜上に発現する細胞に目的物質を導入する場合には、抗ヒトHB-EGF抗体又はそのフラグメントが好ましい。抗HB-EGF抗体としては、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、ラット、マウス、モルモット、ヒト等の哺乳動物の細胞膜上に存在する膜結合型HB-EGFに対する抗HB-EGF抗体が好ましく、中でも、抗ヒトHB-EGF抗体がより好ましい。
 本発明における抗HB-EGF抗体のフラグメントとしては、例えば、上述した抗HB-EGF抗体のFc部分を削除したFabフラグメント、Fab’フラグメント、F(ab’)フラグメント、Fab部分の可変部のみを結合させたscFv抗体等が好ましい。中でも、Fab’フラグメントが好ましい。
 本発明におけるHB-EGF結合性タンパク質としては、ジフテリア毒素変異体CRM197、そのフラグメント等も好ましい。CRM197は、ジフテリア毒素のフラグメントA部分に変異がある無毒な変異体であり、膜結合型HB-EGFに結合する活性は野生型毒素と同じものである。CRM197は、特にヒト及びサルを含み、マウス、ラットを除く哺乳動物の膜結合型HB-EGFに対して高い親和性を有することが知られているため、CRM197と担体とを必須としてなる複合体を用いると、マウス、ラットを除く哺乳動物のHB-EGFを発現する細胞、中でも特にヒト又はサルのHB-EGFを発現する細胞に目的物質を非常に効率よく導入することができる。CRM197については、J Biol Chem. 1985 Oct 5;260(22):12148-53.等に記載されている。また、特許第4203742号にはCRM197のアミノ酸配列等が記載されている。CRM197のアミノ酸配列を配列番号1に示す。配列番号1のアミノ酸配列において、最初の25個のアミノ酸配列がシグナル配列である。CRM197のシグナル配列を除いたアミノ酸番号で378~535番目のアミノ酸により構成されるドメインが、膜結合型HB-EGFとの結合に重要なドメインである。CRM197のフラグメントとしては、CRM197のシグナル配列を除いたアミノ酸番号で378~535番目のアミノ酸配列を含むフラグメントが好ましい。
 さらに、本発明におけるHB-EGF結合性タンパク質には、本発明の効果を奏する限り、放射性標識、蛍光標識、色素標識等がされていてもよい。
 本発明における「担体」とは、後述する核酸、薬剤等の細胞に導入する目的物質を、標的細胞又は標的部位まで運搬することができる素材を意味する。
 本発明における担体は、巨大分子、微集合体、微粒子、微小球、ナノ小球、リポソーム及びエマルジョンからなる群より選択される少なくとも一つから構成されることが好ましい。中でも、リポソームが好ましい。リポソームは、脂質二重層構造を有する閉鎖小胞である限り、多重膜リポソーム(MLV)であってもよいし、SUV(small unilamellar vesicle)、LUV(large unilamellar vesicle)、GUV(giant unilamellar vesicle)等の一枚膜リポソームであってもよい。リポソームのサイズは特に限定されるものではないが、通常は直径約50~3000nm、好ましくは直径約50~400nm、さらに好ましくは直径約80~200nmである。リポソームを構成する脂質は特に限定されず、通常使用されるものを使用することができる。また、リポソームはポリエチレングリコール(PEG)等で修飾されていてもよい。
 本発明の複合体は、さらに、細胞に導入する目的物質(以下、単に目的物質ともいう)を含んでいてもよい。本発明の複合体が目的物質を含む場合には、例えば、細胞に導入する目的物質が担体に封入されている、又は該目的物質と担体とが複合体を形成していることが好ましい。
 細胞に導入する目的物質は、診断、治療、研究等の目的に応じて適宜選択することができ、例えば、核酸、薬剤、ペプチド、タンパク質、糖又はこれらの複合体、試薬、治験薬等が挙げられる。
 核酸は一本鎖又は二本鎖のいずれであってもよいし、線状又は環状のいずれであってもよい。核酸としては、ゲノムDNA、cDNA、mRNA、アンチセンスRNA、リボザイム、siRNA、short hairpin RNA(shRNA)、microRNA(miRNA)等が挙げられる。核酸には、DNA又はRNAに加え、これらの類似体又は誘導体(例えば、ペプチド核酸(PNA)、ホスホロチオエートDNA等)が含まれる。
 薬剤としては、抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤が好ましい。
 抗癌剤としては、HB-EGFを高発現する癌の治療又は予防剤が好ましい。HB-EGFを高発現する癌としては、子宮癌、卵巣癌、乳癌等が挙げられる。子宮癌の治療剤としては、例えば、シスプラチン、ドキソルビシン等が挙げられ、卵巣癌の治療剤としては、例えば、パクリタキセル、ドキシル等が挙げられる。心不全治療剤としては、キサンチン誘導体などの非選択的PDE阻害剤;アムリノン、ミルリノン、オルプリノン、ピモベンダン、ベスナリノンなどのPDEIII阻害剤;ジギタリス製剤;その他ACE阻害剤、ATP製剤、硝酸薬、ジピリダモール、ニコランジル、クラスIII群抗不整脈薬、ベプリジル(ベプリコール)等が挙げられる。また、これらの薬剤には、核酸も含まれる。例えば、心不全治療剤として、不全心筋細胞に特異的に発現する遺伝子のsiRNA、shRNA、miRNA等の核酸を含む剤を用いることができる。
 試薬としては、蛍光試薬、色素、診断試薬等が挙げられる。
 本発明のHB-EGF結合性タンパク質複合体は、HB-EGFを高発現する細胞、例えば、子宮癌、卵巣癌、乳癌等のHB-EGFを高発現する癌細胞、不全心筋細胞、神経細胞及び肺細胞等に効率よく目的物質を導入することができるものであることから、目的物質としては、抗癌剤、心不全治療剤、神経疾患治療剤若しくは肺疾患治療剤、又は核酸が好ましく、抗癌剤若しくは心不全治療剤、又は核酸がより好ましい。また、癌、心不全、神経疾患、肺疾患等の疾患の診断試薬も好ましい。
 本発明の複合体の製造方法は特に限定されず、例えば、HB-EGF結合性タンパク質と担体とを、公知の方法により結合、接着又は吸着させて複合体を形成させる方法が挙げられる。例えば、担体がリポソームである場合には、マレイミド基を介してリポソームとHB-EGF結合性タンパク質とを結合させる方法等を採用することができる。担体には、所望によりあらかじめ細胞に導入する目的物質を封入又は結合させておいてもよい。また、HB-EGF結合性タンパク質と、担体とを公知の方法により結合、接着又は吸着させて複合体を形成させた後、所望に応じて、担体に目的物質を封入又は結合させてもよい。このような担体とタンパク質とを結合等させる方法、担体に目的物質を封入等する方法は公知であり、例えば、「リポソーム応用の新展開 ~人工細胞の開発に向けて~」(監修 秋吉 一成/辻井 薫、株式会社エヌ・ティー・エス、2005年6月1日発刊)等に記載の方法によって行うことができる。
 本発明のHB-EGF結合性タンパク質複合体の製造に用いるHB-EGF結合性タンパク質としては、上述したように抗HB-EGF抗体若しくはそのフラグメント、又はジフテリア毒素変異体CRM197若しくはそのフラグメントが好ましい。
 抗HB-EGF抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよいが、膜結合型HB-EGFに対する特異性が高い点から、モノクローナル抗体が好ましい。
 抗HB-EGF抗体は、市販されており、本発明においては、抗HB-EGF抗体として、抗体の市販品を用いることができる。抗ヒトHB-EGF抗体の市販品としては、以下のモノクローナル抗体等が挙げられ、これらの抗体はいずれもコスモ・バイオ社から販売されている。
 SANTA CRUZ BIOTECHNOLOGY,INC.製のAnti HB-EGF(H-88)(カタログ品番:SC28908)、Anti HB-EGF(C-18)(カタログ品番:SC1413)、Anti HB-EGF(E-10)(カタログ品番:SC74526)、Anti HB-EGF(G-11)(カタログ品番:SC74441)、Anti HB-EGF(Z14)(カタログ品番:SC74077L、SC74077)、Anti HB-EGF(C-14)(カタログ品番:SC21593)、Anti HB-EGF(N-17)(カタログ品番:SC21591);R&D SYSTEMS INC.製のAnti HB-EGF(カタログ品番:MAB259、AF259NA、MAB2591)、Anti HB-EGF,Human,(Poly)(商標名)(カタログ品番:BAF259);CALBIOCHEM-NOVABIOCHEM INTERN’L製のAnti HB-EGF(カタログ品番:PC319L);コスモ・バイオ社製のAnti HB-EGF(カタログ品番:71503、71501);LIFESPAN BIOSCIENCES INC製のAnti Heparin-binding Egf-like Growth Factor(カタログ品番:LSC36646500)。
 抗マウスHB-EGF抗体の市販品としては、SANTA CRUZ BIOTECHNOLOGY,INC.製のAnti HB-EGF(M-18)(カタログ品番:SC1414)が挙げられる。
 抗HB-EGF抗体は、公知の方法、例えば、Mine N, Iwamoto R, Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. 2005 Oct;132(19):4317-26に記載されている方法(4318頁、HBdel/delマウスを用いる作製方法)に準じて作製することもできる。例えば、抗ヒトHB-EGF抗体のモノクローナル抗体は、上記Mineらの文献において、抗原としてヒト抗原を用いて製造することができる。本発明における好ましい抗ヒトHB-EGF抗体として、大阪大学(日本国大阪府吹田市山田丘3‐1(〒565-0871)大阪大学微生物病研究所、細胞機能分野、目加田研究室)保有のハイブリドーマにより作製されるモノクローナル抗体HB-EGF mab クローン:#3E9、#3H4、及び#4G10等も使用できる。例えば、HB-EGF mab クローン:#3E9の作製は、抗原としてヒト抗原を用いて、上記Mineらの文献に記載されているクローン4D9の作製方法に準じて行うことができる。
