[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010084960A1 - 芳香族化合物及びその製造方法 - Google Patents

芳香族化合物及びその製造方法 Download PDF

Info

Publication number
WO2010084960A1
WO2010084960A1 PCT/JP2010/050822 JP2010050822W WO2010084960A1 WO 2010084960 A1 WO2010084960 A1 WO 2010084960A1 JP 2010050822 W JP2010050822 W JP 2010050822W WO 2010084960 A1 WO2010084960 A1 WO 2010084960A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
ring
chr
optionally substituted
Prior art date
Application number
PCT/JP2010/050822
Other languages
English (en)
French (fr)
Inventor
史敏 垣内
宏樹 寺井
Original Assignee
住友化学株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 学校法人慶應義塾 filed Critical 住友化学株式会社
Priority to EP10733567A priority Critical patent/EP2383273A4/en
Priority to US13/145,487 priority patent/US20120012822A1/en
Priority to CN2010800051075A priority patent/CN102292342A/zh
Publication of WO2010084960A1 publication Critical patent/WO2010084960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • H10K10/482Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors the IGFET comprising multiple separately-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to an aromatic compound and a method for producing the same, a method for producing a polyacene compound, an organic thin film containing an aromatic compound or a polyacene compound, and an organic thin film transistor including the same.
  • Polyacene exhibits high carrier mobility as a material for organic transistor elements.
  • polyacene since polyacene has low solubility in a solvent, it is difficult to form a film by a coating method such as a spin coating method or an ink jet method when it is used as a material for an organic transistor element, and generally requires a vacuum facility.
  • the film forming method is used. Since film formation by a coating method can be expected to have a larger area and lower costs than vapor deposition, development of polyacene having a high solubility in a solvent and introducing an alkyl group is desired.
  • di-tert-butylpentacene is known as a polyacene having an alkyl group (Patent Document 1).
  • Di-tert-butylpentacene is obtained by obtaining a pentacenequinone compound (aromatic quinone compound) by a condensation reaction of 4-tert-butylphthalaldehyde and 1,4-cyclohexanedione, and then converting the pentacenequinone compound to aluminum-tri- It is synthesized by reduction in the presence of sec-butoxide.
  • the polyacene obtained by the method for producing polyacene via the aromatic quinone compound described above has an alkyl group as a substituent only on the terminal benzene ring. This is because the conventional synthesis method cannot introduce a substituent such as an alkyl group into the peri position (substitution position of the benzene ring adjacent to the quinone skeleton) with respect to the carbonyl group in the aromatic quinone compound. This is because only an aromatic quinone compound having an alkyl group introduced therein must be passed through.
  • the conventional polyacene in which an alkyl group is introduced into the terminal benzene ring as described above has a certain degree of solubility in a solvent. In order to cope with the homogenization of the film, further improvement in solubility is required for polyacene.
  • the present invention is a polyacene compound that can exhibit sufficient carrier mobility and has excellent solubility in a solvent, an aromatic compound useful as a raw material compound for obtaining a polyacene compound, And it aims at providing the manufacturing method.
  • Another object of the present invention is to provide a method for producing a polyacene compound using the aromatic compound, an organic thin film containing the aromatic compound or the polyacene compound, and an organic thin film transistor including the same.
  • a ring and B ring are each independently a benzene ring which may have a substituent, an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a substituent
  • R 1a is represented by —CHR 2a —CHR 2b R 2c R 1b
  • R 1c and R 1d each independently represents a hydrogen atom, an aryl group which may have a substituent, or a group represented by —CHR 2d —CHR 2e R 2f .
  • R 1b , R 1c and R 1d are not hydrogen atoms.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • the groups having the same sign may be the same groups or different groups.
  • the alkyl group represented by -CHR 2a -CHR 2b R 2c is substituted on the benzene ring adjacent to the quinone skeleton, when a polyacene compound is synthesized using this as a raw material, A polyacene compound having an alkyl group introduced into the internal benzene ring is obtained.
  • Such a polyacene compound can exhibit excellent carrier mobility and also has high solubility in a solvent.
  • the aromatic compound of the present invention itself can exhibit excellent carrier mobility and has excellent solubility.
  • the aromatic compound of the present invention at least two aryl groups or an alkyl group represented by —CHR 2d —CHR 2e R 2f is substituted on the benzene ring adjacent to the quinone skeleton in addition to the above alkyl group. It is a thing. As described above, the aromatic compound having a large number of substituents including an alkyl group on the benzene ring adjacent to the quinone skeleton can exhibit extremely excellent solubility, and the polyacene compound obtained using the same is the same. is there.
  • the aromatic compound of the present invention has the above-mentioned predetermined structure, It can be satisfactorily obtained by the production method of the present invention described later.
  • the A ring and the B ring are each independently an aromatic condensed ring composed of an optionally substituted benzene ring or an optionally substituted 2 to 4 ring. Preferably there is.
  • the aromatic compound is more preferably a compound represented by the following general formula (2).
  • R 1a represents a group represented by —CHR 2a —CHR 2b R 2c
  • R 1b , R 1c and R 1d each independently represents a hydrogen atom or an aryl group optionally having substituent (s).
  • a group represented by —CHR 2d —CHR 2e R 2f At least two of R 1b , R 1c and R 1d are not hydrogen atoms.
  • m and n each independently represents an integer of 1 to 3.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent. And an aryl group which may have an alkoxy group or a substituent.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • R 2d s , R 2e s , and R 2f s are present, the groups having the same sign may be the same groups or different groups.
  • R 1b , R 1c and R 1d are preferably groups independently represented by —CHR 2d —CHR 2e R 2f .
  • the aromatic compound of the present invention is more preferably a compound represented by the following general formula (3).
  • R 1a and R 1c are groups represented by —CHR 2a —CHR 2b R 2c and are the same as each other, and R 1b and R 1d each have a substituent.
  • An aryl group or a group represented by —CHR 2d —CHR 2e R 2f and the same group, and R 4a and R 4b , and R 4c and R 4d are bonded to each other to form B A group forming a ring and the A ring, wherein R 4a and R 4c are the same group, and R 4b and R 4d are the same group.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • the A ring and the B ring preferably have a structure represented by the following general formula (12).
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom, and when it is a carbon atom, the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, a substituent An alkoxy group which may have a group or an aryl group which may have a substituent is bonded.
  • An optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted aryl group is bonded.
  • X 5 and X 6 each independently represent a carbon atom or a nitrogen atom. When the carbon atom is a carbon atom, the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, or a substituent. An optionally substituted alkoxy group or an optionally substituted aryl group is bonded. ]
  • the present invention includes a step of subjecting a compound represented by the following general formula (4) to an addition reaction with a compound represented by the following general formula (5) in the presence of a transition metal complex.
  • the manufacturing method of the aromatic compound represented by this is provided.
  • a ring and B ring are each independently a benzene ring which may have a substituent, an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a substituent A heteroaromatic ring which may have a heteroaromatic condensed ring having 2 to 4 rings which may have a substituent, and R 5b and R 5c each independently represents a hydrogen atom, a substituent Or an aryl group which may have a group represented by —CHR 8a —CHR 8b R 8c .
  • R 6a , R 6b and R 6c each independently represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent or a substituted silyl group, and R 6a and R 6c 6b may be bonded to each other to form a ring.
  • R 8a , R 8b and R 8c each independently represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group or a substituted silyl group which may have a substituent, and R 8a and R 8b may be bonded to each other to form a ring.
  • t and u are each independently an integer of 0 to 2, and satisfy t + u ⁇ 1. In the case where R 5c is two and may be two R 5c varies be the same as each other group group and, where R 5b is two and, two R 5b be the same as each other group May be different groups. ]
  • the compound represented by the above formula (5) is bonded to the carbon-hydrogen bond at the peri position relative to the carbonyl group in the compound represented by the above formula (4) (aromatic quinone compound).
  • aromatic quinone compound can easily cause an addition reaction, and as a result, the aromatic compound of the present invention in which an alkyl group derived from the compound represented by the formula (5) is introduced at the peri position with respect to the carbonyl group is favorably obtained. be able to.
  • the A ring and the B ring are each independently an aromatic having a benzene ring which may have a substituent or 2 to 4 rings which may have a substituent.
  • a condensed ring is preferred.
  • R 5b and R 5c are not hydrogen atoms.
  • the transition metal complex is preferably a complex containing a transition metal of Groups 8 to 10 in the periodic table, more preferably a ruthenium complex, and RuH 2 (PPh 3 ). 4 or RuH 2 (CO) (PPh 3 ) 3 is more preferable.
  • the present invention also provides a polyacene compound represented by the following general formula (15).
  • a ring and B ring are each independently a benzene ring which may have a substituent, an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a substituent
  • a heteroaromatic ring which may have a heteroaromatic ring or a heteroaromatic condensed ring composed of 2 to 4 rings which may have a substituent
  • R 1a is represented by —CHR 2a —CHR 2b R 2c R 1b
  • R 1c and R 1d each independently represents a hydrogen atom, an aryl group which may have a substituent, or a group represented by —CHR 2d —CHR 2e R 2f .
  • R 1b , R 1c and R 1d are not hydrogen atoms.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • R 14 has a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent.
  • a plurality of R 14 may be the same as or different from each other. ]
  • R 1b , R 1c and R 1d are preferably groups independently represented by —CHR 2d —CHR 2e R 2f .
  • R 1a , R 1b , R 1c and R 1d are preferably the same group, and all the substituents possessed by the A ring and the B ring are preferably the same group.
  • the present invention also provides a polyacene compound represented by the following general formula (13).
  • R 1a represents a group represented by —CHR 2a —CHR 2b R 2c
  • R 1b , R 1c and R 1d each independently represents a hydrogen atom or an aryl group optionally having substituent (s).
  • a group represented by —CHR 2d —CHR 2e R 2f At least two of R 1b , R 1c and R 1d are not hydrogen atoms.
  • m represents an integer of 1 to 3.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent. And an aryl group which may have an alkoxy group or a substituent.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • R 2d s , R 2e s , and R 2f s are present, the groups having the same sign may be the same groups or different groups.
  • R 14 has a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent.
  • a plurality of R 14 may be the same as or different from each other. ]
  • a polyacene compound in which the A ring and the B ring have a structure represented by the following general formula (12) is preferably used.
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom, and when it is a carbon atom, the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, a substituent An alkoxy group which may have a group or an aryl group which may have a substituent is bonded.
  • An optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted aryl group is bonded.
  • X 5 and X 6 each independently represent a carbon atom or a nitrogen atom. When the carbon atom is a carbon atom, the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, or a substituent. An optionally substituted alkoxy group or an optionally substituted aryl group is bonded. ]
  • X 3 is preferably a nitrogen atom, an oxygen atom, a sulfur atom, or a selenium atom, X 3 is a sulfur atom, and X 1 and X 2 are more preferably carbon atoms.
  • this invention provides the manufacturing method of the polyacene compound represented by following General formula (7) provided with the process of reduce
  • a ring and B ring are each independently a benzene ring which may have a substituent, an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a substituent
  • R 1b , R 1c and R 1d are not hydrogen atoms.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • the groups having the same sign may be the same group or different groups.
  • the A ring and the B ring are each independently an aromatic condensation composed of an optionally substituted benzene ring or an optionally substituted 2 to 4 ring.
  • a ring is preferred.
  • this invention comprises the process of reduce
  • the polyacene compound represented by the following general formula (8) A manufacturing method is provided.
  • a ring and B ring are each independently a benzene ring which may have a substituent, an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a substituent
  • a heteroaromatic ring which may have a heteroaromatic ring or a heteroaromatic condensed ring composed of 2 to 4 rings which may have a substituent
  • R 1a is represented by —CHR 2a —CHR 2b R 2c R 1b
  • R 1c and R 1d each independently represents a hydrogen atom, an aryl group which may have a substituent, or a group represented by —CHR 2d —CHR 2e R 2f .
  • R 1b , R 1c and R 1d are not hydrogen atoms.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • R 9 may have an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent.
  • the alkynyl group which may have an alkenyl group or a substituent is shown.
  • a plurality of R 9 may be the same as or different from each other. ]
  • the A ring and the B ring are each independently an aromatic condensation composed of an optionally substituted benzene ring or an optionally substituted 2 to 4 ring.
  • a ring is preferred.
  • the present invention also provides an organic thin film characterized by comprising the aromatic compound of the present invention. Furthermore, this invention provides the organic thin film characterized by including the polyacene compound manufactured by the manufacturing method of the polyacene compound of the said invention. Since these organic thin films of the present invention contain the aromatic compound of the present invention or a polyacene compound obtained by using the aromatic compound, it can exhibit excellent carrier mobility. In addition, the organic thin film can be produced by a coating method because the aromatic compound of the present invention or the polyacene compound obtained by using the organic thin film has high solubility in a solvent. In addition to easy area, the manufacturing cost is greatly reduced.
  • the present invention is an organic thin film transistor comprising a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path,
  • An organic thin film transistor is provided, wherein the organic semiconductor layer includes the organic thin film. Since the organic thin film transistor of the present invention includes the organic thin film of the present invention having high carrier mobility, it can exhibit excellent characteristics as a transistor.
  • an aromatic compound useful as a raw material compound for obtaining a polyacene compound that can exhibit sufficient carrier mobility and has excellent solubility in a solvent, and a method for producing the same.
  • a method for producing the same Become.
  • a methyl group may be expressed as “Me” and an ethyl group as “Et”.
  • Et ethyl group
  • aromatic compound according to a preferred embodiment is a compound represented by the general formula (1).
  • the A ring and the B ring are each independently an aromatic condensed ring comprising a benzene ring which may have a substituent, or 2 to 4 rings which may have a substituent.
  • the aromatic condensed ring include a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a tetracene ring.
  • heteroaromatic ring examples include a furan ring, a thiophene ring, and a selenophene ring.
  • heteroaromatic condensed ring examples include a benzofuran ring, a benzothiophene ring, a benzoselenophene ring, and a thienothiophene ring.
  • a benzene ring, an aromatic condensed ring composed of 2 to 4 rings, a heteroaromatic ring optionally having a substituent, or a heteroaromatic condensed ring consisting of 2 to 4 rings optionally having a substituent May have a substituent such as a halogen atom, an alkyl group, an alkoxy group, or an aryl group.
  • a substituent such as a halogen atom, an alkyl group, an alkoxy group, or an aryl group.
  • an alkyl group a linear, branched, and cyclic thing is contained.
  • the aryl group may have an alkyl group, an alkoxy group, an aryl group or a halogen atom as a substituent.
  • part or all of the hydrogen atoms of the group may be substituted with a halogen atom (particularly a fluorine atom).
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms (abbreviated as “C 1 -C 20 alkyl group”, the same shall apply hereinafter).
  • Examples of such an alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, Examples include heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, lauryl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, and cyclododecyl group.
  • a C 1 -C 12 alkyl group is preferred, and a linear alkyl group is preferred. preferable.
  • some or all of the hydrogen atoms of the alkyl group may be substituted with halogen atoms (particularly fluorine atoms). Examples of such an alkyl group include a trifluoromethyl group and a perfluorohexyl group.
  • alkoxy group those having an alkyl group of C 1 to C 20 are preferable.
  • Examples of the C 1 -C 20 alkyl group are the same as those described above.
  • some or all of the hydrogen atoms of the alkoxy group may be substituted with halogen atoms (particularly fluorine atoms).
  • the aryl group is preferably a C 6 -C 60 aryl group.
  • Examples of such an aryl group include a phenyl group, a phenyl group having a C 1 to C 12 alkyl group, a phenyl group having a C 1 to C 12 alkoxy group, a 1-naphthyl group, a 2-naphthyl group, and 1-anthracenyl. Group, 2-anthracenyl group, 9-anthracenyl group and the like. Among them, a C 6 to C 14 aryl group is preferable, and a C 6 to C 10 aryl group is more preferable.
  • some or all of the hydrogen atoms of the aryl group may be substituted with halogen atoms (particularly fluorine atoms).
  • R 1a represents a group represented by —CHR 2a —CHR 2b R 2c
  • R 1b , R 1c and R 1d each independently have a hydrogen atom or a substituent.
  • an aryl group or a group represented by —CHR 2d —CHR 2e R 2f At least two of R 1b , R 1c, and R 1d are not hydrogen atoms, any of an aryl group which may have a substituent and a group represented by —CHR 2d —CHR 2e R 2f It is.
  • R 1b , R 1c and R 1d are preferably groups represented by —CHR 2d —CHR 2e R 2f .
  • the aryl group which may have a substituent is preferably a C 6 -C 60 aryl group.
  • examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and a 9-anthracenyl group.
  • a C 6 to C 14 aryl group is preferable, and a C 6 to C 10 aryl group is more preferable.
  • These aryl groups may have an alkyl group, an alkoxy group, an aryl group or a halogen atom as a substituent.
  • examples of the alkyl group, alkoxy group and aryl group are the same as those described above.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • the alkyl group which may have a substituent is preferably a C 1 to C 20 alkyl group.
  • Examples of such an alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, Examples include heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, lauryl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, and cyclododecyl group.
  • C 1 -C 12 alkyl groups are preferred from the viewpoint of achieving good solubility in a solvent and maintaining good packing between molecules, and among these, linear alkyl groups are preferred.
  • the group is particularly preferred.
  • These alkyl groups may have an alkoxy group, an aryl group, or a halogen atom as a substituent.
  • examples of the alkoxy group and the aryl group are the same as those described above.
  • the alkyl group may be one in which part or all of the hydrogen atoms are substituted with halogen atoms (particularly fluorine atoms). Examples of such alkyl groups include trifluoromethyl groups and perfluorohexyl groups. Etc.
  • the substituted silyl group is preferably a C 1 -C 60 substituted silyl group, more preferably a C 3 -C 48 substituted silyl group.
  • Examples of the substituted silyl group include a silyl group substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an alkoxy group, and an aryl group.
  • silyl groups include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, phenyldimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, Examples thereof include a phenylsilyl group, a trimethoxysilyl group, a triethoxysilyl group, and a dimethylethoxysilyl group.
  • examples of the group represented by —CHR 2a —CHR 2b R 2c include the following.
  • examples of the group represented by —CHR 2d —CHR 2e R 2f include the following.
  • the A ring and the B ring each independently have a benzene ring or a substituent which may have a substituent. It is preferably an aromatic condensed ring composed of 2 to 4 rings.
