[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010089997A1 - 高せん断装置および高せん断方法 - Google Patents

高せん断装置および高せん断方法 Download PDF

Info

Publication number
WO2010089997A1
WO2010089997A1 PCT/JP2010/000614 JP2010000614W WO2010089997A1 WO 2010089997 A1 WO2010089997 A1 WO 2010089997A1 JP 2010000614 W JP2010000614 W JP 2010000614W WO 2010089997 A1 WO2010089997 A1 WO 2010089997A1
Authority
WO
WIPO (PCT)
Prior art keywords
high shear
screw
pressure
resin
internal feedback
Prior art date
Application number
PCT/JP2010/000614
Other languages
English (en)
French (fr)
Inventor
清水博
李勇進
吉沢行雄
高橋孝之
豊島健一
Original Assignee
独立行政法人産業技術総合研究所
株式会社ニイガタマシンテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 株式会社ニイガタマシンテクノ filed Critical 独立行政法人産業技術総合研究所
Priority to KR1020117020339A priority Critical patent/KR101310323B1/ko
Priority to JP2010549393A priority patent/JP5614686B2/ja
Priority to US13/147,925 priority patent/US9199393B2/en
Priority to CN201080006686.5A priority patent/CN102307712B/zh
Priority to EP10738338.2A priority patent/EP2394804B1/en
Publication of WO2010089997A1 publication Critical patent/WO2010089997A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/12Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
    • B29B7/14Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres

Definitions

  • the present invention provides high shearing to disperse and mix the internal structure of materials at a nano level by, for example, high shearing materials of incompatible polymer blends, polymers / fillers, and even polymer blends / fillers.
  • the present invention relates to an apparatus and a high shear method. This application claims priority based on Japanese Patent Application No. 2009-25088 for which it applied to Japan on February 5, 2009, and uses the content here.
  • polymer blend extrudates having a dispersed phase of several tens of nanometers can be produced without adding extra additives such as compatibilizers in blend systems that are incompatible with each other (incompatible) at rest.
  • a high shearing machine see, for example, Patent Document 1.
  • Patent Document 1 a high shearing machine equipped with an internal feedback type high shearing screw is used to rotate a 2 to 5 g polymer blend trace sample at a high speed, for example, at a rotational speed of 500 to 3000 rpm in a molten state. It discloses a structure for producing a polymer blend extrudate excellent in heat resistance, mechanical properties, dimensional stability, etc. by kneading for several minutes and making it nano-dispersed.
  • FIG. 8 shows a schematic configuration of the high shear machine described in Patent Document 1.
  • the solid pellet sample 104 is rotated from the input port 103 through the input hole 101a while rotating the high shear screw 102 inserted through the heating cylinder 101 at a low speed of 120 to 240 rpm, for example.
  • pushing (polymer blend resin) with a rod it is directly put into the high shear screw 102 to plasticize it, and then the screw 102 is rotated at a high speed to perform high shear.
  • a taper surface 102a whose diameter is increased from the rear end side (base end side) toward the front end side is formed on the groove surface of the outer peripheral surface of the high shear screw 102 (groove surface between the screw blades). Yes.
  • the tapered surface 102a By providing the tapered surface 102a, the solid pellet sample 104 supplied to the high shear screw 102 is compressed as it moves from the screw rear end side to the tip end side, and is plasticized and melted from the solid state.
  • the conventional high shear machine has the following problems. That is, the high shear device disclosed in Patent Document 1 has a function of plasticizing a solid polymer blend resin by low speed rotation as a function of the high shear screw 102 shown in FIG. It has two functions: a high shearing function of the resin. In other words, since the solid resin is compressed and plasticized and melted, the outer peripheral surface of the high shear screw needs to have a tapered surface 102a, that is, a compression shape. However, by providing the tapered surface 102a, there is a problem that a high shear efficiency is lowered because a certain shear stress cannot be applied to the highly sheared resin.
  • the conditions such as the heating temperature and the resin pressure for plasticizing the resin to obtain the optimum molten resin are different from the conditions for obtaining the optimum nano-dispersed resin by high shearing the molten resin. That is, in the conventional method in which plasticization and high shear are continuously performed using the same high shear screw, it is difficult to set optimum conditions necessary for high shear. As a result, the nano-dispersion of the resin becomes insufficient, and the molded processed products extruded with transparent polymer blends become cloudy or brownish, resulting in poor transparency and stable and good extrudates. could not be manufactured.
  • the present invention has been made in view of the above-described problems, and improves the high shear efficiency and increases the accuracy of nano-dispersion of the material, so that the incompatible polymer blend system in a stable and good state.
  • Another object of the present invention is to provide a high shear device and a high shear method capable of dispersing and mixing the internal structure of a polymer / filler system, and further a polymer blend / filler system material at a nano level.
  • the high shear device according to the present invention disperses the internal structure of incompatible polymer blend system, polymer / filler system, and polymer blend / filler system material at nano level by kneading while applying high shear stress.
  • a high shear device for mixing is
  • This apparatus includes a preheating unit for heating the material, a high shearing unit including an internal feedback screw and a material heating cylinder that injects the material heated in the preheating unit and applies high shear stress to the injected material, A pressure sensor that is provided in the heating cylinder and detects a first pressure in the vicinity of the return hole inlet of the internal feedback screw and a second pressure in the vicinity of the discharge port; and a material injection amount according to the pressure value detected by the pressure sensor, Control means for controlling at least one of material temperature, kneading time, and screw rotation speed. Then, a pressure is generated in the vicinity of the feedback hole discharge port of the internal feedback screw at the time of high shear.
  • the waveforms of the first pressure and the second pressure with the passage of time are similar to each other and have a predetermined shape. After the peak value is formed, a change to a steady state is shown, and control is performed so that the first pressure and the second pressure form a predetermined pressure difference with time.
  • the high shear method according to the present invention kneads while applying a high shear stress, so that the internal structure of the incompatible polymer blend system, polymer / filler system, and polymer blend / filler system material can be nano-level. This is a high shear method for dispersing and mixing.
  • the method includes a first step of preheating the material, a second step of injecting the material heated in the first step into the high shear portion, and applying a high shear stress to the material by an internal feedback screw, A third step for detecting the first pressure in the vicinity of the feedback hole inlet and the second pressure in the vicinity of the discharge port of the internal feedback screw, and the material injection amount, the material temperature, and the kneading according to the pressure value detected in the third step And a fourth step of controlling at least one of time and screw rotation speed.
  • a pressure is generated in the vicinity of the feedback hole outlet of the internal feedback screw during the high shear, and in the fourth step, the waveforms of the first pressure and the second pressure with the passage of time show similar shapes, A change to a steady state is shown after the predetermined peak value is formed, and the first pressure and the second pressure are controlled to form a predetermined pressure difference with time.
  • the optimum material heated to an arbitrary temperature in the preheating portion is supplied to the high shear portion, and further, the material temperature, material pressure, kneading time, screw, and the optimum conditions in the high shear portion
  • the material temperature, material pressure, kneading time, screw, and the optimum conditions in the high shear portion By rotating the internal feedback screw at a predetermined rotation speed while controlling the rotation speed, the material flows from the return hole inlet to the discharge outlet and circulates to give a high shear stress.
  • the material to be kneaded is constant by the rotation of the internal feedback screw.
  • High shear stress with the following flow can be applied. Therefore, it is possible to uniformly disperse nano-materials throughout the material to be highly sheared, and the internal structure in the material of immiscible polymer blend system, polymer / filler system and even polymer blend / filler system with good transparency. Can be dispersed and mixed at the nano level.
  • by separating the high shear portion and the preheating portion it is not necessary to provide the ability and shape for melting the material by heating or plasticizing the internal feedback screw. Therefore, it is possible to perform optimal control that meets the conditions of high shear.
  • the pre-heating unit may be a plasticizing unit that plasticizes and melts a solid material.
  • plasticization can be performed by melting, for example, a solid polymer blend resin in the plasticization section, and the plasticized material can be used as a material to be subjected to high shear in the high shear section. .
  • the plasticizing part includes a plasticizing screw for melting the solid material and an injection part for injecting the material plasticized by the plasticizing screw to the high shearing part.
  • a solid polymer blend resin is supplied to a plasticizing screw, and the resin is plasticized by rotating and kneading at an appropriate temperature and rotation speed to obtain a molten resin. it can.
  • pouring part is connected with the injection
  • the internal feedback screw preferably has a rotational speed of 100 to 3000 rpm.
  • the high shearing portion is provided with a material injection portion for injecting the material heated from the preheating portion, and the material injection portion has an injection valve capable of opening and closing control. It is preferable to be provided. With such a configuration, the injection amount of the material can be controlled by automatically opening and closing the injection valve according to a preset time or the like, and high shear efficiency can be achieved.
  • the high shear portion is provided with a material discharge portion for discharging the highly sheared material, and the material discharge portion has a discharge valve capable of opening and closing control. It is preferable to be provided.
  • the discharge valve can be automatically opened and closed according to a preset time or the like to control the discharge amount of the material nano-dispersed by high shear, and the efficiency of high shear can be improved.
  • the outer diameter of the internal feedback screw is more preferably constant over the axial direction.
  • the outer peripheral surface of the internal feedback screw (the groove) can be compared to the plasticized screw having a compression shape (tapered shape) formed on the outer peripheral surface of the internal feedback screw (the groove surface between the screw blades).
  • the gap provided in the surface) is constant in the axial direction. That is, since the clearance on the outer peripheral side of the screw on the tip side is not reduced as in the case of the compression shape, the circulation of the material necessary for kneading becomes smooth, and the high shear efficiency can be increased.
  • the design of the screw shape can be widened and high shear can be performed, and a screw having an appropriate shape can be used in accordance with conditions such as the material of the molten resin and processing ability.
  • the material heating cylinder is formed with a notch at a predetermined position corresponding to the proximal end side of the internal feedback screw.
  • the material leaking from the rear end of the internal feedback screw during high shear can be discharged naturally downward from the notch. Therefore, for example, problems due to the material flowing into a bearing or the like provided on the base end side (rear side) of the internal feedback screw can be eliminated, and stable continuous operation can be performed in the high shear portion.
  • a heating cylinder taper surface whose inner diameter gradually increases from the distal end side toward the proximal end side is formed on the inner surface on the proximal end side of the material heating cylinder.
  • a cooling channel may be provided at a predetermined position on the base end side of the material heating cylinder.
  • the material leaking from the proximal end portion of the internal feedback screw during high shear is cooled and solidified, and the material is easily fixed to the peripheral surface of the shaft connected to the rotating shaft of the internal feedback screw, for example. . Therefore, it does not fall and flow out in the middle of the shaft, and it can be removed by moving it to an appropriate rear position along the shaft.
  • the shearing portion is provided with a shaft that coaxially connects the rotary shafts of the internal feedback screw and the drive motor for driving the screw, and the internal feedback of the shaft is provided.
  • a thread groove having a reverse thread shape may be formed on the outer peripheral surface of the tip near the mold screw.
  • the shaft is rotatably supported by the anti-vibration support portion at the axial intermediate portion, and is driven from the screw side to a predetermined position on the internal feedback type screw side from the anti-vibration support portion.
  • a shaft tapered surface is formed in which the inner diameter gradually increases toward the motor side.
  • the material can be allowed to fall naturally on the shaft taper surface. That is, since the leaked material is removed at the position on the front side (internal feedback screw side) of the anti-vibration support portion, it is possible to prevent a problem that the material flows into a bearing or the like provided in the anti-vibration support portion. .
  • the material injection amount, the material temperature, the material at the optimum temperature supplied from the preheating unit in the high shearing part, based on the material pressure at the time of high shearing By controlling at least one of the kneading time and the screw rotation speed, it is possible to perform high shear that can be nano-dispersed with high accuracy and efficiency with respect to the material. Therefore, it is possible to disperse and mix the internal structure of the incompatible polymer blend system, the polymer / filler system, and further the polymer blend / filler system material at a nano level in a stable and good state.
  • FIG. 4 is an enlarged view of the high shear screw shown in FIG. 3. This is a manufacturing flow of high shear using a high shear device. It is a timing chart at the time of the high shear in a high shear unit. It is a figure which shows the state of the polymer blend extrudate manufactured by the Example of this invention. It is a figure which shows the state of the polymer blend extrudate manufactured by the comparative example. It is a partially broken side view which shows schematic structure of the conventional high shear machine.
  • This high shear device 1 indicates a high shear device according to the present embodiment.
  • This high shear device 1 is made by kneading a molten polymer blend resin (corresponding to the material of the present invention) while applying a high shear stress, thereby making an incompatible polymer blend system, polymer / filler system, It is for dispersing and mixing the internal structure of the polymer blend / filler material at the nano level.
  • the high shear device 1 of the present embodiment includes a plasticizing unit 10 (plasticizing part, pre-heating part) and a high shearing unit 20 (high shear part).
  • the plasticizing unit 10 plasticizes and melts a solid polymer blend resin (hereinafter referred to as “solid resin”).
  • the high shear unit 20 injects the molten resin plasticized by the plasticizing unit 10 from the injection unit 22 and rotates the internal feedback screw 23 inserted in the heating cylinder 21 at a rotational speed of 100 to 3000 rpm, for example.
  • the molten resin is kneaded and subjected to high shear, whereby the molten resin is nano-dispersed.
  • the screw feed sides in the axial directions of the plasticizing screw 12 and the internal feedback screw 23 in the plasticizing unit 10 and the high shear unit 20 are “front”, “front end”, and “tip”.
  • the opposite side is used as “rear”, “rear end”, and “base end”.
  • the feed sides of the screws 12 and 23 inserted through the heating cylinder 11 are respectively “front”, “front end”, and “tip”.
  • the opposite side is used as “rear”, “rear end”, and “base end”.
  • a plasticizing screw 12 (described later) for kneading and plasticizing and melting a solid resin is disposed with its rotation axis direction substantially horizontal.
  • an internal feedback screw 23 (described later) for high shearing the molten resin injected from the plasticizing unit 10 has its rotational axis direction orthogonal to the rotational axis direction of the plasticizing screw 12. They are arranged in a substantially horizontal direction.
  • the plasticizing unit 10 is configured such that an injection nozzle 15 described later can be attached to and detached from the injection portion 22 of the high shear unit 20.
  • the high shear device 1 shown in FIG. 1 is a plan view in which a part (a plasticizing screw 12 portion described later) is broken. However, for ease of viewing, the hopper 14 and the hopper base 17 described later are viewed from the side.
  • the material system to be used in the high shear device 1 includes incompatible polymer blend system, polymer / filler system, and polymer blend / filler system material.
  • the incompatible polymer blend system includes a combination of polyvinylidene fluoride (PVDF) and polyamide 11 (PA11), and a combination of polycarbonate (PC) and polymethyl methacrylate (PMMA).
  • the polymer / filler system include a combination of polylactic acid and carbon nanotube (CNT), and examples of the polymer blend / filler system include a combination of PVDF, polyamide 6, and CNT.
  • a plasticizing unit 10 shown in FIG. 1 has a substantially hollow cylindrical heating cylinder 11 arranged in a substantially horizontal direction, and is rotatable in the circumferential direction and reciprocally movable in the axial direction while being inserted into the heating cylinder 11.
  • a plasticizing screw 12, and a drive unit 13 that is disposed on the base end 12a side that is one end side in the axial direction of the plasticizing screw 12 and that causes the plasticizing screw 12 to rotate and reciprocate in the axial direction.
  • the hopper 14 for supplying a solid resin to the base end portion 12a of the plasticizing screw 12 and the tip end portion 12b side (the base end portion 12a (the hopper 14 side)) forming the other axial end side of the plasticizing screw 12 And an injection nozzle 15 (injection part) provided on the opposite side.
  • the heating cylinder 11 of the plasticizing unit 10 is held in a state where the longitudinal direction is substantially horizontal, and the outer peripheral surface is covered with a plurality of heaters 16, 16. That is, the temperature of the heating cylinder 11 can be adjusted by controlling the temperature of the heater 16.
  • a hopper base 17 having an insertion hole 17a for supporting the hopper 14 and dropping the solid resin supplied to the hopper 14 to the base end portion 12a side of the plasticizing screw 12 is provided at the base end portion 11a of the heating cylinder 11. It is fixed.
  • An injection nozzle 15 is attached to the inner surface of the tip 11b of the heating cylinder 11 in a state where the flow path (injection port 15a) communicates with the inner space (plasticization region R) of the heating cylinder 11. .
  • the temperature of the heating cylinder 11 is controlled by a temperature sensor 18 shown in FIG.
  • the plasticizing region R is a space between the heating cylinder 11 and the plasticizing screw 12 and is a region where solid resin is supplied from the hopper 14.
  • the plasticizing screw 12 is disposed substantially coaxially with the heating cylinder 11, and the resin temperature kneaded in the screw by the heating cylinder 11 is adjusted. Further, the base end portion 12a of the plasticizing screw 12 reaches the insertion hole 17a of the hopper base 17 and is connected to a screw rotating shaft 133 of the driving unit 13 described later so as to be in a straight line.
  • the drive unit 13 includes a rotation mechanism 13A that rotates the plasticizing screw 12, and an injection mechanism 13B that reciprocates the plasticizing screw 12 in the axial direction to inject the molten resin in the screw 12 from the injection nozzle 15.
  • the rotation mechanism 13 ⁇ / b> A includes a first drive motor 132 fixed on the fixed portion 131, and a screw rotation shaft 133 to which the rotational force is transmitted by the drive motor 132.
  • the screw rotating shaft 133 and the base end portion 12 a of the plasticizing screw 12 are connected in a straight line by a connecting piece 134.
  • the injection mechanism 13B includes a ball screw 135 that is fixed to the fixing portion 131 with a screw shaft arranged parallel to the axial direction of the plasticizing screw 12, and a nut 136 that is rotatably engaged with the ball screw 135.
  • the second drive motor 137 is configured to transmit a rotational force to the nut 136 and to be separated from the fixed portion 131.
  • the ball screw 135 reciprocates with respect to the nut 136 rotated by the driving of the second drive motor 137, so that the fixed portion 131 that fixes the ball screw 135, and the first drive motor 132 on the fixed portion 131,
  • the plasticizing screw 12 provided via the screw rotating shaft 133 reciprocates in the axial direction. That is, the plasticizing screw 12 has a function of injecting the molten resin plasticized in the heating cylinder 11 from the injection nozzle 15 by rotation and reciprocation.
  • the high shear unit 20 includes a heating cylinder 21 (corresponding to the material heating cylinder of the present invention) having a resin injection portion 22 and arranged in a substantially horizontal direction.
  • the internal feedback screw 23 that is inserted in the heating cylinder 21 and is rotatable in the circumferential direction, and the rear side of the internal feedback screw 23 (that is, the base end 23b side that forms one end in the screw axial direction) )
  • a drive motor 24 for rotating the internal feedback screw 23 via the shaft 25, an anti-vibration support portion 27 for rotatably supporting the shaft 25 via a bearing 26, and an internal feedback type A distal end holding portion 28 having a T-die 29 that forms a forming portion provided on the distal end side (opposite to the base end portion) of the screw 23 in the other axial direction. It is.
  • the heating cylinder 21 of the high shear unit 20 is held in a state where the longitudinal direction is substantially horizontal, and the outer peripheral surface is covered with a heater 38. That is, the temperature of the heating cylinder 21 can be adjusted by controlling the temperature of the heater 38.
  • a proximal end portion 21b (left side in FIG. 3) of the heating cylinder 21 is supported by the main body support portion 30, and a distal end holding portion 28 is provided at the distal end portion 21a.
  • an injection path 22a communicating with the inner space (high shear region K) is formed in the injection section 22 provided in the heating cylinder 21, and the above-described injection nozzle 15 is formed in the outer peripheral side opening of the injection path 22a.
  • the injection ports 15a are engaged with each other.
  • the molten resin injected by the plasticizing unit 10 is supplied from the injection portion 22 through the injection nozzle 15 to the high shear region K (gap between the heating cylinder 21 and the internal feedback screw 23 shown in FIG. 4). Can be allowed to flow into.
  • the position of the injection path 22 a formed in the injection portion 22 is from a discharge port 231 b (described later) of a feedback hole 231 provided near the rear end of the internal feedback screw 23. Is also on the tip side.
  • an injection valve 31 capable of opening / closing control for adjusting the inflow amount of the molten resin from the plasticizing unit 10 is provided in the inner space of the heating cylinder 21. Yes.
  • the injection valve 31 is an automatic opening / closing type capable of controlling the injection amount according to a preset time or the like, and is linked to the opening / closing operation of a discharge valve 32 described later in the present embodiment.
  • a resin pressure sensor 33 (pressure sensor) for detecting the resin pressure at the front and rear positions in the axial direction of the internal feedback screw 23 is embedded in the heating cylinder 21.
  • the detection portions of the front resin pressure sensor 33 ⁇ / b> A and the rear resin pressure sensor 33 ⁇ / b> B are arranged facing the high shear region K in the heating cylinder 21.
  • the front resin pressure sensor 33A is disposed at a position where the resin pressure (first pressure) in the vicinity of the tip 23a (near the inlet 231a) of the internal feedback screw 23 can be detected, and the rear resin pressure sensor 33B is an internal feedback described later.