 抗HB-EGF抗体のフラグメントは、公知の方法、例えば、抗HB-EGF抗体を化学的又は酵素的に切断する方法、該抗体の結合部位を遺伝子工学的に調製する方法等により得ることができる。抗HB-EGF抗体のフラグメントとして、上述したHB-EGF抗体のFabフラグメント、Fab’フラグメント、F(ab’)フラグメント、scFv抗体等を好適に使用できる。
 本発明のHB-EGF結合性タンパク質複合体の製造に用いるジフテリア毒素変異体CRM197は、例えば、Uchida T. et al., Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 1973;248:3838‐44.に記載の方法で得ることができる。又は、特許第4203742号に記載の方法に従って、C7(β197)の溶原菌のストック(C7(β197)ファージを溶原化したジフテリア菌C7(beta197)M1としてATCC(American Type Culture Collection)Bacteria collection(No.39255)から入手可能)を培養し、該培養液からCRM197を精製する方法によっても得ることができる。また、特許第4203742号に記載のCRM197のアミノ酸配列(配列番号1)に基づき、Peptide Synthesis, Interscience, New York, 1966 ; The Proteins, Vol 2, Academic Press Inc., New York, 1976; ペプチド合成、丸善(株)、1975;ペプチド合成の基礎と実験、丸善(株)1985;医薬品の開発 続 第14巻・ペプチド合成、広川書店、1991などに記載されているペプチド合成方法によって合成することもできる。さらに、CRM197をコードするDNA配列(配列番号2)を適当な発現ベクターに組み込み、該ベクターを大腸菌等に挿入して大腸菌等にCRM197を合成させることでも作製できる。
 CRM197のフラグメントは、CMR197を化学的又は酵素的に切断する方法、CRM197の結合部位を含むペプチドを遺伝子工学的に調製する方法等により得ることができる。また、特許第4203742号に記載のCRM197のアミノ酸配列(配列番号1)に基づきペプチド合成方法によって合成することができる。
 担体の製造方法としては、公知の方法を採用することができる。例えば、リポソームの製造方法は、「リポソーム応用の新展開 ~人工細胞の開発に向けて~」(監修 秋吉 一成/辻井 薫、株式会社エヌ・ティー・エス、2005年6月1日発刊)等に記載されており、バンガム(単純水和)法、逆相蒸発法、超臨界二酸化炭素法等によって脂質を水和し、リポソーム溶液を得ることができる。
 細胞に導入する目的物質を担体に封入する、又は該目的物質と担体との複合体を形成する方法としては特に限定されず、公知の方法により行うことができる。例えば、担体にリポソームを使用する場合、目的物質が水溶性である場合には、リポソームの製造にあたり脂質膜を水和する際に使用される水性溶媒に目的物質を添加することにより、リポソーム内部の水相に目的物質を封入することができる。また、目的物質が脂溶性である場合には、リポソームの製造にあたり使用される有機溶剤に目的物質を添加することにより、リポソームの脂質二重層に目的物質を封入することができる。
 本発明のHB-EGF結合性タンパク質複合体は、膜結合型HB-EGFを介して細胞内に効率よく取り込まれるため、HB-EGFを高発現している細胞に後述する目的物質を効率よく導入するために使用することができるものである。例えば、子宮癌、卵巣癌、乳癌等の癌細胞、不全心筋細胞、神経細胞及び肺細胞等はHB-EGFを高発現しているため、HB-EGF結合性タンパク質複合体によりこのような細胞内に効率よく目的物質を導入することができる。
 例えば、子宮癌、卵巣癌、乳癌等のHB-EGFを高発現する癌;心不全;神経疾患又は肺細疾患を発症している動物に、本発明のHB-EGF結合性タンパク質複合体と共に、薬剤(抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等)を投与すると、癌細胞、不全心筋細胞、神経細胞又は肺細胞に薬剤を特異的かつ効率的に導入することができるため、これらの疾患の治療又は予防に有効である。この場合、薬剤は、本発明の複合体の投与と同時に、又は投与前若しくは投与後に、投与することができる。つまり、(1)本発明の複合体及び薬剤を含む組成物を調製して該複合体及び薬剤を同時に投与してもよく、(2)本発明の複合体を動物に投与して癌細胞、不全心筋細胞等の細胞内への取り込みを促進させた後、薬剤を添加して細胞内にとりこませてもよい。また、あらかじめ動物に薬剤を投与しておき、次いで本発明の複合体を投与してもよい。また、上記(1)の場合、薬剤(抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等)は、本発明の複合体に含まれていてもよい。このような、目的物質として抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等の薬剤を含む上記複合体は、本発明の好ましい実施態様の1つである。中でも、抗癌剤又は心不全治療剤を含むことが好ましい。
 HB-EGF結合性タンパク質と、担体とを必須としてなる複合体(HB-EGF結合性タンパク質複合体)を含有するHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の治療又は予防剤も、本発明の1つである。好ましい態様としては、HB-EGFを高発現する癌又は心不全の、治療又は予防剤である。本発明の治療又は予防剤は、さらに、抗癌剤、心不全治療剤、神経疾患治療剤及び肺疾患治療剤からなる群より選択される1種以上の薬剤を含んでいてもよく、剤型に応じて医薬上許容される成分を含んでいてもよい。また、本発明においては、HB-EGF結合性タンパク質複合体が上述した抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤を含んでいてもよい。本発明の治療又は予防剤の剤型としては、非経口投与のための剤型が好ましく、例えば、注射剤、点滴剤、軟膏剤、ゲル剤、クリーム剤、貼付剤、噴霧剤、スプレー剤等が挙げられるが、注射剤が好ましい。
 非経口投与のための注射剤としては、水性注射剤又は油性注射剤のいずれでもよい。水性注射剤とする場合、公知の方法に従って、例えば、水性溶媒(注射用水、精製水等)に、医薬上許容される添加剤を適宜添加した溶液に、HB-EGF結合性タンパク質複合体(及び所望により薬剤)を混合した後、フィルター等で濾過等して滅菌し、次いで無菌的な容器に充填することにより調製することができる。医薬上許容される添加剤としては、例えば、塩化ナトリウム、塩化カリウム、グリセリン、マンニトール、ソルビトール、ホウ酸、ホウ砂、ブドウ糖、プロピレングリコール等の等張化剤;リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液、炭酸緩衝液、クエン酸緩衝液、トリス緩衝液、グルタミン酸緩衝液、イプシロンアミノカプロン酸緩衝液等の緩衝剤;パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、クロロブタノール、ベンジルアルコール、塩化ベンザルコニウム、デヒドロ酢酸ナトリウム、エデト酸ナトリウム、ホウ酸、ホウ砂等の保存剤;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレングリコール等の増粘剤;亜硫酸水素ナトリウム、チオ硫酸ナトリウム、エデト酸ナトリウム、クエン酸ナトリウム、アスコルビン酸、ジブチルヒドロキシトルエン等の安定化剤;塩酸、水酸化ナトリウム、リン酸、酢酸等のpH調整剤等が挙げられる。また注射剤には、適当な溶解補助剤、例えば、エタノール等のアルコール;プロピレングリコール、ポリエチレングリコール等のポリアルコール;ポリソルベート80、ポリオキシエチレン硬化ヒマシ油50、リソレシチン、プルロニックポリオール等の非イオン界面活性剤等をさらに配合してもよい。また、例えば、ウシ血清アルブミン、キーホールリンペットヘモシアニン等のタンパク質;アミノデキストラン等のポリサッカリド等を含有してもよい。油性注射剤とする場合、油性溶媒としては、例えば、ゴマ油又は大豆油等が用いられ、溶解補助剤として安息香酸ベンジル又はベンジルアルコール等を配合してもよい。調製された注射液は、通常、適当なアンプル又はバイアル等に充填される。注射剤等の液状製剤は、凍結保存又は凍結乾燥等により水分を除去して保存することもできる。凍結乾燥製剤は、用時に注射用蒸留水等を加え、再溶解して使用される。
 本発明の治療又は予防剤に含まれるHB-EGF結合性タンパク質複合体の量は、治療又は予防剤の製剤形態又は投与経路によって異なるが、通常、最終製剤中に約0.0001~100%の範囲から適宜選択して決定することができる。
 本発明の治療又は予防剤をヒトを含む哺乳動物に投与する方法としては、例えば、静脈、腹腔内、皮下、経鼻等の非経口投与が挙げられる。また、細胞又は部位によっては、局所的に直接投与することもできる。例えば、心筋細胞に薬剤等を導入する場合には、HB-EGF結合性タンパク質複合体を含む治療又は予防剤を、CARTO(登録商標)システム(ジョンソン・エンド・ジョンソン社、メディカル カンパニー)、心筋組織内注射等によって心筋細胞に直接投与することができる。また、血管透過性亢進処置後、冠血脈内投与することも可能である。
 本発明の治療又は予防剤を投与する際には、該治療又は予防剤の投与と同時又は投与前若しくは投与後に、対象疾患に応じて、上述した抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等の薬剤を別途投与することもできる。例えば、(1)HB-EGF結合性タンパク質及び薬剤(抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等)を含む治療又は予防剤を調製して投与してもよく、(2)本発明の治療又は予防剤を動物に投与して癌細胞、不全心筋細胞等の細胞内への取り込みを促進させた後、薬剤を添加して細胞内にとりこませてもよい。また、あらかじめ動物に薬剤を投与しておき、次いで治療又は予防剤を投与してもよい。上記(1)の場合、薬剤(抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等)は、HB-EGF結合性タンパク質複合体に含まれていてもよい。本発明の治療又は予防剤が薬剤を含む場合、その含有量は、投与される薬剤の種類等に応じて適宜調節することができる。本発明の治療又は予防剤とは別に薬剤を投与する場合、その投与量も、投与される薬剤の種類等に応じて適宜調節することができる。