  • the aromatic compound according to this embodiment is more preferably a compound represented by the following general formula (2) from the viewpoint of improving solubility in a solvent.
  • m and n each independently represent an integer of 1 to 3
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h are each independently a hydrogen atom
  • R 1a, R 1b, R 1c and R 1d are the same as R 1a, R 1b, R 1c and R 1d in the general formula (1).
  • Examples of the alkyl group that may have a substituent and the aryl group that may have a substituent include the same ones as described above.
  • the alkoxy group which may have a substituent is preferably an alkoxy group whose alkyl group is a C 1 -C 20 alkyl group.
  • examples of the C 1 -C 20 alkyl group are the same as those described above.
  • These alkoxy groups may have an alkyl group, an alkoxy group, an aryl group, or a halogen atom as a substituent.
  • examples of the alkyl group, alkoxy group and aryl group are the same as those described above.
  • the aromatic compound according to this embodiment preferably has a point-symmetric structure with the center of the six-membered ring of the quinone skeleton of the aromatic compound as a reference point.
  • a polyacene compound synthesized from an aromatic compound having a point-symmetric structure both solubility in a solvent and carrier mobility are further improved.
  • the aromatic compound is preferably, for example, a compound represented by the following general formula (3).
  • R 1a and R 1c are groups represented by —CHR 2a —CHR 2b R 2c and are the same as each other, and R 1b and R 1d each represent a substituent.
  • An aryl group which may have, or a group represented by —CHR 2d —CHR 2e R 2f and the same group, and R 4a and R 4b , and R 4c and R 4d are bonded to each other.
  • R 4a and R 4c are the same group
  • R 4b and R 4d are the same group.
  • R 2a are each R 2b and R 2c independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2a and R 2b may be bonded to each other to form a ring.
  • R 2d , R 2e and R 2f each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or a substituted silyl group, R 2d and R 2e may be bonded to each other to form a ring.
  • the aryl group which may have a substituent the alkyl group which may have a substituent, the aryl group which may have a substituent and the substituted silyl group are the same as those described above. Can be exemplified.
  • a ring and B ring have a structure represented by following General formula (12).
  • the structure represented by the following general formula (12) may be turned upside down with respect to the benzene ring to which the structure is bonded.
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom.
  • the carbon atom may have a hydrogen atom, an alkyl group which may have a substituent, An alkoxy group which may have a substituent or an aryl group which may have a substituent is bonded.
  • An optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted aryl group is bonded.
  • X 5 and X 6 each independently represent a carbon atom or a nitrogen atom.
  • the carbon atom is a carbon atom
  • the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • An optionally substituted alkoxy group or an optionally substituted aryl group is bonded. Examples of the alkyl group that may have a substituent, the alkoxy group that may have a substituent, and the aryl group that may have a substituent are the same as those described above. it can.
  • X 1 and X 2 are carbon atoms, and more preferably X 3 is a sulfur atom.
  • Such an aromatic compound is useful as a raw material compound for obtaining a polyacene compound that is more excellent in both solubility in a solvent and carrier mobility.
  • Examples of the structure represented by the general formula (12) include the following formulas (001), (002), (003), (004), (005), (006), (007), (008), Examples include the structures represented by (009), (010), (011), (012), and (013).
  • aromatic compound according to this embodiment examples include the following formulas (101), (102), (103), (104), (105), (106), (107), (108), and (109). , (110), (111), (112), (113), (114), (115), (116), (117), (118), (119), (120) and (121). Aromatic compounds to be used. Of these, aromatic compounds represented by the following formulas (105), (106), (107), (108) and (112) are preferable.
  • Method for producing aromatic compound In the method for producing an aromatic compound according to this embodiment, a compound represented by the following general formula (5) is subjected to an addition reaction with a compound represented by the following general formula (4) in the presence of a transition metal complex. An aromatic compound represented by the general formula (6) is produced. That is, in the method for producing an aromatic compound according to this embodiment, a compound represented by the following general formula (5) is added to the compound represented by the following general formula (4) in the presence of a transition metal complex. A process is provided.
  • the A ring and the B ring are each independently a benzene ring which may have a substituent, or a ring which may have a substituent.
  • R 5b and R 5c can be 0-3 in total, but when these are two or more, it is preferable that two or more of them do not become hydrogen atoms.
  • R 6a , R 6b and R 6c each independently represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent or a substituted silyl group, and R 6a and R 6c 6b may be bonded to each other to form a ring.
  • R 8a , R 8b and R 8c each independently represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group or a substituted silyl group which may have a substituent, and R 8a and R 8b may be bonded to each other to form a ring.
  • t and u are each an integer of 0 to 2, and satisfy t + u ⁇ 1.
  • R 5c is two and may be two R 5c varies be the same as each other group group and, where R 5b is two and, two R 5b be the same as each other group May be different groups.
  • a benzene ring which may have a substituent an aromatic condensed ring composed of 2 to 4 rings which may have a substituent, a heteroaromatic ring which may have a substituent,
  • a heteroaromatic condensed ring composed of 2 to 4 rings which may have a substituent, an aryl group which may have a substituent, an alkyl group which may have a substituent, and a substituted silyl group; Can be exemplified by those similar to those described above.
  • a bond (peri-position carbon-hydrogen bond) connecting the peri-position carbon and the peri-position hydrogen to the carbonyl group.
  • a compound represented by the above general formula (5) is added to the compound represented by the above general formula (6).
  • the compound represented by the general formula (4) has a plurality of peri-position carbon-hydrogen bonds (that is, when t + u in the formula (4) is 2 or more)
  • an addition reaction occurs at any of the plurality of peri-positions.
  • a product in which the compound represented by the general formula (5) is added to some or all of the carbon-hydrogen bonds at the peri position can be obtained.
  • the A ring and the B ring are each independently a benzene ring which may have a substituent or 2 to 4 rings which may have a substituent.
  • the compound represented by the general formula (4) is represented by the general formula (2) or (3) as an aromatic compound represented by the general formula (6) as a result of the addition reaction. More preferred is an aromatic compound. Examples of such a compound include compounds represented by the following general formulas (X) and (Y).
  • m, n, R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h are m, n, R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h are the same. Further, u, t, R 5b and R 5c are the same as u, t, R 5b and R 5c in formula (4).
  • R 4a, R 4b, R 4c and R 4d are the same as R 4a, R 4b, R 4c and R 4d in formula (3). Further, u, t, R 5b and R 5c are the same as u, t, R 5b and R 5c in formula (4).
  • Examples of the compound represented by the general formula (4) include the following formulas (201), (202), (203), (204), (205), (206), (207), (208), (209) ), (210), (211), (212) and (213).
  • the amount of the compound represented by the general formula (5) is 1.1 mol or more with respect to 1 mol of the compound represented by the general formula (4). More preferably, it is more preferably 4 moles or more. Moreover, from a viewpoint of improving the reaction rate of the said addition reaction, it is more preferable that it is 100 mol or less, and it is further more preferable that it is 40 mol or less.
  • transition metal complex used in the addition reaction a transition metal complex of Groups 8 to 10 of the periodic table is preferable, a ruthenium complex and a rhodium complex are more preferable, and a ruthenium complex is more preferable.
  • Preferred transition metal complexes include RuH 2 (PPh 3 ) 4 , RuH 2 (CO) (PR a 3 ) 3 (R a represents an alkyl group or an aryl group. A plurality of R a may be the same or different.
  • a plurality of R b may be the same or different), [Ru ( ⁇ 6 -C 6 R c 6 ) Cl 2 ] 2 , PR d 3 and HCO 2 Na ternary system (R c represents hydrogen or an alkyl group.
  • R c represents hydrogen or an alkyl group.
  • a plurality of R c may be the same or different.
  • R d is Alkyl group or aryl It represents a group. R d existing in plural may be the same or different.
  • a plurality of R e may be the same or different, and the like.
  • RuH 2 (PPh 3 ) 4 dihydridotetrakis (triphenylphosphine) ruthenium
  • RuH 2 (CO) (PPh 3 ) 3 dihydridocarbonyltris (triphenylphosphine) ruthenium
  • These complexes can be used in combination of two or more, and these complexes can be used in combination with other commonly known types of ligands.
  • the amount of the transition metal complex used is preferably 0.0001 to 0.5 mol, more preferably 0.01 to 0.2 mol, per 1 mol of the compound represented by the general formula (4).
  • the addition reaction proceeds even without solvent, but a solvent may be used.
  • the solvent used may be any solvent inert to the reaction, such as aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane, aromatic hydrocarbon solvents such as benzene and toluene, ether solvents such as tetrahydrofuran and anisole, acetonitrile. And nitrile solvents such as Of these, aromatic hydrocarbon solvents such as benzene and toluene are preferred.
  • the addition reaction may be performed in the air, but it is preferably performed in an inert gas atmosphere such as nitrogen or argon. By carrying out the reaction in an inert atmosphere, the effect of improving the reaction yield can be obtained.
  • the reaction vessel used for the reaction may be dried or not, but it is preferable to use a dried reaction vessel. By using the dried reaction container, the effect of improving the reaction yield can be obtained.
  • the reaction temperature for the addition reaction is preferably 20 ° C. to 200 ° C., more preferably 50 ° C. to 160 ° C.
  • the reaction time is preferably 0.5 minutes to 200 hours, more preferably 3 minutes to 50 hours. If the reaction temperature is too high or the reaction time is too long, there is a risk that the transition metal complex that can act as a catalyst loses its activity. In addition, if the reaction temperature is too low or the reaction time is too short, there is a possibility that the reaction does not proceed sufficiently and that the yield is lowered.
  • the production of the aromatic compound according to the present embodiment can be performed, for example, by the following operation. First, after replacing the entire reaction vessel with an inert gas such as nitrogen or argon, a transition metal complex, a compound represented by the above general formula (4), a compound represented by the above general formula (5), and Add solvent if necessary and mix by stirring. The mixture is then heated as necessary and allowed to react with stirring. At this time, the mixture may be heated to reflux.
  • an inert gas such as nitrogen or argon
  • the compound represented by the general formula (5) is a gas at room temperature
  • an autoclave for example, after replacing the inside of the autoclave with an inert gas, a transition metal complex, a compound represented by the above general formula (4) and a solvent as necessary are added, and the above general formula (5)
  • the gas of the represented compound is injected, and the reaction is performed while heating and stirring as necessary.
  • the reaction mixture is concentrated as it is, or the reaction mixture is put into water and extracted with an organic solvent such as toluene, ethyl acetate, diethyl ether, dichloromethane, etc.
  • the target aromatic compound represented by the general formula (6) can be obtained by concentrating the organic layer.
  • the obtained aromatic compound may be purified by column chromatography, extraction, recrystallization, distillation or the like.
  • the aromatic compound as described above can produce a polyacene compound by carrying out a predetermined reaction using this as a starting material.
  • Examples of the method for producing a polyacene compound include the following “method for producing a polyacene compound (A)” and “method for producing a polyacene compound (B)”.
  • the aromatic compound represented by the general formula (1) is preferably reduced in the presence of a reducing agent, and the polyacene compound represented by the following general formula (7) Is generated. That is, the method (A) for producing a polyacene compound preferably includes a step of reducing the aromatic compound represented by the general formula (1) in the presence of a reducing agent.
  • a ring, B ring, R 1a, R 1b, R 1c and R 1d are, A ring in the above general formula (1), B ring, R 1a, R 1b, R 1c and R It is the same as 1d .
  • Examples of the reducing agent used in the polyacene compound production method (A) include hydrogen, hydrogen peroxide, sulfur dioxide, hydrogen sulfide, hydrogen iodide, sodium borohydride, lithium aluminum hydride, and lithium triethylborate hydride.
  • Metal such as diborane, diisobutylaluminum hydride, sodium phosphinate, hydrazine, nickel, palladium, platinum, rhodium, ruthenium, and complexes thereof.
  • hydrogen iodide, lithium aluminum hydride, and sodium phosphinate can be suitably used because of high reactivity.
  • the reaction temperature is preferably 0 to 200 ° C.
  • the reaction time is preferably 3 minutes to 100 hours.
  • the A ring and the B ring each independently have a benzene ring or a substituent which may have a substituent.
  • An aromatic condensed ring composed of 2 to 4 rings which may be optionally present is preferable.
  • the A ring and the B ring are each independently a benzene ring which may have a substituent or 2 to 4 rings which may have a substituent.
  • Such a polyacene compound can be obtained by using an aromatic condensed ring comprising:
  • Examples of the compound represented by the general formula (7) include the following formulas (401), (402), (403), (404), (405), (406), (407), (408), (409). ), (410), (411), (412), (413), (414), (415) and (416).
  • the diol compound obtained by the reaction of the aromatic compound represented by the general formula (1) and the organometallic compound is preferably reduced in the presence of a reducing agent.
  • a polyacene compound represented by the following general formula (8) is produced. That is, the polyacene compound production method (B) reduces the diol compound obtained by the reaction of the aromatic compound represented by the general formula (1) and the organometallic compound, preferably in the presence of a reducing agent.
  • a process is provided.
  • a ring, B ring, R 1a, R 1b, R 1c and R 1d are, A ring in the above general formula (1), B ring, R 1a, R 1b, R 1c and R It is the same as 1d .
  • R 9 may have an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent.
  • the alkynyl group which may have an alkenyl group or a substituent is shown.
  • examples of the alkyl group which may have a substituent and the aryl group which may have a substituent include the same ones as described above.
  • the heteroaryl group which may have a substituent is preferably a C 3 to C 60 heteroaryl group.
  • heteroaryl groups include furyl group, thienyl group, thienyl thienyl group, thienothienyl group, pyrrolyl group, pyridyl group, bipyridyl group, C 1 -C 12 alkyl thienyl group, C 1 -C 12 alkyl thienothienyl group, etc. Is mentioned. Of these, C 3 -C 12 heteroaryl groups are more preferred.
  • These heteroaryl groups may have an alkyl group, an alkoxy group, an aryl group, a halogen atom or the like as a substituent.
  • examples of the alkyl group, alkoxy group and aryl group are the same as those described above.
  • alkenyl group which may have a substituent examples include a group represented by —CR 11 ⁇ CR 12 —R 13 .
  • R 11 , R 12 and R 13 each independently have a hydrogen atom, an alkyl group which may have the above-described substituent, an aryl group which may have a substituent, or a substituent. And optionally substituted heteroaryl group and substituted silyl group.
  • Examples of the alkynyl group which may have a substituent include a group represented by —C ⁇ C—R 10 .
  • R 10 an alkyl group that may have a substituent, an aryl group that may have a substituent, a heteroaryl group that may have a substituent, or a substituted silyl group may be used. Can be mentioned.
  • Examples of the organometallic compound used in the polyacene compound production method (B) include an organometallic compound represented by R 9 -MX n .
  • R 9 is the same as R 9 in the general formula (8)
  • M represents a metal atom
  • X represents a halogen atom
  • n represents an integer of 0 or more.
  • the metal atom represented by M is preferably lithium or magnesium. That is, as the organometallic compound, an organolithium compound and an organomagnesium compound are preferable.
  • reducing agent used in the method (B) for producing a polyacene compound a known reducing agent can be used, but from the viewpoint of reactivity, it is preferable to use tin chloride (II), and tin chloride (II). And hydrochloric acid are more preferable.
  • an organometallic compound reacts with the carbonyl group of the aromatic compound represented by the general formula (1) to form a diol compound.
  • An example of the first stage reaction scheme is described in the following formula (10).
  • the reaction temperature is preferably ⁇ 78 to 100 ° C.
  • the reaction time is preferably 3 minutes to 10 hours.
  • the reaction temperature is preferably 0 to 100 ° C.
  • the reaction time is preferably 3 minutes to 10 hours.
  • the A ring and the B ring each independently have a benzene ring or a substituent which may have a substituent. It is preferably an aromatic condensed ring composed of 2 to 4 rings which may be formed.
  • the A ring and the B ring are each independently a benzene ring which may have a substituent or 2 to 4 rings which may have a substituent.
  • Such a polyacene compound can be obtained by using an aromatic condensed ring comprising:
  • Examples of the compound represented by the general formula (8) include the following formulas (501), (502), (503), (504), (505), (506), (507), (508), (509) ), (510), (511), (512), (513), (514), (515) and (516).
  • the polyacene compound obtained by the production method (A) or the production method (B) as described above can be highly purified by purification by a purification method such as sublimation or recrystallization.
  • a polyacene compound which can be manufactured with the manufacturing method of the polyacene compound which concerns on this embodiment formula (901), (902), (903), (904), (905), (906), (907) mentioned later is mentioned.
  • polyacene compounds are also included.
  • the polyacene compound which concerns on suitable embodiment is a polyacene compound obtained by the manufacturing method (A) or manufacturing method (B) of the said polyacene compound, for example, and is represented by the said General formula (7) or the said General formula (8).
  • a compound is represented by the manufacturing method (A) or manufacturing method (B) of the said polyacene compound, for example, and is represented by the said General formula (7) or the said General formula (8).
  • the polyacene compound is preferably a polyacene compound represented by the following general formula (13) from the viewpoint of improving solubility in a solvent.
  • m represents an integer of 1 to 3.
  • R 1a, R 1b, R 1c and R 1d are the same as R 1a, R 1b, R 1c and R 1d in the general formula (1)
  • R 3a, R 3b, R 3c, R 3d, R 3e , R 3f , R 3g and R 3h are the same as R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h in the general formula (2).
  • R 14 has a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent.
  • the alkynyl group which may have an alkenyl group or substituent which may be shown.
  • R 1b , R 1c and R 1d are each independently represented by —CHR 2d —CHR 2e R 2f from the viewpoint of improving the solubility in a solvent.
  • a group is preferred.
  • R 1a , R 1b , R 1c and R 1d are the same group, and R 3a , R 3d , R 3e and R 3h are the same group. R 3b , R 3c , R 3f and R 3g are preferably the same group.
  • Such polyacene compounds tend to be more excellent in intermolecular packing due to the increased symmetry of the molecular structure.
  • m 1 is preferable.
  • the polyacene compound is preferably a polyacene compound represented by the following general formula (14) from the viewpoint of further excellent carrier mobility.
  • a ring and b ring each independently represent a heteroaromatic ring having a structure represented by the following general formula (12) or an aromatic condensed ring composed of 2 to 4 rings.
  • R 1a, R 1b, R 1c and R 1d are, R 1a in the general formula (1), R 1b, is identical to R 1c and R 1d, R in R 14 are the above-mentioned general formula (13) 14 Is the same.
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom.
  • the carbon atom may have a hydrogen atom, an alkyl group which may have a substituent, An alkoxy group which may have a substituent or an aryl group which may have a substituent is bonded.
  • An optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted aryl group is bonded.
  • X 5 and X 6 each independently represent a carbon atom or a nitrogen atom.
  • the carbon atom is a carbon atom