  • the resin screw (second pressure) in the vicinity of the discharge port 231b see FIG.
  • the front resin pressure (first pressure) and the rear resin pressure (second pressure) detected by both the resin pressure sensors 33A and 33B are managed in performing high shear, and details will be described later.
  • the internal feedback screw 23 is rotatably provided in a state of being inserted substantially coaxially in the heating cylinder 21, and its base end portion 23 b is in a straight line with respect to the shaft 25 connected to the rotation shaft of the drive motor 24. By connecting in such a manner, the rotational force of the drive motor 24 is transmitted.
  • the base end portion 23b of the internal feedback screw 23 can slide in a liquid-tight manner with respect to the inner surface 21c (see FIG. 4) of the heating cylinder 21 outside the range of the high shear region K where no screw blades are formed. It has become.
  • the outer diameter of the internal feedback screw 23 is constant over the axial direction. That is, the groove surface 23c between the screw blades is parallel to the screw center axis, that is, the gap between the inner surface 21c of the heating cylinder 21 and the groove surface 23c on the outer peripheral surface of the internal feedback screw 23 is the screw axial direction.
  • the interval S1 is constant. Therefore, the clearance on the outer peripheral side of the screw on the front end side is small like a screw used for plasticization in which a compression shape (tapered shape) is formed on the outer peripheral surface of the internal feedback screw 23 (the groove surface 23c between the screw blades). Therefore, the circulation of materials necessary for kneading becomes smooth, and the high shear efficiency can be increased.
  • a predetermined gap S2 is also provided between the distal end portion 23a and the distal end holding portion 28.
  • the feedback hole 231 along the screw center axis is formed in the internal feedback screw 23 from the front end portion 23a toward the rear end side.
  • the return hole 231 has one end (inflow port 231a) positioned substantially at the center of the cross-sectional view of the screw front end portion 23a, extends from the inflow port 231a to the rear end side, and has a radius of the screw 23 at a predetermined position near the rear end. The direction is changed to extend to the outer peripheral surface of the screw 23, and the other end (discharge port 231b) is provided at the position of the outer peripheral surface.
  • the inflow port 231a is on the upstream side of the molten resin flowing in the return hole 231 during high shear, and the discharge port 231b is on the downstream side. That is, the molten resin injected into the high shear region K is sent to the front end side with the rotation of the internal feedback screw 23, and flows into the return hole 231 from the inflow port 231a at the front end portion and flows backward to the discharge port 231b. It is circulated so that it is discharged more and sent to the tip side again with the rotation of the internal feedback screw 23. Through this circulation, the molten resin is nano-dispersed, and the internal structure of the incompatible polymer blend system, polymer / filler system, and polymer blend / filler system material is dispersed and mixed at the nano level.
  • the high shear unit 20 includes a material injection amount, a material temperature, a kneading time, according to pressure values (front resin pressure and rear resin pressure) detected by the front resin pressure sensor 33A and the rear resin pressure sensor 33B.
  • the control apparatus 2 which controls at least 1 among screw rotation speed is provided.
  • the control device 2 shows a change in a steady state after a predetermined peak value is formed while the waveforms of the front resin pressure and the rear resin pressure with time elapse in a high shear state.
  • the front resin pressure and the rear resin pressure are controlled to form a predetermined pressure difference with time.
  • the high shear device 1 has a configuration in which the high shear unit 20 and the plasticizing unit 10 are separated.
  • the present high shear device 1 eliminates the need for providing the internal feedback screw 23 with the ability and shape to melt the resin by heating or plasticizing it. It is possible to do.
  • a discharge passage 29 a communicating with the inner space (high shear region K) of the heating cylinder 21 is formed in the tip holding portion 28, and the discharge side of the discharge passage 29 a is directed downward.
  • a T-die 29 is formed which forms a forming portion where the opening cross section expands.
  • the tip holding portion 28 can also be adjusted in temperature by a heater 38 (see FIG. 2).
  • a discharge valve 32 for adjusting the discharge amount of the nano-dispersed resin discharged from the high shear region K is provided in the discharge path 29a.
  • the discharge valve 32 is an automatic opening / closing type capable of controlling the discharge amount in accordance with a preset high shear kneading time or the like, and is interlocked with the opening / closing operation of the injection valve 31 described above. That is, the injection valve 31 and the discharge valve 32 described above are configured to be able to control injection (injection by the plasticizing unit 10) and discharge at an arbitrary timing, whereby high shear kneading time, discharge time, The injection time can be arbitrarily set.
  • the heating cylinder 21 and the tip holding portion 28 are provided with temperature sensors 34 (34A, 34B, 34C, 34D) at appropriate positions, and the heating cylinder 21 and the tip at the time of high shear.
  • the temperature of the holding unit 28 is controlled, and the temperature can be adjusted by the heater 38.
  • the heating cylinder 21, the main body holding unit 30, and the anti-vibration support unit 27 are provided with cooling channels 35, 36, and 37, respectively.
  • the first cooling flow path 35 of the heating cylinder 21 adjusts the temperature of the heating cylinder 21.
  • the second cooling flow path 36 (corresponding to the cooling flow path of the present invention) of the main body holding part 30 will be described in detail later, but the position corresponding to the base end 23b of the internal feedback screw 23 of the heating cylinder 21 is cooled.
  • the third cooling flow path 37 of the anti-vibration support portion 27 cools the shaft 25 by the anti-vibration support portion 27, so that the heat transmitted from the heating cylinder 21 through the shaft 25 or the heat transmitted from the drive motor 24.
  • the bearing 26 is protected from.
  • the heating cylinder 21 of the high shear unit 20 has a slit in a substantially lower half range in the circumferential direction of the heating cylinder 21 at a predetermined position corresponding to the base end 23 b side of the internal feedback screw 23. 211 (a notch) is provided. As a result, the resin leaking from the base end portion 23b at the rear end of the screw during high shear can be discharged naturally downward from the slit 211.
  • a heating cylinder taper surface 212 is formed on the inner surface of the base end portion 21b of the heating cylinder 21 so that the inner diameter gradually increases from the front to the rear.
  • the resin leaking from the high shear region K described above and leaked from the rear end side without being discharged from the slit 211 described above can be guided rearward and discharged naturally downward from the rear end portion.
  • the resin flows into the drive motor 24 provided on the base end portion 23b side (rear side) of the internal feedback screw 23 and the bearing 26 of the anti-vibration support portion 27. Therefore, the high shear unit 20 can perform stable continuous operation.
  • a reverse groove-shaped thread groove 251 is formed on the outer peripheral surface of the shaft 25 on the tip side (internal feedback screw 23 side).
  • a shaft taper surface 252 having a diameter increasing from the front toward the rear is formed at a position on the internal feedback type screw 23 side of the anti-vibration support portion 27 of the shaft 25. Accordingly, the resin leaking from the base end portion 23b of the internal feedback screw 23 during high shear can be moved rearward along the shaft 25 while being cooled and solidified. Then, the resin moving backward reaches the shaft tapered surface 252 formed at a position on the front side from the anti-vibration support portion 27, and further cracks automatically by moving in a direction in which the tapered surface expands in diameter.
  • the shaft taper surface 252 can naturally drop the resin. That is, since the leaked resin is removed at a position on the front side of the anti-vibration support portion 27, it is possible to prevent a problem that the resin flows into the bearing 26 provided in the anti-vibration support portion 27.
  • the main body support portion 30 is provided with the second cooling flow path 36 as described above, and cools the heating cylinder 21 located around the second cooling flow path 36. Therefore, the resin leaking from the rear end of the internal feedback screw 23 during high shear is cooled and solidified, and the resin is easily fixed to the peripheral surface of the shaft 25 described above. As a result, the resin can be efficiently moved rearward along the shaft 25 without dropping and flowing out in the middle of the shaft 25, and the resin can be naturally dropped reliably by being broken at the shaft taper surface 252. Can do.
  • FIG. 1 a method of dispersing and mixing the internal structure in the incompatible polymer blend system, polymer / filler system, and further polymer blend / filler system material at the nano level using the above-described high shear device 1 is shown in FIG. This will be described using a manufacturing flow and the like.
  • a resin in which two or more kinds as described above are mixed can be used as the polymer blend-based solid resin.
  • the first drive motor 132 of the rotation mechanism 13A is driven. By doing so, the plasticizing screw 12 is rotated at an appropriate rotation speed.
  • the heating cylinder 11 is heated to an appropriate temperature by the heater 16 wound around the outer periphery thereof.
  • the solid resin is supplied from the hopper 14 into the heating cylinder 11 serving as the plasticizing region R (step S1 shown in FIG. 5).
  • the plasticizing screw 12 is rotated, the solid resin is heated by the heater 16 for a predetermined time to be plasticized (step 2).
  • the resin in the plasticizing region R is plasticized and melted and kneaded to become a molten resin. That is, the plasticization of the resin in the plasticizing region R of the plasticizing unit 10 is completed (step S3).
  • the molten resin in the plasticizing unit 10 is injected into the heating cylinder 21 of the high shear unit 20 (steps S4 to S7). Specifically, the injection valve 31 and the discharge valve 32 of the high shear unit 20 are opened at the timing when the molten resin is obtained with the desired properties (the timing when step S3 is completed), and the respective flow paths (injection paths 22a). The discharge path 29a) is opened (step S4).
  • the second drive motor 137 is driven, and the ball screw 135 is moved forward together with the fixing portion 131 via the nut 136. Then, along with the forward movement of the screw rotation shaft 133 on the fixed portion 131, the plasticizing screw 12 moves forward along the axial direction in the heating cylinder 11. As a result, the plasticizing screw 12 injects the molten resin plasticized in the heating cylinder 11 into the heating cylinder 21 of the high shear unit 20 from the injection nozzle 15.
  • the internal feedback screw 23 in the heating cylinder 21 is rotated at a low speed (for example, 0 to 300 rpm) (step S5).
  • a low speed for example, 0 to 300 rpm
  • the internal air is discharged from the discharge passage 29a by the molten resin.
  • the inside of the heating cylinder 21 of the high shear unit 20 is gradually filled with the molten resin (step S6).
  • step S7 When the injection of the molten resin is completed (step S7: YES), the process proceeds to step S8, the injection valve 31 and the discharge valve 32 are closed, and the flow paths 22a and 29a are closed.
  • step S7: NO when the injection is not completed (step S7: NO), the injection of the molten resin is continued.
  • the completion of the injection can be determined by the pressure values detected by the resin pressure sensors 33A and 33B provided at the front and rear portions of the internal feedback screw 23. That is, when a predetermined pressure substantially equal to the front part of the internal feedback screw 23 is generated in the vicinity of the return hole outlet of the internal feedback screw 23, it is determined that the injection is completed.
  • step S8 when the injection valve 31 and the discharge valve 32 are closed, the high shear unit 20 performs high shear (step S9).
  • the plasticizing unit 10 plasticizes a new resin based on the above steps 1 to 3.
  • step S9 the internal feedback screw 23 in the heating cylinder 21 is rotated at a high speed (for example, 100 to 3000 rpm), and the molten resin in the high shear region K is subjected to high shearing for a predetermined set time, thereby performing nanoshearing. By dispersing, a nano-dispersed resin is formed. At this time, as shown in FIG.
  • the molten resin injected into the high shear region K is sent to the tip side along with the high-speed rotation of the screw 23 on the outer peripheral side of the internal feedback screw 23, and It flows backward from the inlet 231a of the return hole 231 at the tip 23a, flows out from the discharge port 231b to the outer peripheral side of the internal feedback screw 23 by centrifugal force, returns to the groove surface 23c, and is sent to the tip side again.
  • the circulation is repeated for a predetermined time. Thereby, a high shear stress is applied to the molten resin.
  • the internal feedback screw 23 is rotated at a predetermined rotation speed while controlling the resin temperature, resin pressure, kneading time, and screw rotation speed under optimum conditions in the high shear unit 20 according to the resin material to be charged.
  • the molten resin flows from the return hole inlet 231a to the discharge outlet 231b and circulates, thereby being kneaded and giving a high shear stress.
  • a specific high shear method will be described later.
  • step S10 when the high shearing time reaches a preset time (step S10: YES), the rotation speed of the internal feedback screw 23 is switched from high speed rotation to medium speed rotation (for example, 200 to 1000 rpm).
  • the medium speed rotation is a rotation speed region that is larger than the low speed rotation described above and smaller than the high speed rotation.
  • step S12 the injection valve 31 and the discharge valve 32 are opened, and the respective flow paths (injection path 22a and discharge path 29a) are opened.
  • the nano-dispersed resin in the high shear region K processed by high shear is discharged from the discharge path 29a on the tip side with the rotation of the internal feedback screw 23, and the molten resin discharged from the T-die 29 is polymerized. It can be obtained as a blend extrudate.
  • step S5 is performed again. Proceed to In this case, in parallel with the high-speed rotation of the internal feedback screw 23 in step S9 described above, a new solid resin is charged in the plasticizing unit 10 to complete the plasticization of the resin (steps S1 to S3). . Then, the internal feedback screw 23 of the high shear unit 20 is rotated from the medium speed rotation to the low speed rotation (step S5), and the molten resin obtained in step S3 is sent from the plasticizing unit 10 through the injection nozzle 15.
  • step S6 the internal structure of the incompatible polymer blend system, polymer / filler system, and further polymer blend / filler system material can be dispersed and mixed at the nano level.
  • FIG. 6 is a timing chart showing two high shears.
  • the horizontal axis indicates the high shear time.
  • the vertical axis indicates the resin pressure (MPa) in FIG. 6 (a), the screw rotation speed (rpm) in FIG. 6 (b), and the resin injection valve and resin discharge in FIG. 6 (c).
  • the open / close state of the valve is shown.
  • the control means 2 closes the injection valve 31 and the discharge valve 32, and sets the rotation speed of the internal feedback screw 23 to, for example, 300 to It is rotated in a high-speed rotation mode of 3000 rpm (2500 rpm in FIG. 6B). Then, on the outer peripheral side of the internal feedback screw 23, the molten resin is sent to the front end side as it rotates, and flows backward from the inlet 231 a of the feedback hole 231 at the front end 23 a of the internal feedback screw 23, and is discharged by centrifugal force. Circulation occurs such that the flow returns to the outer peripheral side of the internal feedback screw 23 from 231b, returns, and is sent to the tip side again. As a result, a large shear rate (for example, 4.4 ⁇ 10 3 s ⁇ 1 at the maximum) is generated, and the molten resin is kneaded and nano-dispersed.
  • a large shear rate for example, 4.4 ⁇ 10 3 s ⁇ 1 at the maximum
  • the pressure values detected by the front resin pressure sensor 33A and the rear resin pressure sensor 33B (the front resin pressure P1 and the rear resin pressure).
  • P2 at least one of the material injection amount, material temperature, kneading time, and screw rotation speed is controlled by the control device 2.
  • the waveforms of the front resin pressure P1 and the rear resin pressure P2 with the passage of time are similar to each other, and change in a steady state after a predetermined peak value is formed.
  • the front resin pressure P1 and the rear resin pressure P2 are controlled so as to form a predetermined pressure difference ⁇ P (front resin pressure P1 ⁇ rear resin pressure P2) as time elapses. That is, it is preferable to control the waveform of the front resin pressure P1 and the waveform of the rear resin pressure P2 to be substantially parallel, and it is more preferable that the pressure difference ⁇ P is 3 Mpa or more.
  • the nano-dispersion can be uniformly performed throughout the resin that is highly sheared. That is, it is possible to manufacture a good material having unprecedented characteristics by making the solid resin minute by high shear so that it cannot be obtained by low and medium speed rotations conventionally performed.
  • an excellent material with high transparency can be produced by dispersing and mixing the internal structure of the incompatible polymer blend system, polymer / filler system, and polymer blend / filler system material at the nano level.
  • the material of the optimum temperature supplied from the plasticizing unit 10 in the high shear unit 20 is based on the resin pressure at the time of high shear.
  • the injection amount, the temperature of the material, the kneading time, and the screw rotation speed it is possible to perform high shear that enables nano-dispersion with high accuracy and efficiency with respect to the resin. Therefore, the internal structure of polymer resin materials such as incompatible polymer blends, polymer / fillers, and even polymer blends / fillers is continuously maintained at a nano level in a stable and good state. Can be dispersed and mixed.
  • a high-shearing apparatus 1 shown in FIG. 1 is used to nano-disperse a polymer blend resin in which polycarbonate (PC) and acrylic (PMMA) are mixed at a ratio of 8: 2 using a high-shear unit.
  • PC polycarbonate
  • PMMA acrylic
  • the temperature of the heating cylinder 11 is set to 220 ° C., and the plasticizing screw 12 is rotated at a low speed of 300 rpm or less to plasticize and melt the resin to produce a uniformly kneaded molten resin. did.
  • This molten resin is injected into the heating cylinder 21 of the high shear unit 20 and has a screw diameter of 28 mm, a screw pitch of 11 mm, a flight (screw crest) width of 2 mm, a feedback hole diameter of 2.5 mm, a screw effective length (from the screw tip to the feedback hole).
  • the amount of resin injected into the heating cylinder 21 of the high shear unit 20 is such that when there is no resin leakage from the rear of the heating cylinder 21, the pressure is in the vicinity of the discharge port 231 b in the feedback hole 231 of the internal feedback screw 23. It was the amount when it was confirmed that P2 was generated.
  • FIG. 7A is a photograph of a molded product formed into a thin plate shape by the polymer blend extrudate produced according to this example
  • FIG. 7B is a state in which the resin pressure characteristic shown in FIG. 6A is not obtained.
  • 2 is a photograph of a molded product formed into a thin plate shape by a polymer blend extrudate produced in 1.
  • the resin pressures P1 and P2 at the time of high shear according to the present embodiment are forcibly sent forward by the internal feedback screw 23, and therefore the front resin pressure P1 is the rear resin. It is larger than the pressure P2. Further, the front resin pressure P1 and the rear resin pressure P2 each reach a peak value immediately after the start of high shear (22 MPa at the front resin pressure P1), and thereafter, a smooth curve is drawn by applying a high shear stress. The characteristic which decreases with a simple waveform was obtained. Further, the pressure difference ⁇ P (front resin pressure P1 ⁇ rear resin pressure P2) between the front resin pressure P1 and the rear resin pressure P2 is substantially constant (9 MPa) after the peak value, and it was confirmed that it is 3 Mpa or more. .
  • the present invention is not limited to the above embodiments, and can be appropriately changed without departing from the spirit of the present invention.
  • the plasticizing unit 10 plasticizing part
  • the present invention is not limited to this, and the material supplied to the high shearing part is rubber or the like.
  • a preheating part intended only for heating without a plasticizing screw may be used. In short, it is only necessary that the material can be brought into a molten state by heating in the preheating portion.
  • the property may be material which consists of powder, fluid, and a particle
  • examples of such material systems include incompatible polymer blend systems, polymer / filler systems, and polymer blend / filler systems.
  • the plasticizing unit 10 can be attached to and detached from the high shear unit 20.
  • the molten resin is removed from the high shear unit 20.
  • region K) it is not limited to such a form. That is, in a state where the plasticizing unit 10 is separated from the high shear unit 20, another mode for supplying only the molten resin to the high shear region K of the high shear unit 20 is used, or the plasticizing unit of the present embodiment. 10 may be another plasticized portion having a different configuration. The point is that the plasticized part for plasticizing the solid resin to obtain the molten resin is separated from the high shear part, and only the molten resin having an appropriate property can be injected into the high shear part.
  • the configuration of the heating cylinder 21 and the internal feedback screw 23 of the high shear unit 20 is not limited to this embodiment, and can be arbitrarily set. Furthermore, the position, quantity, etc. of the injection part 22, the resin pressure sensor 33, the temperature sensor 34, the cooling flow paths 35, 36, 37, the heater 38, etc. of the high shear unit 20 can be arbitrarily set. Furthermore, in this embodiment, the slit 211 formed in the heating cylinder 21, the heating cylinder taper surface 212, the thread groove portion 251 formed in the shaft 25, the shaft taper surface 252 and the like leaked from the high shear region K, respectively. The structure corresponds to the resin, and can be omitted.
  • the high shear efficiency is improved and the accuracy of nano-dispersion of the material is improved, so that the non-phase can be stably and in a good state.
  • the internal structure of the soluble polymer blend system, polymer / filler system, and polymer blend / filler system material can be dispersed and mixed at the nano level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 この高せん断装置は、溶融樹脂に高せん断応力を与える内部帰還型スクリュー(23)を設けた高せん断ユニット(20)と、内部帰還型スクリューの流入口近傍の前部樹脂圧と吐出口近傍の後部樹脂圧とを検出する樹脂圧センサー(33)と、これらが検出した圧力値に応じて、材料注入量、材料温度、混練時間、スクリュー回転数を適宜制御する制御装置とを備える。制御装置は、前後部樹脂圧の時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って前後部樹脂圧が所定圧力差を形成するように、上記の条件を制御する。この高せん断装置によれば、高せん断効率を向上させるとともに、材料のナノ分散化の精度を高めることで、安定して且つ良好な状態で非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することができる。