 本発明の治療又は予防剤の投与量及び投与回数は、HB-EGF結合性タンパク複合体と共に投与される薬剤(抗癌剤、心不全治療剤、神経疾患治療剤又は肺疾患治療剤等)の種類、量、患者の体重及び疾患等に応じて、適宜調節することができ、該薬剤が患部又は標的細胞に効率よく取り込まれるように、投与量等を調節することが好ましい。
 本発明の治療又は予防剤の投与対象としては、子宮癌、卵巣癌、乳癌等のHB-EGFを高発現する癌;心不全;神経疾患及び肺細疾患からなる群より選択される1種以上の疾患を発症している哺乳動物が好適であり、治療に用いる場合には、HB-EGFを高発現する癌又は心不全を発症している哺乳動物がより好ましい。予防に用いる場合には、HB-EGFを高発現する癌;心不全;神経疾患及び肺細疾患からなる群より選択される1種以上の疾患を発症する可能性がある哺乳動物が好ましい。哺乳動物としては、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、ラット、マウス、モルモット等が挙げられ、特に該疾患を発症している又は発症する可能性があるヒトが好ましい。
 さらに、上記HB-EGF結合性タンパク質複合体を、HB-EGFを高発現する癌、心不全等の診断又は検出に使用することもできる。HB-EGF結合性タンパク質複合体を含有するHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の診断薬も、本発明の1つである。例えば、子宮癌、卵巣癌、乳癌等のHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患等を発症した可能性がある動物に、HB-EGF結合性タンパク質複合体を投与し、該複合体の投与と同時に、又は投与前若しくは投与後に蛍光試薬、診断試薬等を投与すると、癌細胞、不全心筋細胞、神経細胞又は肺細胞に該試薬が効率よく導入される。次いで、該試薬を公知の方法で検出等することにより、患部の検出、疾患の診断等が可能となる。なお診断試薬等は、HB-EGF結合性タンパク質複合体に含まれていてもよい。本発明の診断薬の剤型及び投与方法は、上述した治療又は予防剤の剤型及び投与方法と同じであり、適宜選択することができる。HB-EGF結合性タンパク質複合体と共に用いる診断試薬の種類、投与方法、投与量等は、疾患の種類等に応じて適宜選択することができる。
 上記HB-EGF結合性タンパク質複合体をin vitroにおいては細胞(標的細胞)に添加することにより、又はin vivoでは動物に投与することにより、目的物質の細胞内への導入を促進することができる。HB-EGF結合性タンパク質複合体及び細胞に導入する目的物質をHB-EGFを発現する細胞に添加する、又は動物に投与する工程を含む目的物質の細胞内への導入促進方法も、本発明の1つである。
 本発明の細胞内への導入促進方法(以下、本発明の促進方法という)における標的細胞は、HB-EGFを高発現する細胞が好ましく、細胞膜上にHB-EGFを高発現する細胞が特に好ましい。HB-EGFを発現しない又は低発現する細胞である場合には、該細胞にHB-EGFを発現する遺伝子を公知の手法、例えば、実施例に記載のアデノウイルスベクターを用いる方法、又は適当なプラスミドベクターにHB-EGFを発現する遺伝子を組み込んだベクターをリポフェクション、リン酸カルシウム法、エレクトロポレーション等の手法により細胞内に導入する方法等を用いて細胞に導入することによりHB-EGFを高発現させることが可能である。標的細胞としては、例えば、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、ラット、マウス、モルモット等の哺乳動物由来の細胞が挙げられる。哺乳動物の心筋細胞、神経細胞等の非分裂細胞も好ましい。
 本発明の促進方法において、HB-EGF結合性タンパク質複合体を投与する動物としては、上述した哺乳動物が挙げられる。本発明の促進方法を用いると、例えば、卵巣癌、子宮癌、乳癌等のHB-EGFを高発現する癌;心不全;神経疾患又は肺細疾患を発症している動物において、患部である癌細胞、不全心筋細胞、神経細胞又は肺細胞に、治験薬、薬剤、試薬、遺伝子等の目的物質を効率よく導入することができる。
 本発明の方法においては、目的物質、及びHB-EGF結合性タンパク質複合体を含む組成物を調製して標的細胞に添加又は動物に投与してもよく、HB-EGF結合性タンパク質複合体を標的細胞に添加又は動物に投与して細胞内への取り込みを促進させた後、目的物質を添加して細胞内に取り込ませてもよい。また、あらかじめ標的細胞に目的物質を添加又は動物に目的物質を投与しておき、次いでHB-EGF結合性タンパク質複合体を添加又は該動物に投与してもよい。目的物質は、HB-EGF結合性タンパク質複合体に含まれていてもよく、この場合には、目的物質が担体に封入されている、又は該目的物質と担体とが複合体を形成していることが好ましい。HB-EGF結合性タンパク質複合体及び目的物質の添加量又は投与量は、細胞又は動物の種類、目的物質等に応じて適宜選択すればよい。
 本発明の促進方法においては、HB-EGF結合性タンパク質複合体を含有する組成物を細胞に添加又は動物に投与することが好ましい。このようなHB-EGF結合性タンパク質複合体を含有する組成物は、目的物質への細胞内導入促進剤として有用なものである。このような、HB-EGF結合性タンパク質複合体を含有する細胞内導入促進剤も、本発明の1つである。本発明の細胞内導入促進剤は、さらに目的物質を含有してもよく、該目的物質は、HB-EGF結合性タンパク質複合体に含まれていてもよい。
 本発明の促進剤の剤形は特に限定されず、例えば、動物に投与する場合には、上述した治療又は予防剤と同様の剤形が挙げられ、注射剤又は点滴剤が好ましい。さらに、剤型に応じて医薬上許容される成分を含んでいてもよい。また、本発明の促進剤の動物への投与方法、投与量等も、上述した治療又は予防剤と同じである。
 In vitroにおいて細胞に添加する場合の剤型としては、HB-EGF結合性タンパク質複合体の分散液が挙げられる。分散溶媒としては、例えば、生理食塩水、リン酸緩衝液、クエン緩衝液、酢酸緩衝液等の緩衝液を使用することができる。分散液には、例えば、糖類、多価アルコール、水溶性高分子、非イオン界面活性剤、抗酸化剤、pH調節剤、水和促進剤等の添加剤を添加して使用してもよい。
 In vitroにおいて細胞に添加する場合の別の剤形としては、HB-EGF結合性タンパク質複合体の分散液の乾燥物(例えば、凍結乾燥物、噴霧乾燥物等)が挙げられる。乾燥物は、生理食塩水、リン酸緩衝液,クエン緩衝液、酢酸緩衝液等の緩衝液を加え、HB-EGF結合性タンパク質複合体の分散液として使用することができる。
 本発明の促進剤をin vitroにおいて細胞に添加する場合には、例えば、好適な培地で培養した細胞に、本発明の促進剤を添加又は接触等させればよい。次いで、細胞と促進剤とをインキュベーションする工程、細胞を洗浄する工程、細胞を回収する工程等を行なってもよい。細胞内への目的物質の導入は、例えば、細胞溶解後、公知の方法により確認することができる。
 HB-EGF結合性タンパク質と担体とを必須としてなる複合体を含むキットも、本発明の1つである。
 本発明のキットは、目的物質、目的物質を導入する細胞、緩衝液、培地等を適宜含んでもよい。HB-EGF結合性タンパク質複合体の好ましい態様は、上述した通りであり、HB-EGF結合性タンパク質複合体が目的物質を含んでいてもよい。目的物質としては、治験薬、核酸又は薬剤が好ましい。目的物質を導入する細胞は特に限定されず、例えば、心筋細胞、神経細胞等の非分裂細胞が好ましい。目的物質を導入する細胞がHB-EGFを発現しない又は低発現する細胞である場合には、該細胞にHB-EGFを発現する遺伝子を公知の手法、例えば、実施例に記載したアデノウイルス等のウイルスベクターを利用する方法、又は適当なプラスミドベクターにHB-EGFを発現する遺伝子を組み込んだベクターをリポフェクション、リン酸カルシウム法、エレクトロポレーション等により細胞内に導入する方法等によって導入することにより、HB-EGFを高発現する細胞とすることができる。
 本発明のキットは、これまで技術的に困難であった培養心筋細胞、培養神経細胞への核酸、治験薬等の導入等に好適に用いることができるものである。
 次に本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
試験例1
(I)Vero-H細胞の調製
 Vero(HB-EGF低発現)細胞は、American Type Culture Collection(ATCC)から入手可能である。Vero-H(HB-EGF高発現)細胞は、ヒトHB-EGFを高発現する細胞であり、Goishi K., et al Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell 1995;6:967‐980.に記載されている方法に従って作製した。
 Vero(HB-EGF低発現)細胞を、非必須アミノ酸含有MEM培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、及びストレプトマイシン100μg/mLを含有する溶液)中にて37℃で5%二酸化炭素存在下に保存した。Vero-H(HB-EGF高発現)細胞を、非必須アミノ酸含有MEM培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、ストレプトマイシン100μg/mL、及びジネティシン1μg/mLを含有する溶液)中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.25%トリプシン/EDTA-PBS(-)溶液で細胞をはがした。
 Vero-H細胞がHB-EGFを高発現することの確認は、ウェスタンブロッティングにより行った。
(II)ウェスタンブロッティング
(1)細胞播種
 24個のくぼみ(ウェル)を持つプレート中に上記のVero細胞又はVero-H細胞を1ウェルあたり3.0×10個入れ、37℃で48時間インキュベートした。
(2)サンプル調製
 (1)で培養した細胞を、氷冷したPBS(-)で、3回洗浄した。次に、50mM Tris-HCl(pH7.4)、Triton-X 1%、0.15M NaCl(タンパク質阻害剤を含む)で細胞を溶解させた(4℃、1時間)。細胞溶解液を遠心分離(20,000、10分、4℃)し、上澄みをサンプルとして用いた。サンプルは、280nmの吸光度によりタンパク質量を測定した後、ウェスタンブロッティングに用いた。