  • the carbon atom has a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • An optionally substituted alkoxy group or an optionally substituted aryl group is bonded. Examples of the alkyl group which may have a substituent, the alkoxy group which may have a substituent, and the aryl group which may have a substituent are the same as those described above. it can.
  • R 1b , R 1c and R 1d are each independently represented by —CHR 2d —CHR 2e R 2f from the viewpoint of improving solubility in a solvent.
  • a group is preferred.
  • R 1a , R 1b , R 1c and R 1d are preferably the same group, and the a ring and the b ring are preferably the same ring.
  • Such polyacene compounds tend to be more excellent in intermolecular packing due to the increased symmetry of the molecular structure.
  • polyacene compound represented by the general formula (14) As the polyacene compound represented by the general formula (14), and X 1 and X 2 are carbon atoms, polyacene compound X 3 is a sulfur atom are preferred. Such polyacene compounds tend to be more excellent in both solubility in a solvent and carrier mobility.
  • Examples of the polyacene compound according to this embodiment include the formulas (401), (402), (403), (404), (405), (406), (407), (408), and (409) described above. , (410), (411), (412), (413), (414), (415), (416), (501), (502), (503), (504), (505), ( 506), (507), (508), (509), (510), (511), (512), (513), (514), (515) and the polyacene compound represented by (516).
  • an organic thin film according to a preferred embodiment will be described.
  • the organic thin film has a film-like shape and includes the aromatic compound of the above-described embodiment.
  • an organic thin film has a film-like shape, and contains the polyacene compound represented by the said General formula (7) or (8). And even if it is a case where any of an aromatic compound and the polyacene compound represented by the said General formula (7) or (8) is included, an organic thin film can exhibit high charge transportability.
  • the suitable thickness of the organic thin film varies depending on the element to which the organic thin film is applied, but is usually in the range of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and more preferably 20 nm to More preferably, it is 200 nm.
  • the organic thin film may contain one kind of the aromatic compound or the polyacene compound alone, or may contain two or more kinds. Moreover, it may contain both the aromatic compound and the polyacene compound.
  • the organic thin film may further contain a low molecular compound or a polymer compound having an electron transport property or a hole transport property in addition to the aromatic compound or the polyacene compound in order to improve the electron transport property or the hole transport property.
  • an organic thin film contains components other than the said aromatic compound and the said polyacene compound, it is preferable to contain the said aromatic compound or the said polyacene compound 30 mass% or more, and it is more preferable to contain 50 mass% or more.
  • the content of the aromatic compound or the polyacene compound is less than 30% by mass, it tends to be difficult to form a thin film or to obtain good charge mobility.
  • Examples of the compound having a hole transporting property include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains.
  • Examples thereof include polysiloxane derivatives having polyaniline, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • the compounds having electron transport properties include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 It can be illustrated.
  • the organic thin film may further contain other components in order to improve its properties.
  • other components include charge generation materials.
  • the organic thin film contains a charge generation material, the thin film absorbs light to generate charges, which is suitable for applications such as an optical sensor that requires charge generation by light absorption.
  • charge generation materials include azo compounds and derivatives thereof, diazo compounds and derivatives thereof, metal-free phthalocyanine compounds and derivatives thereof, metal phthalocyanine compounds and derivatives thereof, perylene compounds and derivatives thereof, polycyclic quinone compounds and derivatives thereof, squarylium compounds and its derivatives, azulenium compounds and their derivatives, thiapyrylium compounds and their derivatives, fullerenes such as C 60 and derivatives thereof.
  • the organic thin film may further include materials necessary for developing various functions. Examples thereof include a sensitizer for sensitizing the function of generating charges by absorbed light, a stabilizer for increasing stability, a UV absorber for absorbing UV light, and the like.
  • the organic thin film may contain a polymer compound material as a polymer binder from the viewpoint of increasing its mechanical strength.
  • a polymer binder those that do not excessively reduce the charge transportability are preferable, and those that do not excessively absorb visible light are preferable.
  • Polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, polycarbonate , Polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the organic thin film described above can be manufactured by the following method, for example.
  • the organic thin film is formed by applying a solution obtained by dissolving the aromatic compound or the polyacene compound and other components described above in a solvent as necessary onto a predetermined substrate, and then volatilizing the solvent. It can form by the method (application
  • Each of the aromatic compound or the polyacene compound has a structure in which an alkyl group is bonded to an internal benzene ring, and therefore has excellent solubility in a solvent. Is advantageous.
  • the said aromatic compound or the said polyacene compound has sublimation property, you may form an organic thin film by methods, such as a vacuum evaporation method.
  • solvent those capable of dissolving or uniformly dispersing the aromatic compound or the polyacene compound and other components are preferable.
  • solvents include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, n-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, Halogenated saturated hydrocarbon solvents such as chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran. It can be illustrated.
  • the aromatic compound or the polyacene compound is preferably
  • the solution can be applied by spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing.
  • examples thereof include a printing method, an offset printing method, an ink jet printing method, and a dispenser printing method. Of these, spin coating, flexographic printing, ink jet printing, and dispenser printing are preferred.
  • the organic thin film may be further subjected to a step of orienting the aromatic compound or the polyacene compound in the organic thin film depending on the application.
  • the aromatic compound or the polyacene compound in the organic thin film is arranged in a certain direction, and the charge transport property of the organic thin film is further enhanced.
  • an organic thin film alignment method a method usually used for alignment of liquid crystal or the like can be applied. Specifically, a rubbing method, a photo-alignment method, a sharing method (shear stress application method), a pulling coating method and the like are preferable because they are simple and useful, and a rubbing method and a sharing method are more preferable.
  • Organic thin film transistor Since the organic thin film of the above-described embodiment includes the aromatic compound or the polyacene compound of the above-described embodiment, it has excellent charge (electron or hole) transportability. Therefore, this organic thin film can efficiently transport electrons or holes injected from an electrode or the like, or a charge generated by light absorption, and can be applied to a transistor using the organic thin film.
  • an organic thin film transistor according to a preferred embodiment will be described.
  • the organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) including the aromatic compound or the polyacene compound according to the embodiment described above serving as a current path between them, and a gate electrode for controlling the amount of current passing through the current path. Any structure may be used, and a field effect type and an electrostatic induction type are exemplified.
  • the field-effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) containing the aromatic compound or polyacene compound of the above embodiment as a current path between them, and a gate for controlling the amount of current passing through the current path. It is preferable to provide an electrode and an insulating layer disposed between the active layer and the gate electrode.
  • the source electrode and the drain electrode are provided in contact with the organic semiconductor layer (active layer) containing the aromatic compound or polyacene compound of the above embodiment, and the gate electrode is further sandwiched between the insulating layers in contact with the organic semiconductor layer. Is preferably provided.
  • the electrostatic induction type organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer (active layer) containing the aromatic compound or polyacene compound of the above embodiment as a current path between them, and an amount of current passing through the current path.
  • a gate electrode that controls the gate electrode, and the gate electrode is provided in the organic semiconductor layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer containing the aromatic compound or polyacene compound of the above embodiment.
  • any structure may be used as long as a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode.
  • FIG. 1 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a first embodiment.
  • An organic thin film transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 with a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1. Formed on the insulating layer 3 so as to cover the region of the insulating layer 3 between the source electrode 5 and the drain electrode 6, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 formed between the source electrode 5 and the drain electrode 6. And a gate electrode 4.
  • FIG. 2 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a second embodiment.
  • An organic thin film transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 so as to cover the source electrode 5, a source electrode 5 and a predetermined electrode.
  • the drain electrode 6 formed on the active layer 2 with an interval of the insulating layer 3 formed on the active layer 2 and the drain electrode 6, and the insulating layer 3 between the source electrode 5 and the drain electrode 6.
  • a gate electrode 4 formed on the insulating layer 3 so as to cover the region.
  • FIG. 3 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a third embodiment.
  • the organic thin film transistor 120 shown in FIG. 3 includes a substrate 1, an active layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval, and a source electrode. 5 and the drain electrode 6 so as to partially cover the insulating layer 3 formed on the active layer 2, the region of the insulating layer 3 where the source electrode 5 is formed below, and the drain electrode 6 are formed below.
  • a gate electrode 4 formed on the insulating layer 3 so as to partially cover the region of the insulating layer 3.
  • FIG. 4 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a fourth embodiment.
  • 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • an active layer 2 formed on the insulating layer 3 so as to cover it.
  • FIG. 5 is a schematic cross-sectional view of an organic thin film transistor (field effect type organic thin film transistor) according to a fifth embodiment.
  • An organic thin film transistor 140 shown in FIG. 5 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • a source electrode 5 formed on the insulating layer 3 so as to partially cover the region of the insulating layer 3 formed on the active layer 2 and an active layer 2 formed on the insulating layer 3 so as to partially cover the source electrode 5.
  • a drain electrode 6 formed on the insulating layer 3 at a predetermined interval so as to partially cover the region of the active layer 2 formed below the gate electrode 4 It is.
  • FIG. 6 is a schematic cross-sectional view of an organic thin film transistor (field effect type organic thin film transistor) according to a sixth embodiment.
  • An organic thin film transistor 150 shown in FIG. 6 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • the active layer 2 is formed on the insulating layer 3 so as to partially cover the region of the active layer 2 formed under the active layer 2 and the gate electrode 4 formed below.
  • the source electrode 5 and the drain electrode 6 formed on the insulating layer 3 with a predetermined distance from the source electrode 5 so as to partially cover the region of the active layer 2 where the gate electrode 4 is formed below. , Are provided.
  • FIG. 7 is a schematic cross-sectional view of an organic thin film transistor (electrostatic induction type organic thin film transistor) according to a seventh embodiment.
  • the organic thin film transistor 160 shown in FIG. 7 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality on the active layer 2 with a predetermined interval.
  • a drain electrode 6 formed on the active layer 2a.
  • the active layer 2 and / or the active layer 2a contain the aromatic compound or the polyacene compound of the above-described embodiment, and between the source electrode 5 and the drain electrode 6 Current path (channel).
  • the gate electrode 4 controls the amount of current passing through the current path (channel) in the active layer 2 and / or the active layer 2a by applying a voltage.
  • Such a field effect organic thin film transistor can be produced by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic thin film transistor can be produced by a known method, for example, a method described in JP-A-2004-006476.
  • the substrate 1 it is sufficient that the characteristics as an organic thin film transistor are not hindered, and a glass substrate, a flexible film substrate, or a plastic substrate can be used.
  • the active layer 2 When forming the active layer 2, it is very advantageous and preferable to use an organic solvent-soluble compound, so that the active layer 2 is formed by using the organic thin film manufacturing method of the present invention described above. An organic thin film can be formed.
  • a material having high electrical insulation may be used, and a known material can be used.
  • a known material can be used.
  • the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
  • a surface treatment agent such as a silane coupling agent
  • the surface treatment agent include silylamine compounds such as long-chain alkylchlorosilanes, long-chain alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxysilanes, and hexamethyldisilazane.
  • the surface of the insulating layer may be treated with ozone UV or O 2 plasma.
  • a protective film on the organic thin film transistor in order to protect the element after the organic thin film transistor is manufactured.
  • an organic thin-film transistor is interrupted
  • the influence from the process of forming the display device driven on an organic thin-film transistor with a protective film can be reduced.
  • Examples of the method for forming the protective film include a method of covering with a UV curable resin, a thermosetting resin, or an inorganic SiON x film.
  • a method of covering with a UV curable resin, a thermosetting resin, or an inorganic SiON x film In order to effectively cut off from the atmosphere, it is preferable to perform the steps from the preparation of the organic thin film transistor to the formation of the protective film without exposure to the atmosphere (for example, in a dry nitrogen atmosphere or in a vacuum).
  • Example 1 Synthesis of 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene-6,13-dione
  • a 10 mL Schlenk tube and a magnetic stirrer coated with Teflon (registered trademark) were placed in a constant temperature dryer and heated. After sufficiently heating, these were taken out from the constant temperature dryer, and a magnetic stirring bar was placed in the Schlenk tube. Thereafter, the Schlenk tube was purged with nitrogen under reduced pressure.
  • reaction that occurred in this example is as shown in the following reaction scheme.
  • Example 2 Synthesis of 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene
  • a magnetic stirring bar coated with 10 mL Schlenk tube and Teflon (registered trademark) was placed in a constant temperature dryer and heated. After sufficiently heating, these were taken out from the constant temperature dryer, and a magnetic stirring bar was placed in the Schlenk tube. Thereafter, the Schlenk tube was connected to a vacuum / nitrogen line, and the entire reactor was purged with nitrogen.
  • reaction that occurred in this example is as shown in the following reaction scheme.
  • Example 3 Synthesis of 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene
  • a 5 mL two-necked flask, a reflux condenser, a blowing tube, and a magnetic stir bar coated with Teflon (registered trademark) were placed in a constant temperature dryer and heated. After sufficiently heating, these were taken out from the constant temperature dryer, and a magnetic stirring bar was placed in the two-necked flask. Thereafter, a reflux condenser and a blowing tube were attached to the two-necked flask. The blowing tube was connected to a vacuum / nitrogen line, and the entire reactor was purged with nitrogen.
  • reaction solution was then cooled to 0 ° C. in an ice bath. 1 mol / L hydrochloric acid (1 mL) was added to the reaction solution, and then the reaction solution was heated in an oil bath and reacted for 3 hours in a nitrogen atmosphere. After transferring the reaction solution to a 10 mL Schlenk tube, nitrogen-substituted dichloromethane and nitrogen-substituted distilled water were added thereto, and the product was extracted. The organic layer was concentrated by evaporation to obtain the desired 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene in a yield of 95% (80.6 mg). The measurement results of the obtained product by 1 H-NMR and APCI-MS are shown below.
  • reaction that occurred in this example is as shown in the following reaction scheme.
  • Example 4 Evaluation of field effect organic thin film transistor
  • the transistor characteristics of 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene-6,13-dione were measured by fabricating field effect organic thin film transistors.
  • a schematic cross-sectional view of the produced organic thin film transistor is shown in FIG.
  • the surface of the heavily doped n-type silicon substrate 10 serving as the gate electrode was thermally oxidized to form a 300 nm silicon oxide film (hereinafter referred to as “thermal oxide film”) 20.
  • thermal oxide film 300 nm silicon oxide film
  • a source electrode 30 and a drain electrode 40 (deposited in the order of chromium and gold from the thermal oxide film 20 side) having a channel length of 20 ⁇ m and a channel width of 2 mm were formed on the thermal oxide film 20 by a photolithography process. After thoroughly washing the substrate thus obtained, the substrate surface was silane treated by spin coating using hexamethylene disilazane.
  • the field effect organic thin film transistor thus obtained was subjected to measurement of transistor characteristics by changing the gate voltage Vg between 0 V to ⁇ 60 V and the source-drain voltage Vsd to ⁇ 50 V.
  • the carrier mobility was 5.8 ⁇ 10 ⁇ 4 cm 2 / Vs was indicated.
  • Example 5 Evaluation of field effect organic thin film transistor
  • the transistor characteristics of 5,7,12,14-tetrakis (2- (triethylsilyl) ethyl) pentacene were measured by fabricating field effect organic thin film transistors.
  • a schematic cross-sectional view of the produced organic thin film transistor is shown in FIG.
  • the surface of the heavily doped n-type silicon substrate 10 serving as the gate electrode was thermally oxidized to form a 300 nm silicon oxide film (hereinafter referred to as “thermal oxide film”) 20.
  • a comb-type source electrode 30 and a comb-type drain electrode 40 evaporation of gold
  • the field effect organic thin film transistor thus obtained was subjected to measurement of the transistor characteristics by changing the gate voltage Vg between 0 V to ⁇ 80 V and the source-drain voltage Vsd to ⁇ 50 V.
  • the carrier mobility was 4.8 ⁇ 10 ⁇ 6 cm 2 / Vs was indicated.
  • Example 6 4,6,10,12-tetrakis (2- (triethylsilyl) ethyl) anthra [2,3-b: 6,7-b ′] dithiophene-5,11-dione and 4,6,6 Synthesis of 10,12-tetrakis (2- (triethylsilyl) ethyl) anthra [2,3-b: 7,6-b ′] dithiophene-5,11-dione)
  • a 10 mL Schlenk tube and a magnetic stirrer coated with Teflon (registered trademark) were placed in a constant temperature dryer and heated. After sufficiently heating, these were taken out from the constant temperature dryer, and a magnetic stirring bar was placed in the Schlenk tube.
  • reaction that occurred in this example is as shown in the following reaction scheme.
  • Example 7 4,6,10,12-tetrakis (2- (triethylsilyl) ethyl) anthra [2,3-b: 6,7-b ′] dithiophene and 4,6,10,12-tetrakis ( Synthesis of 2- (triethylsilyl) ethyl) anthra [2,3-b: 7,6-b ′] dithiophene)
  • a 5 mL two-necked flask, a reflux condenser, a blowing tube, and a magnetic stir bar coated with Teflon (registered trademark) were placed in a constant temperature dryer and heated.
  • reaction solution was then cooled to 0 ° C. in an ice bath. 1 mol / L hydrochloric acid (0.5 mL) was added to the reaction solution, and then the reaction solution was heated in an oil bath and reacted for 3 hours in a nitrogen atmosphere. After transferring the reaction solution to a 10 mL Schlenk tube, nitrogen-substituted dichloromethane and nitrogen-substituted distilled water were added thereto, and the product was extracted.
  • reaction that occurred in this example is as shown in the following reaction scheme.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 下記一般式(1)で表される芳香族化合物。 【化1】[式中、A環及びB環は、ベンゼン環、2~4の環からなる芳香族縮合環、複素芳香族環又は2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dは水素原子、アリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cは水素原子、アルキル基、アリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fは水素原子、アルキル基、アリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。]