Description

高せん断装置および高せん断方法
 本発明は、例えば非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料を高せん断することによって、それら材料の内部構造をナノレベルで分散・混合するための高せん断装置および高せん断方法に関する。本願は、2009年2月5日に日本に出願された特願2009-25088号に基づき優先権を主張し、その内容をここに援用する。
 従来、静置場では相互に溶け合わない(非相溶性)ブレンド系において、相溶化剤等の余分な添加物を加えることなく、数十ナノメーターサイズの分散相を有する高分子ブレンド押出し物を製造するための高せん断機が知られている(例えば、特許文献1参照)。
 特許文献1は、内部帰還型の高せん断スクリューが搭載された高せん断機において、高せん断スクリューにより2~5gの高分子ブレンド微量試料を溶融状態で例えば500~3000rpmの回転数で高速回転させて数分間混練してナノ分散化させることで、耐熱性、機械的特性、寸法安定性等に優れた高分子ブレンド押出し物を製造する構造について開示している。
 図8は、特許文献1に記載されている高せん断機の概略構成を示している。図8に示す高せん断機100では、加熱筒101に挿通されている高せん断スクリュー102を例えば120~240rpmの低速で回転させながら、投入口103より投入穴101aを介して固体状のペレット試料104(高分子ブレンド系の樹脂)を棒で押し込みつつ、高せん断スクリュー102内に直接投入して可塑化させ、その後、スクリュー102を高速回転させることで、高せん断を行う。なお、高せん断スクリュー102の外周面の溝面(スクリュー羽根どうしの間の溝面)には、後端側(基端側)から先端側に向かって拡径されたテーパー面102aが形成されている。このテーパー面102aを設けることによって、高せん断スクリュー102に供給された固体状のペレット試料104はスクリュー後端側から先端側に移動するに従って圧縮されて固体状態から可塑化して溶融する。
特開2005-313608号公報
 しかしながら、従来の高せん断機では、以下のような問題があった。
 すなわち、特許文献1に開示されている高せん断装置は、図8に示す高せん断スクリュー102の機能として、低速回転によって固体状の高分子ブレンド系の樹脂を可塑化させる機能と、高速回転によって溶融樹脂を高せん断する機能との二つの機能を有している。つまり、固体状の樹脂を圧縮させて可塑化して溶融するため、高せん断スクリューの外周面をテーパー面102a、すなわちコンプレッション形状とする必要がある。しかしながら、テーパー面102aを設けることで、高せん断される樹脂に一定のせん断応力がかけられず、高せん断効率が低下するといった問題が生じる。
 さらに、樹脂を可塑化させて最適な溶融樹脂を得るための加熱温度、樹脂圧等の条件と、溶融樹脂を高せん断させて最適なナノ分散樹脂を得るための条件とは異なっている。つまり、従来のように同一の高せん断スクリューによって可塑化と高せん断とを連続的に行う方法では、高せん断に必要な最適な条件に設定することが難しい。その結果、樹脂のナノ分散化が不十分となり、それぞれ透明な高分子ブレンドによる押出された成形加工物が白濁したり茶褐色となる等、透明度が悪くなる不具合が生じ、安定して良好な押出し物を製造することができないことがあった。
 本発明は、上述する問題点に鑑みてなされたもので、高せん断効率を向上させるとともに、材料のナノ分散化の精度を高めることで、安定して且つ良好な状態で非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することができる高せん断装置および高せん断方法を提供することを目的とする。
 本発明に係る高せん断装置は、高せん断応力を付与しつつ混練することで非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合するための高せん断装置である。この装置は、材料を加熱するプレ加熱部と、プレ加熱部で加熱された材料を注入し、この注入した材料に高せん断応力を与える内部帰還型スクリューと材料加熱筒から成る高せん断部と、加熱筒に設けられ、内部帰還型スクリューの帰還穴流入口近傍の第1圧力および吐出口近傍の第2圧力を検出する圧力センサーと、圧力センサーで検出した圧力値に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御する制御手段とを備える。そして、高せん断の際に内部帰還型スクリューの帰還穴吐出口近傍に圧力を生じさせ、制御手段において、第1圧力と第2圧力との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って第1圧力と第2圧力とが所定の圧力差を形成するように制御する。
 また、本発明に係る高せん断方法は、高せん断応力を付与しつつ混練することで非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合するための高せん断方法である。この方法は、材料をプレ加熱する第1工程と、第1工程で加熱された材料を高せん断部に注入し、この材料に対して内部帰還型スクリューによって高せん断応力を与える第2工程と、内部帰還型スクリューの帰還穴流入口近傍の第1圧力および吐出口近傍の第2圧力を検出する第3工程と、第3工程で検出した圧力値に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御する第4工程とを備える。そして、高せん断の際に内部帰還型スクリューの帰還穴吐出口近傍に圧力を生じさせ、第4工程において、第1圧力と第2圧力との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って第1圧力と第2圧力とが所定の圧力差を形成するように制御される。
 本発明では、高せん断時において、プレ加熱部において任意の温度に加熱された最適な材料を高せん断部に供給し、さらに高せん断部において最適な条件の材料温度、材料圧、混練時間、スクリュー回転数を制御しながら、内部帰還型スクリューを所定の回転数で回転させることで、材料が帰還穴流入口から吐出口に流れて循環することで混練されて高せん断応力が与えられる。具体的には、内部帰還型スクリューの帰還穴流入口近傍の第1圧力および吐出口近傍の第2圧力との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って第1圧力と第2圧力とが所定の圧力差を形成するように制御することで、内部帰還型スクリューの回転により混練される材料に一定の流れをもつ高せん断応力を与えることができる。したがって、高せん断される材料全体にわたって均一にナノ分散化させることができ、透明度の高い良好な状態で非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することができる。
 さらに、高せん断部とプレ加熱部とを分離したことで、内部帰還型スクリューに材料を加熱させたり可塑化することで溶融させるための能力や形状を備える必要がなくなる。そのため、高せん断の条件に合った最適な制御を行うことができる。
 また、本発明に係る高せん断装置では、プレ加熱部は、固体状の材料を可塑化して溶融させる可塑化部であってもよい。
 この装置では、可塑化部で例えば固体状の高分子ブレンド系の樹脂を溶融することにより可塑化させることができ、この可塑化した材料を高せん断部での高せん断対象材料とすることができる。
 また、本発明に係る高せん断装置では、可塑化部は、固体状の材料を溶融するための可塑化スクリューと、可塑化スクリューによって可塑化された材料を高せん断部へ射出するための射出部とを備えていることが好ましい。
 この装置では、例えば固体状の高分子ブレンド系の樹脂を可塑化スクリューに供給して、適宜な温度と回転数で回転させて混練することでその樹脂を可塑化させて溶融樹脂を得ることができる。そして、射出部を高せん断部の注入部に連結させ、可塑化した溶融樹脂を射出部より射出することで、高せん断部内に所望の性状の樹脂を供給することができる。
 また、本発明に係る高せん断装置では、内部帰還型スクリューの回転数は、100~3000rpmであることが好ましい。
 また、本発明に係る高せん断装置では、高せん断部にはプレ加熱部から加熱された材料を注入する材料注入部が設けられており、材料注入部には、開閉制御が可能な注入バルブが設けられていることが好ましい。
 このような構成にすることにより、予め設定された時間等に応じて注入バルブを自動開閉させて材料の注入量を制御することができ、高せん断の効率化を図ることができる。
 また、本発明に係る高せん断装置では、高せん断部には、高せん断された材料を排出するための材料排出部が設けられており、材料排出部には、開閉制御が可能な排出バルブが設けられていることが好ましい。
 この装置では、予め設定された時間等に応じて排出バルブを自動開閉させて高せん断によってナノ分散化された材料の排出量を制御することができ、高せん断の効率化を図ることができる。
 また、本発明に係る高せん断装置では、内部帰還型スクリューの外径寸法は、その軸方向にわたって一定であることがより好ましい。
 これにより、内部帰還型スクリューの外周面(スクリュー羽根どうしの間の溝面)にコンプレッション形状(テーパー形状)を形成させた可塑化併用のスクリューに比べて、内部帰還型スクリューの外周面(前記溝面)に設けられる隙間が軸方向に一定になる。つまり、コンプレッション形状の場合のように先端側のスクリュー外周側の隙間が小さくならないので、混練に必要な材料の循環がスムーズとなり、高せん断効率を高めることができる。また、スクリュー形状の設計に幅が広がり高せん断を行うことができるとともに、溶融樹脂の材質、加工能力などの条件に合わせて適宜な形状のスクリューを使用することができる。
 また、本発明に係る高せん断装置では、材料加熱筒には、内部帰還型スクリューの基端側に対応する所定位置に切欠部が形成されていることが好ましい。
 この装置では、高せん断中に内部帰還型スクリューの後端から漏れ出た材料を切欠部から自然に下方へ排出させることができる。そのため、例えば内部帰還型スクリューの基端側(後方側)に設けられるベアリング等に材料が流入することによる不具合をなくすことができ、高せん断部において安定した連続運転を行なうことができる。
 また、本発明に係る高せん断装置では、材料加熱筒の基端側の内面には、先端側から基端側に向かうに従って漸次内径が大きくなる加熱筒テーパー面が形成されていることがより好ましい。
 この装置では、高せん断中に内部帰還型スクリューの後端から漏れ出た材料を材料加熱筒の後端側へ誘導し、その後端部から自然に下方へ排出させることができる。そのため、例えば内部帰還型スクリューの基端側(後方側)に設けられるベアリング等に材料が流入することによる不具合をなくすことができ、高せん断部において安定して連続運転を行なうことができる。
 また、本発明に係る高せん断装置では、材料加熱筒の基端側の所定位置には、冷却流路が設けられていてもよい。
 この装置では、高せん断中に内部帰還型スクリューの基端部から漏れ出した材料が冷却固化され、その材料が例えば内部帰還型スクリューの回転軸に繋がるシャフトの周面に固着し易い状態となる。そのため、そのシャフトの途中で落下して流出することがなくなり、シャフトに沿って後方の適宜な箇所へ移動させて除去することができる。
 また、本発明に係る高せん断装置では、せん断部には、内部帰還型スクリューとスクリューを駆動するための駆動モータとのそれぞれの回転軸を同軸上に連結するシャフトが設けられ、シャフトの内部帰還型スクリュー寄りの先端外周面には逆ねじ形状のねじ溝部が形成されていてもよい。
 この装置では、シャフトの回転とともに、高せん断中に内部帰還型スクリューの後端から漏れ出た材料がねじ溝部に案内されてシャフト後方(内部帰還型スクリュー側と反対の方向)へ送られる。そのため、より効率よく漏出した材料を排出することができる。
 また、本発明に係る高せん断装置では、シャフトは、その軸方向中間部において振止め支持部によって回転自在に支持され、その振止め支持部より内部帰還型スクリュー側の所定位置にスクリュー側から駆動モータ側に向かうに従って漸次内径が大きくなるシャフトテーパー面が形成された構成であることが好ましい。
 この装置では、高せん断中に内部帰還型スクリューの基端部から漏れ出した材料を冷却固化させつつ、シャフトに沿って後方に移動させることができる。そして、後方に移動する材料は振止め支持部より前方側の位置に形成されているシャフトテーパー面に達して、さらにテーパー面が拡径する方向に移動することで自動的に割れることから、このシャフトテーパー面で材料を自然落下させることができる。つまり、振止め支持部の前方側(内部帰還型スクリュー側)の位置で漏れ出した材料が除去されるので、振止め支持部に設けられるベアリング等に材料が流入するといった不具合を防ぐことができる。
 本発明による高せん断装置および高せん断方法によれば、高せん断部においてプレ加熱部より供給した最適な温度の材料に対して、高せん断時の材料圧力に基づいて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御することで、材料に対して高い精度で且つ効率よくナノ分散化できる高せん断を行うことができる。そのため、安定して且つ良好な状態で非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで連続して分散・混合することができる。
本発明の実施の形態による高せん断装置の概略構成を示す一部破断平面図である。 高せん断ユニットの構成を示す一部破断側面図である。 高せん断装置の詳細な構成を示す一部破断側面図である。 図3に示す高せん断スクリューの拡大図である。 高せん断装置を使用した高せん断の製造フローである。 高せん断ユニットにおける高せん断時のタイミングチャートである。 本発明の実施例により製造した高分子ブレンド押出し物の状態を示す図である。 比較例により製造した高分子ブレンド押出し物の状態を示す図である。 従来の高せん断機の概略構成を示す一部破断側面図である。
 以下、本発明の高せん断装置および高せん断方法の実施の形態について、図1乃至図6に基づいて説明する。
 図1における符号1は、本実施の形態による高せん断装置を示している。この高せん断装置1は、溶融状態の高分子ブレンド系の樹脂(本発明の材料に相当する)に高せん断応力を与えつつ混練することで非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合するためのものである。
 図1に示すように、本実施の形態の高せん断装置1は、可塑化ユニット10(可塑化部、プレ加熱部)と、高せん断ユニット20(高せん断部)とからなる。可塑化ユニット10は、固体状の高分子ブレンド系の樹脂(以下、「固体状樹脂」という)を可塑化して溶融させる。高せん断ユニット20は、可塑化ユニット10によって可塑化された溶融樹脂を注入部22より注入し、加熱筒21に挿入されている内部帰還型スクリュー23を例えば100~3000rpmの回転数で回転させて溶融樹脂を混練して高せん断することで、その溶融樹脂をナノ分散化させる。
 ここで、以下の説明では、可塑化ユニット10及び高せん断ユニット20における可塑化スクリュー12、内部帰還型スクリュー23のそれぞれの軸方向でスクリューの送り側を「前方」、「前端」、「先端」とし、その反対側を「後方」、「後端」、「基端」として統一して用いる。また、後述する可塑化ユニット10の加熱筒11と高せん断ユニット20の加熱筒21においても同様に、それぞれに挿通されるスクリュー12、23の送り側を「前方」、「前端」、「先端」とし、その反対側を「後方」、「後端」、「基端」として統一して用いる。
 可塑化ユニット10において、固体状樹脂を混練して可塑化溶融するための可塑化スクリュー12(後述)は、その回転軸方向を略水平方向に向けて配置される。また、高せん断ユニット20において、可塑化ユニット10より注入された溶融樹脂を高せん断するための内部帰還型スクリュー23(後述)は、その回転軸方向を可塑化スクリュー12の回転軸方向に直交する略水平方向に向けて配置されている。そして、可塑化ユニット10は、後述する射出ノズル15を高せん断ユニット20の注入部22に対して着脱可能な構成となっている。