(3)ウェスタンブロッティング
 サンプル7.04μLを、4×Sample Buffer ME(+) 2.35μLで希釈し、次いでこの希釈液を95℃で5分間ボイルした。サンプル(20μg)と、マーカーとを、ウェスタンブロッティング用のゲルにアプライした。マーカーとして、Pre-stained marker(5μL、Bio-Rad社製)及びMagic mark(5μL、Invitrogen社製)を使用した。濃縮ゲル(stacking gel)では5mA、ランニングゲル(running gel)では10mAで泳動を行なった。濃縮ゲルをランニングゲルから切り離し、タンパク質をニトロセルロースフィルターに40V、90分かけて転写した(ブロッティング)。次いで、室温で1時間、ブロッキング溶液(5%(w/v)BSAを含むTTBS)中で振とうしてブロッキングした。TTBSは、0.05% Tween 20を含むTBS(トリス緩衝生理食塩水)である。
 ブロッキングしたニトロセルロースフィルターを、一次抗体を含むTTBS(5%(w/v)BSAを含む)に浸して振とうしながら、4℃で一晩インキュベートした後、TTBSで洗浄(5分×3)した。HB-EGFに対する一次抗体としては、0.1μg/mLの抗HB-EGF抗体(R&D Sysems,Inc.製、5%(w/v)BSAを含むTTBSで2500倍希釈したもの)を用いた。次いで、二次抗体を含むTTBS(5%(w/v)BSAを含む)に浸し、室温で1時間振とうした後、TTBSで洗浄した(5分×3)。二次抗体には、抗HB-EGF抗体 抗ヤギIgG(Santa Cruz Biotecnology社製、5%(w/v)BSAを含むTTBSで4000倍希釈したもの)を用いた。ECLシステム(Amersham社)を利用して、目的抗原の存在位置を検出した。
 コントロールとして、β-アクチンを選択した。β-アクチンに対する一次抗体として、抗アクチンIgGウサギ(5%(w/v)BSAを含むTTBSで4000倍希釈したもの)を用いた。二次抗体には、HRP結合抗ウサギIgG(Amersham社製、5%(w/v)BSAを含むTTBSで5000倍希釈したもの)を使用した。
(4)結果
 図1(a)は、Vero細胞及びVero-H細胞におけるHB-EGFの発現をウェスタンブロッティングにより調べた結果を示す図である。図1(a)及び(b)において、左のレーンはマーカー、中央のレーンはVero-H細胞、右のレーンはVero細胞である。図1(a)に示すように、Vero-H細胞(中央のレーン)においては、約20-30kDaにバンドを認め、HB-EGFを高発現していることが確認された。
 図1(b)は、Vero細胞及びVero-H細胞におけるβ-アクチン(コントロール)の発現をウェスタンブロッティングにより調べた結果を示す図である。図1(b)より、Vero細胞及びVero-H細胞のいずれにおいても、β-アクチンは同程度に発現していることが分かる。
実施例1
(I)抗HB-EGF抗体結合PEGリポソームの調製
(1)F(ab’)化抗HB-EGF抗体の調製
 F(ab’)化抗HB-EGF抗体の調製は、常法に従って行った。
 ヒトIgG(大阪大学微生物病研究所、細胞機能分野、目加田研究室(日本国大阪府吹田市山田丘3‐1(〒565-0871))保有のハイブリドーマより作製したモノクローナル抗体(HB-EGF mab クローン:#3E9))を、ペプシンで消化した(37℃、10時間)。なお、ハイブリドーマ及びモノクローナル抗体HB-EGF mab クローン:#3E9は、例えば、抗原としてヒト抗原を用いて、Mine N, Iwamoto R, Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. 2005 Oct;132(19):4317-26の4318頁、HBdel/delマウスを用いる作製方法に準じて作製できる(HB-EGF mab クローン:#3E9の作製は、該文献に記載されているクローン4D9の作製方法に準じて行うことができる)。Ultrogel AcA54(PALL Life Sciences社製)を用いたゲル濾過により、F(ab’)フラグメントを精製した。280nmの吸光度を指標として、F(ab’)フラグメントを含む溶出画分を集めた。切断とF(ab’)フラグメントの精製とをモニタするためにSDS-ポリアクリルアミドゲル電気泳動を行ったところ約30kDaにバンドを認め、F(ab’)化されていることが確認できた(図2)。図2に示すSDSゲル電気泳動は還元条件で実施しているため、F(ab’)化フラグメントのバンドは110kDaには観察されないが、IgGのレーン(中央)でみられる約50kDaのバンドが消失しており、これにより完全にF(ab’)化されていることがわかる。このF(ab’)フラグメントを、F(ab’)化抗HB-EGF抗体として用いた。
(2)蛍光標識リポソームの調製
 薄膜法(Thin film method)により、水素添加大豆ホスファチジルコリン/コレステロール/ポリエチレングリコール結合水素添加大豆ホスファチジルコリン/マレイミド化ポリエチレングリコール結合水素添加大豆ホスファチジルコリン(HSPC/Chol/DSPE/DSPE-PEG-mal)リポソームを調製した。
 マイクロシリンジで脂質溶液(水素添加大豆ホスファチジルコリン/コレステロール/ポリエチレングリコール結合水素添加大豆ホスファチジルコリン/マレイミド化ポリエチレングリコール結合水素添加大豆ホスファチジルコリン/オクタデシルインドカルボシアニン(蛍光物質)=1/0.67/0.03/0.003(対照リポソームの場合は0)/0.05(モル比))をナス型フラスコに分取した。溶媒を完全に留去し、60℃に温めた生理食塩水を加え、ボルテックスミキサーを用いながら完全に復水した。エクストルーダーにセットした孔径100nmのポリカーボネート膜フィルターを10回通過させ、リポソームの粒子径を調整した。
(3)蛍光標識抗HB-EGF抗体結合リポソームの調製
 上記で調製したF(ab’)化抗HB-EGF抗体を、システアミン塩酸塩(cysteamine-HCl)と混合し、37℃で1.5時間インキュベートして反応させ、F(ab’)化抗HB-EGF抗体を還元した。次に、Sepharose 4 Fast Flow(GE healthcare Co.製)を用いたゲル濾過により、還元したFab’化抗HB-EGF抗体を分離した。このFab’化抗HB-EGF抗体をマレイミド化ポリエチレングリコール結合水素添加大豆ホスファチジルコリンと等モルとなるように、(2)で調製したリポソーム溶液に添加し、4℃で20時間反応させた。反応後、Fab’化抗HB-EGFの10倍モル量の0.1M N-エチルマレイミドを添加し、未反応のスルフヒドリル基を阻害した。セファロース担体を用いたゲル濾過により、蛍光標識された、Fab’化抗HB-EGFが結合したリポソーム(蛍光標識抗HB-EGF抗体結合リポソーム)を精製した。蛍光標識抗HB-EGF抗体結合リポソームの検出は、280nm及び610nmの吸光度の測定により行った。
(II)細胞培養
 Vero(HB-EGF低発現)細胞を、非必須アミノ酸含有MEM培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、及びストレプトマイシン100μg/mLを含有する溶液)中にて37℃で5%二酸化炭素存在下に保存した。Vero-H(HB-EGF高発現)細胞を、非必須アミノ酸含有MEM培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、ストレプトマイシン100μg/mL、及びジネティシン1μg/mLを含有する溶液)中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.25%トリプシン/EDTA-PBS(-)溶液で細胞をはがした。
 得られた細胞を、取り込み試験に用いた。
(III)取り込み試験
 24個のくぼみを持つプレート中に前記で培養したVero細胞又はVero-H細胞を1ウェルあたり3.0×10個入れ、37℃で48時間細胞をインキュベートした。次いで、プレートのそれぞれくぼみから培養液を取り除き、上記(I)の(2)及び(3)で調製した蛍光標識抗HB-EGF抗体結合リポソーム(HSPC/Chol/DSPE/DSPE-PEG-mal/DiI)又は対照の蛍光標識リポソーム(HSPC/Chol/DSPE/DiI)を含む非必須アミノ酸含有MEM培地を、表1に示す量添加した。表1に、調製したサンプルのリポソーム濃度を示した。
Figure JPOXMLDOC01-appb-T000001
 4℃又は37℃にてリポソーム及び細胞を含む培地を4時間インキュベートした後、リン酸緩衝生理食塩水を用いて3回細胞を洗浄した。洗浄した細胞に、細胞溶解用緩衝溶液(0.1%ドデシル硫酸ナトリウム(SDS)を含むトリス-塩酸緩衝溶液)を加えることにより、細胞を溶解させた。細胞溶解液を1.5mLのエッペンドルフチューブに回収して、次いで1,000gで10分間遠心し、その上清を回収した。そのサンプルの蛍光強度を蛍光光度計で測定した(Ex:549nm、Em:592nm)。各サンプルの蛍光強度は、タンパク質量で補正した。
 また、Vero細胞又はVero-H細胞それぞれに上記の蛍光標識した抗HB-EGF抗体結合PEGリポソームを添加後、細胞内における該リポソームの局在を、共焦点レーザー顕微鏡観察によって調べた。
(IV)結果
 結果を図3及び図4に示した。グラフの縦軸は蛍光強度(Ex:549nm、Em:592nm)を示し、縦軸の値が大きいほど、細胞へのリポソームの結合(接着)及び細胞によるリポソームの取り込み量が多いことを意味する。図中、四角(◆)は、対照のリポソームを、三角(▲)は、Fab’化抗HB-EGFが結合したリポソーム(抗HB-EGF抗体結合リポソーム)を、それぞれ表わす。
 図3は、4℃における細胞内へのリポソームの結合(接着)を調べた結果であり、図4は、37℃における細胞内へのリポソームの取り込みを調べた結果である。4℃では、細胞内へのリポソームの取り込みはほとんど起こらなかった。図3及び図4において、いずれも左図(図3(a)及び図4(a))のVero細胞(HB-EGF低発現)では、抗HB-EGF抗体結合リポソームの細胞内への結合(接着)又は取り込みは、対照のリポソームの取り込みをわずかに上回るのみであった。一方、右図(図3(b)及び図4(b))のVero-H細胞(HB-EGF高発現)では、抗HB-EGF抗体結合リポソームの細胞内への結合(接着)又は取り込みは、対照のリポソームの取り込みを大きく上回った。