Description

芳香族化合物及びその製造方法
 本発明は、芳香族化合物及びその製造方法、ポリアセン化合物の製造方法、芳香族化合物若しくはポリアセン化合物を含む有機薄膜、並びに、これを備える有機薄膜トランジスタに関する。
 ポリアセンは、有機トランジスタ素子の材料として高いキャリア移動度を示す。ただ、ポリアセンは溶媒への溶解性が低いため、有機トランジスタ素子の材料として利用する場合、スピンコート法やインクジェット法といった塗布法で成膜することが困難であり、一般に真空設備が必要な蒸着法で成膜する方法がとられている。塗布法による成膜は蒸着法と比べて、大面積化や低コスト化が期待できることから、溶媒への溶解性の高い、アルキル基が導入されたポリアセンの開発が望まれている。
 アルキル基を有するポリアセンとしては、例えば、ジ-tert-ブチルペンタセンが知られている(特許文献1)。ジ-tert-ブチルペンタセンは、4-tert-ブチルフタルアルデヒドと1,4-シクロヘキサンジオンとの縮合反応によりペンタセンキノン化合物(芳香族キノン化合物)を得た後、このペンタセンキノン化合物をアルミニウム-トリ-sec-ブトキサイド存在下で還元することにより合成されている。
特開2007-335772号公報
 しかしながら、上述した芳香族キノン化合物を経由するポリアセンの製造方法により得られたポリアセンは、末端のベンゼン環にのみ置換基としてアルキル基を有したものであった。これは、従来の合成方法では、芳香族キノン化合物におけるカルボニル基に対するペリ位(キノン骨格に隣接するベンゼン環の置換位)にアルキル基等の置換基を導入することができないため、末端のベンゼン環にのみアルキル基が導入された芳香族キノン化合物を経由せざるを得なかったからである。
 そして、このように末端のベンゼン環にアルキル基が導入された従来のポリアセンは、溶媒に対してある程度の溶解性を示すものであったが、近年の更なる大面積化やそれに伴って要求される膜の均一化に対応するため、ポリアセンに対しては、更なる溶解性の向上が求められている。
 そこで、本発明は、このような要求に応えるべく、十分なキャリア移動度を発揮し得るとともに溶媒に対する優れた溶解性を有するポリアセン化合物、ポリアセン化合物を得るための原料化合物として有用な芳香族化合物、及びその製造方法を提供することを目的とする。また本発明は、上記芳香族化合物を用いたポリアセン化合物の製造方法、上記芳香族化合物若しくは上記ポリアセン化合物を含む有機薄膜、並びに、これを備える有機薄膜トランジスタを提供することを目的とする。
 上記目的を達成するため、本発明は、下記一般式(1)で表される芳香族化合物を提供する。
Figure JPOXMLDOC01-appb-C000015
[式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。]
 上記本発明の芳香族化合物は、キノン骨格に隣接するベンゼン環に-CHR2a-CHR2b2cで表されるアルキル基が置換されていることから、これを原料としてポリアセン化合物を合成した場合、内部のベンゼン環にアルキル基が導入されたポリアセン化合物が得られる。このようなポリアセン化合物は、優れたキャリア移動度を発揮できるのに加えて、溶媒に対して高い溶解性を有するものとなる。また、本発明の芳香族化合物自体も、優れたキャリア移動度を発揮できるほか、優れた溶解性を有するものとなる。
 さらに、本発明の芳香族化合物は、キノン骨格に隣接するベンゼン環に、上記のアルキル基に加えて、少なくとも2つのアリール基又は-CHR2d-CHR2e2fで表されるアルキル基が置換されたものである。このように、キノン骨格に隣接するベンゼン環にアルキル基を含む多数の置換基を有する芳香族化合物は、極めて優れた溶解性を発揮することができ、これを用いて得られるポリアセン化合物も同様である。そして、上述の如く、従来、芳香族キノン化合物におけるカルボニル基に対するペリ位に置換基を導入することは困難であったところ、本発明の芳香族化合物は、上述した所定の構造を有することから、後述する本発明の製造方法によって良好に得ることが可能である。
 上記芳香族化合物において、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。
 また、上記芳香族化合物は、下記一般式(2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000016
[式中、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。m及びnはそれぞれ独立に1~3の整数を示す。R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基を示す。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく、異なる基であってもよい。]
 上記芳香族化合物は、R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることが好ましい。
 上記芳香族化合物は、m=nであることが好ましく、m=n=1であることがより好ましい。
 また、上記本発明の芳香族化合物は、下記一般式(3)で表される化合物であると更に好ましい。
Figure JPOXMLDOC01-appb-C000017
[式中、R1a及びR1cは、それぞれ-CHR2a-CHR2b2cで表される基であって互いに同一の基であり、R1b及びR1dは、それぞれ置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基であって互いに同一の基であり、R4aとR4b、及び、R4cとR4dは、互いに結合してそれぞれ前記B環及び前記A環を形成する基であって、R4aとR4cとが同一の基であり、R4bとR4dとが同一の基である。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。]
 また、上記本発明の芳香族化合物は、A環及びB環が、下記一般式(12)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
[式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。]
 また、本発明は、下記一般式(4)で表される化合物に、遷移金属錯体の存在下、下記一般式(5)で表される化合物を付加反応させる工程を備える、下記一般式(6)で表される芳香族化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R5b及びR5cはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR8a-CHR8b8cで表される基を示す。R6a、R6b及びR6cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R6aとR6bは互いに結合して環を形成していてもよい。R8a、R8b及びR8cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R8aとR8bは互いに結合して環を形成していてもよい。t及びuはそれぞれ独立に0~2の整数であって、t+u≧1を満たす値である。なお、R5cが2つとなる場合、2つのR5cは互いに同じ基であっても異なる基であってもよく、またR5bが2つとなる場合、2つのR5bは互いに同じ基であっても異なる基であってもよい。]
 このような本発明の製造方法においては、上記式(4)で表される化合物(芳香族キノン化合物)におけるカルボニル基に対するペリ位の炭素-水素結合に、上記式(5)で表される化合物が容易に付加反応を生じることができ、その結果、カルボニル基に対するペリ位に、式(5)で表される化合物に由来するアルキル基が導入された上記本発明の芳香族化合物を良好に得ることができる。
 上記芳香族化合物の製造方法において、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。
 上記芳香族化合物の製造方法は、R5b及びR5cのうちの少なくとも2つが、水素原子ではないことが好ましい。
 上記芳香族化合物の製造方法は、上記遷移金属錯体が、周期律表8~10族の遷移金属を含有する錯体であることが好ましく、ルテニウム錯体であることがより好ましく、RuH(PPh又はRuH(CO)(PPhであることがさらに好ましい。
 また、本発明は、下記一般式(15)で表されるポリアセン化合物を提供する。
Figure JPOXMLDOC01-appb-C000022
[式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。R14は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるR14は互いに同一であっても異なっていてもよい。]
 上記ポリアセン化合物は、R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることが好ましい。
 上記ポリアセン化合物は、R1a、R1b、R1c及びR1dが同一の基であり、A環及びB環が有している全ての置換基が同一の基であることが好ましい。
 また、本発明は、下記一般式(13)で表されるポリアセン化合物を提供する。
Figure JPOXMLDOC01-appb-C000023
[式中、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。mは1~3の整数を示す。R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基を示す。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく、異なる基であってもよい。R14は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるR14は互いに同一であっても異なっていてもよい。]
 上記ポリアセン化合物は、m=1であることが好ましい。
 また、上記一般式(15)で表されるポリアセン化合物としては、A環及びB環が、下記一般式(12)で表される構造を有するポリアセン化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000024
[式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。]
 上記ポリアセン化合物は、Xが、窒素原子、酸素原子、硫黄原子又はセレン原子であることが好ましく、Xが硫黄原子であり、X及びXが炭素原子であることがより好ましい。
 また、本発明は、下記一般式(1)で表される芳香族化合物を還元する工程を備える、下記一般式(7)で表されるポリアセン化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
[式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e又はR2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。]
 上記ポリアセン化合物の製造方法において、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。
 また、本発明は、下記一般式(1)で表される芳香族化合物と有機金属化合物との反応により得られるジオール化合物を還元する工程を備える、下記一般式(8)で表されるポリアセン化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e又はR2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるRは互いに同一であっても異なっていてもよい。]
 上記ポリアセン化合物の製造方法において、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。
 また、本発明は、上記本発明の芳香族化合物を含むことを特徴とする、有機薄膜を提供する。さらに、本発明は、上記本発明のポリアセン化合物の製造方法により製造されたポリアセン化合物を含むことを特徴とする、有機薄膜を提供する。これらの本発明の有機薄膜は、本発明の芳香族化合物又はこれを用いて得られるポリアセン化合物を含むことから、優れたキャリア移動度を発揮できる。また、かかる有機薄膜は、本発明の芳香族化合物又はこれを用いて得られるポリアセン化合物は溶媒に対して高い溶解性を有していることから、塗布法による製造が可能なものであり、大面積化が容易であるほか、製造にかかるコストも大幅に低減されたものとなる。
 さらにまた、本発明は、ソース電極及びドレイン電極と、これら電極の間の電流経路となる有機半導体層と、上記電流経路を通る電流量を制御するゲート電極と、を備える有機薄膜トランジスタであって、上記有機半導体層が上記有機薄膜を備えることを特徴とする、有機薄膜トランジスタを提供する。かかる本発明の有機薄膜トランジスタは、高いキャリア移動度を有する本発明の有機薄膜を備えることから、トランジスタとして優れた特性を発揮することが可能である。
 本発明によれば、十分なキャリア移動度を発揮し得るとともに溶媒に対する優れた溶解性を有するポリアセン化合物を得るための原料化合物として有用な芳香族化合物、及びその製造方法を提供することが可能となる。また、本発明によれば、上記芳香族化合物を用いたポリアセン化合物の製造方法、上記芳香族化合物若しくは上記ポリアセン化合物を含む有機薄膜、並びに、これを備える有機薄膜トランジスタを提供することが可能となる。
第1実施形態に係る有機薄膜トランジスタの模式断面図である。 第2実施形態に係る有機薄膜トランジスタの模式断面図である。 第3実施形態に係る有機薄膜トランジスタの模式断面図である。 第4実施形態に係る有機薄膜トランジスタの模式断面図である。 第5実施形態に係る有機薄膜トランジスタの模式断面図である。 第6実施形態に係る有機薄膜トランジスタの模式断面図である。 第7実施形態に係る有機薄膜トランジスタの模式断面図である。 実施例で作製した有機薄膜トランジスタの模式断面図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、メチル基を「Me」、エチル基を「Et」とそれぞれ表記する場合がある。また、図面の説明においては、同一の要素には同一の符号を付し、重複する説明は省略する。
[芳香族化合物]
 まず、好適な実施形態に係る芳香族化合物について説明する。本実施形態に係る芳香族化合物は、上記一般式(1)で表される化合物である。
 上記一般式(1)において、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環である。芳香族縮合環としては、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、テトラセン環等が挙げられる。複素芳香族環としては、フラン環、チオフェン環、セレノフェン環等が挙げられる。複素芳香族縮合環としては、ベンゾフラン環、ベンゾチオフェン環、ベンゾセレノフェン環、チエノチオフェン環等が挙げられる。
 ベンゼン環、2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環は、ハロゲン原子、アルキル基、アルコキシ基、アリール基等の置換基を有していてもよい。なお、アルキル基としては、直鎖状、分岐状及び環状のものが含まれる。また、アリール基は置換基として、アルキル基、アルコキシ基、アリール基又はハロゲン原子を有していてもよい。また、上述した基は、当該基が有している水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されていてもよい。
 ここで、アルキル基としては、炭素数1~20のアルキル基(「C~C20のアルキル基」と略す。以下同様。)が好ましい。このようなアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ラウリル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロドデシル基等が挙げられる。なかでも、溶媒への溶解性を良好にすることと、分子間の良好なパッキングを維持することとを両立する観点から、C~C12のアルキル基が好ましく、直鎖状のアルキル基が好ましい。また、アルキル基が有している水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されていてもよい。このようなアルキル基としては、トリフルオロメチル基、パーフルオロヘキシル基等が挙げられる。
 また、アルコキシ基としては、これらの有しているアルキル基がC~C20のアルキル基であるものが好ましい。C~C20のアルキル基としては、上述したものと同様のものが例示できる。また、アルコキシ基が有している水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されていてもよい。
 また、アリール基としては、C~C60のアリール基が好ましい。このようなアリール基としては、フェニル基、C~C12のアルキル基を有するフェニル基、C~C12のアルコキシ基を有するフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。なかでも、C~C14のアリール基が好ましく、C~C10のアリール基がより好ましい。また、アリール基が有している水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されていてもよい。
 上記一般式(1)において、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは、水素原子ではなく、置換基を有していてもよいアリール基及び-CHR2d-CHR2e2fで表される基のいずれかである。また、R1b、R1c及びR1dが、-CHR2d-CHR2e2fで表される基であることが好ましい。
 ここで、置換基を有していてもよいアリール基としては、C~C60のアリール基が好ましい。例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。なかでも、C~C14のアリール基が好ましく、C~C10のアリール基がより好ましい。これらのアリール基は、置換基として、アルキル基、アルコキシ基、アリール基又はハロゲン原子を有していてもよい。ここでアルキル基、アルコキシ基及びアリール基としては、上述したものと同様のものが例示できる。
 R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。
 R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。
 置換基を有していてもよいアルキル基としては、C~C20のアルキル基が好ましい。このようなアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ラウリル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロドデシル基等が挙げられる。なかでも、溶媒への溶解性を良好にすることと、分子間の良好なパッキングを維持することとを両立する観点から、C~C12のアルキル基が好ましく、その中でも直鎖状のアルキル基が特に好ましい。これらのアルキル基は、置換基として、アルコキシ基、アリール基、ハロゲン原子を有していてもよい。ここでアルコキシ基及びアリール基としては、上述したものと同様のものが例示できる。また、アルキル基は、その水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されたものであってもよく、そのようなアルキル基としては、トリフルオロメチル基、パーフルオロヘキシル基等が挙げられる。