 ここで、図1に示す高せん断装置1は、一部(後述する可塑化スクリュー12部分)が破断した平面図となっている。但し、見易いように、後述するホッパー14及びホッパー台17においては側面から見た図となっている。
 本高せん断装置1で使用対象となる材料系としては、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料が挙げられる。例えば、非相溶性ポリマーブレンド系としてはポリフッ化ビニリデン(PVDF)とポリアミド11(PA11)の組み合わせやポリカーボネート(PC)とポリメチルメタクリレート(PMMA)の組み合わせが挙げられる。ポリマー/フィラー系としては、ポリ乳酸とカーボンナノチューブ(CNT)の組み合わせが挙げられ、ポリマーブレンド/フィラー系としては、例えばPVDFとポリアミド6とCNTとの組み合わせなどが挙げられる。
 図1に示す可塑化ユニット10は、略水平方向に配した略中空円筒形状の加熱筒11と、この加熱筒11内に挿通された状態で周方向に回転自在かつ軸方向に往復移動自在とされる可塑化スクリュー12と、可塑化スクリュー12の軸方向一端側をなす基端部12a側に配置されるとともに可塑化スクリュー12に回転及び軸方向への往復移動をさせるための駆動部13と、可塑化スクリュー12の基端部12aに固体状樹脂を供給するホッパー14と、可塑化スクリュー12の軸方向他端側をなす先端部12b側(前記基端部12a(ホッパー14側)とは反対側)に設けられた射出ノズル15(射出部)とを備えて概略構成されている。
 可塑化ユニット10の加熱筒11は、長手方向を略水平方向に向けた状態で保持され、外周面が複数のヒーター16、16、…によって覆われている。つまり、ヒーター16を温度制御することで加熱筒11は温度調節可能となっている。そして、加熱筒11の基端部11aには、ホッパー14を支持するとともにホッパー14に供給された固体状樹脂を可塑化スクリュー12の基端部12a側に落とし込む挿通穴17aを有するホッパー台17が固定されている。また、加熱筒11の先端部11bの内面には、射出ノズル15がその流路(射出口15a)を加熱筒11の内空部(可塑化領域R)に連通させた状態で取り付けられている。なお、加熱筒11は、図3に示す符号18の温度センサーによって温度制御されている。
 ここで、可塑化領域Rとは、加熱筒11と可塑化スクリュー12との間の空間であって、ホッパー14より固体状樹脂が供給される領域である。
 可塑化スクリュー12は、加熱筒11と略同軸に配置され、加熱筒11によってスクリュー内で混練される樹脂温度が調整される。また、可塑化スクリュー12の基端部12aは、ホッパー台17の挿通穴17aに到達して後述する駆動部13のスクリュー回転軸133に一直線上となるように連結されている。
 駆動部13は、可塑化スクリュー12を回転させる回転機構13Aと、可塑化スクリュー12をその軸方向へ往復移動させてスクリュー12内の溶融樹脂を射出ノズル15から射出させるための射出機構13Bとからなる。
 回転機構13Aは、固定部131上に固定された第1駆動モータ132と、その駆動モータ132によって回転力が伝達されたスクリュー回転軸133とを備えている。そして、スクリュー回転軸133と可塑化スクリュー12の基端部12aとは、連結片134によって一直線上に連結されている。
 射出機構13Bは、可塑化スクリュー12の軸方向に平行にねじ軸を配置させて固定部131に固定されたボールねじ135と、このボールねじ135に対して回転自在に螺合されたナット136と、ナット136に回転力を伝達するとともに固定部131と分離して配置された第2駆動モータ137とから構成されている。第2駆動モータ137の駆動によって回転するナット136に対してボールねじ135が往復移動することで、ボールねじ135を固定させている固定部131と、その固定部131上の第1駆動モータ132、スクリュー回転軸133を介して設けられた可塑化スクリュー12がその軸方向に往復移動する。つまり、可塑化スクリュー12は、回転と往復移動により加熱筒11内で可塑化した溶融樹脂を射出ノズル15から射出させる機能を有している。
 図2及び図3に示すように、高せん断ユニット20は、樹脂の注入部22を有するとともに略水平方向に配した略中空円筒形状の加熱筒21(本発明の材料加熱筒に相当する)と、この加熱筒21内に挿通された状態で周方向に回転自在とされる内部帰還型スクリュー23と、この内部帰還型スクリュー23の後方(すなわち、スクリュー軸方向一端側をなす基端部23b側)に配置されるとともにシャフト25を介して内部帰還型スクリュー23を回転させるための駆動モータ24と、前記シャフト25をベアリング26を介して回転可能に支持する振止め支持部27と、内部帰還型スクリュー23の軸方向他端側の先端側(前記基端部とは反対側)に設けられた成形加工部をなすT-ダイ29を有する先端保持部28とを備えて概略構成されている。
 図3に示すように、高せん断ユニット20の加熱筒21は、長手方向を略水平方向に向けた状態で保持され、外周面がヒーター38によって覆われている。つまり、ヒーター38を温度制御することで加熱筒21は温度調節可能である。加熱筒21の基端部21b(図3で左側)は本体支持部30によって支持され、先端部21aに先端保持部28が設けられている。また、加熱筒21に設けられる注入部22には内空部(高せん断領域K)に連通する注入路22aが形成されており、その注入路22aの外周側開口部には上述した射出ノズル15の射出口15aが一致するように係合する。これにより、可塑化ユニット10で射出された溶融樹脂を射出ノズル15を介して注入部22より、高せん断領域K(図4に示す、加熱筒21と内部帰還型スクリュー23との間の隙間)に流入させることができる。
 ここで、図4に示すように、注入部22に形成される注入路22aの位置は、内部帰還型スクリュー23の後端寄りに設けられている帰還穴231の吐出口231b(後述する)よりも先端側となっている。
 そして、注入部22の注入路22aの途中には、加熱筒21の内空部に可塑化ユニット10からの溶融樹脂の流入量を調整するための開閉制御が可能な注入バルブ31が設けられている。この注入バルブ31は、予め設定された時間等に応じて注入量を制御することが可能な自動開閉式とされ、本実施の形態では後述する排出バルブ32の開閉動作に連動している。
 また、図3に示すように、加熱筒21には、内部帰還型スクリュー23の軸方向で前部及び後部の位置の樹脂圧を検出するための樹脂圧センサー33(圧力センサー)が埋め込まれている。つまり、前部樹脂圧センサー33Aおよび後部樹脂圧センサー33Bのそれぞれの検知部が加熱筒21内の高せん断領域Kに面して配置されている。前部樹脂圧センサー33Aは内部帰還型スクリュー23の先端部23a付近(流入口231a付近)の樹脂圧(第1圧力)が検出可能な位置に配置され、後部樹脂圧センサー33Bは後述する内部帰還型スクリュー23に形成されている帰還穴231の吐出口231b(図4参照)付近の樹脂圧(第2圧力)が検出可能な位置に配置されている。この両樹脂圧センサー33A、33Bで検出された前部樹脂圧(第1圧力)と後部樹脂圧(第2圧力)とは、高せん断を行ううえで管理されるが、詳細については後述する。
 内部帰還型スクリュー23は、加熱筒21内に略同軸に挿通された状態で回転可能に設けられ、その基端部23bを駆動モータ24の回転軸に連結されたシャフト25に対して一直線上となるように連結することで、駆動モータ24の回転力が伝達される。内部帰還型スクリュー23の基端部23bは、スクリュー羽根が形成されていない高せん断領域Kの範囲外にて、加熱筒21の内面21c(図4参照)に対して液密に摺動可能となっている。
 また、図4に示すように、内部帰還型スクリュー23の外径寸法は、軸方向にわたって一定となっている。つまり、スクリュー羽根どうしの間の溝面23cがスクリュー中心軸に平行となる構成、すなわち加熱筒21の内面21cと内部帰還型スクリュー23の外周面の溝面23cとの間の隙間がスクリュー軸方向にわたって一定の間隔S1となっている。そのため、内部帰還型スクリュー23の外周面(スクリュー羽根どうしの間の溝面23c)にコンプレッション形状(テーパー形状)を形成させた可塑化併用のスクリューのように先端側のスクリュー外周側の隙間が小さくならないので、混練に必要な材料の循環がスムーズとなり、高せん断効率を高めることができる。また、スクリュー形状の設計に幅が広がり高せん断を行うことができるとともに、溶融樹脂の材質、加工能力などの条件に合わせて適宜な形状のスクリューを使用することができる。
 なお、先端部23aと先端保持部28との間にも所定の隙間S2が設けられている。
 さらに、内部帰還型スクリュー23には、上述したように先端部23aから後端側に向けてスクリュー中心軸に沿う帰還穴231が形成されている。具体的に帰還穴231は、一端(流入口231a)がスクリュー先端部23aの断面視略中心に位置し、その流入口231aから後端側に延び、その後端寄りの所定位置でスクリュー23の半径方向に向きを変えてスクリュー23の外周面まで延び、その外周面の位置に他端(吐出口231b)が設けられている。この帰還穴231において、流入口231aが高せん断中に帰還穴231内を流れる溶融樹脂の上流側となり、吐出口231bが下流側となる。つまり、高せん断領域Kに注入された溶融樹脂は、内部帰還型スクリュー23の回転とともに先端側に送られ、その先端部において流入口231aより帰還穴231に流入して後方へ流れて吐出口231bより吐出され、再び内部帰還型スクリュー23の回転とともに先端側へ送られるよう循環する。この循環により溶融樹脂はナノ分散化され、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合される。
 また、高せん断ユニット20には、前部樹脂圧センサー33Aおよび後部樹脂圧センサー33Bで検出した圧力値(前部樹脂圧と後部樹脂圧)に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御する制御装置2(制御手段)が設けられている。この制御装置2は、高せん断の際において、前部樹脂圧と後部樹脂圧との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って前部樹脂圧と後部樹脂圧とが所定の圧力差を形成するように制御する。
 なお、本高せん断装置1は、高せん断ユニット20と可塑化ユニット10とを分離した構成である。また、本高せん断装置1は、内部帰還型スクリュー23に樹脂を加熱させたり可塑化することで溶融させるための能力や形状を備える必要がなくなることから、高せん断の条件に合った最適な制御を行うことが可能となっている。
 図3に示すように、先端保持部28には、加熱筒21の内空部(高せん断領域K)に連通する排出路29aが形成され、その排出路29aの排出側には下方に向かうに従って開口断面が拡径する成形加工部をなすT-ダイ29が形成されている。この先端保持部28もヒーター38(図2参照)によって温度調整可能となっている。そして、排出路29aの途中には、高せん断領域Kから排出されるナノ分散樹脂の排出量を調整するための排出バルブ32が設けられている。この排出バルブ32は、予め設定された高せん断混練時間等に応じて排出量を制御することが可能な自動開閉式とされ、上述した注入バルブ31の開閉動作に連動している。
 つまり、上述した注入バルブ31と排出バルブ32とは、任意のタイミングで注入(可塑化ユニット10による射出)、排出を制御可能な構成となっており、これにより、高せん断混練時間、排出時間、及び射出時間を任意に設定することができる。
 また、図2に示すように、加熱筒21及び先端保持部28には適宜な位置に温度センサー34(34A、34B、34C、34D)が設けられており、高せん断時の加熱筒21及び先端保持部28の温度が管理され、ヒーター38で温度調整できるようになっている。
 さらに、図3に示すように、加熱筒21、本体保持部30、及び振止め支持部27には、それぞれ冷却流路35、36、37が設けられている。加熱筒21の第1冷却流路35は、加熱筒21の温度調整を行う。本体保持部30の第2冷却流路36(本発明の冷却流路に相当する)は、詳しくは後述するが、加熱筒21の内部帰還型スクリュー23の基端部23bに対応する位置を冷却する。また、振止め支持部27の第3冷却流路37は、振止め支持部27でシャフト25を冷却することで、シャフト25を通じて加熱筒21から伝達される熱や駆動モータ24から伝達される熱からベアリング26を保護する。
 次に、高せん断ユニット20に備えられている駆動モータ24やベアリング26への溶融樹脂の流入を防止する構造について、図面に基づいて説明する。
 図3に示すように、高せん断ユニット20の加熱筒21には、内部帰還型スクリュー23の基端部23b側に対応する所定位置において、加熱筒21の周方向で略下半分の範囲にスリット211(切欠部)が設けられている。これにより、高せん断中にスクリュー後端の基端部23bから漏れ出た樹脂をスリット211から自然に下方へ排出させることが可能となっている。
 また、加熱筒21の基端部21bの内面には、前方から後方に向かうに従って漸次内径が大きくなる加熱筒テーパー面212が形成されている。これにより、上述した高せん断領域Kから漏出し、上述したスリット211から排出されずにさらに後端側から漏出した樹脂を後方へ誘導し、その後端部から自然に下方へ排出させることができる。
 上記スリット211と加熱筒テーパー面212を設けることで、例えば内部帰還型スクリュー23の基端部23b側(後方側)に設けられる駆動モータ24や振止め支持部27のベアリング26に樹脂が流入することによる不具合をなくすことができ、高せん断ユニット20において安定した連続運転を行なうことができる。
 さらにまた、シャフト25の先端側(内部帰還型スクリュー23側)の外周面には、逆ねじ形状のねじ溝部251が形成されている。これにより、シャフト25の回転とともに、上述したスリット211から排出しきれなかった溶融樹脂がねじ溝部251に案内されて後方へ送られ、より効率よく漏出した樹脂を排出することができる。
 さらに、シャフト25の振止め支持部27の内部帰還型スクリュー23側の位置には、前方から後方に向かうに従って大径となるシャフトテーパー面252が形成されている。これにより、高せん断中に内部帰還型スクリュー23の基端部23bから漏れ出した樹脂を冷却固化させつつ、シャフト25に沿って後方に移動させることができる。そして、後方に移動する樹脂は振止め支持部27より前方側の位置に形成されているシャフトテーパー面252に達して、さらにテーパー面が拡径する方向に移動することで自動的に割れることから、このシャフトテーパー面252で樹脂を自然落下させることができる。つまり、振止め支持部27の前方側の位置で漏れ出した樹脂が除去されるので、振止め支持部27に設けられるベアリング26に樹脂が流入するといった不具合を防ぐことができる。
 また、本体支持部30には上述したように第2冷却流路36が設けられており、その周囲に位置する加熱筒21を冷却する。そのため、高せん断中に内部帰還型スクリュー23の後端から漏れ出した樹脂が冷却固化され、その樹脂が上述したシャフト25の周面に固着し易い状態となる。その結果、樹脂を、シャフト25の途中で落下して流出させることなく、シャフト25に沿って後方へ効率よく移動させることができ、上記シャフトテーパー面252において割られることで確実に自然落下させることができる。
 次に、上述した高せん断装置1を用いて、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合する方法について図5の製造フロー等を用いて説明する。