 以上の結果より、HB-EGF高発現が認められる不全心筋、卵巣癌、子宮癌、乳癌細胞等の細胞では、抗HB-EGF抗体結合リポソーム(抗HB-EGF抗体修飾リポソーム)の細胞内への取り込みの増強が期待できると考えられた。
 さらに、共焦点レーザー顕微鏡観察での分析の結果、in vitroにおいては、抗HB-EGF抗体結合PEGリポソームは、Vero-H細胞(HB-EGF高発現細胞株)に積極的に取り込まれ、細胞内に内在化されることが明らかとなった。
 なお、実施例1で製造した抗HB-EGF抗体結合リポソームにおいて、上記で使用した抗HB-EGF抗体の代わりに、他の抗HB-EGF抗体(例えば、市販されている抗HB-EGF抗体)、CRM197等を使用しても、実施例1と同様の結果が得られる。以降の実施例についても、抗HB-EGF抗体結合リポソームにおいて、上記で使用した抗HB-EGF抗体以外の抗HB-EGF抗体(例えば、市販されている抗HB-EGF抗体)、CRM197等を使用しても、同様の結果が得られる。
実施例2
 実施例1のVero細胞及びVero-H細胞において確認された実験結果を踏まえて、ヒトHB-EGFを特異的に認識する抗HB-EGF抗体結合リポソームが実際に心筋細胞に取り込まれることを確認することを目的として、以下の実験を行なった。
 具体的には、新生仔ラット培養心筋細胞にヒトHB-EGFを発現させ、該ヒトHB-EGF発現系における抗HB-EGF抗体結合リポソームの取り込みを調べた。
(I)アデノウイルスコンストラクト作製
 ヒトHB-EGFを発現するアデノウイルスコンストラクト(Ad-HsHBEGF)、及びマウスHB-EGFを発現するアデノウイルスコンストラクト(Ad-MmHBEGF)を、それぞれ作製した。また、アデノウイルスコントロールとして、LacZを発現するアデノウイルスコンストラクトを作製した(Ad-LacZ)。
 アデノウイルスコンストラクト(アデノウイルスベクター)の作製には、Invitrogen社のGatewayシステムを用いた。エントリーベクター(pENTR/D-TOPO)にヒトHB-EGF遺伝子(NM_001945.1)又はマウスHB-EGF遺伝子(NM_010415.1)を導入したのち、アデノウイルス発現ベクター(pAD/CMV/V5-DEST)に、コンバージョンさせることにより各コンストラクト(ベクター)を作製した。このようなベクターの作製は、例えば、Hartley JL, Temple GF, Brasch MA. (2000) DNA cloning using in vitro site-specific recombination. Genome Res, Vol. 10 (11): 1788-95.に記載の方法に準じて行うことができる。
(II)新生仔ラット培養心筋細胞における発現検討
 ラット培養心筋細胞Wistar rat(紀和実験動物研究所社製)を6ウェルのプレートに、1ウェルあたり1.5×10細胞で播種した。これに、上記で作製したAd-HsHBEGF、Ad-MmHBEGF又はAd-LacZのいずれかを混合して、ラット培養心筋細胞に感染させた。Ad-HsHBEGF、Ad-MmHBEGF又はAd-LacZは、MOI(Multiplicity of Infection)0-20でラット培養心筋細胞に感染させた。なお、細胞数が1.5×10個の場合、MOI 10は=1.5×10-10PFUに相当すると計算され、MOI 10の場合は、1.0×10-10PFU/μLの溶液を1ウェルあたり1.5μLずつ加えた。感染後、リアルタイムPCRにより、ラット培養心筋細胞におけるヒトHB-EGF又はマウスHB-EGFのmRNA発現量を調べたところ、ラット培養心筋細胞において、ヒトHB-EGF及びマウスHB-EGF遺伝子が感染用量依存的にmRNAレベルで発現していることが分かった(図5(a)及び(b))。さらに、Ad-HsHBEGF又はAd-MmHBEGFを導入したことにより、内在性遺伝子(ANP、BNP及びラットHB-EGFのmRNA)の発現が変化するかどうかを調べたところ、Ad-HsHBEGF又はAd-MmHBEGF導入して強制発現させたHB-EGFによって、内在性HB-EGF(ラットHB-EGF)を含む内在性遺伝子の発現は、影響を受けないことが分かった(図6)。図6(a)は、アデノウイルスコンストラクト導入後の利尿ペプチド(ANP)のmRNA、(b)は利尿ペプチド(BNP)のmRNA、(c)は内在性HB-EGF(ラットHB-EGF)のmRNAの発現量をそれぞれ示す。なお図6(a)~(c)において、横軸は、コンストラクト導入後の時間を示す。
 さらに、感染後36時間後に、Ad-HsHBEGF又はAd-MmHBEGFを導入したラット培養心筋細胞におけるHB-EGF蛋白の発現についてウェスタンブロットにより調べた結果、ヒト又はマウスHB-EGF遺伝子が感染用量依存的に蛋白レベルで発現していることが確認できた(図7)。
 図7(a)は、感染後36時間後のラット培養心筋細胞におけるヒトHB-EGFタンパク質の発現を、抗ヒトHB-EGF抗体(大阪大学微生物病研究所、細胞機能分野、目加田研究室(日本国大阪府吹田市山田丘3‐1(〒565-0871))保有のハイブリドーマより作製したモノクローナル抗体(HB-EGF mab クローン:#3H4))を使用してウェスタンブロットにより検出した結果である(非還元条件)。この抗ヒトHB-EGF抗体(HB-EGF mab クローン:#3H4)の作製は、抗原としてヒト抗原を用いて、Mine N, Iwamoto R, Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. 2005 Oct;132(19):4317-26に記載されている、HBdel/delマウスを用いる作製方法(4318頁)に準じて行うことができる。図7(b)は、ラット培養心筋細胞におけるマウスHB-EGFタンパク質の発現を、抗マウスHB-EGF抗体(M-18、Santa Cruz社製、SC1414)を使用してウェスタンブロットにより検出した結果である(非還元条件)。
 培養心筋細胞でのヒトHB-EGF発現の用量依存性変化及び細胞内における局在を検討した(図8)。図8(a)~(d)は、それぞれAd-HsHBEGFを(a):MOI=0、(b):MOI=2、(c):MOI=5、(d):MOI=10導入した培養心筋細胞上に存在する膜結合型HB-EGFを、抗ヒトHB-EGF抗体(HB-EGF mab クローン:#3H4)を使用して免疫染色により染色した結果である。図において、白い部分が染色された膜結合型ヒトHB-EGFである。図8(a)~(d)より、ラット培養心筋細胞においては、ヒトHB-EGFタンパク質が、感染用量依存的に細胞膜に発現することが分かった。
(III)新生仔ラット培養心筋線維芽細胞における発現解析検討
 (II)のラット培養心筋細胞の代わりに新生仔ラット培養心筋繊維芽細胞(Wistar rat、紀和実験動物研究所社製)を使用して、上記で作製したアデノウイルスコンストラクト(Ad-HsHBEGF又はAd-MmHBEGF)をMOI=10で細胞に感染させた。上記(II)と同様にして、培養心筋線維芽細胞におけるHB-EGF発現の局在性を調べた。
 培養心筋線維芽細胞におけるHB-EGF発現の局在性を検討したところ、ヒトHB-EGF及びマウスHB-EGFは強制発現させた新生仔ラット培養心筋繊維芽細胞においても細胞膜に局在していることが分かった(図9、スケールバー:100μm)。図9(a)及び(c)は、Ad-HsHBEGFを感染させてヒトHB-EGFを発現させた培養心筋線維芽細胞を、抗ヒトHB-EGF抗体(HB-EGF mab クローン:#3H4)を用いて免疫染色した結果である。図9(b)及び(d)は、Ad-MmHBEGFを感染させてマウスHB-EGFを発現させた培養心筋線維芽細胞を、抗ヒトHB-EGF抗体(HB-EGF mab クローン:#3H4)を用いて免疫染色した結果である。図において、白い部分が染色された膜結合型HB-EGFである。HB-EGF mab クローン:#3H4はマウスHB-EGFを検知しない(マウスHB-EGFに結合しない)ため、マウスHB-EGFは染色されない。培養心筋線維芽細胞においても、導入したアデノウイルスベクターにより発現したヒトHB-EGFは細胞膜上に局在することが確認された。
 以下の免疫リポソームの細胞取り込み及び接着実験においては、上記のヒトHB-EGFを発現させたラット培養心筋細胞を用いた。コントロールとして、Ad-LacZを導入したラット培養心筋細胞を用いた。
(IV)リポソームの細胞への取り込み及び接着実験
 実施例1と同様の方法で、37℃又は4℃にて、Fab’化抗HB-EGF抗体結合リポソームが細胞に接着するか、及び細胞に取り込まれるかを調べた。使用したFab’化抗HB-EGF抗体結合リポソームは、実施例1で作製した蛍光標識抗HB-EGF抗体結合リポソームである。
 結果を、図10(a)~(d)に示す。グラフの縦軸は、蛋白質量で補正した蛍光強度(Ex:549nm、Em:592nm)を示す。図10(a)~(d)において、波線は、Fab’化抗HB-EGF抗体で修飾したPEGリポソームを使用した場合であり、実線は、Fab’化抗HB-EGF抗体で修飾していないPEGリポソームを使用した場合である。図10(a)は、Ad-LacZを導入したラット培養心筋細胞の、37℃におけるリポソームの接着及び取り込みを、(b)は、Ad-HsHBEGFを導入したラット培養心筋細胞の、37℃におけるリポソームの接着及び取り込みを、それぞれ示している。図10(c)は、Ad-LacZを導入したラット培養心筋細胞の、4℃におけるリポソームの接着及び取り込みを、(d)は、Ad-HsHBEGFを導入したラット培養心筋細胞の、4℃におけるリポソームの接着及び取り込みを、それぞれ示している。
 Ad-LacZを導入したラット培養心筋細胞においては、Fab’化抗HB-EGF抗体結合PEGリポソーム及びFab’化抗HB-EGF抗体で修飾していないPEGリポソームのいずれについても、該細胞への接着及び取り込みがほとんど起こらなかった(図10(a)及び(c))。Ad-HsHBEGFの導入によりヒトHB-EGFを発現させたラット培養心筋細胞では、4℃及び37℃において、Fab’化抗HB-EGF抗体結合リポソームの接着及び取り込みが観察された。また、4℃に比べて37℃での測定値が高く、細胞への取り込みが示唆された(図10(b)及び(d))。さらに、Fab’化抗HB-EGF抗体で修飾していないPEGリポソームについては、細胞への接着及び取り込みが温度に関わらず観察されなかったことから、HB-EGFに対する抗HB-EGF抗体の特異性が示唆された。