 また、置換基を有していてもよいアリール基としては、上述したものと同様のものが例示できる。
 また、置換シリル基としては、C~C60の置換シリル基が好ましく、C~C48の置換シリル基がより好ましい。置換シリル基としては、アルキル基、アルコキシ基及びアリール基からなる群から選ばれる1~3個の基で置換されたシリル基が挙げられる。このようなシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-i-プロピルシリル基、フェニルジメチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、ジメチルエトキシシリル基等が挙げられる。
 R2aとR2bが互いに結合して環を形成する場合、-CHR2a-CHR2b2cで表される基としては、例えば、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 また、R2dとR2eが互いに結合して環を形成する場合、-CHR2d-CHR2e2fで表される基としては、例えば、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000030
 本実施形態に係る芳香族化合物は、溶媒への溶解性向上の観点から、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。
 また、本実施形態に係る芳香族化合物は、溶媒への溶解性向上の観点から、下記一般式(2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000031
 式中、m及びnはそれぞれ独立に1~3の整数を示し、R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基を示す。なお、R1a、R1b、R1c及びR1dは上記一般式(1)におけるR1a、R1b、R1c及びR1dと同一である。また、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基としては、上述したものと同様のものが例示できる。
 置換基を有していてもよいアルコキシ基としては、これらの有しているアルキル基がC~C20のアルキル基であるアルコキシ基が好ましい。ここでC~C20のアルキル基としては、上述のものと同様のものが例示できる。また、これらのアルコキシ基は、置換基として、アルキル基、アルコキシ基、アリール基、ハロゲン原子を有していてもよい。ここでアルキル基、アルコキシ基及びアリール基としては、上述したものと同様のものが例示できる。
 上記一般式(2)において、m=nであることが好ましい。m=nであると、分子構造の対称性が高くなることに起因して、上記芳香族化合物が分子間のパッキングに一層優れるものとなる傾向がある。特に、m=n=1であると好ましい。m=n=1である上記芳香族化合物から合成されるポリアセン化合物は、溶媒への溶解性とキャリア移動度の双方に一層優れるものとなる。
 本実施形態に係る芳香族化合物は、当該芳香族化合物が有しているキノン骨格の六員環の中心を基準点として、点対称な構造を有することが好ましい。点対称の構造を有する芳香族化合物から合成されるポリアセン化合物によれば、溶媒への溶解性とキャリア移動度の双方が一層優れるようになる。このような観点から、芳香族化合物は、例えば、下記一般式(3)で表される化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(3)式中、R1a及びR1cは、それぞれ-CHR2a-CHR2b2cで表される基であって互いに同一の基であり、R1b及びR1dは、それぞれ置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基であって互いに同一の基であり、R4aとR4b、及び、R4cとR4dは、互いに結合してそれぞれ上記B環及び上記A環を形成する基であって、R4aとR4cとが同一の基であり、R4bとR4dとが同一の基である。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。ここで、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基及び置換シリル基としては、上述したものと同様のものが例示できる。
 本実施形態に係る芳香族化合物としては、A環及びB環が、下記一般式(12)で表される構造を有することも好ましい。なお、下記一般式(12)で表される構造は、これが結合されるベンゼン環に対して上下反転していてもよい。
Figure JPOXMLDOC01-appb-C000033
 式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。なお、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基及び置換基を有していてもよいアリール基としては、それぞれ上述したものと同様のものが例示できる。
 また、上記一般式(12)において、X及びXが炭素原子であり、Xが硫黄原子であることがより好ましい。このような芳香族化合物は、溶媒への溶解性とキャリア移動度の双方に一層優れるポリアセン化合物を得るための原料化合物として有用である。
 上記一般式(12)で表される構造としては、例えば、下記式(001)、(002)、(003)、(004)、(005)、(006)、(007)、(008)、(009)、(010)、(011)、(012)及び(013)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 本実施形態に係る芳香族化合物としては、例えば、下記式(101)、(102)、(103)、(104)、(105)、(106)、(107)、(108)、(109)、(110)、(111)、(112)、(113)、(114)、(115)、(116)、(117)、(118)、(119)、(120)及び(121)で表される芳香族化合物が挙げられる。なかでも、下記式(105)、(106)、(107)、(108)及び(112)で表される芳香族化合物が好ましい。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
[芳香族化合物の製造方法]
 本実施形態に係る芳香族化合物の製造方法は、下記一般式(4)で表される化合物に、遷移金属錯体の存在下、下記一般式(5)で表される化合物を付加反応させ、下記一般式(6)で表される芳香族化合物を生成させることを特徴とする。すなわち、本実施形態に係る芳香族化合物の製造方法は、下記一般式(4)で表される化合物に、遷移金属錯体の存在下、下記一般式(5)で表される化合物を付加反応させる工程を備えることを特徴とする。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 上記一般式(4)、(5)及び(6)中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R5b及びR5cはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR8a-CHR8b8cで表される基を示す。ここで、R5b及びR5cのうち少なくとも2つが水素原子ではないことが好ましい。すなわち、R5b及びR5cは、合計で0~3つとなり得るが、これらが2つ以上となる場合、そのうちの2つ以上が水素原子とはならないことが好ましい。R6a、R6b及びR6cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R6aとR6bは互いに結合して環を形成していてもよい。R8a、R8b及びR8cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R8aとR8bは互いに結合して環を形成していてもよい。t及びuは、それぞれ0~2の整数であって、t+u≧1を満たす値である。なお、R5cが2つとなる場合、2つのR5cは互いに同じ基であっても異なる基であってもよく、またR5bが2つとなる場合、2つのR5bは互いに同じ基であっても異なる基であってもよい。
 ここで、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環、置換基を有していてもよい2~4の環からなる複素芳香族縮合環、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基及び置換シリル基としては、それぞれ上述したものと同様のものが例示できる。
 本実施形態に係る芳香族化合物の製造方法においては、上記一般式(4)で表される化合物の、カルボニル基に対するペリ位炭素とペリ位水素とを結ぶ結合(ペリ位の炭素-水素結合)に、上記一般式(5)で表される化合物が付加して、上記一般式(6)で表される化合物が生成する。このとき、上記一般式(4)で表される化合物が、ペリ位の炭素-水素結合を複数有している場合(すなわち、式(4)中のt+uが2以上である場合)には、複数のペリ位のいずれの箇所においても付加反応が生じる可能性がある。この場合、反応条件を適宜変更することにより、ペリ位の炭素-水素結合の一部又は全てに、上記一般式(5)で表される化合物が付加した生成物を得ることができる。
 上記一般式(4)で表される化合物は、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。このような化合物によれば、溶媒への溶解性向上の観点から好適な芳香族化合物を得ることができる。
 また、上記一般式(4)で表される化合物としては、付加反応の結果、上記一般式(6)で表される芳香族化合物として、上記一般式(2)又は(3)で表される芳香族化合物が得られるようなものがより好ましい。このような化合物としては、下記一般式(X)及び(Y)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 一般式(X)中、m、n、R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは、上記一般式(2)におけるm、n、R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同一である。また、u、t、R5b及びR5cは、上記一般式(4)におけるu、t、R5b及びR5cと同一である。
Figure JPOXMLDOC01-appb-C000041
 一般式(Y)中、R4a、R4b、R4c及びR4dは、上記一般式(3)におけるR4a、R4b、R4c及びR4dと同一である。また、u、t、R5b及びR5cは、上記一般式(4)におけるu、t、R5b及びR5cと同一である。
 上記一般式(4)で表される化合物としては、下記式(201)、(202)、(203)、(204)、(205)、(206)、(207)、(208)、(209)、(210)、(211)、(212)及び(213)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 また、上記一般式(5)で表される化合物としては、下記式(301)、(302)、(303)、(304)、(305)、(306)、(307)、(308)、(309)、(310)及び(311)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 本実施形態に係る芳香族化合物の製造方法における付加反応では、上記一般式(4)で表される化合物1モルに対して、上記一般式(5)で表される化合物を1~1000モル使用することが好ましい。上記付加反応を効率よく進行させる観点から、上記一般式(5)で表される化合物の使用量は、上記一般式(4)で表される化合物1モルに対して、1.1モル以上であることがより好ましく、4モル以上であることがさらに好ましい。また、上記付加反応の反応速度を向上させる観点からは、100モル以下であることがより好ましく、40モル以下であることがさらに好ましい。
 付加反応において用いる遷移金属錯体としては、周期律表8~10族の遷移金属錯体が好ましく、ルテニウム錯体及びロジウム錯体がより好ましく、ルテニウム錯体がさらに好ましい。
 好ましい遷移金属錯体としては、RuH(PPh、RuH(CO)(PR (Rはアルキル基又はアリール基を表す。複数存在するRは同一であっても異なっていてもよい。)、RuHX(CO)(PPh(Xはハロゲン原子を表す。)、Ru(CH=CH)(PPh(エチレントリス(トリフェニルホスフィン)ルテニウム)、RuH(H(PR (Rはアルキル基を表す。複数存在するRは同一であっても異なっていてもよい。)、[Ru(η-C )ClとPR とHCONaの三成分系(Rは水素又はアルキル基を表す。複数存在するRは同一であっても異なっていてもよい。Rはアルキル基又はアリール基を表す。複数存在するRは同一であっても異なっていてもよい。)、(η-CMe)Rh(CSiR (Rはアルキル基を表す。複数存在するRは同一であっても異なっていてもよい。)等が挙げられる。これらのうち、RuH(PPh(ジヒドリドテトラキス(トリフェニルホスフィン)ルテニウム)、RuH(CO)(PPh(ジヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム)がより好ましい。これらの錯体は、二種以上併用することもでき、またこれらの錯体は他の通常知られている型の配位子と併用することもできる。
 上記遷移金属錯体の使用量は、上記一般式(4)で表される化合物1モルに対して、0.0001~0.5モルが好ましく、0.01~0.2モルがより好ましい。
 付加反応は、無溶媒でも進行するが、溶媒を用いてもよい。使用する溶媒としては、反応に不活性な溶媒であればよく、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素溶媒、ベンゼン、トルエン等の芳香族炭化水素溶媒、テトラヒドロフラン、アニソール等のエーテル系溶媒、アセトニトリル等のニトリル系溶媒が挙げられる。これらのうち、ベンゼン、トルエン等の芳香族炭化水素溶媒が好ましい。
 また、付加反応は、空気中で行ってもよいが、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。不活性雰囲気中で反応を行うことにより、反応収率が向上するという効果が得られる。
 付加反応の際、反応に用いる反応容器は、乾燥させていなくても乾燥させていてもよいが、乾燥させた反応容器を使用することが好ましい。乾燥させた反応容器を用いることで、反応収率が向上するという効果が得られる。
 付加反応の反応温度は、20℃~200℃が好ましく、50℃~160℃がより好ましい。また、反応時間は、0.5分~200時間が好ましく、3分~50時間がより好ましい。反応温度が高すぎたり、反応時間が長すぎたりすると、触媒として作用し得る遷移金属錯体が活性を失うという不都合が生じるおそれがある。また、反応温度が低すぎたり、反応時間が短すぎたりすると、反応が十分に進行せず、収率が低くなるという不都合が生じるおそれがある。上述した条件を満たすように付加反応を行うことによって、効率よく目的とする芳香族化合物が得られる。
 本実施形態に係る芳香族化合物の製造は、例えば、以下のような操作により行うことができる。まず、窒素やアルゴン等の不活性ガスで反応容器全体を置換した後、この容器に遷移金属錯体、上記一般式(4)で表される化合物、上記一般式(5)で表される化合物及び必要に応じて溶媒を入れて、攪拌して混合する。それから、この混合物を必要に応じて加熱し、攪拌して反応させる。この際、加熱還流してもよい。
 ここで、上記一般式(5)で表される化合物が、常温で気体である場合、反応容器としてオートクレーブを用いることが好ましい。このような場合、例えば、オートクレーブ内を不活性ガスで置換した後、遷移金属錯体、上記一般式(4)で表される化合物及び必要に応じて溶媒を入れて、上記一般式(5)で表される化合物の気体を圧入して、必要に応じて加熱攪拌しつつ、反応させる。
 反応終了後は、例えば、反応後の混合物をそのまま濃縮するか、反応後の混合物を水中に入れて、トルエン、酢酸エチル、ジエチルエーテル、ジクロロメタン等の有機溶媒を用いて抽出処理した後、得られた有機層を濃縮することにより、目的とする上記一般式(6)で表される芳香族化合物を得ることができる。得られた芳香族化合物は、カラムクロマトグラフィー、抽出、再結晶、蒸留等により精製してもよい。
[ポリアセン化合物の製造方法]
 上述したような芳香族化合物は、これを出発原料として所定の反応を行うことによって、ポリアセン化合物を生成することができる。ポリアセン化合物の製造方法としては、以下の「ポリアセン化合物の製造方法(A)」及び「ポリアセン化合物の製造方法(B)」が挙げられる。まず、ポリアセン化合物の製造方法(A)では、好ましくは還元剤の存在下、上記一般式(1)で表される芳香族化合物を還元して、下記一般式(7)で表されるポリアセン化合物を生成させる。すなわち、ポリアセン化合物の製造方法(A)は、好ましくは還元剤の存在下、上記一般式(1)で表される芳香族化合物を還元する工程を備えることを特徴とする。
Figure JPOXMLDOC01-appb-C000045
 上記一般式(7)中、A環、B環、R1a、R1b、R1c及びR1dは、上記一般式(1)におけるA環、B環、R1a、R1b、R1c及びR1dと同一である。
 ポリアセン化合物の製造方法(A)で用いられる還元剤としては、例えば、水素、過酸化水素、二酸化硫黄、硫化水素、ヨウ化水素、水素化ホウ素ナトリウム、水素化リチウムアルミニウム、水素化トリエチルホウ酸リチウム、ジボラン、水素化ジイソブチルアルミニウム、ホスフィン酸ナトリウム、ヒドラジン、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の金属やそれらの錯体等が挙げられる。これらのうち、高い反応性が得られることから、ヨウ化水素、水素化リチウムアルミニウム及びホスフィン酸ナトリウムが好適に使用できる。
 このようなポリアセン化合物の製造方法(A)において、反応温度は、0~200℃、反応時間は、3分~100時間が好ましい。
 上記一般式(7)で表される化合物としては、溶媒への溶解性の観点から、A環及びB環がそれぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。上記一般式(1)で表される化合物として、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であるものを用いることで、このようなポリアセン化合物が得られる。
 上記一般式(7)で表される化合物としては、下記式(401)、(402)、(403)、(404)、(405)、(406)、(407)、(408)、(409)、(410)、(411)、(412)、(413)、(414)、(415)及び(416)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 また、ポリアセン化合物の製造方法(B)では、上記一般式(1)で表される芳香族化合物と有機金属化合物との反応により得られるジオール化合物を、好ましくは還元剤の存在下で還元して、下記一般式(8)で表されるポリアセン化合物を生成させる。すなわち、ポリアセン化合物の製造方法(B)は、上記一般式(1)で表される芳香族化合物と有機金属化合物との反応により得られるジオール化合物を、好ましくは還元剤の存在下で、還元する工程を備えることを特徴とする。
Figure JPOXMLDOC01-appb-C000048
 上記一般式(8)中、A環、B環、R1a、R1b、R1c及びR1dは、上記一般式(1)におけるA環、B環、R1a、R1b、R1c及びR1dと同一である。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。ここで、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基としては、上述したものと同様のものを例示できる。