 図1に示す高せん断装置1において、高分子ブレンド系の固体状樹脂には上述したような2種以上を混合した樹脂を使用することができる。先ず、高せん断ユニット20に対して射出可能な状態に設けられている可塑化ユニット10を用いて、固体状樹脂を可塑化させる場合には、まず、回転機構13Aの第1駆動モータ132を駆動させることで可塑化スクリュー12を適宜な回転速度で回転させる。また、加熱筒11を、その外周に巻き付けられているヒーター16によって適宜な温度に加熱する。次いで、固体状樹脂をホッパー14から可塑化領域Rとなる加熱筒11内に供給する(図5に示すステップS1)。そして、可塑化スクリュー12を回転させつつ、固体状樹脂をヒーター16によって所定時間加熱して可塑化する(ステップ2)。これにより、可塑化領域R内の樹脂が、可塑化溶融して混練されて溶融樹脂となる。つまり、可塑化ユニット10の可塑化領域Rでの樹脂の可塑化が完了となる(ステップS3)。
 次に、可塑化ユニット10内の溶融樹脂を高せん断ユニット20の加熱筒21内に注入する(ステップS4~S7)。
 具体的には、溶融樹脂が所望の性状で得られたタイミング(ステップS3が完了したタイミング)で、高せん断ユニット20の注入バルブ31と排出バルブ32を開いて、それぞれの流路(注入路22a、排出路29a)を開放する(ステップS4)。
 この状態において、第2駆動モータ137を駆動して、ナット136を介してボールねじ135を固定部131と一体に前方に移動させる。すると、固定部131上のスクリュー回転軸133の前方への移動に伴い、可塑化スクリュー12が加熱筒11内でその軸方向に沿って前方に移動する。これにより、可塑化スクリュー12が、加熱筒11内で可塑化した溶融樹脂を、射出ノズル15より高せん断ユニット20の加熱筒21内に射出する。
高せん断ユニット20では、加熱筒21内の内部帰還型スクリュー23を低速(例えば、0~300rpm)で回転させる(ステップS5)。このとき、注入前の高せん断ユニット20の加熱筒21内(高せん断領域K内)は空の状態であるため、溶融樹脂を注入することで、溶融樹脂によって内部の空気が排出路29aから排出し、高せん断ユニット20の加熱筒21内が徐々に溶融樹脂で満たされる(ステップS6)。
 そして、溶融樹脂の注入が完了した場合(ステップS7:YES)にはステップS8に進み、注入バルブ31と排出バルブ32を閉じてそれぞれの流路22a、29aを閉塞する。一方、注入が完了状態でない場合(ステップS7:NO)には、引き続き溶融樹脂の注入が継続される。なお、注入完了の判断としては、内部帰還型スクリュー23の前後部に設けられている樹脂圧センサー33A、33Bによって検出される圧力値で判断することができる。すなわち、内部帰還型スクリュー23の帰還穴吐出口近傍に、内部帰還型スクリュー23の前部とほぼ等しい所定の圧力が生じた場合、注入完了と判断する。
 次に、ステップS8において、注入バルブ31と排出バルブ32を閉じた段階で、高せん断ユニット20では高せん断が行われる(ステップS9)。一方、可塑化ユニット10では、上記ステップ1~3に基づき新たな樹脂の可塑化が行なわれる。
 ステップS9では、加熱筒21内の内部帰還型スクリュー23を高速(例えば、100~3000rpm)で回転させ、高せん断領域K中の溶融樹脂に対して所定の設定時間だけ高せん断を行うことでナノ分散化させることにより、ナノ分散樹脂が形成される。このとき、高せん断領域K内に注入された溶融樹脂は、図4に示すように、内部帰還型スクリュー23の外周側ではスクリュー23の高速回転とともに先端側へ送られ、内部帰還型スクリュー23の先端部23aで帰還穴231の流入口231aより後方へ流れ、遠心力で吐出口231bより内部帰還型スクリュー23の外周側に流出して溝面23c上に帰還し、再び先端側に送られるといった循環を所定時間繰り返す。これにより溶融樹脂に高せん断応力が付与される。
 このとき、高せん断ユニット20において最適な条件の樹脂温度、樹脂圧、混練時間、スクリュー回転数を、投入される樹脂材料に応じて制御しながら、内部帰還型スクリュー23を所定の回転数で回転させることで、その溶融樹脂が帰還穴流入口231aから吐出口231bに流れて循環することで混練されて高せん断応力が与えられる。なお、具体的な高せん断方法については後述する。
 次に、高せん断加工時間が予め設定された時間に到達したとき(ステップS10:YES)には、内部帰還型スクリュー23の回転速度を高速回転から中速回転(例えば、200~1000rpm)に切り替える(ステップS11)。中速回転とは、上述した低速回転より大きく高速回転より小さい回転数領域である。次いで、ステップS12で注入バルブ31と排出バルブ32とを開けて、それぞれの流路(注入路22a、排出路29a)を開放する。これにより、高せん断により加工された高せん断領域K内のナノ分散樹脂が内部帰還型スクリュー23の回転とともに先端側の排出路29aから排出され、T-ダイ29から排出された溶融樹脂を高分子ブレンド押出し物として得ることができる。
 次に、排出時間が予め設定された時間に到達したとき(ステップS14:YES)、つまり高せん断ユニット20の加熱筒21内で製造したナノ分散樹脂が全て排出された状態のときには、再びステップS5に進む。この場合、上述するステップS9における内部帰還型スクリュー23の高速回転と並行して、可塑化ユニット10では新たな固体状樹脂が投入され、樹脂の可塑化が完了している(ステップS1~S3)。そして、高せん断ユニット20の内部帰還型スクリュー23を中速回転から低速回転に戻して回転させつつ(ステップS5)、可塑化ユニット10より、ステップS3で得られた溶融樹脂を射出ノズル15を介して加熱筒21内に注入する(ステップS6)。以降、同様のステップを繰り返すことにより順次、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することができる。
 次に、本高せん断装置1を用いた高せん断方法について、図面に基づいてさらに具体的に説明する。
 図6は、2度の高せん断を示したタイミングチャートである。図6において、横軸が高せん断時間を示している。また、縦軸は、図6の(a)で樹脂圧(MPa)を示し、図6の(b)でスクリュー回転数(rpm)を示し、図6の(c)で樹脂注入バルブと樹脂排出バルブの開閉状態を示している。
 図6の(a)~(c)に示すように、高せん断モードの際には、制御手段2により、注入バルブ31及び排出バルブ32を閉じ、内部帰還型スクリュー23の回転数を例えば300~3000rpm(図6の(b)では2500rpm)の高速回転モードで回転させる。すると、内部帰還型スクリュー23の外周側ではその回転とともに溶融樹脂が先端側へ送られ、内部帰還型スクリュー23の先端部23aで帰還穴231の流入口231aより後方へ流れ、遠心力で吐出口231bより内部帰還型スクリュー23の外周側に流出して帰還し、再び先端側に送られるといった循環が生じる。これにより、大きなせん断速度(例えば、最高で4.4×10-1)が発生することになり、溶融樹脂が混練され、ナノ分散化される。
 つまり、高せん断方法としては、高せん断の開始により内部帰還型スクリュー23が高速回転すると、前部樹脂圧センサー33Aおよび後部樹脂圧センサー33Bで検出した圧力値(前部樹脂圧P1と後部樹脂圧P2)に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つが制御装置2により制御される。
 具体的には、制御装置2において、前部樹脂圧P1と後部樹脂圧P2との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って前部樹脂圧P1と後部樹脂圧P2とが所定の圧力差ΔP(前部樹脂圧P1-後部樹脂圧P2)を形成するように制御する。すなわち前部樹脂圧P1の波形と後部樹脂圧P2の波形とが略平行となるように制御することが好ましく、さらにその圧力差ΔPが3Mpa以上であることがより好ましい。
 このように高せん断領域K内での前部樹脂圧P1と後部樹脂圧P2とを管理することで、内部帰還型スクリュー23の回転により混練される樹脂に一定の流れをもつ高せん断応力を与えることができる。したがって、高せん断される樹脂全体にわたって均一にナノ分散化させることができる。
すなわち、固体状樹脂を高せん断により、従来行われていた低、中速回転では得られない程度に微小とし、従来にない特性を有する良好な材料を製造することができる。例えば、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することで、透明度の高い良好な材料を製造することができる。
 上述のように本実施の形態による高せん断装置および高せん断方法では、高せん断ユニット20において可塑化ユニット10より供給した最適な温度の樹脂に対して、高せん断時の樹脂圧力に基づいて、材料の注入量、材料の温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御することで、樹脂に対して高い精度で且つ効率よくナノ分散化できる高せん断を行うことができる。そのため、安定して且つ良好な状態で、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料を始めとする高分子樹脂材料における内部構造をナノレベルで連続して分散・混合することができる。
 このように、本実施の形態による高せん断装置および高せん断方法を裏付けるため、実施例について以下説明する。
 実施例では、図1に示した高せん断装置1を使用して、ポリカーボネイト(PC)とアクリル(PMMA)とを8:2の比率で混合した高分子ブレンド系の樹脂を高せん断ユニットによりナノ分散させて高分子ブレンド押出し物を製造した。
 先ず、可塑化ユニットにおいて、加熱筒11の温度を220℃とし、可塑化スクリュー12を300rpm以下の低速で回転させることにより、上記樹脂を可塑化し溶融して、均一に混練された溶融樹脂を製造した。
この溶融樹脂を高せん断ユニット20の加熱筒21内に注入し、スクリュー径28mm、スクリューピッチ11mm、フライト(スクリュー山)幅2mm、帰還穴の直径2.5mm、スクリュー有効長(スクリュー先端から帰還穴の吐出口の中心までの距離)50mmの内部帰還型スクリュー23を使用して、スクリュー回転数2500rpm、高せん断時間30秒、加熱筒21の冷却温度220℃、加熱筒21のヒーター38の温度230℃の条件で高せん断を行い、ナノ分散樹脂を得た。なお、高せん断ユニット20の加熱筒21への樹脂の注入量は、加熱筒21の後方からの樹脂漏れが無くなった時点で、内部帰還型スクリュー23の帰還穴231における吐出口231bの近傍に圧力P2が生じることを確認したときの量とした。
 そして、このときの高せん断ユニット20における加熱筒21内の前部樹脂圧P1と後部樹脂圧P2とを樹脂圧センサーで検出し、樹脂圧の波形を確認するとともに、製造した高分子ブレンド押出し物の性状(透明度)の判定を行った。また、比較例として、後述する図6に(a)に示すような樹脂圧の特性が得られない状態で高分子ブレンド押出し物を製造した。ここで、図7Aは本実施例によって製造した高分子ブレンド押出し物によって薄板状に成形した成形物の写真であり、図7Bは図6に(a)に示す樹脂圧の特性が得られない状態で製造した高分子ブレンド押出し物によって薄板状に成形した成形物の写真である。
 図6に(a)に示すように、本実施例による高せん断時における樹脂圧P1、P2は、内部帰還型スクリュー23によって強制的に前方に送られるため前部樹脂圧P1の方が後部樹脂圧P2よりも大きくなっている。また、前部樹脂圧P1および後部樹脂圧P2はそれぞれ高せん断開始直後にピーク値(前部樹脂圧P1で22MPa)に達し、その後は高せん断応力が付加されることにより滑らかな曲線を描くような波形にて減少する特性が得られた。さらに、前部樹脂圧P1と後部樹脂圧P2との圧力差ΔP(前部樹脂圧P1-後部樹脂圧P2)はピーク値以降でほぼ一定(9MPa)となり、3Mpa以上であることが確認できた。
 その結果、図7Aに示すように、全体にわたって透明度の高い良好な高分子ブレンド押出し物が製造することができた。本実施例では、高分子ブレンド押出し物による成形物の背面の文字(AIST、NIIGATA)が明瞭であることが認識でき、透明度の高さが確認できる。一方、図7Bに示す比較例による成形物では、白濁しており、背面の文字が認識できない状態であり、透明性は得られなかった。
 本来、PCとPMMAは共に透明樹脂であるが、上述する樹脂圧P1、P2の特性が得られないブレンド物では不透明になり、樹脂圧P1、P2の特性が得られたブレンド物については透明な試料が得られている。透明であるということは、可視波長領域である400~700nmの波長より、はるかに小さいサイズであることを意味する。即ち、透明ブレンド試料では、ナノレベルで混合している証拠となる。
 以上、本発明による高せん断装置および高せん断方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、本実施の形態では可塑化スクリュー11を備えた可塑化ユニット10(可塑化部)を採用しているが、これに限定されることはなく、高せん断部に供給する材料がゴム等の場合には可塑化部に代えて、可塑化スクリューを備えない加熱のみを対象としたプレ加熱部であってもかまわない。要は、プレ加熱部において材料が加熱により溶融状態にできればよい。そして、このプレ加熱部で加熱される材料としては、本実施の形態では固体状樹脂を採用しているが、その性状は粉体、流体、粒子からなる材料であってもよく、使用対象となる材料系としては、非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料が挙げられる。
 また、本実施の形態では可塑化ユニット10は高せん断ユニット20に対して着脱可能であり、この可塑化ユニット10を使用して溶融樹脂を射出することで、その溶融樹脂を高せん断ユニット20の加熱筒21内(高せん断領域K)に注入しているが、このような形態に限定されることはない。すなわち、可塑化ユニット10を高せん断ユニット20と分離させた状態で、溶融樹脂のみを高せん断ユニット20の高せん断領域Kに供給する別の手段を用いる形態、或いは本実施の形態の可塑化ユニット10とは構成の異なる別の可塑化部であってもかまわない。要は、固体状樹脂を可塑化して溶融樹脂を得るための可塑化部が高せん断部と分離されていて、適宜な性状の溶融樹脂のみを高せん断部に注入できればよい。
 また、高せん断ユニット20の加熱筒21、内部帰還型スクリュー23の形状、寸法などの構成は本実施の形態に限定されることはなく、任意に設定することができる。
 さらに、高せん断ユニット20の注入部22、樹脂圧センサー33、温度センサー34、冷却流路35、36、37、ヒーター38などの位置、数量などについても任意に設定することができる。
 さらにまた、本実施の形態では、加熱筒21に形成したスリット211、及び加熱筒テーパー面212、シャフト25に形成したねじ溝部251、及びシャフトテーパー面252などは、それぞれ高せん断領域Kから漏出した樹脂に対応する構造であり、省略することも可能である。
 以上説明した通り、本発明の高せん断装置および高せん断方法によれば、高せん断の効率を向上させるとともに、材料のナノ分散化の精度を高めることで、安定して且つ良好な状態で非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合することができる。
 1 高せん断装置、2 制御装置(制御手段)、10 可塑化ユニット(可塑化部、プレ加熱部)、11 可塑化ユニットの加熱筒、12 可塑化スクリュー、13 駆動部、14 ホッパー、15 射出ノズル、16 可塑化ユニットのヒーター、20 高せん断ユニット(高せん断部)、21 高せん断ユニットの加熱筒(材料加熱筒)、211 スリット(切欠部)、212 加熱筒テーパー面、22 注入部、22a 注入路、23 内部帰還型スクリュー、23a 先端部
23b 基端部、231 帰還穴、231a 帰還穴流入口、231b 帰還穴吐出口、24 内部帰還型ユニットの駆動モータ、25 シャフト、251 ねじ溝部、26 ベアリング、27 振止め支持部、28 先端保持部、29 T-ダイ、29a 排出路、31 注入バルブ、32 排出バルブ、33A 前部樹脂圧センサー(圧力センサー)、33B 後部樹脂圧センサー(圧力センサー)、36 第2冷却流路(冷却流路)、K 高せん断領域、R 可塑化領域、P1 前部樹脂圧(第1圧力)、P2 後部樹脂圧(第2圧力)