実施例3
 Fab’化抗HB-EGF抗体結合PEGリポソームが、乳癌細胞株(MDA-MB-231細胞)に取り込まれるかを調べた。使用した蛍光標識抗HB-EGF抗体結合リポソームは、実施例1で作製したものである。
 MDA-MB-231細胞(ATCC社製)を、24個のくぼみを持つプレート中に1ウェルあたり3×10個入れ、次いでLeibovitz L-15(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、及びストレプトマイシン100μg/mLを含む))培地(GIBCOより購入)を1ウェル当たり500μL添加した。37℃で4時間細胞をインキュベートした。次いで、プレートのそれぞれくぼみから培養液を取り除き、実施例1で作製した蛍光標識抗HB-EGF抗体結合リポソーム(HSPC/Chol/DSPE/DSPE-PEG-mal/DiI)又は対照の蛍光標識リポソーム(HSPC/Chol/DSPE/DiI)を含むLeibovitz L-15培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、及びストレプトマイシン100μg/mLを含む)(リポソーム濃度1mM)を、1ウェルあたりそれぞれ25、50、100μL添加して、サンプル中のリポソーム濃度がそれぞれ0.05mM、0.1mM、及び0.15mMとなるようにした。調製したMDA-MB-231細胞(ATCC社製)及び蛍光標識抗HB-EGF抗体結合リポソーム(又は対照のリポソーム)を含むサンプルを、37℃で4時間インキュベートした。
 細胞を洗浄後、MDA-MB-231細胞に取り込まれたリポソームを、実施例1と同様に蛍光分析によって決定した。図11に、結果を示す。縦軸は、MDA-MB-231細胞に取り込まれたリポソームの量を、細胞蛋白質1mgあたりの蛍光色素(オクタデシルインドカルボシアニン(Dil18))の量(μg/mg)で表わしている。横軸は、MDA-MB-231細胞に添加したリポソーム濃度(mM)である。図11中、四角(◆)は、対照のリポソームを表し、三角(▲)は、抗HB-EGF抗体結合リポソームを表す。図11は、数値データ(測定値)と標準偏差を示している。有意差は、アスタリスク(*)で示されている(*は、p<0.05、**は、p<0.01)。有意差検定は、T検定により行った。
 図11から明らかなように、MDA-MB-231細胞による抗HB-EGF抗体結合リポソームの取り込みは、対照のリポソームの取り込みを大きく上回った。
実施例4
 siRNAを封入した抗HB-EGF抗体結合リポソームを用いて、細胞内の標的遺伝子のノックダウン実験を行なった。
(I)ルシフェラーゼ強制発現細胞の作製
 試験例1で調製したVero-H細胞に、ルシフェラーゼ遺伝子を導入して強制発現させた。具体的には、Vero-H細胞を96個のくぼみを持つプレート(NUNC)中に1ウェルあたり5.0×10 個/0.2mL藩種し、5%CO、37℃にて24時間インキュベートした。その後、ルシフェラーゼを発現するプラスミドDNA pCAG-luc3(ニッポンジーン社から購入)(1ウェル当たり2μg)をLipofectamine2000(Invitrogen Co.)を用いて細胞に導入し、5%CO、37℃にて24時間インキュベートしてルシフェラーゼを発現させた。
(II)siRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームの調製
 ルシフェラーゼ遺伝子に対するsiRNA(センス鎖:CUU ACG CUG AGU ACU UCG ATT(配列番号3)、アンチセンス鎖:UCG AAG UAC UCA GCG UAA GTT(配列番号4)(いずれも北海道システム・サイエンス社))を封入した抗HB-EGF抗体結合リポソームを調製した。具体的には、ジオレオイルホスファチジルエタノールアミン(DOPE)/ジミリストイルホスファチジルグリセロール(DMPG)/コレステロール=9/2/2(モル比)となる比率の脂質薄膜を作製した。一方でsiRNAとプロタミン(protamine)との複合体溶液を作製しておき、その複合体溶液で脂質薄膜を水和した。その後、37℃で10分間超音波処理をし、siRNA内封リポソームを作製した(10μmolの総脂質に対して、siRNA 2nmol、protamine 80μg)。その後、リポソーム総脂質に対して9%のPEG2000と1.5%のPEGマレイミド2000でsiRNA内封リポソームを修飾し、該修飾リポソームと、マレイミドと同量のFab’化抗HB-EGF(実施例1で調製したものと同じもの)とを20時間インキュベートし反応させた。反応後、ゲルろ過を行い精製されたリポソーム画分を得た。
 対照として、上記siRNAを封入したPEG-リポソームを調製した。具体的には、上記の操作からPEGマレイミド2000及びFab’化抗HB-EGF抗体の修飾工程を除いた方法で作製した。
 抗HB-EGF抗体結合リポソーム及び対照リポソームへのsiRNAの封入量は、各リポソームあたり5pmol又は50pmolとした。
(III)siRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームによるルシフェラーゼ遺伝子のノックダウン
 上記で作製したルシフェラーゼ遺伝子を強制発現させたVero-H細胞に、(II)で作製したsiRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームをそれぞれ添加した。
 細胞の培地を、血清を含まない非必須アミノ酸含有MEM培地 150μL/wellに交換し、抗HB-EGF抗体結合siRNA内封リポソームをRNase free 水で希釈した溶液(リポソーム濃度(総脂質濃度):siRNA5pmolのものは1mM、siRNA50pmolのものは10mM))を1ウェルあたり50μLずつ添加した。添加後、5% CO下、37℃で24時間細胞を培養した。
 ルシフェラーゼ遺伝子の発現は、ルシフェラーゼ活性を測定することにより調べた。まずLuciferase assay CellTiter-Fluor(登録商標) Cell Viability Assay(Promega社)を使用して生細胞数を算出した。具体的にはKitに付属する緩衝液1mLに付属の基質5μLを加え、ボルテックスにより混和しCell Titer試薬を得た。血清を含まない非必須アミノ酸含有MEM培地80μLに培地交換し、Cell Titer試薬を20μL加え、30秒間混和後、37℃で30分間インキュベートした。その後、蛍光光度計を用いて蛍光強度を測定し(Ex:400nm、Em:505nm)、生細胞数を算出した。続いてOne-Glo(登録商標) Luciferase Assay System(Promega社)を使用してルシフェラーゼ活性を求めた。ルシフェリン基質試薬を1ウェルあたり100μLずつ添加し、3分後に発光強度を測定した。ルシフェラーゼ活性は生細胞数で補正した。
 ルシフェラーゼ遺伝子を強制発現させたVero-H細胞にリポソームを添加しなかった場合のルシフェラーゼ活性を100%として、ルシフェラーゼ遺伝子のノックダウン(遺伝子発現抑制)を評価した。ルシフェラーゼ活性の低下は、ルシフェラーゼ遺伝子の発現が抑制されたことを表す。
 結果を図12(a)及び(b)に示す。図12(a)は、各リポソームあたり5pmolのsiRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームそれぞれを用いてルシフェラーゼ遺伝子のノックダウンを調べた結果である。図12(b)は、各リポソームあたり50pmolのsiRNAを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームをそれぞれ用いてシフェラーゼ遺伝子のノックダウンを調べた結果である。
 図12(a)及び(b)において、「Control」は、ルシフェラーゼ遺伝子を強制発現させたVero-H細胞(リポソームを添加しなかったもの)である。「Lipo」は、該Vero-H細胞に、siRNAを封入した対照リポソームを添加したものである。「HB-EGF Lipo」は、該Vero-H細胞に、siRNAを封入した抗HB-EGF抗体結合リポソームを添加したものである。図12(a)及び(b)の縦軸は、「Control」におけるルシフェラーゼ活性を100%としたときの、ルシフェラーゼ活性(%)を表す。
 図12から明らかなように、siRNAを封入した抗HB-EGF抗体結合リポソームにより、高発現外来遺伝子(ルシフェラーゼ遺伝子)がノックダウンされた。siRNAを封入した抗HB-EGF抗体結合リポソームは、siRNAを封入した対照のリポソームよりもルシフェラーゼの発現を強く抑制した。さらに、siRNAを封入した抗HB-EGF抗体結合リポソームを用いると、封入したsiRNAの用量依存的にルシフェラーゼの発現が抑制された。従って、HB-EGFを発現している細胞では、抗HB-EGF抗体結合リポソームにより標的遺伝子が効率よくノックダウンされた。
実施例5
 実施例4の(II)の操作のうち、内封するsiRNAをラミンA/Cを標的とするsiRNA(ターゲット配列5’-CTGGACTTCCAGAAGAACA-3’(配列番号5)、B-Bridge International,Inc)に変更し、抗HB-EGF抗体修飾リポソームを作製した。内因性遺伝子であるラミンA/CのノックダウンをそのmRNA量の測定によって判定した。
 まず、60mm dish に3.0×10 cells個のVero-H細胞を播種し、全量5mLの非必須アミノ酸含有MEM培地(10%ウシ胎仔血清(FBS)、ペニシリン100units/mL、ストレプトマイシン100μg/mL、及びジネティシン1μg/mLを含有する溶液)で24時間プレインキュベートした。細胞を血清を含まない非必須アミノ酸含有MEM培地 4.5mLに交換し、抗HB-EGF抗体結合siRNA内封リポソームをRNase free 水で希釈した溶液を500μL(siRNA量としては750pmol)ずつ添加し、5%CO、37℃にて20時間インキュベートしてsiRNAを細胞内に導入した。続いてRNeasy Plus Mini Kit(QIAGEN社)を用いて、全RNAを抽出し、各サンプルの全RNA量を一致させて、T-Primed First-Strand Kit(Amersham Bioscience社)を用いてcDNAを精製した。real-time PCRによってラミンA/C及びβ-アクチンのmRNA量を定量し、ラミンA/CのmRNA量をβ-アクチンのmRNA量で補正し、ラミンA/Cのノックダウン効率を判定した。