 置換基を有していてもよいヘテロアリール基としては、C~C60のヘテロアリール基が好ましい。このようなヘテロアリール基としては、フリル基、チエニル基、チエニルチエニル基、チエノチエニル基、ピロリル基、ピリジル基、ビピリジル基、C~C12アルキルチエニル基、C~C12アルキルチエノチエニル基等が挙げられる。これらのうち、C~C12のヘテロアリール基がより好ましい。これらのヘテロアリール基は、置換基として、アルキル基、アルコキシ基、アリール基、ハロゲン原子等を有していてもよい。ここでアルキル基、アルコキシ基及びアリール基としては、上述したものと同様のものが例示できる。
 置換基を有していてもよいアルケニル基としては、-CR11=CR12-R13で表される基が挙げられる。ここでR11、R12及びR13としては、それぞれ独立に、水素原子、上述した置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換シリル基が挙げられる。
 置換基を有していてもよいアルキニル基としては、-C≡C-R10で表される基が挙げられる。ここでR10としては、上述した置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基や置換シリル基が挙げられる。
 ポリアセン化合物の製造方法(B)で用いられる有機金属化合物としては、R-MXで表される有機金属化合物が挙げられる。ここでRは、上記一般式(8)におけるRと同一であり、Mは金属原子を示し、Xはハロゲン原子を示し、nは0以上の整数を示す。上記Mで示される金属原子としては、リチウムやマグネシウムが好ましい。すなわち、上記有機金属化合物としては、有機リチウム化合物及び有機マグネシウム化合物が好ましい。
 ポリアセン化合物の製造方法(B)で用いられる還元剤としては、公知の還元剤を使用することができるが、反応性の観点から、塩化すず(II)を用いることが好ましく、塩化すず(II)と塩酸とを用いることがより好ましい。
 ポリアセン化合物の製造方法(B)では、上述のように、まず、第一段階として、上記一般式(1)で表される芳香族化合物のカルボニル基に対し、有機金属化合物が反応し、ジオール化合物が生成する。下記式(10)に、第一段階の反応スキームの例を記載する。
 このような第一段階の反応条件としては、反応温度は、-78~100℃、反応時間は、3分~10時間が好ましい。
 次いで、ポリアセン化合物の製造方法(B)では、第二段階として、第一段階で得られたジオール化合物を還元剤の存在下で還元して、ポリアセン化合物を生成する。下記式(11)に、第二段階の反応スキームの例を記載する。
Figure JPOXMLDOC01-appb-C000050
 上記第二段階の反応条件としては、反応温度は、0~100℃、反応時間は、3分~10時間が好ましい。
 上記一般式(8)で表される化合物としては、溶媒への溶解性の観点から、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることが好ましい。上記一般式(1)で表される化合物として、A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であるものを用いることで、このようなポリアセン化合物が得られる。
 上記一般式(8)で表される化合物としては、下記式(501)、(502)、(503)、(504)、(505)、(506)、(507)、(508)、(509)、(510)、(511)、(512)、(513)、(514)、(515)及び(516)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 上記のような製造方法(A)や製造方法(B)により得られたポリアセン化合物は、昇華、再結晶等の精製法によって精製することで、高純度化することができる。なお、本実施形態に係るポリアセン化合物の製造方法により製造できるポリアセン化合物としては、後述する式(901)、(902)、(903)、(904)、(905)、(906)、(907)、(908)、(909)、(910)、(911)、(912)、(913)、(914)、(915)、(916)、(917)、(918)及び(919)で表されるポリアセン化合物も挙げられる。
[ポリアセン化合物]
 次に、好適な実施形態に係るポリアセン化合物について説明する。本実施形態に係るポリアセン化合物は、例えば上記ポリアセン化合物の製造方法(A)又は製造方法(B)により得られるポリアセン化合物であり、上記一般式(7)又は上記一般式(8)で表される化合物である。
 上記ポリアセン化合物としては、溶媒への溶解性向上の観点から、下記一般式(13)で表されるポリアセン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000053
 式中、mは1~3の整数を示す。なお、R1a、R1b、R1c及びR1dは、上記一般式(1)におけるR1a、R1b、R1c及びR1dと同一であり、R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは上記一般式(2)におけるR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同一である。R14は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。
 上記一般式(13)で表されるポリアセン化合物において、溶媒への溶解性向上の観点から、R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることが好ましい。
 また、上記一般式(13)で表されるポリアセン化合物において、R1a、R1b、R1c及びR1dが同一の基であり、R3a、R3d、R3e及びR3hが同一の基であり、R3b、R3c、R3f及びR3gが同一の基であることが好ましい。このようなポリアセン化合物は、分子構造の対称性が高くなることに起因して、分子間パッキングに一層優れるものとなる傾向がある。また、上記一般式(13)で表されるポリアセン化合物において、m=1であることが好ましい。
 また、上記ポリアセン化合物としては、キャリア移動度に一層優れる観点から、下記一般式(14)で表されるポリアセン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000054
 式中、a環及びb環はそれぞれ独立に、下記一般式(12)で表される構造を有する複素芳香族環又は2~4の環からなる芳香族縮合環を示す。なお、R1a、R1b、R1c及びR1dは、上記一般式(1)におけるR1a、R1b、R1c及びR1dと同一であり、R14は上記一般式(13)におけるR14と同一である。
Figure JPOXMLDOC01-appb-C000055
 式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。なお、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基としては、それぞれ上述したものと同様のものが例示できる。
 上記一般式(14)で表されるポリアセン化合物において、溶媒への溶解性向上の観点から、R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることが好ましい。
 また、上記一般式(14)で表されるポリアセン化合物において、R1a、R1b、R1c及びR1dが同一の基であり、a環及びb環が同一の環であることが好ましい。このようなポリアセン化合物は、分子構造の対称性が高くなることに起因して、分子間パッキングに一層優れるものとなる傾向がある。
 また、上記一般式(14)で表されるポリアセン化合物としては、X及びXが炭素原子であり、Xが硫黄原子であるポリアセン化合物が好ましい。このようなポリアセン化合物は、溶媒への溶解性とキャリア移動度の双方に一層優れる傾向にある。
 本実施形態に係るポリアセン化合物としては、例えば、上述した式(401)、(402)、(403)、(404)、(405)、(406)、(407)、(408)、(409)、(410)、(411)、(412)、(413)、(414)、(415)、(416)、(501)、(502)、(503)、(504)、(505)、(506)、(507)、(508)、(509)、(510)、(511)、(512)、(513)、(514)、(515)及び(516)で表されるポリアセン化合物が挙げられ、さらには、下記式(901)、(902)、(903)、(904)、(905)、(906)、(907)、(908)、(909)、(910)、(911)、(912)、(913)、(914)、(915)、(916)、(917)、(918)及び(919)で表されるポリアセン化合物が挙げられる。なかでも、下記式(901)、(905)、(906)、(907)、(908)、(909)、(910)、(911)、(912)、(914)、(915)、(916)、(918)及び(919)で表されるポリアセン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
[有機薄膜]
 次に、好適な実施形態に係る有機薄膜について説明する。有機薄膜は、膜状の形状を有し、上述した実施形態の芳香族化合物を含む。また、別の実施形態において、有機薄膜は、膜状の形状を有し、上記一般式(7)又は(8)で表されるポリアセン化合物を含む。そして、芳香族化合物や、上記一般式(7)又は(8)で表されるポリアセン化合物のいずれを含む場合であっても、有機薄膜は、高い電荷輸送性を発揮することができる。
 有機薄膜の好適な厚さは、当該有機薄膜を適用する素子に応じて異なるが、通常1nm~100μmの範囲であり、2nm~1000nmであると好ましく、5nm~500nmであるとより好ましく、20nm~200nmであると更に好ましい。
 有機薄膜は、上記芳香族化合物又は上記ポリアセン化合物の1種類を単独で含むものであってもよく、また2種類以上を含むものであってもよい。また、上記芳香族化合物と上記ポリアセン化合物の双方を含むものであってもよい。また、有機薄膜は、電子輸送性又はホール輸送性を高めるため、電子輸送性又はホール輸送性を有する低分子化合物又は高分子化合物を芳香族化合物又はポリアセン化合物に加えて更に含んでいてもよい。有機薄膜が、上記芳香族化合物及び上記ポリアセン化合物以外の成分を含む場合は、上記芳香族化合物又は上記ポリアセン化合物を30質量%以上含むことが好ましく、50質量%以上含むことがより好ましい。芳香族化合物又はポリアセン化合物の含有量が30質量%未満である場合、薄膜化が困難となったり、良好な電荷移動度が得られ難くなったりする傾向にある。
 ホール輸送性を有する化合物としては、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が例示できる。
 また、電子輸送性を有する化合物としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体が例示できる。
 有機薄膜は、その特性を向上させるために、その他の成分を更に含有していてもよい。その他の成分としては、電荷発生材料が挙げられる。有機薄膜が電荷発生材料を含むことで、当該薄膜が光を吸収して電荷を発生するようになり、光の吸収による電荷発生を要する光センサ等の用途に好適となる。
 電荷発生材料としては、アゾ化合物及びその誘導体、ジアゾ化合物及びその誘導体、無金属フタロシアニン化合物及びその誘導体、金属フタロシアニン化合物及びその誘導体、ペリレン化合物及びその誘導体、多環キノン系化合物及びその誘導体、スクアリリウム化合物及びその誘導体、アズレニウム化合物及びその誘導体、チアピリリウム化合物及びその誘導体、C60等のフラーレン類及びその誘導体等が挙げられる。
 また、有機薄膜は、種々の機能を発現させるために必要な材料を更に含んでいてもよい。例えば、吸収した光により電荷を発生させる機能を増感するためのため増感剤、安定性を増すための安定化剤、UV光を吸収するためのUV吸収剤等が挙げられる。
 さらに、有機薄膜は、その機械的強度を高める観点から、高分子化合物材料を高分子バインダーとして含有していてもよい。このような高分子バインダーとしては、電荷輸送性を過度に低下させないものが好ましく、また、可視光を過度に吸収しないものが好ましい。
 高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
 上述した有機薄膜は、例えば、以下のような方法によって製造することができる。
 すなわち、有機薄膜は、上記芳香族化合物又は上記ポリアセン化合物、並びに、必要に応じて上述したその他の成分を溶媒に溶解させた溶液を、所定の基材上に塗布した後、溶媒を揮発させる等により除去する方法(塗布法)によって形成することができる。上記芳香族化合物又は上記ポリアセン化合物は、いずれも内部のベンゼン環にアルキル基が結合した構造を有することから、溶媒への溶解性に優れており、このような塗布法によって大面積で均質な薄膜を形成するのに有利である。なお、上記芳香族化合物又は上記ポリアセン化合物が昇華性を有する場合は、真空蒸着法等の方法により有機薄膜を形成してもよい。
 溶媒としては、上記芳香族化合物又は上記ポリアセン化合物や、その他の成分を溶解又は均一に分散し得るものが好ましい。このような溶媒としては、トルエン、キシレン、メシチレン、テトラリン、デカリン、n-ブチルベンゼン等の芳香族炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒が例示できる。上記芳香族化合物又は上記ポリアセン化合物は、溶媒に0.1質量%以上溶解させることが好ましい。
 溶液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法等が挙げられる。なかでも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 なお、有機薄膜に対しては、その用途に応じて有機薄膜中の上記芳香族化合物又は上記ポリアセン化合物を、配向させる工程を更に施してもよい。かかる配向によって、有機薄膜中の上記芳香族化合物又は上記ポリアセン化合物が一定の方向に並ぶこととなり、有機薄膜の電荷輸送性が更に高められる。
 有機薄膜の配向方法としては、通常液晶等の配向に用いられる方法を適用することができる。具体的には、ラビング法、光配向法、シェアリング法(ずり応力印加法)、引き上げ塗布法等が、簡便かつ有用であることから好ましく、ラビング法、シェアリング法がより好ましい。
[有機薄膜トランジスタ]
 上述した実施形態の有機薄膜は、上記実施形態の芳香族化合物又はポリアセン化合物を含むことから、優れた電荷(電子又はホール)輸送性を有するものとなる。したがって、この有機薄膜は、電極等から注入された電子又はホール、或いは、光吸収により発生した電荷等を効率よく輸送できるものであり、有機薄膜を用いたトランジスタ等に応用することができる。以下、好適な実施形態に係る有機薄膜トランジスタについて説明する。有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり上記実施形態の芳香族化合物又はポリアセン化合物を含む有機半導体層(活性層)、電流経路を通る電流量を制御するゲート電極を備えた構造であればよく、電界効果型、静電誘導型が例示される。
 電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり上記実施形態の芳香族化合物又はポリアセン化合物を含む有機半導体層(活性層)、電流経路を通る電流量を制御するゲート電極、並びに、活性層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、上記実施形態の芳香族化合物又はポリアセン化合物を含む有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。
 一方、静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり上記実施形態の芳香族化合物又はポリアセン化合物を含む有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、該ゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、上記実施形態の芳香族化合物又はポリアセン化合物を含む有機半導体層に接して設けられていることが好ましい。ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、かつゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、くし形電極が挙げられる。
 図1は第1実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図1に示す有機薄膜トランジスタ100は、基板1と、基板1上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された活性層2と、活性層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
 図2は第2実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図2に示す有機薄膜トランジスタ110は、基板1と、基板1上に形成されたソース電極5と、ソース電極5を覆うようにして基板1上に形成された活性層2と、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6と、活性層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
 図3は、第3の実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図3に示す有機薄膜トランジスタ120は、基板1と、基板1上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うようにして活性層2上に形成された絶縁層3と、ソース電極5が下部に形成されている絶縁層3の領域とドレイン電極6が下部に形成されている絶縁層3の領域とをそれぞれ一部覆うように、絶縁層3上に形成されたゲート電極4と、を備えるものである。
 図4は第4実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図4に示す有機薄膜トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うように絶縁層3上に形成された活性層2と、を備えるものである。
 図5は第5実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図5に示す有機薄膜トランジスタ140は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように絶縁層3上に形成されたソース電極5と、ソース電極5を一部覆うようにして絶縁層3上に形成された活性層2と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6と、を備えるものである。
 図6は第6実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図6に示す有機薄膜トランジスタ150は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を覆うように形成された活性層2と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように絶縁層3上に形成されたソース電極5と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6と、を備えるものである。