Claims (13)

  1.  高せん断応力を付与しつつ混練することで非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合するための高せん断装置であって、
     前記材料を加熱するプレ加熱部と、
     該プレ加熱部で加熱された材料を注入し、この注入した材料に高せん断応力を与える内部帰還型スクリューと材料加熱筒から成る高せん断部と、
     前記加熱筒に設けられ、内部帰還型スクリューの帰還穴流入口近傍の第1圧力および吐出口近傍の第2圧力を検出する圧力センサーと、
     前記圧力センサーで検出した圧力値に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御する制御手段と、
     を備え、
     高せん断の際に前記内部帰還型スクリューの帰還穴吐出口近傍に圧力を生じさせ、
     前記制御手段において、前記第1圧力と前記第2圧力との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って前記第1圧力と第2圧力とが所定の圧力差を形成するように制御する高せん断装置。
  2.  前記プレ加熱部は、固体状の前記材料を可塑化して溶融させる可塑化部である請求項1に記載の高せん断装置。
  3.  前記可塑化部は、
     固体状の前記材料を溶融するための可塑化スクリューと、
     該可塑化スクリューによって可塑化された材料を前記高せん断部へ射出するための射出部と、
     を備えている請求項2に記載の高せん断装置。
  4.  前記内部帰還型スクリューの回転数は、100~3000rpmである請求項1乃至3のいずれかに記載の高せん断装置。
  5.  前記高せん断部にはプレ加熱部から加熱された材料を注入する材料注入部が設けられており、
     該材料注入部には、開閉制御が可能な注入バルブが設けられている請求項1乃至4のいずれかに記載の高せん断装置。
  6.  前記高せん断部には、高せん断された材料を排出するための材料排出部が設けられており、
     該材料排出部には、開閉制御が可能な排出バルブが設けられている請求項1乃至5のいずれかに記載の高せん断装置。
  7.  前記内部帰還型スクリューの外径寸法は、その軸方向にわたって一定である請求項1乃至6のいずれかに記載の高せん断装置。
  8.  前記材料加熱筒には、前記内部帰還型スクリューの基端側に対応する所定位置に切欠部が形成されている請求項1乃至7のいずれかに記載の高せん断装置。
  9.  前記材料加熱筒の基端側の内面には、先端側から基端側に向かうに従って漸次内径が大きくなる加熱筒テーパー面が形成されている請求項1乃至8のいずれかに記載の高せん断装置。
  10.  前記材料加熱筒の基端側の所定位置には、冷却流路が設けられている請求項1乃至9のいずれかに記載の高せん断装置。
  11.  前記せん断部には、前記内部帰還型スクリューと該スクリューを駆動するための駆動モータとのそれぞれの回転軸を同軸上に連結するシャフトが設けられており、
     該シャフトの前記内部帰還型スクリュー寄りの先端外周面には逆ねじ形状のねじ溝部が形成されている請求項1乃至10のいずれかに記載の高せん断装置。
  12.  前記シャフトは、その軸方向中間部において振止め支持部によって回転自在に支持されており、その振止め支持部より前記内部帰還型スクリュー側の所定位置に該スクリュー側から前記駆動モータ側に向かうに従って漸次内径が大きくなるシャフトテーパー面が形成された構成である請求項11に記載の高せん断装置。
  13.  高せん断応力を付与しつつ混練することで非相溶性ポリマーブレンド系、ポリマー/フィラー系、さらにはポリマーブレンド/フィラー系の材料における内部構造をナノレベルで分散・混合するための高せん断方法であって、
     前記材料をプレ加熱する第1工程と、
     前記第1工程で加熱された前記材料を高せん断部に注入し、この材料に対して内部帰還型スクリューによって高せん断応力を与える第2工程と、
     前記内部帰還型スクリューの帰還穴流入口近傍の第1圧力および吐出口近傍の第2圧力を検出する第3工程と、
     前記第3工程で検出した圧力値に応じて、材料注入量、材料温度、混練時間、およびスクリュー回転数のうち少なくとも1つを制御する第4工程と、
     を備え、
     高せん断の際に前記内部帰還型スクリューの帰還穴吐出口近傍に圧力を生じさせ、
     前記第4工程において、前記第1圧力と前記第2圧力との時間経過に伴う波形が互いに相似形を示すとともに、所定のピーク値を形成した後に定常状態となる変化を示し、且つ時間経過に伴って前記第1圧力と第2圧力とが所定の圧力差を形成するように制御される高せん断方法。
PCT/JP2010/000614 2009-02-05 2010-02-02 高せん断装置および高せん断方法 WO2010089997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117020339A KR101310323B1 (ko) 2009-02-05 2010-02-02 전단 발생장치 및 전단 발생방법
JP2010549393A JP5614686B2 (ja) 2009-02-05 2010-02-02 高せん断装置および高せん断方法
US13/147,925 US9199393B2 (en) 2009-02-05 2010-02-02 High-shear melt-kneader and method of high shearing
CN201080006686.5A CN102307712B (zh) 2009-02-05 2010-02-02 高剪切装置及高剪切方法
EP10738338.2A EP2394804B1 (en) 2009-02-05 2010-02-02 High-shear device and method of high shearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-025088 2009-02-05
JP2009025088 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010089997A1 true WO2010089997A1 (ja) 2010-08-12