 結果を図13に示す。図13中、「Cont.」は、リポソームを添加しなかったVero-H細胞である。「Peg-liposome」は、該Vero-H細胞に、siRNAを封入した対照リポソームを添加したものである。「HB-EGF-liposome」は、該Vero-H細胞に、siRNAを封入した抗HB-EGF抗体結合リポソームを添加したものである。図13の縦軸は、「Control」におけるラミンA/CのmRNA量を100(%)としたときの、ラミンA/CのmRNAの相対的な量(%)を表す。
 図13から明らかなように、siRNAを封入した抗HB-EGF抗体結合リポソームにより、内因性遺伝子であるラミンA/Cが効率よくノックダウンされた。siRNAを封入した抗HB-EGF抗体結合リポソームは、siRNAを封入した対照のリポソームよりもラミンA/Cの発現を強く抑制した。従って、HB-EGFを発現している細胞では、抗HB-EGF抗体結合リポソームにより標的遺伝子が効率よくノックダウンされた。
実施例6
 ヒト乳癌細胞(MDA-MB-231細胞)移植マウスを用いて、ドキソルビシンを封入した抗HB-EGF抗体結合リポソームによる腫瘍増殖抑制効果を調べた。
(I)ヒト乳癌細胞(MDA-MB-231細胞)移植マウスの作製
 MDA-MB-231細胞は、ATCCから購入した。MDA-MB-231細胞は、Leibovitz L-15培地中で、37℃で培養した。8週齢のBalb/c(nu/nu)マウス(日本SLC社から購入)の腹側部に、培養したMDA-MB-231細胞を1.0×10個皮下移植した。移植後、12日間、均一な温湿度(22℃、湿度55%)の条件で飼育して以下の実験に使用した。
(II)ドキソルビシンを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームの調製
 実施例4において、siRNAの代わりにドキソルビシン(一般名)(協和発酵社製)を使用した以外は同様の方法で、抗HB-EGF抗体結合リポソームのリポソーム部分にドキソルビシンを封入した。ドキソルビシンは、HSPC 1molあたりドキソルビシン0.26molとなるようにリポソームに封入した。
 比較のため、ドキソルビシンを封入しなかった以外は上記と同様にして、抗HB-EGF抗体結合リポソームを調製した(ドキソルビシンを封入していない抗HB-EGF抗体結合リポソーム)。
 対照として、siRNAの代わりにドキソルビシンを使用した以外は実施例4と同様の方法で、ドキソルビシンをPEG-リポソームのリポソーム部分に封入した。ドキソルビシンは、HSPC1molあたりドキソルビシン0.26molとなるように、リポソームに封入した。
(III)ドキソルビシンを封入した抗HB-EGF抗体結合リポソーム及び対照リポソームによる腫瘍増殖抑制効果
 (I)で作製したヒト乳癌細胞(MDA-MB-231細胞)移植マウスに、(II)で調製したドキソルビシンを封入した抗HB-EGF抗体結合リポソームを、ドキソルビシンの投与量が1回あたり体重あたり10mg/kgとなるように尾静脈内投与した(n=5)。比較として、ドキソルビシンを封入していない抗HB-EGF抗体結合リポソーム及び対照リポソームを、それぞれ同様に投与した(それぞれn=5)。なお、リポソームの投与は、各リポソームを生理食塩水に懸濁したリポソーム溶液を用いて行った。投薬開始時(治療前)及び投薬から48時間後に、腫瘍体積を測定した。投薬開始時の腫瘍体積を100%とした場合の、投薬から48時間後の腫瘍の相対的な体積により、腫瘍増殖抑制効果を評価した。腫瘍の体積は、ノギスを用いて腫瘍の短径と長径を測定し、次の式によって算出した。
腫瘍の体積(Tumor volume)=0.4×a×b (a;腫瘍の長径、b;腫瘍の短径)
 投薬から48時間後の腫瘍の増殖抑制効果を、図14に示す。図14の縦軸は、投薬開始時(治療前)の腫瘍の体積を100%とした場合の、投薬から48時間後の相対的な体積(腫瘍増殖割合(%))である。図14中、(1)は、ドキソルビシン及びリポソームを投与しなかったヒト乳癌細胞移植マウス(コントロール)である。(2)は、ドキソルビシンを封入していない抗HB-EGF抗体結合リポソームを投与したヒト乳癌細胞移植マウスである。(3)は、ドキソルビシンを封入した対照リポソームを投与したヒト乳癌細胞移植マウスである。(4)は、ドキソルビシンを封入した抗HB-EGF抗体結合リポソームを投与したヒト乳癌細胞移植マウスである。
 図14から明らかなように、ドキソルビシンを封入した対照リポソーム(3)と比較して、ドキソルビシン封入抗HB-EGF抗体結合リポソーム(4)は、顕著に腫瘍増殖を抑制した。ドキソルビシンを封入したPEG-リポソーム(図14の対照リポソーム(3))を動物モデルに使用すると、ドキソルビシンをそのまま投与するよりも腫瘍抑制効果が高いことが報告されている(SK Huang et al., Cancer Res. 52 (1992), pp. 6774-6781)。このため、ドキソルビシンを封入した抗HB-EGF抗体結合リポソームは、ドキソルビシンを直接投与するよりも顕著に高い腫瘍抑制効果を奏することが分かった。なお、ドキソルビシンを封入していない抗HB-EGF抗体結合リポソームを投与したヒト乳癌細胞移植マウス(2)では、コントロールと同程度に腫瘍が増殖した。
実施例7
 実施例2の(II)で行ったラット培養心筋細胞を用いた実験と同様にして心筋細胞を準備する。この心筋細胞に、siRNAを封入した抗HB-EGF抗体結合リポソームを添加して、遺伝子発現抑制効果を検討することができる。
 実施例5において、内封するsiRNAをラミンA/Cを標的とするsiRNA(ターゲット配列5’-GGTGGTGACGATCTGGGCT-3’(配列番号6)、B-Bridge International,Inc)に変更した以外は同様の方法により、抗HB-EGF抗体修飾リポソームを作製する。内因性遺伝子であるラミンA/Cのノックダウンを、そのラミンA/CのmRNA量の測定によって確認することができる。
 新生仔ラット培養心筋細胞(Wistar rat、紀和実験動物研究所社製)を6ウェルのプレートに、1ウェルあたり1.5×10細胞で播種した。これに、実施例2の(I)で作製したAd-HsHBEGF又はAd-LacZのいずれかを混合して、実施例(II)の方法に従ってラット培養心筋細胞に感染させた。感染後、36時間後にラミンA/Cに対するsiRNAを内封した抗HB-EGF抗体修飾リポソームをラット培養心筋細胞に導入する。リポソーム導入後24時間後にリアルタイムPCRを行ない、ラット培養心筋細胞におけるラミンA/CのmRNA発現量を調べることにより、該遺伝子のノックアウトを調べることができる。リポソーム導入後48時間後には、ラミンA/C蛋白の発現抑制についてもウェスタンブロット法により確認することができる。siRNAを封入した抗HB-EGF抗体結合リポソームにより、Ad-LacZを導入したラット培養心筋細胞よりも、Ad-HsHBEGFを感染させたラット培養心筋細胞において、ラミンA/Cが効率よくノックダウンされる。
 上記実施例の結果より、抗HB-EGF抗体結合リポソーム等のHB-EGF結合性タンパク質複合体により、HB-EGFの発現増加が認められる不全心(圧負荷心臓、梗塞後心臓等)、癌細胞等に薬剤、siRNA等を特異的に送達できることが分かった。従って、抗HB-EGF抗体結合リポソームは、不全心、動脈硬化部位等の循環器疾患、婦人科系癌疾患等を標的とした新規治療システムとして有用であることが分かった。特に、心不全を対象としたドラッグデリバリーシステム(DDS)は現在報告がなく、非常に画期的である。心不全におけるHB-EGF高発現を呈するとともに、血管内皮が障害を受けやすい炎症が併発する心筋炎(自己免疫性又は感染性など)、心筋梗塞、虚血再灌流の病態は心不全において抗HB-EGF抗体結合リポソームを用いることができる典型的なモデルであると考えられる。さらに、抗HB-EGF抗体結合リポソーム等のHB-EGF結合性タンパク質複合体は、HB-EGFを発現する標的細胞に選択的に運搬されることに加え、標的細胞に結合するとHB-EGF自体の細胞内取込みを促進するため、増殖因子であるHB-EGFの細胞内取り込みによる増殖抑制も生じることが予想される。このため、癌細胞、動脈硬化部位では他のDDS技術では認められない腫瘍増殖抑制効果も期待できる。さらに、癌の組織内では、癌細胞のみならず新生血管の内皮細胞においてもHB-EGFの発現上昇が認められることが知られている。従って、HB-EGFを標的としたDDSは、癌、動脈硬化部位内等の新生血管を標的としたDDSとしても有効に機能する。
 本発明によれば、目的物質を心筋細胞、癌細胞等の標的細胞内に特異的に、かつ効率よく導入することが可能となる。このため、本発明は、医療及び研究分野においてに有用なものである。

Claims (10)

  1.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と、担体とを必須としてなることを特徴とする複合体。
  2.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質が、抗HB-EGF抗体又はそのフラグメントである請求項1に記載の複合体。
  3.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質が、ジフテリア毒素変異体CRM197又はそのフラグメントである請求項1に記載の複合体。
  4.  さらに、細胞に導入する目的物質が担体に封入されている、又は該目的物質と担体とが複合体を形成している請求項1~3のいずれか一項に記載の複合体。
  5.  目的物質が、抗癌剤、心不全治療剤、神経疾患治療剤若しくは肺疾患治療剤、又は核酸である請求項4に記載の複合体。
  6.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とするHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の治療又は予防剤。
  7.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とするHB-EGFを高発現する癌、心不全、神経細胞疾患又は肺疾患の診断薬。
  8.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含有することを特徴とする目的物質の細胞内への導入促進剤。