 図7は第7実施形態に係る有機薄膜トランジスタ(静電誘導型有機薄膜トランジスタ)の模式断面図である。図7に示す有機薄膜トランジスタ160は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された活性層2と、活性層2上に所定の間隔を持って複数形成されたゲート電極4と、ゲート電極4の全てを覆うようにして活性層2上に形成された活性層2a(活性層2aを構成する材料は、活性層2と同一でも異なっていてもよい)と、活性層2a上に形成されたドレイン電極6と、を備えるものである。
 第1~第7実施形態に係る有機薄膜トランジスタにおいては、活性層2及び/又は活性層2aは、上記実施形態の芳香族化合物又はポリアセン化合物を含有しており、ソース電極5とドレイン電極6の間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより活性層2及び/又は活性層2aにおける電流通路(チャネル)を通る電流量を制御する。
 このような電界効果型有機薄膜トランジスタは、公知の方法、例えば特開平5-110069号公報記載の方法により製造することができる。また、静電誘導型有機薄膜トランジスタは、公知の方法、例えば特開2004-006476号公報記載の方法により製造することができる。
 基板1としては、有機薄膜トランジスタとしての特性を阻害しなければよく、ガラス基板やフレキシブルなフィルム基板やプラスチック基板を用いることができる。
 活性層2を形成する際に、有機溶媒可溶性の化合物を用いることが製造上非常に有利であり好ましいことから、上記で説明した本発明の有機薄膜の製造方法を用いて、活性層2となる有機薄膜を形成することができる。
 活性層2に接した絶縁層3としては、電気の絶縁性が高い材料であればよく、公知のものを用いることができる。例えば、SiOx、SiNx、Ta、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス及びフォトレジストが挙げられる。低電圧化の観点から、誘電率の高い材料の方が好ましい。
 絶縁層3の上に活性層2を形成する場合は、絶縁層3と活性層2の界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3の表面を処理して表面改質した後に活性層2を形成することも可能である。表面処理剤としては、長鎖アルキルクロロシラン類、長鎖アルキルアルコキシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン等のシリルアミン化合物が挙げられる。表面処理剤で処理する前に、絶縁層表面をオゾンUV、Oプラズマで処理をしておくことも可能である。
 また、有機薄膜トランジスタを作製後、素子を保護するために有機薄膜トランジスタ上に保護膜を形成することが好ましい。これにより、有機薄膜トランジスタが、大気から遮断され、有機薄膜トランジスタの特性の低下を抑えることができる。また、保護膜により有機薄膜トランジスタの上に駆動する表示デバイスを形成する工程からの影響を低減することができる。
 保護膜を形成する方法としては、UV硬化樹脂、熱硬化樹脂又は無機のSiON膜でカバーする方法が挙げられる。大気との遮断を効果的に行うため、有機薄膜トランジスタを作製後、保護膜を形成するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中)行うことが好ましい。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1:5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオンの合成)
 10mLシュレンクチューブと、テフロン(登録商標)コーティングした磁気撹拌子を定温乾燥機に入れ加熱した。充分に加熱した後、これらを定温乾燥機から取り出し、シュレンクチューブ内に磁気撹拌子を入れた。その後、シュレンクチューブ内を減圧窒素置換した。シュレンクチューブを室温まで放冷した後、ペンタセン-6,13-ジオン(0.5mmol、154.1mg)、RuH(CO)(PPh錯体(0.10mmol,91.9mg)を加えた。次いで、シュレンクチューブ内を減圧窒素置換した後、トルエン(1.0mL)、トリエチルビニルシラン(5.0mmol,920mL)を加えた。
 それから、シュレンクチューブをオイルバス(145℃)で加熱して、内部の混合物を50時間反応させた後、生成物を単離した。生成物の単離は、ゲルパーミエーションクロマトグラフィー(gel permeation chromatography、溶離液=CHCl)を用いて精製することにより行った。その結果、収率56%で、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオンを得た。得られた生成物のH-NMR、13C-NMR、IR及びAPCI-HRMSによる測定結果並びに融点を以下に示す。
H NMR(CDCl):δ 0.749(q,24H,J=7.8Hz,SiCHCH),1.045-1.115(m,44H,CH3 and ArCHCHSi),3.30-3.50(m,8H,ArCH),7.632(dd,4H,J=3.4,6.3Hz,ArH),8.206(dd,4H,J=3.4,6.3Hz,ArH)
13C NMR(CDCl):δ 3.424,7.648,15.259,23.297,126.133,127.637,131.467,133.423,141.231,192.583
IR(KBr):3081 w,2952 s,2908 s,2874 s,2805 w,2730 w,1672 s,1613 w,1566 w,1507 w,1457 w,1438 w,1415 w,1391 m,1358 w,1341 w,1312 w,1278 m,1226 m,1179 w,1169 w,1144 w,1098 m,1046 w,1005 m,833 w,798 w,771 m,756 s,735 s,562 w cm-1
APCI-HRMS(+):calced for C5485Si (M+H) 877.56266,found 877.56130.
mp 171-171.5oC
 次に、22℃で、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオン13.5mgをヘキサン51.6mgに加えたところ完全に溶解した。ヘキサンに対する溶解度は26重量%であった。
 なお、本実施例において生じた反応は、以下の反応スキームに示される通りである。
Figure JPOXMLDOC01-appb-C000058
(実施例2: 5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンの合成)
 10mLシュレンクチューブ、テフロン(登録商標)コーティングした磁気撹拌子を定温乾燥機に入れ加熱した。充分に加熱した後、これらを定温乾燥機から取り出し、シュレンクチューブ内に磁気撹拌子を入れた。その後、シュレンクチューブを減圧/窒素ラインにつなぎ、反応装置全体を窒素置換した。反応容器を室温まで放冷した後、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオン(0.95mmol,43.9mg)を加えた。次いで、反応装置全体を減圧窒素置換した後、酢酸(1.0mL)、ヨウ素酸(0.5mmol)を加えた。
 それから、シュレンクチューブをオイルバス(140℃)で加熱して、内部の混合物を3日間反応させた。そして、反応溶液を濃縮することにより、目的の5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンを得た。
 なお、本実施例において生じた反応は、以下の反応スキームに示される通りである。
Figure JPOXMLDOC01-appb-C000059
(実施例3: 5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンの合成)
 5mLの二つ口フラスコ、還流冷却管、吹き込み管、テフロン(登録商標)コーティングした磁気撹拌子を定温乾燥機に入れ加熱した。充分に加熱した後、これらを定温乾燥機から取り出し、二つ口フラスコに磁気撹拌子を入れた。その後、二つ口フラスコに還流冷却管と吹き込み管を取り付けた。吹き込み管を減圧/窒素ラインにつなぎ、反応装置全体を窒素置換した。反応容器を室温まで放冷した後、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオン(0.1mmol,88.0mg)を加えた。tert-ブチルメチルエーテル(TBME)(2.0mL)を加えた後、混合溶液を氷浴中で0℃に冷却した。この溶液の中に、LiAlH(0.4mmol)を加えた。氷浴を取り外した後、反応溶液をオイルバスで加熱して、窒素雰囲気下で1時間反応させた。
 その後、反応溶液を氷浴中で0℃に冷却した。この反応溶液の中に、1mol/Lの塩酸(1mL)を加えた後、反応溶液をオイルバスで加熱して、窒素雰囲気下で3時間反応させた。反応溶液を10mLのシュレンクチューブに移した後、この中に窒素置換したジクロロメタンと窒素置換した蒸留水を加え、生成物を抽出した。有機層をエバポレーションにより濃縮することにより、目的の5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンを収率95%(80.6mg)で得た。得られた生成物のH-NMR及びAPCI-MSによる測定結果を以下に示す。
H NMR(acetone-d):δ 0.80(m,32H,SiCHCH and ArCHCHSi),1.09(t,J=8.1Hz,36H,CH),3.92-4.41(m,8H,ArCH),7.45-7.49(m,4H,ArH),8.32-8.36(m,4H,ArH),9.64(s,2H,ArH).
APCI-MS(+): m/z=847(M+1,68),846(M,87),845(M-1,100)
cf.Chemical Formula:C5486Si
   Exact Mass:846.5807,
   Molecular Weight:847.6026
 なお、本実施例において生じた反応は、以下の反応スキームに示される通りである。
Figure JPOXMLDOC01-appb-C000060
(実施例4: 電界効果型有機薄膜トランジスタの評価)
 5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオンのトランジスタ特性を、電界効果型有機薄膜トランジスタを作製して測定した。作製した有機薄膜トランジスタの模式断面図を図8に示す。ゲート電極となる高濃度にドーピングされたn-型シリコン基板10の表面を熱酸化し、300nmのシリコン酸化膜(以下、「熱酸化膜」という。)20を形成した。次に、フォトリソ工程により熱酸化膜20上に、チャネル長20μm、チャネル幅2mmのソース電極30、及びドレイン電極40(熱酸化膜20側から、クロム、金の順番で蒸着)を作製した。こうして得られた基板を十分洗浄した後、ヘキサメチレンジシラザンを用いて、スピンコート法により基板表面をシラン処理した。
 次に、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセン-6,13-ジオンと下式:
Figure JPOXMLDOC01-appb-C000061
で表される高分子化合物(TFB、数平均分子量Mn=6.4×10、重量平均分子量、Mw=1.6×10)の混合物(重量比1:1)をクロロホルムに溶解して0.5重量%の溶液を作製し、メンブランフィルターでろ過した後、上記表面処理した基板上にスピンコート法により約80nmの有機半導体層50を形成した。
 こうして得られた電界効果型有機薄膜トランジスタに、ゲート電圧Vgを0V~-60Vの間で変化させ、ソース-ドレイン間電圧Vsdを-50Vとしてトランジスタ特性を測定したところ、キャリア移動度は5.8×10-4cm/Vsを示した。
(実施例5: 電界効果型有機薄膜トランジスタの評価)
 5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンのトランジスタ特性を、電界効果型有機薄膜トランジスタを作製して測定した。作製した有機薄膜トランジスタの模式断面図を図8に示す。ゲート電極となる高濃度にドーピングされたn-型シリコン基板10の表面を熱酸化し、300nmのシリコン酸化膜(以下、「熱酸化膜」という。)20を形成した。次に、フォトリソ工程により熱酸化膜20上に、チャネル長5μm、チャネル幅38mmのくし型ソース電極30、及びくし型ドレイン電極40(金を蒸着)を作製した。
 次に、5,7,12,14-テトラキス(2-(トリエチルシリル)エチル)ペンタセンをクロロホルムに溶解して1重量%の溶液を作製し、上記表面処理した基板上にスピンコート法(1500rpm、60秒)により有機半導体層50を形成した。その後100℃で30分真空下で加熱した。
 こうして得られた電界効果型有機薄膜トランジスタに、ゲート電圧Vgを0V~-80Vの間で変化させ、ソース-ドレイン間電圧Vsdを-50Vとしてトランジスタ特性を測定したところ、キャリア移動度は4.8×10-6cm/Vsを示した。
(実施例6:4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン-5,11-ジオン及び4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェン-5,11-ジオンの合成)
 10mLシュレンクチューブと、テフロン(登録商標)コーティングした磁気撹拌子を定温乾燥機に入れ加熱した。充分に加熱した後、これらを定温乾燥機から取り出し、シュレンクチューブ内に磁気撹拌子を入れた。その後、シュレンクチューブ内を減圧窒素置換した。シュレンクチューブを室温まで放冷した後、アントラ[2,3-b:6,7-b’]ジチオフェン-5,11-ジオン及びアントラ[2,3-b:7,6-b’]ジチオフェン-5,11-ジオンの1対1混合物(0.5mmol、154.1mg)、RuH(CO)(PPh錯体(0.05mmol、45.9mg)を加えた。次いで、シュレンクチューブ内を減圧窒素置換した後、トルエン(1.0mL)、トリエチルビニルシラン(5.0mmol,920mL)を加えた。
 それから、シュレンクチューブをオイルバス(115℃)で加熱して、内部の混合物を48時間反応させた後、生成物を単離した。生成物の単離は、ゲルパーミエーションクロマトグラフィー(gel permeation chromatography、溶離液=CHCl)を用いて精製することにより行った。その結果、収率28%で、4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン-5,11-ジオン及びを4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェン-5,11-ジオンの1対1混合物を得た。得られた生成物のH-NMR及び13C-NMRによる測定結果を以下に示す。
H NMR(CDCl):δ 0.70-0.80(m,24H,SiCHCH),1.04-1.15(m,44H,CH and ArCHCHSi),3.22-3.31(m,8H,ArCH),7.54-7.50(m,2H,thiophene-H),7.63-7.69(m,2H,thiophene-H)
13C NMR(CDCl):δ 3.37,3.41,7.63,7.64,13.24,13.30,14.93,14.98,25.42,25.45,27.93,27.97,123.94,129.40,129.79,131.05,131.38,138.70,138.88,139.76,139.93,141.39,144.31,144.44,190.20,190.88,191.57
 次に、26℃で、4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン-5,11-ジオン及び4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェン-5,11-ジオンの1対1混合物9.3mgをヘキサン180.1mgに加えたところ完全に溶解した。ヘキサンに対する溶解度は5重量%であった。
 なお、本実施例において生じた反応は、以下の反応スキームに示される通りである。
Figure JPOXMLDOC01-appb-C000062
(実施例7:4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン及び4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェンの合成)
5mLの二つ口フラスコ、還流冷却管、吹き込み管、テフロン(登録商標)コーティングした磁気撹拌子を定温乾燥機に入れ加熱した。充分に加熱した後、これらを定温乾燥機から取り出し、二つ口フラスコに磁気撹拌子を入れた。その後、二つ口フラスコに還流冷却管と吹き込み管を取り付けた。吹き込み管を減圧/窒素ラインにつなぎ、反応装置全体を窒素置換した。反応容器を室温まで放冷した後、4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン-5,11-ジオン及び4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェン-5,11-ジオンの1対1混合物(0.05mmol,43.1mg)を加えた。tert-ブチルメチルエーテル(TBME)(1.0mL)を加えた後、混合溶液を氷浴中で0℃に冷却した。この溶液の中に、LiAlH(0.2mmol)を加えた。氷浴を取り外した後、反応溶液をオイルバスで加熱して、窒素雰囲気下で1時間反応させた。
 その後、反応溶液を氷浴中で0℃に冷却した。この反応溶液の中に、1mol/Lの塩酸(0.5mL)を加えた後、反応溶液をオイルバスで加熱して、窒素雰囲気下で3時間反応させた。反応溶液を10mLのシュレンクチューブに移した後、この中に窒素置換したジクロロメタンと窒素置換した蒸留水を加え、生成物を抽出した。有機層をエバポレーションにより濃縮することにより、目的の4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:6,7-b’]ジチオフェン及び4,6,10,12-テトラキス(2-(トリエチルシリル)エチル)アントラ[2,3-b:7,6-b’]ジチオフェンの1:1混合物を収率64%(26.6mg)で得た。得られた生成物のH-NMRの測定結果を以下に示す。
H NMR(CDCl):δ 0.60-1.3(m,SiCHCH and SiCH),3.45-3.50(m,ArCH),3.55-3.65(m,ArCH),7.40-7.52(m,thiophene-H),7.63-7.69(m,thiophene-H),8.99(s,ArH),9.11(s,ArH),9.23(s,ArH)
 なお、本実施例において生じた反応は、以下の反応スキームに示される通りである。
Figure JPOXMLDOC01-appb-C000063
 1…基板、2…活性層、2a…活性層、3…絶縁層、4…ゲート電極、5…ソース電極、6…ドレイン電極、10…ゲート電極、20…絶縁層(シリコン酸化膜、熱酸化膜)、30…ソース電極、40…ドレイン電極、50…有機半導体層、100…第1実施形態に係る有機薄膜トランジスタ、110…第2実施形態に係る有機薄膜トランジスタ、120…第3実施形態に係る有機薄膜トランジスタ、130…第4実施形態に係る有機薄膜トランジスタ、140…第5実施形態に係る有機薄膜トランジスタ、150…第6実施形態に係る有機薄膜トランジスタ、160…第7実施形態に係る有機薄膜トランジスタ。