Family

ID=42541906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000614 WO2010089997A1 (ja) 2009-02-05 2010-02-02 高せん断装置および高せん断方法

Country Status (6)

Country Link
US (1) US9199393B2 (ja)
EP (1) EP2394804B1 (ja)
JP (1) JP5614686B2 (ja)
KR (1) KR101310323B1 (ja)
CN (1) CN102307712B (ja)
WO (1) WO2010089997A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071428A (ja) * 2011-09-29 2013-04-22 Niigata Machine Techno Co Ltd 高せん断加工装置
JP2013159042A (ja) * 2012-02-06 2013-08-19 Olympus Corp 溶融混練装置およびブレンド材料の製造方法
JP2013188917A (ja) * 2012-03-13 2013-09-26 Niigata Machine Techno Co Ltd 高せん断加工装置の冷却機構
WO2018142936A1 (ja) * 2017-01-31 2018-08-09 株式会社神戸製鋼所 スクリュ式押出機
JP2019163379A (ja) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 変性ビニルアルコール系樹脂
JP2019163378A (ja) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 変性エチレン−ビニルアルコール系共重合体およびその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446310B2 (ja) * 2014-04-10 2018-12-26 東芝機械株式会社 押出機用スクリュ、押出機および押出方法
JP6527742B2 (ja) * 2014-04-24 2019-06-05 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP6550253B2 (ja) * 2014-04-24 2019-07-24 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP6639800B2 (ja) * 2014-05-08 2020-02-05 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP6639798B2 (ja) * 2014-05-08 2020-02-05 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP6639799B2 (ja) * 2014-05-08 2020-02-05 東芝機械株式会社 混練装置および混練方法
JP6446234B2 (ja) * 2014-10-27 2018-12-26 東芝機械株式会社 押出機用スクリュ、スクリュエレメント、押出機および押出方法
JP6446235B2 (ja) * 2014-10-27 2018-12-26 東芝機械株式会社 押出機および混練装置
JP6464025B2 (ja) * 2015-04-28 2019-02-06 東芝機械株式会社 押出機用スクリュ並びに押出機および押出方法
JP6746278B2 (ja) * 2015-04-28 2020-08-26 芝浦機械株式会社 押出機用スクリュ並びに押出機および押出方法
CN106596858B (zh) * 2016-12-12 2019-01-25 西南石油大学 一种模拟聚合物溶解程度与注入性实验装置
US11583787B2 (en) 2017-07-20 2023-02-21 Clariant International Ltd Demulsifiers and a method of using demulsifiers for breaking emulsions of water and crude oil
CN110202772B (zh) * 2019-07-19 2024-04-26 四川大学 液压振动解缠结装置
CN111037774B (zh) * 2019-12-06 2021-10-29 联塑科技发展(武汉)有限公司 一种塑料粉料预塑化的混合控制方法
JP2023058863A (ja) * 2021-10-14 2023-04-26 セイコーエプソン株式会社 射出成形装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313608A (ja) 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology 微量型高剪断成形加工機とそれを用いたナノ分散高分子ブレンド押出し物およびその製造方法
JP2006241195A (ja) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology 強誘電体フィルム及びその製造方法
JP2009013323A (ja) * 2007-07-06 2009-01-22 National Institute Of Advanced Industrial & Technology 充填剤並びに非相溶性の樹脂若しくはエラストマーにより構成される構造体およびその製造方法若しくはその用途
JP2009025088A (ja) 2007-07-18 2009-02-05 Uchiyama Mfg Corp 磁気エンコーダ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615199A (en) * 1945-05-15 1952-10-28 Welding Engineers Material treating apparatus
DE1454897A1 (de) * 1964-10-08 1969-03-27 Vickers Zimmer Ag Einrichtung zum Aufschmelzen von Kunststoffgranulaten
US4310251A (en) * 1970-11-20 1982-01-12 Intercole Automation, Inc. Continuous mixer internal pressure control
US4110843A (en) * 1973-02-23 1978-08-29 Welding Engineers, Inc. Pressure restricting means for a liquid outlet of an extruder
US3868093A (en) * 1973-07-31 1975-02-25 Beloit Corp Mixing screw and use thereof
US3905588A (en) * 1974-02-08 1975-09-16 Cincinnati Milacron Inc Method and apparatus for plasticating polymers
US4183673A (en) * 1976-02-23 1980-01-15 The Gillette Company Marbleization of plastic materials
US4289408A (en) * 1976-02-23 1981-09-15 The Gillette Company Marbleization of plastic materials
DE2631326A1 (de) * 1976-07-12 1978-01-26 Kraftwerk Union Ag Verfahren zum einbinden fluessigkeitshaltiger radioaktiver abfallstoffe und knetvorrichtung dafuer
US4352567A (en) * 1981-06-10 1982-10-05 Raul Guibert Automatic dough-processing apparatus
DE3206325C2 (de) * 1982-02-22 1985-10-10 AUTOMATIK Apparate-Maschinenbau GmbH, 8754 Großostheim Mehrwellige, kontinuierlich arbeitende Misch- und Knetmaschine für plastifizierbare Massen
US4744669A (en) * 1986-10-23 1988-05-17 Baker Perkins, Inc. Mixing and extruding apparatus and methods
DE3700724C1 (de) * 1987-01-13 1988-04-21 Doellken & Co Gmbh W Strangpresswerkzeug zum Herstellen von marmorierten Profilen
US5143699A (en) * 1988-07-05 1992-09-01 Werner & Pfleiderer Corp. Mixing apparatus
GB8908127D0 (en) * 1989-04-11 1989-05-24 Shaw Francis & Co Ltd Mixer and a method of a mixer control
IT1246782B (it) * 1991-04-15 1994-11-26 Pomini Farrel Spa Macchina per l'estrusione di polimeri termoplastici e simili comprendente un mescolatore interno.
DE4115246C1 (ja) * 1991-05-10 1992-05-14 Paul Troester Maschinenfabrik, 3000 Hannover, De
US5261740A (en) * 1991-06-06 1993-11-16 Farrel Corporation One-piece cylindrical extruder barrel assembled with eccentric converging hopper for receiving molten plastic materials
FR2698820A1 (fr) * 1992-12-07 1994-06-10 Sedepro Procédé et appareil de mélangeage en continu de caoutchouc.
US5718570A (en) * 1995-03-20 1998-02-17 Micropump Corporation Rotary control valve for a piston pump
JP2999689B2 (ja) * 1995-06-19 2000-01-17 株式会社日本製鋼所 混練押出機
US5909958A (en) * 1997-04-25 1999-06-08 Rauwendaal Extrusion Engineering, Inc. Screw extruder with independently adjustable groove depth
CN2455458Y (zh) * 2000-11-03 2001-10-24 香港生产力促进局 采用两个压力传感器的全电动注模装置
DE60204101T2 (de) * 2001-11-15 2006-05-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Knetvorrichtung und Verfahren zum Kneten von Kautschuk oder Kautschukzusammensetzungen
US7331702B2 (en) * 2003-10-31 2008-02-19 Reika Kogyo Kabushiki Kaisha Agitation mixer
US7316335B2 (en) * 2004-01-08 2008-01-08 Hewlett-Packard Development Company, L.P. Material dispenser having a positive shutoff mechanism
JP2007520376A (ja) * 2004-01-16 2007-07-26 イバー,ジャン−ピエール 融液に感熱性添加剤を分散させる加工
US7350960B2 (en) * 2004-07-07 2008-04-01 Tech. Process & Engineering, Inc. Dual flight rotors for continuous mixer assembly
JP2006187756A (ja) * 2004-12-07 2006-07-20 Reika Kogyo Kk 撹拌混合装置
US8349953B2 (en) * 2006-08-17 2013-01-08 National Institute Of Advanced Industrial Science And Technology Resin melting and shearing method, resin molding processing method and resin products
US8048948B2 (en) * 2007-06-22 2011-11-01 National Institute Of Advanced Industrial Science And Technology Filler-dispersed melt-kneaded products, molded resin products thereof, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313608A (ja) 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology 微量型高剪断成形加工機とそれを用いたナノ分散高分子ブレンド押出し物およびその製造方法
JP2006241195A (ja) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology 強誘電体フィルム及びその製造方法
JP2009013323A (ja) * 2007-07-06 2009-01-22 National Institute Of Advanced Industrial & Technology 充填剤並びに非相溶性の樹脂若しくはエラストマーにより構成される構造体およびその製造方法若しくはその用途
JP2009025088A (ja) 2007-07-18 2009-02-05 Uchiyama Mfg Corp 磁気エンコーダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394804A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071428A (ja) * 2011-09-29 2013-04-22 Niigata Machine Techno Co Ltd 高せん断加工装置
JP2013159042A (ja) * 2012-02-06 2013-08-19 Olympus Corp 溶融混練装置およびブレンド材料の製造方法
JP2013188917A (ja) * 2012-03-13 2013-09-26 Niigata Machine Techno Co Ltd 高せん断加工装置の冷却機構
WO2018142936A1 (ja) * 2017-01-31 2018-08-09 株式会社神戸製鋼所 スクリュ式押出機
JP2018122478A (ja) * 2017-01-31 2018-08-09 株式会社神戸製鋼所 スクリュ式押出機
KR20190096426A (ko) * 2017-01-31 2019-08-19 가부시키가이샤 고베 세이코쇼 스크루식 압출기
KR102261450B1 (ko) 2017-01-31 2021-06-07 가부시키가이샤 고베 세이코쇼 스크루식 압출기
JP2019163379A (ja) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 変性ビニルアルコール系樹脂
JP2019163378A (ja) * 2018-03-19 2019-09-26 三菱ケミカル株式会社 変性エチレン−ビニルアルコール系共重合体およびその製造方法
JP7020216B2 (ja) 2018-03-19 2022-02-16 三菱ケミカル株式会社 変性ビニルアルコール系樹脂
JP7102817B2 (ja) 2018-03-19 2022-07-20 三菱ケミカル株式会社 変性エチレン-ビニルアルコール系共重合体およびその製造方法

Also Published As

Publication number Publication date
CN102307712A (zh) 2012-01-04
US20110292756A1 (en) 2011-12-01
US9199393B2 (en) 2015-12-01
EP2394804A4 (en) 2013-04-24
KR101310323B1 (ko) 2013-09-23
EP2394804B1 (en) 2014-04-30
JP5614686B2 (ja) 2014-10-29
CN102307712B (zh) 2014-01-29
KR20110134875A (ko) 2011-12-15
JPWO2010089997A1 (ja) 2012-08-09
EP2394804A1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5614686B2 (ja) 高せん断装置および高せん断方法
JP5458376B2 (ja) 高せん断装置を用いた高せん断方法
JP5729587B2 (ja) 高せん断装置及び高せん断方法
JP5541563B2 (ja) 高せん断装置
JP5822119B2 (ja) 高せん断加工装置
EP2050554B1 (en) Integral equipment comprising kneading and injection sections
CN113954322B (zh) 射出成形机及射出成形方法
JP2007230087A (ja) 射出発泡成形装置および射出発泡成形方法
PL182591B1 (pl) Wyrób z tworzywa sztucznego, sposób wykonywania wyrobu z tworzywa sztucznego i urządzenie do wykonywania wyrobu z tworzywa sztucznego
JP5773302B2 (ja) 高せん断装置および高せん断方法
JP2013208866A (ja) 可塑化装置、射出装置、射出成形装置、押出機、及び成形品の製造方法
JP7370266B2 (ja) 射出成形方法および射出成形装置
JP2013188671A (ja) 高せん断加工装置
KR101624745B1 (ko) 고전단 장치 및 고전단 방법
JP5911011B2 (ja) 高せん断加工装置及びその分離方法
JP2010280128A (ja) 混練装置および成形機
JP5822120B2 (ja) 高せん断加工機の回転速度制御装置と回転速度制御方法
JP5408489B2 (ja) 可塑化部の射出方法および可塑化装置
JP2014087986A (ja) 繊維材料を含む樹脂材料の射出成形装置および射出成形方法
JP3741953B2 (ja) 樹脂成形機用スクリュ
JP2020059204A (ja) 射出成形機
WO2021157264A1 (ja) 射出成形方法および射出成形装置
JP7257235B2 (ja) 射出成形方法と、その方法を使用する射出成形機、及び、それらに用いられる射出成形用スクリュー
WO2019208663A1 (ja) 射出成形方法と、その方法を使用する射出成形機、及び、それらに用いられる射出成形用スクリュー
KR101055141B1 (ko) 사출장치의 스크류

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006686.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13147925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010738338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020339

Country of ref document: KR

Kind code of ref document: A