  9.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体、及び細胞に導入する目的物質をHB-EGFを発現する細胞に添加する、又はヒトを除く動物に投与する工程を含むことを特徴とする目的物質の細胞内への導入促進方法。
  10.  膜結合型HB-EGFに結合し、これにより該膜結合型HB-EGFの細胞内への取り込みを促進する作用を有するタンパク質と担体とを必須としてなる複合体を含むキット。
PCT/JP2010/051515 2009-02-04 2010-02-03 Hb-egf結合性タンパク質複合体 WO2010090222A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/147,903 US20120027843A1 (en) 2009-02-04 2010-02-03 Hb-egf bound protein complex
JP2010549492A JP5299922B2 (ja) 2009-02-04 2010-02-03 Hb−egf結合性タンパク質複合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-023653 2009-02-04
JP2009023653 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090222A1 true WO2010090222A1 (ja) 2010-08-12

Family

ID=42542115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051515 WO2010090222A1 (ja) 2009-02-04 2010-02-03 Hb-egf結合性タンパク質複合体

Country Status (3)

Country Link
US (1) US20120027843A1 (ja)
JP (1) JP5299922B2 (ja)
WO (1) WO2010090222A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119781B2 (en) 2018-12-11 2021-09-14 International Business Machines Corporation Synchronized access to data in shared memory by protecting the load target address of a fronting load

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510825A (ja) * 1996-04-18 2000-08-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 標的細胞への最適内在化をもたらす免疫リポソーム
WO2008047925A1 (fr) * 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Composition pharmaceutique comprenant un anticorps anti-hb-egf comme ingrédient actif
WO2008047914A1 (fr) * 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif
JP2008536944A (ja) * 2005-04-22 2008-09-11 アルザ・コーポレーシヨン Her2細胞受容体を標的とするためのイムノリポソーム組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2707689A1 (en) * 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510825A (ja) * 1996-04-18 2000-08-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 標的細胞への最適内在化をもたらす免疫リポソーム
JP2008536944A (ja) * 2005-04-22 2008-09-11 アルザ・コーポレーシヨン Her2細胞受容体を標的とするためのイムノリポソーム組成物
WO2008047925A1 (fr) * 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Composition pharmaceutique comprenant un anticorps anti-hb-egf comme ingrédient actif
WO2008047914A1 (fr) * 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKAZU SHIGEMATSU ET AL.: "HB-EGF Hyotekika Liposome ni yoru Shinki Targeting DDS no Kaihatsu", DRUG DELIV SYST, vol. 24, no. 3, 9 June 2009 (2009-06-09), pages 316 *

Also Published As

Publication number Publication date
US20120027843A1 (en) 2012-02-02
JP5299922B2 (ja) 2013-09-25
JPWO2010090222A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
Zhou et al. Tumour‐derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour‐homing and intracellular freeway transportation
Liang et al. The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat
JP6946399B2 (ja) C/EBPα低分子活性化RNA
Guo et al. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer
EP2135600B1 (en) Targeting agent for cancer cell or cancer-associated fibroblast
Li et al. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor–beta on hepatic fibrosis in rats
US20170232115A1 (en) Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof
Santiwarangkool et al. PEGylation of the GALA peptide enhances the lung-targeting activity of nanocarriers that contain encapsulated siRNA
US10391180B2 (en) Self-assembling complex for targeting chemical agents to cells
JP2007528899A (ja) 受容体特異的ナノ容器を使用するショートヘアピンrnaをコードする遺伝子の送達
Duan et al. Exosome-mediated drug delivery for cell-free therapy of osteoarthritis
JP2014508515A (ja) Cxcr4細胞に治療分子を効率的かつ選択的に送達するための方法および試薬
Jayasinghe et al. Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy
CN102596179A (zh) 脂质体组合物及其用途
JP2021008497A (ja) 癌治療のためのターゲティングされた重合ナノ粒子
Li et al. Codelivery of Shikonin and siTGF-β for enhanced triple negative breast cancer chemo-immunotherapy
Liu et al. Self-assembled nanoparticles based on the c (RGDfk) peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy
Noguchi et al. Effects of lyophilization of arginine-rich cell-penetrating peptide-modified extracellular vesicles on intracellular delivery
JP2023520506A (ja) Sars-cov-2に対する多層rnaナノ粒子ワクチン
KR20220144831A (ko) 암호화 리보핵산의 기관 보호적 발현 및 조절을 위한 조성물 및 방법
Xiao et al. Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator
Xie et al. Photolabile-caged peptide-conjugated liposomes for siRNA delivery
Shan et al. Effective glioblastoma immune sonodynamic treatment mediated by macrophage cell membrane cloaked biomimetic nanomedicines
JP2022541586A (ja) 多層rnaナノ粒子
KR20140038288A (ko) 표적화된 리포솜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13147903

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10738553

Country of ref document: EP

Kind code of ref document: A1