Claims (29)

  1.  下記一般式(1)で表される芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。]
  2.  A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることを特徴とする、請求項1に記載の芳香族化合物。
  3.  下記一般式(2)で表される化合物であることを特徴とする、請求項1又は2に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。m及びnはそれぞれ独立に1~3の整数を示す。R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基を示す。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく、異なる基であってもよい。]
  4.  m=nであることを特徴とする、請求項3に記載の芳香族化合物。
  5.  m=n=1であることを特徴とする、請求項4に記載の芳香族化合物。
  6.  R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることを特徴とする、請求項1~5のいずれか一項に記載の芳香族化合物。
  7.  下記一般式(3)で表される化合物であることを特徴とする、請求項1に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1a及びR1cは、それぞれ-CHR2a-CHR2b2cで表される基であって互いに同一の基であり、R1b及びR1dは、それぞれ置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基であって互いに同一の基であり、R4aとR4b、及び、R4cとR4dは、互いに結合してそれぞれ前記B環及び前記A環を形成する基であって、R4aとR4cとが同一の基であり、R4bとR4dとが同一の基である。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。]
  8.  A環及びB環が、下記一般式(12)で表される構造を有することを特徴とする、請求項1に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。]
  9.  下記一般式(4)で表される化合物に、遷移金属錯体の存在下、下記一般式(5)で表される化合物を付加反応させる工程を含む、下記一般式(6)で表される芳香族化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    [式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R5b及びR5cはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR8a-CHR8b8cで表される基を示す。R6a、R6b及びR6cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R6aとR6bは互いに結合して環を形成していてもよい。R8a、R8b及びR8cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R8aとR8bは互いに結合して環を形成していてもよい。t及びuはそれぞれ独立に0~2の整数であって、t+u≧1を満たす値である。なお、R5cが2つとなる場合、2つのR5cは互いに同じ基であっても異なる基であってもよく、またR5bが2つとなる場合、2つのR5bは互いに同じ基であっても異なる基であってもよい。]
  10.  A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることを特徴とする、請求項9に記載の芳香族化合物の製造方法。
  11.  R5b及びR5cのうちの少なくとも2つが、水素原子ではないことを特徴とする、請求項9又は10に記載の芳香族化合物の製造方法。
  12.  前記遷移金属錯体が、周期律表8~10族の遷移金属を含有する錯体であることを特徴とする、請求項9~11のいずれか一項に記載の芳香族化合物の製造方法。
  13.  前記遷移金属錯体が、ルテニウム錯体であることを特徴とする請求項12に記載の芳香族化合物の製造方法。
  14.  前記遷移金属錯体が、RuH(PPh又はRuH(CO)(PPhであることを特徴とする、請求項13に記載の芳香族化合物の製造方法。
  15.  下記一般式(15)で表されるポリアセン化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。R14は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるR14は互いに同一であっても異なっていてもよい。]
  16.  R1b、R1c及びR1dが、それぞれ独立に、-CHR2d-CHR2e2fで表される基であることを特徴とする、請求項15に記載のポリアセン化合物。
  17.  R1a、R1b、R1c及びR1dが同一の基であり、A環及びB環が有している全ての置換基が同一の基であることを特徴とする、請求項16に記載のポリアセン化合物。
  18.  下記一般式(13)で表されるポリアセン化合物。
    Figure JPOXMLDOC01-appb-C000009
    [式中、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。mは1~3の整数を示す。R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基を示す。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく、異なる基であってもよい。R14は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるR14は互いに同一であっても異なっていてもよい。]
  19.  m=1であることを特徴とする、請求項18に記載のポリアセン化合物。
  20.  A環及びB環が、下記一般式(12)で表される構造を有することを特徴とする、請求項15に記載のポリアセン化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式中、X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。Xは、窒素原子、酸素原子、硫黄原子、セレン原子又は-X=X-で表される基を示し、窒素原子である場合は、当該窒素原子には水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。X及びXはそれぞれ独立に、炭素原子又は窒素原子を示し、炭素原子である場合、当該炭素原子には、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアリール基が結合している。]
  21.  Xが、窒素原子、酸素原子、硫黄原子又はセレン原子であることを特徴とする、請求項20記載のポリアセン化合物。
  22.  Xが硫黄原子であり、X及びXが炭素原子であることを特徴とする、請求項21に記載のポリアセン化合物。
  23.  下記一般式(1)で表される芳香族化合物を還元する工程を含む、下記一般式(7)で表されるポリアセン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    [式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。]
  24.  A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることを特徴とする、請求項23に記載のポリアセン化合物の製造方法。
  25.  下記一般式(1)で表される芳香族化合物と有機金属化合物との反応により得られるジオール化合物を還元する工程を含む、下記一般式(8)で表されるポリアセン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    [式中、A環及びB環はそれぞれ独立に、置換基を有していてもよいベンゼン環、置換基を有していてもよい2~4の環からなる芳香族縮合環、置換基を有していてもよい複素芳香族環又は置換基を有していてもよい2~4の環からなる複素芳香族縮合環を示し、R1aは-CHR2a-CHR2b2cで表される基を示し、R1b、R1c及びR1dはそれぞれ独立に、水素原子、置換基を有していてもよいアリール基又は-CHR2d-CHR2e2fで表される基を示す。ただし、R1b、R1c及びR1dのうちの少なくとも2つは水素原子ではない。R2a、R2b及びR2cはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2aとR2bは互いに結合して環を形成していてもよい。R2d、R2e及びR2fはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換シリル基を示し、R2dとR2eは互いに結合して環を形成していてもよい。なお、R2d、R2e、R2fがそれぞれ複数となる場合、同じ符号の基同士は、それぞれ同一の基であってもよく異なる基であってもよい。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルケニル基又は置換基を有していてもよいアルキニル基を示す。複数あるRは互いに同一であっても異なっていてもよい。]
  26.  A環及びB環が、それぞれ独立に、置換基を有していてもよいベンゼン環又は置換基を有していてもよい2~4の環からなる芳香族縮合環であることを特徴とする、請求項25に記載のポリアセン化合物の製造方法。
  27.  請求項1~8のいずれか一項に記載の芳香族化合物を含むことを特徴とする、有機薄膜。
  28.  請求項23~26のいずれか一項に記載の製造方法により製造されたポリアセン化合物を含むことを特徴とする、有機薄膜。
  29.  ソース電極及びドレイン電極と、これら電極の間の電流経路となる有機半導体層と、前記電流経路を通る電流量を制御するゲート電極と、を備える有機薄膜トランジスタであって、前記有機半導体層が請求項27又は28に記載の有機薄膜を備えることを特徴とする、有機薄膜トランジスタ。
PCT/JP2010/050822 2009-01-22 2010-01-22 芳香族化合物及びその製造方法 WO2010084960A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10733567A EP2383273A4 (en) 2009-01-22 2010-01-22 AROMATIC COMPOUND AND METHOD FOR PRODUCING THE SAME
US13/145,487 US20120012822A1 (en) 2009-01-22 2010-01-22 Aromatic compound and method for producing same
CN2010800051075A CN102292342A (zh) 2009-01-22 2010-01-22 芳香族化合物及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-012206 2009-01-22
JP2009012206 2009-01-22
JP2009109577 2009-04-28
JP2009-109577 2009-04-28

Publications (1)

Publication Number Publication Date
WO2010084960A1 true WO2010084960A1 (ja) 2010-07-29

Family

ID=42356010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050822 WO2010084960A1 (ja) 2009-01-22 2010-01-22 芳香族化合物及びその製造方法

Country Status (6)

Country Link
US (1) US20120012822A1 (ja)
EP (1) EP2383273A4 (ja)
JP (1) JP2010275290A (ja)
KR (1) KR20110106441A (ja)
CN (1) CN102292342A (ja)
WO (1) WO2010084960A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666549A (zh) * 2009-12-14 2012-09-12 出光兴产株式会社 多环稠环化合物以及使用该多环稠环化合物的有机薄膜晶体管
GB2486202A (en) * 2010-12-06 2012-06-13 Cambridge Display Tech Ltd Adhesion layer for solution-processed transition metal oxides on inert metal contacts of organic thin film transistors.
US9673558B2 (en) 2014-05-08 2017-06-06 Baker Hughes Incorporated Systems and methods for maintaining pressure on an elastomeric seal
GB2542346A (en) * 2015-09-14 2017-03-22 Cambridge Display Tech Ltd Anthrathiophene derivatives with transverse solubilising units and their applications as organic semiconductors
JP6746455B2 (ja) * 2016-09-30 2020-08-26 大日精化工業株式会社 ピリミドキナゾリン顔料、ピリミドキナゾリン顔料の製造方法、及び顔料着色剤
CN106883237B (zh) * 2017-04-05 2018-11-02 兰州大学 一种双三唑并五苯醌类化合物及其制备方法
CN107316815B (zh) * 2017-06-30 2019-12-20 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JPH10340783A (ja) * 1997-06-06 1998-12-22 Mitsui Chem Inc 有機電界発光素子
WO2001064611A1 (fr) * 2000-02-29 2001-09-07 Japan Science And Technology Corporation Derives de polyacene et leur production
JP2004006476A (ja) 2002-05-31 2004-01-08 Ricoh Co Ltd 縦型有機トランジスタ
WO2005119794A1 (ja) * 2004-06-01 2005-12-15 Japan Science And Technology Agency 光電変換素子用材料及び光電変換素子
CN1724501A (zh) * 2005-07-22 2006-01-25 清华大学 蒽醌衍生物及其合成方法
JP2007335772A (ja) 2006-06-19 2007-12-27 Sony Corp 有機半導体材料および半導体装置
JP2008103464A (ja) * 2006-10-18 2008-05-01 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JPH10340783A (ja) * 1997-06-06 1998-12-22 Mitsui Chem Inc 有機電界発光素子
WO2001064611A1 (fr) * 2000-02-29 2001-09-07 Japan Science And Technology Corporation Derives de polyacene et leur production
JP2004006476A (ja) 2002-05-31 2004-01-08 Ricoh Co Ltd 縦型有機トランジスタ
WO2005119794A1 (ja) * 2004-06-01 2005-12-15 Japan Science And Technology Agency 光電変換素子用材料及び光電変換素子
CN1724501A (zh) * 2005-07-22 2006-01-25 清华大学 蒽醌衍生物及其合成方法
JP2007335772A (ja) 2006-06-19 2007-12-27 Sony Corp 有機半導体材料および半導体装置
JP2008103464A (ja) * 2006-10-18 2008-05-01 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CORY, R.M. ET AL.: "Linearly fused ribbons of carbocyclic six-membered rings via Diels-Alder cycloadditions. 1. Model studies and key intermediates", TETRAHEDRON LETTERS, vol. 34, no. 47, 1993, pages 7533 - 7536 *
See also references of EP2383273A4

Also Published As

Publication number Publication date
KR20110106441A (ko) 2011-09-28
JP2010275290A (ja) 2010-12-09
EP2383273A4 (en) 2012-06-27
CN102292342A (zh) 2011-12-21
US20120012822A1 (en) 2012-01-19
EP2383273A1 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
EP2109162B1 (en) Organic semiconductor composite, organic transistor material and organic field effect transistor
WO2009101982A1 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
WO2010084960A1 (ja) 芳香族化合物及びその製造方法
EP1997821A1 (en) Fluorine-containing compound and method for producing same, fluorine-containing polymer, organic thin film, and organic thin film device
JP2008255097A (ja) 含フッ素多環芳香族化合物、含フッ素重合体、有機薄膜及び有機薄膜素子
JP2008248228A (ja) ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2009101823A1 (ja) 分岐型化合物、これを用いた有機薄膜及び有機薄膜素子
JP5954814B2 (ja) 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
WO2012070582A1 (ja) 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP5426199B2 (ja) 分岐型化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2010104042A1 (ja) 含フッ素重合体及びこれを用いた有機薄膜
WO2013035564A1 (ja) 高分子化合物及び有機トランジスタ
WO2010104037A1 (ja) 重合体、この重合体を用いた有機薄膜及びこれを備える有機薄膜素子
JP5363771B2 (ja) 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
JP2012051874A (ja) 縮合環化合物、有機薄膜及び有機薄膜素子
JP5035958B2 (ja) 分岐型化合物、これを用いた有機薄膜及び有機薄膜素子
JP5105581B2 (ja) 含フッ素化合物及びその製造方法、含フッ素重合体、有機薄膜、並びに、有機薄膜素子
JP5914238B2 (ja) 高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタ
KR20070055074A (ko) 신규한 방향족 엔다이인 유도체, 이를 이용한 유기 반도체및 전자소자
WO2009101914A1 (ja) 重合体、これを用いた有機薄膜及び有機薄膜素子
KR20070065949A (ko) 방향족 엔다이인 유도체를 이용한 유기 반도체 박막의제조방법, 그에 의한 유기 반도체 박막 및 이를 채용한전자소자
JP2015218290A (ja) 高分子化合物およびそれを用いた有機半導体素子
JP2009176999A (ja) 縮環構造を持つ芳香族化合物を用いてなる有機トランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005107.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010733567

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117018828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13145487

Country of ref document: US